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ABSTRACT

To an enumerative problem, one may associate a Galois group which encodes symmetries of

the solutions to the problem. Galois groups of enumerative problems were first defined and studied

by Jordan who considered them in the context of several classical enumerative problems. Recently,

Galois groups of enumerative problems have been exploited for fast and efficient solving of poly-

nomial systems. As such, determining Galois groups of enumerative problems and understanding

how they may be used in numerical computations is of great importance.

We detail the mathematical background needed to define Galois groups of enumerative prob-

lems and then describe tools from numerical and computational algebraic geometry used to com-

pute and exploit Galois groups. We then give the algebraic definition of the Galois group originally

used by Jordan, as well as a geometric definition. We prove these definitions are equivalent and

explore Galois groups for two classes of enumerative problems, sparse polynomial systems and

Fano problems.

A sparse polynomial system is a polynomial systems such that the monomials appearing in

each polynomial have been chosen a priori. Esterov observed two classes of sparse polynomial

systems whose Galois group is an imprimitive permutation group and determined that the Galois

group is the symmetric group for all other sparse polynomial systems. In special cases, there are

results which determine the Galois group when it is imprimitive, though the answer is not known

in general. We detail a computational method used to decompose systems into simpler systems

when the Galois group is imprimitive. This approach has shown to increase speed and accuracy in

solving polynomial systems when the Galois group is imprimitive.

Fano problems, problems of enumerating linear spaces on a variety, were among those enu-

merative problems considered by Jordan in his study of Galois theory. Recently, Galois groups of

Fano problems were nearly classified by Hashimoto and Kadets. All Galois groups of Fano prob-

lems which are unknown are either the alternating group or the symmetric group. We present a

computational technique which may be used to prove the existence of a transposition in the Galois
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group. This method was recently used to prove that several Galois groups of Fano problems are

symmetric groups, which was previously unknown.
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NOTATIONS

k A field of characteristic zero

K An algebraically closed field of characteristic zero

K× The multiplicative group of nonzero elements of K

C The field of complex numbers

Kn The space of n–tuples of elements of K

Pn Projective space of dimension n

k[x1, . . . , xn] The polynomial ring with k valued coefficients and indeter-
minants x1, . . . , xn

⟨F ⟩ The ideal generated by F

V(I) The variety defined by the ideal I

I(X) The defining ideal of the variety X

mx The defining ideal of the point x

K[X] The coordinate ring of the variety X

K(X) The function field of the variety X

DF (x) The Jacobian of F evaluated at x

D2F (x) The Hessian of F evaluated at x

kerA The kernel of A

rankA The rank of A

TxX The tangent space of X at x

sm(X) The smooth locus of X

dimX The dimension of X

µI(x) The multiplicity of x as a zero of the ideal I
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PX The projectivization of the affine cone X

CY The affine cone over the projective variety Y

An
i The affine chart for Pn indexed by i

G(r,Pn) The Grassmanian variety of r–planes in Pn

S(r + 1, n+ 1) The Stiefel manifold of full rank (n+ 1)× (r + 1) matrices

Idn The n× n identity matrix

GL(m) The m×m invertible matrices

[n] The set {1, . . . , n}(
[n]
k

)
The set of cardinality k subsets of [n]

pI(A) The determinant of the submatrix of A consisting of rows
indexed by I

X The closure of X

π∗ The pullback of the map π

[F : k] The index of k in F

deg π The degree of π

π : X Y A rational map from X to Y

H(x, t) A homotopy with variable x and parameter t

[a, b] The real closed interval of x such that a ≤ x ≤ b

re(z) The real part of z

im(z) The imaginary part of z

IC The space of one–dimensional complex intervals

ICn The space of n–dimensional complex intervals

□F An interval enclosure of F

Kx,Y The Krawczyk operator with parameters x and Y

Mπ The monodromy group of π

Sd The symmetric group on [d]
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Xd
Y The d–fold fiber product of a map X → Y

∆ The set of tuples with a repeated coordinate

X
(d)
Y The closure Xd

Y \∆

G(L/k) The Galois group of the field extension L/k

FH The elements of F fixed by the group H

C[x±1
1 , . . . , x±1

n ] The Laurent polynomial ring in the indeterminants
x1, . . . , xn

A• A set of supports

|A•| The sum of the cardinalities of each Ai

conv(A) The convex hull of the set A

MV(A•) The mixed volume of the convex hulls
conv(A1), . . . , conv(An)

sat(L) The saturation of L

Vr(X) The Fano scheme of r–planes on X
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1. INTRODUCTION

Problems of counting or describing geometric objects in special position relative to other fixed

objects are known as enumerative problems—Enumerative geometry is the study of these problems

and the various techniques used to solve them. Enumerative problems arise in many applications,

such as in designing mechanical arms with prescribed motion, reconstructing a scene from images,

and determining stable or oscillatory distributions of chemicals in a reaction. The structure of these

problems and the ability to compute their solutions is vital to these applications.

The Galois group of an enumerative problem encodes the structure and symmetries of the

problem. These groups were first defined by Jordan in his seminal work on Galois theory, "Traité

des substitutions et des équations algébriques" [1]. In this work, Jordan studied the Galois groups

of several classical enumerative problems using known results concerning the solutions of these

problems. The reverse is more common: generally the Galois group of an enumerative problem is

studied to obtain information about the problem and its solutions. Indeed, information about the

Galois group can be used to answer questions such as “Can all remaining solutions be computed in

rational functions of a number of known solutions?” and “Can the solutions be computed exactly

via radicals?”

While initially defined through algebraic means, a modern geometric view of the Galois group

of an enumerative problem was given by Harris [2] and traces back further to Hermite [3]. In this

description, the Galois group is given as the monodromy group of a map between spaces given

as the zeros of a polynomial system. Such spaces are called varieties and are a primary object

in algebraic geometry, which invites the use of its tools and techniques. Information about the

Galois group can often then be inferred from properties of these varieties. For instance, transitivity

and higher transitivity of the Galois group of an enumerative problem can be determined from the

irreducibility of certain varieties associated to the problem. We discuss the necessary background

in algebraic geometry to study Galois groups of enumerative problems in Chapter 2.

As varieties are determined by polynomial systems, they can be encoded and represented in a
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computer by these systems. Further, points on a variety are solutions to these systems and can be

approximated by numerical coordinates. Methods of studying varieties through this lens comprise

the area of computational algebraic geometry. Symbolic methods from computational algebraic

geometry produce exact results and formal proofs at the cost of time and large computational needs.

In contrast, numerical methods from computational algebraic geometry are often fast and efficient,

but rarely constitute a formal proof. In Chapter 3, we describe several tools and techniques from

computational algebraic geometry that we use for studying Galois groups of enumerative problems.

A sparse polynomial system is a polynomial system such that the monomials appearing in each

polynomial have been chosen a priori. The problem of describing the zeros of a sparse polynomial

system is an enumerative problem we consider in depth. These systems have been well studied, a

tight upper bound for their number of solutions was determined by Bernstein, Kushnirenko, and

Khovanskii [4, 5]. Later, Huber and Sturmfels gave an algorithm for solving these systems and

showed it to be optimal in a precise sense [6]. Recently, Esterov classified the Galois group for a

large class of sparse polynomial systems and has made progress in determining the Galois group

in other cases [7, 8]. In Chapter 4, we explore what is known about Galois groups of sparse

polynomial systems, pose a conjecture on the groups that appear as the Galois group for a special

class of sparse polynomial systems, and describe a method of solving these systems by exploiting

their Galois groups as in [9, 10].

The classical problem of enumerating the lines on a cubic surface is one of the first instances

of a Fano problem. More generally, a Fano problem consists of enumerating the linear spaces of

a fixed dimension on a variety. For a general complete intersection, Debarre and Manivel derived

formulas for the dimension and degree of the variety of linear spaces lying on the complete inter-

section. This setting encompases all Fano problems we consider, including classical cases. Galois

groups of these Fano problems were among the first Galois groups ever considered, as Jordan con-

sidered the Galois group of the problem of lines on a cubic surface [1]. Figure 1.1 was generated

using the graphics language Asymptote [11] and illustrates the lines on a cubic surface. Harris

generalized Jordan’s result by computing the Galois groups for a family of Fano problems [2].
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Recently, Hashimoto and Kadets determined the Galois group for another family of Fano prob-

lems and then very nearly classified Galois groups of Fano problems [12]. In Chapter 5 we show

how numerical algebraic geometry has been used to prove results about Galois groups of Fano

problems, furthering this near classification.

Figure 1.1: Two views of the 27 lines on a cubic surface

3



2. ALGEBRAIC GEOMETRY

2.1 Affine Varieties

Algebraic geometry may be described as the study of zeros of polynomial systems, called

varieties. Varieties contained in an ambient space, such as affine space Kn and projective space Pn,

are called affine varieties and projective varieties respectively. Throughout, we assume the field

of definition K of our polynomials and their zeros is an algebraically closed field of characteristic

zero. More comprehensive accounts of algebraic geometry may be found in [13, 14, 15].

2.1.1 Ideals and Varieties

A polynomial is an element of the ring K[x1, . . . , xn] generated by the coordinate functions

x1, . . . , xn on Kn, and a system of k polynomials is a k–tuple F = (f1, . . . , fk) of polynomials.

A zero of the system F = (f1, . . . , fk) is a point x ∈ Kn such that fi(x) = 0 for i = 1, . . . , k.

We write ⟨F ⟩ = ⟨f1, . . . , fk⟩ ⊆ K[x1, . . . , xn] for the ideal generated by the system F . Every

element of ⟨F ⟩ is a linear combination over K[x1, . . . , xn] of the polynomials f1, . . . , fk, so that

a zero of the system F is a zero of every polynomial f ∈ ⟨F ⟩. Conversely, as fi ∈ ⟨F ⟩ for each

i = 1, . . . , k, if x ∈ Kn is a zero of every polynomial f ∈ ⟨F ⟩, then it is a zero of the system F .

Definition 1. Given an ideal I ⊆ K[x1, . . . , xn], the set

V(I) = {x ∈ Kn : f(x) = 0 for all f ∈ I}

is the affine variety defined by I .

Given a polynomial system F , we write V(F ) for the affine variety V(⟨F ⟩), which is the set

of zeros of F . Any variety X = V(I) is the zero set of a polynomial system. Indeed, by Hilbert’s

basis theorem, the ideal I ⊆ K[x1, . . . , xn] is finitely–generated and X = V(I) is the set of zeros

of any polynomial system F such that I = ⟨F ⟩.

If there is a inclusion of ideals I ⊆ J , then there is a reverse inclusion of affine varieties
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V(J) ⊆ V(I). Given an inclusion of varieties Y ⊆ X , we say that Y is a subvariety of X . There

are many ideals which define the same affine variety—for instance, in A2, the ideals ⟨x, y⟩ and

⟨x2, xy, y2⟩ both define the origin.

There is a unique ideal which represents an affine variety X . The defining ideal I(X) of an

affine variety X ⊆ Kn is the ideal

I(X) = {f ∈ K[x1, . . . , xn] : f(x) = 0 for all x ∈ X}.

The defining ideal of a variety has the property that V(I(X)) = X , but the inclusion I ⊆ I(V(I))

may be proper. Indeed, the defining ideal of a variety is a radical ideal, as fm ∈ I(X) implies

f ∈ I(X). Recall the radical of an ideal I is the intersection of all prime ideals that contain I . The

relationship between the functions V and I is given by Hilbert’s Nullstellensatz.

Theorem 2 (Hilbert). The functions V and I are inverse bijections between the set of radical ideals

of K[x1, . . . , xn] and the set of affine varieties in Kn. Further, for any ideal I , I(V(I)) is equal to

the radical of I .

From Theorem 2, the defining ideal of a point x ∈ Kn is a maximal ideal mx and conversely.

As a proper ideal I ⊆ K[x1, . . . , xn] is contained in some maximal ideal mx, the variety V(I)

necessarily contains the point x ∈ V(mx) ⊆ V(I). Thus, every proper ideal of K[x1, . . . , xn]

defines a nonempty variety in Kn.

For arbitrary ideals I, J ⊆ K[x1, . . . , xn], the function V satisfies V(I)∪V(J) = V(I ∩J) and

V(I)∩V(J) = V(I + J). It follows that finite unions and arbitrary intersections of affine varieties

are affine varieties. As such, affine varieties form the closed sets of a topology on Kn called the

Zariski topology. An affine variety inherits this topology as a subspace of affine space.

Definition 3. The Zariski topology on an affine variety X ⊆ Kn is the topology whose closed sets

are the subvarieties of X .

A polynomial f ∈ K[x1, . . . , xn] is a function on Kn and its restriction f : X → K to an

affine variety X is a regular function on X . The set of regular functions on X forms a ring under
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pointwise addition and multiplication called the coordinate ring K[X] of X . If a polynomial

f ∈ K[x1, . . . , xn] restricts to the zero function on X , it is an element of the defining ideal f ∈

I(X). It follows that the coordinate ring of an affine variety X may be represented by the quotient

K[X] = K[x1, . . . , xn]/I(X).

Coordinate rings allow us to speak of subvarieties of an affine variety X ⊆ Kn more generally.

An ideal of the coordinate ring K[X] = K[x1, . . . , xn]/I(X) corresponds to a unique ideal I ⊆

K[x1, . . . , xn] containing I(X), and the variety of this ideal V(I) ⊆ V(I(X)) = X is a subvariety

of X . Conversely, the defining ideal of any subvariety Y ⊆ X contains I(X) and so corresponds

to an ideal of the coordinate ring K[X].

2.1.2 Irreducibility

Often one would like to decompose a variety into simpler varieties. Irreducible varieties are

varieties that can not be decomposed and serve as building blocks for such a decomposition.

Definition 4. An affine variety X is irreducible if it cannot be written as a union of two proper

subvarieties. A variety which is not irreducible is reducible.

By taking complements, an affine variety is irreducible if every pair of nonempty Zariski open

sets intersects nontrivially—equivalently, if every nonempty Zariski open set is dense in the Zariski

topology. Irreducibility of an affine variety can be interpreted algebraically—an affine variety X

is irreducible if and only if its defining ideal I(X) is prime. This implies the coordinate ring of an

irreducible affine variety is an integral domain. The function field K(X) of an irreducible affine

variety is the fraction field of its coordinate ring and its elements are called rational functions.

A rational function is represented (non–uniquely) by quotients of regular functions f/g where

g ∈ K[X] is nonzero.

Recall that an intersection of ideals corresponds to a union of varieties, V(I∩J) = V(I)∪V(J).

Given a variety X ⊆ Kn, its defining ideal I(X) ⊆ K[x1, . . . , xn] is radical and equal to the

intersection of all prime ideals containing I(X). By considering the varieties defined by these

prime ideals, we obtain an expression for X as a union of irreducible subvarieties. Results from
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commutative algebra for Noetherian rings imply that this union is finite [13, 16].

Theorem 5. An affine variety X can be decomposed into a finite union of irreducible varieties

X = Y1 ∪ · · · ∪ Yk such that none of these varieties are contained within one another. Futher, this

decomposition is unique up to a reordering of the varieties Y1, . . . , Yk.

The varieties Y1, . . . , Yk in Theorem 5 are called the irreducible components of X . An isolated

point is an irreducible component of a variety consisting of a single point.

2.1.3 Smoothness and Dimension

Recall an affine variety X ⊆ Kn is defined by a system of m polynomials F = (f1, . . . , fm)

such that I(X) = ⟨F ⟩. The JacobianDF (x0) : Kn → Km of F at a point x0 ∈ X is the linear map

represented by the matrix whose entries are the partial derivatives of the polynomials f1, . . . , fm

evaluated at x0.

Definition 6. LetX be a variety and F be a polynomial system such that I(X) = ⟨F ⟩. The Zariski

tangent space Tx0X of an affine variety X at a point x0 ∈ X is defined by

Tx0X = {x ∈ Kn : DF (x0)(x− x0) = 0}.

The tangent space Tx0X of X at a point x0 ∈ X is independent of choice of system F used in

Definition 6. Indeed, if F vanishes on X and G is a system such that ⟨G⟩ ⊆ ⟨F ⟩, expressing the

polynomials of G as combinations of the polynomials of F and differentiating gives an inclusion

kerDF (x0) ⊆ kerDG(x0). If the systems F and G both vanish on X and generate the same

ideal, then there is an equality kerDF (x0) = kerDG(x0). As Tx0X is a translation of the kernel

kerDF (x0) by x0, any system F satisfying I(X) = ⟨F ⟩ produces the same tangent space. We note

that as a translated vector space, a tangent space has a dimension dimTx0X = dimkerDF (x0).

Fix an irreducible variety X ⊆ Kn and a system F such that I(X) = ⟨F ⟩. Among the points

x ∈ X , there is a maximal rank r of the Jacobian DF (x) and this maximal rank is attained. A

point x ∈ X is smooth if rankDF (x) = r and the smooth locus sm(X) of X is the set of smooth
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points. If x ∈ X is not a smooth point, then rankDF (x) < r and the r × r minors of DF (x)

vanish. As the smooth locus is nonempty, the r×r minors ofDF (x) determine a proper subvariety

of X and sm(X) is a Zariski open set. We say X is smooth if every point is smooth, X = sm(X).

Definition 7. The dimension dimX of an irreducible variety X is the dimension of the tangent

space at a smooth point, dimX = dimTxX for x ∈ sm(X). The dimension of a reducible variety

is the maximum dimension of its irreducible components.

There are many equivalent definitions of dimension. Several of these definitions and proof of

their equivalences can be found in [13, 16]. The most useful equivalence for our purposes comes

from the following result.

Theorem 8. For an irreducible affine variety X , the dimension of X is equal to the transcendence

degree of the function field K(X).

2.2 Projective Varieties

A polynomial f ∈ K[x0, . . . , xn] is homogeneous of degree d if f(λx) = λdf(x) for all

λ ∈ K×, and an ideal generated by homogeneous polynomials is a homogeneous ideal. Projective

varieties are zero sets of homogeneous ideals in projective space. While much of the theory is

analogous to that of affine varieties, there are differences that we highlight.

2.2.1 Ideals and Varieties

The projective space Pn is the set of one–dimensional linear subspaces in Kn+1. Each one–

dimensional linear subspace is the span of a point x ∈ Kn+1\{0}, and two points x, y ∈ Kn+1\{0}

span the same one–dimensional linear subspace exactly when there is a nonzero λ ∈ K× such that

y = λx. Thus, we consider Pn as the set of orbits of Kn+1 \ {0} under the K×–action of scalar

multiplication. Write [x] ∈ Pn for the orbit of the point x ∈ Kn+1 \ {0}.

Given a homogeneous ideal I ⊆ K[x0, . . . , xn], its zero set V(I) ⊆ Kn+1 is invariant under

scalar multiplication—such a set is called an affine cone. Conversely, let f ∈ K[x0, . . . , xn] be a

polynomial that vanishes on an affine cone X . If we write f as a sum f = f0+ . . .+fd where each
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fi is a homogeneous polynomial of degree i, then each fi vanishes on X . Thus, the defining ideal

of an affine cone is generated by homogeneous polynomials and is a homogeneous ideal. Given

an affine cone X ⊆ Kn+1, the set X ∩ (Kn+1 \ {0}) is a union of K×–orbits which defines a set

PX ⊆ Pn called the projectivization of X .

Definition 9. A projective variety is the projectivization of an affine cone.

Given a projective variety Y ⊆ Pn, the affine cone over Y is the Zariski closure

CY = {x ∈ Kn+1 \ {0} : [x] ∈ Y }.

The functions Y → CY sending a projective variety in Pn to its affine cone in Kn+1 and X → PX

sending an affine cone in Kn+1 to its projectivization in Pn are inverse bijections.

The defining ideal I(Y ) of a projective variety Y is defined to be the defining ideal I(CY ) of

its affine cone CY , which is a homogeneous radical ideal. Analagous to the affine setting, there is

correspondence between homogeneous radical ideals of K[x0, . . . , xn] and projective varieties in

Pn. However, the correspondence is not bijective—the homogeneous radical ideals ⟨x0, . . . , xn⟩

and ⟨1⟩ both define the empty projective variety.

Theorem 10. The functions PV and I are inclusion reversing bijections between the sets of homo-

geneous radical ideals of K[x0, . . . , xn] not equal to the ideal ⟨x0, . . . , xn⟩ and the set of projective

varieties contained in Pn.

Finite unions and arbitrary intersections of projective varieties are projective varieties, so we

define the Zariski topology on Pn to be the topology whose closed sets are projective varieties. The

Zariski topology on a projective variety Y ⊆ Pn is the inherited topology whose closed sets are

the subvarieties of Y .

2.2.2 Affine Charts

We give another view of projective varieties through local coordinates. Consider the Zariski

open sets An
i = {[x0, . . . , xn] ∈ Pn : xi ̸= 0}, which cover Pn. Every point [x0, . . . , xn] ∈ An

i
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is represented by a unique point (x0/xi, . . . , xn/xi) ∈ Kn+1 \ {0}, where the i-th coordinate is

equal to 1. Thus the map ϕi : An
i → Kn sending [x0, . . . , xn] to (x0/xi, . . . , 1̂i, . . . , xn/xi) ∈ Kn

(removing the 1 in the i-th coordinate) is a bijection. The open sets and maps (An
i , ϕi)i=0,...,n are

affine charts for Pn and provide it with a system of local coordinates.

The Zariski topology on Pn is a gluing of the Zariski topology in these affine charts. That is, a

subset Y ⊆ Pn is a projective variety if and only if the sets ϕi(Y ∩An
i ) ⊆ Kn are affine varieties for

i = 0, . . . , n. For a projective variety Y ⊆ Pn defined by a system of homogeneous polynomials

F (x0, . . . , xn), the affine variety ϕi(Y ∩ An
i ) is the zero set of the system

F̃ (x0, . . . , xi−1, xi+1, . . . , xn) = F (x0, . . . , 1i, . . . , xn)

defined by setting the i-th coordinate equal to 1 in each polynomial of F . Conversely, if Y ⊆ Pn

is such that the sets ϕi(Y ∩ An
i ) are affine varieties for every i = 0, . . . , n, then Y is a projective

variety and is defined by a homogeneous ideal.

2.2.3 Irreducibility, Smoothness, & Dimension

As with affine varieties, if there is an inclusion Y ⊆ X , we say Y is a subvariety of X . An

irreducible projective variety Y ⊆ Pn is one that cannot be written as a union of two proper

subvarieties—equivalently, one whose affine cone is irreducible, or whose defining ideal I(Y ) =

I(CY ) is prime.

Given a projective variety Y , we may decompose the affine cone CY into irreducible compo-

nents. The projectivizations of the irreducible components of CY give an irreducible decomposi-

tion for Y . Thus, a projective variety Y may be uniquely decomposed into a union or irreducible

projective varieties and this decomposition is unique up to a reordering of the varieties. Again, we

say the varieties in such a decomposition are the irreducible components of Y .

For a projective variety Y , its affine cone CY has a tangent space which we use to define the

tangent space of the projective variety X .

Definition 11. The Zariski tangent space T[x]Y of a projective variety Y at a point [x] ∈ Y is the
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projectivization of the tangent space TxCY of the affine cone CY at any representative x ∈ CY of

the orbit [x] ∈ Pn.

The dimension of a projective variety Y ⊆ Pn is defined to be dimY = dimCY − 1. Thus

the dimension of a tangent space is defined and we say a point [x] ∈ Y is smooth if dimT[x]Y =

dimY . The affine variety ϕi(Y ∩ An
i ) may be identified with a subvariety of CY of dimension

dimCY − 1 so that the dimension is preserved by taking local coordinates. It follows that a point

[x] ∈ Y ∩ An
i is smooth if and only if ϕi([x]) ∈ ϕi(Y ∩ An

i ) is smooth. The smooth locus of a

projective variety Y is the Zariski open set sm(Y ) consisting of smooth points and Y is smooth if

sm(Y ) = Y .

2.3 Grassmanian Varieties

An r–plane in Pn is a projective variety ℓ whose affine cone Cℓ ⊆ An+1 is an (r + 1)–

dimensional linear subspace. Grassmanian varieties are projective varieties which parameterize the

r–planes in Pn. There are several connections of Grassmanian varieties to representation theory,

combinatorics, and intersection theory. We discuss definitions and various properties of Grassma-

nian varieties, including local coordinate charts, dimension, and smoothness. We begin with the

definition of the central object of this section.

Definition 12. The Grassmanian G(r,Pn) is the space of r–planes in Pn.

We study r–planes in Pn by considering their affine cones. For r ≤ n, the Stiefel manifold

S(r+ 1, n+ 1) is the space of complex full rank (n+ 1)× (r+ 1) matrices. We write Idm for the

m ×m identity matrix and GL(m) = S(m,m) for the space of m ×m invertible matrices. The

space of (n+1)× (r+1) matrices forms an affine (n+1)(r+1)–dimensional affine space and the

Stiefel manifold is the Zariski open set consisting of matrices with some nonzero maximal minor.

The column span of an element of S(r + 1, n + 1) is an (r + 1)–dimensional linear subspace

of An+1. As all (r + 1)–dimensional linear subspaces occur this way, the Stiefel manifold S(r +

1, n + 1) parameterizes (r + 1)–dimensional linear subspaces of An+1 (equivalently, r–planes in

Pn)—however, this is an overparameterization. Indeed, for any matrix A ∈ S(r + 1, n + 1) and
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B ∈ GL(r+1), AB ∈ S(r+1, n+1) has the same column span as A. Conversely, if two matrices

have the same column span, the columns of these matrices form bases for this linear subspace and

there is a change of coordinates between these bases represented by an element of GL(r + 1).

That is, there is a bijection between the Grassmanian G(r,Pn) and the orbits of GL(r + 1) acting

on S(r + 1, n + 1) by multiplication on the right. An r–plane ℓ ∈ G(r,Pn) is represented (not

uniquely) by an element of S(r + 1, n+ 1) whose entries we call Stiefel coordinates for ℓ.

2.3.1 Plücker Coordinates

We describe another set of coordinates on G(r,Pn). Write
(
[n+1]
r+1

)
for the set of subsets of

{0, . . . , n} of cardinality r+1. For a subset I ∈
(
[n+1]
r+1

)
and A ∈ S(r+1, n+1), let pI(A) be the

determinant of the submatrix of A consisting of rows indexed by I . The set {pI(A) : I ∈
(
[n+1]
r+1

)
}

is the set of maximal minors of the matrix A. For an r–plane ℓ ∈ G(r,Pn) with Stiefel coordinates

A ∈ S(r + 1, n+ 1), the tuple (pI(A))I∈
(
[n+1]
r+1

) are called Plücker coordinates for ℓ.

Consider an r–plane ℓ ∈ G(r,Pn) with Stiefel coordinates A ∈ S(r + 1, n + 1). Any other

Stiefel coordinates for ℓ have the form AB ∈ S(r + 1, n + 1) for B ∈ GL(r + 1), and for any

I ∈
(
[n+1]
r+1

)
we have pI(AB) = det(B)pI(A). That is, the Plücker coordinates of an r–plane are

unique up to scale and define a point in P
(
n+1
r+1

)
−1. The Plücker embedding of G(r,Pn) is the map

p : G(r,Pn) → P
(
n+1
r+1

)
−1 sending ℓ ∈ G(r,Pn) to its Plücker coordinates in projective space. We

show that this map is an injection and that the image is a projective variety, justifying the statement

that G(r,Pn) is a projective variety.

We demonstrate that the image of the Plücker embedding is a projective variety by showing that

in each affine chart UI = A
(
n+1
r+1

)
−1

I of P
(
n+1
r+1

)
−1 indexed by I ∈

(
[n+1]
r+1

)
, the image p(G(r,Pn))

defines an affine variety in local coordinates. By permuting the coordinates, we may assume that

I = {0, . . . , r}. For ℓ ∈ p(G(r,Pn)) ∩ UI , Stiefel coordinates A ∈ S(r + 1, n+ 1) representing ℓ

are such that the (r+1)× (r+1) principal submatrix of A is invertible. Multiplying by the inverse
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of this submatrix matrix, we obtain Stiefel coordinates for ℓ of the form

Ã =

 Idr+1

A′

 .

Up to sign, the entries of A′ are Plücker coordinates of ℓ in local coordinates, and all Plücker

coordinates are polynomials in these entries. The set p(G(r,Pn)) ∩ UI is then the graph of a

polynomial function over the affine space of entries of A′. The graph of a polynomial function

over a variety is a variety so that p(G(r,Pn)) ∩ UI defines an affine variety in local coordinates.

Hence, the image p(G(r,Pn)) is a projective variety.

We note that the analysis above also shows the Plücker embedding is injective. Indeed, given

ℓ ∈ G(r,Pn) with Stiefel coordinates A ∈ S(r + 1, n + 1), there is some I ∈
(
[n+1]
r+1

)
such

that pI(A) ̸= 0. By reordering coordinates, we may assume I = {0, . . . , r} and choose Stiefel

coordinates for ℓ of the form Ã as above. Up to sign, the entries of the matrix A′ are the Plücker

coordinates of ℓ in local coordinates on UI showing that Stiefel coordinates of ℓ may be recovered

from the Plücker coordinates of ℓ. For any other point ℓ′ ∈ G(r,Pn) such that p(ℓ′) = p(ℓ), Ã

provides Stiefel coordinates for ℓ′ as well, showing that the Plücker embedding is injective.

Identifying G(r,Pn) with its image under the Plücker embedding, this shows G(r,Pn) is a pro-

jective variety. The defining ideal I(G(r,Pn)) has been well–studied and is generated by quadrat-

ics. These quadratics have combinatorial descriptions, which we do not require or include. More

about this ideal and its combinatorial properties can be found in [17].

For each I ∈
(
[n+1]
r+1

)
the Grassmanian in local coordinates p(G(r,Pn)) ∩ UI is isomorphic

to an (r + 1)(n − r)–dimensional affine space. From these local considerations, we arrive at the

following result.

Theorem 13. The Grassmanian G(r,Pn) is a smooth projective variety of dimension (r+1)(n−r).
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2.4 Quasi–Projective Varieties

Quasi–projective varieties are Zariski open subsets of projective varieties. All varieties we

consider are quasi–projective and in later sections we omit the quantifier quasi–projective and

refer to them simply as varieties.

Definition 14. A quasi–projective variety is a Zariski open subset of a projective variety.

The closure of a quasi–projective variety X ⊆ Pn is a projective variety X ⊆ Pn which

determines many properties of X . For example, the Zariski topology on X is the induced Zariski

topology as a subset of X . This means that a subvariety of a quasi–projective variety X has the

form X ∩ Y where Y ⊆ Pn is a projective variety. Further, as X is a dense open subset of X , X

is irreducible if and only if X is irreducible. Smoothness of a point of a quasi–projective variety

is also determined from its closure—a point x of a quasi–projective variety X ⊆ Pn is smooth if

it is a smooth point of its closure X ⊆ Pn. We then have the notions of the smooth locus and a

smooth quasi–projective variety. Last, the dimension of a quasi–projective variety is equal to that

of its closure, dimX = dimX .

Fix a quasi–projective variety X ⊆ Pn. Given homogeneous polynomials f, g ∈ K[x0, . . . , xn]

of the same degree with g ̸∈ I(X), the quotient f/g is a well–defined function on the Zariski

open set of X where g is nonzero. A function h is regular at a point [x] ∈ X if there is a Zariski

neighborhood U ⊆ X of [x] for which h is defined and agrees with a function of the form f/g

where f, g ∈ K[x0, . . . , xn] are homogeneous polynomials of the same degree and g ̸∈ I(X). A

function on is regular on X if it is regular at every point of X and rational on X if it is regular

on a Zariski open subset of X . The regular functions on a quasi–projective variety X form a ring

K[X] called the coordinate ring of X . Theorem 2 may be used to show this notion agrees with our

notion of the coordinate ring for an affine variety. On an irreducible quasi–projective variety X ,

the rational functions form a field K(X) called the function field of X .

We briefly describe products of quasi–projective varieties. Consider the product of projective
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spaces Pn × Pm. The image of the Segre embedding σn,m : Pn × Pm → P(n+1)(m+1)−1 defined by

σn,m([x0, . . . , xn], [y0, . . . , ym]) = [xiyj] i=0,...,n
j=0,...,m

is a projective variety known as a Segre variety [13]. As the Segre embedding is a bijection,

we consider Pn × Pm as a projective variety by identifying it with the Segre variety imσn,m ⊆

P(n+1)(m+1)−1. Given projective varieties X ⊆ Pn and Y ⊆ Pm, their product X × Y is defined

to be the image σn,m(X × Y ) under the Segre embedding, which is a projective variety. Similarly,

given quasi–projective varieties X ⊆ Pn and Y ⊆ Pm, their product X×Y is the image σn,m(X×

Y ), which is a Zariski open subset of the projective variety σn,m(X × Y ).

2.5 Maps

With the notion of a regular function understood, we define maps between varieties. For a

quasi–projective variety X , a map f : X → Km is regular if each of the m coordinate functions

is regular. We extend this definition of a regular map to define regular and rational maps of quasi–

projective varieties.

Definition 15. Let X and Y be quasi–projective varieties with Y ⊆ Pm. A map π : X → Y is

regular at x ∈ X if there is an affine chart (Am
i , ϕi) of Pm and a Zariski open set U ⊆ X containing

x for which π(U) ⊆ Am
i and the composition

U
π−→ Am

i

ϕi−→ Km

is a regular map. A map π : X → Y is a regular map if it is regular at every point of X .

A regular map π : X → Y with a regular inverse is an isomorphism and we say the varieties

X and Y are isomorphic.

If π : X → Y is a regular map and f : Y → K is a regular function, then the composition

f ◦ π is a regular function on X . That is, precomposing regular functions with π gives a map of

coordinate rings π∗ : K[Y ] → K[X] called the pullback by π. We note an important property of
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pullbacks. The closure of a regular map π : X → Y is dense in Y exactly when the pullback

π∗ : K[Y ] → K[X] is injective. A regular map π satisfying either of these properties is said to be

dominant.

Consider a regular map of affine varieties π : X → Y . For a subvariety Z = V(f1, . . . , fk) ⊆

Y defined by f1, . . . , fk ∈ K[Y ], the preimage of Z is the subvariety π−1(Z) = V(f1 ◦ π, . . . , fk ◦

π) ⊆ X . That is, regular maps of affine varieties are continuous in the Zariski topology. As maps

of quasi–projective varieties are locally described by regular maps of affine varieties restricted to

open sets, it follows that regular maps of quasi–projective varieties are continuous in the Zariski

topology.

For general y ∈ Y , the dimension of the fiber π−1(y) can be determined [13].

Theorem 16. If π : X → Y is a dominant regular map of irreducible varieties with dimX = n

and dimY = m, then n ≥ m and

• for every y ∈ Y , dim π−1(y) ≥ n−m;

• there is a nonempty Zariski open set U ⊆ Y such that dim π−1(y) = n−m for y ∈ U .

Since the preimage of a variety is a variety, the closure of the image π(X) of an irreducible

varietyX under a regular map π : X → Y is also irreducible. The Stiefel manifold S(r+1, n+1) is

irreducible as it is a Zariski open subset of affine space, and the map π : S(r+1, n+1) → G(r,Pn)

is regular and surjective. Thus the Grassmanian G(r,Pn) is irreducible. Further, Theorem 16

allows us to again compute the dimension of G(r,Pn). As a fiber of S(r+1, n+1) → G(r,Pn) is

isomorphic to GL(r + 1), we have that

dimG(r,Pn) = dim S(r + 1, n+ 1)− dimGL(r + 1)

= (r + 1)(n+ 1)− (r + 1)2

= (r + 1)(n− r).

We provide a useful criterion for determining whether a variety is irreducible
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Proposition 17. Let π : X → Y be a dominant map of varieties and Y be irreducible. If there is

an open cover Y = ∪iUi of Y by Zariski open sets Ui ⊆ Y such that π−1(Ui) ⊆ X is irreducible

for all i, then X is irreducible.

Proof. Note that some irreducible component Z ⊆ X necessarily maps dominantly to Y . Then

for each i, we must have π−1(Ui) ⊆ Z. Indeed, as the image π(Z) is dense in Y , it intersects Ui

nontrivially and hence π−1(Ui) ∩ Z is nonempty. As the preimage π−1(Ui) ⊆ X is irreducible, it

follows that π−1(Ui) ⊆ Z. Thus, for a point x ∈ X , π(x) ∈ Ui for some i and

x ∈ π−1(π(x)) ⊆ π−1(Ui) ⊆ Z.

Therefore, X = Z and X is irreducible.

The image of a variety under a regular map need not be a variety. However, there is a general

statement that can be made about the image of a regular map. The following can be proved by

considering integral extensions of rings, as is done in [13].

Theorem 18. If π : X → Y is a regular map, the image π(X) contains a Zariski open subset of

the closure π(X) ⊆ Y .

2.5.1 Branched Covers

We define an important class of dominant maps.

Definition 19. A branched cover π : X → Y is a dominant map of irreducible varieties X and Y

of the same dimension.

If X and Y are irreducible varieties and π : X → Y is a dominant map, the pullback π∗ is

injective and extends to a map of function fields π∗ : K(Y ) → K(X). Thus, we consider K(X) as

a field extension of K(Y ), written K(X)/K(Y ). For a branched cover π : X → Y , the extension

K(X)/K(Y ) is finite as these fields have the same transcendence degree.

Definition 20. The degree deg π of a branched cover π : X → Y is the degree of the field extension

K(X)/K(Y ).
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The following is an immediate consequence of this definition.

Proposition 21. If π : X → Y and λ : Y → Z are branched covers, then λ ◦ π : X → Z is a

branched cover and deg(λ ◦ π) = (deg λ)(deg π).

A branched cover π : X → Y is nontrivial if deg π > 1. For a branched cover π : X → Y , a

general fiber is zero–dimensional and the degree deg π is the cardinality of a general fiber. Indeed,

consider a branched cover π : X → Y . By the primitive element theorem, the function field K(X)

is a simple extension of K(Y )—there is an element α ∈ K(X) such that K(X) = K(Y )(α), which

we may assume to be a regular function by restricting to an open subset of X . As α is algebraic

over K(Y ), it satisfies an irreducible polynomial g ∈ K(Y )[t] of degree deg π. There is a Zariski

open set U ⊆ Y for which the coefficients of g are regular functions and the discriminant of g is

nonzero. For y ∈ V , evaluating g at y gives a polynomial gy(t) ∈ K[t] with deg π distinct zeros

since K is algebraically closed. The function α is a bijection between the points x ∈ π−1(y) and

the deg π zeros of gy. Thus, we’ve proved the following theorem.

Theorem 22. If π : X → Y is a branched cover, there is a Zariski open set U ⊆ Y such that for

each y ∈ U the fiber π−1(y) consists of deg π distinct points.

We will require a generalization of Theorem 22 to include points of a fiber counted with multi-

plicity. We briefly describe how we assign multiplicity to an isolated point of the fiber x ∈ π−1(y)

for a branched cover π : X → Y and a point y ∈ Y .

Given a point x ∈ X , a pair (f, U) is a germ of X at x if U ⊆ X is a Zariski open set, x ∈ U ,

and f : U → K is a regular function. Two germs are equivalent (f, U) ∼ (g, V ) if the functions f

and g agree on the intersection U ∩ V , and the operations of addition and multiplication for germs

are defined pointwise. Write OX,x for the ring of germs of X at x. This ring is a local ring—OX,x

has a unique maximal ideal mx = {(f, U) ∈ OX,x : f(x) = 0}.

If π : X → Y is a branched cover and x ∈ π−1(y), then there is a pullback on germs π∗ :

OY,y → OX,x defined by precomposing with the branched cover π, π∗(f, U) = (f ◦ π, π−1(U)).

If my ⊆ OY,y is the unique maximal ideal of OY,y, let π∗my ⊆ OX,x be the ideal generated by the
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image of my under π∗. If x is an isolated point of the fiber π−1(y), then the quotient OX,x/π
∗my is

a finite–dimensional K–vector space.

Definition 23. Let π : X → Y be a branched cover, y ∈ Y , and x ∈ π−1(y) be an isolated point.

The multiplicity µ(x) of x is the dimension of the quotient OX,x/π
∗my as a K–vector space.

An isolated point of the fiber x ∈ π−1(y) has multiplicity one exactly when there are local

coordinates around x such that the Jacobian Dπ(x) has rank dimX . A point x ∈ π−1(y) is a

smooth point of the fiber if it has multiplicity one and a double point of the fiber if it has multiplicity

two.

Let X ⊆ Kn be an affine variety defined by a system F of m polynomials and x ∈ X be an

isolated point. Then we may consider F as a regular map F : Kn → Km and x ∈ X as an isolated

point of the fiber F−1(0). As the ring of germs OKn,x is the localization K[x1, . . . , xn]mx at the

maximal ideal mx, it follows that the multiplicity of x may be expressed as

µF (x) = dim (K[x1, . . . , xn]/⟨F ⟩)mx
.

In more generality, this multiplicity depends only on the ideal ⟨F ⟩. If a variety X = V(I) is

defined by an ideal I which is not necessarily radical, we may assign a multiplicity µI(x) to an

isolated point of X .

We can now state the more general version of Theorem 22. A proof is given in [13, 15, 18].

Theorem 24. Let π : X → Y be a branched cover and y ∈ Y .

1. The fiber π−1(y) contains at most deg π isolated points counting multiplicity.

2. There is a Zariski open set U ⊆ Y for which the fiber π−1(y) is finite and consists of deg π

points counting multiplicity.

If π : X → Y is a branched cover, Theorem 24 shows there is a Zariski open set U ⊆ Y for

which the fiber π−1(y) consists of deg π smooth points.
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2.5.2 Rational Maps

We now turn our attention to rational maps.

Definition 25. Let X and Y be irreducible varieties. A rational map π : X Y is a regular map

π : U → Y defined on a Zariski open set U ⊆ X .

Two rational maps are equal if they agree on a Zariski open set. As with regular maps, a rational

map π : X Y is dominant if its image is dense in Y . A dominant rational map π : X Y defined

on a Zariski open set U ⊆ X defines a pullback of function fields π∗ : K(Y ) → K(U) = K(X).

That is, precomposing a rational function f : Y K with π : X Y over the locus where

they are defined gives a rational function f ◦ π : X Y , and this determines a map of fields

π∗ : K(Y ) → K(X).

If π : X Y is a rational map and there exists ψ : Y X such that the compositions

ψ ◦ π : X X and π ◦ ψ : Y Y are identity maps when they are defined, then we say π is

birational or a birational isomorphism, and X and Y are birational. In this case, the pullback

π∗ : K(Y ) → K(X) is an isomorphism of fields. By an application of Theorem 18, we have the

following.

Theorem 26. If π : X Y is a birational map, then there are Zariski open sets U ⊆ X and

V ⊆ Y such that π is regular on U , π(U) ⊆ V , and π : U → V is an isomorphism.

We show that ifX and Y are irreducible varieties such that their function fields K(X) and K(Y )

are isomorphic, then X and Y are birational. We note that by restricting to coordinate charts, we

assume X ⊆ Kn and Y ⊆ Km. Denote the coordinate functions on Kn and Km by x1, . . . , xn

and y1, . . . , ym respectively. If π : X X is a rational function such that π∗ : K(X) → K(X) is

the identity map, then π∗(xi) = xi for each i = 1, . . . , n so that π : X X is the identity map

restricted to the Zariski open set that π is defined. From this, it suffices to show that for any map

of fields θ : K(Y ) → K(X), there is a rational map π : X Y such that θ = π∗. Given a map of

fields θ : K(Y ) → K(X), the rational map π : X Y defined by π(x) = (θ(y1)(x), . . . , θ(ym)(x))

satisfies θ = π∗.
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Proposition 27. Irreducible varieties X and Y are birational if and only if their function fields

K(X) and K(Y ) are isomorphic.

Combining Theorem 26 and Theorem 27, we see that if two irreducible varieties have isomor-

phic function fields, then they contain isomorphic Zariski open sets.

2.6 Topological Considerations

We consider complex varieties, those varieties defined over K = C. Recall the Euclidean

topology on Cn is generated by open balls determined by the Euclidean distance function. As

subspaces of Cn, an affine variety inherits a Euclidean topology. Similarly, projective space Pn

and projective varieties inherit a Euclidean topology by gluing the Euclidean topology on the affine

charts. As subsets of projective spaces, quasi–projective varieties also inherit a Euclidean topology.

We require a number of topological results related to the Euclidean topology on quasi–projective

varieties which involve some level of interplay between the Zariski and Euclidean topologies on

a variety. Proofs of these and similar results may be found in texts such as [13, 15, 18]. We start

with the following fundamental result.

Theorem 28. A Zariski open set of an irreducible variety is open, dense, connected, and path–

connected in the Euclidean topology.

As the smooth locus of a variety is a Zariski open set, it follows that the smooth locus of

an irreducible variety is path–connected in the Euclidean topology. There is a converse which

provides a criterion for determining whether a variety is irreducible.

Theorem 29. A variety is irreducible if and only if its smooth locus is path–connected.

There is more that can be said on the matter. The following result is an application of commu-

tative algebra [16, 13].

Theorem 30. A smooth point of a variety belongs to a unique irreducible component.

Thus, a path contained in the smooth locus of a variety is contained in a single component. It

follows that the path–connected components of the smooth locus of a variety are in bijection with

its irreducible components.
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Let X be a smooth, irreducible variety. In local coordinates, X is defined by a polynomial

system F and the Jacobian DF has constant rank. Thus, by the implicit function theorem, X is an

analytic manifold. In particular, around every point x ∈ X there are analytic coordinate charts—

for every x ∈ X , there is a Euclidean neighborhood U ⊆ X of x that is homeomorphic with

Cn and regular functions on U pull back to analytic functions on Cn. By virtue of this, a proper

subvariety Z ⊆ X cannot contain a Euclidean open subset of X [19]. In addition, X is locally

path–connected so that a subset U ⊆ X is connected if and only if it is path–connected. We abuse

notation and write V(f) for the zeros of an analytic function f .

Lemma 31. If X is a smooth, irreducible variety and U ⊆ X is a connected, Euclidean open set,

then the complement U \ Z of a proper subvariety Z ⊆ X is connected.

Proof. By working in local coordinates on X , we assume that X ⊆ Cm. Further, given f ∈ I(Z),

one has Z ⊆ V(f). Thus, without loss of generality, we may assume that Z is of the form

Z = V(f). For a final reduction, it suffices to consider the case that U is an analytic coordinate

chart. Indeed, for any two points x, y ∈ U \Z there is a path γ : [0, 1] → U such that γ(0) = x and

γ(1) = y. By choosing analytic coordinate charts around points along γ, this path is contained in

a connected union of analytic coordinate charts. If the complement of Z in each of these analytic

coordinate charts is path–connected, then their union is as well.

Let U be an analytic coordinate chart and recall that Z = V(f). By pulling back f to an

analytic function f̃ on Cn, the set U \ Z is homeomorphic to the complement Cn \ V(f̃). For

x, y ∈ Cn \ V(f̃), let ℓ(t) = (1 − t)x + ty for t ∈ C be the line between x and y. The analytic

function f̃(ℓ(t)) has finitely many zeros for |t − 1/2| ≤ 1/2 since otherwise it is identically zero

which implies that Z is not a proper subvariety of X . Thus, there is a path from t = 0 to t = 1

avoiding the zeros of f̃(ℓ(t)). Composing this path with ℓ gives a path from x to y contained in

Cn \ V(f̃). Thus, Cn \ V(f̃) and U \ Z are path–connected.

In [18], Lemma 31 is used to prove that branched covers of smooth varieties are locally open

maps in the following sense.
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Theorem 32. If π : X → Y is a branched cover of smooth varieties and x ∈ X is an isolated

point of the fiber π−1(π(x)), then for every Euclidean neighborhood U ⊆ X of x, the image π(U)

contains a Euclidean neighborhood of π(x).
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3. COMPUTATIONAL ALGEBRAIC GEOMETRY

The correspondence between ideals and affine varieties allows one to represent an affine variety

by a polynomial system, which may be encoded by finite data. Computers then allow one to study

varieties via these data. Computational and numerical algebraic geometry is the collection of tools

and techniques used for studying varieties and polynomial systems systematically in this way. The

list of methods provided here is not comprehensive—the areas of computational and numerical

algebraic geometry are active areas of research for which new methods are frequently developed.

We present methods relevant to our study of Galois groups of enumerative problems.

3.1 Rational Univariant Representation

We first consider a symbolic method of reducing the study of polynomial systems and multi-

variate ideals to that of a univariate polynomial. We work over a field k of characteristic zero with

algebraic closure K. If k is a computable field such as Q ,Q(i), or Q(x), the operations below can

be carried out with exact arithmetic.

Fix an ideal I ⊆ k[x1, . . . , xn] such that the variety V(I) ⊆ Kn is zero–dimensional. The

quotient k[x1, . . . , xn]/I is a finite–dimensional k–vector space whose dimension is the cardinality

of V(I) with each point p ∈ V(I) counted with its multiplicity µI(p). Indeed, multiplication by

an element f ∈ k[x1, . . . , xn] determines a linear map of k–vector spaces mf : k[x1, . . . , xn]/I →

k[x1, . . . , xn]/I and the structure of this map is given by Stickelberger’s theorem [20].

Theorem 33 (Stickelberger). The eigenvalues of the linear map mf are the values f(p) ∈ K for

p ∈ V(I). Each eigenvalue ξ ∈ K has multiplicity equal to
∑

p∈f−1(ξ)∩V(I) µI(p).

Note that after a choice of basis for k[x1, . . . , xn]/I , the linear map mf may be represented by

a k–valued matrix, allowing for the computation of quantities such as the determinant, trace, and

characteristic polynomial χf . A consequence of Stickelberger’s theorem is that these quantities are

also readily computed from the points of V(I) and their multiplicities. Further, when f separates

the points of V(I), each point p ∈ V(I) corresponds to a unique zero f(p) ∈ V(χf ) of the same

24



multiplicity µI(p). Thus, we may enumerate the points of a variety and their multiplicities by

studying zeros of univariate polynomials.

Consider f as a map V(I) → V(χf ). The pullback f ∗ : K[V(χf )] → K[V(I)] is an injective

linear map of vector spaces of the same dimension and so is an isomorphism. In particular, f ∗ is

surjective and the coordinate functions x1, . . . , xn on V(I) are polynomial functions in f . Further,

there is a regular map ϕ : V(χg) → V(I) that is inverse to f . When this occurs, the triple (f, χf , ϕ)

is a rational univariate representation of I . Algorithms for computing linear forms f separating

points of a zero-dimensional variety and the resulting rational univariate representation are given

in [21] and have been implemented in [22].

3.1.1 Example

We demonstrate the use of the rational univariate representation for studying the variety X ⊆

C2 defined by the ideal

I = ⟨x2y − 2y + 1, xy2 + 3x2 − y + 1⟩ ⊆ Q[x, y].

We use the Macaulay2 software package RealRoots.m2 to compute a rational univariate rep-

resentation of this ideal. After inputting the data of the ideal, the command

rationalUnivariateRepresentation computes a separating linear form f for the vari-

ety X , the characteristic polynomial χf given by ch, and the rational map ϕ given by ph.

i1 : R = QQ[x,y]

i2 : I = ideal(x^2*y-2*y+1,x*y^2+3*x^2-y+1)

i3 : (f,ch,ph) = rationalUnivariateRepresentation(I)

i4 : f

o4 = x + y

i5 : ch

6 1 5 37 4 127 3 154 2 169 19
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o5 = Z - -Z - --Z + ---Z - ---Z + ---Z - --
2 6 3 3 6 3

One may study the points of X and their multiplicities by computing the zeros of the univariate

polynomial ch. For example, ch is square–free, so all points of X are smooth.

i6 : ch’ = diff(Z,ch)

i7 : gcd(ch,ch’)

o7 = 1

Since ch is a polynomial of degree six with no multiple zeros, X consists of six smooth points.

3.2 Numerical Homotopy Continuation

In applications, one often wants numerical approximations to zeros of a polynomial system. For

square systems, those with the same number of polynomials as variables, numerical methods such

as Newton’s method may be used to obtain approximate zeros. Numerical homotopy continuation

is an example of such a numerical method and it produces numerical zeros of a polynomial system

from known zeros of a given polynomial system. We assume throughout that our polynomials and

points are defined over the complex numbers k = C.

We begin with some notation and terminology. A start system is a square polynomial system G

such that numerical approximations for isolated smooth zeros of G are known, and a target system

is a square polynomial system F whose zeros we would like to compute. A homotopy H(x, t)

between a start system G and a target system F is a system in the additional variable t such that

H(x, 0) = G and H(x, 1) = F . A homotopy H is a family of square polynomial systems that is

parameterized by t and interpolates between the start system G and the target system F .

Given a smooth isolated zero of the start system x0 ∈ V(G), the Jacobian DH(x0, 0) =

DG(x0) has full rank and (x0, 0) is a smooth point of a one–dimensional component of V(H).

By the implicit function theorem, this component is locally described by a function of t. Treating
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the variables x as functions of t and differentiating yields the Davidenko differential equation

(
∂

∂x
H(x, t)

)(
d

dt
x(t)

)
+
∂

∂t
H(x, t) = 0, x(0) = x0,

which locally describes the component [23]. We say that x0 gets tracked to x(1) by solving this

initial–value problem along a path from t = 0 to t = 1. Thus we may obtain zeros of the target

system, as the value x(1) is a zero of H(x, 1) = F (x). Typically, this initial–value problem is

solved by alternatingly taking incremental steps towards t = 1 through a predictor such as Euler’s

method or Runge–Kutta methods and then applying a corrector such as the Newton operator. More

on solving initial–value problems through predictor–corrector methods can be found in [24, 25].

The process of tracking zeros is illustrated in Figure 3.1.

t

H(x, 0) = G(x) H(x, 1) = F (x)

Figure 3.1: An illustration of a homotopy

If x1 ∈ V(F ) is a zero of the target system that lies in the smooth locus of V(H), the coordinates

of x1 may be obtained by solving an initial–value problem determined by the Davidenko equations.

When x1 is a singular point of V(H), solutions to such an initial–value problem may be computed

for values near t = 1 and various limiting methods may be used to approximate x1. For a sufficient

choice of start system, all isolated zeros of F are obtained in this way. While methods of numerical

homotopy continuation may be applied to more general analytic systems, this feature is not shared
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with them. There are various implementations of numerical homotopy continuation methods such

as HomotopyContinuation.jl, bertini, and NAG4M2 [26, 27, 28].

3.2.1 Example

We demonstrate how numerical homotopy continuation may be used to compute the zeros of

the polynomial system

F (x, y) =

x2y2 − 3x2y + 2y2 − 1

xy2 + 3x2 − y + 1

 .

From the rational univariate representation of the ideal ⟨F ⟩ calculated in Example 3.1.1, there are

six smooth zeros of F . Thus we choose our start system G to have six zeros which are easily

computed,

G =

x3 − 1

y2 − 1

 .

We use the Macaulay2 software package NumericalAlgebraicGeometry.m2 to track

the zeros of G to zeros of F . The track method uses the straight–line homotopy

H(x, t) = (1− t)G(x) + γtF (x),

where γ is a complex number.

i1 : R = QQ[x,y]

i2 : F = {x^2*y-2*y+1,x*y^2+3*x^2-y+1}

i3 : G = {x^3-1,y^2-1}

i4 : solns = track(G,F,startSolns,gamma=>random(CC))

We check that the track command obtained six zeros of F and we show they are distinct by
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examining their coordinates.

i5 : #solns

o5 = 6

i6 : netList solns

+-------------------------------------------+
o6 = |{-1.54216, -2.64371} |

+-------------------------------------------+
|{-1.19144, 1.72271} |
+-------------------------------------------+
|{-.0378421-.424283*ii, .458914+.0067642*ii}|
+-------------------------------------------+
|{-.0378421+.424283*ii, .458914-.0067642*ii}|
+-------------------------------------------+
|{1.40464-.163245*ii, .251588-2.15112*ii} |
+-------------------------------------------+
|{1.40464+.163245*ii, .251588+2.15112*ii} |
+-------------------------------------------+

3.3 Numerical Certification

Once approximate zeros of a polynomial system are obtained, one would like some guarantee

that the approximation lies close to a zero of the system. We detail one flavor of numerical certi-

fication which offers such guarantees. These methods are based on interval arithmetic, which we

briefly develop.

We remark that given real intervals A and B, their setwise sum, difference, and product are

again real intervals. A (one–dimensional) complex interval is a set of the form A+Bi = {x+ yi :

x ∈ A, y ∈ B} for two real intervals A and B, and we denote the set of complex intervals

by IC. We identify a single complex number x ∈ C by the complex interval [re(x), re(x)] +

[im(x), im(x)]i. The setwise sum and difference of complex intervals is again a complex interval,

however the setwise product need not be. For real intervals A,B,C,D, we define the product of
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two complex intervals A+Bi and C +Di to be the complex interval

(A+Bi)(C +Di) = (AC −BD) + (AD +BC)i.

That is, given I, J ∈ IC, the product IJ is defined to be the smallest complex interval that contains

the setwise product. In particular, there is an inclusion {xy : x ∈ I, y ∈ J} ⊆ IJ . We note that

complex intervals do not satisfy a distributive law—for complex intervals I, J,K ∈ IC, there is an

inclusion I(J +K) ⊆ IJ + IK, but equality may not hold.

An n–dimensional complex interval is the Cartesian product of n one–dimensional complex

intervals, I = I1 × · · · × In. The set of all n–dimensional complex intervals is the space ICn with

addition, subtraction, and multiplication each defined componentwise. Using these operations, we

also define scalar multiplication by an element I ∈ IC and multiplication of IC–valued matrices.

Given a complex interval I ∈ ICn and a polynomial system F , we would like to bound the

set of possible outputs {F (x) : x ∈ I} by a complex interval. Using arithmetic of complex

intervals as above, we may evaluate the expression F (I) ∈ ICn to obtain a bounding interval.

As equivalent algebraic expressions for F may provide different bounding intervals, we define an

interval enclosure to be a map □F : ICn → ICn that provides a choice of bounding complex

interval {F (x) : x ∈ I} ⊆ □F (I).

We would now like to utilize interval arithmetic to isolate zeros of a square polynomial system

F in n variables. Given a point x ∈ Cn, an invertible matrix Y ∈ GL(n), and interval enclosures

□F and □JF of the system F and its Jacobian JF respectively, the Krawczyk operator Kx,Y acts

on the set of n–dimensional complex intervals by

Kx,Y (I) = x− Y ·□F (x) + (Idn−Y ·□JF (I))(I − x).

There are different heuristics for the parameters x and Y , but typically one takes x to be an ap-

proximate zero of F and Y to be the inverse of the Jacobian JF (x) at x. With these choices, the

Krawczyk evaluated at a point x is the classical Newton operator. As such, the Krawczyk operator
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is a generalization of the Newton operator for interval arithmetic [29]. The relationship between

the Krawczyk operator and the zeros of F is given by the following.

Theorem 34. Let F be a system of n polynomials in n variables. If x ∈ Cn, Y ∈ GL(n), and

I ∈ ICn are such that Kx,Y (I) ⊆ I , then I contains a zero of F .

The first proofs of this result were given for real intervals by Moore and for complex intervals

by Rump [30, 31]. While we do not require them, there are variants of this fundamental result

used in practice that allow one to prove that a complex interval I contains a unique zero of F . The

use of interval enclosures allows one to verify the hypothesis of Theorem 34 using floating point

arithmetic. There are softwares such as HomotopyContinuation.jl which implement these

methods to isolate zeros of polynomial systems with interval arithmetic [29].

3.3.1 Example

Consider the system

F (x, y) =

x2y2 − 3x2y + 2y2 − 1

xy2 + 3x2 − y + 1

 .

We use the software package HomotopyContinuation.jl in julia to certify the approx-

imate zeros obtained in Example 3.2.1. In particular, they converge under Newton’s method to

zeros of the system F .

julia> @polyvar x y

julia> F = [x^2*y-2*y+1,x*y^2+3*x^2-y+1]

julia> solns = ...

julia> certify(F,solns)
CertificationResult
===================
• 6 solution candidates given
• 6 certified solution intervals (2 real, 4 complex)
• 6 distinct certified solution intervals (2 real, 4 complex)
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Thus, the software was able to find six disjoint complex intervals, each containing a zero of

F . Further, we can check that our approximate zeros lie in these intervals, which verifies our

approximations are accurate.
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4. GALOIS THEORY IN ENUMERATIVE GEOMETRY

4.1 The Galois Group of an Enumerative Problem

The Galois group of an enumerative problem reflects the intrinsic structure and symmetry of the

problem. We provide both a geometric definition and an algebraic definition for the Galois group

and prove their equivalence. We assume throughout that our field of definition is the complex

numbers k = C.

4.1.1 Geometric Monodromy Groups

We begin with an important property of a branched cover π : X → Y of degree d. By Theorem

22, there is a Zariski open set U ⊆ Y such that for y ∈ U , the fiber π−1(y) consists of d distinct

points. By restricting π, we assume that U ⊆ sm(Y ). For each point y ∈ U and a point of the fiber

x ∈ π−1(y), in local coordinates the Jacobian at Dπ(x) has full rank. By the implicit function

theorem, π is a local diffeomorphism of Euclidean neighborhoods of x and y. Thus, the restriction

π : π−1(U) → U is a degree d covering space of smooth varieties.

Definition 35. The Étale locus of a branched cover π : X → Y is the maximal Zariski open set

U ⊆ Y for which the restriction π : π−1(U) → U is a covering space of smooth varieties.

Recall that a covering space π : X → Y satisfies the homotopy lifting property—if Z is any

space and H : [0, 1] × Z → Y is a continuous map, any continuous map H̃0 : Z → X lifting

H|{0}×Z extends to a unique map H̃ : [0, 1] × Z → X . In particular, if γ : [0, 1] → Y is a path

starting at y ∈ Y and x ∈ π−1(y) is a point of the fiber, then there is a lifted path γ̃x : [0, 1] → X

which starts at x.

Given a covering space π : X → Y , a loop γ : [0, 1] → Y based at y ∈ Y satisfies γ(0) =

γ(1) = y and determines a permutation of the fiber π−1(y). Indeed, for every point of the fiber

x ∈ π−1(y), there is a lifted path γ̃x : [0, 1] → X starting at x and ending at γ̃x(1) ∈ π−1(y). The

assignment x→ γ̃x(1) is a permutation of π−1(y), as the reverse loop γ′(t) = γ(1− t) determines

the inverse assignment. We remark that by the homotopy lifting property, if γ1 and γ2 are two loops
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based at y which are homotopic through a family of loops based at y, then their lifts determine same

permutation of π−1(y). The monodromy group Mπ,y of the covering space π : X → Y based at

y ∈ Y is the subgroup of the permutation group of the fiber π−1(y) obtained from lifting loops in

Y based at y. More on monodromy groups of covering spaces can be found in [32, 33].

Definition 36. The monodromy group Mπ,y of a branched cover π : X → Y based at y ∈ Y is

the monodromy group of its restriction π : π−1(U) → U to the Étale locus U ⊆ Y of π.

As Y is irreducible, the Étale locus U ⊆ Y is path–connected and a different choice of base

point yields an isomorphic monodromy group. Indeed, for y, y′ ∈ U , there is a path ℓ : [0, 1] → U

starting at y and ending at y′ with reverse path ℓ′(t) = ℓ(1 − t). Given a loop γ based at y,

concatenating the paths ℓ′, γ, and ℓ gives a loop based at y′. This gives rise to an isomorphism

of monodromy groups Mπ,y with Mπ,y′ . As the monodromy group Mπ,y is determined up to

isomorphism by the choice of base point, we may omit it and write Mπ for the monodromy group

of π.

By ordering the fiber x1, . . . , xd ∈ π−1(y), we consider the monodromy group of π based at

y as a subgroup of the symmetric group Mπ,y ⊆ Sd. A different ordering of the fiber produces a

conjugate subgroup of Mπ in Sd. We describe an alternative view of the monodromy group based

on work of Vakil [34].

Fix a degree d branched cover π : X → Y . Define the d–fold fiber product

Xd
Y = {(x1, . . . , xd) ∈ X × · · · ×X︸ ︷︷ ︸

d copies

: π(x1) = · · · = π(xd)}.

Some irreducible components of Xd
Y will lie in the big diagonal ∆, which consists of d–tuples

(x1, . . . , xd) ∈ Xd
Y having a repeated coordinate xi = xj for some i ̸= j. If U ⊆ Y is the Étale

locus of π, let

X
(d)
Y = π−1

d (U) \∆.
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There is a map πd : X
(d)
Y → Y defined by projecting X

(d)
Y to any of the d copies of X and

composing with π : X → Y . For y ∈ U , the fiber π−1
d (y) consists of the d–tuples of distinct points

of the fiber π−1(y).

Fix y ∈ U with fiber π−1(y) = {x1, . . . , xd}. As π : π−1(U) → U is a covering space, there

is a Euclidean neighborhood V ⊆ Y of y such that for each xi ∈ π−1(y), there is a Euclidean

neighborhood Wi ⊆ X and a diffeomorphism ϕi : V → Wi such that π ◦ ϕi is the identity on V .

Then the map ϕ : V → X
(d)
Y defined by ϕ(z) = (ϕ1(z), . . . , ϕd(z)) is a homeomorphism onto its

image with inverse πd. Thus, ϕ(V ) is a Euclidean neighborhood of (x1, . . . , xd) homoeomorphic

to V . By permuting the points xi and the maps ϕi, such a neighborhood exists for every point

of the fiber π−1
d (y). Therefore, πd : π−1

d (U) → U is a covering space. It follows that for every

irreducible component X ′ ⊆ X
(d)
Y , the restriction πd : X ′ → Y is a branched cover. In particular,

every irreducible component maps dominantly to Y and has dimension dimY .

The symmetric group Sd acts freely on X(d)
Y —a permutation σ ∈ Sd determines a regular map

φσ : X
(d)
Y → X

(d)
Y by permuting the d copies of X . Each map φσ is an isomorphism with inverse

φ−1
σ = φσ−1 and maps irreducible components of X(d)

Y to one another.

Proposition 37. If π : X → Y is a branched cover and X ′ ⊆ X
(d)
Y is any irreducible component,

then the monodromy group Mπ is isomorphic to the group

{σ ∈ Sd : φσ(X
′) ⊆ X ′}

of permutations in Sd which perserve X ′.

Proof. Let U ⊆ Y be the Étale locus of π, y ∈ U , and order a fiber π−1(y) = {x1, . . . , xd}.

The monodromy group of π based at y is then identified with a subgroup of the symmetric group

Mπ,y ⊆ Sd.

Given σ ∈ Mπ,y, there is a loop γ : [0, 1] → U based at y with lifts γ̃i : [0, 1] → π−1(U) start-

ing at xi and ending at xσ(i). The path γ̃ : [0, 1] → π−1
d (U) defined by γ̃(t) = (γ̃1(t), . . . , γ̃d(t)) is a

lift of γ starting at (x1, . . . , xd) and ending at (xσ(1), . . . , xσ(d)). Thus (x1, . . . , xd) and (xσ(1), . . . , xσ(d))
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belong to the same component of X(d)
Y . By permuting the points x1, . . . , xd, the map φσ maps each

component of X(d)
Y into itself.

Conversely, if (x1, . . . , xd) and (xσ(1), . . . , xσ(d)) ∈ π−1
d (y) lie in the same component X ′ ⊆

X
(d)
Y , then there is a path γ : [0, 1] → π−1

d (U) ∩X ′ connecting them. The loop πd ◦ γ : [0, 1] → Y

is based at y and its lifts to X are paths starting at xi and ending at xσ(i) for each i = 1, . . . , d so

that σ ∈ Mπ,y.

By Proposition 37, if π : X → Y is a branched cover and U ⊆ Y is any Zariski open set, the

restriction π : π−1(U) → U has the same monodromy group as π. Thus, in Definition 36 we may

take U to be any Zariski open set such that π : π−1(U) → U is a covering space.

We also have the following corollary.

Corollary 38. If π : X → Y is a branched cover and X ′ ⊆ X
(d)
Y is any irreducible component,

then

|Mπ| = deg πd|X′ .

Proof. Order a fiber π−1(y) so that we may consider Mπ,y ⊆ Sd and fix a point x ∈ π−1
d (y) lying in

the irreducible component X ′. A permutation σ ∈ Mπ,y is determined by the image φσ(x) ∈ X ′

and there are deg πd|X′ many such possible images as φσ(X ′) ⊆ X ′. Thus |Mπ| ≤ deg πd|X′ .

Conversely, for every point x′ ∈ (πd|X′)−1(y) there is a permutation σ ∈ Sd such that φσ(x) = x′.

As φσ then necessarily fixes X ′, it follows that σ ∈ Mπ and |Mπ| ≥ deg πd|X′ .

4.1.2 Algebraic Galois Groups

We briefly review some terminology. An algebraic extension F/k of fields is normal if every

univariate polynomial f ∈ k[x] that has a zero in F splits into linear factors over F. The field

generated by the zeros of a univariate polynomial f ∈ k[x] is a normal extension of k called the

splitting field of f . For a finite extension F/k, there is a finite extension F/k of minimal degree

containing F that is a normal extension. The field F is a normal closure of F over k and is unique
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up to isomorphism. If F/k is normal, then F/L is normal for every intermediate field k ⊆ L ⊆ F.

Given a normal extension F/k, its Galois group G = G(F/k) is the group of automorphisms

of the field F that fix all elements of k. An intermediate field k ⊆ L ⊆ F determines a subgroup

G(F/L) ⊆ G of automorphisms of F fixing L, and all subgroups of G are of this form. More

precisely, given a subgroup H ⊆ G, the set of elements of F fixed by all elements of H forms a

field FH with the property that H = G(F/FH). More preciesly, these operations are related by the

fundamental theorem of Galois theory. A proof and related material can be found in [35].

Theorem 39. Let F/k be a normal extension with Galois group G = G(F/k). The operations

L → G(F/L) sending an intermediate field k ⊆ L ⊆ F to a subgroup of G and H → FH sending

a subgroup H ⊆ G to an intermediate field of F/k are inclusion reversing bijections. In addition,

the following hold.

1. The order of a subgroup G(F/L) is equal to the degree of the extension F/L.

2. An intermediate field k ⊆ L ⊆ F is normal over k if and only if the subgroup G(F/L) is

normal inG. In this case, the Galois group G(L/k) is isomorphic to the quotientG/G(F/L).

Recall that the pullback of a branched cover π : X → Y determines a reverse inclusion of

function fields π∗ : C(Y ) → C(X) which enables us to consider C(X) as an extension of C(Y ).

As X and Y have the same dimension, C(X) and C(Y ) have the same transcendence degree and

C(X)/C(Y ) is a finite extension. We define the Galois group of a branched cover.

Definition 40. The Galois group Gπ of a branched cover π : X → Y is the Galois group of the

normal closure of the extension C(X)/C(Y ). That is, Gπ = G(C(X)/C(Y )).

We show that the Galois group Gπ of a degree d branched cover π : X → Y may be understood

geometrically. First, we replace π : X → Y with a branched cover whose Galois group is more

easily understood. By the primitive element theorem, we may write C(X) = C(Y )(α) where α ∈

C(X) is a zero of an irreducible polynomial f ∈ C(Y )[x] of degree d. By restricting to a Zariski

open set U ⊆ Y for which the coefficients of f are regular, we may consider f(y, x) ∈ C[U ][x] as
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a regular function on U × C where x is the coordinate function U × C → C. As f ∈ C[U ][x] is

irreducible, the variety X̃ = V(f) ⊆ U × C is irreducible.

Consider the projection π̃ : X̃ → Y defined by (y, x) 7→ y. On the Zariski open set where the

lead coefficient of f and the discriminant of f are nonzero, a fiber π̃−1(y0) consists of d smooth

points which are zeros of the polynomial f(y0, x) = 0. It follows that π̃ : X̃ → Y is a degree

d branched cover. As the function field of X̃ may be expressed as C(X̃) = C(Y )(x) where x

satisfies f(x) = 0, there is an isomorphism of fields the C(X) and C(X̃) which is the identity

on C(Y ). Thus the Galois groups Gπ and Gπ̃ are isomorphic and we focus on the branched cover

π̃ : X̃ → Y .

The d–fold fiber product X̃d
Y is isomorphic to the variety V(f(y, x1), . . . , f(y, xd)) ⊆ U × Cd

where x1, . . . , xd are the coordinates on Cd. If X ′ ⊆ X̃
(d)
Y is any irreducible component, its

function field is generated by the rational functions on Y and the coordinate functions x1, . . . , xd,

C(X ′) = C(Y )(x1, . . . , xd). AsX ′ is not contained in the big diagonal ∆, the coordinate functions

x1, . . . , xd are distinct roots of f ∈ C(Y )[x]. That is, C(X ′) is the splitting field of f over C(Y )

and hence, C(X ′) is the normal closure of C(X̃).

As an element µ ∈ Gπ̃ is an isomorphism of the function field C(X ′) with itself preserving

the subfield C(Y ), µ is the pullback of a birational automorphism ϕ : X ′ → X ′ that preserves the

fibers of the map πd : X ′ → Y . Conversely, the pullback of any such birational automorphism is

an element of Gπ̃.

Proposition 41. If π : X → Y is a branched cover and X ′ ⊆ X
(d)
Y is any irreducible component,

then the Galois group Gπ is isomorphic to the set of birational automorphisms of X ′ that preserve

the fibers of the restriction πd : X ′ → Y .

4.1.3 Equivalence of Monodromy Group and Galois Group

To a degree d branched cover π : X → Y we’ve associated two groups, the monodromy group

Mπ and the Galois group Gπ—we show that they are isomorphic. A proof was given by Harris,

though the idea traces back to Hermite [2, 3]. We present a modern proof from [36].
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Theorem 42. The monodromy group Mπ and the Galois group Gπ of a branched cover π : X → Y

are isomorphic.

Proof. Let π : X → Y be a branched cover, πd : X ′ → Y be the restriction of πd to an irreducible

component X ′ ⊆ X
(d)
Y , and consider Gπ under the identification from Proposition 41. By Propo-

sition 37, we may consider Mπ ⊆ Gπ. The result then follows from the fundamental theorem of

Galois theory, Theorem 39, as

|Gπ| = [C(X ′) : C(Y )] = deg πd|X′ = |Mπ|.

We follow tradition and refer to either of these groups as the Galois group. Recall that given

a degree d branched cover π : X → Y , the Galois group may be considered a subgroup of the

symmetric group Sd. We remark on terminology. If Gπ = Sd, we say that the Galois group is fully

symmetric or simply symmetric. If Gπ ⊂ Sd is a proper subgroup, we say that the Galois group

is enriched. For many problems, it is known that the Galois group contains the alternating group

Ad ⊆ Gπ. Such a Galois group is said to be at least alternating.

4.2 Decomposable Branched Covers

We remark on a structure which guarantees that a branched cover has an enriched Galois group.

Definition 43. A branched cover π : X → Y is decomposable if there exists a Zariski open set

U ⊆ Y and a variety Z such that π factors as a composition of nontrivial branched covers

π−1(U)
θ−→ Z

ψ−→ U.

Recall that a group G ⊆ Sn is imprimitive if it is transitive and there is a nontrivial partition of

[n] which is preserved by G. Equivalently, G is imprimitive if for every i ∈ [n], the stabilizer of

i in G is not a maximal proper subgroup. As noted in [37], the Galois group of a decomposable

branched cover is imprimitive and conversely.
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Theorem 44. A branched cover π : X → Y is decomposable if and only if its Galois group Gπ is

imprimitive.

Proof. Let π : X → Y be decomposable with U ⊆ Y a Zariski open set and Z a variety such

that π factors as a composition of θ : π−1(U) → Z and ψ : Z → U . For a general point y ∈ U

with fiber ψ−1(y) = {z1, . . . , zk}, the set of fibers θ−1(z1), . . . , θ
−1(zk) is a partition of π−1(y).

Further, if γ : [0, 1] → U is a loop based at y, for a fixed i, there is a lift γ′ : [0, 1] → Z starting at

zi and ending at zj . By uniqueness of liftings, any lift γ′′ : [0, 1] → π−1(U) of γ starting at a point

x ∈ θ−1(zi) is a lift of γ′. In particular, γ′′(1) ∈ θ−1(zj). That is, the action of the Galois group Gπ

preserves the partition θ−1(z1), . . . , θ
−1(zk). Since the branched covers θ and ψ are nontrivial, this

partition is nontrivial and the Galois group Gπ is imprimitive.

If the Galois group Gπ of the branched cover π : X → Y is imprimitive, we write C(X) =

C(Y )(α) by the primitive element theorem where α is a root of an irreducible polynomial f ∈

C(Y )[t]. The Galois group Gπ is the Galois group of the polynomial f over C(Y ). In particular, Gπ

acts on the roots of f and the stabilizer of α is a group whose fixed field is the field C(X). Since

Gπ is imprimitive, this stabilizer is not a maximal subgroup and any larger subugroup corresponds

to a proper subfield C(Y ) ⊆ L ⊆ C(X). Let Z be any irreducible variety whose function field is

isomorphic to L. Then the inclusion of fields C(Z) → C(X) and C(Y ) → C(Z) are pullbacks

of rational maps θ : X → Z and ψ : Z → Y whose composition is the map π : X → Y

when defined. By Theorem 18, there is a Zariski open set such that π factors as a composition of

branched covers π−1(U) → Z → U . As the inclusions C(Z) ⊆ C(X) and C(Y ) ⊆ C(Z) are

proper, these branched covers are nontrivial and hence, π : X → Y is decomposable.

40



5. SPARSE POLYNOMIAL SYSTEMS

5.1 Sparse Polynomial Systems and Supports

Let C× = C \ {0} be the multiplicative group of nonzero complex numbers and (C×)n be the

n–dimensional algebraic torus. A vector α = (α1, . . . , αn) ∈ Zn determines a (Laurent) monomial

with exponent vector α,

xα = xα1
1 · · ·xαn

n ,

which is a character, or multiplicative map, xα : (C×)n → C. A (Laurent) polynomial is a finite

linear combination of monomials. The ring of Laurent polynomials C[x±1
1 , . . . , x±1

n ] is the ring of

regular functions on (C×)n.

Given finite set A ⊆ Zn, we consider polynomials f ∈ C[x±1
1 , . . . , x±1

n ] such that the exponent

vector of each term lies in A. Such a polynomial is said to have support A and we denote the

vector space of these polynomials by CA. The set of monomials {xα ∈ C[x±1
1 , . . . , x±1

n ] : α ∈ A}

is a basis for CA so that the dimension of CA is the cardinality of A, dimCA = |A|.

Given a set of supports A• = (A1, . . . ,An), we form the space CA• = CA1 × · · · × CAn of

sparse polynomial systems of support A•, whose elements F = (f1, . . . , fn) ∈ CA• are square

systems of n polynomials in n variables such that each fi has support Ai. The space CA• is a

vector space of dimension

dimCA• = |A•| = |A1|+ · · ·+ |An|.

As a polynomial f ∈ CA is a regular function on the n–dimensional algebraic torus (C×)n, the

zero set of a sparse polynomial system F ∈ CA• define a subvariety V(F ) ⊆ (C×)n.

Fix a finite set A ⊆ Zn and a polynomial f ∈ CA. As a monomial xα is an invertible function,

multiplication by xα does not change the variety defined by f , V(xαf) = V(f). The support of the
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polynomial xαf is a translate of A by α ∈ Zn. Therefore, we may independently translate each

support A1, . . . ,An and assume without loss of generality that each Ai contains the origin.

5.1.1 The Bernstein–Kushnirenko–Khovanskii Theorem

It was shown by Bernstein, Kushnirenko, and Khovanskii that the number of zeros of a sparse

polynomial system F ∈ CA• depends on the polyhedral geometry of the set of supports A• [4, 5].

Given a finite set A ⊆ Rn, we denote its convex hull by conv(A). Given two sets C1 and C2 in

Rn, their Minkowski sum is their pointwise sum

C1 + C2 = {x+ y ∈ Rn : x ∈ C1, y ∈ C2}

and for λ ≥ 0, the set λC1 = {λx : x ∈ C1} is a scalar multiple of C1.

We denote the Euclidean volume of a compact set C ⊆ Rn by vol(C). A classical result of

Minkowski states that given compact convex bodies C1, . . . , Cn ⊆ Rn and non–negative indeter-

minants t1, . . . , tn, the volume form vol(t1C1+· · ·+tnCn) is a homogeneous polynomial of degree

n in t1, . . . , tn. A proof is provided in [38], which deduces the general result from the special case

that C1, . . . , Cn are polytopes.

Definition 45. The mixed volume MV(C1, . . . , Cn) of compact convex bodies C1, . . . , Cn ⊆ Rn

is the coefficient of the product t1 · · · tn in the volume form vol(t1C1 + · · ·+ tnCn).

We note three properties of the mixed volume which follow from this definition. LetC1, . . . , Cn

be convex bodies. First, the mixed volume is symmetric—for any permutation σ ∈ Sn, one has

MV(C1, . . . , Cn) = MV(Cσ(1), . . . , Cσ(n)).

The mixed volume is also multilinear in the sense that for a convex body C ′
1 and λ ≥ 0,

MV(C1 + λC ′
1, C2, . . . , Cn) = MV(C1, C2, . . . , Cn) + λMV(C ′

1, C2, . . . , Cn).
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Last, we have that MV(C1, . . . , Cn) ≥ 0 and is normalized by MV(C, . . . , C) = n! vol(C). The

polarization formula for the mixed volume

MV(C1, . . . , Cn) =
k∑
i=1

∑
1≤i1<···<ik≤n

(−1)i vol(Ci1 + · · ·+ Cik)

follows from these properties. Consequently, the mixed volume is determined by these proper-

ties. Given a set of supports A•, we write MV(A•) for the mixed volume of the convex hulls

conv(A1), . . . , conv(An). Bernstein showed that the function sending a set of supports A• to the

number of zeros to a general system F ∈ CA satisfies these same properties and deduced the

following.

Theorem 46 (Bernstein, Kushnirenko, Khovanskii). Given a set of supports A• = (A1, . . . ,An),

the mixed volume MV(A•) is an upper bound on the number of isolated zeros of a system F ∈ CA•

counting multiplicity. Further, there is a Zariski open set U ⊆ CA• for which a system F ∈ U has

MV(A•) distinct zeros.

5.1.2 Monomial Changes of Coordinates

We detail some terminology regarding maps and changing coordinates. The set of characters

hom((C×)n,C×) on (C×)n forms a group under pointwise multiplication and we identify it with

Zn by sending a monomial xα to its exponent vector α. By evaluation of a character at an element

of (C×)n, we identify the dual of the character group hom(Zn,C×) = (C×)n.

A monomial map is a homomorphism φ : (C×)n → (C×)m, or equivalently, a regular map

whose m coordinate functions are monomials,

φ(x) = (xα1 , . . . , xαm), α1, . . . , αm ∈ Zn.

The pullback φ∗ : C[y±1
1 , . . . , y±1

m ] → C[x±1
1 , . . . , x±1

n ] restricts to a homomorphism on the mul-

tiplicative group of monomials and hence determines a linear map of characters ϕ : Zm → Zn.

If the m coordinate functions of φ are xαi , then ϕ is represented by the matrix A = [α1| · · · |αm]
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whose columns are vectors αi ∈ Zn. The map φ may be recovered as the dual map of ϕ

(C×)n = hom(Zn,C×) → hom(Zm,C×) = (C×)m.

If A ⊆ Zm is a finite set and f ∈ CA, a monomial map φ : (C×)n → (C×)m determines a

polynomial f(φ(y)) of support ϕ(A) ⊆ Zn.

By a change of coordinates on (C×)n, we mean an invertible monomial map φ : (C×)n →

(C×)n. If ϕ : Zn → Zn is the linear map induced by the pullback φ∗, then ϕ is an isomorphism.

That is, if α1, . . . , αn ∈ Zn, the monomial map φ(x) = (xα1 , . . . , xαn) is a change of coordinates

exactly when α1, . . . , αn span Zn.

If A• = (A1, . . . ,An) is a set of supports and φ : (C×)n → (C×)n is a change of coordi-

nates, then the set of supports B• = (ϕ(A1), . . . , ϕ(An)) has the same mixed volume MV(A•) =

MV(B•). Indeed, if F ∈ CA• has MV(A•) many zeros, then F (φ(x)) ∈ CB• has MV(A•) many

zeros as well so that MV(A•) ≤ MV(B•). Similarly, since φ is invertible, MV(B•) ≤ MV(A•)

and equality holds.

5.2 Galois Groups of Sparse Polynomial Systems

Given a set of supports A• = (A1, . . . ,An), we define the incidence variety

ΓA• = {(F, x) ∈ CA• × (C×)n : F (x) = 0}.

We determine properties of the incidence variety ΓA• by showing it is isomorphic to the product

C|A•|−n × (C×)n. In more technical terms, we show ΓA• is isomorphic to the trivial rank |A•| − n

vector bundle over (C×)n.

The condition that a system F = (f1, . . . , fn) ∈ CA• vanishes at (1, . . . , 1) ∈ (C×)n amounts

to the n linearly independent conditions fi(1, . . . , 1) = 0 for i = 1, . . . , n. Thus, the space of

systems F ∈ CA• the vanish at (1, . . . , 1) ∈ (C×)n is a vector space of dimension N = |A•| − n

which we identify with CN via a choice of basis. Then the map φ : CN × (C×)n → ΓA• defined
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by φ(F (t), x) = (F (t/x), x) is an isomorphism as multiplication by x is invertible. As a result,

ΓA• is isomorphic to CN × (C×)n and hence is a smooth, irreducible variety of dimension

dimΓA• = N + n = |A•|.

As a subset of the product ΓA• ⊆ CA• × (C×)n, there is a projection πA• : ΓA• → CA• .

For a system F ∈ CA• , we identify the fiber π−1
A•
(F ) with the zeros of F . By Theorem 46, the

cardinality of a general fiber π−1
A•
(F ) for F ∈ CA• is the mixed volume MV(A•). It follows that

πA• : ΓA• → CA• is a degree MV(A•) branched cover when MV(A•) > 0. Therefore, we assume

that our set of supports A• satisfies MV(A•) > 0, or equivalently, that a general system F ∈ CA•

has a zero.

Definition 47. The Galois group GA• of the family of sparse polynomial systems of support A• is

the Galois group of the branched cover πA• : ΓA• → CA• .

Galois groups of sparse polynomial systems were first studied by Esterov to determine those

sparse polynomial systems whose zeros could be computed via radicals. Esterov showed that there

are two properties of the set of supports that imply the Galois group is enriched and that all other

sparse polynomial systems have fully symmetric Galois group [8]. For a set of supports with either

of these properties, the branched cover πA• : ΓA• → CA• is decomposable and the Galois group

GA• is imprimitive.

We identify these properties of a set of supports A• = (A1, . . . ,An) algebraically. Recall our

assumption that 0 ∈ Ai for all i. Given a subset I ⊆ [n], we write AI = (Ai)i∈I and define the

free abelian group spanned by the supports AI ,

ZAI = ⟨α ∈ Zn : α ∈ Ai for some i ∈ I⟩.

We write ZA• = ZA[n]. As each set Ai is finite, for every subset I ⊆ [n] we have an explicit

generating set for ZAI . Computer algebra systems may be used to study these groups and compute,
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for instance, their ranks.

5.2.1 Lacunary Supports

Definition 48. A set of supports A• is lacunary if 1 < [Zn : ZA•] < MV(A•).

If a set of supports A• is lacunary, then rank ZA• = n, but ZA• ⊆ Zn is a proper subgroup.

When this occurs, there is an injective linear map ϕ : Zn → Zn whose image is ZA•. As each

support lies in its image Ai ⊆ im ϕ, we define a new set of supports B• = (ϕ−1(A1), . . . , ϕ
−1(An))

called the reduced support of A•.

As ϕ−1 is a bijection between the supports Ai and Bi, there is an isomorphism ι : CA• → CB•

defined by sending fi =
∑

α∈Ai
cαx

α ∈ CAi to ι(fi) =
∑

α∈Ai
cαx

ϕ−1(α) ∈ CBi . In addition, the

linear map ϕ : Zn → Zn determines a monomial map φ : (C×)n → (C×)n such that for every

polynomial F ∈ CA• , there is an equality F (x) = ι(F )(φ(x)). We say that ι(F ) ∈ CB• is the

reduced system of F .

Theorem 49. If A• is a lacunary set of supports, then the branched cover πA• : ΓA• → CA• is

decomposable.

Proof. The monomial map φ : (C×)n → (C×)n determines a map of incidence varieties θ : ΓA• →

ΓB• defined by θ(F, x) = (ι(F ), φ(x)). The map θ is a degree [Zn : ZA•] > 1 branched cover as

φ : (C×)n → (C×)n is a degree [Zn : ZA•] covering space. By the composition πA• = θ ◦ πB• ◦ ι

there is an equality deg πA• = (deg θ)(deg πB•). Since

deg θ = [Zn : ZA•] < MV(A•) = deg πA• ,

it follows that deg πB• > 1 and πB• is a nontrivial branched cover. Thus, π factors as the composi-

tion of nontrivial branched covers θ and πB• ,

ΓA•
θ−→ ΓB•

πB•−−→ CB• ∼−→ CA• .

By Theorem 44, if A• is lacunary, then the Galois group Gπ is imprimitive. A nontrivial
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partition that Gπ preserves can be observed directly. Indeed, the group kerφ = hom(Zn/ZA•,C×)

acts on the zeros V(F ) of a system F ∈ CA• by component–wise multiplication and partitions

V(F ) into orbits. As 1 < [Zn : ZAI ] < MV(A•), this partition is nontrivial and it is preserved by

the Galois group Gπ.

5.2.2 Triangular Supports

We now define the second family of sparse polynomial systems described by Esterov. Given a

subgroup L ⊆ Zn, its saturation is the subgroup sat(L) = {α ∈ Zn : kα ∈ L for some k ∈ Z>0}.

If I ⊆ [n] is such that rank ZAI = |I|, there is a free abelian group ZI and an isomorphism

ZI → sat(ZAI) so that for each i ∈ I we may consider Ai ⊆ ZI . Considering ZI as the space of

characters on a torus (C×)I , we may consider a system F ∈ CAI as a sparse polynomial system on

(C×)I . We write MV(AI) for the mixed volume of the polytopes {conv(Ai)}i∈I in RI = ZI ⊗R,

which is the number of zeros of a general system F ∈ CAI in (C×)I . As a different embedding

results in a change of coordinates on (C×)I , the mixed volume MV(AI) is independent of the

choice of isomorphism ZI → sat(ZAI).

Definition 50. A set of supports A• is triangular if there exists a subset I ⊆ [n] for which

rank ZAI = |I| and 1 < MV(AI) < MV(A•).

The set I ⊆ [n] in Definition 50 may not be unique. If A• is triangular and I ⊆ [n] is a

subset such that rank ZAI = |I| and 1 < MV(AI) < MV(A•), we say the set I is a witness

for triangularity for A•. Let A• be a triangular set of supports witnessed by I ⊆ [n] and write

J = [n] \ I for the complement of I . The saturation sat(ZAI) is complemented in Zn—as the

quotient L = Zn/ sat(ZAI) is a free abelian group, the exact sequence

0 → sat(ZAI) → Zn → L→ 0

splits so that we may regard L as a subgroup of Zn and write Zn = sat(ZAI) ⊕ L. Via isomor-

phisms with free abelian groups ZI → sat(ZAI) and ZJ → L, we identify sat(ZAI) and L with
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the set of characters on respective tori (C×)I and (C×)J . The isomorphism

ϕ : Zn = ZI ⊕ ZJ → sat(ZAI)⊕ L = Zn,

determines a change of coordinates φ : (C×)n → (C×)n = (C×)I × (C×)J and we write (x, y) ∈

(C×)I × (C×)J for the splitting of coordinates in the image. Consider the new set of supports

B• = (ϕ−1(A1), . . . , ϕ
−1(An)) and the corresponding map ι : CA• → CB• . As Bi = ϕ−1(Ai) ⊆

ZI ⊕ {0} for i ∈ I , we may consider a system F ∈ CBI as a sparse polynomial system on (C×)I .

A system F ∈ CB• has the form F (x, y) = (FI(x), FJ(x, y)) where FI(x) ∈ CBI is a sparse

polynomial system on (C×)I and FJ ∈ CBJ . We say that FI ∈ CBI is a subsystem of F . Thus,

given a system F ∈ CA• , the system ι(F )(x) = F (φ−1(x)) ∈ CB• has a subsystem.

Theorem 51. If A• is a triangular set of supports, then the branched cover πA• : ΓA• → CA• is

decomposable.

Proof. From our change of coordinates, it suffices to show that πΓB•
is decomposable. By consid-

ering systems FI(x) ∈ CBI as sparse polynomial systems on (C×)I , we define the variety

ΛB• = {((FI , FJ), x) ∈ CB• × (C×)I : FI(x) = 0}.

The projection (C×)n → (C×)I then determines a map θ : ΓB• → ΛB• defined by θ(F, (x, y)) =

(F, x). Similarly, by identifying ΛB• with ΓBI
× CBJ , the branched cover πB• : ΓBI

→ CBI

determines a map

ψ : ΛB• = ΓBI
× CBJ → CBI × CBJ = CB•

of degree MV(BI). As their composition πB• = ψ ◦ θ is dominant and the dimension of each

variety is equal, it follows that θ is a branched cover as well. As deg πB• = (degψ)(deg θ) and

1 < MV(BI) < MV(B•), it follows that each of these branched covers is nontrivial and πB• is

decomposable.
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Again by Theorem 44, if A• is a triangular set of supports, then GA• is imprimitive.

5.2.3 Esterov’s Theorem

We now state the result of Esterov on Galois groups of sparse polynomial systems.

Theorem 52 (Esterov). If A• is a set of supports which is neither lacunary nor triangular, then the

Galois group GA• is fully symmetric.

Esterov showed that if A• is neither lacunary nor triangular, then GA• is two–transitive and GA•

contains a simple transposition. If the supports A• are lacunary or triangular, then the Galois group

is a subgroup of a particular wreath product, but which subgroup is not known in general. There

are partial results in determining the Galois group when the supports are lacunary and triangular

[7, 39]. Esterov’s theorem classifies those supports A• for which the branched cover πA• is de-

composable. By Theorem 49 and Theorem 51, if the set of supports A• is lacunary or triangular,

then πA• is decomposable. Conversely, if A• is not lacunary nor triangular, then the Galois group

Gπ is fully symmetric so that by Theorem 44, π is not decomposable.

5.3 Solving Sparse Polynomial Systems

We present methods of solving sparse polynomial systems from [9]. If A• is lacunary or

triangular, we say that a system F ∈ CA• is decomposable. For such a system, the zeros are

identified with the fiber π−1
A•
(F ) and the branched cover πA• decomposes by Theorem 49 and

Theorem 51. As noted by Améndola and Rodriguez, the fiber π−1
A•
(F ) may be computed "in stages"

by iteratively decomposing πA• and its factors. In addition, homotopy continuation methods may

be used to further reduce computation [40].

Our primary tool in this section is the Smith normal form of a matrix. Recall that given an

n×m integer matrix A, a Smith normal form is a matrix factorization of the form

A = PDQ,

where P ∈ GL(n) and Q ∈ GL(m) are invertible integer matrices and D is an n × m diagonal
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integer matrix whose diagonal entries d1, . . . , dmin{n,m} satisfy di | di+1. For 1 ≤ k ≤ m, write Dk

for the n× k submatrix of D whose columns are the first k columns of D.

We proceed by demonstrating how fibers of the branched cover πA• : ΓA• → CA• may be

computed if A• is lacunary or triangular.

Lacunary case: Let A• be a lacunary set of supports and F ∈ CA• . We express ZA• as the

image of a linear map represented by the n × m integer matrix A whose column vectors are the

elements of the supports A1, . . . ,An. As MV(A•) > 0, we have that m > n and rankA = n.

Consider a Smith normal form A = PDQ with P ∈ GL(n), Q ∈ GL(m) and D a diagonal

n ×m matrix with diagonal elements d1, . . . , dn ≥ 1. The matrix PDn determines a linear map

ϕ : Zn → Zn whose image is ZA•.

The linear map ϕ determines a monomial map φ : (C×)n → (C×)n, which is a composition

φ = η ◦ ν of a change of variables ν : (C×)n → (C×)n corresponding to P and a surjective

monomial map η : (C×)n → (C×)n determined by Dn. The monomial map η has the form

η(x1, . . . , xn) = (xd11 , . . . , x
dn
n ).

Thus, given y = (y1, . . . , yn) ∈ (C×)n, the fiber φ−1(y) of the monomial map φ may be computed

by extracting the di–th roots of yi for i = 1, . . . , n and then changing coordinates by ν−1. More

precisely, if |z| and arg(z) denote the modulus and argument of z ∈ C respectively, then

φ−1(y) =
{
ν−1(|y1|earg(y1)+2πij1/d1 , . . . , |yn|earg(yn)+2πijn/dn) : 0 ≤ jk < dk for 1 ≤ k ≤ n

}
.

The reduced support B• = (ϕ−1(A1), . . . , ϕ
−1(An)) may be computed explicitly via linear

algebra. Define the map ι : CA• → CB• as before. For F ∈ CA• , there is an equality F (x) =

ι(F )(φ(x)) so that the variety V(F ) may be expressed as

V(F ) = φ−1(V(ι(F ))).
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Given a blackbox solver to compute the isolated zeros of the system ι(F ), this leads to an algorithm

for solving lacunary sparse polynomial systems.

Algorithm 53 (SolveLacunary).

Input: A system F ∈ CA• with a lacunary set of supports and a blackbox polynomial system

solver SOLVE(− ).

Output: The isolated zeros of V(F ).

Do:

1. Compute the Smith normal form A = PDQ of the matrix A whose columns are elements of

the supports A1, . . . ,An.

2. Determine the monomial map φ : (C×)n → (C×)n, the reduced support B•, and the reduced

system ι(F ) ∈ CB• .

3. Compute the zeros of the reduced system via the blackbox solver, SOLVE(ι(F )).

4. Compute the fiber φ−1(z) for each z ∈ V(ι(F )).

5. Return the union
⋃

z∈V(ι(F ))

φ−1(z).

This algorithm has the benefit that the reduced system ι(F ) ∈ CB• has fewer zeros than F ∈

CA• by a factor of [Zn : ZA•]. As a result, if the blackbox solver SOLVE utilizes numerical

homotopy algorithms, fewer paths are tracked.

Triangular case: Let A• be a triangular set of supports witnessed by I ⊆ [n], and let J ⊆ [n]

be the complement of I . By reordering the supports, we may assume without loss of generality that

I = {1, . . . , k} and J = {k + 1, . . . , n}. Similar to the lacunary case, we express the saturation

sat(ZAI) as the image of a linear map represented by the n×m integer matrix A whose columns

vectors are elements of the supports Ai for i ∈ I . If A = PDQ is a Smith normal form of A, then

ZAI is generated by the columns of PDk and its saturation sat(ZAI) is generated by the first k

columns of P .
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Write e1, . . . , en for the standard basis in Zn. The matrix P determines a linear map ϕ : Zn →

Zn that restricts to an isomorphism ZI = ⟨e1, . . . , ek⟩ → sat(ZAI). Further, the complement ZJ =

⟨ek+1, . . . , en⟩ maps to a complement of sat(ZAI). The torus (C×)I , whose set of characters is ZI ,

is then identified with the image of the projection (C×)n → (C×)k onto the first k coordinates, and

the torus (C×)J is the image of the projection (C×)n → (C×)n−k onto the last n− k coordinates.

We write (x, y) ∈ (C×)I × (C×)J = (C×)n for this split of coordinates.

The new set of supports B• = (ϕ−1(A1), . . . , ϕ
−1(An)) are computed via linear algebra and

are such that Bi = ϕ−1(Ai) ⊆ ZI for i ∈ I . That is, the linear map ϕ determines an explicit

change of coordinates for which a system of support A• has an apparent subsystem given by the

polynomials indexed by I . Precisely, a system in CB• then has the form (FI(x), FJ(x, y)) where

FI ∈ CBI , FJ ∈ CBJ , and FI(x) is a subsystem.

Recall the decomposition πB• = ψ ◦ θ where θ : ΓB• → ΛB• is defined by θ((FI , FJ), (x, y)) =

((FI , FJ), x) and ψ : ΛB• → CB• is the map ψ((FI , FJ), x) = (FI , FJ). Given a system (FI , FJ) ∈

CB• , the fiber ψ−1(FI , FJ) is identified with the variety V(FI) ⊆ (C×)I . Similarly, for each x0 ∈

V(FI), the fiber θ−1((FI , FJ), x0) is identified with the zeros of the polynomial system FJ(x0, y)

for y ∈ (C×)J . A system of this form is called a residual system and is a sparse polynomial system

of support BJ = (Bj)j∈J where Bj is the image of Bj under the projection Zn → ZJ onto the

last n − k standard basis vectors. For a general system (FI , FJ) ∈ CB• , each residual system has

MV(BJ) distinct isolated zeros.

We remark on a use of numerical homotopy continuation for efficient solving as described in

[40]. Let (FI , FJ) ∈ CB• be a system such that the subsystem FI has MV(BI) distinct isolated

zeros and for some x0 ∈ V(FI), the residual system FJ(x0, y) has MV(BJ) distinct isolated zeros.

Then this residual system may be used as a start system for numerical homotopy algorithms to

compute the isolated zeros of each residual system FJ(xi, y) for xi ∈ V(FI).

Algorithm 54 (SolveTriangular).

Input: A general system F ∈ CA• with a triangular set of supports witnessed by I and a

blackbox polynomial system solver SOLVE(− ).
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Output: The isolated zeros of V(F ).

Do:

1. Compute the Smith normal form A = PDQ of the matrix A whose columns are elements of

the supports (Ai)i∈I .

2. Apply the change of coordinates determined by the linear map ϕ : Zn → Zn to obtain a

system (FI , FJ) ∈ CB• .

3. Compute the isolated zeros of the subsystem via the blackbox solver, SOLVE(FI).

4. For a single point x0 ∈ V(FI), compute the zeros of the residual system FJ(x0, y) via the

blackbox solver, SOLVE(FJ(x0, y)).

5. Use numerical homotopy continuation to compute the zeros of each residual system FJ(xi, y)

for xi ∈ V(FI).

5. Compute the union
⋃

xi∈V(FI)

{(xi, y) ∈ (C×)n : y ∈ V(FJ(xi, y))} and invert the change of

coordinates.

6. Return the computed points.

Both SolveLacunary and SolveTriangular require the input of a blackbox polyno-

mial system solver. In both cases, the systems that require solving are again sparse polynomial

systems. This leads to a recursive algorithm for solving sparse polynomial systems by decompos-

ing systems if possible at every step. After every iteration of this algorithm, the mixed volume of

the involved systems decreases and thus eventually terminates. This, along with our discussions of

the previous algorithms provide a proof of correctness.

Algorithm 55 (SolveDecomposable).

Input: A general system F ∈ CA• and a blackbox polynomial system solver SOLVE(− ).

Output: The isolated zeros of V(F ).

Do:
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1. If A• is lacunary, then return SolveLacunary(F,SolveDecomposable).

2. Else if there exists a witness for triangularity I ⊆ [n], then return SolveTriangular(F,

SolveDecomposable).

3. Else return SOLVE(F ).

The Macaulay2 package DecomposableSparseSystems.m2 contains an implemen-

tation of SolveDecomposable which by default uses the blackbox solver phc [10, 41]. A

numerical experiment compared the algorithm SolveDecomposable to the solver phc itself

through the Macaulay2 package PHCPack which provides an interface for phc [42]. This

experiment compared the timing and accuracy in solving sparse polynomial systems having a mix-

ture of lacunary and triangular structures. More details on this experiment are described in [9]. We

briefly describe how these systems were generated.

Let A1 = ( 0 1 2 0 1
0 0 0 1 1 ), A2 = ( 1 0 1 2 1

0 1 1 1 2 ), B1 = ( 0 2 0 2
0 0 1 3 ), B2 = ( 0 1 2 0 2 0

0 0 0 1 1 2 ), and C be the vertices

of the unit cube in Z5. The supports A1, A2, B1, and B2 are illustrated in Figure 5.1. Given two

embeddings ı : Z2 → Z5 and ȷ : Z2 → Z5 such that ı(Z2) ∩ ȷ(Z2) = {0}, consider the set of

supports A(ı, ȷ) = (ı(A1), ı(A2), ȷ(B1), ȷ(B2), C).

A1

A2

B1

B2

Figure 5.1: Supports for numerical experiment

For any embeddings ı and ȷ, the set of supports A(ı, ȷ) is triangular. Indeed, there is a change of

coordinates for which a system of support A(ı, ȷ) has two subsystems witnessed by the sets {1, 2}
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and {3, 4} respectively. Further, these subsystems may be lacunary, depending on the embeddings

ı and ȷ respectively.

In total, the experiment generated over ten thousand instances of sparse polynomial systems

having support A(ı, ȷ) for various embeddings ı and ȷ. On average, Algorithm SolveDecomposable

computed the zeros of the system faster and more reliably while including the overhead of recur-

sively decomposing the systems. The results of this experiment are summarized in Figure 5.2.

Figure 5.2: Scatter plot of timings for SolveDecomposable and PHCPack

55



6. FANO PROBLEMS

6.1 Fano Schemes

A Fano problem is the problem of enumerating linear spaces lying on a variety X . Given a

variety X ⊆ Pn, its Fano scheme Vr(X) of r–planes is the subvariety of G(r,Pn) which consists

of the r–planes that are contained in X .

We study Fano schemes of r–planes systematically when X ⊆ Pn is a complete intersection.

Given a sequence d• = (d1, . . . , ds), we consider polynomial systems F = (f1, . . . , fs) where

each fi is a homogeneous polynomial in n + 1 variables of degree di. The set of all such systems

F is a vector space C(r,n,d•) of dimension

dimC(r,n,d•) =
s∑
i=1

n+ di

d

 .

A complete intersection is the zero set X = V(F ) of a system F ∈ C(r,,n,d•) such that X is smooth

and dimX = n− s. By Bertini’s Theorem [13], there is a Zariski open subset U ⊆ C(r,n,d•) such

that if F ∈ U , then the zero set X = V(F ) is a complete intersection. By a general F ∈ C(r,n,d•),

we refer to a system in this Zariski open set F ∈ U .

Given a system F = (f1, . . . , fs) ∈ C(r,n,d•), we write F |ℓ = (f1|ℓ, . . . , fs|ℓ) for its component–

wise restriction to the r–plane ℓ ∈ G(r,Pn). A Fano scheme of type (r, n, d•) is a variety of the

form

Vr(X) = {ℓ ∈ G(r,Pn) : F |ℓ = 0},

where X = V(F ) and F ∈ C(r,n,d•). A general Fano scheme of type (r, n, d•) is a Fano scheme

Vr(X) of a variety X = V(F ) for general F ∈ C(r,n,d•).
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6.1.1 Dimension

We determine the expected dimension of a Fano scheme of a given type (r, n, d•) by describing

it as the vanishing of a section of a vector bundle, or more simply, as a polynomial system in local

coordinates. Let I = {0, . . . , r} and consider the affine coordinate chart UI = A
(
n+1
r+1

)
−1

I of

G(r,Pn). An r–plane ℓ ∈ UI has unique Stiefel coordinates of the form

A =

 Idr+1

A′

 ,

where A′ is a (n− r)× (r + 1) matrix. The columns of A give a parameterization for ℓ and given

a homogeneous polynomial f ∈ C[x0, . . . , xn] of degree d, the restriction f |ℓ is the substitution of

this parameterization into f . In particular, f |ℓ is a homogeneous polynomial in r + 1 variables of

degree d and the coefficients of f |ℓ are polynomials in the entries of A′. Given F ∈ C(r,n,d•) and

X = V(F ), the vanishing of the system F |ℓ = 0 is equivalent to the vanishing of the
∑s

i=1 (
r+di
r )

coefficients of the polynomials fi|ℓ. Thus, the Fano scheme Vr(X)∩UI is the zero set of a system

of
∑s

i=1 (
r+di
r ) polynomials in (r + 1)(n − r) variables, which are the entries of A′. This holds

in any affine coordinate chart UI for I ∈
(
[n+1]
r+1

)
. The expected dimension of the Fano scheme

Vr(X) is given by

δ(r, n, d•) = (r + 1)(n− r)−
s∑
i=1

r + di

r

 .

Debarre and Manivel studied Fano schemes of complete intersections and showed that this

expected dimension is the dimension for many Fano schemes [43].

Theorem 56 (Debarre, Manivel). If δ(r, n, d•) ≥ 0 and 2r ≤ n − s, then a general Fano scheme

of type (r, n, d•) is smooth and has dimension δ(r, n, d•). If δ(r, n, d•) < 0 or 2r > n − s, then a

general Fano scheme is empty.
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6.1.2 Degree

We will be concerned with varieties that contain finitely many r–planes. A Fano problem is a

tuple (r, n, d•) for which δ(r, n, d•) = 0 and 2r ≤ n− s. By Theorem 56, a general Fano scheme

of this type will consist of finitely many r–planes.

Given a Fano problem (r, n, d•), the cardinality of a general Fano scheme of type (r, n, d•) is

called the degree deg(r, n, d•) of the Fano problem. Debarre and Manivel calculated this degree

explicitly by describing it as the Chern class of a vector bundle on G(r,Pn). To state this result,

we define the following polynomials. For a Fano problem (r, n, d•), define

Qr,dj(x) =
∏

ai∈Z≥0

a0+···+ar=dj

(a0x0 + · · ·+ arxr) ∈ Z[x0, . . . , xr].

The product of these polynomials is writtenQr,d•(x) = Qr,d1(x) · · ·Qr,ds(x) and the Vandermonde

polynomial is given by

V (x) =
∏

0≤i<j≤r

(xi − xj).

Debarre and Manivel’s result is stated as follows.

Theorem 57 (Debarre, Manivel). The degree of a Fano problem (r, n, d•) is given by the coefficient

of the monomial xn0x
n−1
1 · · ·xn−rr in the product Qr,d•(x)V (x).

For the Fano problem (r, n, d•), the quantity
∏

i d
r+1
i divides the degree deg(r, n, d•) and pro-

vides a lower bound. This and other lower bounds may be used to enumerate Fano problems up to

a given degree. Table 6.1 shows those Fano problems with degree less than 1200, for example.

6.2 Galois Groups of Fano Problems

Given a Fano problem (r, n, d•), we define an incidence variety

Γ = {(F, ℓ) ∈ C(r,n,d•) ×G(r,Pn) : F |ℓ = 0}.
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r n d• deg(r, n, d•) Galois Group

1 4 (2, 2) 16 D5

1 3 (3) 27 E6

2 6 (2, 2) 64 D7

3 8 (2, 2) 256 D9

1 7 (2, 2, 2, 2) 512 S512

1 6 (2, 2, 3) 720 S720

4 10 (2, 2) 1024 D11

2 8 (2, 2, 2) 1024 S1024

1 5 (3, 3) 1053 S1053

Table 6.1: Fano problems of degree less than 1200

As a subset of the product Γ ⊆ C(r,n,d•) × G(r,Pn), there are projection maps π(r,n,d•) : Γ →

C(r,n,d•) and ρ : Γ → G(r,Pn). By studying the map ρ, we show that Γ is a smooth, irreducible

variety and compute its dimension.

Let I ∈
(
[n+1]
r+1

)
and consider the affine coordinate chart UI = A

(
n+1
r+1

)
−1

I of the Grassmanian

G(r,Pn). We show that the Zariski open set VI = ρ−1(UI) is isomorphic to CN × UI , where

N =
∑s

i=1 (
n+di
n ) − ( r+dir ). By a linear change of coordinates on Pn, we may assume that

I = {0, . . . , r}. A point of UI has a unique set of Stiefel coordinates of the form

 Idr+1

A

 ,

where A is a (n− r)× (r + 1) matrix. Then there is a linear change of coordinates ϕℓ : Pn → Pn

represented by the matrix

 Idr+1 0

A Idn−r


−1

,

which maps ℓ to the coordinate r–plane ϑ ∈ G(r,Pn) defined by xr+1 = · · · = xn = 0. The
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set of homogeneous polynomials of degree d that vanish on ϑ is a vector space of dimension

( n+dn ) − ( r+dr ) so that the space of systems F ∈ C(r,n,d•) that vanish on ϑ is a vector space of

dimensionN that we identify with CN by a choice of basis. Thus, there is a map φ : CN×UI → VI

defined by φ(F, ℓ) = (F̃ , ℓ), where F̃ is the system obtained by changing coordinates by ϕℓ. As

the change of coordinates ϕℓ is invertible, φ is an isomorphism.

The Zariski open sets UI for I ∈
(
[n+1]
r+1

)
form an open cover of the Grassmanian G(r,Pn) and

their preimages VI = ρ−1(UI) are irreducible. By Theorem 17, Γ is irreducible. It follows that Γ

is a smooth, irreducible variety of dimension

dimΓ = (r + 1)(n− r) +
s∑
i=1

( n+din )− ( r+dir )

=
s∑
i=1

( n+din ) = dimC(r,n,d•).

The fibers of the projection π(r,n,d•) : Γ → C(r,n,d•) are identified with Fano schemes of type

(r, n, d•). As Γ is a smooth, irreducible variety of dimension dimΓ = dimC(r,n,d•), Theorem 56

implies π(r,n,d•) is a degree deg(r, n, d•) branched cover.

Definition 58. The Galois group G(r,n,d•) of the Fano problem (r, n, d•) is the Galois group of the

branched cover π(r,n,d•) : Γ → C(r,n,d•).

6.2.1 Known Results

Galois groups of Fano problems were among those Galois groups studied by Jordan, in the first

written work on Galois theory [1]. Jordan studied the Galois group of the lines on a cubic surface,

which is the Fano problem (1, 3, (3)). Jordan showed that the Galois group is a subgroup of the

Weyl group W (E6) by using classically known results concerning these lines. Galois groups of

Fano problems were left largely untouched until Harris generalized Jordan’s result by consider-

ing the algebraic Galois groups Jordan defined as geometric monodromy groups. Harris showed

Jordan’s inclusion is an equality G(1,3,(3)) = W (E6) and proved the following generalization.

Theorem 59 (Harris). For n ≥ 4, the Galois group G(1,n,(2n−3)) of the Fano problem of lines in Pn
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on a hypersurface of degree 2n− 3 is fully symmetric.

Harris’ arguement was similar to that of Esterov—Harris showed these Galois groups are two–

transitive and that they contain a transposition. To show these Galois groups contain a simple

transposition, Harris utilized the following.

Proposition 60 (Harris). If π : X → Y is a degree d branched cover of smooth varieties and there

exists y ∈ Y is such that the fiber π−1(y) consists of d− 2 smooth points x1, . . . , xd−2 ⊆ X and a

unique double point xd−1 ∈ X , then the Galois group Gπ contains a simple transposition.

Proof. As x1, . . . , xd−2 are smooth points of the fiber, there are Euclidean neighborhoods V1, . . . , Vd−2

which map diffeomorphically by π to a neighborhoodU ⊆ Y of y by the implicit function theorem.

By shrinking these neighborhoods if necessary, we may assume they are disjoint from one another

and that there is a Euclidean neighborhood Vd−1 of xd−1 disjoint from each Vi. By Theorem 32,

the image π(Vd−1) contains a Euclidean neighborhood of y which we may take to be U . That is,

we may assume that π−1(U) consists of d−1 connected components each contained in the disjoint

neighborhoods V1, . . . , Vd−1 of x1, . . . , xd−1.

If W ⊆ Y is a Zariski open set such that the restriction π : π−1(W ) → W is a covering space,

then W ∩ U is nonempty and we fix ỹ ∈ W ∩ U . The fiber π−1(ỹ) = {x̃1, . . . , x̃d} consists of d

points and by reordering we assume that x̃i ∈ Vi for i = 1, . . . , d− 2 and x̃d−1, x̃d ∈ Vn−1.

By Lemma 31, Vn−1 ∩ π−1(W ) is path–connected and there exists a path γ̃ : [0, 1] → Vn−1 ∩

π−1(W ) starting at xd−1 and ending at xd. Consider the lifts of the projected path γ : [0, 1] →

U ∩W , which is a loop based at ỹ. For i = 1, . . . , d − 2, the lift starting at xi lies entirely in Vi

and so necessarily ends at xi. As the lift γ̃ : [0, 1] → Vn−1 ∩ π−1(W ) starts at xd−1 and ends at xd,

The loop γ generates a simple transposition of the fiber π−1(ỹ).

Recently, Hashimoto and Kadets nearly classified Galois groups of all Fano problems. They

began by identifying a special family of Fano problems, each having an enriched Galois group. It

was then shown by an iterative method that the Galois groups of many Fano problems are at least
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two–transitive. A classification of highly transitive permutation groups by Jordan then shows that

many Galois groups contain the alternating group.

Theorem 61 (Hashimoto, Kadets).

1. The Galois group G(r,2r+2,(2,2)) is the Weyl group W (D2r+3) for r ≥ 1.

2. If (r, n, d•) is not equal to (1, 3, (3)) or (r, 2r + 2, (2, 2)) for r ≥ 1, then the Galois group

G(r,n,d•) is at least alternating.

6.3 Computing Galois Groups of Fano Problems

By Theorem 61, a complete classification of Galois groups of Fano problems rests on determin-

ing the Galois groups of those Fano problems (r, n, d•) not equal to (1, 3, (3)) or (r, 2r+ 2, (2, 2))

for r ≥ 1. In [44], a numerical method utilizing Proposition 60 was used to prove that several Ga-

lois groups of Fano problems which are at least alternating are in fact fully symmetric. We present

the method used in that article and its results.

Given a Fano problem (r, n, d•), we wish to construct a system F ∈ C(r,n,d•) so that the Fano

scheme Vr(X) of the variety X = V(F ) contains deg(r, n, d•) − 2 smooth points and a unique

double point. To accomplish this, let I = {0, . . . , r} and describe Vr(X) in local coordinates on

UI by a system F̃ of
∑s

i=1 (
r+di
r ) = (r + 1)(n− r) polynomials in (r + 1)(n− r) variables. We

would like F̃ to have deg(r, n, d•)− 2 smooth zeros and a unique double zero.

The linear space of systems F ∈ C(r,n,d•) which vanish on an r–plane ℓ ∈ G(r,Pn) may be

determined explicitly. Indeed, representing ℓ in coordinates on UI as the point xℓ, it is the locus

of systems F for which F̃ (xℓ) = 0. The condition that F̃ (xℓ) = 0 is a linear condition on the

coefficients of F̃ , which is a linear condition on the coefficients of F , C(r,n,d•). The condition that

a vector v ∈ C(r+1)(n−r) lie in the tangent space v ∈ TℓVr(X) is also a linear condition on C(r,n,d•)

as it is the locus of systems for which F̃ satisfies DF̃ (xℓ)v = 0, which is linear in the coefficients

of F̃ . Further, if ℓ and v have been chosen to have complex rational coefficients, that is, Q(i)–

valued coefficients, then these linear constraints may be obtained symbolically. That is, there is a

linear space of systems F ∈ C(r,n,d•), whose coefficients we may take to be Q(i)–valued, such that
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if X = V(F ), then ℓ ∈ Vr(X) and v ∈ TℓVr(X). We show how one might verify whether such a

system F ∈ C(r,n,d•) has deg(r, n, d•)− 2 smooth zeros and a unique double zero. We will utilize

the following theorem from [45].

Theorem 62 (Dedieu, Shub). IfG is a square system ofm polynomials inm variables and x ∈ Cm

is a point such that G(x) = 0, kerDG(x) = ⟨u⟩ for u ̸= 0, and

D2G(x)(u, u) ̸∈ im DG(x),

then x is a zero of G of multiplicity two.

By choosing F ∈ C(r,n,d•), ℓ ∈ G(r,Pn), and v ∈ TℓVr(X) with Q(i)–valued coefficients and

coordinates as above, we may use Theorem 62 to use symbolic computation to verify whether xℓ

is a double zero of F̃ .

Using numerical homotopy continuation, one may obtain approximate zeros of the system F̃ .

Further, methods of numerical certification may be used to compute bounding complex intervals of

zeros of F̃ from these approximate zeros. It can be checked that these bounding complex intervals

are disjoint from one another and from xℓ. If there are deg(r, n, d•) − 2 many such bounding

complex intervals, we are done. Indeed, each bounding complex interval must contain at least one

zero of F̃ and xℓ has multiplicity two. Thus, each complex interval contains a unique zero of F̃

and there are deg(r, n, d•) points counting multiplicity.

For those Fano problems (r, n, d•) with deg(r, n, d•) < 75, 000 whose Galois group is at least

alternating, this process was used to compute a system F ∈ C(r,n,d•) contains deg(r, n, d•) − 2

smooth points and a unique double point. These systems and code verifying the structure of these

systems is available at [46].

Theorem 63. If (r, n, d•) is a Fano problem with deg(r, n, d•) < 75, 000 and at least alternating

Galois group, then the Galois group is fully symmetric.

Table 6.2 provides a list of those Fano problems covered by the statement of Theorem 63.
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r n d• deg(r, n, d•)

1 7 (2, 2, 2, 2) 512
1 6 (2, 2, 3) 720
2 8 (2, 2, 2) 1024
1 5 (3,3) 1053
1 5 (2,4) 1280
1 10 (2,2,2,2,2,2) 20480
1 9 (2,2,2,2,3) 27648
2 10 (2,2,2,2) 32768
1 8 (2,2,3,3) 37584
1 8 (2,2,2,4) 47104
1 7 (3,3,3) 51759
1 7 (2,3,4) 64512

Table 6.2: Fano Problems with newly computed Galois group

64



REFERENCES

[1] C. Jordan, Traité des Substitutions et des Équations algébriques. Gauthier-Villars, Paris,

1870.

[2] J. Harris, “Galois groups of enumerative problems,” Duke Math. Journal, vol. 46, no. 4,

pp. 685–724, 1979.

[3] C. Hermite, “Sur les fonctions algébriques,” CR Acad. Sci.(Paris), vol. 32, pp. 458–461, 1851.

[4] D. N. Bernstein, “The number of roots of a system of equations,” Funkcional. Anal. i

Priložen., vol. 9, no. 3, pp. 1–4, 1975.

[5] A. G. Kušnirenko, “Newton polyhedra and Bezout’s theorem,” Funkcional. Anal. i Priložen.,

vol. 10, no. 3, pp. 82–83, 1976.

[6] B. Huber and B. Sturmfels, “A polyhedral method for solving sparse polynomial systems,”

Math. Comp., vol. 64, no. 212, pp. 1541–1555, 1995.

[7] A. Esterov and L. Lang, “Sparse polynomial equations and other enumerative problems

whose Galois groups are wreath products,” Selecta Math. (N.S.), vol. 28, no. 2, pp. Paper

No. 22, 35, 2022.

[8] A. Esterov, “Galois theory for general systems of polynomial equations,” Compos. Math.,

vol. 155, no. 2, pp. 229–245, 2019.

[9] T. Brysiewicz, J. I. Rodriguez, F. Sottile, and T. Yahl, “Solving decomposable sparse sys-

tems,” Numer. Algorithms, vol. 88, no. 1, pp. 453–474, 2021.

[10] T. Brysiewicz, J. I. Rodriguez, F. Sottile, and T. Yahl, “Decomposable sparse polynomial

systems,” J. Softw. Algebra Geom., vol. 11, no. 1, pp. 53–59, 2021.

[11] J. Bowman and A. Hammerlindl, “Asymptote: a vector graphics language,” vol. 29, no. 2,

pp. 288–294, 2008.

65



[12] S. Hashimoto and B. Kadets, “38406501359372282063949 and all that: Monodromy of Fano

problems,” International Mathematics Research Notices, 2020.

[13] I. R. Shafarevich, Basic algebraic geometry. 1. third ed.

[14] D. Perrin, Algebraic geometry. Universitext, Springer-Verlag London, Ltd., London; EDP

Sciences, Les Ulis, 2008. Translated from the 1995 French original by Catriona Maclean.

[15] R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, No. 52, Springer-Verlag,

New York-Heidelberg, 1977.

[16] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra. Addison-Wesley

Series in Mathematics, Westview Press, Boulder, CO, economy ed., 2016. For the 1969

original see [ MR0242802].

[17] W. Fulton, Young tableaux, vol. 35 of London Mathematical Society Student Texts.

[18] D. Mumford, Algebraic geometry. I. Classics in Mathematics, Springer-Verlag, Berlin, 1995.

Complex projective varieties, Reprint of the 1976 edition.

[19] R. C. Gunning and H. Rossi, Analytic functions of several complex variables. AMS Chelsea

Publishing, Providence, RI, 2009. Reprint of the 1965 original.

[20] L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy, “Symbolic recipes for polynomial system

solving,” in Some tapas of computer algebra, vol. 4 of Algorithms Comput. Math., pp. 34–65,

Springer, Berlin, 1999.

[21] F. Rouillier, “Solving zero-dimensional systems through the rational univariate representa-

tion,” Appl. Algebra Engrg. Comm. Comput., vol. 9, no. 5, pp. 433–461, 1999.

[22] J. Lopez, F. Sottile, and T. Yahl, “Real solutions to systems of polynomial equations in

Macaulay2,” 2022. arXiv:2208.05576.

[23] D. F. Davidenko, “On a new method of numerical solution of systems of nonlinear equations,”

Doklady Akad. Nauk SSSR (N.S.), vol. 88, pp. 601–602, 1953.

[24] A. J. Sommese and C. W. Wampler, II, The numerical solution of systems of polynomials.

66



[25] A. Morgan, Solving polynomial systems using continuation for engineering and scientific

problems, vol. 57 of Classics in Applied Mathematics.

[26] A. Leykin, “Numerical algebraic geometry,” J. Softw. Algebra Geom., vol. 3, pp. 5–10, 2011.

[27] P. Breiding and S. Timme, “HomotopyContinuation.jl: A Package for Homotopy Continua-

tion in Julia,” in International Congress on Mathematical Software, pp. 458–465, Springer,

2018.

[28] D. Bates, J. Hauenstein, A. Sommese, and C. Wampler, “Bertini: Software for numerical

algebraic geometry,” Available at http://www.nd.edu/˜sommese/bertini.

[29] P. Breiding, K. Rose, and S. Timme, “Certifying zeros of polynomial systems using interval

arithmetic,” 2020. arXiv:2011.05000.

[30] R. E. Moore, “A test for existence of solutions to nonlinear systems,” SIAM J. Numer. Anal.,

vol. 14, no. 4, pp. 611–615, 1977.

[31] S. M. Rump, “Solving algebraic problems with high accuracy,” in Parallel and large-scale

computers: performance, architecture, applications (Montreal, Que., 1982), IMACS Trans.

Sci. Comput., II, pp. 299–300, IMACS, New Brunswick, NJ, 1983.

[32] J. R. Munkres, Topology: a first course. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.

[33] A. Hatcher, Algebraic topology. Cambridge University Press, Cambridge, 2002.

[34] R. Vakil, “Schubert induction,” Ann. of Math. (2), vol. 164, no. 2, pp. 489–512, 2006.

[35] T. W. Hungerford, Algebra, vol. 73 of Graduate Texts in Mathematics. Springer-Verlag, New

York-Berlin, 1980. Reprint of the 1974 original.

[36] F. Sottile and T. Yahl, “Galois groups in enumerative geometry and applications,” 2021.

arXiv:2108.07905.

[37] G. P. Pirola and E. Schlesinger, “Monodromy of projective curves,” J. Algebraic Geom.,

vol. 14, no. 4, pp. 623–642, 2005.

67



[38] G. Ewald, Combinatorial convexity and algebraic geometry, vol. 168 of Graduate Texts in

Mathematics. Springer-Verlag, New York, 1996.

[39] A. Esterov and L. Lang, “Permuting the roots of univariate polynomials whose coefficients

depend on parameters,” 2022. arxiv:2204.14235.

[40] C. Améndola and J. I. Rodriguez, “Solving parameterized polynomial systems with decom-

posable projections,” 2016. arXiv:1612.08807.

[41] J. Verschelde, “Algorithm 795: PHCpack: A general-purpose solver for polynomial systems

by homotopy continuation,” ACM Trans. Math. Softw., vol. 25, no. 2, pp. 251–276, 1999.

Available at http://www.math.uic.edu/˜jan.
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