

HARDWARE-BASED IMPLEMENTATIONS OF THE RSA ALGORITHM AND THEIR

POTENTIAL USE IN PROVIDING DATA SECURITY IN CYBER-PHYSICAL SYSTEMS

A Thesis

by

CHRISTIAN MCLANE LEDGARD

Submitted to the Graduate and Professional School of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Garth Crosby

Committee Members, Rainer Fink

 Ana Goulart

 Katherine Davis

Head of Department, Reza Langari

August 2023

Major Subject: Engineering Technology

Copyright 2023 Christian Ledgard

ii

 ABSTRACT

Cyber-Physical Systems pose unique cybersecurity challenges because of their strict

operating constraints, complex interactions, and heterogeneous nature. However, the tight

integration of cyber-physical systems and critical infrastructures also makes security paramount

to their implementation. Traditional, software-based methods for providing data confidentiality

are often not capable of adhering to the strict temporal and spatial requirements of these systems.

One proposed solution to providing data security in cyber-physical systems is the use of Field

Programmable Gate Arrays to implement traditional cryptographic algorithms at a hardware

level. This thesis proposes three different implementations of the RSA algorithm that will be

designed, implemented, and evaluated for their feasibility in providing data security to cyber-

physical systems.

iii

DEDICATION

To my parents, for always pushing me to strive for excellence

iv

ACKNOWLEDGEMENTS

 I would first like to thank my committee chair, Dr. Crosby, for his unwavering support

and steadfast guidance throughout the course of this research. I consider myself beyond lucky to

have an advisor whose razor-sharp wit and infallible wisdom have guided me through my time at

Texas A&M. His belief in my ability to complete this work has been invaluable. I would also

like to thank the members of my committee, Dr. Fink, Dr. Goulart, and Dr. Davis, whose

critiques and insight have helped to ensure the best possible final product of my research.

 I am deeply grateful to all of my friends and family who have accompanied me on this

journey. For each of my victories and shortcomings, they were always there.

 Finally, I am eternally grateful to my partner, Katie, who spent endless hours on the

phone letting me vent. I could never thank you enough.

 I am honored to have had this experience.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of

Dr. Garth Crosby, Dr. Rainer Fink, and Dr. Ana Goulart of the Department of

Engineering Technology and Industrial Distribution and Dr. Katherine Davis of the Department

of Electrical and Computer Engineering.

 All other work conducted for the thesis was completed by the student independently.

Funding Sources

 This research was funded by Dr. Garth Crosby through Texas A&M University.

Templates for documents associated with this research were provided by Texas A&M

University.

vi

NOMENCLATURE

BPS Bits-per-Second

CPS Cyber-physical Systems

DSP Digital Signal Processing

FF Flip-Flop

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

ICCP Inter-control Center Communications Protocol

J Joules

LUT Look-up-Table

RAM Random Access Memory

SQL Structured Query Language

TCP/IP Transmission Control Protocol/Internet Protocol

VHDL Very High-Speed Integrated Circuit Hardware Description Language

W Watts

vii

TABLE OF CONTENTS

 Page

ABSTRACT .. ii

DEDICATION ... iii

ACKNOWLEDGEMENTS ... iv

CONTRIBUTORS AND FUNDING SOURCES .. v

NOMENCLATURE .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... ix

LIST OF TABLES .. x

CHAPTER I INTRODUCTION ... 1

1.1 Problem ... 1

1.2 Proposal .. 3
1.3 Format ... 3

CHAPTER II BACKGROUND ... 5

2.1 RSA Algorithm ... 5

2.2 Repeated Modular Multiplication ... 6

2.3 Binary Exponentiation (LR Method) .. 7
2.4 Montgomery Multiplication .. 7

CHAPTER III METHODS ... 10

3.1 Hardware Design .. 10
3.2 Metrics .. 12

3.2.1 Frequency ... 12
3.2.2 Area Utilization .. 13

3.2.3 Latency ... 14
3.2.4 Throughput ... 15
3.2.5 Power and Energy .. 15

3.3 Embedded System Performance Benchmarks .. 16
3.3.1 Frequency ... 17

viii

3.3.2 Latency and Throughput .. 18
3.3.3 Power ... 19

3.4 Survey of Existing Hardware Designs .. 20

CHAPTER IV HARDWARE DESIGN ... 23

4.1 Repeated Modular Multiplication ... 23
4.2 Binary Exponentiation .. 24
4.3 Montgomery Exponentiation .. 25

CHAPTER V RESULTS .. 30

5.1 Frequency .. 30

5.2 Utilization ... 30

5.3 Latency and Throughput ... 33
5.4 Power and Energy ... 39

CHAPTER VI ANALYSIS .. 44

6.1 Strengths and Weaknesses .. 44

6.2 Comparison to Embedded System Performance .. 46
6.3 Comparison to Other Hardware Implementations .. 48

CHAPTER VII CONCLUSION ... 51

7.1 Future Works .. 52

REFERENCES ... 53

APPENDIX A PYTHON SCRIPT FOR GENERATING RSA KEYS 57

ix

LIST OF FIGURES

 Page

Figure 1 Artix-7 FPGA Board .. 10

Figure 2 Vivado Synthesis Configuration... 11

Figure 3 Vivado Timer Settings .. 12

Figure 4 Behavioral Simulation Waveform Output .. 14

Figure 5 Sample Power Report Output ... 16

Figure 6 Repeated Modular Multiplication Multiplier Block ... 23

Figure 7 Montgomery Multiplier Block ... 26

Figure 8 Modular Inverse Core Block .. 27

Figure 9 Distributed Memory Generator Block ... 28

Figure 10 FIFO Generator Block .. 29

Figure 11 LUT Utilization at Varying Key Sizes ... 31

Figure 12 FF Utilization at Varying Key Sizes .. 32

Figure 13 Total Power Consumption .. 39

Figure 14 Total Energy Consumption... 42

x

LIST OF TABLES

 Page

Table 1 Latency for 1024-bit RSA Encryption and Decryption on MSP430 [16] 18

Table 2 Throughput for 1024-bit RSA Encryption and Decryption on MSP430 [16] 19

Table 3 Maximum Clock Frequency .. 30

Table 4 LUT Utilization Data ... 31

Table 5 FF Utilization Data .. 32

Table 6 Latency and Throughput Data for Repeated Modular Multiplication 33

Table 7 Latency and Throughput Data for Binary Exponentiation .. 35

Table 8 Minimum, Maximum, and Average Latency for Binary Exponentiation........................ 36

Table 9 Latency and Throughput Data for Montgomery Exponentiation 37

Table 10 Minimum, Maximum, and Average Latency for Montgomery Exponentiation 38

Table 11 Repeated Modular Multiplication Power Consumption Data.. 40

Table 12 Binary Exponentiation Power Consumption Data ... 40

Table 13 Montgomery Exponentiation Power Consumption Data ... 41

Table 14 Total Energy Consumption .. 43

1

CHAPTER I

INTRODUCTION

1.1 Problem

Cyber-physical systems (CPS) consist of several interconnected, heterogeneous

systems with the ability to monitor and control real objects and processes. In these

systems, the physical environment is closely integrated with communication networks

and computational devices. They are characterized by their ability to operate over large

temporal and spatial scales, autonomously perform well-defined tasks, and exchange

data in real-time. Additionally, CPS serve as the functional backbone to Industry 4.0,

enabling smart applications such as industrial control systems, intelligent vehicles, and

smart grid power transmission systems to operate accurately and in real-time [18].

As a result of their heterogeneity, as well as their connection to critical

infrastructures, CPS are highly susceptible to various cyber threats and attacks. The

vulnerabilities of these systems can be broadly categorized into three categories:

communication, software, and privacy vulnerabilities. The communication

vulnerabilities arise from CPS reliance on the Transmission Control Protocol/Internet

Protocol (TCP/IP) and Inter-Control Center Communications Protocol (ICCP). These

protocols were not intended to be secure by design and, in the case of ICCP, lack

integrated security measures such as encryption or authentication [15]. Software

vulnerabilities arise from spoofing methods such as Structured Query Language (SQL)

injections and the use of malicious software programs [18]. Finally, privacy

2

vulnerabilities in CPS are the result of large amounts of data being transmitted between

distinct nodes through unsecure channels, allowing for malicious actors to intercept

traffic and make inferences about the performance and operation of the system [15].

Successful attacks on CPS often yield catastrophic results, making robust security

paramount to their operation. The complexity of interactions within CPS and their strict

operational constraints also poses unique security challenges. Devices within CPS have

strict requirements for power consumption, must provide real-time interaction with the

physical world, and need to operate using reduced computation and communication

budgets. As a result, traditional methods for securing digital systems are often

insufficient for providing security in CPS. In the context of data security, traditional,

software-based cryptography requires too much network overhead and can result in

unacceptable amounts of latency for ideal CPS operation. One solution to this issue is to

implement cryptographic methods using hardware platforms such as Field

Programmable Gate Arrays (FPGAs). Using FPGAs for cryptography in CPS offers

several advantages over traditional embedded systems. Primarily, FPGAs are faster and

more resource efficient than embedded systems, allowing for real-time data

communication under significant resource constraints. As a result of their higher

operational speed, FPGAs would also provide CPS with higher data throughput than

traditional embedded computation [21]. Despite their numerous advantages, a concern

when using FPGAs in the context of CPS is power consumption, as FPGAs consume far

more power than embedded systems. Thus, to be suitable for use in a CPS, an FPGA

based cryptography paradigm much be as energy efficient as possible, while still

3

providing the system with lower latency and higher throughput rates than comparable

embedded system paradigms.

1.2 Proposal

To date, much research has been done on the implementation of various

cryptographic protocols using FPGAs [7-9, 19-24]. These studies primarily focus on the

hardware architecture and design methodology used to implement the algorithm using an

FPGA. Currently, no comprehensive study has been done on the practicality of using an

FPGA-based cryptography paradigm for providing data confidentiality to CPS. This

research seeks to assess the feasibility of implementing a public-key cryptography

scheme using FPGAs as a means of securing data in cyber-physical systems. Three

hardware architectures of the RSA algorithm will be designed, and their post place and

route implementations will be evaluated using timing analysis simulations, HDL

synthesis/implementation reports, and FPGA power analysis tools. The simulation data

collected from the evaluation of the three designs will be compared with performance

benchmarks for embedded systems running the RSA Algorithm.

1.3 Format

The following sections of this paper are formatted in the following manner.

Chapter Two introduces relevant background information related to the RSA algorithm,

modular exponentiation techniques, and Montgomery multiplication. Chapter Three

provides insight to the tools used to conduct this research, discusses the metrics used to

4

quantify the performance of the RSA Implementations, presents performance

benchmarks for the RSA algorithm on embedded systems, and investigates the

performance of other hardware designs that have been found in published literature.

Chapter Four will review the hardware design for each of the three implementations.

Chapter Five presents the data gathered from each of the post place and route

implementations for the identified metrics: frequency, utilization, latency, throughput,

and power and energy consumption. Chapter Six will discuss the implications of the

results presented in Chapter Five and provide a comparison to the performance of the

RSA algorithm on embedded systems and other hardware designs. Finally, Chapter

Seven will summarize the contents of this paper, provide closing remarks, and discuss

future works.

5

CHAPTER II

BACKGROUND

2.1 RSA Algorithm

The RSA algorithm is one of the most used cryptographic methods for data

security. The algorithm takes advantage of the prime factorization trapdoor function: it is

much easier to compute the product of two prime numbers than it is to decompose a

composite number into a product of two prime integers. The RSA algorithm is

comprised of two primary functions, the key generation function, and the

encryption/decryption function. The steps to generating RSA public and private keys are

listed below [11].

1. Chose two large prime number p and q.

2. Compute the modulus number n = p x q.

3. Calculate the Euler Totient function φ(n) = (p – 1) x (q – 1).

4. Select and integer e to use as a public key. e should be chosen such that the

greatest common divisor GCD(e, φ(n)) =1 and e < φ(n)

5. Compute the private key d such that d x e = 1(mod(φ(n))).

The RSA encryption and decryption using the following two equations:

 C = M𝑒mod(n) (1)

 M = C𝑑mod(n) (2)

6

In these equations, M represents the plaintext message, C represents the

ciphertext message, e is the public key chosen during key generation, d is the calculated

private key, and n is the modulus number.

2.2 Repeated Modular Multiplication

The first approach to efficiently computing the modular exponent is known as the

repeated modular multiplication approach. This algorithm for modular exponentiation

takes advantage of the identity shown in equation (3) and breaks the operation into a

series of repeated multiplication and reductions [21].

 (a × b)mod(n) = [(a mod(n)) × (b mod(n))]mod(n) (3)

The repeated modular multiplication algorithm is shown below, based on the

equation (1).

1. Set C = 1, e’ = 0.

2. Increase e’ by 1.

3. Set C = (M x C) mod(n)

4. If e’ < e, go to step 2. Otherwise, C contains the correct solution to equation (1).

This approach to modular exponentiation extends the operation into a series of x

multiplications, where x is the value of the exponent in equation (1) or (2). While this

approach is very memory efficient, it has an obvious shortcoming in its execution time.

As the number of bits used in the exponent increases, the worst-case requirement for the

number of multiplications involved increases exponentially.

7

2.3 Binary Exponentiation (LR Method)

The second approach to efficiently implementing modular exponentiation is

known as binary exponentiation, or the square-and-multiply technique. This approach

works by iterating through the bits of the exponent, either from right-to-left or from left-

to-right, and performing a series of operations based on whether each bit contains a 0 or

a 1 [7]. Using equation (1) with an integer size of k-bits, the algorithm for binary

exponentiation is shown below.

0. Set C = 1, then for each bit i of the exponent e from k-1 down to 0:

1. C = C2 mod(n).

2. If i = 1, C = (C x M) mod(n).

3. i = I – 1

4. Repeat from step 1 while i > 0.

The square-and-multiply method of computing modular exponents is

substantially faster than the repeated modular multiplication approach and requires

significantly fewer multiplications. However, its hardware implementation can result in

overutilization of FPGA resources, as shown in [13].

2.4 Montgomery Multiplication

The third approach to efficiently implementing modular exponentiation is known

as Montgomery multiplication. This approach to modular exponentiation takes

advantage of a special representation of numbers known as the Montgomery form. When

using the Montgomery form, it is possible to efficiently compute the product of (a x b)

8

mod(N) by avoiding expensive division operations. Unlike classical modular

multiplication, which requires dividing the product of (a x b) by N and keeping the

remainder, the Montgomery form allows you to divide by a constant R > N, which can

be selected to be a power of 2 such that division by R can be accomplished by bit

shifting [10]. While Montgomery multiplication is inefficient for computing the product

of a single multiplication, it is incredibly efficient for modular exponentiation through

repeated multiplications, as the intermediate products can be left in the Montgomery

space [19]. To perform Montgomery multiplication, integers must first be converted into

their Montgomery form. This process of converting an integer into its Montgomery form

is shown below in equation (4).

 �̅� = 𝑎 × 𝑅 (𝑚𝑜𝑑 𝑁) (4)

To take the product of numbers in their Montgomery forms, and subsequently

return them into integer space, two additional terms, R’ and N’ are needed. These two

terms can be computed using the extended Euclid algorithm and must satisfy equation

(5).

 (𝑅 × 𝑅′) − (𝑁 × 𝑁′) = 1 (5)

The process for computing the Montgomery product of two numbers, �̅� ∗ �̅�, is

listed below.

1. 𝑡 ∶= �̅� ∙ �̅� (𝑚𝑜𝑑 𝑅)

2. 𝑚 ∶= 𝑡 ∙ 𝑁′(𝑚𝑜𝑑 𝑅)

3. 𝑢 ∶= (𝑡 + 𝑚 ∙ 𝑁) ÷ 𝑅

4. If 𝑢 ≥ 𝑁 then return 𝑢 – N, else return 𝑢

9

Finally, to convert a number from the Montgomery space back to its integer

representation, the Montgomery product of the number and 1 is taken [10].

Findings from [22] show that hardware-based Montgomery multipliers need

fewer clock cycles per multiplication than traditional hardware multipliers. Additionally,

[24] suggests that using Montgomery multipliers for modular exponentiation in RSA can

allow for significantly higher throughput rates than binary exponentiation or repeated

modular multiplication.

10

CHAPTER III

METHODS

3.1 Hardware Design

Three hardware implementations of the RSA algorithm, each using a different

approach to performing modular exponentiation, were designed using the Xilinx Vivado

ML 2021.2 design suite. The three implementations use repeated modular multiplication,

binary exponentiation, and Montgomery exponentiation, respectively, to compute

modular exponents. The designs were written using the Very High-Speed Integrated

Circuit Hardware Description Language (VHDL) and target and Artix-7 Family FPGA

board, model xc7a100tcsg342-1, shown below in figure 1.

Figure 1 Artix-7 FPGA Board

11

The operational accuracy of the designs was verified using test bench designs

and the Vivado xsim simulation tool. Finally, the designs were synthesized for floor

planning using the synthesis configuration shown below in figure 2.

Figure 2 Vivado Synthesis Configuration

This configuration of design synthesis prevents the synthesis tool from

converting clock gated logic elements into flip-flop enabled elements and limits the

maximum number of global clock buffers to twelve. Additionally, this configuration

allows the synthesis tool to incorporate the maximum peripheral hardware units, such as

block random access memory (RAM), ultra-RAM, and digital signal processing (DSP)

blocks that it deems necessary to optimize the performance of the synthesized design. By

allowing the synthesis tool to allocate and configure the peripheral hardware units

12

through synthesis, the performance of those units in the context of their use is also

guaranteed to be optimized.

3.2 Metrics

The performance of the three designs will be quantified according to six key

metrics: clock frequency, area utilization, latency, throughput, power, and energy

consumption. Data for each of these six metrics will be collected at six key lengths: 32-

bits, 64-bits, 128-bits, 256-bits, 512-bits, and 1024-bits.

3.2.1 Frequency

The maximum possible clock frequency for the three designs will be evaluated

using the Vivado timing wizard and synthesis reports using the timer settings shown in

figure 3.

Figure 3 Vivado Timer Settings

13

Enabling multi-corner analysis instructs the Vivado timer to evaluate the timing

configuration at both the slow and fast operating corners. The slow operating corner

occurs when FPGA is experiencing high temperatures and low voltage, whereas the fast

operating corner occurs at low temperatures and high voltage. For each of these corners,

the clock path and data path are checked for their maximum and minimum values to

determine the worst-case timing scenario. Pessimism removal allows the timer to

account for this scenario in slack calculations.

3.2.2 Area Utilization

Area utilization refers to the amount of onboard logic elements that are required

by a design. The Vivado synthesis process generates a utilization report upon a

successful synthesis. This report details the breakdown of logic, memory, DSP, clocking,

and primitive elements for all levels of the VHDL design. Logic utilization refers to the

number of look-up-tables (LUTs) and slice registers that the design will use. Memory

utilization accounts for the number of block RAM and ultra-RAM elements in the

design. DSP utilization displays the number and type of different DPS blocks that will be

required by the design to perform computationally intense operations. Clocking

utilization shows the number clocks, clock buffers, and generated clocks that are routed

between the logic elements of the design. The utilization report serves as a benchmark

for the overall optimization of the hardware design and is heavily impacted by the design

methodologies employed. Higher throughput designs which have been highly

parallelized will require more logic elements to synthesize, while designs that are

thoroughly pipelined will be more area efficient at the cost of throughput. Additionally,

14

the overall FPGA utilization has implications for the overall power consumption of the

design, as the dynamic power consumption of the hardware is directly tied to the number

of logic elements being used.

3.2.3 Latency

The speed at which the designs can perform an encryption or decryption is a key

metric for evaluating their suitability for use in CPS. Since these systems operate on

complex temporal scales, it is paramount that latency be minimized to ensure that data

can be communicated in real time [14]. To evaluate the latency of these designs,

testbench behavioral simulations will be used. Testbench simulations emulate the

behavior of a hardware design for a given set of inputs using a virtual clock. An example

of the waveform output generated from a test bench simulation is shown in figure 4.

Figure 4 Behavioral Simulation Waveform Output

Using the timing information shown at the top of the waveform output, we can

determine the amount of time that was required to perform an encryption or decryption

by evaluating how long it takes for the inputs to a system to generate their corresponding

15

output. In the example above, the system has a latency of slightly more than 7100ns. The

behavioral simulation can also be used to determine the approximate number of clock

cycles necessary to perform the operation, by taking the product of the latency and the

clock frequency as shown in equation (6).

 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (6)

3.2.4 Throughput

The throughput for the three implementations will be calculated using equation

(7) [9].

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠
 (7)

The number of clock cycles required for each of the three designs will be

calculated based on the measured throughput. It is important to note that for binary

exponentiation and Montgomery multiplication, the number of clock cycles required to

compute and encryption or decryption scales with the size of the key used and not the

value of the key. As a result, the encryption throughput and decryption throughput will

be relatively identical. However, the number of clock cycles required to perform

repeated modular multiplication in implementation one scales with the value of the

exponent used and is heavily impacted by the chosen public and private keys.

3.2.5 Power and Energy

Power consumption is one of the strictest constraints placed on devices in CPS.

Since they are often battery powered and must be capable of operating for long periods

of time, power consumption is another key metric for evaluating if the use of an FPGA-

based security paradigm is suitable for CPS, as FPGA designs consume far more power

16

than traditional embedded systems [4]. The power consumption for the designs will be

evaluated using the Vivado power analysis tool. This tool reports the static and dynamic

power requirements for the design and breaks down the dynamic power consumption

into further categories based on the hardware elements used by the design. A sample of

the synthesis power report is shown in figure 5.

Figure 5 Sample Power Report Output

Energy consumption reflects the total number of joules consumed when each of

the designs performs an encryption or decryption. Since the power report returns data in

joules per second, faster designs may be reported as having high power consumption

since more processes can be performed in any given second. Using data from the power

consumption reports and latency measurements, the energy consumption of each design

will be calculated to determine which of the designs has the lowest energy consumption

per encryption and decryption.

3.3 Embedded System Performance Benchmarks

In order to assess the feasibility of hardware-based RSA implementations for

their use in providing data security in CPS, it is necessary to quantify a set of

17

performance benchmarks for the given metrics. These benchmarks will be set through a

comparison to one of the current methods of providing data security to CPS, embedded

systems [16]. Area utilization will be omitted from this comparison, as it lacks a relevant

equivalent in embedded systems.

3.3.1 Frequency

To parameterize the frequency constraints, it is first helpful to understand the

upper and lower bounds that result from the nature of CPS. Since CPS are often used to

monitor and control real processes, a lower bound on frequency exists as a consequence

of the Nyquist theorem, which states that a sampling frequency must be greater than or

equal to twice the maximum analog frequency being measured to ensure no loss of

information [14]. However, this only confirms that a lower bound does exist and since

this frequency will vary based on what process is being measured, it does not provide

any quantitative information. Next, an upper constraint may be placed on frequency by

considering the relationship between frequency and dynamic power consumption shown

in equation (8) [4].

 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
1

2
∙ 𝛼 ∙ 𝐶𝐿 ∙ 𝑉𝑑𝑑

2 ∙ 𝑓𝑐𝑙𝑜𝑐𝑘 (8)

Equation (8) shows the dynamic power consumption as a product of 𝛼, the average

number of transitions per clock cycle, the load capacitance, the supply voltage, and the

clock frequency. Thus, since dynamic power and frequency are directly correlated, it is

necessary to minimize the clock frequency to help meet the strict power constraints of

CPS. Finally, the frequency may be further constrained by considering the importance of

clock synchronization between components. In order to mitigate transmission latency

18

and provide a common time scale for data fusion to CPS, clock synchronization is

typically used [14]. This further constrains the lower bound of the frequency benchmark

to be capable of running at least as fast as the average microcontroller to ensure that it is

possible to achieve a common frequency. When considering the upper frequency

constraint arising from power consumption and the lower constraint arising from the

need for clock synchronization, it becomes apparent that the ideal frequency for an

FPGA would be the same as whichever sensor or embedded system it is connected to.

One common ultra-low power microcontroller, the MSP430, can run at speeds up to 25

MHz.

3.3.2 Latency and Throughput

Since the overall temporal goal in CPS is to minimize latency as much as

possible [14], a performance standard for the latency of FPGA-based RSA

implementations can be made through direct comparison with an embedded system

running the RSA algorithm. As of 2019, [16] claimed to be capable of the fastest 1024-

bit RSA encryption using an MSP430. Their results are summarized in Table 1.

Table 1 Latency for 1024-bit RSA Encryption and Decryption on MSP430 [16]
Frequency Encryption Time (ms) Decryption Time (s)

8 MHz 210 5.42

16 MHz 100 2.5

25 MHz 47 1.14

19

Using equations (6) and (7), the results from Table 1 can be used to calculate the

equivalent throughput for their design. The result of these calculations is shown in Table

2.

Table 2 Throughput for 1024-bit RSA Encryption and Decryption on MSP430 [16]
Frequency Encryption Throughput (kbps) Decryption Throughput (bps)

8 MHz 4.876 188.93

16 MHz 10.240 409.6

25 MHz 21.787 898.25

3.3.3 Power

To be suitable for CPS applications, the power consumption of the FPGA

hardware needs to be minimized in such a way that it is comparable with the power

usage of embedded platforms. Ultra-low-power power microcontrollers, like the

MSP430, display huge advantages over FPGAs due to their very low static power

consumption. When in its low-power state, the MSP430 can consume as little as 3.9 μW.

In active mode, this same device consumes a maximum of 33 mW of power running at

25 MHz [5]. This power consumption, however, only accounts for the power required

for the processor to operate and does not account for outputs from the board sourcing or

sinking any current. The primary disadvantage of power consumption on FPGAs is that

static power consumption typically accounts for a significant portion of the overall

power consumption. As shown in figure 5, static power accounts for 98% of the overall

power while dynamic power comprises only 2% of the power budget.

20

3.4 Survey of Existing Hardware Designs

Current research on hardware based implementations of the RSA algorithm is

primarily focused on Montgomery modular multiplication, though some studies have

also done investigations into binary exponentiation as a method of modular

exponentiation. This section will discuss several existing hardware designs present in

published literature. These designs will be contextualized using performance metrics

discussed in the previous section.

Sahu and Pradhan [7] propose a Montgomery modular multiplication architecture

capable of running at 101.06 MHz and performing encryption operations on 32-bit data

in as little as 9.895 ns. However, this design required 246% of the available slices and

225% of the available LUTs on their selected FPGA device. As a result of this

overutilization, this design is not feasible for use in a real-world setting since it cannot

be loaded onto an actual device.

Laracy [8] discusses a hardware-based Montgomery modular RSA

implementation with a theoretical worst case latency of 2368 ns for 32-bit data. They

also make the claim that by pipelining and load balancing this design, the worst case

latency could decrease by a factor of 5 [8]. This paper provides little other insight into its

utilization or power consumption.

Kurniasari et al. [9] have developed an ultra-lightweight architecture for

Montgomery multiplication based RSA which runs at 133.76MHz and requires only

0.56% of the available flip-flops and 17.66% of the available LUTs on an Artix-7

21

device. This design takes 10,606ns to decrypt 32-bit ciphertext and has a throughput of

4.37 Mbps [9].

Gnanasekaran et al. [17] propose an architecture for 1024-bit RSA the uses 10%

of the available LUTs and 2% of the available flip-flops on a Nexys4 device. This design

encrypts data in 16-bit blocks using Montgomery exponentiation in approximately 19.25

μs. They further estimate that their design has a total on-chip power requirement of

0.213 W [17].

Leelavathi et al. [20] discuss two proposed hardware architectures for the RSA

algorithm, one using binary exponentiation and the other using Montgomery

exponentiation. Both designs can operate with a clock speed of 148.534 MHz. For 128-

bit data, the binary exponentiation design can perform an encryption in 33.6 ns and the

Montgomery exponentiation architecture can perform an encryption in 20.198 ns.

Additionally, the binary exponentiation implementation had an encryption throughput of

3802 Mbps and the Montgomery exponentiation implementation had a throughput of

6338 Mbps [20].

Saini et al. [21] investigate a 1024-bit architecture for RSA using binary

exponentiation using a Virtex-5 FPGA. This highly parallelized design operates at

10.149 MHz and has a calculated throughput of 11.105 Gbps. While parallelization does

provide this design with exceptionally high throughput, it also requires a total on-chip

power of 1.19 W [21].

Parihar and Nakhate [22] propose an ultra-low latency Montgomery

exponentiation design that is capable of operating in 1024-bit and 2048-bit modes. For

22

the 1024-bit key sizes, their design can encrypt data in 850 ns with a throughput rate of

1204.7 Mbps. For 2048-bit keys, this design takes 1.88 μs to perform an encryption with

a throughput of 1089.4 Mbps [22].

Varma and Sarawadekar [23] implemented a Montgomery multiplication design

with low area utilization and low latency. This design requires 3.36% of the available

LUTs and 0.2% of the available flip-flops on a Kintex UltraScale+ FPGA. Additionally,

this design performs encryptions on 64-bit inputs in 7.061ns [23].

Xiao et al. [24] propose a high-throughput Montgomery modular multiplier

architecture for RSA systems at 256, 512, and 1024-bit key lengths. For 256-bit keys,

their design operates at 285.7 MHz, performs an encryption in 165 ns, and has a

throughput of 24899.7 Mbps. At 512-bit key-lengths, their design operates at 285.7

MHz, performs an encryption in 588 ns, and has a throughput of 13931.9 Mbps. Finally,

for 1024-bit data this design operates at the same frequency as the previous two key

sizes, with a latency of 1.208 μs, and a throughput of 13562.9 Mbps [24].

23

CHAPTER IV

HARDWARE DESIGN

4.1 Repeated Modular Multiplication

To optimize the repeated modular multiplication operation, a proprietary modular

multiplication hardware block, shown in figure 6, was designed.

Figure 6 Repeated Modular Multiplication Multiplier Block

This block takes six total inputs, three which are single bit logic inputs and three

that are bus inputs. The clk pin is tied to the system clock, the ds pin is an active-high

enable, and the reset pin is an active-high reset that will clear the internal registers of the

multiplier. The modulus bus is connected to the modulus input buffer and receives the

24

modulus value, N. The mpand and mplier busses both receive the message value M for

the first multiplication, and for every successive multiplication the mpand bus received

the value of the previous multiplication. The product buffer outputs the result of the

multiplication of the mpand and mplier input buffers with respect to the modulus value

N. Finally, the ready pin is used as a flag to signal that a multiplication has been

completed and the block is ready to load the next set of values. It is important to note

that, while figure 6 shows that the buses are all configured to hold 32-bit values, the

hardware block has been configured such that these bus lengths will change to reflect the

key size that the system has been synthesized for.

As the number of bits used in the keys increases, the number of successive

multiplications that must be performed increases exponentially. To prevent

overutilization of logic resources, this design was pipelined to only require two

multiplication blocks at all key sizes: one for computing the initial product and a second

one for computing the subsequent products.

4.2 Binary Exponentiation

For the second RSA implementation, binary exponentiation, also known as the

left-to-right square and multiply method, was used for modular exponentiation. This

implementation used two of the multiplication blocks shown in figure 6, one for

squaring inputs and the other for multiplying inputs. The appropriate multiplication

block is selected using a series of cascaded multiplexers which selectively feed input

25

values to each of the multipliers depending on if the current binary digit of the key is a 1

or 0.

The binary exponentiation hardware was optimized for area efficiency using

pipelining to prevent overutilization at higher key sizes. Additionally, while this

implementation requires the same amount of multiplication units as the repeated modular

multiplication hardware, the amount of peripheral hardware required to index through

the digits of the key and check the values increases the overall area utilization of the

design.

4.3 Montgomery Exponentiation

The third RSA implementation was designed to use a combination of

Montgomery multipliers and binary exponentiation known as Montgomery

Exponentiation. This design, like the previous two, has been pipelined to prevent

overutilization and requires only two multiplication units. The block design for the

multiplication unit is shown below in figure 7.

26

Figure 7 Montgomery Multiplier Block

There are two instances of the Montgomery multiplier used in this design. The

first instance of the block is used for the squaring operation. Bus a receives Montgomery

form of the number that will be squared, and bus b receives the constant R that is used

for Montgomery reduction. Busses n and n_c are tied to the modulus value N and N’,

respectively. Finally, the s_prev bus is tied to ground. In the second instance of this

block, s_prev is tied to the result of the squaring block instead of ground and bus a is

connected to the multiplicand value M.

The next hardware unit used in the implementation of Montgomery

exponentiation is shown in figure 8.

27

Figure 8 Modular Inverse Core Block

Shown above, the n_c_core is used to compute the modular inverse of the RSA

modulus N. Its inputs are a clock enable and clock signal, as well as a bus carrying the

RSA modulus number, N. This block outputs the modular inverse of N, N’, and a flag

signaling completion.

The final three hardware modules used for Montgomery exponentiation are two

distributed memory generators and a first-in-first-out (FIFO) generator. The block for

the distributed memory generator is shown in figure 9.

28

Figure 9 Distributed Memory Generator Block

The distributed memory generator block is a predefined hardware module in

Vivado that is used to generate memory. This block has been configured to generate

single port RAM for values of the exponent and modulus values.

The final hardware block for the FIFO generator is shown below in figure 10.

29

Figure 10 FIFO Generator Block

The FIFO block is used to create a stack of memory for holding the result of the

previous round of the square and multiply process. By storing these values in a FIFO

register, the process of squaring and multiplying can be parallelized to improve

throughput and decrease latency.

30

CHAPTER V

RESULTS

5.1 Frequency

Table 3 shows the maximum clock frequency for each of the three hardware

designs.

Table 3 Maximum Clock Frequency
Implementation Maximum Clock Frequency

Repeated Modular Multiplication 11.125 MHz

Binary Exponentiation 28.387 MHz

Montgomery Exponentiation 21.512 MHz

The maximum clock speed for each of the designs was found by reviewing the

setup, hold, and pulse width slack at a clock speed of 10 MHz. It was discovered that for

all three implementations, the critical timing element was the hold slack. The maximum

clock frequency was then found by adjusting the clock frequency until the worst hold

slack was exactly zero seconds, signifying that the design was capable of exactly

meeting the critical path timing constraints at the adjusted frequency.

5.2 Utilization

Figure 11 shows the LUT utilization for each of the three designs.

31

Figure 11 LUT Utilization at Varying Key Sizes

At all key sizes, the repeated modular multiplication hardware and the binary

exponentiation hardware required a similar number of LUTs, while the Montgomery

exponentiation hardware required approximately 50% more LUTs. The raw data for

LUT utilization is shown in Table 4.

Table 4 LUT Utilization Data
Implementation 32-bit 64-bit 128-bit 256-bit 512-bit 1024-bit

Repeated Modular Multiplication 650 1220 2330 6111 15238 31946

Binary Exponentiation 566 1142 2252 6041 15136 31870

Montgomery Exponentiation 862 1703 3385 9083 22766 47991

The FF utilization for the three hardware implementations is shown in figure 12.

0

10000

20000

30000

40000

50000

60000

32 64 128 256 512 1024

LU
T

U
ti

liz
at

io
n

Key Length (bits)

Look Up Table (LUT) Utilization

Repeated Modular Multiplication Binary Exponentiation Montgomery Exponentiation

32

Figure 12 FF Utilization at Varying Key Sizes

The FF utilization requirements for each of the designs displayed similar trends

to the LUT utilization. The repeated modular multiplication and binary exponentiation

architectures both required a similar number of FFs at each key size, while the

Montgomery exponentiation architecture required slightly more than double the amount

of FFs as the other two architectures. The raw data for FF utilization is shown in Table 5.

Table 5 FF Utilization Data
Implementation 32-bit 64-bit 128-bit 256-bit 512-bit 1024-bit

Repeated Modular Multiplication 523 971 1867 3667 7187 14498

Binary Exponentiation 459 907 1803 3611 7195 14424

Montgomery Exponentiation 988 1951 3864 7752 15504 31035

0

5000

10000

15000

20000

25000

30000

35000

32 64 128 256 512 1024

FF
 U

ti
liz

at
io

n

Key Length (bits)

FF Utilization

Repeated Modular Multiplication Binary Exponentiation Montgomery Exponentiation

33

5.3 Latency and Throughput

The measured latency and calculated throughput data for the RSA

implementation using repeated modular multiplication is shown below in Table 6.

Table 6 Latency and Throughput Data for Repeated Modular Multiplication
Key Size

Repeated Modular

Multiplication

32 64 128 256 512 1024

Clock Cycles 69,476 256,403,7

72

495,815,9

23

754,370,1

77

1,201,408,4

92

2,188,254,1

95

Latency 6.958 ms 25.64 s 49.581 s 75.437 s 120.141 s 218.825 s

Frequency 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz

Throughput

(bits/second)

4599.02

3

2.496 2.582 3.394 4.262 4.680

This latency for this architecture displayed high variability based on the selected

public or private key. As a result of the design, repeated multiplications must be

performed a number of times equal to the value of the key. This causes the number of

required clock cycles to perform an encryption or decryption to diverge exponentially as

the number of bits in the key increases.

The calculated throughput shown in Table 6 also displays high variability based

on the key values. At sufficiently low key values, the repeated modular multiplication

architecture can provide data throughput rates up to 4.599 kilobits per second. However,

34

at higher key values in the 1024-bit range, the throughput rate converges to a value of 0

bits per second.

The latency and throughput data for the binary exponentiation hardware

implementation is shown below in Table 7.

35

Table 7 Latency and Throughput Data for Binary Exponentiation
Key Size

Binary

Exponentiation

32 64 128 256 512 1024

Clock Cycles 453 891 1777 3477 6949 13844

Latency 45.3 μs 89.1 μs 178 μs 348 μs 695 μs 1.384 ms

Frequency 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz

Throughput

(kilobits/second)

706.401 718.294 719.101 735.632 736.690 739.884

As a result of the key indexing process used to compute modular exponentiation

in this architecture, the measured latency displayed far less sensitivity to the selected

public or private key than the repeated modular multiplication architecture. Since this

design requires far fewer clock cycles to perform a complete encryption or decryption at

higher key lengths, it is approximately 158,000 times faster than the repeated modular

multiplication architecture.

The calculated throughput for this architecture, shown in Table 7, showed little

variability at different key sizes and remained between 706 kilobits per second and 739

kilobits per second. This can be attributed to the direct linear correlation that is displayed

between the bits in the key size and the required number of clock cycles required to

perform an encryption or decryption.

Table 8 shows the minimum, maximum, and average latency for the binary

exponentiation hardware implementation at six key sizes. The minimum and maximum

36

latency were found by measuring the execution time at each key size using a key

consisting of all zeroes or all ones, respectively.

Table 8 Minimum, Maximum, and Average Latency for Binary Exponentiation

Binary

Exponentiation

32-bits 64-bits 128-bits 256-bits 512-bits 1024-

bits

Minimum 38.8 μs 80.3 μs 162.8 μs 328.5 μs 661.1 μs 1.326

ms

Maximum 61.8 μs 126.2 μs 255 μs 511.2 μs 1.027

ms

2.059

ms

Average 52.253 μs 100.165

μs

199.648

μs

408.715

μs

806.07

μs

1.747

ms

In order to calculate the average latency for each key size, forty latency

measurements were taken using randomly generated encryption keys. The statistical

average was calculated using equation (9).

 �̅� =
∑ 𝑥𝑖

40
𝑖=1

40
 (9)

As shown above in Table 8, the binary exponentiation implementation required

between 38.8 microseconds and 61.8 microseconds to complete an

encryption/decryption for 32-bit key sizes, with an average time for completion of

52.253 microseconds. At 1024-bit key sizes, this design took a minimum of 1.326

milliseconds to complete an encryption/decryption, and a maximum of 2.059

37

milliseconds. The average time to complete a single encryption/decryption for 1024-bit

key sizes was 1.747 milliseconds.

The latency and throughput data for the Montgomery exponentiation hardware is

shown below in Table 9.

Table 9 Latency and Throughput Data for Montgomery Exponentiation
Montgomery

Exponentiation

32 64 128 256 512 1024

Clock Cycles 101 198 384 732 1441 2782

Latency 10.1 μs 19.8 μs 38.4 μs 73.2 μs 144 μs 278 μs

Frequency 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz 10 MHz

Throughput

(megabits/second)

3.168 3.232 3.333 3.497 3.555 3.683

The Montgomery exponentiation hardware takes advantage of the same key

indexing process used by the binary exponentiation hardware, with the addition of

Montgomery form numbers allowing for more efficient modular reduction. The use of

Montgomery reduction methods makes this hardware capable of performing an

encryption or decryption using 1024-bit keys 4.97 times faster than the binary

exponentiation hardware.

The calculated throughput for this architecture, shown in Table 8, displays low

sensitivity to the selected keys and remained between 3.168 and 3.683 megabits per

second at all key sizes.

Table 10 shows the minimum, maximum, and average latency for the

Montgomery exponentiation hardware. The minimum and maximum latency were found

38

by measuring the execution time at each key size using a key consisting of all zeroes or

all ones, respectively.

Table 10 Minimum, Maximum, and Average Latency for Montgomery

Exponentiation

Montgomery

Exponentiation

32-btis 64-bits 128-

bits

256-

bits

512-bits 1024-

bits

Minimum 7.2 μs 14.8 μs 30.6 μs 63.1

μs

129.6 μs 262.5 μs

Maximum 13.3 μs 27.4 μs 55.1 μs 112.3

μs

226 μs 453.7 μs

Average 10.748

μs

19.936

μs

40.995

μs

85.14

μs

168.933

μs

363.253

μs

In order to calculate the average latency at each key size, forty latency

measurements were taken using different encryption keys. The average was calculated

using equation (9). The Montgomery exponentiation hardware took a minimum of 7.2

microseconds, and a maximum of 13.3 microseconds, to complete an

encryption/decryption for 32-bit keys. At this key size, the average latency was

calculated to be 10.748 microseconds. For 1024-bit keys, this hardware requires between

262.5 microseconds and 453.7 microseconds to perform an encryption/decryption. The

average latency for the 1024-bit Montgomery exponentiation hardware was 363.253

microseconds.

39

5.4 Power and Energy

Figure 13 shows a comparison of the total power consumption for the three

hardware designs across six different key sizes.

Figure 13 Total Power Consumption

At each of the six key sizes, the repeated modular multiplication hardware and

binary exponentiation hardware consumed similar amounts of power, and only began to

diverge slightly at the 1024-bit key length. The Montgomery exponentiation hardware,

however, consumed more power at all key sizes, with the total power consumed at larger

key sizes diverging rapidly from the other two architectures.

The power consumption breakdown data for the repeated modular multiplication

hardware is shown below in Table 11.

0

0.2

0.4

0.6

0.8

1

1.2

32 64 128 256 512 1024

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
at

ts
)

Key Length (bits)

Total Power Consumption

Repeated Modular Multiplication Binary Exponentiation Montgomery Exponentiation

40

Table 11 Repeated Modular Multiplication Power Consumption Data
Key Length (bits)

Repeated Modular Multiplication 32 64 128 256 512 1024

Static Power (W) 0.091 0.091 0.091 0.091 0.091 0.091

Dynamic Power (W) 0.002 0.003 0.005 0.017 0.041 0.101

Total Power (W) 0.093 0.094 0.096 0.108 0.132 0.192

The static power consumed by this design remained constant at 0.091 W for all

key sizes tested. The portion of total power accounted for by the dynamic power

consumption increased from 2.15% of the total power at 32-bit key lengths, to 52.6% of

the total power at 1024-bit key lengths.

The power consumption breakdown for the binary exponentiation

implementation is shown in Table 12.

Table 12 Binary Exponentiation Power Consumption Data
Key Length (bits)

Binary Exponentiation 32 64 128 256 512 1024

Static Power (W) 0.091 0.091 0.091 0.091 0.091 0.091

Dynamic Power (W) 0.002 0.003 0.006 0.019 0.045 0.11

Total Power (W) 0.093 0.094 0.097 0.11 0.136 0.202

The binary exponentiation hardware had a static power consumption of 0.091 W

for all key sizes tested. The dynamic power consumption for this design displayed

similarities to the results shown in Table 9. However, at all key sizes above 64-bits, the

binary exponentiation hardware consumed slightly more dynamic power than the

41

repeated modular multiplication hardware. For 1024-bit keys, the dynamic power

consumed by this design accounted for 54.46% of the design’s total power consumption.

The power consumption breakdown for the Montgomery exponentiation design

is shown below in Table 13.

Table 13 Montgomery Exponentiation Power Consumption Data
Key Length (bits)

Montgomery Exponentiation 32 64 128 256 512 1024

Static Power (W) 0.091 0.091 0.091 0.091 0.091 0.091

Dynamic Power (W) 0.012 0.027 0.061 0.172 0.389 1.017

Total Power (W) 0.103 0.118 0.152 0.263 0.48 1.108

This design is consistent with the previous two discussed architectures and

requires a static power consumption of 0.091 W for all evaluated key sizes. The

Montgomery exponentiation design’s dynamic power consumption, however, far

exceeded the two other designs at all key sizes. For 32-bit keys, the dynamic power

accounted for 11.65% of the design’s total power consumption. At a key length of 1024-

bits, the dynamic power consumption for this architecture had increased to 91.79% of

the total power consumption.

Figure 14 shows the comparison of total energy consumption for the binary

exponentiation hardware and Montgomery exponentiation hardware.

42

Figure 14 Total Energy Consumption

The energy consumption for these two implementations was calculated according

to equation (10), using the power data found in Tables 12 and 13, and the average

latency calculated and shown in Tables 8 and 10.

 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑃𝑜𝑤𝑒𝑟 × 𝑇𝑖𝑚𝑒 (10)

Due to the latency of the repeated modular multiplication hardware being highly

variable based on the selected RSA key, a reliable calculation for energy consumption

was not possible. Figure 14 shows that, despite the Montgomery exponentiation

hardware having higher power consumption at all key lengths, its faster execution time

results in lower energy consumption at all key sizes expect for 1024-bits, where it

consumes 14% more energy than the binary exponentiation hardware. The energy

0.000E+00

5.000E-05

1.000E-04

1.500E-04

2.000E-04

2.500E-04

3.000E-04

3.500E-04

4.000E-04

4.500E-04

32 64 128 256 512 1024

En
er

gy
 (

J)

Key Length (bits)

Total Energy Consumption

Binary Exponentiation (J) Montgomery Exponentiation (J)

43

consumption data for the binary exponentiation and Montgomery exponentiation

implementations is shown below in Table 14.

Table 14 Total Energy Consumption

 Key Length (bits)

Total Energy 32 64 128 256 512 1024

Binary Exponentiation

(J)

3.608E-

06

9.416E-

06

1.937E-

05

4.496E-

05

1.096E-

04

3.529E-

04

Montgomery

Exponentiation (J)

1.107E-

06

2.352E-

06

6.231E-

06

2.239E-

05

8.109E-

05

4.025E-

04

44

CHAPTER VI

ANALYSIS

6.1 Strengths and Weaknesses

Of the three implementations, the binary exponentiation hardware demonstrated

the highest possible clock frequency at 28.387 MHz, while the Montgomery

exponentiation implementation and repeated modular multiplication design were only

capable of operating at a maximum clock frequency of 21.512 MHz and 11.125 MHz,

respectively.

The repeated modular multiplication and binary exponentiation designs both

displayed similarly low area utilization. At 1024-bits, the repeated modular

multiplication design used 49.68% of the available LUTs and 11.43% of the available

FFs on the Artix-7, while the binary exponentiation design used 49.56% of the available

LUTs and 11.37% of the available FFs. The Montgomery Exponentiation design,

however, required 74.64% of the available LUTs and 24.48% of the available FFs on the

Artix-7 to perform encryptions and decryptions at a key length of 1024-bits. Since the

repeated modular multiplication and binary exponentiation required less than 50% of the

available FPGA resources, up to two instances of the designs could be simultaneously

loaded onto the same device and perform parallel to one another. Conversely, the

Montgomery exponentiation design, which required 74.64% of the available LUTs, uses

far too much space to accommodate another parallel process on the same Artix-7 device.

45

The Montgomery exponentiation architecture exhibited the lowest overall latency

of the three designs. At a 1024-bit key length, this design could perform an encryption in

278 microseconds and had a data throughput rate of 3.683 megabits per second. In

comparison, the binary exponentiation architecture required 1.348 milliseconds to

complete a full encryption at 1024-bit key lengths and had a throughput rate of 739.844

kilobits per second. The latency and throughput of the final implementation using

repeated modular multiplication displayed incredibly high sensitivity to the selected

public or private key. At sufficiently high key values in the 1024-bit range, this design

takes indeterminably long to perform an encryption and its throughput approaches zero

bits per second. This indicates that this design is not suitable for use at higher key values

and is not suitable for use in providing data security to CPS.

The repeated modular multiplication implementation displayed the lowest total

power consumption, requiring 0.192 watts of power when performing operations on

1024-bit data. At this same key size, the binary exponentiation implementation

consumed slightly more total power, 0.202 watts, while the Montgomery exponentiation

implementation required significantly more power, totaling 1.108 watts.

The Montgomery Exponentiation implementation, despite having a higher power

requirement, consumed less energy than the binary exponentiation implementation at all

key sizes except 1024-bits. For 512-bit keys, the two implementations had nearly

identical energy consumption, with the Montgomery exponentiation architecture

consuming slightly less energy overall. At the tested key lengths below 512-bits, The

46

Montgomery exponentiation architecture has been shown to consume as little as 25% of

the energy of the binary exponentiation implementation.

6.2 Comparison to Embedded System Performance

Of the three hardware implementations of the RSA algorithm, only the binary

exponentiation design could exceed the full frequency range of the embedded system

being used for comparison, the MSP430, which can operate at several modes up to 25

MHz. The Montgomery exponentiation implementation, which is capable of running at a

maximum frequency of 21.512 MHz, can meet all of the operating modes of the

MSP430, with the exception of the highest operating mode of 25 MHz. The final

implementation using repeated modular multiplication had a maximum clock frequency

of 11.125 MHz, which is only capable of meeting the lower operating modes of the

MSP430 and cannot match the higher MSP430 operating modes of 16 MHZ and 25

MHz.

At a key length of 1024-bits, both the binary exponentiation and Montgomery

exponentiation implementations exceeded the latency and throughput of the 1024-bit

RSA running on an MSP430 shown in [16]. Of these two implementations, the

Montgomery exponentiation design exhibited significantly lower latency and higher

throughput than the binary exponentiation hardware and was capable of encrypting

1024-bits of data 169.01 times faster than an embedded system running the RSA

algorithm. As discussed previously, the repeated modular multiplication implementation

was not capable of meeting the latency benchmark set by the MSP430.

47

Of the three implementations, the repeated modular multiplication and binary

exponentiation implementations both displayed similarly low total power consumption,

consuming 0.192 and 0.202 watts, respectively. For 1024-bit data, the Montgomery

exponentiation design consumed 1.108 watts of power. All three of these designs,

however, fail to meet the benchmark set by the MSP430, which consumes as little as 3.9

μW of power in low-power mode and 33 mW of power in active mode.

Based on these results, the repeated modular multiplication implementation is not

sufficient for providing data security to CPS in place of an embedded system for any

application. While it does have the lowest power requirement of the three designs, its

timing deficiencies and overall sensitivity to the selected public or private key render it

unsuitable for use in CPS.

The Montgomery Exponentiation implementation displayed the lowest latency

and highest throughput of the three proposed designs, and far surpassed the timing

standard of the MSP430. However, the increased power requirement of this design

indicates that it is only suitable for use in applications where ultra-low latency and high

throughput are prioritized over power efficiency.

The binary exponentiation implementation shows the most promise as an

alternative to embedded systems for providing data security to CPS. This design

surpassed the timing standard of the MSP430, while maintaining significantly lower

power requirements than the Montgomery exponentiation design. However, the power

consumption of this implementation is still significantly higher than the power

48

consumption of an MSP430 in active mode, making it unsuitable for applications with

strict power considerations.

6.3 Comparison to Other Hardware Implementations

This section will compare the data collected for the binary exponentiation and

Montgomery Modular implementations with other hardware based implementations that

were found in published literature.

The binary exponentiation architecture that was designed as a part of this

research had a maximum clock frequency of 28.287 MHz, measured latency of 178 us at

128-bit key lengths, calculated throughput of 719.101 kbps and 128-bit key lengths and

739.884 kbps at 1024-bit key lengths, and a total on-chip power requirement of 0.192 W

at 1024-bit key lengths. Leelavathi et al. [20] and Saini et al. [21] proposed binary

exponentiation architectures for hardware based RSA. The design published by

Leelavathi et al had a maximum clock frequency of 148.534 MHz, a latency of 33.67 ns,

and a throughput of 3802 Mbps for 128-bit keys [20]. This design is significantly faster

than the binary exponentiation architecture designed for this research in all reported

metrics. The design shown in the work of Saini et al. had a maximum reported frequency

of 10.149 MHz, a calculated throughput of 11.1.05 Gbps, and a total on-chip power

requirement of 1.19 W [21]. This implementation’s dramatically higher throughput rate

is the result of the highly parallelized nature of the architecture. This architecture was

intentionally parallelized to require the least number of clock cycles to complete an

encryption or decryption. While it is successful in this regard, its power requirement is

49

6.197 times greater than the architecture designed during this research, making the

design of Saini et al. infeasible for use in CPS.

Of the Montgomery multiplication based RSA designs discussed previously,

Xiao et al. [24] had the highest clock frequency at 285.7 MHz, notably higher than the

design created by this research, which had a maximum frequency of 21.512 MHz.

Parihar and Nakhate [22] had the lowest 1024-bit latency of 850 ns, while Xiao et al.

[24] achieved the fastest designs for 256-bit and 512-bit, with times of 165 ns and 588

ns, respectively. These designs are significantly faster than the Montgomery

exponentiation architecture designed as a part of this research, which had an average

latency of 363.253 μs at 1024-bits, 168.933 μs at 512-bits, and 85.14 μs at 256-bits. Sahu

and Pradhan [7] displayed the fastest 32-bit Montgomery modular implementation,

performing an encryption with 9.895 ns of latency, nearly an entire order of magnitude

faster than the minimum 32-bit latency shown in Table 10, 7.2 μs. Varma and

Sarawadekar [23] proposed a 64-bit architecture capable of executing an encryption in

7.061 ns, which is nearly 2000 times faster than the minimum 64-bit latency measured in

Table 10, 14.8 μs. The design of Xiao et al. [24] had the highest throughput rate at 256,

512, and 1024-bit sizes, with measured rates of 24899.7 Mbps, 13931.9 Mbps, and

13562.9 Mbps, respectively. Comparatively, Table 9 shows that this research’s

Montgomery exponentiation architecture had a throughput rate of 3.497 Mbps at 256-bit

key lengths, 3.555 Mbps and 512-bit key lengths, and 3.683 Mbps for 1024-bit key sizes.

The measurements from Xiao et al. are 7120.3, 3918.95, and 3682.57 times higher for

256-bit, 512-bit, and 1024-bit key sizes. However, it should be noted that as the key

50

length increased, the throughput rate of Xiao et al. fell while the throughput rate of this

research’s design increased, marginally. The only Montgomery exponentiation design

that disclosed power consumption was Gnanasekaran et al. [17], whose design required

0.213 W at 1024-bit key sizes. In comparison, Table 13 shows that the power

consumption of this research’s Montgomery exponentiation implementation was 1.108

W for 1024-bit key lengths, 5.202 times greater than the design of Gnanasekaran et al.

51

CHAPTER VII

CONCLUSION

 This work proposes three hardware implementations of the RSA algorithm with

the potential for providing data security to CPS. The three implementations were

evaluated according to their maximum clock frequency, area utilization, latency,

throughput, and power consumption. The results of this evaluation were compared to the

performance of an embedded system, the MSP430, running the RSA algorithm at 1024-

bit key lengths. This comparison shows that the RSA implementation using binary

exponentiation has the greatest potential for use in providing data security to CPS, as it

provides lower latency and higher throughput than the MSP430, while still consuming

sufficiently low amounts of power. However, for applications with incredibly strict

power constraints, an embedded system running the RSA algorithm is still more suitable.

The Montgomery exponentiation implementation is suitable for providing data security

to CPS only in specific applications where ultra-low latency and high throughput need to

be prioritized over minimized power consumption. The third RSA implementation,

which used repeated modular multiplication to compute modular exponents, is not

suitable for use in any CPS application, as the latency of the design exhibited dramatic

sensitivity to the selected keys and could not meet the timing standard set by the

MSP430.

52

7.1 Future Works

As this work has shown, public-key encryption methods have the great potential

in providing data security to CPS. However, there is still a large amount of work that can

be done to improve these implementations by lowering their power usage, decreasing the

amount of time necessary to perform an encryption or decryption, and increasing the

maximum clock frequency and throughput for each of the designs. Each of these

improvements would further lend to the potential that hardware based implementation of

the RSA algorithm have in providing data security to CPS. Furthermore, a similar study

may be conducted on symmetric key encryption standards to assess their viability for

this same purpose. That study may be compared and contrasted with this one in order to

assess the most effective method available for providing data security to CPS. Finally, a

hardware based hybrid cryptosystem could be developed that utilizes the best approaches

from both asymmetric and symmetric cryptography and provides robust security for all

aspects of CPS.

53

REFERENCES

[1] M. A. Faruque, F. Regazzoni, and M. Pajic, “Design methodologies for securing

cyber-physical systems,” 2015 International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), 2015.

[2] P. Ramesh, “Accelerating RSA public key cryptography via hardware

acceleration,” ScholarWorks@UMass Amherst, Feb-2020. [Online]. Available:

https://scholarworks.umass.edu/masters_theses_2/887/. [Accessed: 13-May-2022].

[3] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, “Energy analysis

of public-key cryptography for Wireless Sensor Networks,” Third IEEE International

Conference on Pervasive Computing and Communications, 2005.

[4] S. S. Almusallam, “Power Consumption in the Embedded System,” International

Journal of Emerging Science and Engineering, vol. 3, no. 8, Jun. 2015.

[5] “MSP430F552x, MSP430F551x Mixed-Signal Microcontrollers datasheet (Rev.

P),” Texas Instruments, 2020. [Online]. Available:

https://www.ti.com/lit/ds/symlink/msp430f5529.pdf. [Accessed: 28-Sep-2022].

[6] R. Duarte, X. Niu, and C. Liu, “RSA cryptography acceleration for embedded

system ,” CAMEL: Computer Architecture and Microprocessor Engineering Lab, 2010.

54

[Online]. Available: https://camel.clarkson.edu/Pub/UCAS-6_2010_Final.pdf.

[Accessed: 19-Sep-2022].

[7] S. Kumar Sahu and M. Pradhan, “FPGA implementation of RSA encryption

system,” International Journal of Computer Applications, vol. 19, no. 9, pp. 10–12, Apr.

2011.

[8] J. R. Laracy, “An RSA Co-processor Architecture Suitable for a User-

Parameterized FPGA Implementation,” Journal of Information Security Research, vol.

11, no. 2, Jun. 2020.

[9] E. Kurniasari, A. E. Putra, and N. G. Agoestien, “Implementation of the

Montgomery Modular based RSA algorithm on FPGA,” 2019 5th International

Conference on Science and Technology (ICST), 2019.

[10] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics

of Computation, vol. 44, no. 170, pp. 519–521, Apr. 1985

[11] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” 1978.

[12] L. M. Noordam, “VHDL Implementation of 4096-bit RNS Montgomery Modular

Exponentiation for RSA Encryption,” Delft University of Technology, 18-Jun-2019.

[Online]. Available: https://repository.tudelft.nl/islandora/object/uuid:3174589c-f8a1-

4da7-b2a8-79ddb22e7079/datastream/OBJ/download. [Accessed: 17-Nov-2021].

55

[13] A. S. Tahir, "Design and Implementation of RSA Algorithm using FPGA,"

International Journal of Computers & Technology, vol. 14, no. 12, pp. 6361-6367, 2015,

doi: 10.24297/ijct.v14i12.1737.

[14] A. Shrivastava et al., "Time in cyber-physical systems," presented at the

Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, 2016.

[15] A. Humayed, J. Lin, F. Li, and B. Luo, "Cyber-Physical Systems Security—A

Survey," IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1802-1831, 2017, doi:

10.1109/jiot.2017.2703172.

[16] U. Gulen, A. Alkhodary, and S. Baktir, "Implementing RSA for Wireless Sensor

Nodes," Sensors (Basel), vol. 19, no. 13, Jun 27 2019, doi: 10.3390/s19132864.

[17] L. Gnanasekaran, A. S. Eddin, H. El Naga, and M. El-Hadedy, "Efficient RSA

Crypto Processor Using Montgomery Multiplier in FPGA," in Proceedings of the Future

Technologies Conference (FTC) 2019, (Advances in Intelligent Systems and Computing,

2020, ch. Chapter 26, pp. 379-389.

[18] J. A. Yaacoub, O. Salman, H. N. Noura, N. Kaaniche, A. Chehab, and M. Malli,

"Cyber-physical systems security: Limitations, issues and future trends," Microprocess

Microsyst, vol. 77, p. 103201, Sep 2020, doi: 10.1016/j.micpro.2020.103201.

56

[19] F. Dang, L. Li, and J. Chen, "xRSA: Construct Larger Bits RSA on Low-Cost

Devices," presented at the 2021 IEEE 27th International Conference on Parallel and

Distributed Systems (ICPADS), 2021.

[20] G. Leelavathi, K. Shaila, and K. R. Venugopal, "Hardware performance analysis

of RSA cryptosystems on FPGA for wireless sensor nodes," International Journal of

Intelligent Networks, vol. 2, pp. 184-194, 2021, doi: 10.1016/j.ijin.2021.09.008.

[21] S. Saini, K. Lata, A. Sharma, and G. R. Sinha, "An FPGA implementation of the

RSA algorithm using VHDL and a Xilinx system generator for image applications," in

Advances in Image and Data Processing using VLSI Design, Volume 1, 2021.

[22] A. Parihar and S. Nakhate, "Low latency high throughput Montgomery modular

multiplier for RSA cryptosystem," Engineering Science and Technology, an

International Journal, vol. 30, 2022, doi: 10.1016/j.jestch.2021.08.002.

[23] S. M. K. Varma and K. P. Sarawadekar, "FPGA Implementation of Modular

Multiplication for Cryptographic Applications," presented at the 2022 IEEE Delhi

Section Conference (DELCON), 2022.

[24] H. Xiao, S. Yu, B. Cheng, and G. Liu, "FPGA-based high-throughput

Montgomery modular multipliers for RSA cryptosystems," IEICE Electronics Express,

vol. 19, no. 9, pp. 20220101-20220101, 2022, doi: 10.1587/elex.19.20220101.

57

APPENDIX A

PYTHON SCRIPT FOR GENERATING RSA KEYS

Import RSA

def generateKeys():

 (pubKey, privKey) = rsa.newkeys(key_size)

 with open('keys/public.pem', 'wb') as p:

 p.write(pubKey.save_pkcs1('PEM'))

 with open('keys/private.pem', 'wb') as p:

 p.write(privKey.save_pkcs1('PEM'))

def loadKeys():

 with open('keys/public.pem', 'rb') as p:

 public = rsa.PublicKey.load_pkcs1(p.read())

 with open('keys/private.pem', 'rb') as p:

 private = rsa.PrivateKey.load_pkcs1(p.read())

 return private, public

key_size = 1024

generateKeys()

private, public = loadKeys()

58

print('Private Key: ', private)

print('Public Key: ', public)

