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ABSTRACT

Let ¢ be the symmetric-square lift of an SLy(Z) Hecke-Maass form. Let ¢ be an odd
cube-free positive integer, and let x be a primitive Dirichlet character modulo ¢ such that y
is not quadratic. Let f be an even Hecke-normalized Hecke-Maass newform of level dividing

q, central character X2, and spectral parameter ¢;. In this thesis, we show the following

subconvexity bounds for twisted L-functions on GL(3) x GL(2) and GL(3):

1
L (§7¢ X f X X) <<¢>,tf,e q%+67

1
L (5 +it, ¢ X X> Lopitoe q%+€,

for every € > 0, where the dependence of the implied constants on t¢,? are polynomial.
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1. INTRODUCTION

Let us begin with some motivation. Consider

Rs(n) = {(z,y,2) € Z* | 2* +y* + 2* = n}. (1.1)

One may then ask: are the points in R\?’/(ﬁ" ) equidistributed on the unit sphere in R3? Ques-

tions like this can be answered by finding good bounds on the Fourier coefficients of certain
modular forms or Maass forms, and often such bounds come from deep connections with
subconvexity bounds for L-functions. Duke and Schulze-Pillot [1] found that the answer
to the above equidistribution question is in the affirmative. More generally, subconvexity
estimates of L-functions and a local-to-global principle were the key ingredients of Cogdell,
Piatetski-Shapiro, and Sarnak’s preprint [2], which essentially resolved the final open case
of Hilbert’s 11" problem, which lets us answer interesting questions such as the following:
which integers in Q(v/5) = {a + b5 | a,b € Q} can we write as sums of 3 squares? Re-
place Q(v/5) with any fixed totally real number field and “write as sums of 3 squares” with
“integrally represent by any given positive definite integral ternary quadratic form” for the
general strength of their result; please see [3] for an exposition of their ideas.

The correspondence principle in physics roughly states that the quantum mechanical
behavior of systems approaches classical mechanical behavior in high-energy limits. Unlike
in classical mechanics, energy values in quantum mechanics forms a discrete set (they are
“quantized”), and these values are related to the eigenvalues of Laplace eigenfunctions. The
Quantum ergodicity theorem (QE) of Shnirelman [4], Zelditch [5], and Colin de Verdiere [6]
states the following: let the geodesic flow on a compact smooth Riemannian manifold X
without boundary be ergodic (sufficiently chaotic) with respect to the normalized Liouville
measure, and let {¢;};>0 be an orthonormal basis of L?(X) composed of Laplace-Beltrami

eigenfunctions such that the sequence of corresponding eigenvalues {\;},>o satisfies A\; > 0



and A\; — oo; then there exists a density 1 subsequence of {¢,};>¢ that equidistributes in the
cotangent bundle 7* X (phase space). Based on evidence from a favorite toy model, Rudnick
and Sarnak [7] conjectured that if additionally X has negative sectional curvature, then the
entire sequence {¢; };>o equidistributes in phase space; this is known as the Quantum Unique
Ergodicity conjecture (QUE). Arithmetic QUE asks if this is true specifically for surfaces
of arithmetic nature (such as modular curves). In several cases, Arithmetic QUE follows
from certain triple product identities and subconvexity bounds for certain L-functions of
high degree. Please refer to Rudnick [8], Zelditch [9], and Sarnak [10], [11] for more details
on QE and QUE.

Michel [12] and Iwaniec-Sarnak [13] provide us with several other applications of sub-
convexity bounds for L-functions, including Duke’s theorem on equidistribution of Heegner
points in the hyperbolic plane.

For automorphic L-functions, consider the bound L(s, ) <. Q(s,7)°" on the R(s) = 1
line for all € > 0 with Q(-, 7) being the analytic conductor of L(-,7) and 6 > 0 a fixed number.
The Lindelof hypothesis conjectures that we can take 6 = 0, but that is not yet known in
any case. We can take § = }l in all cases; this is known as the convexity bound, and it follows
from the Phragmen-Lindel6f principle from complex analysis combined with the functional
equation of the L-function. Bounds with 0 < 9§ < %1 are therefore aptly called subconvexity
bounds. Subconvexity bounds are not yet known in all cases; establishing and improving
subconvexity bounds is an active area of research not only because of their applicability
(such as to equidistribution problems or to QUE), but also since they are interesting and
challenging problems in their own right. Our results in this thesis are subconvex in the
g-aspect.

The first subconvexity bound was due to Hardy and Littlewood based on the work of Weyl
on a shifting method for finding nontrivial bounds for certain exponential sums: ¢ (% + it) <
t%“; the proof of the same bound for Dirichlet L-functions is similar. The best bound known

result for ¢ today is = é—i due to Bourgain [14]. A subconvexity bound with § = % is known



as a Weyl bound.

The first subconvexity bound in the g-aspect was proved by Burgess [15] using cancel-
lations in short character sums and Weil’s Riemann hypothesis for curves over finite fields:
L (% + it, X) < qTS6+6 for fixed ¢t and any € > 0. A subconvexity bound with § = % is known
as a Burgess bound. Heath-Brown [16] proved the hybrid Burgess bound in ¢ and ¢ aspect
for Dirichlet L-functions.

After nearly four decades, the g-aspect Burgess bound for Dirichlet L-functions was im-
proved to a Weyl bound for primitive quadratic Dirichlet characters of odd conductor by
Conrey and Iwaniec [17]. They employed cubic moments of central values of L-functions,
spectral theory of GL(2) automorphic forms, Waldspurger’s result on nonnegativity of cen-
tral values of automorphic L-functions, and Deligne’s solution of the Weil conjectures for
varieties over finite fields. This celebrated paper has inspired several subsequent results,
including Young [18], [19], Petrow [20], [21], Petrow and Young [22], [23], [24]; this series of
papers culminated in the hybrid Weyl bound in ¢ and ¢-aspects for all Dirichlet L-functions.
Specifically, in [23], Petrow and Young proved the Weyl bound for any Dirichlet L-function
of cube-free conductor, and in [24], they dropped the cube-free requirement by performing
meticulous study of fourth moments of Dirichlet L-functions along cosets of certain groups
of Dirichlet characters. Djordje Mili¢evi¢ [25] obtained sub-Weyl subconvexity for Dirich-
let L-functions to prime-power moduli using a p-adic method of exponent pairs of van der
Corput, Phillips, and Rankin.

In the GL(2) realm, the first subconvexity result was a Weyl bound due to Good [26]:
L(3+it, f) < (1+ |t])37¢ for f a holomorphic Hecke cusp form of level 1. The widely used
amplification method was developed by Iwaniec [27] to study the spectral aspect for Hecke
L-functions. An influential series of papers by Duke, Friedlander, and Iwaniec [28], [29], [30],
[31], [32], [33], [34], [35] played a major role in establishing subconvexity as an attractive
and rich area of research. In a very general treatment, Michel and Venkatesh [36] showed

subconvexity in the GL(1) and GL(2) settings uniformly in all aspects.



Xiaoqing Li [37] proved the first subconvexity bound for GL(3): for ¢ the symmetric-
square lift of a fixed SL,(Z) Hecke-Maass form and u; an orthonormal basis of even Hecke-
Maass forms for SLs(Z) with spectral parameter ¢; > 0, she showed L (1, ¢ X u;) <4
(1+|t;)) 5+ and L (2 +it,¢) < (14 |£)167¢. This result depended on Lapid’s theorem
[38] on the nonnegativity of L (%, ¢ X uj). Xiaoqing Li’s results were subsequently improved
by McKee, Sun, Ye [39] and Nunes [40].

Blomer [41] followed the Conrey-Iwaniec approach and Xiaoqing Li [37] to prove impres-
sive g-aspect subconvexity results: L (%, o X fx X) g fe qgﬁ and L (% +1t, P X X) gt
q%+5 with ¢ the symmetric-square lift of a fixed S Ly(Z) Hecke-Maass form and x a primitive,
quadratic Dirichlet character modulo ¢ for ¢ an odd prime. Under the same assumptions on
¢, X, Huang [42] followed the approach of Young [18] to prove hybrid subconvexity results
LYo xuyxx) <ep (q(1+[t;)270% and L (1 +it, 6 x x) <ep (¢(1+ [t])) 5757, where
0= 2%) Qi [43] proved Blomer’s bounds for ¢ a self-dual Hecke automorphic cusp form for
SL3(Z[i]) and g € Z[i] a Gaussian prime.

Munshi [44], [45], [46] partially complemented Blomer’s results by showing subconvexity
for L (%, ¢ X X) with ¢ being the symmetric-square lift of a fixed SLy(Z) Hecke-Maass form
and x a primitive Dirichlet character (not necessarily quadratic) of conductor ¢' for ¢ prime;
he looked at two different aspects: either keep ¢ fixed and let [ — oo or keep [ fixed and
let ¢ — oo. In his breakthrough series on subconvexity via the circle method, Munshi
[47], [48], [49], [50], [51] used his GL(2) §-symbol method that detects equality of integers
using the Petersson trace formula. One benefit of this approach was that it allowed him to
bypass any nonnegativity requirement on central values of L-functions, which is an important
aspect of the moment method used in Conrey and Iwaniec [17], Xiaoqing Li [37], Blomer
[41], Petrow and Young [23] among others. As a result, Munshi was able to drop the
self-duality requirement (symmetric-square lift requirement) on the SL3(Z) Hecke-Maass
cusp form. In particular, in [51], Munshi showed that L (%,W X X) L g1~ %5+, where

is an SL3(Z) Hecke-Maass cusp form, and y is a primitive Dirichlet character modulo ¢,



with ¢ being prime. Holowinsky and Nelson [52] simplified Munshi’s proof by replacing the
GL(2) §-symbol method with a formula obtained using Poisson summation that expresses
x of prime conductor ¢ in terms of additive characters and twisted Kloosterman sums;
they also improved the exponent: L (%,w X X) Lz e q%_%“. By a variant of the Munshi
and Holowinsky-Nelson methods, Lin [53] showed hybrid subconvexity in ¢ (prime) and ¢
aspects: L (1 +dt,m X x) <nre (q(1+ |t])) 35, Using the §-method, Sharma [54] obtained
an improvement in the exponent when ¢ is prime: L (%, T X X) e q%_:%z“.

In a major breakthrough, Nelson [55] recently settled the subconvexity problem for GL(n)
standard L-functions for all n > 1 in the t-aspect. He also addressed the spectral aspect in
case of uniform parameter growth.

In the current thesis, we broaden the result of Blomer [41] in two ways using the Petrow
and Young [23] approach while maintaining the strength of the exponents: we remove the

quadratic requirement for y, and we allow ¢ to be any cube-free odd positive integer.



2. STATEMENT OF RESULTS

Let ¢ be the symmetric-square lift of an SLy(Z) Hecke-Maass form. Let ¢ be an odd
cube-free positive integer, and let y be a primitive Dirichlet character modulo ¢ such that
X is not quadratic. For ¢ a Dirichlet character modulo ¢, let H;:(k, 1)) denote the (possibly
empty) set of Hecke-normalized Hecke-Maass newforms of level k|q, central character ¢, and

spectral parameter t. Then we show the following:

Theorem 2.0.1. ForT' > 1, we have

T 2 .
DD DD D (%fb X fx x) +/ dt <sre ¢, (2.1)

. =T

1
L(§+it,¢xx)

where the dependence of the implied constant on T is polynomial.

The following corollaries of theorem 2.0.1 extend results of Blomer [41] that assume that
X is quadratic and ¢ is prime. Corollary 2.0.1.2 has some advantages compared to the results
of Munshi [51] and Holowinsky-Nelson [52]: it holds on the entire critical line R(s) = 3, it
lacks the primality assumption on ¢, and the bound has a better exponent; however, their
results are more flexible in the sense that they hold for general SL3(Z) Hecke-Maass cusp

forms ¢ (not necessarily symmetric-square lifts).

Corollary 2.0.1.1. Let f be an even Hecke-normalized Hecke-Maass newform of level di-

viding q, central character X2, and spectral parameter t;. We have

1
L (§;¢ X f X X) Loptyoe CZ%+6, (2.2)

where the dependence of the implied constant on ty is polynomial.

Corollary 2.0.1.2.

1
L (5 +it, ¢ X X> Lo tre q%+e, (2.3)
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where the dependence of the implied constant on t is polynomial.

Corollaries 2.0.1.1 and 2.0.1.2 provide us with subconvexity in the g-aspect; the corre-

sponding convexity bounds are ¢2¢ and ¢1+¢ respectively.



3. TECHNIQUE

Here we sketch the proof of our results for the convenience of the reader.
Denote the set of newform Eisenstein series by M gis(k, ¥) = {Ey,xo (2,5 +it) | qig2 =
k and x1xz ~ ¥}, where n ~ 1) means that 1 and ¢ have equal underlying primitive charac-

ters. Let ho(t) = e (> +1). Consider the following first moment of degree 6 L-functions:

M:Zho Z Z wflL( ¢><f><X)+
=1

lk= q fEHzt ( )

Oy Z wpy L (%¢ x F x x) dt.

lk= q EEH’Lt El@(kx )

Here wr; > ¢ Hq(1 + [t]) ¢, wey > ¢ H(q(1 + [t])~¢, and Z+ denotes summation
over even Maass forms or Eisenstein series. We apply an approximate functional equation
(theorem 5.3, [56]) at the cost of a small error to prepare for applying the GL(2) Bruggeman-
Kuznetsov trace formula (proposition 2.1, [23]). Bruggeman-Kuznetsov replaces the GL(2)
spectral aspects of our moment with twisted Kloosterman sums and some standard integral
transforms. Applying a Hecke relation to the GL(3) Fourier coefficients (Fourier coefficients
of ¢) and opening the twisted Kloosterman sum allows us to extract a sum involving additive
twists of GL(3) Fourier coefficients; such a sum is primed for an application of the GL(3)
Voronoi formula (lemma 3, [41]), which leads to a reduction in the length of the sum in our
case. We complete the setup of the problem by applying dyadic partitions of unity to localize
the variables. We fix some of the variables to have their most typical values to reduce sources

of distraction in this summary:

Z Z A¢(n27 1)7%,0(67 ng, X)ICB,U,I(Cu n2)7 (32)

gle ma=l1

~ )

o,8e{+1} N,C, N2
dyadic

Nz2C4

where Z = (¢, N,C,Ny) and ¢ < C, n < N, ny < Ny with 1 < N < ¢*¢ (small € > 0),



< C <" 1< Ny K q104. Here, the values of Ay : Z x Z — R are Fourier coefficients
of ¢, T := Ts»(c,n2, x) is a character sum similar to the one in [41], and Kz, z(c, ng) is an
integral transform from Voronoi summation. To find asymptotic expressions for s, 7(c, n2),
we apply integration by parts and stationary phase (see [57]) on several layers of oscillatory
integrals. Then we carefully craft a Petrow-Young-style Z-function (see [23]) involving T
such that after careful simplification involving numerous integer variables, new L-functions
on the dual side are revealed. After setting some variables to their most typical values to
highlight the essence of the message, it is essentially the following:

1

2o, 52) ©(q)

> " L(s1,¢ x ) L(s2,9) Zgn (51, 52), (3.3)
¥(q)

where Zg,(s1,s2) is analogous to the one of Petrow and Young [23]; the philosophy for
bounding Zg,(s1, s2) is same as that of Petrow and Young: factor over primes and perform

local computations until it boils down to bounding

g06Y) = Y XX+ Dx(w)x(u+ 1)(ut - 1). (3.4)
t,u (mod q)

Petrow and Young showed that g(x, ) <. ¢'™ using a combination of classical methods
and Deligne’s Riemann hypothesis for varieties. Bounding Z(sy, s2) is completed by using
Cauchy’s inequality followed by classical large sieve inequalities to bound second moments
of L(-,¢ x ¢) and L(-,¢). Finally, by an argument of Petrow and Young [23], there exists
an E € M mis(k, 1) such that L (%,qﬁ X B x X) = |L (% +1t, P X X) }2, which completes the
proof of theorem 2.0.1.

We deduce corollary 2.0.1.1 from theorem 2.0.1 by invoking a result of Lapid [38] on the
nonnegativity of L (%, ¢ X fx X) for self-dual (symmetric-square lift) ¢. Corollary 2.0.1.2
follows from theorem 2.0.1 after dropping the complete cuspidal spectrum followed by a

standard method of extracting an individual bound of L-functions from an integral bound.

We conclude this chapter with a few comments.



o Lapid’s theorem only works for self-dual (symmetric-square lift) ¢ and only at the
central point % Other methods need to be investigated in order to remove the self-

dual assumption on ¢ or to prove corollary 2.0.1.1 at % + 4t for nonzero t.

 Like Blomer’s results in [41], theorem 2.0.1 is unfortunately not Lindel6f on average;
therefore corollaries 2.0.1.1 and 2.0.1.2 fall short of the Weyl bound even though the
same strategy resulted in the Weyl bound for Dirichlet L-functions in Conrey-Iwaniec
[17] and Petrow-Young [23]. The large sieve estimates for the second moments of the
L(-,¢ x ) and L(-, %) on the dual side (see definition of Z(sy, s5)) are < ¢2*¢ and <
g€ respectively. Therefore, by Cauchy-Schwarz, we get the bound (q%“)%(ql“)% =
q%+€ in theorem 2.0.1. The < q%+€ for L(-,¢ x 1) above is worse than Lindelof on
average (< ¢'7¢); it is an unfortunate combination of high conductor of the L-function
(¢®) leading to a length of q%“ after truncation in the approximate functional equation

and the nature of the large sieve inequality.

o This project combines the approaches of Blomer [41] and Petrow-Young [23] and
tremendously benefited from these projects. However, we faced new difficulties com-
pared to both. The already complicated character sum 7 handled by Blomer had a
more convoluted incarnation here in the sense that now x was not longer quadratic
and ¢ was not necessarily prime. The Z-function tackled in this project is same in
spirit as Petrow and Young’s, but significant amount of unpacking was needed in our
version of Z to realize that semblance; this is partly due to the presence GL(3) Fourier

coeflicients and 7 in our version.
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4. L-FUNCTION DATA

Let ¢ be the symmetric-square lift of an SLs(Z) Hecke-Maass form having spectral
parameter {. Let the Whittaker-Fourier coefficients of ¢ be denoted by (the values of)
A, Z xZ — R. Let x be a primitive Dirichlet character modulo ¢ € N. For R(s) > 1,

consider the following three absolutely convergent series.

(1) The Godement-Jacquet L-function or standard L-function given by

A
L(g,s) = d’gs’ m) _ IT Q= Autpp + As(p, Dp > —=p)7. (41)
n=1 p prime

(2) The twisted L-function

L(¢Xx,s>=zw_

n=1

(4.2)

(3) For f € Hiu(k,X?)UHris(k,X?) and f even, the Rankin-Selberg convolution of ¢ and

f X x given by
Ag(n,m)As(n)x(n)
(m?n)* ’ (4.3)

Lox fxx,s)= >
m,n>1

(m,q)=1

where the Fourier coefficients of f are denoted by As(n).

L(é,+), L(¢ X x,-), and L(¢p x f X x, ) can be analytically continued to entire functions that

are L-functions in the sense of [56] chapter 5 having conductors 1, ¢, ¢° respectively.

11



For all s € C, the corresponding completed L-functions are given by

A(g,s)=n% ﬁr (”ﬂ L(¢,s) = A(d,1 — 5),

Moo = (4TI (55 ) po s :Z‘_%ngﬁa“cb X1 5),

A % fx X, 9) :(%) ];[HF(”M;” )L(qufxx,s):A(qufo,l—s),

J=1

(4.4)

where oy = 211, g = 0, 3 = —2it, and

0 0 if x(—1)=+1 (45)

1 if y(—1) = -1

Ao, ), AN(pxx, "), A(¢x f xx,-) are all entire functions. The root number of L(¢ X f X x;, -)

is (e(f x x))*, and e(f x x) equals the parity of f; see section 2.3 of [23].

12



5. STANDARD FORMULAE AND DEFINITIONS

Throughout the rest of this document, we will use the following notation: e(z) :=
exp(2miz).

The following is similar to Proposition 2.1 of [23].

Lemma 5.0.0.1 (Bruggeman-Kuznetsov trace formula). Let h be a function such that there

exists 6 > 0 such that

o his even, i.e. h(—z) = h(z),
« h is holomorphic in the strip |3(z)| < 3 + 4,

o |h(2)] < (1+412])727° for z in the above strip.

Suppose x is primitive of conductor g and not quadratic. There exist positive weights wy; >>

¢ Hq(1+]t;])) ¢ and wg; > ¢~ (q(1+]t])) ™ such that for any (nina, q) = 1 and sgn(ning) =
o€ {l,—1}, we have

Shit) Y S wpd ) (m) + / DY S wede(n)Ne(m) dt

j=1 k=g feHq, (k,x?) k=04 E€M s, pis(k,X°)
2(n1,n2; €) A/ |ning|
= TL1 n290 + Z 9o ( c > )
qle
(5.1)
where |
go=2 / tanh(rt)t h(t) dt,
T

—o0 (5.2)

= fig/ K, (x,t)t h(t) dt, oe{l,—1},

13



with
Jait ()

cosn(m 0= +1
K, (x,t) = { < (5.3)
Ky (z)sinh(nt) o= —1
and
2i o=+1
Ko = (5.4)
% oc=-—1
OJ

Next, we have the Hecke relation, which follows from Mobius inversion and theorem

6.4.11 of [58].

Lemma 5.0.0.2 (Hecke relation).

(n,m) Z p( A¢<— 1>A¢,< T;) (5.5)

d|(n,m)

O]

Let w be a smooth compactly supported function, and let w be its Mellin transform. For

32, pe{l,—1}, let

3 T (s+a]

Ws(x) == %/(UO)(W%)S jl_[lr<1 - a]> zﬁH EZ — a:; w(l —s)ds,  (5.6)

JlF

with ay = 21, as = 0, a3 = —2i{ being the local parameters at infinity of ¢. The following

is [41] lemma 3.

Lemma 5.0.0.3 (GL(3) Voronoi summation). Let ¢,d be integers with ¢ # 0 and (¢,d) = 1.
Then

N\CO

nd A¢ N9, M1) mc nany
ZA¢mn ( ) Z Z Z p— (md Bna, )Wg( >
Be{£1} ni|em ne=1
(5.7)

14



Now, consider the following renormalization of Ws

3
T2 Wg(x) 1 / 3 .
K =_— = 8 G 1—s)d 5.8
()= T = 0 | PTGl = ) ds 58)
where

3
Gp(s) = ( B 4 e iﬂ%) HF(S-I—aj), (5.9)

j=1
where ¢ = Z?Zl e’ We used Legendre duplication and reflection for I' and some

elementary trigonometric identities to get the simplified formula for Gs. Note that since
a; + az + a3 =0, we have ¢ = 1 + 2 cos(may).

The following is a corollary of 5.0.0.3.

Corollary 5.0.0.1. Let ¢,q € N, u,v € Z such that q|lc. Let x be a Dirichlet character

modulo q. Then,

ZA¢1n Ss2(un, v; c)w Z Z Z ZA¢ s an’CB <ngn1)’

66{:&1} cile ning=ci1 n2=1

(5.10)
where
* * * vd + uad ba
T = 7—5,11,,1)(67 C1, n37n27X) = Z X2<d)X<a)€ (?> e (_C_) X
bler) d(e) alc) f(na) 1_ (5.11)
. bf + Bnaf
ng '

Proof: Call the left hand side S. Opening the twisted Kloosterman sum and splitting

the n-sum into residue classes (modc), we get

$=3_ 3 Adlmpdmu(m 3 ) (M)

a(c) n=a(c) d(c)

_ Z*ZX2(CZ)X(@)€ (vd+uad) Z Ay(1, n)uw

d(e) a(c)

(5.12)
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Next, we detect n = a (mod ¢) using primitive additive characters modulo ¢|c.

szz*zx2<d>x<a>e(”d+md>§ s ()

d(c) a(e) c1\c b(e1)
vd 4 uad ba bn
SIE YY) (T) : (‘g) > Auttme () (o,
cile bler) d(c) a(e) n=1
(5.13)
Applying lemma 5.0.0.3 gives
vd + uad ba
-y Z ZX — el )~
cl\c b(c1) ¢ “
(5.14)
S % Z A¢> nz,m m g (b By, 61) K, (nin) .
Be{£1} ni|cy n2=1
Opening the Kloosterman sum completes the proof. O

The following definition is from [57].

Definition 5.0.0.1 (Inert functions). Let F be a set and X : F — Rxy be a function whose
value at T € F is denoted by Xp. A family {wr}rer of smooth functions supported on a
product of dyadic intervals in R, is called X-inert if for each j = (ji,...,ja) € Z‘éo we

have

C(jr,. .. ja) :=sup  sup X' gl g wrf,fl """ jd)(xl, ..., Tq)| <00. (5.15)
TEF (21,...,z4)€RL
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6. SETUP

Let us set up our moment problem now. For T' > 1, let

ho(t) = exp (— (%)2) t?;‘ll. (6.1)

Consider the following 1% moment of degree 6 L-functions.

M= M(q,x) = Zho(tj) Z ZJF wy L (%,Cb X f X X) +

k=q feHq, (k,x?)

1 [ + 1
) ho()Y Y wglL <§,¢ x E x x) dt,

lk=q E€H; gis(k,X2)

(6.2)

+
where g denotes summation over even Maass forms or Eisenstein series. By theorem

5.3 of [56], we have

Lgoxix ) =2 ’ ),
<2 o n%zzl (nd2)z ¢
(d7Q):1
6.3)
A 2 (
L (—,gb x E x x) _9 Z (1, d)AE(ln)X(n) (nd3 J) |
2 n,d>1 (nd2)2 q
(d,q):l
where 1 »
Lbutbotit—a;
! 30) ™ HiH?:1F<+> 2du
Vet = 2_7”/ ()™ 3 L +00+it—a; e’ o (6.4)
2) [I.1T, T (%)
where 6, =

17



Therefore, we have

M & Ag(n, d)Xs( d?
oS h) Y Sy Ay (12 )
j=1

lk=q feHi.(k,Xx?) nd>1
! (d q) (6 5)
A¢ndAE n)x(n) (nd2> '
w V Jt | dt.
0 Xy Al (0

lk=q E€M it mis(k,X X n, d>1
(dq)=

The absolute convergence of these sums follows from the rapid decay of hy and since

—A

T
Viz,t 14+ —— 6.6
< (L) o0

for any A > 0 (analogous to lemma 10.1 of [23]). Interchanging the order of summation, we

have Ay(n,d)x(n)
o(n,d)x(n
— M 7d J
n; (nd?) (2 ol ) (67)
(d, q)_=
where 00
~S"h (tj,—) SO wan
o lk=q feHq, (kX>) (6.8)
= EJIAE\TV) AT,
lk=q EeH; mis(kX?)
with
(6.9)

h(tv y) = hO(t)V(y7 t) :

Applying lemma 5.0.0.2 (Hecke relation) gives

S 1(8) Ag(n, 1)A¢(},d)X(5”)MO(5n,6d).
nd3>1 (nd253)2 o
(6d,q)=

18



Next, we apply dyadic partitions of unity to n,d to get

p(0)Ay(n, 1)As(1,d)x(dn
M = E wy A(n, o) E o d25§(1 IX( )Mo((Sn,éd),
n,d,6>1 )2
(3d,q)=1

(6.11)

where wy A is a family of 1-inert functions with support on [N,2N] x [A, 2A].

Observe the following:
o For ¢ >0, hy(t) is small for |t| > T'*¢¢, and

« by (6.6), V(z,t) is small for |t| < Tt ¢¢, 2 > T3+<¢° for € > 0 depending upon €.

Due to the above, the h (t, ”Cf;353> terms in Mg(dn, dd) are small when nd*§® > (qT)3*°.
This allows us to truncate the sums above at the cost of small errors so that d? < (¢q7)3*¢
and NA3 < ('ﬂ;ﬁ. Further, since n,d are positive integers, we have 2 < N, A. In other

2

words, we have

M=y AlLd) 1 ) Zwm na) 3 HOA IXOn) 4510 5a) + O, ((g7) ),

1
d2<(qT)3+¢ n,6>1 (nd?)>
(d,q)=1 (d.9)=1
(6.12)
where we have omitted the bounds on N, A for brevity of notation. We detect the evenness

of the Maass forms and Eisenstein series in Mg(n, d) by inserting indicator functions (1 +

Ar(—=1)) and (1 + Ag(—1)) as follows

o(n.d) = zh<],%)z S wpll A (1)) +

k=q  feH, (kX?)

(6.13)
Y nd2
o S S wp(l+ As(=1)As(n) dt.
- k= q EeHzt Els(k X2)
We rewrite this as
MO(TL; d) = ./\/ll(n, d) + ,/\/l_l(n7 d)7 (614)
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where, for o € {1, -1}, we have,

o(n,d) = Zh(w%)z o wpd(0)As(n)+

lk q fEHzt (k X2)

S[(5)Y Y e

lk= q EeHzt Eli k X )

(6.15)

By the Bruggeman-Kuznetsov trace formula (5.0.0.1), we have

My(n,d) = Lo o (”q‘p) 3 SXQ(Z’ %, (47“/5, ndz) , (6.16)

c q3
qle

where | oo
go(y) = —/ tanh(7t)t h(t,y) dt,
T
R (6.17)
%@MZ%/.&@WMwMuUEHrH
Thus

M=D+S8;+8 1+ 0(qT)'"), (6.18)

where the diagonal term from Bruggeman-Kuznetsov gives

Ay(l,d) (&
D:NZ;wN,A(l,l) > ¢d 90 (‘) (6.19)

3
d?<(qT)3+e 1
(d,q)=1

and for o € {1,—1}, we have

S, = Z p(9)Ag(n, 11))((571) Z Si2(dn, 05 ¢) y
< (qT)>te N.A n,0>1 (nd?)> ale ‘
(dq)=1 (G.9)=1 (6.20)
g (47r\/% nd253>

c ¢

Absolute convergence of the sum over ¢ is the consequence of the following: by the Weil

bound, we have [S;2(n,0;c)| <. c2q2, and analogous to [23] lemmas 10.2 and 10.4, we

20



have g1 (x,y) < 2T, g_1(z,y) <K 2T for sufficiently small € > 0.

Now, by Rankin-Selberg theory, we have

> A1) < . (6.21)
n<x
By a trivial bound on gq followed by partial summation, Cauchy-Schwarz, and (6.21), we

get
[Ag(L,d)| (d? ¢ e
DL Y, ) ST (6.22)
3+e€

d?<(qT)

Next, we apply a dyadic partition of unity to ¢ in S, to get

B Ay(1,d)
S, = Z — Z SNACos (6.23)

< (qT)3+¢ N,AC
(d,g)=1

where

l\')\O«

§)Ag(n, 1)x (6 4m\/6n
SN,A,C,U _ Z ¢ n, ”) Z Syz(én’ o; c)Jg,IO ( C ,n, 0, C) , (6.24)
Z

qle
(

where
e’} d253
Jo1,(2,m,0,¢) = wr,(n, 6, c)/ K, (x,t)th ( q—) dt, oe{l,—-1}, (6.25)

with Zy = (¢,T,d, A, N,C) and wz, being a family of 1-inert functions with support on
[N,2N] x [A,2A] x [C,2C].

Since c is a positive integer satisfying g|c, we have 2 < C. Now, note the following:
+ By the Weil bound, we have |S;2(dn, 0;c)| < Cateqe.

« Analogous to [23] lemmas 10.2 and 10.4, we have J11 7, (z,n,d,¢) < «T, J_17,(x,n,0,c) <K,

J}l_eTl—"_E.
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o Ay(n,1) €penzte < N2t and Ay(1,d) <y d2te for sufficiently small € > 0.

Using the above, one can conclude the crude bound S, <, (¢7)*°0+9 %", C~2+20¢ for suf-
ficiently small € > 0; the contribution to this from C' > (¢7)'® is absorbed into the error
100

term in the expression for M in (6.51). We can therefore assume that C' < (¢T")

To prepare for an application of GL(3) Voronoi summation, we interchange sums to write

Amv/on
SNAC’J—O\/— Z 2l 5)‘2 ZZA¢n 1)x (5nac)JO—,IO( WC ,n,5,c>.

5>1 q‘c n=1

(9,9)=

By GL(3) Voronoi summation formula (5.0.0.1) followed by application of dyadic parti-

tions of unity to new variables co, n1, ns resulting from the Voronoi summation, we get

SNACo = Z Z SN,AC,C2,N1 N2 0,5 (6.27)

Be{x1} C2,N1,N2

where

N,C?
SN.AC.C2. N1 Nowof = 021\/_ Z A ;3 Z Z Z Z A¢ no,ny)T

5>1 q\c C1C2=CMN1N3=C] N2= 1

(5.0)= (6.28)

nany

2
ICBUI( ,90,¢, 0277117712) )

1

where

T: 7'6,5,0(07 Clan37n27X) = Z X2<9)X(a)€ (O-g—cag> e (_C_CIL) e ( f nf”?f) :

bler) g(e) alc) f(na)
(6.29)
and

1
Kﬁﬂl(?/?& c, C27n17n2) = _/ (87‘-3@/)7SG5<S)¥70,I(5757 C, 02777,1,712) dS, (630>
(00)

271
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e

35, Where

for oy >

47r\/§
c

jo‘,I(S)(sa c, 027n1an2) - / JU,I ( 7I757 c, 027n17n2> x° dl‘, (631)
0

where

Joz(2,1,0, ¢ Co,m1,n9) = wz(n,d,c,ca,n1,n2) /OO K,(z,t)th (t, @) dt, (6.32)
—0 q
withZ = (¢, T,d, N, A, C, Cy, N1, Ny) and wz being a family of 1-inert functions with support
on [N,2N] x [A,2A] x [C,2C] x [Cy,2C5] x [Ny, 2Ny] % [Ny, 2N,]. We have § < Cy, Ny, N,
since cg, N1, N9 are positive integers.
Next, we will truncate the sum in (6.27). For that, we need some control on Gg. We use

this opportunity to establish bounds for G/g which will be useful on multiple occasions. We
begin by writing
1

Kﬁﬂl(:% 5a C,C2, M1, ng) = % Z / (87T3y)_(00+i9t)G/3(0‘0 + Z@t) v
st (6.33)

Toz(00 +10t,6, ¢, co,n1,n2) dt.

6.1 Asymptotic analysis of G

Recall that oy = 211, g = 0, 3 = —2it. Let us fix 09 > 0 and vary t > 0.
Lemma 6.1.0.1. Let a > 0.

(1) Fort > a, we have
Gp(og +1i0t) <iopa e 7,
(6.34)
Ga(00 — iBt) Kppa t°17072),
(2) Fort < a, we have
G,B(UO :l: Zt) <<{700’a 1 (635)
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(3) Fort>a, B> 2,

—3ipt
GB(UO - Z/Bt) = t3(‘70_5) <E> WﬁvivUo,B(t) + Ot,ao,B,a(t_B)7

where

k o

t @Wﬁ,{,go,B(t) <<{,<70,B,a,k 17
fort>a.

Proof: (2) follows from continuity of G on the vertical line R(s) = oy.

(6.36)

(6.37)

Let s = op + 0t with 6 € {1,—1} as in (6.33). By Stirling’s approximation, there exists

tt.6o > 0 such that for t > t; ,,, we have

j=1 ['(s) j=1
and
3 5 5 I'(s+ o)
s+ o) = (00 T =
Jj=1 j=1
L /B
_ gy £ (E) (1+ 040y (t1),

3
2

where kg ,, = (27)2 exp (32’9% (00 — %)) This immediately gives

e

3i0t
. used 37 .o O, Tt t
G/g(S) _ kﬁ?,oo (ez,BSToe—(ﬁG-&-l)% + ge—lﬂToe(ﬂe—Z%)?) t3(00_%) (_) (1 + 0{700 (t_

(6.40) implies that for t > t; ,,, we have

Gg(og + ift) <Ki.0, e_%t,

Galog — ift) Kgop 13072).

(6.38)

(6.39)

)

(6.40)

(6.41)

If t4,, < a, then (1) is proved. Otherwise, for a < ¢t < t;,,, we use (2) to see that

Gp(og £ it) <4 4, 1, which in turn implies (1).
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Upon using more terms from Stirling’s approximation to refine the (1+ Oy, (¢t71)) term

in (6.40), we get the following asymptotic expansion for ¢ > t; ,,, N > 1,

e i

—3igt /N—1 4
Gg(og —ift) = #3(00—3) (E) (Z Cloobi | 0{7007]\]@_]\[)) n
(6.42)

J=0

05700 (eiﬂpt).

3iBm

3 exp ( i ), and the above is an asymptotic expansion, i.e. the sequence

Here ¢t 4y 50 = (27)

{Ct.00,8,5}520 does not depend upon N. Now, let N = [3 (o9 — 3) + B] for some B > 2, and

for t > 0, let
N—-1
X Ct,00,j
W,t.00,8(t) := T (6.43)
=0
Then we get
) ¢ —3ipt
Gotoo =80 =08 (1) 7 Wity (0) + Orn(t™2), (6.44)

for t >ty ,,. Again, if t; ,, < a, then (3) is proved. Otherwise, for a <t < t;,,, we use (2)

to see that Gg(og — ift) <y 4, 1, which in turn implies (3). O

Now, analogous to [23] lemmas 10.2 and 10.4, we have

A gt A A1y L4+A
28xA18nA2 Ji1z(T,m, 0, ¢, c0,n1,m2) Koy pp w(z™ ™ +27) T,
ght 1 A Ay rl4A+ (6:49)
—€ - €
n 2m=]—1,1($7n>5a c,C2,M1,M3) Lo hge T (z7™ 2T

for sufficiently small € > 0, and the implied constants do not depend upon Z. Integrating
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by parts k times followed by applying these derivative bounds gives

\7071(0'0 + Z@t, 5, C,Co,M1, ng)

A1
2
< oo +i0t 7% max / e ) 7 dx (6.46)
N ’ c c

0<A1+A2<k
A1,A22>0

(max(l, P))2k+1Tk+2N
tk ’

N J(Amg,o ,,,,, 0) (47Tv oz . )‘ (47r\/5x

<<k,<70

for t > 0, where P = 4vAN VCAN; here the implied constant does not depend upon Z. Combining

this with lemma 6.1.0.1, we have

2
nany
’C,BJI( 3 ,0,¢, 02,7117”2)

1

o\ —
<gp (%) Z / |G (oo + i0t) Tpz(00 + i0t, 6, ¢, ca,n1, o) | dt

1

0e{£1}
NN203 oo Tt t3(<70*l)
ook (%> max(1, P)T?N |1+ (max(1, P))*T* /1 S +tk =t
(6.47)

Let k= (24 [3(00 — 3)]) to get

2
nony
/CBUI< 3 5 (& 02,711,”2)

1

NoN2CS\ ™
<Lt oo (%) (max(1, P))** 172N (6.48)
NoN2C3\ ™ " o
= (%) (maX(l,P))QB( 0—3)1+57[3(00 )1+4N

where the implied constant does not depend upon Z. Next, we note the following crude

bounds
02 2
~ 3 6.49
A< S <y (6.49)
and
A(ﬁ(”?u nl) <Le (n2n1) +6 < (N2N2)2+€ for € > 0. (650)
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After choosing large enough oy, say oy = 103, combining the bounds above implies the crude
bound S, <y (¢T)10°(1+¢) > oy, Ny (N2N1C2) 1% for sufficiently small € > 0; contributions
to this from all three pieces Co > (7)™, Ny > (¢T7)'", and N, > (¢7)'" are absorbed into
the error term in the expression for M in (6.51). We can therefore assume that Cy, N7, Ny <

(qT)104. We summarize this chapter in the following proposition.

Proposition 6.1.0.1.

M= 3 > W Y. Svaccmmees + 0T G),

oe{£1} d2<(qT)3+¢ N,A,C,C2,N1,N2
pe{xl} (d,g)=1

(6.51)

for 0 < e <1071 where Sn.a c.co.N, N0 1S defined in (6.28). The dyadic support variables

N, C, Cs, Ny, Ny satisfy the following:

< Cy, N1, Ny < (QT)104
(6.52)

DN | —

gSCSMﬂm,

To prove theorem 2.0.1, it is sufficient to show the following:
Proposition 6.1.0.2. M <, TBcﬁJre for some absolute constant B > 0.

By proposition 6.1.0.1, to prove proposition 6.1.0.2, it is sufficient to show the following:
Proposition 6.1.0.3. All Sy a,c.coN No o8 Ke TBqite for some absolute constant B > 0.

The rest of this document is dedicated to proving proposition 6.1.0.3.
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7. ARCHIMEDEAN ASPECTS

2
Let P := 4mvAN VCAN and Kg o7 = Kgoz (ni—gl, 0, ¢, Ca, nl,ng).
7.1 Oscillatory case

Let us apply a dyadic partition of unity to ¢.

7(0’0+i9t)
> Gﬁ(Uo + iet)jo’,ll (0-0 + Z@t, 67 C, C2, M, Na, t) dta

e 0o 3 2

8T nany
Goz= 3 2 [ (7
9e{£1} j=—o00 V0 1

(7.1)

where

47?\/%
c

ijl(Sa(S) C, CQan17n27t) :/ ‘]0',11 ( ,ZL‘,(S, C, 627n17n2at> x° dI’, (72)
0

where
nd?6>
r?

JJ,II(Ln,5,c,02,n1,n2,t):wzl(n,é,c,CQ,nl,ng,t)/ Kg(as,r)rh< —3> dr, (7.3)
—0 q

with Z; = (¢,7,d,N,A,C,Cy, N1, No, j) and wz, being a family of 1-inert functions with

support on

[N,2N] x [A,2A] x [C,20] x [Ca, 2C5] x [Ny, 2N1] x [Ny, 2N, x [22 P, 215 P (7.4)

7.1.1 Asymptotic analysis of J, 1,

The following are analogs of [23] lemmas 10.2, 10.3, 10.4, and 10.5. The derivative bounds

hold as expected for all mixed partial derivatives.
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Lemma 7.1.0.1.

8k
%JH,L (x,n,0, ¢, co,m1,n9,t) Ky x(:t—k + xk)TkH, (7.5)

where the implied constant does not depend upon Z;.
Ji11, 1s a family of 1-inert functions with respect to the variables n,d, ¢, ca, ny,na, t (while

varying over all I, ); these variables are supported on (7.4).

Lemma 7.1.0.2. Suppose for some € > 0 that 1 < T?*" < x. Then, for any A > 0,

2. —1 iz —A
Jiiz, (T, 0, ¢, c0,n1,n9,1) = E T x 2™ W az,(x,n,06,¢,c0,n1,n2,t) + Oac(x™7),

Ae{£1}
(7.6)
where the implied constant does not depend upon Z,. Here
1-2:(Q7T7d7N7A707027N17N27j7>\>- (77)
We have
ak
xk%We,A,IQ (z,n,6,¢,co,m1,m9,t) Lpoae 1, (7.8)

where the implied constant does not depend upon Z,.
Weaz, s a family of 1-inert functions with respect to the variables n,0,c,co,ny,ng,t

(while varying over all Iy ); these variables are supported on (7.4).

Lemma 7.1.0.3.

oF
%J—l,Il (l’, n, 57 C, C2, M1, Na, t) <<k’,e xl—ﬁ(x—k + xk)T1+k+Ea (79)

for all e > 0, and the implied constant does not depend upon Z;.
J_11, 15 a family of 1-inert functions with respect to the variables n,d, ¢, ca,n1,na,t (while

varying over all I, ); these variables are supported on (7.4).
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Lemma 7.1.0.4. Suppose for some € > 0 that 1 < T'™ < x. Then

Jfl,Il (xanaéa c, 627n17n27t) <<A76 xiA, (710)

where the implied constant does not depend upon Z;.
7.1.2 Asymptotic analysis of 7, 1,
Let Jo.1, = Jo1, (00 + 10,0, ¢, c2,n1, 9, 1) as in (7.2).

Lemma 7.1.0.5. Oscillatory Case Fiz 9 > 0. Let P > T3q”. Note that in this case

P>1.

(1)

Tots iy w, (7.11)
fort > 0.
(2)
T 11, <Boo PPN, (7.12)
for B > 0.

(3) For I, varying over {Z, | j > 0 or j < —6}, we have

J+1.17, LB,y P BN, (7.13)

for B > 0.

(4) For I varying over {Z; | —6 < j <0}, we have,

t202 0t
\7+1,I1 = T2P_1N1_JO (46277'25) 0B.0,1, (& C,Co,MN71, N2, t) + OB,O'Q,@(P_BN)7 (714)
where op oz, is a l-inert family of functions (varying Z, over {Z, | —6 < j < 0})

with support on (7.37).
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Proof:

(1) Similar to (6.46), we have, by lemma 7.1.0.1 or lemma 7.1.0.3 depending upon o €

{£1}, that
Tk+2P2k+1N
\70’,11 <<k;70-0 - —tk_ s (715)
for t > 0. The bound N < (¢T)3"¢ from (6.52) then gives
Ak+6 p2k+1
Tot, Koy — (7.16)
for t > 0. The implied constant does not depend upon Z;.
(2) By lemma 7.1.0.4,
\7—1,11 <<B,Uo P_BN7 (717)
for B > 0; here the implied constant does not depend upon Z.
(3) By lemma 7.1.0.2,
j+1’:[1 = T2P7%N700 Z / ZB’_’[2(Z',(5, C, CQ,nth,t)X
Ae{x1} 70
(7.18)

exp (i®Pz, (z, 9, ¢, ca,nq1,n9,t)) de+

Op.o,(P7PN),

for B > 0; here the implied constant does not depend upon Z.

N ‘70'*‘% % 4 \/(5
<_) (£> WB,Z2 <u>x767 C, 027n17n27t> )
x C ¢

FNT

A
ZB’Z2 (.T, 57 C,C2,M1, N, t) - (g)

(7.19)

is a l-inert family of functions (while varying over all Z,) supported on (7.4).

D=

)
Oz, (x,0,¢,c0,n1,n9,t) = AP (_x)

AN (g) — Otlog(x). (7.20)

31



Now, on the support of zp 7,, for integer a > 1, we have

aa
_CDIQ (.I', 57 C,C2,M1, Ny, t) <<a

7.21
o (7.21)

Ne’

where Y = max(1, 2%)P, and the implied constant does not depend upon Z,. Now,
for Z, varying over F; = {Zy | (A= —0) or (A =0 and (j > 0 or j < —6))}, we have,

on the support of zp z,, that

9 Y
8_.@@12(1;757 c, 027n17n27t) > N, (722)

where the implied constant does not depend upon Z, € F;. Therefore, by [59] lemma

4.2, for 7, € Fi, we have
/ 2p1,(,0, ¢, ca,n1,n9,t) exp (1P, (2,0, ¢, ca, 01, N9, 1)) do <p y-(BHO N, (7.23)
0

where the implied constant does not depend upon Z, € F;. Therefore, for Z; varying

over Fo ={Zy | j > 0 or j < —6}, we have

Ti11, <Boo PPN, (7.24)
and for Z; varying over F3 = {Z; | — 6 < j < 0}, we have,

\7+17Il = T2P7%N700 / ,U/B,G,Il (.CL’, 5, C,Co,M71,MN2, t) exp (i\Ijjl (.CL’, 5, C,Co,M71,MN2, t)) dl’+
0

OB,UO (P_BN)>
(7.25)

where the pupg 1, = 251, and ¥z, = &7, with A =0 in 7. upg 7, is a l-inert family of

functions (while varying over all Z; € F3) with support on (7.4). We write down Wz,
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explicitly below:

S R (P (A‘S—fv) (%) _ tlog(m)) | (7.26)

(4) Now we wish to analyze the integral in (7.25); we start by assuming that Z; € Fj; in

N

xm3d

particular, we have —6 < j < 0. Write y = “Z7. On the support of upgz,, we have

ys <o NTA y < 2N)7*(24)
B (212 P)2(2C)2 T~ 7 T (25 P)2(C?

=277 <2t (7.27)

Performing the substitution z = yfzf; in the integral followed by a dyadic partition of

unity to y gives

o - t202 —i0t 8 )
j+17I1 = T2P 2N1 [eJs) (m) Z / £B,G,Ig(y7 5’ C, CQ,TLl,TLQ,t)X
0

k=—18
7.28
€xp (7;@1—3 (y7 57 C, C2,M1, N2, t)) dy+ ( )
Op,q, (PP N).
Here Z3 = (¢,7T,d, N, A, C,Cy, N1, No, j, k) is varying over
Fi={T3] —6<5<0, -18 <k <8}. (7.29)

¢, 1s & 1-inert family of functions (while varying over all Z3 € F,) with support on
([22,212]N[278,24) x [A, 2A] x [C, 2C] X [C, 2C5] X [ N1, 2Ny x [Ny, 2N3] x [22 P, 2175 P,

and

O1,(y, 0, ¢,c2,n1,m2, 1) = 60t (43/y — logy) . (7.30)

We have truncated 32°°_ to SO5_ . since [22,21%2] N [278,24] = 0 for k < —18,

k> 8.
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Now, on the support of g g.7,, for non-negative integers ay, ..., as, we have

aa1+-..+a7@zg(y’5’ c, Cz,nl,nz,t) » P
Qy=190920cdcy P oG oter T (95 yar Aas Clas 04 N95 NG6 (23 Par

. (7.31)

where the implied constant does not depend upon Z3.

For Z; varying over F5 = {Z3 | —6 <j<0and (18 <k < -7 or —3 <k <8)},

we have, on the support of {g ¢ 7,, that

0
_@Ig<y7 67 C, C2, M1, N2, t) >

.32

| o

where the implied constant does not depend upon Z3 € F;. Therefore, by [59] lemma
4.2, for I3 € F5, we have

/ 5B,@,Ig, (y7 67 C,Co, M1, N2, t) €xp (i@IB (y7 67 C,Co, N1, N2, t)) dy <<B,t9 P_(B+1)7 (733)
0

where the implied constant does not depend upon Z3 € F5. Therefore,

) - t2C2 —i0t —4 00
j+17I1 e T2P 2N1 [efs} (m) Z / 53,0,23(y75’ C, 027n1,n2,t)><

k=—6"0
7.34
€xXp (7;613 (y7 57 C, C2,M1, N2, t)) dy+ ( )

OB.oyo(P"EN).

Now, for Zy varying over Fg = {Z3 | —6 < j <0, —6 < k < —4}, we have, on the
support of {pg.7,, that
0? P

a_y2913<y75707027n1an27t) > (2 )2

: (7.35)

NMES

where the implied constant does not depend upon Zz € Fg. Therefore, by [59] lemma
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4.3, for I3 € Fg, we have

o0
/ 63,9,13 (y7 6a C,C2,M1, Ny, t) eXp (Z@Is (ya 67 C,C2,MN1, Ny, t)) dy
0

k
22 .
= (26)%%53,9,13 (57 Cy C2, 11, 02, t) + OB,G(Pi(B+1)),

\/ﬁ

(7.36)

where the implied constant does not depend upon 73 € Fs. Here Epp 7, is a 1-inert

family of functions (while varying over Z3 € Fg) with support on

[A,2A] x [C,2C] x [Cy, 2Cs] x [N1, 2N,] x [No, 2N,] x [28 P, 2143 P, (7.37)

Therefore,

~ - t2C2 0t
\74-1,21 :T2P lNl 70 (4 B 25) QB,9,11<57 C, CQ,”l,ﬂQ,t)—i—
e’ (7.38)
OB,JO,O(PiBN)a
where
—4
k!—
QB,@,Il (57 C,C2,N71, Ny, t) = Z 25:3,0,13 (57 C, C2, M1, Na, t) (739)
k=—6

0Bo1, is a l-inert family of functions (varying 7, € F3) with support on (7.37).

7.1.3 Asymptotic analysis of Kz, 71

Lemma 7.1.0.6. Oscillatory Case Fiz Y > 0. Let P > T3q”. Note that in this case

P >1. Then

(1) Kg—11 <o.00t (¢T)7.

(2) Ksi11 <001 (qT)70 for T varying over {Z | NoNEC3 % CPA}.
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(3) For I varying over {Z | NoNiC3 < CPA}, we have

K12 =P 'T°P>NLy gy 1,8ez(0,¢c2,m1,n2) + Og.o01.((qT) '), (7.40)
with

Lﬂ,ao,t,ﬁ,el((s’ C, C2, N, n2) =

NN 70N" /N A\ 7O\ "™ /A% (7.41)
/ Fy o0.4,82(0) (—2> (—) (—1> (—2> (—) du.
lu|<(qT)e N c ny Co )

Here P = e (—’Bni—g@) is the Conrey-Iwaniec phase term, and the integral is over 5
vertical lines in the complex plane such that R(uy) = oy, for 1 <k < 5. Here Fy o181

is entire and Fy ,157(0) Kgoot0.4 (1+|u]) for A >0, 0 = (01,02,03,04,05).

Proof: By lemma 7.1.0.5 (1) and lemma 6.1.0.1 (1), the contribution to the right hand
side of (7.1) from all j > 0 such that 25 > P4 for some large A > 0 depending upon 9, g9, €
is Oy oyt ((qT)71%).

By lemma 7.1.0.5 (2) and lemma 6.1.0.1, taking B > 0 sufficiently large depending upon
A we get that for 0 = —1, the contribution to the right hand side of (7.1) from all integers

j such that 25 < P4 is 09,00t ((¢T) 7). Therefore, we have

KjgﬁLI L Y,00,4 (qT)ilOO. (7.42)

By lemma 7.1.0.5 (3) and lemma 6.1.0.1, taking B > 0 sufficiently large depending upon
A we get that for 0 = 41, the contribution to the right hand side of (7.1) from all integers

j & [~6,0] such that 25 < P4 is Oy .1 ((¢T) ). Therefore, we have

—(Uo+i9t)
> Gﬁ(@'o + i9t).7+1,11 (O’O + Z@t, 5, C,Co, M1, N2, t) dt+

0 o0 3, 2
8T ngny
Conz= 3 [0 (75

0e{£1} j=—6

Og,00,¢ ((qT) ).
(7.43)
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Next, by lemma 7.1.0.5 (1) and lemma 6.1.0.1, specifically the exponential decay of Gz(o+

i5t), we have

87T n2n1 —(o0—iBt)
Ks1z = Z / ( ) Gp(oo — iBt) T3, (00 — iBt, 0, ¢, ca, na, g, t) di+

j=—"6

Oy.00,4 ((qT) ).
(7.44)

j > —6 implies that we can truncate the integral above so that ¢ > 25P > 273p > 93,

This allows us to apply lemma 6.1.0.1 (3) to Gg(o¢ — i/5t). By lemma 7.1.0.5 (4), we have

8m3nyn2\ 7°
K1z = 3

&1

T?pioo- Nl 7 Z/ 41900{521 6 ¢, €2, M, N2, >X

j=—6

. (7.45)
exp(i€z, (9, ¢, ¢, nq, N, t)) dt+

Og,00,t ((qT) 1),

where

3(007 )
t 2
Co,00,t,8.1: (0, C, Cay My, Mg, T) = (F) Ws.t.00.8(t) 0B —p1,(0, ¢, Ca,n1, M2, 1), (7.46)

for some large B > 0 depending upon ¢, g, ¥, and

(7.47)

2 2.3
Oz, (6, ¢, ¢, 1,1, £) = Bt log (M) |

ctd

Co.00,t,81; 1s a 1-inert family of functions (varying 7, € F3) with support on (7.37).
Now, for Z; varying over F; = {Il | ‘log (%)‘ > 100, -6 <5< 0}, on the sup-
port of (yy1.,87,, We have %Qzl(é, ¢, Co, My, Ng, t) > % and atanl(é ¢, Co, N1, Moy t) <, %

fora>2withY =P, Z = Q%P; therefore, by [59] lemma 4.2, we have

/ Cﬁ,o‘o,{,ﬂ,f1 (57 C,Co, M1, N2, t) exp(iQIl (67 C,Co, N1, N2, t)) dt <<'L9,0'0,T,,B P_B7 (748)
0
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for B > 0 arbitrarily large, where the implied constant does not depend upon Z; € F;.

. - 2rNa N2C3
Thus, for Z varying over Fg = T | |log | —zpr—= )| > 100 ¢, we have

K11 o000 (¢T)7', (7.49)

where the implied constant does not depend upon Z.

2 Na N2C3

Now, for Z; varying over Fy = {Il | ’10g ( CPA

)‘ <100, -6 <5< O}, on the sup-
port of (g ¢,.t.87,, We have g—;ﬂzl(& ¢, Ca, Ny, Ng, t) > % and

aa1+--~+a6 O 5 Y
, ,C,Co, N1, Mo, t) Koy a ——
Dt 9692 Dcs D In® I 70, €, €2, 11,112, 1) Ly Zar No2C'os O34 N5 Ngo

(7.50)
fora; > 1, a9,...,a6 >0 withY =P, Z = Q%P; therefore, by [59] lemma 4.3, we have
/ Cﬂ,ao,f,ﬁ,z1 (67 C,Co,MN71, N2, t) eXp(iQI1 (57 C,Co, M1, N2, t)) dt
0

20p exp (27ri franics

VP co

(7.51)

) Ep o0t .81, (6, ¢, C2,m1,m9) + Oy 0o 1 5(P~7),

for B > 0 arbitrarily large, where the implied constant does not depend upon Z; € Fy.
Here Ey 01,881 is a l-inert family of functions (while varying over Z; € Fy) with support
on [A,2A] x [C,2C] x [Cy,2C5] x [N1,2N;] X [Na,2Ns]. Thus, for Z varying over Fjg =

{Z 110 (554 | < 100}, we have

NoN2CIN ~7° oo~ 1—oe [ Branics
Kg+11= <%) T?pP3o2N* 06( 2051 2 ) Ly .ot,52(0, ¢, c2,m1,n2)+

(7.52)
Oy.00,t((¢T)71),
where the implied constant does not depend upon Z. Here
Lﬂ,o‘o,{,ﬂl(év C,C2, N7, n?) =
NoN203\ % /873non2e3\ ~7° 0 ; (7.53)
(%) (%) Z 2§E197U(),t,,37B7I1 (5a C, 627n1an2)7

j=—6
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for a large enough B > 0 that depends upon upon v, 09, ¥, 5. We have that Ly, ¢ 37 is a
l-inert family of functions (while varying over Z € Fjg) with support on [A, 2A] x [C, 2C] x
[Cy,2C5] x [N1,2N;] x [Na, 2Ns]. By Mellin inversion, we have

Lﬁ,o‘o,{,,@,l((sa ¢, Co, Ny, n?) —

/ f (u) & uy g ug & u3 ﬁ Ug é us . (754)
szl(ak) %,00,t,8,Z Mo c ni Co 5 5

where rapid decay of fy ., 51 allows us to truncate the quadruple integral such that |u| <

(¢T)c. Now,

log (MN < 100 implies

CPA
NN,N2C3 _NCcPA NA 1 (7.55)
C3ps T C3pP3 T (C?P% 16m2) '
which implies
NoN2C3N ~°° NNo,N2C3\ ~°°
( 2(}}3 2) P390 =90 < 023]313 2) Loy 1. (7.56)
Let Fy o187 = (N]g;ﬁq,c%)_ ’ f9.00.4,87 to complete the proof. O
7.2 Non-oscillatory case
7.2.1 Asymptotic analysis of J, 7
Let jU,Z = ja,_'Z(O-O + Zetv 67 C,C2, M1, n2)-
Lemma 7.2.0.1.
aA
@Jﬂl(x, n,d, ¢, Ca,ny, Ny) Ky :)32($_’\ + 2T,
8)‘ (7.57)
@J—I,I("Ea n, 57 C,C2, Ny, 7L2> <<)\,€ [E2_€<.T_)\ + ZE')\)T)\+€7

for sufficiently small e > 0, and the implied constants do not depend upon ZL.
Further, Jy11 and J_1 1 are families of 1-inert functions with respect to the variables
n,d,c, ca,ni,ny (while varying over all Z) with these variables being supported on [N,2N] x

[A,QA] X [C, 20] X [CQ,QCQ] X [N1,2N1] X [N2,2N2].
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Proof: Recall that
Joz(x,m,0, ¢ Co,m1,n2) = wz(n, 0, ¢, Co,m1,N2) /OO K, (x,t)th (t, &2353) dt, oe{l,—1}.
—o0 q

(7.58)
To prove the bound for Ji; 7, we mimic the proof of [23] lemma 10.2, except that we move
the line of integration to $(t) = —1 instead of I(t) = —1. To prove the bound for J_; 7, we
mimic the proof of [23] lemma 10.4, except that we apply [60] 8.486.10 twice instead of just
once. To prove the final statement on inertness, we follow the proofs of [23] lemmas 10.2

and 10.4. [l

Lemma 7.2.0.2. Non-oscillatory Case Fiz 9 > 0. Let P < T3¢". For 0 < e < 1, we

can write
jo-,I = T6P276N1700Hﬂ,o,ag,@,el(év C,C2,M1, N2, t): (759)
where
o X7 \” -
wHﬁ,a,ag,G,e,I(év ¢, Ca, M1, N2, 1) Ko oo Brek r1) (7.60)

with X7 = Tmax(1, P)? for B > 0. Further, Hyp 0.7 is an Xz-inert family with respect
to 0,¢,ca,n1,n9 (varying over all I); these variables are supported on [A,2A] x [C,2C] x
[Cy,2C5] x [N1,2Ny] x [Na, 2Ns]. All mized partial derivative bounds for Hy 5 001 behave

as expected.

Proof: Write

N\ 47/ 6
N9.0,00,6.2(Z, 0, ¢, Ca, M1, M) 1= (-) TP 2], 1 ( T x,a:,(S, c, CQ,nl,n2> . (7.61)
T c

By lemma 7.2.0.1, we get that 7y 40,7 is an Xz-inert family of functions (while varying

over all Z) with X7 = T max(1, P)?; the functions in this family have support on [N,2N] x
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[A72A] X [O, 20] X [027202] X [Nl,QNl] X [N2,2N2]. Finally, let

o0
a1 —iot
Hy o 000,62(0,¢ co,n1,n9,t) : =N / N9.0.00.e2(Z, 0, ¢, C2,n1,N2)T” """ d. (7.62)
0

(7.60) follows by repeated integration by parts. O
7.2.2 Asymptotic analysis of K3, 7

Lemma 7.2.0.3. Non-oscillatory Case Fiz ) > 0. Let P < T3¢°. For 0 < e < 1, we

can write

P2p'
X3

—00 .
Kﬁ,o’,.’[ = Pil ( ) T€P27€NX_’[2 Ll?,o‘,o‘o,ﬁ,ﬁ,.’[((sa C,Ca, My, n2)+

(7.63)
0,00, ((aT) ),

where

Lﬁﬂﬁo:ﬁﬁl(é? ¢, C2, Ny, n2) - /

[ul <Xz (qT)*

2.3
NnonicC
Fﬁ,a,ao,ﬂ,el<u)/ ( 12

—1t
fﬁ,al(t) X
<)+ \ €O )

() () () (5) () aee
(7.64)

Here X7 = Tmax(1,P)?, P = NQJCVECS, and P = e <—BMC—2%CS> is the Conrey-Iwaniec

phase term. We have f3,7(t) < (1 + |t|)"2. The u-integral is over 5 vertical lines in

the complex plane such that R(uy) = oy for 1 < k < 5. Here Fy, 5, pc7 5 entire and
-A

Ey.0.00.8,e2(11) Ko00,c0,4 H2:1 (1 + %) for A>0, 0 = (01,02,03,04,05).

In particular, when % > (q1)¢, taking large oy depending upon € gives Kp o1 <y
T
().

Proof: By lemma 7.2.0.2, we can write

N, N2C3

Ksoz = Tep2-eNt—o0 ( o3

—op .
) X;(UO 2)+2L’L9,0',0'0,6,6,I(67 C,C2,MN1, n2)7 (765)
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where

—3(oo—1)— —(o0+1
N2N12023 70 ng( 0m2) = Z /OO 87r3n2n%03 (o0 %
c3 27 0 c3

L19707007,3757I(5a ¢, C2, M1, n2) = (
0e{*1}

Gp(oo + 10t)Hy 5.00.0.e1(0, ¢, Ca, 11, o, t) di.
(7.66)

By differentiation under the integral sign, lemma 6.1.0.1 (1) and (2), and rapid decay
with respect to ¢ of mixed partial derivatives of Hy ;0.7 (see lemma 7.2.0.2), we have
that Ly o 00867 1S an Xz-inert family of functions (varying over all Z) with support on
[A2A] x [C,2C] x [Cy,2Cs] x [Ny1,2N;] x [Na, 2Ns], where X7 = T max(1, P)%.

We wish to incorporate the Conrey-Iwaniec phase term P in our expression for Kg, 7. For

that, consider a smooth function w on (0, 00) that is compactly supported and is identically

NoNEC3

1 on [},64]. Let P/ := =L

and gg,7(x) := e(—foz)w (& ). Note that on the support of

2.3
Looooper, 1 < 552 < 64. By Mellin inversion, we have

9p.0.2() :/ x_itfﬁ,a,z(t) dt, (7.67)
where
1 & i dx
fp.0z2(t) = %/0 9p.0z(T)T 7 (7.68)

. nzn%c% o nzn%c%
We wish to analyze Pw ( =577 ) = 9poz | —o = ). There are 2 cases.

o Let P’ < (¢T')° (non-oscillatory subcase). ¢s,7 has support =< P’ and satisfies the
derivative bounds satisfied by an (¢7")‘-inert family of functions (varying over all 7).
By repeated integration by parts, we have that f5,7(t) <a (¢T)*<(1 + [t|)~*; this

allows us to truncate the t-integral to get

2.3 2 3\ —it
Pw ( ) — / ( ) fs.0z(t)dt + Oc 5((¢T , (7.69
O P! (T2 P B I( ) B(( ) ) )

for B > 0.
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o Let P > (¢qT)° (oscillatory subcase). In the z-integral, the phase is —27 oz +tlog(x),
and the derivative of that with respect to x is =270 + % Therefore, we perform
repeated integration by parts to show that fs,z(t) is small when [t| %4 P’. When

|t| < P’, we apply stationary phase to get fs,z(t) < |f|72. To be precise, we get

2.3 2 3\ —it
Naonicy NN Cy 3
- 7.70
Pw( c5P’) /|t xP,( s ) f8.0z(t) dt + Ocp((qT) "), (7.70)

for B > 0.

Next, similar to lemma 7.1.0.6, we apply Mellin inversion to Ly s+, 3.z and use the decay
properties of its Mellin transform to truncate the quadruple integral at |u| < Xz(¢7T)¢
(redefine Ly 44,87 to be this truncated integral).

Also, notice that
NN,NiC3  NAN,N{C3  P*P

c3 c2 CA 1672’ (7-7)

Finish the proof by redefining Ly 4, 5.7 again to absorb (1672)7. O
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8. ARITHMETIC ASPECTS

Ramanujan sums will be denoted by

Ryfm) = 3¢ <%) - (<q,qn>) P S(@) | (8.1)

a(q) (g:n)

We will also heavily use weak reciprocity, which says that if a,b € N such that (a,b) = 1,

e (é) — <%) e (%) . (8.2)

then for any ¢ € Z, we have

Lemma 8.0.0.1. Let q1,q2 € N and m,n € Z such that (m,q) =1 and n = 0 (mod(q1,q2))-

Then
Ry, (m+n)Re,(m+n)  if (q1,q2) =1
RQ1q2 (m + n) = (8.3)
0 otherwise
Proof: The (q1,¢q2) = 1 case follows from weak reciprocity and change of variables.

Assume that (g1, g2) > 1; we have

q192 90((]1(]2)
R = .
q192 (m + n) 2 ((Q1CI2, m+ n)) < 0 > (84)
# \ Grgzm+n)

If p is a prime such that p|(qi, g2), then p?|qiqs whereas p [(q1ga, m+n) making the u factor
above vanish. O

For n € N and mq,msy € Z, let

free(n) := H D, (8.5)

plln
p prime
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and

* ab + moa + mqb
U(my, ma,n) ::Z e< 2n 1 >,
a,b(n)
V(mi,ma,n) =e (m1m2> U(my, ma,n)
ey (<a+m1><b+m2>> (5.6)
n
a,b(n)
_ zy
- X )
z,y(n)

((w*mﬂ(yfmz),n):l
U(mq, mae,n) and V(my, mg, n) are symmetric in mq, ma. If (mg, n) = 1, then U(mq, mg, n) =

U(mimso, 1,n) and V(mq, ma,n) = V(mimsa, 1,n). If (m,n) = 1, then

Vim,1,n) =3 e (m(a +1)(b+ 1))

n
a,b(n)
maxy (8.7)
]
n
z,y(n)
(z=1)(y—1),n)=1
Lemma 8.0.0.2. If n|m3°, then
Z/{(mla ma, n) = ,U/(n)Rn<m1) (88)

Consequently, if n is not square-free, then U(mq, ms, n) vanishes in this case. If n is square-
free, then n|ms.

Further, if (my,n) = 1, then evaluating the above Ramanujan sum gives

U(mi, ma,n) = (u(n))>. (8.9)
Proof: In
* ab + moa + mqb
U(my, ma,n) = Z e( 2n : ) ; (8.10)
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we evaluate the Ramanujan sum over a to get

aomemn) = 55 (5o () S ey o

b(n) (n,b—?—mg) )

Now, suppose that for some ¢ € Z, (n,c+msy) > 1; let p be a prime such that p|(n, ¢+ ms).
Then p|n|(m2)® = plms = pl¢; that is, p|(n,c). Therefore, if (n,b) = 1, then

(n,b+4 mgy) = 1, from which the result follows. O

Lemma 8.0.0.3. If (m,n) =1, then

1 [ m(n/d)
V(m,1,n)=n —e ( )

d|free(n) d d

= =

d|free(n)
k=4
Proof: In
* a+m)(b+1
V(m,1,n) = Z e (( 71( )) ; (8.13)
a,b(n)

the sum over a is a Ramanujan sum, which we evaluate to get
(3

m.1.m) — o *M<m>e m(b+ 1)
V(m, 1,n) = o )% (o) ( )

— w(n n(3) (MY
—90()%@(?) % (n> (8.14)
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where x = y/j. Observing that (zj — 1,n) = (zj — 1,1), consider the inner sum

* mx
- T )
% “\7 (8.15)
(zj—1,)=1

where [ is square-free due to the p(l). We detect the coprimality condition by using Mobius

function to get

L=3 ) 3 e (?) ' (8.16)
il zjggl()dl)

Since [ is square-free, if | = dydy, then (dy, dy) = 1. Write © = dyuxy + dyvry where u,v € Z

such that dyu + dyv = 1, 21 (mod dy), x2 (mod ds). Then

L= ud) Y e <d_2;nxl) > e (d_lzm)

1

dida=l z1(d1) z2(d2)
x1j=1(d1)
+ [ domm,
= > u(d)plds) Y 6( 7 > (8.17)
dido=l z1(d1)
xljfl(dﬂ
0y 3 et
dida=l z1(dy)
z15=1(d1)

where we used the fact that (m,n) = 1 to show that the Ramanujan sum over z5 (mod dy)
is p(dz). The conditions (x1,d;) = 1 and z1j = 1(modd;) force (dy,j) = 1 and x; =

7 (mod d,), giving

m(daj)
L=p(l) ) 6( (dlj)) (8.18)
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We use this in (8.14) to get

V(m,1,n) = ¢(n) Z (/;(8))2 Z e <m(ddl2j)>

lj=n dida=l

(d1,7)=1 (8.19)
n/dy) p(d d
=) 3 ( /1)2 &)
d1| free(n) dida]
Let n, = [[ pn p, which is square-free. Then the inner sum
p prime
Z ,U d1d2 . 1 Z 1
i, Pldidz)  p(d) e p(da)
d o
ldr) (a> (8.20)
— n*
dip(n.)
_on
dip(n)
Therefore
1 [ m(n/dy)
V(m,1,n) =n Z d—le (d—1 , (8.21)
d1| free(n)
as claimed. n
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8.1 Summary of character sum computation

For the ease of the reader, we make a list of variables that will be used in the process

below.

c=Cccy=qr=cicy
/

r=7TTo

— / p—
C1 = CiC1 0 = N1N3

I
Co = 020270

!
ny=nMmipo

/

ng = Nyna g (8.22)

!
ng = n3n3,0

!

my = mqmyo = NaN1C2

—_— / —_—
Mmoo = My o = N1C2

p— / p—
ms = msmso = C2

— 0/ _ _ 2.3
m=mmqg = 1Moz = N271Cy

where all the variables with a ' superscript are coprime to ¢; that is,

P !/ / / / _
(r'd cynynyngcymymymam’, q) = 1, (8.23)

and all the variables with 0 subscript divide ¢°°; that is,

oo
7“0CoCl,om,onz,on?,,oCz,oml,omz,oms,omo|C] . (824)
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Thus

and

Additionally, let

Let

d=r
d =dd,

¢ =ning

my = nynycy (8:25)
my = nych

my =

ro12 13
m' = m\mhymy = nyn2c;
Co = (7o
Co = C1,0C2,0

C1,0 = N1,0M3,0

mio = N2,0M1,002,0 (8-26)
mao = N1,0C2,0
msgo = C20
_ _ 2 3
Mo = 11,0MM2,0MM3,0 = 2,07 oC2 ¢
n/
B = (nj,nb), A= §3. (8.27)
F = free(A) = H . (8.29)
pllA
P prime
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Finally, recall that ¢ is square-free and (d,¢q) = 1 due to the p(6)x(6) in (6.51). Let

6 = (6,) = (6,¢c) = (0,7)

el

! (8.29)
03 = (ny, 02)

02
iy =

We also note down the following definition from section 5.1 of [23]:

Hx(jl?j?ajSa V) =

> XWX (W)X (—ja2 + #t)x(—j1 + ru)e (j3(—J1 + M)(—Z'z + #t) — jijs j3) | (8.30)
u,t(q)

Proposition 8.1.0.1. 7 is 0 if any of the following conditions is not satisfied.

61 = cy (also mjy = ¢, by definition)

(C,, 52) = 1
(ch,0) =1
(ny,my) =1
(8.31)
(A,ny) =1
(W(B))* =1
(nl27 54) =1
(m1,0,70) = (n2,0m1,0C20,70) = 1 (and consequently ni oc20lq)
If all of the above conditions hold, then
T =PTT, (8.32)
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where P = e (—ﬁam) =e <—ﬁ‘m§—gﬁcg> is the Conrey-Iwaniec phase term,

T - w((z;o()gz)(;&o) X(—Og(iq(f)qro S H ()b (—Bom!V3(5),

¥(a)
, , D - L~ (8.33)
T = u(mi) Z (D2 ) Z T(MA(Bomem)A(d3¢co BDs),
D1|F PLE104 A(D144)
Da=%-
where
ﬁ(?/f) = Z Hy(my 0, may0, 3,00, 70)1h(v). (8.34)
v(g)

O

The proof will involve repeated applications of weak reciprocity and lemma 8.0.0.1 to

collect the conditions in (8.31). At first, let us write 7 as a sum modulo c.

p(c1)p(ns)
T = C, (8.35)
((c))?
where _ -
o= Z C(d)x(a)e (ad — bacy + dda + bfnqcy + ﬁngnICQf)
Y C
" d—b 6da + b f (8.36)
D I e ]
ab,d,f(c) ¢
(bdf,c)=1
By weak reciprocity, we can write C' = C'Cj, where
o = Z . (@(03 — bams + 6da + bfmy + ﬁmJ))
— : :
wH "
GeH=t _ (8.37)
Cy— Z Cld)y(a)e (c’(ad — bams + dda + bfms + Bmlf)>
a,b,d, f(co) c
(bdf ,co)=1
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8.2 Simplifying C’

o Z . <%(Uc_l — bams + dda + bfmy + ﬁmlf)) '

C/

b7 (8.38)
(bdf, ) =1

The sum over a is 0 unless 6d = bms (mod ') which implies (6,¢) = (ms,c) = (c2,¢),
giving

d =my = ch. (8.39)

From this point onward, we will use d1, ¢, mj interchangeably. By (8.39) and (¢, ) = ¢y,

we get

(c1,02) = (E—:%) =1. (8.40)

2

Since ¢ is square-free, we also have

(mg,ég) = (6/2,52) = (51,52) = 1. (841)

Combining the above, we get that

(¢,05) = 1. (8.42)

After d — 0cyd, a + ocidaa, b acdob, f i adaf, we get

o Z . (El — bamg + 61da + bfmg + 60m1@7> '

S ¢ (8.43)
(bdf,¢')=1
After b+ maob, f +— Maomzof
d — baml, + 61da + bfml, + Bomeml,cods f
r_ 3 2 1
= ) e ( o ' (8.44)
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After d — d followed by a — da, we get

o - Z . (d — bdamly + d1a + bfml + 60m0m’1@7)

c/
i
. — (8.45)
4] bfm! " cod _
_ Z e ( 1a +bfmj + ?)UmOTThCO 2 f) Ry (1 — bam,).
c
a,b,f(c)
(bf,c)=1
Therefore, we can assume that
(¢, 01) = (cf, &h) = (¢, m3) =1, (8.46)

since otherwise, by lemma 8.0.0.1, all the Ramanujan sums above will vanish. (8.40) and
(8.46) together imply

(c,0)=1. (8.47)

We use (8.46) in (8.44) to write C" = C[C) where

= Z . (E(a — bamly + 01da + bfml + 50m0m3%7)> ’
c)

C/
a,b,d, f( 1
bdf,ch)=1
(bdf,c}) - - (8.48)
G- Y <c’1(d — baml, + 61da + bfmy + Bomem!,cod f))
2 = o .
a,b,d, f(ch) 2
(bdf,c5)=1
8.3 Simplifying C}
The last four terms in the numerator can be removed since m4 = §; = m/ = 0 (mod ¢});
thus L
! 2 * Clld
Cy=olp(@)?* ) e| -
d(ch) 2 (8.49)
= 01(0(01))*p(01),

where the last sum was a Ramanujan sum.
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8.4 Simplifying C]

= Z . <g(8 — bamyy + 6yda + bfml + Bam0m3@7)> ‘

/
S

8.50
a,b,d, f(c}) ( )
(bdf ,c})=1

After d — 01d, a — d1a, b 6;b, and f — 61 f, we get

=

Z . d —ba + da + bfn), + Bomem|cods f

c ' (8.51)
ab,d, f(c}) 1
(bdf ) )=1

Next, let us evaluate the sum over a followed by that over b.

d+ bfn}, + Bomeml,cods f
Ci=¢ Z e ( ! - !
b.d,f(c}) “
(bdf,c1)=1
d=b(ch)

_ C,1 Z e (b + bfn’l + ﬂamom'lco52 f) (852)

C/
b,f(ch) !
(bf.c))=1

L ~—* [ Bomem/cods f ,
:Clz e( 002 Rn;ng(1+fn1)~

C/
£(eh) !

Therefore, we can assume that

(ny,mg) = 1, (8.53)

since otherwise, by lemma 8.0.0.1, all the Ramanujan sums above will vanish. This condition

enables us to write C] = ¢ Ny Nj, where

N = Z . <n3(b+bfn1 + Bomoem/cods f)

) n ’
b7f(n1)
(bfn)=1 (8.54)
ny(b+ bfny + Bomom!cyds f)
/ 1 1 077014092
/ 13
bvf(n?))
(bfmi)=1

%)



8.5 Simplifying N]

The last two terms in the numerator can be removed since m) = 0 (mod n}).

« (kb
=t Y (%)
1

b(n}) (8.55)
= @(n)p(nd),
where the last sum was a Ramanujan sum.
8.6 Simplifying NV}
n; (b4 bfn + Bomem)cods f)
r_ 1 1 1
Ny= >, e ( ) : (8.56)
b.f(n3)
(bf,nh)=1
After b n)b and f +— n|f, we get
b+ bf + Bomem/codsy f
Ny =
’ Z ( n (8.57)
b:f(n:’))
(bfing)=1
After b — fb followed by f — f, we get
bf +b 1Co02
N, = Z e( [+ +ﬁa/momlco 2f>
ng
b.f(nj)
(bfing)=1 (8.58)

— Z ( )RAB b+ Bomem/ycods).

Note that since n, = 0 (mod B), we have m}| = njn ¢, = 0 (mod (A, B)). Therefore, we can
assume that

(A,B) =1, (8.59)
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since otherwise, by lemma 8.0.0.1, all the Ramanujan sums above will vanish. This enables

us to write Ni = A'B’ where

B(bf + b+ Bomemcodaf)
A =
> & ,
S,
e _ - (8.60)
B/ _ e (A(bf + b -+ ﬁamom’lcodgf)>
B .
b,f(B)
(bf.B)=1

8.7 Simplifying B’

Again, since m} = 0 (mod B), we can remove the last term in the numerator and get

B= 2 6(@)‘ (8.61)

b,f(B)
(of,B)=1

Evaluating the Ramanujan sum over f followed by that over b, we obtain
B = (u(B)), (8.62)

which lets us assume that B is square-free.

8.8 Simplifying A’

s Z e(?(bf—kb—}—ﬁamom’l%f)).

A (8.63)
b,f(A)
(bf,A)=1
After b — Bb, we get
bf + b+ ﬁamom’lcoéng =
I o /
A = Z e ( I =U(1, Bomemicode B, A). (8.64)

b,f(A)
(bf,A)=1
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Now, (nj,n}) = B = (A, %) = (%”,%) = 1; this combined with (A4, B) = 1 gives

(A,ny) = 1. Consequently (A, fomom)codeB) = 1. Therefore, by lemma 8.0.0.3, we get

Bamom’lcoégB Bamom’lcoégB D2
[
A =e <— A E DQQ Dl .

(8.65)

Here F' = free(A) as defined earlier.
We request the reader to keep in mind that ¢| and hence all its divisors are coprime to

J; see (8.47). Now we prepare for extracting the Conrey-Iwaniec phase term; D1 Dy = A

implies
0y Bomom’;coB ABomem/;coB 0y Bomom’;coB Dy
A=e (— L el — 1 Z Dye 1 X
A 09 o D,
Da=1-
_ JE—
e (DlﬁamomlcoB DQ) (866)
2
Bomem',coB Dy
= D
o Y Due (PTTRDE),
Dy|F
Da=4-
where
"coB
—e (_ﬁ%) (8.67)

Bomom/ coB D»

Now we wish to find the Fourier expansion of the term e ( Yo

> with respect to
Dirichlet characters. To simplify our work, we first ensure that the base (denominator) of
this complex exponential is coprime to the numerator; currently d, might share a common

factor with nj. Recall that 05 = (nj,ds) and &, = g—i. Since (D;,0) = 1 and since 0 is
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square-free, we have that (D164, d3) = 1. Therefore,

Bomgem!,coB Dy Bomem!,coB Dy
e =e
D1(52 D15463

(5_350m0m/100_BD_2) (D15460mom’160_13ﬁ2
=€ e

D1y
b3 BomomcoB Dy
=e
D1y ’

03

> (8.68)

where the last equality follows from m/| = nin/c, = 0(mod d3), which itself is a result of

ny = 0 (mod d3). Now

Also, we have already recorded that (d3,d4) = 1. Combining these, we have

(n/27 54) =1

This implies that (0380mem/coB Dy, D104) = 1. Therefore,

Bamom’lc()_BE> 1 — = R
e = T(AMA(0380memicoB D).
( D169 QO(D154) )\(;164) ( ) ( sfomam co 2)
In other words,
Dy _ _
A = — TN Bomem )N (dscoBDs).
; 90<D154)A(D15) (A)A(Bamom)A(3coBDs)
Da=-

(8.69)

(8.70)

(8.71)

(8.72)



8.9 Simplifying C,

= 3 e (
ab,d,f(co)
(bdf,co)=1

c(od — mgba + dda + mabf + 5m17)>

c (8.73)

Because of the x(a) and since cy|g™, we can take (a,co) = 1. After d — ocdd, a — oc?da,

b admiob, f i omhmhdf, we get

_ * d — mgoba + da + magbf — womi o f
Co=xX(oX0) 3 an(ae (T b el ) g
Co
a,b,d, f(co)
where
wo € Z such that wy = —Bom’cd (mod ¢p)
(8.75)
we have (wp, ¢g) = (wo, q) = 1.
The sum over a is 0 unless d = bms (mod ry), which implies that
(ms0,70) = (C2,0,70) = 1. (8.76)
Let
x1 = f,x9 = bf, x5 = ba, x4 = da. (8.77)
Then
a4 = T1x9T3,b = X179, d = T1Tox314, [ = X7, (8.78)

60



Co

Co = x(0)x(0) Z* Y@ TT3a2)e ($1$2$31‘4 — M3 T3 + Ta + Mo Ty — w0m1,0x1>

x1,22,%3,24(co)

Co

o)X Y xmmxzxm)e(

—ms3,oT3 + Ty + mQ’OfL'Q) %
x2,23,24(co)

z1(co)

*_ (Xow3Tq — womi o)T1
> e ) .

(8.79)

We assume 252375 = womy o (modry) since otherwise the sum over x; is 0. This condition

implies (wom1,79) = 1; in particular,

(ml,Oa 7"0) = (n2,0n1,002,0,7"0) =1.

Note that (8.80) makes (8.76) redundant. Let

ToX3Tq — WoM1p

Ty —
To

Then

2721'323_4 = ToTs + Wotn 0-

Evaluating the x; sum and eliminating zo gives

Co = x(o)x(0)reT(X Z Z (24)X(roxs + womi ) x(Ts5) X

xsm(Co) 5(q)

. (—m3,09€3 + 24 + Mo o(Toxs + Womi0) T3y

Co

—T1N3.0T3
pu— : X
x(o)x(0)roT(X E g X(roxs + woma o) x(z5)e ( o )

x3(co) =5(q)

Co
z4(co)

Z* e <(1 + Mo o(Tox5 + WoMmi,0)T3) x4

)

(8.80)

(8.81)

(8.82)

(8.83)

We assume 1 + magg(rozs + womi )Tz = 0 (modrg) since otherwise the sum over x4 is 0.
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This condition implies (g, mao(rozs + womi)) = 1 which is redundant because of (8.80).

Let
£ = Z3 -+ mQ,Q(T0$5 + woml,o) ' (884)
To
Then
T3 = Telg — Ma(ToTs + WM o). (8.85)
Since x is primitive modulo ¢,
a = x(o)x(0)ror(X)7T(x) = x(—=0)x(6)grg. (8.86)

Let

Q:=c¢ (womo) =e (_ﬁam%) : (8.87)
Co Co

Evaluating the x4 sum gives

Co = X(EIR@)rT()700 D D Wrozs +womi)x(as) x

z3(co) w5(q)
. —m3,0T3 Y 1 4+ moo(roxs + womio)Ts
Co To

_ [ x3+ mgo(roTs + womy, —m3ox
35 Rt (s (ay (Bl i) (msan

To Co
z3(co) w5(q)

=« Z (roxs + woma o) x(z5)x(T6T0 — Map(roTs + womi o)) X (T6) X

z5,26(q)

. (—m3,0(3767“0 — mao(rozs + w0m1,0))>
Co

= af) Z X(roxs + woma o)X (xs5)x (zero — mao(roxs + womio))X(xe)

e <—m3,0($6 - m2,0$5)>

q

(8.88)
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After x5 — —woxs and xg — —worg, We get

Co = afl Z X(rows — m10)x(@5)X(zer0 — Mmao(rors — mi))X(z6) X

x5,26(q)
e <Wom3,o($6 - m2,01175)>

q

= aQHY(mLm Ma.0, M3,0Wo, 7”0).

We perform Fourier expansion to get

?[W) =H = ﬁ(%% ™Mi,0, M2,0, M3,0,To) = Z Hy(ma 0, m2,0,m3,0U7TO)E(U)-

v(q)

8.10 Collecting the Conrey-Iwaniec phase term

Recall that

el Bomgem!,coB
N Ady ’

O e (_&rmcé) .
Co

Bom coBmbhm
w=e|—

and

We have

Ady

. _ BomcoBnicyd,
B Aby ’
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: ! !/ [ ! : / !/ _ A
since my = ¢, = 6; and m} = n/c,. Since Bln) and ¢, = 0;, we have m = mom’ =

monyn2cy = 0 (mod Bn)chdy). Also, Bn/cyd Ady = /5. By weak reciprocity, we have

S Bomcy . Bom cyAdy
B Bn/ichd1 Ads Bn/i by

- ()
=c 78 .

(8.95)

Finally, we have

A 8 2.3
Dm0 — _ Bomig . _ PBomcd . _ Bom . _ Bongnic 7 (8.96)
o Co coC'o co

which is the Conrey-Iwaniec phase term.

8.11 Putting everything together

When all of the conditions in (8.31) are satisfied, we have

p(cr)p(ns)
T = C, 8.97
POP (597
where
C = CyC" = CyC4C = CoChe, NINS = ¢,CoCyNIB' A’ (8.98)
with
af) ~ N
Co=—— Y H@)p(—Bom’)i(6)
pla) S
Cy = 61(p(61))? (1)
Ny = p(ny)p(ny) (8.99)
B' = (u(B))*
/ D N I\Y
A= ; i 1254) P )T(/\))\(Bamoml))\(53COBD2),
Do=4-
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with
a = X(—0)X(8)qrs. (8.100)
Note that since we have added (u(B))? = 1 to (8.31), we can remove B’ = (u(B))? from

our final expression for 7. The result is obtained by multiplying the above expressions,

simplifying a bit, and using the fact that P = (.
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9. THE Z-FUNCTION

Define
Z Z M A¢ ng,nl 1 T’Pfl
(817 52, 53, 84, S5 Z 535+3 Z Z Z T82n83 54 q7"2 ’ 91
6>1 r>1 ci1ca=c nminz=ci ( . )
(6.0)=1 ns>1
c=qr

This Z-function will serve as our analog of the Z-function from section 5 of [23].

Let us perform some simplifications. By proposition 8.1.0.1, we get

0
2= ST ST pag 3 Al

021 ol A>1 Dy IS A(D164)

(d.0)= cho364=0 Do=p- w(q)
Béz|n), !
F= free(A)
(u(B))*=1
(nh,Adsq)=1 (92)
(n},ABéq)=1
(B,Adq)=1
(A69)=1

p(nch) (M)A (nyni ch) N(93BDa)th(nyni e )P (ABS)

n/281 D;Q Df2+1n/152+53+16/252+84+1BSQ+1

Zﬁn,lu

where

Zﬁn71 = Zﬁn,l (Aa ¢)

Ay ) o () e (w55) (9.3)
#(N2,0,M1 0 - 2,0 ni0c2,0 | 75 9.3
=wi e M(ng,on 465 o) A (o) H(y),
mmzozqoo L) 0r02n1300240 10720 (¢(gro))?

n1,0¢2,0lq

(n2,0m1,0¢2,0,70)=1

with

f[(@b) = ﬁ = ﬁ(%% N2,0M1,0€2,0, 11,0C2,0, €2,0, 7“0)7 (9'4)

and

wi = Y(=1) (X)) (Bo)A(@)x(—o)X(9)- (9-5)
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Changing orders of summing, we get

1(8)x(6) 1 _ _
D6 TN Z Znr,
Z 555—1—7 Z Di2+190<D154q) Z ¢( 1 4)T( ) fin,1

AR g 00
((D1))2=1
(D1,0g9)=1
where
71— > Ag(ny, n}) p(nf ch) (M) (nhni cy) X (D, Bs)
- Is1 sy /s2tsstl Ssatsatl Doyt )
;G nyt Dy?*ny Cy Be2t
nh,ny,Da>1
ig&;&;ié
Bds|n; (9.7)
(1(B))?=1
(nly,D1D264q)=1
(n},D1D2Béq)=1
(B,D1Dy6q)=1
(D2,D16q)=1
since
(u(D1))? = 1 and Dy|F = free(A) = free(D1Dy) <= (Dy, Dy) = 1. (9.8)
Then _
!/ !/
7 — Z p(nicy) (M) (nych) Mp(Bds) VA
- n/82+83+10/52+84+1332+1 ’
n},B>1 1 2 9.9
0'2(5354:5 ( ° )
(1(B))?=1
(n},D1Bég)=1
(BaDléq)zl
where _
g _ T Ag(ny,n) (M) (ny) \p(Dy)
- 1s1 T S2 :
nh,Dy>1 ny' Dy
Bdg|nf (9.10)
(nl27D2):1

(nh,D164q)=1
(D2,nyBD16q)=1

Next, we detect the condition (n}, Dy) = 1 using the Mobius function:

1(p)Ag( nzvnl)(A¢)<”2)_¢<D2)
g Z Z s D .
nyD>y>1  pl(nh.Da) a2 (9.11)
Bé3|n),
(nh,D164q)=1
(D2,n] BD16q)=1

Now, (D3, Bd) =1 = (Ds,Bds) =1 = (p, Bd3) = 1 since p|Dy. As a result, pBds|nj.
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Let

/
Ng =Ny 1MN2 2,

(9.12)
D2 = ng,

where pBos|ng|(pBdsn))> and (ng s, pBdsn)) = 1. Switching order of summing, we get

Z// — Z M(p)m(p) Z A(]ﬁ(nQ,la n/121(>\¢)(n2,1) Z///,
p>1 p52 BS 7Yoo n2,1 (913)
= pBds|na,1|(pBdzn])

(p,ny BD16g)=1

where

g Z A¢(n272’ 1)(A¢)(n2,2)W(D3)

S1 EP) °
no's D
na.2,D3>1 2,23 (9.14)
(n2,2,pn) BD13d4q)=1
(D3,n|BD16g)=1

We have omitted (ng;, D1d4q) = 1 since that follows from ns|(pBdsn)>. We can now

write
ZW = L(Sla ¢ X (A¢))L(327m>zlm> (915>
where
' S~ X0 B = 4,05, DO N
Z//// _ H ( > H (Z p\D p )
pks phs1
ny 1 k= ’I’L/1 10304 k=0
_pl BD1dq plpny BD103daq (9.16)
= p7 82 J<p7 81) )
p|n BD15q plpn} BD16354q
where

I(p,s) = (1_71#_&2@)7

p

T =1 (1 B aj<p><w><p>> |

pS

(9.17)

J=1
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with «;(p),j € {1,2,3} being the local parameters. Therefore,

(0 _
Z= Z 535+3 Z Df2+1 (D1(54q Z w D154 (817 ¢ X (Aw)) (527 )\w)Zﬁn7

6>1 8416 A(D164)
(6,0)= Dy>1 w(q)
(u(D1))?=1
(D1,d9)=1
(9.18)
where
Zﬁn = Zﬁn<)\7 w> = Zﬁn,l()‘7 2/})Zﬁn,Q()\, 1/})7 (919)
with
(nlcQ)()‘w)(nllcé>W(B(53)
Zﬁn,2 = Zﬁn,2(>\7 w) = Z n/52+33+1 /82+S4+IBSQ+1 X
ny,B>1 1
,0364=0
(1(B))?=1
(n,Bchd3)=1
(B,chd3)=1
Z N(P)W(P) Z A¢(n271, ”,1)()\1?)('“21) y (9.20)
p82 n;ll
p=>1 pB53|n2,1‘(pB53n’1)°° ’

(p,n] BZ’253)=1

[ s IT 7&s)

p|n Bch s plpn Bé3

Note that we have simplified the coprimality conditions since some of them are detected by
), M) (mod D1d4q). Now we present the reader with bounds for Zg,, which are proved in

the following sections.
Proposition 9.0.0.1. Let

c o> > 0> >y, 03 >3 >0, 04 >4 > —3; then
T ey 07T, (9.21)

e o> >l 09> >1, 03> >1, 04 >y > 1 and Y is the trivial Dirichlet
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character modulo q (conductor = 1); then

Zin Ker 64, (9.22)

where in both cases, v = (71, V2, V3, V4)- .

9.1 Factoring Zgn

At first, let us factor Zg, ; over prime powers to simplify our work. Notice that r¢|¢™® =

@(qro) = row(q); thus,

w1 A¢(n20,n10) 2 3 \V (QT0> ( qro )A
Lan1 = : —— X(no.ony nCs o) A(T — H(y).
1= P Z|m mporein g Mmoo Mrog (0 ) (0 ) )
ni, ’07 lq
(712,0“1,302,2,7”0):1
(9.23)
Now write
W12
Zﬁn,l = Zﬁn,l7 )
(v(a))? plj_”[q g (9.24)
p prime
where

Agla,b — pd pPd\ =,
Zinsy= % g O e (M) o (5 ) B abe e ),
ad|p™
bcﬁ)j
(abe,d)=1

(9.25)
where wy is some complex number of absolute value 1 depending on ¢, 7, is some Dirichlet
character depending on v and p, and 1, x,, are the p-parts of v, x respectively. Here we will

assume that ¢ is cube-free; therefore p’ || ¢ = j € {1,2}.
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9.2 Bounds for Zg,

Xp is a primitive Dirichlet character modulo p’ (conductor = p’). 1, is a Dirichlet

character modulo p’. We handle this in 3 cases; for the first two cases, we assume

1 1 1
01271>§,02272>§»03273>0,U4274>—§- (9.26)

Case 1 1), is primitive modulo p? (conductor = p/). Then a = b = c = d = 1 is forced. We

have

Zfingp = (@(pj))Qﬁ(me_p’ 11,1, 1) = (@(pj))27(¢_p)9(x_p7 wp)a (9‘27)

from lemma 6.4 in [23]. Thus, by theorem 6.9 in [23], we have
| Zn1p] < (0(P))*p20" = (0(p"))p % . (9.28)

Case 2 1), is modulo p* (j = 2) with conductor p. By lemma 6.8 of [23], the only 2 terms that

survive correspond toa=b=c=1,d=panda=b=d=1,c=p. Thus

T = ((p(p»jg(inp)(pi%)ﬁ(wp,x_papap,p, Dy (90(1928);@(19)?[(%% L1 1p).
(9.29)
By lemma 6.8 of [23], we have
2 31)2
s < E et O
p p
= (p(P)* (>t +pF )
< (p(0)* (P37 +p7) (9.30
= 2(p(p*))*p’
= 2(p(p)p*
< (p0)p %
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Case 3 1), is trivial modulo p? (conductor = 1). By lemma 6.5 of [23], we have

H (4, Xp, abe, be, ¢, d) = xo(d) Ry (abe) Ry (be) Ry (¢) 4 17 Ry (d)x(—1) xo(ab?c?).

(9.31)
Writing a = p®,b = p*, ¢ = p°,d = p¥, we have
- (PPN (0™) Ry (0™
Zgnp =P’ x(—1) Z pdl(sp;+2) . +
d1=0
Ay (p™, P (7 (7" 1) (Agp) (1 20131
2 o x (9.32)
pa181 153+cC154
a1,b1,c120
b1+c1<j

Rpj (pal +b1+c1 )Rpj (pbl +c1 )Rpj <pc1 ) ]

By using the fact that o(p/*™) = p(p?)p™ and by evaluating R, (p"* 1) R, (p°), we

have

Ztn : = A, (p™) Ry (p™
nde (1) 3 Mo (P™) By (P7)

(e (p?)) = phe
Z Ad)(p(n7pbl)M(pjfcl)'u(pjfblfcl)(/\np) (pa1+261+301)Rpj (pa1+b1+c1) (933)
pa131+b153+c184 .
ai,b1,c1>0
bi+c1<j
Therefore
| Ztin1p] < (Sﬁ(pj)>2(pjsl +5), (9.34)
where

= 1
D i (9:35)

di=j

00 ; j—1

P, ") = 4 (1—02) j

1= S S
d1=0

d1=0
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b1 ) ‘ (pj,pll1+b1+61)

and A,
_ ¢
52 - Z pa101+b103+61a4
a1,b1,c1>0
bi+c1<j
|[As(p™, ™))
S p] Z pAoI+biosteioy (9.36)
a1,b1, cl>0
bi4c1<j
<. p]-i-s Zp 5—01)a1 Z p 3)b1— 0401’
a1>0 b1,c1>0
bi+c1<y
for € > 0 since
|As(p*,p")| <ep 2 T for e > 0. (9.37)
Subcase 1 01>’yl> , 02>72> , 03 2>73 >0, 04 2>y > —5
SO o
d a1 2
Sl<2p1 +p72 N = p? T < Jpt 4 T <P’
d1=0 dai=jP?*  dai=0 T3 o3
b+ %""6
1 c
Sty pirme 3ot < L N
a1>0 b1,c1>0 1 p? " b1,c1>0
bi+c1<j bi+c1<j
p 2J+E(j + 1)2 < 32J+6
1 —obn P
2 3 +e
Therefore | Zgn,1,5| < (0(p7))*p2
(9.38)
Subcase 2 o1 >y >1, 09> >1, 03>73>1, 04>y > 1
1 1
Sl<21+pfzd1—g+ 1_g+1 T <L
d1 J 2
S j+€ —%a1 —%bl —c1 pj+6
R Sl = LD Dl D B pp—
EUETETC 0 e
e '
P < pte

(1- 2—5)2 (1-2)

Therefore |Zan1,| < (9(p?))*p'*
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Now, let us combine the above information to obtain bounds for Zg, ;; we perform this

in 2 cases.

1
2

1

29 0-3273>07 0-4274>_%

* 012V >3, 02 2 Y2 >

Combine (9.24), (9.28), (9.30), (9.38) to obtain

1
(p(q))?

| Zina | = [Tew))p? =it (9.40)

pillq

|Zﬁn,17 | <<e, 1
[l T (p(9))?

pilq

e g2 >1, 09> >1 03>y >1 04 >y >1and ¢ is the trivial Dirichlet
character modulo ¢ (conductor = 1).
Combine (9.24) and (9.39) to get
1 q N2, 1
| Zenal = ——5 | | 1 Zan1s] < — 5 [ [ (0(")P = ¢
o 1zl < g1l (941)
g Pllg
9.3 Factoring Zg,

At first, we factor Zg,o over primes to make our work simpler. Consider the prime

factorization % = 1, prime p%. Note that since § is square-free, we have b, € {0,1}. Then
Zinz = [[ Zonzo (9.42)
p prime
Wlth /+/+ /+/_B+5+
1T TP)( )\ 1TC2) \ 3+p
Zanny = 3 p(p ) (M) (P Te2) Ay (p )

pn/l(82+53+1)+cl2(82+S4+1)+B(52+1)+p52
nf,ch,03,B,p€{0,1}

C/2+53=bp
n,+by+B+pe{0,1}
3 Ay (0", ") ) (")
przst (9.43)

p+B+03<n2 1< (p+B+d3+n])oo

[I 1(Ps) I @s)].

Plpn,1+B+bp P|pp+n/1+B+63
P prime P prime
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where we have retained the variable names for respective exponents, ny; < 0oo is taken to

mean ng; < 0, and ny; < loo is interpreted as ng; < co. We handle this in 2 cases.

(b, =1) We have nj = B = p = 0. We will break the sum into 2 parts depending on whether

ch=1,03=00rd3=1¢c,=0.

Ztin2p = Z ”(pcéXW)(pcé)W(p%)x

pc’2(32+34+1)

¢63€{0,1}
c/2+53:1
Ay (pmr, 1) (M) (pr2
Y A s TT s
03<n2,1<d300 P Pp’s
P prime
M) (p - Ag(p™, 1) (M) (p">
:_]()sﬁ—mf(p@)+Aw(p)[(p,32)J(p’sl) > - pnz’gﬁw( |
1<nz;1<c0

_ (M) (p) I(p, s2) _|_W(p)[(p, s2)(1 = J(p,51)),

p32+34+1
(9.44)
since
Ag(p™1, 1) (M) (p"2?) O
I = (J(p,s1)) — L. 9.45
]<2;;w e (9.45)

(b, =0) We have ¢, = 03 = 0. Also, the contribution from n} = B = p =0 is 1. Therefore

_ p(pmitP) (M) (p™) M) (pP )
Zﬁn,27p =1+ Z pn’1(52+83+1)+B(52+1)+p52 X
n},B,pe{0,1}
nj+B+p=1
> Ag(p"1, ™) M) (")

n2,151
p+B<nz1 <(p+B+nf)oo p (9.46)

II 1(P.s2) [T 7®s)

Py Py oo
P prime P prime
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Now we will break the sum into 3 parts depending on which one of n}, B, p is 1.

Zﬁn,?m =1

O\W(P) ](p, Sg)J(p, 81) Z A¢(pn2,1’p)()\w)(pn2,1)

p52+33+1 pn2,151

0<ngz,1<c0

SR na,1 n2,1 9.47
)y sy Y A ;if,f?f”(p ) (5.47)

+ p82+1
1<no 1 <00

W(p) J(p, 31) Z A¢<pn2’l7 1)<>‘1/}) (an’l) )

pn2,181

S2
p 1<n2 1 <00

By Hecke relation, for ny; > 1, we have

Ag(p"t,p) = Ag(p"*, 1) Ay(1, p) — Ag(p™ 71, 1), (9.48)

Therefore

Zﬁn,Z,p =1- (A¢)(p>I(P7 S2>'](p7 81)A¢>(17p)

p52+53+1
(AY)(p) (Ag(p™, 1) Ag(1,p) — Ag(p"* 1, 1)) (M) (p")
SRR DL T
1<no 1 <00

+ )]\;ig)[(p, s2)(1 = J(p,51))

=20 s
(9.49)

Simplifying, we get

(Ay)(p) I(p, s3)As(1,p) + M[(p, s2)+

Z =1-
fin,2,p p52+53+1 p81+52+53+1

(9.50)

X‘ip—l)l(p, s2)(1 = J(p,s1)) — Myé}s(f) (1= J(p;s1).
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9.4 Bounds for Zg,

For o9 > 0, |I(p, s2)| < (1 + I%) < 2. We know

As(1,p)(A Ag(p, 1)(A 2 A 3
p* p=t pt
Thus, for oy > 0, |1 — J(p,s1)| < w + pg}dl. We are interested in the following two
situations
c oI >3, 002>, 03273 >0, 04> > —3

cor2m>1, 0027w >1, 03273 >1, 00> >1

In both these situations, we can perform the following estimations, which are handled in two

cases.

(b, = 1) Since the Rankin-Selberg L-function associated with ¢ x ¢ exists, we have

|As(1,p)] < 3p2 Vp prime. (9.52)
Therefore,
A0l _, 053
po1
and thus
| Ztin,2.0] < ]ﬁ +2 (2|A;ﬁ’p)| - p31m> < 1. (9.54)

The divisor bound implies

d\° .
I 1 Zon2nl < (a) < o~ (9.55)

p prime
bp=1
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A1450p) , 2 |
p02+03+1 p01+02+03+1

2 (24,0pl 1y, 1 (240 1
oo+1 o1 + 301 o2 o1 301
p p p p p p

2| 4,(1, 2 3 /2] A4(1, 1
§1+|<zs( 29)|Jr JrZE(|¢>( p)|Jr >

p02+0'3+1 p0'1+0'2+0'3+1 pO’l p30’1

< (14 24PN (L 2 Lo S (), 3
— p02+03+1 pa1+02+03+1 p0'1+0'2 p3a1+02

[As(L )1\ 1 ’ [As(1,p)[\° RN
S (1 + p02+03+1 L+ p01+02+03+1 1+ pU1+02 L+ p301+02 ’
(9.56)

‘Zﬁn,Z,p| S 1 +

By Cauchy-Schwarz inequality, we get

1 |[As(1,p)[? ’
|Zﬁn’2’p| S (1 + p02+03+1> (1 Riew—"— 02+03+1 U1+U2+03+1 X
1 [45(1,p)12\
(1 + p0'1+0'2) (1 + p0'1+0'2 1 + = 30’1+0’2
1 ’ IR [ Ap(1,p)[? |Ag(L,p)]2\°
S <1 + p02+03+1> (1 + p01+02) (1 + p02+03+1 1 + pU1+U2

(9.57)
Let us focus on the terms involving A, (1, p) for a moment. We have
[ A(L, p)|? | Ap (™, p™) P
L+ p02+03+1 < Z p(02+03+1)(2k2+k1)
k1,ka >0
1 | A (p*2, p™) 2
- (1 - p3(0'2+0'3+1)) ( Z p(02+03+1)(3k3+2k2+k1) (958)
k1,k2,ks>0
| Ag (™, p") >
S ( Z p(0'2+0'3+1)(3k23+2k2+k‘1) :
k1,k2,k3>0
Similarly,
| 44(L, p)|? | A (p™, p™) P
1+ p01+02 = Z p(01+02)(3k‘3+2k2+k1) ) (9'59)

k1,k2,k3>0
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Therefore

1 ’ 1 \°
[ Zin 2yl < (H W) (” p%m) x

A ) A op O
Z p(v2+v3+1)(3ks+2k2+k1) Z p('71+72)(3k3+2k2+k1) )

k1,k2,k3>0 k1,k2,k3>0

Since every factor on the right hand side exceeds 1, after applying the above inequality,

to get

we can extend from Hpbprirge t0 1, prime

=

C(y2+73+1) 3 C(y +72) 6 T y
I menl < (ot T say) (abray) Mo xomtmtD

p prime
p=

(L(¢ X ¢, m +72))°

<<717727’Y3 17
(9.61)
where the last two are Rankin-Selberg L-functions.
Combining the bounds from both of the above cases, we have
Zfing Ky, 05, (9.62)

where 7 = (71,72,73,71). The following is a useful result which was not used above but is

worth recording for the future.

Lemma 9.4.0.1. For e > 0, we have

I (1 N a1 (p)| + |aa(p)] + |043(P>|) < 1forR(s)>1+e

p prime ps ( )
1 9.63
H (1 + a1 (p)| + |a2(p)| + ]a;;(p)!) < N for R(s) > = +e.
s 2
pIN
p prime
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Proof: Since a;(p)as(p)as(p) = 1, the next lemma implies that for 1 < k < 3,

|k (p)| < Ao (L p)| + [Ap(p, )] + 1 = 2| A(1, p)| + 1, (9.64)

where the last equality is due to A4(1,p) = Ay(p,1). Therefore

a1 (p)] + |az(p)| + las(p)| < 6|Ag(1,p)| + 3, (9.65)

from which the lemma follows.

Lemma 9.4.0.2. Suppose z1,...,2, € C, and for 1 < j < n, let pj(z1,...,2,) be the j"

elementary symmetric polynomial in zq, ..., 2z,. Then, for any 1 < k < n,

|21,] < max <1,Z’Pj(217---72n)\> : (9.66)
j=1

Proof:

z, = zn:(—l)j_lpj(zh )z = || < 2": pi (21, z) |2 (9.67)
j=1 j=1
If |z;,] > 1, then dividing by |z;|"~! proves the claim.
9.5 Large sieve inequalities
The following is a hybrid large sieve inequality that combines theorems 2 and 3 of [61].
Lemma 9.5.0.1. Let ¢ € Nyx € Rxq. Let {¢,}5°, be a sequence of complex numbers such

that y > | |c,| is convergent. For T > 6 > 0, we have

2

qD . T | © i 00

Z (D) Z / chx(n)n(n)nt dt < Z(qu2 +n)|enl?. (9.68)
G (D) x(@ " T In=1 n=1

q, =

For the next lemma, let L(f,-) be an L-function as in chapter 5 of [56]. Specifically, we
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have the following:

o degree = d,

 conductor = ¢ = q(f) = Q(7)7

« Dirichlet series > >~ | A’; (n) (s) > 1,
+ local parameters at infinity x; for 1 < j <d,

« as mentioned in the proof of [62] lemma 3.4, the local parameters at infinity of L(f, ")

are k; for 1 < j <d,

 the completed L-function is A(f, "),

d d
H s+ K] +3) and quo(f H |s + 75| + 3), (9.69)
Jj=1 j=1

The following is essentially [62] lemma 3.4.

Lemma 9.5.0.2. For L(f,-), let A(f,-) be entire, and let
1
O<A§§+§R(l-€j)§B for 1<j<d. (9.71)

Let v = {¢n}2, be a sequence of non-negative numbers such that |A¢(n)| < b, forn >1
and such that > 7, % converges for k > 1.

Fort e R and QQ > q(f,%—l—it), we have
2
Ar(n)

1 2 logQ | N
’L (f’ 5 + Zt) <<€’d Q / Z 7+e+zt+w

—logQ |,,—=1 N2
where N = LQ%“J, € > 0. The implied constants do not depend upon particular t, ().

dv + Oap.u(Q ), (9.72)
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The following two lemmas are a consequence of lemmas 9.5.0.1, 9.5.0.2, and the Phragmen-

Lindel6f principle for vertical strips as in [56] p.150.

Lemma 9.5.0.3. Letqe N, x,U > 1. Foro > %, T € R, we have

D
S A2 N Lo 4T, )P < 27 eqM(L+ [T

i vlaD)
(qu)zl ;7£(q)
qD PT7P0T0 (973)
S S [ e it < a0y
DSx (D) -
(D,g)= n(q)
PNF#pono

for all e > 0. Here py,no denote the principal Dirichlet characters modulo D, q respectively.

Lemma 9.5.04. Letqe N, z,U > 1. Foro > %, T € R, we have

D

. € 3 €
3L x pn, 0 + TP e 2 (q(L+ |T])) P

i elaD) <5
(Dsg)=1 n(q) (9.74)
. .
DS [ 1o o P <o
D<x p(D

(D,g)=1
for all e > 0.

9.6 Bounds for 7

Recall that

Z M(555+3 Z D82+1

Z G(D163)T(N)L(s1,6 x (M) L2, M) Zgn-

5>1 84)6 1 D154q D164)
(6,9)=1 D;>1 ( )
(W(D1))?=1
(D1,0g)=1
(9.75)
Let us write Z as a sum of two parts.
Z — ZO + Zl; (976)
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where

ZO = Z0(817 S2, 83, 54, 55)

_ Z % Z o(D164)T(No) L(s1,6 % (Moto)) L(52, Aot0) Zan(Nos 1),

(562)1 54|16 D?H(P(Dl(SM)
,q)=1 Di>1
(u(D1))?=1
(D1,0q)=1

(9.77)

and

Zl = Zl(sla 52, 83, 54, 55)

_ 1(0)x(9) 1 — (VVL(s v
=X Y Deomag O D)L 6 x ()52 30 i,

5>1 54)6 A(D164)
(6,9)=1 D;>1 (g
(1(D1))?=1 Xp# Aot
(D1,0g9)=1
(9.78)
with Ag, ¥¢ being the principal Dirichlet characters modulo D;dy4, g respectively.
9.7 Bounding %,
We will work under the following assumption:
o> >l 09>%m>1, 053> >1, 042> >1, 05> 7 >0. (9.79)
Write
1(8)x(9) %(D154)7'(>\_o)
Zy = L(s1,0)C(s2) — , Zgin(Ao, o) X
L sl 2 DpaDi)
((5,(]):1 D121
Dy))%=1
s (9.80)
3
11 ((1 —p ) ] - Oéj(p)p““)) :
p|D164q Jj=1
p prime
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Now, L(s1,$)((s2) <44, 1 by absolute convergence. We have, by proposition 9.0.0.1, that

for every € > 0,

1+e€ 1 /\_0 - -1
SRS o) S ol () (R

5>1 846 p|D16aq
(6,9)=1 D1>1 p prime
(1(D1))?=1
(D1,69)=1
1 [7(M)[(D1dag)©
Ler g :
! ; 53 6%; D?p(D16aq)
(d,9)=1 Di>1
(u(D1))?=1
(D1,0g9)=1
(9.81)
since |a;(p)| < \/p and where v = (71,72,73,74,75)- Using the following basic facts
1 1
< Ve > 0,
©(D164q) (D164q)t—¢ (9.82)
IT(N)| < /D16y,
we get that for every ¢ > 0,
1 €
o 2 Trog <
s 2 2
(5(1>)1 . 5511\251 1 94 (9.83)
(w(D1))
(D1,9q9)

9.8 Bounding 7,
The following is a well known application of Abel’s partial summation to Dirichlet series;

we will state it without proof.

Lemma 9.8.0.1. Let 0g > 0 and let {a,}22, be a sequence of complex numbers. Let f(s) :=
2ot
For x > 1, let A(z) == ) ., an. We assume the following: given € > 0 there exists

k. > 0 independent of x such that A(x) < k.t Vo > 1. Then
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o f converges and is an analytic function in the half-plane R(s) > oy allowing term-by-

term differentiation.

o [ converges absolutely in the half-plane R(s) > og + 1.

f(s) = 8/100 /;(fl) dx  for R(s) > oy. (9.84)
lf(s)] < Gl for R(s) > o9 and 0 <e < R(s)— op. (9.85)

R(s) = (o0 + ¢)

o [f there is a sequence of positive real numbers {€,}nen such that €, — 0 and k., — k,

then
|s|k

1f(s)| < m~

(9.86)

Note that the particular case where A(x) < cx® Vx> 1 with ¢ independent of x is a special

case of the above with k. = ¢ Ve > 0. 0

We will work under the following assumption.
1 1 1
U1Z’Yl>§, 02272>§, o3 =73 >0, U4Z’Y4>—§, o5 > 5 > 0. (9.87)

We bound Zg, by proposition 9.0.0.1 and we bound the Gauss sum by (9.82); for every

e > 0, we get
1 1 _ .
20 <> —= Y. S T IL(s1, 6 x (A)) L(s2, M) Zs
5>1 5’}’5+2 5al0 D’ly gp(D1(54q) A(D1os)
(8,9)=1 Di>1 P(q)
(u(D1))?=1 Mp#£Nobo
(D1,6g)=1
§+e 1 545 <~
Lo @ ) o D S (1,6 X (A) L2, 30)],
5>1 2 55 Dy 2 0(D104q) A(Dyés)
(6,9)=1 D1>1 (g
(D1,9)=1 Ap#ENovo

(9.88)
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where v = (7V1,72,73,74,75), and by nonnegativity, we have dropped (u(D;))?> = 1 and

(Dy,0) = 1. Interchanging sums over d, and J, we get

1
€ 65 N/
A d Y Y e 3 ST L(s1,6 % () L(s2, 30)
84>1 846 Di>1 Dl <p(D1<54q) A(D1d4)
(84,9)=1 (6,9)=1 (D1,q)=1 ¥(q)
Ap# oo

Z Z 5 5 'y5+2 Z 1545 Z |L(817¢ X (A¢>>L(527W)|

s4>1 65 >1 D1>1 D¥2+290(D154Q) X(D1d4)
(64,9)=1 (85,9)= (D1,q9)=1 ¥(q)
Ap# oo

<ot Y% S [L(s1,6 x () L(sz W)

64>1 D1>1 D72+2575+1 ‘ <D154Q) A(D164)

(61,9)=1 (D1,9)= ¥(q)
AYF#Aoho
L M) L(s9, M)
Y Y Gy o Mo x ek X))
04>1 D1>1 A(D164)
(84,9)=1 (D1,9)= Y(q)
ApF#N0tho
(9.89)
where 05 = % and 0 < € < min (’}/2 - %, %) Let D = D104 to get
%-‘re d(D) ~
Z1 Len g Z Ditep(Dq) Z [L(s1,¢ x (M) L(s2, AY)]|
D>1 (D)
(Dsg)=1 \ w(g)
3 -
< S L ST L6 x () L(ss, D),
(D,g)=1 ¥(q)
ApF#Notbo
where d(-) is the divisor function.
Now, let
Q = Z1(01 + it1, 09 + itg, 03 + il3, 04 + ily, 05 + ils), (9.91)
where t; € R and |t;| < U for 1 < j <5. Then
LS T
Q <y G2 Z Di+s (9.92)
D=1
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where

D ] —
Tp=lpga | s O |Llor +it, ¢ x (M) Ll +its, )] | (9.93)
w(Da) {5
¥(q)
Mp#Novo

where 1 denotes indicator function. Now, we have

> Tp= > Da D |L(oy + ity ¢ x (M) L(0a + ita, A)|.

= 5= (D) D (9.94)
(D,g)=1 ¥(q)
AP#Xotho

By Cauchy-Schwarz,

ol

Yo | Y o S b it x ) | x

D<z D<z v(Da) (D)
(D,g)=1 ¥(q)

AFEAoto (9 95)

S LS (Lo + it D)

D<z QO(.D(]) A(D)
(D,g)=1 ¥(q)
ApF#Notbo

By lemmas 9.5.0.4, 9.5.0.3 we get

Z TD <<¢7€ $2+eq%+5U1+67 (996)

D<zx

for all € > 0. Lemma 9.8.0.1 implies

Q <<¢,%6 q%Jre <qg+6U1+6> ] (997)
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Next, let f: R — C be a function satisfying f(t) < (1+ |¢])"2. Let

To
I .= / ‘f(t)HZl(O'l + Zfl + it,O'Q + itg — ’it, 03 + ng + 2’Lt, o4+ it4 + ?)’Lt, 05 + Zf5 - Zt)’ dt,

—To
(9.98)
where the t; are as before. Then
[ <en g2t Z ot (9.99)
where
B = 1(p.g=1 Z / (]| Loy + ity + it, ¢ x (A)) Lo + ity — it, \ob)| dt
A(D)
¥(q)
Ap# oo
(9.100)

Now, we have

S b Z Dq Z/ || L(or + ity + it, ¢ x (©NY))L(os + its — it, )| dt.

D<z D<z D)

(D,g)=1 ¥(q)
Ap#Aoto
(9.101)
By Cauchy-Schwarz,
3
> Bp< Z / (|| L(oy + ity +it, ¢ x (\))|2dt |
D<x
(D,q)=1
o (9.102)

I

D

To
L it — it 02 d
De ©(Dq) ;D) /To |f()||L(0g + ity — it, Mp)|* dt

(D,g)=1 ¥(q)
ApF#Aorho

In order to handle the |f(¢)| in the integral associated with the twisted GL(3) L-function
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above, we apply the variable substitution ¢ — ¢ — ¢; followed by a dyadic partition of unity
to the variable t. To each piece of the partitioned integral, we apply lemma 9.5.0.4 after
dropping the condition Ay # A\gtbg by positivity.

Similarly, to handle the |f(¢)| in the integral associated with the Dirichlet L-function
above, we apply the variable substitution ¢ — ¢ + ¢5 followed by a dyadic partition of unity
to the variable t. To each piece of the partitioned integral, we apply lemma 9.5.0.3. This

gives us the following:

5 3 €
> Bp g 2 (qU)TTE, (9.103)

D<zx

for all € > 0. Lemma 9.8.0.1 implies

34e
[ <€ q?™ ((qU )itery ) : (9.104)

We summarize our results from this chapter below.
Proposition 9.8.0.1. Let q be cube-free. Consider the regions

e Ri:orz>2m>1, 0927 >1, 0327 >1, 0427 >1, 05279 >0,

1

: 03273 >0, 04 27> —3, 05 27 >0.

29

« Ro:oy > >1 09>y > 1,
Then we can write Z = Zy + Z; where

o Zy s analytic in Ry. It is meromorphic in Ry with a simple pole at ss = 1 and no

other poles.
o 7y is analytic in Rs.

In Ry, we have

Zo(51, 82, 83, 84, 85) Lye G° (9.105)

Let f : R — C be a function satisfying f(t) < (1 + |t|)"2. Let t; € Rand |t;] < U for
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1 <5 <5. In Ry, we have

Zy(01 + ity, 00 + ity 05 + itg, 04 + ity, 05 + it5) <Kp e q£+EU1+€>

To
/ |f<t>||Zl(O'1 + itl + it, 09 + itg — it, o3 + ’it3 + 2Zt, o4 + it4 + 3lt, o5 + it5 - Zt)| dt
—Ty

e GHUTHTIT
(9.106)

for all e > 0. The exact statement of (9.106) holds with Z, replaced with Zy in the region

1 1 1
01ZW1>§, 0-99202272>§7 o3 > 3 >0, 04274>—§7 o5 > >0. (9.107)
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10. COMPLETING THE PROOF

We will complete the proof of proposition 6.1.0.3 in this section. Recall that

s - DI 3D DD S SEV RN,
N,A,C,Co,N1,Na,0,8 02\/— (5% ¢ 2, 1

5>1 q\c ci1ca=cninz=ci na2=1

(6.9)= (10.1)
2

nany
ICBJZ( 3 .0, ¢, C2,n17n2> )

1

and

M A¢ n2,n1 1 _
Z= Z 655—&—7 Z Z Z Sreznitest ﬁTrP g (10.2)

6>1 7">>11 c1Ca=C ninz=— (31
[ 1 ng>
(6,9)= jete

10.1 Oscillatory case

Fix 9 > 0. Let P > T3¢”. By lemma 7.1.0.6, we may assume that ¢ = 41 and

NyN2C3 < CPA, (10.3)

in which case, up to an Oy g, 1. ((¢T) ') error, Sy A.C.Co. Ny Noo 8 1S

N, C3
—C;fzﬂgg O IED D IR TR B i o

6>1 ‘c c1C2=Ccmnin3=ci) ng= 1
(6.9)=
No\™ (CON\N" [ N.\"™ (Co\™ [A\™
[ () (9)" () ()7 )
luj<(qT)¢ N2 ¢ ny Co )
Z
:N2ulcu22N{13+IC§4+2AU5T2P2N%/ Fﬁ,go7t,57I(U) (UI7U2;I-LE1, U47U5) du,
Jul<(4T)¢ q*

(10.4)
for € > 0. We will use proposition 9.8.0.1. In the last integral, we first take the lines of

integration with

Li:oy=09=03=04=1+¢, 05 =, (10.5)
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and we write Z = Zy + Z; following proposition 9.8.0.1. For Z;, we maintain the lines at

Ly, while for Z;, we move to

L210'1:0'2:§—|—6, O3 = €, 04:—§+6, 05 = €. (106)

By the decay properties of Fy ., + 51z, the integrals along horizontal segments arising from
these contour shifts are absorbed into the error term Oy o4 ((¢T)7'°). Therefore, the

contribution to Sy a,c,co,Ny,Ne,08 from Zy is

< qe—2T2+eN21+eO—1+5N12+603+6A6P—2N%

< TP ANz (by (6.52) and (10.3))

< ¢ PTTHANE  (since P > T > T?) (10.7)
< ¢TETTH(T)?  (by (6.52))

< qTETE (by (6.52)),
and the contribution from Z; is

i, 34
< giterrreNz ot N O T AT PN
< @i T (CPA)2C 2P 2Nz (by (6.52) and (10.3))
— qi+eT2+6P—%C«—1(AN)% (10 8)

4%\/@)

< Q%J“THEP_% (sinee P = C

< q%““T%Jr€ (since P > T%),

where the implied constants depend upon ¥, g, ¥, €.

Combining the contributions from Z, and Z; we get

1 1
ITyrepis
SN.ACCo N Nao g Lioo,te @4 T27° (10.9)
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10.2 Non-oscillatory case
Fix ¥ > 0. Let P < T3¢”. By lemma 7.2.0.3, we may assume

2P/

X3

<. (qT)", (10.10)

in which case, up to an Oy 4, ((¢T) ') error, Sn.A.c.05. Ny Nowo.p 1S

2 1
_(i*\gx/c 2 “ ;3 > 2 2 Z A¢ ng,ny) TP~ (P Pl) T*P* *NXZx
0>1 qlc cica=cninz=cy na= 1
(6,9)=1

non>c
/ Fy.0.00,8.6z(11) / ( 2 (; 2) f,.0.2(t) %
ul<Xz(qT) tl<(qT)y+P \ €
N u1 C u2 N us3 C u4q A us
o c ny Co )
2 D/
= Ny C" NP Ot A <—P XII; ) T<P*X2Nix
YA 't — it 21t it — 1t
/ Fﬁ,o,aoﬁ,el(u)/ fﬁ,cr,I(t) (UI aal et ° s + l ) 44 + o » U5 ! ) dtdu,
lu|<X7(qT) |t|<(qT)e+P’

q1+u2—zt
(10.11)

for 0 <e< 1.

We will use proposition 9.8.0.1 again. With the lines at Lo, the contribution from Z; to

SN,A7C702,N1,N2707/3 is

p2p'
X3

3 €
g5 X3 ((qT) + P'ite)
q>

1

) P*“X2Nz-X3-

1 € 3 €
< (qT)ENQQJr C_%+6Nf+1022+ A€ (

P2p'
X3

p2p! 300 33, 47/ AN NyN2C3
< qi“T6 ( ) P2X i ((¢7)° + P'%Jre) (Since p=V2R o and P’ = u) .

27 ¢
< GHTNF TN, O ( ) PANzX/((q)" + P'it)

X3 CA
(10.12)
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For 0 < 0g < %, this is

< TP XS (qT) + P

< GFFTPEXET(1+ P8 (since Xz > 1)

— X2 PH(PE 4 1) (10.13)
< @it T(T(T?")?) 2 T(T%")?  (since X7 = T'max(1, P)?)

< qi+100ﬁ+eT100

Here the implied constants depend upon ¥, 0g,e. We used (6.52) and (10.10) repeatedly
above and readjusted the € a number of times.

Next, we focus on the contribution from Z;. We handle this in the 2 following cases.

o If P> T7Hq?%%¢ > (¢T)", for some € > 0, then we may assume that fs, 7 is supported

on |t| < P'. We move contours to

1 1 1
L3201:§+6, 0.9920’2254-6, 03 = €, 04:—§+€, 05 = €. (10.14)

The poles of Zy occur at uy — it = 1, which requires t, = t. However, t > T7¢¢?/+¢
whereas t5 lies in the complementary range since to < Xz(qT)¢ = (¢7)T max(1, P)? <
(qT)T(T3¢")* = T <q*’*<. Therefore, no poles are encountered, and the horizontal
integrals arising from this contour shift are negligible since Fy 4, 8.7 is small at this
height. By the final sentence of proposition 9.8.0.1, the contribution from Z; in this

case is no worse than the one in (10.13).

« Finally, consider the case when P’ < T7+¢¢?"*¢. In this case, we maintain the lines at
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L. The contribution to Sy a,c.co.N,Ns,0,8 from Zy in this case is

P2pP\ "% 1
< qezTeN21+eCelNle+2C§+3Ae( - ) P> “XZN> 'Xé/ |f5.02(t)| di
X7 |t|< (aT)+P"
eamenr reinard (PPPN 7 oo od o
&L ¢TATEN,CTIN2CS Bl P*X7 Nz((¢T)" + P'2)
PQP/ 1-o00 17 1 NNQC?)
< T ( e ) X2 ANz ((qT) + P'2) (since P = %)

17
< qTTXE AN ((qT) + P'2) (for 0 < 0g < 1)
e+9—2mL4e % 3
<< q T2 XI AN2
17 P
< qe+q972T§+eXI2 (qT)%
CqTIPTE(T(T)) T (qT)? (since Xz = T max(L, P)?)

< geH100d- 3 700
(10.15)

where we used the fact that f,7(t) < (14 [¢])"2, we used (6.52) and (10.10), and

we adjusted the € a few times. The implied constants depend upon 9, gy, €.

Combining the contributions from 7, and Z; we get

1
SN,ACCo N1 Nao,8 Koo, @11 00T, (10.16)

We take 9 to be arbitrarily small to complete the proof.

95



[1]

REFERENCES

W. Duke and R. Schulze-Pillot, “Representation of integers by positive ternary quadratic
forms and equidistribution of lattice points on ellipsoids,” Inventiones mathematicae,

vol. 99, no. 1, pp. 49-57, 1990.

J. W. Cogdell, I. I. Piatetski-Shapiro, and P. Sarnak, “Estimates on the critical line for

Hilbert modular L-functions and applications,” preprint, vol. 2, no. 3, p. 35, 2001.

J. W. Cogdell, “On sums of three squares,” Journal de théorie des nombres de Bordeaux,

vol. 15, no. 1, pp. 33-44, 2003.
A. Shnirelman, “Uspenski math,” Nauk, vol. 29, no. 6, pp. 79-88, 1974.

S. Zelditch, “Uniform distribution of eigenfunctions on compact hyperbolic surfaces,”

Duke mathematical journal, vol. 55, no. 4, pp. 919-941, 1987.

Y. Colin de Verdiere, “Ergodicité et fonctions propres du laplacien,” Communications

in Mathematical Physics, vol. 102, no. 3, pp. 497-502, 1985.

Z. Rudnick and P. Sarnak, “The behaviour of eigenstates of arithmetic hyperbolic man-

ifolds,” Communications in Mathematical Physics, vol. 161, no. 1, pp. 195-213, 1994.
Z. Rudnick, “Quantum chaos?,” Notices of the AMS, vol. 55, no. 1, pp. 32-34, 2008.

S. Zelditch, “Mathematics of quantum chaos in 2019,” Notices of the American Mathe-

matical Society, vol. 66, no. 9, pp. 14121421, 2019.
P. Sarnak, “Arithmetic quantum chaos.,” Blyth Lectures. Toronto, 1993.

P. Sarnak, “Spectra of hyperbolic surfaces,” Bulletin of the American Mathematical
Society, vol. 40, no. 4, pp. 441-478, 2003.

P. Michel, “Analytic number theory and families of automorphic L-functions,” tech.

rep., American Mathematical Society, 2007.

96



[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21]

22]

[23]

H. Iwaniec and P. Sarnak, “Perspectives on the analytic theory of L-functions,” in

Visions in Mathematics, pp. 705-741, Springer, 2000.

J. Bourgain, “Decoupling, exponential sums and the Riemann zeta function,” Journal

of the American Mathematical Society, vol. 30, no. 1, pp. 205-224, 2017.

D. A. Burgess, “On character sums and L-series. I1,” Proceedings of the London Math-

ematical Society, vol. 3, no. 1, pp. 524-536, 1963.

D. Heath-Brown, “Hybrid bounds for Dirichlet L-functions,” Inventiones mathematicae,

vol. 47, no. 2, pp. 149-170, 1978.

J. B. Conrey and H. Iwaniec, “The cubic moment of central values of automorphic

L-functions,” Annals of mathematics, vol. 151, no. 3, pp. 1175-1216, 2000.

M. P. Young, “Weyl-type hybrid subconvexity bounds for twisted L-functions and Heeg-
ner points on shrinking sets,” Journal of the European Mathematical Society, vol. 19,

no. 5, pp. 1545-1576, 2017.

M. P. Young, “Explicit calculations with Eisenstein series,” Journal of Number Theory,

vol. 199, pp. 1-48, 2019.

[. N. Petrow, “A twisted Motohashi formula and Weyl-subconvexity for L-functions of

weight two cusp forms,” Mathematische Annalen, vol. 363, no. 1, pp. 175-216, 2015.

I. Petrow, “Bounds for traces of Hecke operators and applications to modular and elliptic
curves over a finite field,” Algebra & Number Theory, vol. 12, no. 10, pp. 24712498,

2019.

I. Petrow and M. P. Young, “A generalized cubic moment and the Petersson formula

for newforms,” Mathematische Annalen, vol. 373, no. 1, pp. 287-353, 2019.

[. Petrow and M. P. Young, “The Weyl bound for Dirichlet L-functions of cube-free
conductor,” Annals of Mathematics, vol. 192, no. 2, pp. 437486, 2020.

97



[24]

[25]

[30]

[31]

[32]

[33]

I[. Petrow and M. P. Young, “The fourth moment of Dirichlet L-functions along a coset

and the Weyl bound,” arXiv preprint arXiv:1908.10346, 2019.

D. Mili¢evi¢, “Sub-Weyl subconvexity for Dirichlet L-functions to prime power moduli,”

Compositio Mathematica, vol. 152, no. 4, pp. 825-875, 2016.

A. Good, “The square mean of Dirichlet series associated with cusp forms,” Mathe-

matika, vol. 29, no. 2, pp. 278-295, 1982.
H. Iwaniec, “The spectral growth of automorphic L-functions.,” 1992.

W. Duke, J. Friedlander, and H. Iwaniec, “Bounds for automorphic L-functions,” In-

ventiones mathematicae, vol. 112, no. 1, pp. 1-8, 1993.

W. Duke, J. Friedlander, and H. Iwaniec, “A quadratic divisor problem,” Inventiones

mathematicae, vol. 115, no. 1, pp. 209-217, 1994.

W. Duke, J. Friedlander, and H. Iwaniec, “Bounds for automorphic L-functions. II,”

Inventiones mathematicae, vol. 115, no. 1, pp. 219-239, 1994.

W. Duke, J. Friedlander, and H. Iwaniec, “Class group L-functions,” Duke Mathematical
Journal, vol. 79, no. 1, pp. 1-56, 1995.

W. Duke, J. Friedlander, and H. Iwaniec, “Bilinear forms with Kloosterman fractions,”

Inventiones mathematicae, vol. 128, no. 1, pp. 23-43, 1997.

W. Duke, J. Friedlander, and H. Iwaniec, “Representations by the determinant and
mean values of L-functions,” London Mathematical Society Lecture Note Series, vol. 1,

no. 237, pp. 109-116, 1996.

W. Duke, J. B. Friedlander, and H. Iwaniec, “Bounds for automorphic L-functions. III,”

Inventiones mathematicae, vol. 143, no. 2, pp. 221-248, 2001.

W. Duke, J. B. Friedlander, and H. Iwaniec, “The subconvexity problem for Artin

L-functions,” Inventiones mathematicae, vol. 149, no. 3, pp. 489-577, 2002.

98



[36]

[37]

[38]

[40]

[41]

[42]

[43]

[45]

[46]

P. Michel and A. Venkatesh, “The subconvexity problem for G Lo,” Publications Math-
ématiques de UIHES, vol. 111, pp. 171-271, 2010.

X. Li, “Bounds for GL(3) x GL(2) L-functions and GL(3) L-functions,” Annals of

mathematics, pp. 301-336, 2011.

E. M. Lapid, “On the nonnegativity of Rankin-Selberg L-functions at the center of
symmetry,” International Mathematics Research Notices, vol. 2003, no. 2, pp. 65-75,
2003.

M. McKee, H. Sun, and Y. Ye, “Improved subconvexity bounds for GL(2) x G'L(3)
and GL(3) L-functions by weighted stationary phase,” Transactions of the American
Mathematical Society, vol. 370, no. 5, pp. 3745-3769, 2018.

R. M. Nunes, “Subconvexity for GL(3) L-functions,” arXiv preprint arXiv:1703.04424,
2017.

V. Blomer, “Subconvexity for twisted L-functions on GL(3),” American Journal of

Mathematics, vol. 134, no. 5, pp. 1385-1421, 2012.

B. Huang, “Hybrid subconvexity bounds for twisted L-functions on GL(3),” Science
China Mathematics, vol. 64, no. 3, pp. 443-478, 2021.

Z. Qi, “Subconvexity for twisted L-functions on G'L3 over the Gaussian number field,”
Transactions of the American Mathematical Society, vol. 372, no. 12, pp. 8897-8932,

2019.

R. Munshi, “Bounds for twisted symmetric square L-functions,” Journal fiir die reine

und angewandte Mathematik (Crelles Journal), vol. 2013, no. 682, pp. 65-88, 2013.
R. Munshi, “Bounds for twisted symmetric square L-functions - II,”

R. Munshi, “Bounds for twisted symmetric square L-functions - II1,” Advances in Math-

ematics, vol. 235, pp. 74-91, 2013.

99



[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

R. Munshi, “The circle method and bounds for L-functions - I,” Mathematische Annalen,

vol. 358, no. 1, pp. 389401, 2014.

R. Munshi, “The circle method and bounds for L-functions - II: Subconvexity for twists
of GL(3) L-functions,” American Journal of Mathematics, vol. 137, no. 3, pp. 791-812,

2015.

R. Munshi, “The circle method and bounds for L-functions - III: t-aspect subconvexity
for GL(3) L-functions,” Journal of the American Mathematical Society, vol. 28, no. 4,

pp. 913-938, 2015.

R. Munshi, “The circle method and bounds for L-functions - IV: Subconvexity for twists

of GL(3) L-functions,” Annals of Mathematics, pp. 617-672, 2015.

R. Munshi, “Twists of GL(3) L-functions,” in Relative Trace Formulas, pp. 351-378,
Springer, 2021.
R. Holowinsky and P. D. Nelson, “Subconvex bounds on GL(3) via degeneration to

frequency zero,” Mathematische Annalen, vol. 372, no. 1, pp. 299-319, 2018.

Y. Lin, “Bounds for twists of GL(3) L-functions,” Journal of the European Mathematical

Society, vol. 23, no. 6, pp. 1899-1924, 2021.

P. Sharma and W. Sawin, “Subconvexity for GL(3) x GL(2) twists,” Advances in Math-
ematics, vol. 404, p. 108420, 2022.

P. D. Nelson, “Bounds for standard L-functions,” arXiv preprint arXiv:2109.15230,

2021.

H. Iwaniec and E. Kowalski, Analytic number theory, vol. 53. American Mathematical

Soc., 2021.

E. M. Kiral, I. Petrow, and M. P. Young, “Oscillatory integrals with uniformity in
parameters,” Journal de Théorie des Nombres de Bordeauz, vol. 31, no. 1, pp. 145-159,
2019.

100



[58] D. Goldfeld, Automorphic forms and L-functions for the group GL(n,R), vol. 99. Cam-

bridge University Press, 2006.

[59] R. Khan and M. P. Young, “Moments and hybrid subconvexity for symmetric-square

L-functions,” Journal of the Institute of Mathematics of Jussieu, pp. 1-45, 2021.

[60] 1. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Academic

press, 2014.

[61] P. X. Gallagher, “A large sieve density estimate near o = 1,” Inventiones mathematicae,

vol. 11, no. 4, pp. 329-339, 1970.

[62] X. Li and M. P. Young, “The L? restriction norm of a G L3 maass form,” Compositio
Mathematica, vol. 148, no. 3, pp. 675717, 2012.

101



	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	Introduction
	Statement of results
	Technique
	L-function data
	Standard formulae and definitions
	Setup
	Asymptotic analysis of G

	Archimedean aspects
	Oscillatory case
	Asymptotic analysis of J,I1
	Asymptotic analysis of J,I1
	Asymptotic analysis of K,,I

	Non-oscillatory case
	Asymptotic analysis of J,I
	Asymptotic analysis of K,,I


	Arithmetic aspects
	Summary of character sum computation
	Simplifying C'
	Simplifying C2'
	Simplifying C1'
	Simplifying N1'
	Simplifying N3'
	Simplifying B'
	Simplifying A'
	Simplifying C0
	Collecting the Conrey-Iwaniec phase term
	Putting everything together

	The Z-function
	Factoring Zfin,1
	Bounds for Zfin,1
	Factoring Zfin,2
	Bounds for Zfin,2
	Large sieve inequalities
	Bounds for Z
	Bounding Z0
	Bounding Z1

	Completing the proof
	Oscillatory case
	Non-oscillatory case

	REFERENCES

