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ABSTRACT

The manipulation of light-matter interactions forms the bedrock of quantum optics and infor-

mation processing. For many years, atoms in conjunction with quantum electrodynamics systems

involving high-quality cavities offered a platform to realize strong photon-matter couplings. As a

complementary paradigm to cavity-quantum electrodynamics (cavity-QED), waveguide-integrated

atomic systems have also emerged as a strong candidate for observing many-body quantum phe-

nomena. However, there exists no-single all-encompassing quantum system, capable of achieving

all the requirements of a present-day quantum information processing system. Instead, modern

quantum machines require various hybrid quantum systems with multitasking abilities, especially

those involving solid-state systems. In this context, hybrid magnonic systems utilizing ferrimag-

netic materials like Yttrium iron garnet (YIG) have gained much traction among the optics commu-

nity, thanks to their high spin density and low damping rates. The collective motion of these spins

is embodied in the form of quasiparticles named magnons, which strongly couple with cavity pho-

tons. This thesis is dedicated to the theoretical analyses of hybrid magnonic systems coupled with

quantum optical elements at the interface between cavity and waveguide QED, particularly in the

framework of non-Hermitian physics. More specifically, we studied the ramifications of anti-P̂T

symmetry in dissipatively coupled two-mode anharmonic systems, demonstrating, for instance, the

generation of a bound state in continuum (BIC), which can be exploited for sensing perturbations,

especially those of anharmonic nature. Dissipatively coupled systems also offer a significantly

low threshold for observing bistability when compared to their coherently coupled counterparts.

In the context of cavity magnonics, we illustrated the possibility of achieving dissipative coupling

between magnons earmarked by the observation of level attraction. In addition, we also examined

the quantum correlations and transfer of excitations between two macroscopic YIG samples placed

inside a microwave cavity. In the strong pumping domain, wherein the Kerr-anharmonicities of the

YIGs are significant, we predicted the emergence of multi-stability in the spin currents. This was

verified by obtaining the shift in polaritonic peaks of the transmission to a weak probe. In the case
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of a weak pump of the order of 1µW, we used a two-photon parametric drive to generate a BIC,

which could enhance the efficiency in the transfer of excitation between two samples. Recently, our

predictions of multistability and ultra-low threshold bistability were verified by experimental data.

Experimental activity in the domain of cavity and waveguide-integrated magnonics has flourished

of late and the rest of our theoretical proposals are likely to attain experimental implementation in

the near future.
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1. INTRODUCTION

In the last few years, technologies based on quantum mechanical principles have begun revolu-

tionizing our world in an unprecedented way [2–4]. Considering the large volume of information

created, platforms for the manipulation and processing of quantum data are a prerequisite for the

control of various protocols. However, not a single system is possible to be employed in realizing

all the requirements of a present-day quantum information processing system. For example, pho-

tons are efficient carriers of information over long distances. At the same time, they do not interact

between themselves and this in conjunction with the decoherence effects makes an all-optical de-

sign difficult to engineer. In contrast, superconducting circuits [5] can rapidly process information

and spins [6] can store information. In other words, modern quantum machines require hybrid

quantum systems [7, 8] with multitasking capabilities, involving, photons, phonons [9], atoms

[10], ions [11] and in general, qubits [12], thereby facilitating the advancement of newer tech-

nologies in the domains of information processing [13], computation [14–16] and communication

[3, 17] and sensing [18, 19].

Recently, hybrid quantum platforms based on collective excitations in magnetic systems have

attracted much traction among the scientific community. The prime concept is to employ collec-

tive excitations in spin degrees freedom, i.e., magnons of ordered magnetic systems for the storage

of information. In particular, ferrimagnetic materials like Yttrium iron garnet (YIG) have been

used in research where experimental activity has flourished of late [1, 20–35]. Owing to their high

spin density and low damping rates, YIGs are excellent candidates for magnonic setups. However,

magnon-photon coupling in free space is extremely weak and it therefore warranted confinement

of light into small volumes. A prominent approach in the context of atom-photon coupling has

been that of cavity-quantum electrodynamics (cavity-QED) [36], wherein, high-quality resonators

are used to enhance light-matter interactions. In 2013, Hübel et al. demonstrated a strong coupling

between YIG and a superconducting coplanar resonator [20], spawning a new field of research

at the intersection between condensed matter physics and quantum optics, dubbed as quantum
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magnonics. Subsequently, Tabuchi et al. observed normal-mode splitting at cryogenic and room

temperatures between YIG and a microwave cavity giving rise to cavity-magnon polaritons (CMPs)

[21] while Zhang et al. demonstrated ultra-strong coupling by reducing the cavity mode volume

and by ramping up the number of spins [22]. In another experiment, Tabuchi et al. established a

strong coupling between a ferromagnetic sphere and a superconducting qubit, demonstrating con-

trol of magnon at the single quantum level [25]. Following the discovery of strong magnon-photon

coupling, cavity magnonic systems have been used to demonstrate several intriguing phenomena

which were first observed in the context of quantum optical systems involving atoms and cavities.

For instance, in 2018, Wang et al. revealed bistability in CMPs using Kerr nonlinearity in a YIG

sample [1]. Some other interesting experiments include microwave-to-optical transducers [35],

exceptional points [30], dark modes [24] etc. to name a few.

In 2017, Bai et al. demonstrated the cavity-mediated remote exchange of spin excitations be-

tween two macroscopic YIGs in the linear domain of system parameters [29]. However, YIGs

are anharmonic on account of the magneto-crystalline anisotropies present in the system [37].

Motivated by this, we developed a theory for the spin current in the nonlinear domain where the

external drive is strong so that one needs to include the Kerr nonlinearity of the ferrite materi-

als [38]. In this way, the nonlinear polaritons are created and we demonstrated the possibility of

achieving both bistable and multistable signatures in the spin current response by obtaining a va-

riety of steady-state results. Note that the system was driven into a far-from-equilibrium steady

state that is determined by the details of external driving and various interactions. In addition, we

developed a model for the spectroscopic detection of nonlinear spin currents, unfolding some of

the key features of the nonlinear polaritons. The transmission of a weak probe field was used to

obtain the shift in polaritonic peaks as a function of the pump power which perfectly replicated the

multistable behaviour of the spin current signal. In 2021, our results were verified by Dr. You’s

group at Zhejiang University.

Since the observation of strong magnon-photon coupling, the lion’s share of research in the

field of cavity-magnonics was in the semiclassical domain whereas the system could potentially
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be used to observe quantum effects at the macroscopic scale. One of the ways to observe quantum

effects in a system is through the transfer of nonclassical properties from a quantum source, for

instance, via the application of quantum light. In [39], we presented a scheme to generate entan-

gled pair of YIG samples placed in a microwave cavity by the application of an external drive with

quantum effects. The external drive was produced by a flux-driven Josephson parametric amplifier

(JPA) which generates a microwave field with strong squeezing properties [40–51]. Further, we

demonstrated a number of experimentally realizable tests for entanglement and illustrated that the

generated entanglement could survive up to 300 mK. As a by-product of our results, we investi-

gated squeezing in the collective magnon variables which can be achieved by resonantly driving

the cavity with a squeezed vacuum field. Note, en passant, that our scheme for entangling magnetic

samples does not require the use of nonlinearities in the system, which are typically weak.

As discussed earlier, cavity-mediated magnon-magnon coupling can lead to a transfer of spin-

wave excitations between two spatially separated magnetic samples and it is desirable to have a

mechanism to boost the transfer efficiency. One standard technique is to use high-quality cavi-

ties and large coupling between photons which would in turn result in the improved transfer of

energy. In [52], we presented a scheme to substantially amplify this transfer efficiency through

the application of a two-photon parametric drive on the cavity which could be produced either

from a χ(2)-type or χ(3)-type nonlinearity [53]. Some other applications of parametric interactions

include the observation of enhanced cooling [54], exponentially enhanced spin-cavity photon cou-

pling [55, 56], enhanced phonon-mediated spin-spin coupling in a system of spins coupled to a

cantilever [57], possibility of first order superradiant phase transitions [58], enhancement in the

generation of entangling gates [59], amplification of small displacements of trapped ions [60] etc.

The enhancement in the transfer efficiency in our scheme can be pinned down to the recurrent

multiphoton absorption by the cavity opens up an infinite ladder of accessible energy levels, which

can induce higher-order transitions within the magnon Fock space. This was reflected in a height-

ened spin-current response from one of the magnetic samples when the neighbouring sample is

coherently pumped. The enhancement induced by the parametric drive can be considerably high
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within the stable dynamical region. Specifically, near the periphery of the stability boundary, the

spin current is amplified by several orders of magnitude. Such striking enhancement factors are at-

tributed to the emergence of parametrically induced strong coherences precipitated by a long-lived

mode, which is analogous to a bound state in continuum (BIC) [61–65].

So far, we have introduced some of the interesting physics emerging out of coherently coupled

cavity-magnon systems. In 2018, Harder et al. observed a dissipative form coupling between

magnons and photons revealing coalescence of the hybridized modes [66]. This was subsequently

verified in a variety of cavity-magnonic configurations [67–76], including, for example, coplanar

waveguides [72]. It is well-known that coherent coupling owes its origin to the spatial over between

modes. In contrast, the dissipative coupling is an indirect coupling, viz, it is mediated by dissipative

channels. In essence, dissipative coupling between any two modes can be engineered by coupling

them through a common intermediary reservoir, for example, a waveguide. Dissipative coupling

does not lend itself to a Hamiltonian description and it follows from the master equation description

of the subsystems, obtained by eliminating the reservoir degrees of freedom [77]. An interesting

consequence of dissipative coupling is the realization of anti-P̂T symmetry [75, 76, 78, 79], a

feature of non-Hermitian Hamiltonians that change sign under the action of P̂T . In particular, two-

mode anti-P̂T symmetric systems possess a BIC which can be used to enhance experimentally

observable parameters.

In [80], we proposed an expedient sensing scheme relevant to dissipatively coupled anti-Parity-

Time (anti- P̂T ) symmetric systems and customized for the fine-grained estimation of anharmonic

perturbations. The sensitivity to anharmonicities is derived from the coherence between two modes

induced by a common vacuum. Owing to this coherence, the linear response acquires a pole on

the real axis, i.e., a BIC. We demonstrated how this BIC can be exploited for the enhanced sensing

of very weak anharmonicities at low pumping rates. Our results are applicable to a wide class

of systems, and we specifically illustrated the remarkable sensing capabilities in the context of a

weakly anharmonic Yttrium Iron Garnet (YIG) sphere interacting with a cavity via a tapered fiber

waveguide. A small change in the anharmonicity led to a substantial change in the induced spin
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current.

Extending our work on dissipatively coupled systems, we established the remote transfer of

bistability from a nonlinear resource in a dissipatively coupled two-mode system [81]. As a clear

advantage over coherently coupled settings, the dissipative nature of the interaction was found

to support a lower pumping threshold for bistable signals. In fact, for comparable parameters,

the bistability threshold for dissipatively coupled systems is lower by a factor of about five and

we specifically illustrated our results in the context of a cavity-magnon system, interacting via a

waveguide. Further, we spectroscopically studied the resulting hysteresis by applying a probe field

through the waveguide and examining the polariton character of the transmitted field. As a con-

sequence of dissipative coupling and the nonlinearity, we observed the emergence of a long-lived

eigenmode which is responsible for heightened transmission levels and pronounced sensitivity

in signal propagation through the waveguide. It is worth mentioning that dissipatively coupled

anti-P̂T symmetric systems can also be used for the enhanced bidirectional conversion between

microwave and optical fields [82].

An interesting feature of dissipatively coupled systems is the possibility of level attraction.

Consider two coupled harmonic oscillators with their dynamics described by an effective non-

Hermitian Hamiltonian. If the eigenfrequencies of the system do not coalesce at any point in

parameter space, there exists a minimum separation between the energy eigenvalues known as

level repulsion, a property of coherently coupled systems. In contrast, there could be a scenario

where the modes intersect at certain points in the parameter space and this phenomenon is known as

level attraction. In the context of cavity-magnonics, we elucidated two widely dissimilar parameter

domains that bring forth the contrasting possibilities of level splitting and level crossing [83]. The

former was observed in the regime of strong magnon-photon couplings, particularly when the

three modes bear comparable relaxation rates. This character was marked by the appearance of

three distinguishable and non-converging polariton branches in the spectral response to a cavity

drive. However, when the bare modes are resonant and the couplings perfectly symmetrical, one

of the spectral peaks gets wiped out. This anomalous extinction of polaritonic response can be

5



traced down to the existence of a conspicuous dark mode alongside two frequency-shifted bright

modes. In an alternate parameter regime, where the magnon modes are weakly coupled to the

cavity, features of level attraction unfold, subject to a large relaxation rate for the cavity mode.

The emergence of level attraction can be reconciled with a theoretical model that embodies the

dynamics of the magnon-magnon subsystem when the cavity field decays rapidly into its steady

state, revealing a purely dissipative coupling between the magnon modes.

In this thesis, we discuss in detail our findings on the analyses of interactions between magnonic

systems with quantum optical architectures involving microwave cavities and waveguides. The

results presented in this thesis are primarily based on the following published articles

1. J. M. P. Nair, and G. S. Agarwal, Deterministic quantum entanglement between macroscopic

ferrite samples, Applied Physics Letters, 117 (8), 084001 (2020).

2. J. M. P. Nair, Z. Zhang, M. O. Scully, and G. S. Agarwal, Nonlinear spin currents, Phys.

Rev. B 102 (10), 104415 (2020).

3. J. M. P. Nair, D. Mukhopadhyay, and G. S. Agarwal, Enhanced Sensing of Weak Anhar-

monicities through Coherences in Dissipatively Coupled Anti-PT Symmetric Systems, Phys.

Rev. Lett. 126, 180401 (2021).

4. J. M. P. Nair, D. Mukhopadhyay, and G. S. Agarwal, Ultralow threshold bistability and

generation of long-lived mode in a dissipatively coupled nonlinear system: Application to

magnonics, Phys. Rev. B 103 (22), 224401 (2021).

5. D. Mukhopadhyay, J. M. P. Nair and G. S. Agarwal, Anti-P̂T symmetry enhanced intercon-

version between microwave and optical fields, Phys. Rev. B 105 (6), 064405 (2022).

6. J. M. P. Nair, D. Mukhopadhyay, and G. S. Agarwal, Cavity-mediated level attraction and

repulsion between magnons, Phys. Rev. B 105 (21), 214418 (2022).

7. D. Mukhopadhyay, J. M. P. Nair and G. S. Agarwal, Quantum amplification of spin currents

in cavity magnonics by a parametric drive induced long-lived mode, Phys. Rev. B 106 (18),
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184426 (2023).

This thesis is divided into nine chapters. In Chapter 2, we detail the theory of spin waves in an

ordered magnetic system and review the progress in the recent field of magnonics coupled with

quantum optical elements. In Chapter 3, we consider a cavity magnonic system comprising of

two YIG samples placed in a microwave cavity and we detail two distinct domains of interactions

leading to the possibility of multistability in the system and in Chapter 4, we discuss a scheme

for the enhanced transfer of energy between magnets. We review the general symmetry properties

of non-Hermitian systems in Chapter 5, especially anti-P̂T symmetric systems and their possible

experimental realizations. In addition, we explicate the mechanism of sensing linear perturbations

in a P̂T symmetric system based on EPs. In Chapter 6, we expound a protocol for the enhanced

sensing of weak nonlinear perturbations in a dissipatively coupled two-mode system through the

generation of an especially long-lived mode in anti-P̂T symmetric systems. The dissipatively cou-

pled system is also shown to exhibit a significantly low bistability threshold compared to coherently

coupled systems in Chapter 7. In Chapter 8, we consider a coherently coupled cavity-magnon sys-

tem and illustrate the possibility of observing level attraction between two YIG samples without

the use of common intermediary reservoirs. A protocol for entangling two magnetic systems in

a cavity through the application of quantum light is elucidated in Chapter 9 and we provide a

summary of our results in chapter 10.
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2. MAGNONICS

Magnons are quanta of elementary excitations in an ordered magnetic system where spins

interact primarily through exchange and dipolar interactions. In a lattice of spins where inter-

spin spacing is small enough, spatial overlap between particles results in the exchange interaction

leading to the Heisenberg exchange Hamiltonian. Note, however, the strength of the exchange

interaction decreases exponentially with increasing inter-spin spacing, i.e., exchange interaction

is short range and nearest neighbour approximation is typically valid. In contrast, dipole-dipole

interaction (DDI) is long-range. The theory of spin-waves in a magnetic system was first developed

by Bloch in 1932 which used general perturbation theory [84], but the theory could not explain

magnon-magnon interactions. In 1940, Holstein and Primakoff used the symmetry properties of

spin ladder operators to introduce an elegant nonlinear transformation which mapped spins at each

lattice site to a quantized harmonic oscillator represented by bosonic operators [85]. This paved

the foundations of spin-wave theory which perfectly predicted the interactions between magnons.

Later on, Dyson generalized the theory of spin waves with a more exact treatment of the problem

[86]. Magnonics deals with the control and manipulation of collective spin excitations and thanks

to the rapid technological development over the last decade, it saw a resurgence in interest among

the scientific community. Of particular importance is the demonstration of strong coupling between

magnons and microwave photons by Hübel et al. in 2013 [20] which kick-started the field of cavity

magnonics. Cavity and waveguide-integrated magnonic systems have since been extensively used

in experiments leading to the observation of several interesting new physics. In this chapter, we

introduce the quantum theory of spin waves and their interaction with photons [87].

This chapter is organized as follows. In section 2.1, we consider a generic Hamiltonian of

a magnetic system comprising of exchange, dipolar and Zeeman interactions and use Holstein-

Primakoff transformations to quantize the excitations from the ground state and we specifically il-

lustrate the emergence of magnon-magnon interactions. In section 2.2, we provide a short overview

of the theory of magnon-photon interaction and detail some of the recent developments in the do-
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main of cavity-magnonics. Finally, we summarize the chapter in section 2.3.

2.1 Spin waves in an ordered magnetic system

We start off by considering a generic Hamiltonian of a 3D magnetic system [87] which has the

form

Ĥ = −
1
2

∑
i j

Ji jŜi.Ŝ j − gµB

∑
i

B0.Ŝi, (2.1)

where Si are the spin operators at location ri which follow the commutation relations [Sαi ,S
β
j] =

iℏδi jϵαβγSγi and α, β, γ represent the spatial coordinates of the spin. The first term on the right-hand

side (RHS) of Eq. 2.1 constitutes the Heisenberg exchange interaction between spins with the

exchange coefficient Ji j > 0, whereas the second term on the RHS represents the Zeeman energy

from a static bias magnetic field B0, the direction which is taken to be the ẑ axis. The parameters g

and µB are respectively the Lande g factor and the Bohr magneton. The exchange energies decay

exponentially with increasing distance between the spins and therefore, for all practical purposes

we may assume Ji j = J for nearest neighbour spins. In addition, for the subsequent analysis in this

section, we have dropped the DDI interactions. The effect of this term will be discussed at a later

stage. Notice that we have set ℏ = 1 in the above Hamiltonian.

Let us examine Heisenberg interaction Hamiltonian in detail. To this end, it is appropriate to

recast the Hamiltonian in terms of the ladder operators defined by S ±i = S x
i ± S y

i with

Ŝ ±i
∣∣∣S i, S z

i

〉
=

√
(S i ∓ S z

i )(S i + 1 ± S z
i )

∣∣∣S i, S z
i ± 1

〉
(2.2)

where we have used Ŝ
2
i

∣∣∣S i, S z
i

〉
= S i(S i+1)

∣∣∣S i, S z
i

〉
and Ŝ z

i

∣∣∣S i, S z
i

〉
= S z

i

∣∣∣S i, S z
i

〉
. Therefore the first

term on the RHS of Eq. (2.1) morph into

ĤH = −
J
2

∑
i j

(1
2

(Ŝ +i Ŝ −j + Ŝ −i Ŝ +j ) + Ŝ z
i Ŝ

z
j

)
. (2.3)

9



Here, the Hamiltonian ĤH is used to denote the Heisenberg interaction part of the Hamiltonian Ĥ.

It is straightforward to show that the state |G⟩ =
∏

i |S i, S i⟩, that is the state in which all the sins

are polarized along one direction with maximum magnitude. The action of ĤH on |G⟩ is given by

ĤH |G⟩ = −
J
2

∑
<i j>

S iS j |G⟩ , (2.4)

with energy E = − J
2

∑
<i j> S iS j. Note that Ŝ +i |G⟩ = 0 and we assume that all the spins are identical

with S i = S j = S . Therefore, it is apparent from Eq. (2.3) and Eq. (2.4) that any other state

with S z < S would bring about an energy Ẽ which is greater than E0. Stated differently, |G⟩ is

indeed the ground state of the Heisenberg interaction Hamiltonian. However, the ground state is

not unique, i.e., there are 2NS +1 states with identical energy where N is the total number of spins.

The effect of the Zeeman energy term is to break the symmetry and all the spins align along the

direction of B0. Note en passant, the magnetic ordering in ferromagnets owes its origin primarily

to the exchange interactions which prevail over DDI at short distances.

2.1.1 Holtein-Primakoff theory of spin waves

In preparation for the study of excitations in the ferromagnet, it is convenient to rewrite the

spin operators {Ŝ z
i , Ŝ

+
i , Ŝ

−
i } at each location in terms of bosonic annihilation and creation operators

{âi, â
†

i }, viz, mapping the Hamiltonian at each location to a harmonic oscillator. Before going

into the details of the transformation, let us briefly recapitulate the bosonic operator algebra. The

raising and lowering operators of the harmonic oscillator follow the commutation relations

[âi, â
†

j] = δi j

[â†i , â
†

j] = [â,â j] = 0, (2.5)

10



with their action on the number state |ni⟩ provided by

â†i âi |ni⟩ = ni |ni⟩

âi |ni⟩ =
√

ni |ni − 1⟩

â†i |ni⟩ =
√

ni + 1 |ni + 1⟩ . (2.6)

In 1940, Holstein and Primakoff introduced a nonlinear transformation interlinking the spin oper-

ators and the bosonic operators given by

Ŝ +i =
√

2S − â†i âiai

Ŝ z
i = S − â†i âi. (2.7)

It is interesting to look at the action of Ŝ z
i on |ni⟩, that is

Ŝ z
i |ni⟩ = (S − ni) |ni⟩ . (2.8)

Note that the number operator â†i âi effectively counts the number of flipped spins in the ferro-

magnet and the state |0⟩ represents the fully polarized spin state. In the low-temperature limit, we

assume that the total number of excitations in the bulk of the ferromagnet is much less compared

to the total number of spins. To simplify the analysis, let us rewrite the first part of Eq. (2.7) as

S +i =
√

2S (1 −
x̂i

2
−

x̂2
i

8
+ ..)ai, (2.9)

where x̂i =
a†i ai

2S . Note that this assumes a†i ai < 2S which may not be true for small S and it would

appear that the expansion in Eq. (2.8) is erroneous. However, notice that the spin operators are

summed over the bulk of the magnet and therefore, the series expansion is flawless as long as the

average number of excitations at each site is much less compared to the number of spins, that is,

⟨a†i .ai⟩ << 2NS . Substituting the above expansion into Eq. (2.3) together with the Zeeman energy

11



part of the Hamiltonian, we obtain

−
JS
2

∑
<i j>

[(
1 −

x̂i

2
−

x̂2
i

8
+ ...

)
aia
†

j
(
1 −

x̂ j

2
−

x̂2
j

8
+ ...

)
h.c.

]
−

J
2

∑
<i j>

(S − a†i ai)(S − a†ja j)

−gµBB0

∑
i

(S − a†i ai) (2.10)

Keeping only terms up to quadratic in the ladder operators, we can reduce the above Hamiltonian

into

−
JS
2

∑
<i j>

(aia
†

j + a†i a j − a†i ai − a†ja j + S ) − gµBB0NS + gµBB0

∑
i

a†i ai. (2.11)

Thus, we have transformed the spin Hamiltonian into a system of N harmonic oscillators in three-

dimensional space with nearest-neighbor interactions. We may diagonalize Eq. (2.11) by employ-

ing the momentum space annihilation and creation operators defined by

ak =
1
√

N

∑
i

e−ik.riai. (2.12)

The operators ak and a†k involves the collective excitation or deexcitation of spins. A quasi-particle,

namely a magnon created by the action of a†k is an excitation through the action S −i at each site

which is completely delocalized across the bulk of the system. It is straightforward to show that

[ak, a
†

k′] =
1
N

∑
i ei(k−k′).ri = δkk′ . Inverting Eq. (2.12) substituting in Eq. (2.11) renders the momen-

tum space Hamiltonian

ĤQ = −
NJZS 2

2
− gµBB0

(
NS −

∑
k

a†kak
)
−

JS Z
2

∑
k

(vka†kak + v−kaka†k − 2a†kak), (2.13)
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where Z denotes the number of nearest neighbours, vk =
1
Z

∑
R eik.R and R = ri− r j is the real space

vector connecting nearest neighbour spins. The Hamiltonian when vk = v−k can recast into

ĤQ =
∑

k

ωka†kak, (2.14)

where ωk = JS Z(1 − vk) + gµBB0. Palpably, the resonance frequencies of each mode can be

controlled externally by the static bias magnetic field B0.

2.1.2 Magnon-magnon interactions

So far, we have discussed the quadratic part of the infinite series Hamiltonian in Eq. (2.10).

In this section, we explicate the emergence of magnon-magnon interactions via the higher order

terms in Eq. (2.10). To this end, we write down the fourth-order perturbations to the Hamiltonian

as

−
J
2

∑
<i j>

(
â†i âiâ

†

j â j
)
+

J
8
(
â†i âiâiâ

†

j + âiâ
†

j â
†

j â j + h.c.
)
. (2.15)

We already saw that the quadratic Hamiltonian can be diagonalized by moving to the Fourier space

representation. By the same token, we use Eq. (2.12) in the above Hamiltonian. To elucidate the

origin of magnon-magnon interactions, we consider only one of the terms in Eq. (2.15) lending

−
J
8

∑
<i j>

(
â†i âiâiâ

†

j
)
= −

J
8N2

∑
<i j>

∑
ˆkik2k3k4

ei(k1−k2−k3).ri .eik4.r j â†k1
âk2 âk3 âk4 (2.16)

= −
J

8N2

∑
iR

ei(k1−k2−k3).ri .ei(k4.Râ†k1
âk2 âk3 âk4 (2.17)

=
J

8N
δ(k1 − k2 − k3 − k4)uk4 â

†

k1
âk2 âk3 âk4 , (2.18)

where uk4 =
∑

R eik4.R. The above Hamiltonian represents the physical process wherein a magnon

of momentum k1 is created by the annihilation of three magnons of momenta k2, k3 and k4 by

ensuring k1 = k2 + k3 + k4 through the Dirac delta function δ(k1 − k2 − k3 − k4). Note that the

Hamiltonian in Eq. (2.15) does not give rise to three-mode interactions. In fact, a Hamiltonian
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involving an odd number of mode operators is not allowed from Eq. (2.10). In other words, the

Heisenberg exchange Hamiltonian does not precipitate in odd-wave interactions. However, dipole-

dipole Hamiltonian can engender such interactions and this will be the subject of discussion in the

subsequent section.

2.1.3 Dipole-dipole interactions

We now consider the effect of DDI interactions on the Hamiltonian in Eq. (2.1). The DDI part

of the Hamiltonian is given by

ĤDD = −
g2µ2

B

2

∑
i, j

( Ŝi.Ŝ j

r3
i j

− 3
(Ŝi.n)(Ŝ j.n)

r3
i j

)
. (2.19)

where ri j = ri − r j, ri j = |ri j| and n symbolizes the unit vector along ri j. Note that the DDI

is a long-range interaction, palpable from Eq. (2.19). Therefore, in a large ensemble of spins,

the strength of DDI could become significantly large compared to exchange interactions. Let us

examine the above Hamiltonian in detail. To this end, let θi j and ϕi j be the polar angles of ri j with

the ẑ axis aligned in the direction of B0 in Eq. (2.1), i.e., n = (sin θi j cos ϕi j, sin θi j sin ϕi j, cos θi j).

Substituting it in Eq. (2.19) and rewriting the Hamiltonian in terms of the ladder operators, we

obtain

ĤDD = −
g2µ2

B

2

∑
i, j

1
r3

i j

[
(Ŝ z

i Ŝ
z
j) +

1
2

(Ŝ +i Ŝ −j + Ŝ −i Ŝ +j ) − 3
(

cos2 θi jŜ z
i S

z
j

+
sin2 θi j

4
(Ŝ +i Ŝ −j + Ŝ −i Ŝ +j ) +

sin2 θi j

4
(Ŝ +i Ŝ +j e−i2ϕi j + Ŝ −i Ŝ −j ei2ϕi j) +

sin θi j cos θi j

2
(Ŝ z

i Ŝ
+
j e−iϕi j + Ŝ z

i Ŝ
−
j eiϕi j)

sin θi j cos θi j

2
(Ŝ z

jŜ
+
i e−+iϕi j + Ŝ z

jŜ
−
i eiϕi j)

)]
.

(2.20)
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Collecting terms, combining ĤDD, ĤH and the Zeeman energy terms, we have the full Hamiltonian

given by

Ĥ = −
J
2

∑
i j

(
Ŝ z

i Ŝ
z
j +

1
4

(Ŝ +i Ŝ −j + Ŝ −i Ŝ +j )
)
− gµBB0

∑
i

Ŝ z
i

−
g2µ2

B

2

∑
i j

1
r3

i j

(1 − 3 cos2 θi j

2
[Ŝ z

i Ŝ
z
j +

1
4

(Ŝ +i Ŝ −j + Ŝ −i Ŝ +j )] −
3 sin2 θi j

4
[Ŝ +i Ŝ −j e−i2ϕi j + h.c.]

+
sin θi j cos θi j

2
[(Ŝ z

i Ŝ
+
j + Ŝ z

jŜ
+
i )e−iϕi j + h.c.]

)
. (2.21)

Notice that the second line of the above equation which comes from the DDI interaction gives rise

to terms analogous to the exchange interactions. In contrast, the final term in Eq. (2.21) is unique

i.e., purely a consequence of DDI and it is indeed the origin of three-mode interactions. We may

rewrite the final term as

∑
i j

J̃i j

2
(Ŝ z

i Ŝ
+
j + Ŝ z

jŜ
+
i ) + h.c., (2.22)

where J̃i j = −
g2µ2

B sin θi j cos θi je
−iϕi j

2r3
i j

. Substituting Eq. (2.7) under the large spin limit, the above equation

modifies to

∑
i j

J̃i j

2

[√
2S (S − â†i âi)â j +

√
2S (S − â†j â j)âi

]
+ h.c. (2.23)

Palpably, Eq. (2.23) in combination with Eq. (2.12) leads to the emergence of three-wave interac-

tions.

2.2 Cavity and waveguide magnonics

Recently, magnetic systems integrated with quantum optical elements such as a resonant cavity

or a waveguide have emerged as platforms to observe exotic semiclassical and quantum effects at

macroscopic scales. As described in the previous section, magnons are quasi-particles, low-lying

collective excitations in magnetically ordered materials like ferromagnets with wave-like charac-
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teristics [88]. Thanks to their excellent tunability, these spin waves have attracted a lot of attention

of late with promising applications to quantum information science. It is conspicuous from Eq.

(2.1) and Eq. (2.19) that the dynamics of spatially separated spins are coupled through the effec-

tive magnetic field created by exchange, DDI or anisotropic interactions. The competition between

DDI and exchange interactions determines the wavelength of the resulting spin wave. It is worth

mentioning that the exchange interactions typically result in short wavelengths, whereas DDI, if

dominant, produces longer wavelengths. There exists a unique mode, namely the ferromagnetic

resonance (FMR) mode where the individual spins precess uniformly in phase with identical am-

plitude. As a result, the ensemble of spins inside a ferromagnet can be considered as one giant

macroscopic spin, the dynamics of which can be controlled externally by a bias magnetic field B0

as discussed in the preceding section. This uniform spatial mode of the ferromagnetic excitations

is also known as the Kittel mode and it plays a quintessential role in integrated quantum-magnonic

systems for quantum information processing.

2.2.1 Some recent developments and motivation

Magnonics in quantum optical setups has been a subject of intense experimental activity over

the last few years. In particular, ferrimagnetic materials like Yttrium iron garnet (YIG) have ac-

quired much traction among the quantum optics community. The magnetic moment of a YIG arises

from the Fe3+ ions, wherein, two of five iron spins and the remaining three in a unit lattice orient

the opposite direction providing a net spin s = 5/2 with a spin density that goes as ρ ≈ 4.22× 1027

m−3. In other words, a YIG sphere of diameter d = 1 mm contains approximately 1018 spins/

m−3. Note that there is damping associated with the magnetization dynamics with lifetimes shorter

than state-of-the-art quantum devices. However, thanks to their high spin density, YIGs can couple

strongly to microwave fields. In 2013, Hübel et al reported the observation of strong anti-crossing

characters of a YIG coupled to waveguides. This was followed by the observation of strong cou-

pling between a magnet and split-ring resonators. Strong coupling of magnons to microwave 3D

cavities was first demonstrated by Tabuchi et al. [21] and Zhang et al. [22] in 2014. In [21], they

considered a single crystal YIG sphere coupled to a rectangular microwave cavity. They demon-
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strated strong magnon-photon coupling of approximately ∼ 50 MHz. Further, they showed that

the coupling is proportional to the square root of the total number of spins inside the YIG. Normal-

mode splitting was observed even in the quantum regime where the average number of thermally

excited magnons and photons is approximately zero. Some other noteworthy experiments in this

domain include the coupling of a superconducting qubit to magnons via microwave fields in a cav-

ity [25], super-strong coupling etc. Note that by adjusting the size of the cavity and the YIG to

improve mode matching, it is even possible to achieve ultrastrong photon-magnon coupling [89].

Some other applications of magnonics in the context of non-Hermitian quantum optics involve

sensing [80], nonreciprocity [72], exceptional points (EPs) [30], level attraction [66], multistabil-

ity [38, 90], dark modes[24] and many more [66–68, 70, 74]. In addition, quantum effects like

entanglement and squeezing, have also been explored in such systems [31–33, 91].

Considering the topicality and experimental progress of cavity and waveguide magnonics, we

have analyzed some of the interesting semiclassical and quantum phenomena ensuing from the

interaction of macroscopic magnetic samples with electromagnetic fields confined in cavities and

waveguides. We have used some well-known quantum optics tools like master equation [77] ap-

proach and input-output formalism [92] in our analyses. In particular, using dissipative coupling

emerging from the interaction to a waveguide, we have focused on anti-P̂T symmetric systems,

in which the magnons are coupled dissipatively to microwave fields. In the following, we ex-

pound on the mathematical formalism involving some of the basic interactions between YIG and

electromagnetic fields.

2.2.2 Spin-spin interactions in a YIG

Consider the Hamiltonian of a YIG sample given by Eq. (2.1). We shall drop the DDI terms

in the Hamiltonian which is negligible when compared to exchange interactions. However, in a

crystal, crystal fields may give rise to anisotropies in the exchange interaction strength [37]. YIGs

possess a weak nonlinearity of the order of 1 nHz due to magneto-crystalline anisotropies present

in the system. Note that we have already discussed how to diagonalize a Hamiltonian of the form in

Eq. (2.1). The aim of this subsection is to specifically look at the anisotropic spin-spin interactions
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in the Kittel mode. Therefore, to simplify the analysis, we only keep the Zeeman and anisotropic

terms in the Hamiltonian

Ĥ = −ℏγe

∑
i

B0Ŝ z
i + ℏU

(∑
i

Ŝ z
i

)2
, (2.24)

where U is the strength of the anisotropic interaction. It is worth exploring the origin of this

anisotropic interaction Hamiltonian. When the orbital of an electron is not spherically symmetric,

the energy of the state can have an orientation-dependent term, namely the anisotropic energy. One

such form of anisotropy is uniaxial anisotropy, characterized by an axis which may correspond to

either a minimum or maximum energy. To be precise, the axis which allows the minimum energy is

called the easy axis while the axis of maximum energy is dubbed the hard axis of magnetization. To

first order in correction, the anisotropic part of the energy density of the system may be expressed

in terms of direction cosines as

W = Kan(1 − cos2 θ), (2.25)

where Kan denotes the anisotropy constant, θ = Mz/M, M denotes the saturation magnetization

and Mz is the component of M along the ẑ axis. Subsequently, one can obtain the ẑ component

of the anisotropic field arising from the above equation as Han = −
∂W
∂Mz which entails an additional

magnetic field Han = −2KanMz/M2. The corresponding anisotropic Hamiltonian is given by Ĥan =

−
µ0

2

∫
Mz(r)Han(r)d3r, where µ0 is the magnetic permeability of the material. We are specifically

interested in the Kittel mode of magnons which is a uniform spatial of the system. Therefore,

we have Mz(r) = ℏγeS z/Vm, where Vm is the volume of the magnetic sample and we defined

the collective spin operator as S =
∑

i Ŝi. Thus, we may rewrite the anisotropic Hamiltonian as

Ĥan = γ
2
e
ℏ2µ0Kan

M2V
S 2

z . The Hamiltonian of the system morph into

Ĥ = −ℏγeB0S z + ℏU(S z)2, (2.26)
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where U =
ℏµ0γ

2
e Kan

M2Vm
. When the number of spins in the YIG is significantly larger than the num-

ber of excitations, one can diagonalize the above Hamiltonian employing the Holstein-Primakoff

transformations [85] analogous to Eq. (2.7), i.e.,

S z ≃ 5N/2 − m†m,

S + ≃
√

5Nm,

S − ≃
√

5Nm†, (2.27)

where m symbolizes the magnon annihilation operator, N denotes the total number of spins in the

YIG which typically goes as 1018 which is significantly greater than the magnon population ⟨m†m⟩.

We can recast the Hamiltonian in Eq. (2.26) into

H/ℏ = ωmm†m + U(m†2m2), (2.28)

where ωm = γeB0 −
2S ℏµ0γ

2
e Kan

M2Vm
+U. The resulting Hamiltonian is analogous to that of an optical

cavity having a Kerr nonlinearity where U is a measure of the strength of anharmonicity.

2.2.3 Magnon-photon interaction

Consider a system comprising two YIG samples of diameter d = 1mm placed at the maximum

magnetic field of the cavity field and one of the magnets is pumped externally at frequency ωd [38].

Note that YIGs are spin s = 5
2 particles with a spin density ρ = 4.22 × 1027m−3. The Hamiltonian

of the system without the anisotropic interaction terms is given by

H = −

∫
Vm

M.Bd3r +
1
2

∫
Va

(
ϵ0E2 +

B2

µ0

)
d3r −

∫
MzB0d3r −

∫
M · B1 d3r. (2.29)

The first term on the right-hand side (RHS) of Eq. 2.29 denotes the interaction between the cavity

magnetic field B and the magnetization M of the YIG, integrated over the volume of the magnetic

sample Vm. The second term represents the free Hamiltonian of the cavity field having a mode
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volume Va, whereas the last two terms signify, respectively, the interaction of the magnetic sample

with the external bias magnetic field B0 and the dynamical pumping field B1 along the y axis. In

the Kittel mode of the ferromagnetic sphere, we have M =
γeℏS
Vm

, where γe is the gyromagnetic

ratio and S the collective spin operator of the YIG. Upon quantizing the cavity field using bosonic

operators and selecting a mode of frequency ωa, the Hamiltonian of the cavity field is given by

1
2

∫
Va

(
ϵ0E2 +

B2

µ0

)
d3r = ℏωaa†a, (2.30)

where a(a†) denotes the annihilation(creation) operators of the cavity field satisfying the bosonic

algebra [a, a†] = 1. Moving on to the interaction between the magnetic sample and the cavity

magnetic field, we have

−

∫
Vm

M · B d3r = −
ℏγe

Vm

∫
Vm

S xBx(r)d3r (2.31)

where the cavity magnetic field is assumed to be along the x̂ axis, S x =
√

5N/2(m+m†) and Bx(r) =

i
√
µ0ℏωa

2Va

(
u(r)a−u∗(r)a†

)
. Here, u(r) represents spatial mode function such that

∫
Va
|u(r)|d3r = Va.

Employing these relations, the interaction Hamiltonian can be rewritten into

−

∫
Vm

M · B d3r =
(
ga + g∗a†

)(
m + m†

)
(2.32)

where the coupling constant g is defined as g = −i
ℏγe

2

√
5Nµ0ℏωa

Va
α and α =

∫
Vm

u(r)d3r represents

the overlap intergral. In general S x =
√

5N/2(m f (r) + m† f ∗(r)), where f (r) denotes the spatial

mode function of the magnon mode. In this case, assuming g and f to be real, the overlap integral

modifies to α =
∫

Vm
u(r)f(r)d3r. Conspicuously, under the rotating wave approximation (RWA), the

above expression reduces to −
∫

Vm
M ·B d3r = ℏ(gam†+g∗a†m). Notice that if f and g are complex,

we can absorb the phase factor associated with α into a newly defined magnon or cavity operator

and treat g as a real variable. The interaction Hamiltonian in analogous to the Janes-Cummings

model of two interacting harmonic oscillators.
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We have already discussed the form of Zeeman interaction term in terms of the magnon op-

erators, that is, −
∫

MzB0d3r = ℏωmm†m. As mentioned earlier, the final term on the RHS of Eq.

(2.29) denotes the interaction of the Kittel mode with the external drive. We have B1 = B1 cosωdtŷ

and therefore, −
∫

M ·B1 d3r = iℏγeB1
4

√
5N(m−m†)(e−iωd +eiωd ). The interaction Hamiltonian under

RWA reduces to iℏΩ(meiωdt)−m†e−iωdt, where Ω =
√

5NγeB1
4 is the Rabi frequency of external drive.

However, one would like to rewrite the Rabi frequency in terms of the power of the laser input

instead of the associated magnetic field. To this end, we consider the input plane wave oscillating

at frequency ωd and the associated Poynting vector is given by S = E1×B1
µ0
=

cB2
1

µ0
, where c is the

velocity of light. Since S = Power
Area , for a laser field applied at frequency ωd with power Pd, we

have Pd =
cB2

1
µ0
πr2, where r is the radius of the magnetic sample. Therefore, we may rewrite the

interaction Hamiltonian as H /ℏ = iΩ(m†e−iωt − meiωt), where Ω = γe
r

√
5Nµ0Pd

4πc . In the end, the full

Hamiltonian of the coherently interacting cavity-magnon can be written as

Heff/ℏ = ωaa†a + ωmm†m + +U(m†2m2) + g(a†m + am†) + iℏΩ
(
m†e−iωdt − meiωdt

)
. (2.33)

Note that the two modes can also interact dissipatively through a common intermediary reservoir.

This interaction enters through the master equation describing the dynamics of the system and it

will be the subject of discussion in subsequent chapters.

2.3 Summary

To summarize, we introduced the quantum theory of magnons and their interactions with con-

fined electromagnetic fields. Magnons are elementary excitations in ordered magnetic systems

like ferromagnets. In general, a magnetic system can have interactions of different types, includ-

ing, Heisenberg exchange interactions, DDI, Zeeman interaction and anisotropic interactions. In

addition, they can also couple strongly to electromagnetic fields, for example, in resonators. When

the number of spins in the magnetic system significantly exceeds the number of excitations in the

bulk, one can map the magnet to a system of quantized interacting harmonic oscillators. In partic-

ular, we have explicated the effect of exchange and dipolar interactions leading to the emergence
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of higher-order magnon interactions. Owing to their excellent tunability and strong coupling to

microwave fields, YIGs, a ferrimagnetic system have attracted a lot of attention in recent years

with applications in quantum information processing. We have also reviewed the experimental and

theoretical progress in the domain of cavity-magnonics involving YIGs. In the subsequent chap-

ters, we will discuss some of our theoretical analyses of the interaction between magnetic systems

and microwave fields resulting in exotic semiclassical and quantum phenomena.
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3. CAVITY MEDIATED TRANSFER OF SPIN CURRENTS1

The exchange of energy between atoms and molecules mediated by dipole-dipole interaction

(DDI) is quintessential in various branches of science. In particular, it is well known from quan-

tum electrodynamics that the exchange of a photon can bring about DDI and thereby stimulate the

transfer of excitations between atoms [93] which form the bedrock of quantum gates. However, for

the DDI to be significant in free space, the atoms must be placed at a distance less than the inter-

acting electromagnetic field. In contrast, long-range DDI between sub-systems can be established

in resonant cavities, for example, the strong DDI between non-interacting qubits in a dispersive

cavity [94, 95]. Note that while bulk of the precursive literature have focused on atoms and qubits,

there have been experiments involving the macroscopic systems for the transfer of excitations. Of

particular importance is the 2017 experiment by Bai et al which demonstrated the remote transfer

of excitations between two macroscopic YIGs mediated by a microwave cavity in the linear do-

main of the dynamics of the system [29]. It is worth noting that the DDI, in general, consists of

a dissipative component and recently, Xu et al expanded the earlier work on spin currents to the

dissipative domain [70]. The experiments, however, was performed in the domain of low external

pump powers and therefore does not include the effect of intrinsic anharmonicities of the magnetic

system. Lately, we extended the analysis, theoretically, to include the intrinsic Kerr nonlinearities

of the ferrite samples by applying a strong external pump on the YIG leading to the generation

of nonlinear cavity-magnon polaritons. In the long-time limit, that is, when the mode operators

describing the YIGs and the cavity have decayed into a steady state, we observed multistability in

the spin current response from the YIGs. Further, we developed a spectroscopic detection scheme

for the observation of multistability in the experiments through the application of a weak probe

field on the cavity. The shift in polaritonic peaks of the transmitted field replicated the multistable

structure of the spin currents. In 2021, our results were verified using experimental data by Dr.

1A major part of this chapter is reprinted with permission from Nonlinear spin currents by J. M. P. Nair, Z. Zhang,
M. O. Scully and G. S. Agarwal, Phys. Rev. B 102, 104415 (2020), published by the American Physical Society.
Collaboration with Z. Zhang and M. O. Scully is acknowledged.
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You’s group in China [90].

This chapter is organized as follows. In section 3.1, we discuss the theoretical model for the

nonlinear spin current and introduce basic equations for the cavity-magnon system. We write the

semiclassical equations for spin current in the YIG sphere and present numerical results using a

broad range of parameters in section 3.2. In section 3.3, we develop a spectroscopic detection

method for the spincurrents based on the polariton frequency shift by sending a weak probe field

into the cavity. We discuss the theory of nonlinear magnon polariton in the case of a single and

two YIG system. Further, we numerically obtain the transmission spectra and the polariton fre-

quency shift using experimentally attainable parameters and show the transition from bistability to

multistability. We summarize our results in section 3.4.

3.1 Cavity-magnon system

We begin by considering two YIG spheres in a single-mode microwave cavity as depicted in

Fig. 3.1. The dispersive spin waves haven been observed in YIG bulks, involving two distinct

modes: Kittel mode and magnetostatic mode (MS) [96, 97]. The Kittel mode has a spatially

uniform profile as obtained in the long wavelength limit, whereas the MS mode has finite wave

number so that it has distinct frequency from the Kittel mode. The technical advance on laser

control and cavity fabrication recently made the mode selection accessible. In our model, we

take into account the Kittel mode strongly coupled to cavity photons, along the line of recent

experiments in which the MS mode is not the one of interest. The Kittel mode is a collective spin

of many electrons, associated with a giant magnetic moment, i.e., M = γS/V , where γ = e/mec

is the gyromagnetic ratio for electron spin and S denotes the collective spin operator with high

angular momentum. This results in the coupling to both the applied static magnetic field and the

magnetic field inside the cavity, shown in Fig. 3.1. The Hamiltonian of the hybrid magnon-cavity

system is
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Figure 3.1: Schematic of cavity magnons. Two YIG spheres are interacting with the basic mode
of the microcavity in which the right mirror is made of a high-reflection material so that photons
leak from the left side. The static magnetic field producing the Kittel mode in YIG1 is along the
ẑaxis, whereas the static magnetic field for YIG2 is tilted with respect to the ẑ-axis. The
microwave field is along the ŷ and the magnetic field inside the cavity is along the x̂ axis.

H/ℏ = −γ
2∑

n=1

Bn,0S n,z + γ
2

2∑
n=1

ℏK(n)
an

M2
nVn

S 2
n,z

+ ωca†a + γ
2∑

n=1

S n,xBn,x

(3.1)

assuming that the magnetic field in cavity is along the x axis whereas the applied static magnetic

field B0 is along the z direction. The 2nd term in Eq. (3.1) results from the magnetocrystalline

anisotropy giving the anisotropic field. We thereby assume the anisotropic field has z component

only, in accordance to the experiments such that the crystallographic axis is aligned along the

field B0. ωc represents the cavity frequency. By means of the Holstein-Primakoff transform [85],

we introduce the quasiparticle magnons described by the operators m and m† with [m,m†] = 1.

Considering the typical high spin density in the ferromagnetic material, e.g., yttrium iron garnet

having diameter d = 1mm in which the density of the ferric iron Fe3+ is ρ = 4.22 × 1027m−3 that
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leads to S = 5N
2 =

5
2ρV = 5.524 × 1018, the collective spin S is of much larger magnitude than the

number of magnons, namely, S ≫ ⟨m†m⟩. The raising and lowering operators of the spin are then

approximated to be S +i =
√

2S imi, S −i =
√

2S im
†

i (i = 1, 2 labels the two YIGs). In the presence

of the external microwave pumping, we can recast the Hamiltonian in Eq. (3.1) into

Heff/ℏ =ωca†a +
2∑

i=1

[
ωim

†

i mi + gi

(
m†i a + mia†

)
+ Uim

†

i mim
†

i mi

]
+ iΩ

(
m†1e−iωdt − m1eiωdt

) (3.2)

where the frequency of Kittel mode is ωi = γBi,0 − 2ℏK(i)
anγ

2S i/M2
i Vi with γ/2π = 28GHz/T.

gi =
√

5
2 γ
√

NBvac gives the magnon-cavity coupling with Bvac =
√

2πℏωc/V denoting the magnetic

field of vacuum and Ui = K(i)
anγ

2/M2
i Vi quantifies the Kerr nonlinearity. The Rabi frequency is

related to input power Pd throughΩ = γ
√

5πρdPd
3c . From Eq. (3.2), we obtain the quantum Langevin

equations (QLEs) for the magnon polaritons as

ṁ1 = −(iδ1 + γ1)m1 − 2iU1m†1m1m1 − ig1a + Ω +
√

2γ1min
1 (t)

ṁ2 = −(iδ2 + γ2)m2 − 2iU2m†2m2m2 − ig2a +
√

2γ2min
2 (t)

ȧ = −(iδc + γc)a − i(g1m1 + g2m2) +
√

2γcain(t) (3.3)

in the rotating frame of drive field, where δi = ωi + Ui − ωd and δc = ωc − ωd. γi and γc rep-

resent the rates of magnon dissipation and cavity leakage, respectively. min
i (t) and ain(t) are the

input noise operators associated with magnons and photons, having zero mean and broad spec-

trum: ⟨min,†
i (t)min

j (t′)⟩ = n̄iδi jδ(t − t′), ⟨min
i (t)min,†

j (t′)⟩ = (n̄i + 1)δi jδ(t − t′), ⟨ain,†(t)ain(t′)⟩ = 0 and

⟨ain(t)ain,†(t′)⟩ = δ(t − t′) where n̄i = [exp(ℏωi/kBT ) − 1]−1 is the Planck distribution.

3.2 Spin current in nonlinear magnon polaritons

Since the YIG1 is driven by a microwave field, one would expect a spin transfer towards YIG2.

This results in the spin current which can be detected electronically through the magnetization of
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Figure 3.2: Spin current signal obtained from Eq. (3.5) illustrating bistability-multistability
transition. (a,b) ωc/2π = 10.078GHz; (c,d) ωd/2π = 10GHz. Other parameters are
ω1/2π = 10.018GHz, ω2/2π = 9.963GHz, g1/2π = 42.2MHz, g2/2π = 33.5MHz,
U1/2π = 7.8nHz, U2/2π = 42.12nHz, γ1/2π = 5.8MHz, γ2/2π = 1.7MHz and γc/2π = 4.3MHz.
In Fig.3.2(b), for drive power= 30mW, we observe three stable states given by x = 1.58 × 1014,
x = 5.6 × 1014 and x = 8.83 × 1014.

the systems. Thus the spin current is determined by the quantity ⟨m†2m2⟩, up to a constant in front.

The spin migration effect has been observed in Ref.[29]. However as indicated in the introduction,

the nonlinearity of the sample starts becoming important if the driving field increases. Thus we

would like to understand the behavior of the spin current when the dependence on Kerr nonlinearity

in Eq. (3.3) becomes important. As a first step, we will study the resulting behavior at the mean-

field level, i.e., the quantum noise terms in Eq. (3.3) are essentially dropped and the decorrelation

approximation is invoked when calculating the mean values of the operators. In the steady state,

these mean values O (0) = ⟨O⟩ (O (0) = M1,M2,A ; O = m1,m2, a) obey the nonlinear algebraic

27



Figure 3.3: Spin current signal against drive power at different values of cavity leakage. (a)
γc < g1,2 indicates strong magnon-cavity coupling; (b,c) γc ≃ g1,2 indicates the intermediate
magnon-cavity coupling; (d) γc > g1,2 gives rise to weak magnon-cavity coupling.
ωc/2π = 10.078GHz, ωd/2π = 9.998GHz and other parameters are the same as Fig.3.2.

equations

− (iδ1 + γ1)M (0)
1 − 2iU1|M

(0)
1 |

2M (0)
1 − ig1A

(0) = −Ω

− (iδ2 + γ2)M (0)
2 − 2iU2|M

(0)
2 |

2M (0)
2 − ig2A

(0) = 0

− (iδc + γc)A (0) − i(g1M
(0)
1 + g2M

(0)
2 ) = 0.

(3.4)
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A manipulation of Eq. (3.4) yields the following nonlinear equation for the spin transfer, i.e.,

magnetization from YIG1 to YIG2 with x ≡ |M (0)
2 |

2

∣∣∣∣∣∣
(
δ̃1 +

2U1(δ2
c + γ

2
c)

g2
1g2

2

∣∣∣δ̃2 + 2U2x
∣∣∣2 x

) (
δ̃2 + 2U2x

)
−

g2
1g2

2

(δc − iγc)2

∣∣∣∣∣∣2x =
5πg2

1g2
2γ

2ρdPd

3c(δ2
c + γ

2
c)

(3.5)

where δ̃1,2 = δ1,2 − iγ1,2 −
g2

1,2

δc−iγc
. We first note that in the absence of Kerr nonlinearity, the spin

current reads

x =
5πg2

1g2
2γ

2(δ2
c + γ

2
c)ρd

3c|δ̃1δ̃2(δc − iγc)2 − g2
1g2

2|
2
Pd (3.6)

which corresponds to the linear spin current measured in Ref. [29]. This gives rise to the linear

regime with lower drive power in Fig. 3.2 and Fig. 3.3.

Fig. 3.2 depicts the spin current flowing to YIG2 against various degrees of the drive power.

One can observe a smooth increase of the spin current obeying the linear law with the drive power,

under the weak pumping. When the drive becomes stronger, a sudden jump of the spin current

shows up, manifesting more efficient spin transfer between the two YIG spheres. When reducing

the drive power, we can observe an alternative turning point, where a downhill jump of spin transfer

is elaborated. By tweaking the magnon-light interaction, a bistability-multistability transition is

further manifested, wherein the latter is resolved by the two cascading jumps. For instance, Fig.

3.2(a,b) elaborate such transition by increasing the frequency of the drive field. A similar transition

can be observed as well through increasing the cavity frequency, shown in Fig. 3.2(c,d). It is

worth noting from Fig. 3.2 that the multistability of magnon polaritons is accessible within the

regime U1 ≪ U2, whereas the multistable feature becomes less prominent with reducing the Kerr

nonlinearity of YIG2, namely, U1 ∼ U2.

So far, the results have manifested the essential role of the nonlinearity in producing the multi-

stable nature of the spin transfer between magnon modes. Next we plot in Fig. 3.3 the robustness

29



Figure 3.4: Schematic of the change in the linear transmission as increasing the driving power on
the YIG sphere that activates nonlinearities of the sphere. The output spectrum exhibits shifts and
asymmetries (See Fig. 3.4 for exact behaviour).

of multistability for different degrees of cavity leakage. The spin current manifests the multistable

nature of magnon polaritons within a broad range of cavity leakage rates. Given the low-quality

cavity where g1,2 ≃ γc ≫ γ1,2, one can still see the multistability.

Notice that the above results indicated |M (0)
i |

2 ≪ 2S ≃ 1.1× 1019 which fulfilled the condition

for the validity of the effective Hamiltonian in Eq. (3.2).

3.3 Spectroscopic detection of nonlinear magnon polaritons

In order to study the physical characteristics of a system, it is fairly common to use a probe

field. The response to the probe gives the system characteristics such as the energy levels, line

shape and so on. We adopt a similar strategy here though we are dealing with a nonlinear &

nonequilibrium system. We apply a weak probe field to the cavity and study how the transmission

spectra changes with increasing drive power, see Fig.3.4. When turning off the drive, the probe

transmission displays two polariton branches in the limit of strong cavity-magnon coupling. As

the drive field is turned on, the nonlinearity of the YIG spheres starts entering, which results in a

significant change in the transmission of the weak probe. The transmission peaks are shifted, and

the transmission becomes asymmetric. To elaborate on this, we will start off with a simple case
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including a single YIG sphere.

3.3.1 Nonlinearity of a single YIG as seen in probe transmission

For a single YIG sphere in a microwave cavity as considered in Ref. [1], the dynamics obeys

the following equations

Ṁ = −(iδm + γm)M − 2iU |M |2M − igA + Ω

˙A = −(iδc + γc)A − igM + Epe−iδt

(3.7)

perturbed by a weak probe field at frequency ω and Ωp(t) = Epe−iδt + c.c., where Ep is the Rabi

frequency of the probe field and δ = ω − ωd. For a notational simplicity, we have set M (0)
1 =

M , δ1 = δm, U1 = U, g1 = g, γ1 = γm. The existence of nonlinear terms in Eq. (3.7) allows for

the Fourier expansion of the solution such that

Mi =

∞∑
n=−∞

M (n)
i einδt, A =

∞∑
n=−∞

A (n)einδt (3.8)

where M (n) and A (n) are the amplitudes associated with the n-th harmonic of the probe field

frequency [98]. Let M0 ≡M (0) and A0 ≡ A (0) denote the zero-frequency component, giving the

steady-state solution when turning off the probe field. Inserting these into Eq. (3.7), one can find

the linearized equations for the components M± ≡M (∓1) and A± ≡ A (∓1)

(∆ − δ)M+ + 2UM 2
0 M ∗

− + gA+ = 0

2UM 2
0 M ∗

+ + (∆ + δ)M− + gA− = 0

gM+ + (∆c − δ)A+ = −iEp

gM− + (∆c + δ)A− = 0,

∆ = δm + 4U |M0|
2 − iγm, ∆c = δc − iγc

(3.9)
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Figure 3.5: (a) Transmission spectrum for a single YIG in a single-mode microwave cavity, as a
function of scanning probe frequency, according to Eq. (3.12). Blue line is for the case when
turning off the drive field. Figure 3.5(b) depicts the spin polarization against the drive power. We
observe that, for drive power = 90mW, there are two stable states at |M (0)|2 = 0.66 × 1015 and
|M (0)|2 = 2.55 × 1015. The green and red lines in Fig. 3.5(a) are for the same bistable states with
input power Pd = 90mW. Figure 3.5(c) depicts the frequency shift of the lower polariton peak as a
function of drive power. Parameters are ωc/2π = 10.025GHz, ωm/2π = 10.025GHz,
ωd/2π = 9.998GHz, g/2π = 41MHz, U/2π = 8nHz, γm/2π = 17.5MHz and γc/2π = 3.8MHz,
taken from recent experiments [1].

which yields to

A+ =
Ep

i(∆c − δ)

[
1 +

g2

(∆c − δ)v

]
(3.10)

where

v = ∆ − δ −
g2

∆c − δ
−

4U2(∆∗c + δ)|M0|
2

(∆∗c + δ)(∆∗ + δ) − g2 . (3.11)

Eq. (3.10) defines the 1st-order response function and hence the complex transmission amplitude

is given by

T (δ) = −
i

∆c − δ

[
1 +

g2

(∆c − δ)v

]
(3.12)
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which leads to the polariton frequency

δ2 =
1
2

[
(δm + 4U |M0|

2)2 + δ2
c + 2g2 − 4U2|M0|

2

±

√
F + 16U2δ2

c |M0|
2
] (3.13)

with

F =
(
(δm + 4U |M0|

2 − δc)2 + 4g2 − 4U2|M0|
2
)

×
(
(δm + 4U |M0|

2 + δc)2 − 4U2|M0|
2
)
.

(3.14)

For a given drive power, we calculate |M0|
2 from Eq. (3.7) and insert this value into Eq. (3.12) to

obtain the transmission amplitude. The peak positions are given by Eq. (3.13). We plot the trans-

mission spectrum in Fig. 3.5(a), employing the experimentally feasible parameters [1]. It shows

the Rabi splitting between the two polariton branches at zero input power. As the input power is

switched on, the peak shift can be considerably observed, resulting from the Kerr nonlinearity, as

predicted from Eq. (3.13). For a given drive power, the lower and higher polaritons correspond

to the lowest and highest energy peaks of the transmission spectra at frequencies ωLP and ωHP

respectively. This is further illustrated in Fig. 3.5(b), where the two stable states are observed at

Pd = 90mW. Fig. 3.5(c) depicts the frequency shift of the peak of lower polariton as a function

of input power, and the bistability of the magnon polaritons is therefore evident. Here the fre-

quency shift of lower polariton is defined by ∆LP ≡ ωLP − ω
0
LP with ω0

LP giving the lower polariton

frequency in the absence of Kerr nonlinearity.
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Figure 3.6: (a) Transmission spectrum for two YIG in a microwave cavity, as scanning probe
frequency, according to Eq. (3.21). The blue line is for the case without driving, while green,
black and red lines are for triple states with input power Pd = 30mW. They represent the same
three stable states described in Fig. 3.2(b). (b) Frequency shift associated with upper polariton
peak, where δHP = ωHP − ωd. Other parameters are ωc/2π = 10.078GHz, ω1/2π = 10.018GHz,
ω2/2π = 9.963GHz, ωd/2π = 9.998GHz, g1/2π = 42.2MHz, g2/2π = 33.5MHz,
U1/2π = 7.8nHz, U2/2π = 42.12nHz, γ1/2π = 5.8MHz, γ2/2π = 1.7MHz and γc/2π = 4.3MHz.

3.3.2 Detection of multistability in spin current via probe transmission

For two YIG spheres interacting with a single-mode cavity, we obtain the following equations

for the system perturbed by a probe field

Ṁ1 = −(iδ1 + γ1)M1 − 2iU1|M1|
2M1 − ig1A + Ω

Ṁ2 = −(iδ2 + γ2)M2 − 2iU2|M2|
2M2 − ig2A

˙A = −(iδc + γc)A − i(g1M1 + g2M2) + Epe−iδt.

(3.15)
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Applying the Fourier expansion technique given in Eq. (3.8), we find the linearized equations for

the components associated with the harmonic e±iδt

(∆1 − δ)M1,+ + 2U1M
2
1,0M

∗
1,− + g1A+ = 0

2U1M
2
1,0M

∗
1,+ + (∆1 + δ)M1,− + g1A− = 0

(∆2 − δ)M2,+ + 2U2M
2
2,0M

∗
2,− + g2A+ = 0

2U2M
2
2,0M

∗
2,+ + (∆2 + δ)M2,− + g2A− = 0

g1M1,+ + g2M2,+ + (∆c − δ)A+ = −iEp

g1M1,− + g2M2,− + (∆c + δ)A− = 0

(3.16)

which can be easily solved by matrix techniques. Equation (3.16) can reduce to two linear equa-

tions with two unknowns


v11 v12

v21 v22



M1,+

M2,+

 = iEp


α1

α2

 (3.17)
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with the coefficients

v11 = ∆1 − δ −
g2

1

∆c − δ
+

U1M 2
1,0

U2M 2
2,0

×
g2

1g2
2 − 4U1U2(∆∗c + δ)(∆c − δ)M ∗,2

1,0 M 2
2,0

(∆c − δ)[(∆∗c + δ)(∆c + δ) − g2
1]

v12 =
g1g2

∆c − δ

U1M 2
1,0

U2M 2
2,0

g2
2 − (∆c − δ)(∆2 − δ)

(∆∗c + δ)(∆∗1 + δ) − g2
1

− 1


v21 =

g1g2

∆c − δ

U2M 2
2,0

U1M 2
1,0

g2
1 − (∆c − δ)(∆1 − δ)

(∆∗c + δ)(∆∗2 + δ) − g2
2

− 1


v22 = ∆2 − δ −

g2
2

∆c − δ
+

U2M 2
2,0

U1M 2
1,0

×
g2

1g2
2 − 4U1U2(∆∗c + δ)(∆c − δ)M 2

1,0M
∗,2
2,0

(∆c − δ)[(∆∗c + δ)(∆c + δ) − g2
2]

(3.18)

and

α1 =
g1

∆c − δ

1 − U1M 2
1,0

U2M 2
2,0

g2
2

(∆∗c + δ)(∆∗1 + δ) − g2
1


α2 =

g2

∆c − δ

1 − U2M 2
2,0

U1M 2
1,0

g2
1

(∆∗c + δ)(∆∗2 + δ) − g2
2


(3.19)

where ∆ j = δ j + 4U j|M j,0|
2 − iγ j; j = 1, 2. Note that M1,0 and M2,0 are to be obtained from Eq.

(3.4). Solving for A+ we find, with relatively little effort

A+ =
Ep

i(∆c − δ)

[
1 +

(g1v22 − g2v21)α1 − (g1v12 − g2v11)α2

v11v22 − v12v21

]
(3.20)

which leads to the transmission amplitude

T (δ) = −
i

∆c − δ

[
1 +

(g1v22 − g2v21)α1 − (g1v12 − g2v11)α2

v11v22 − v12v21

]
. (3.21)
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Figure 3.7: Transition between bistability and multistability. (a) ωc/2π = 10.078GHz,
ωd/2π = 9.9909GHz and (b) ωc/2π = 10.078GHz, ωd/2π = 9.9989GHz; (c) ωc/2π = 10.06GHz,
ωd/2π = 10GHz and (d) ωc/2π = 10.075GHz, ωd/2π = 10GHz. Other parameters are the same as
Fig. 3.2.

The information on the dispersion relation of nonlinear magnon polaritons is contained in Eq.

(3.21).

Fig. 3.6(a) illustrates the transmission spectra of the hybrid magnon-cavity systems under

various input powers. Here we have taken into account the experimentally feasible parame-

ters ωc/2π = 10.078GHz, ω1/2π = 10.018GHz, ω2/2π = 9.963GHz, ωd/2π = 9.998GHz,

g1/2π = 42.2MHz, g2/2π = 33.5MHz, U1/2π = 7.8nHz, U2/2π = 42.12nHz, γ1/2π = 5.8MHz,

γ2/2π = 1.7MHz, γc/2π = 4.3MHz [90]. First of all we observe at very weak input power three
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Figure 3.8: Frequency shift of upper polariton against input power at different values of cavity
leakage. (a) γc < g1,2 indicates strong magnon-cavity coupling; (b,c) γc ≃ g1,2 indicates the
intermediate magnon-cavity coupling; (d) γc > g1,2 gives rise to weak magnon-cavity coupling.
All the parameters are same as Fig.3.3.

distinct peaks positioned at the same frequencies as the polariton branches, termed as lower (LP),

intermediate (MP) and higher polaritons (HP) in an ascending order of energy. With increasing

input power, the peak shift of magnon polaritons can be observed from the transmission spectra,

where the frequency shifts associated with the polariton states are defined by ∆σ = ωσ−ω
0
σ; σ =LP,

MP and HP, respectively, where ω0
σ denotes the polariton frequency with no nonlinearity. This

shift is attributed to the Kerr nonlinearity given by the term U1|M1|
4 + U2|M2|

4 which is greatly

enhanced as the strong drive creates large magnon number. Since the weak Kerr nonlinearity in
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real ferromagnetic materials would lead to tiny frequency shift only, we essentially plot the po-

lariton frequency shift as a function of input power. The net hysteresis loop is thereby monitored

through the frequency shift of the higher polariton, ranging from 0 to 30MHz, shown in Fig. 3.6(b).

The same trends can be also demonstrated for the frequency shift of lower polariton, which will

be presented elsewhere. The multistability can then be clearly manifested by means of the two

cascading jumps of frequency shift with increasing input power. More interestingly as shown in

Fig.3.7, the bistability-multistability transition in magnon polaritons is revealed through tweaking

either the frequency of microwave drive (upper row of Fig. 3.7) or the cavity-magnon detuning

(lower row of Fig. 3.7). Within the parameter regimes feasible for experiments, the two magnon

system shows in Fig. 3.7(a,c) the bistability that has been claimed in a single magnon in recent

experiments [1]. By either increasing drive or cavity frequency, the multistable feature is further

observed as depicted in Fig. 3.7(b,d).

Fig. 3.8 shows the robustness of multistability in magnon polaritons, against the cavity leakage.

Clearly, the multistability becomes weaker when using the worse cavity. Indeed, the revisit of

the hysteresis curves indicates that the multistability may be achieved, even with lower-quality

cavity giving rise to intermediate magnon-cavity coupling, where g1,2 ≃ γc ≫ γ1,2 yields to Fig.

3.8(b,c). This regime is crucial for detecting the multistability and spin dynamics of magnons used

in Ref.[1, 29], in that a spectrometer is desired to read out the photons imprinting the magnon states

information. The photons leaking from the cavity will then undergo a Fourier transform through

the grating attached to the detector. This scheme requires the much larger cavity leakage than the

magnon dissipation, namely, γc ≫ γ1,2, so that the magnon states remain almost unchanged when

reading off the photons from the cavity.

3.4 Summary

To summarize, we have studied the photon-mediated nonlinear spin migration between mas-

sive ferromagnetic materials. Owing to the Kerr nonlinearity coming from the magnetocrystalline

anisotropy, the multistability in the spin current between the two YIG spheres was demonstrated.

Strong external pump powers of magnitude ≈ 0.1µW were used and this goes beyond the linear

39



regime of spin transfer studied before. We further developed a spectroscopic detection scheme for

resolving the spin polarization migration, through the response of nonlinear magnon polaritons to

the external probe field. Employing a broad range of experimentally realizable parameters, we

showed that the spin current as a distinct signal of detection produced results in perfect agreement

with the transmission spectrum, demonstrating, for instance, the bistability-multistability transition

in magnon polaritons. The multistability is surprisingly robust against cavity leakage: the multi-

stable nature may persist with a low-quality cavity giving intermediate magnon-cavity coupling.

This may be helpful in probing the multistable effect in real experiments.

It is worth noting that the developed formalism and the accompanying results in this chapter

would apply to various kinds of systems. In particular, our approach for multistability in magnons

may be potentially extended to condensed-phase polyatomic molecules and molecular clusters,

along with the fact of similar forms of nonlinear couplings Ub†bb†b and b†bq where b is the

annihilation operator of excitons and q denotes the nuclear coordinate. Moreover, the energy-

transfer protocol could be applied to systems of atoms, superconducting qubits and quantum dots,

trapped ions, and spin ensembles. Likewise, nonlinear effects such as bistability would also be

reinforced on account of the parametrically induced coherences.
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4. QUANTUM AMPLIFICATION OF ENERGY-TRANSFER IN CAVITY MAGNONICS BY

A PARAMETRIC DRIVE INDUCED LONG-LIVED MODE1

Photon-mediated interactions are a quintessential resource in various branches of science. A

prime example is the well-known dipole-dipole interaction (DDI), which, according to quantum

electrodynamics, arises from the exchange of a photon [77] between two atoms. The DDI consists,

in general, of a dissipative component as well which can vanish at a certain separation of the

dipoles. This DDI determines the energy/excitation transfer [99, 100] between, say, the donor

and the acceptor molecules, and is of paramount importance in the generation of quantum gates

[13, 101]. It is therefore desirable to have a mechanism which can control and potentially improve

such an interaction. One routine technique is to use high-quality cavities and employ large coupling

between the cavity photons [102–104]. A natural question then arises - can one further improve

the cavity-mediated energy transfer which would be instrumental to the realization of quantum-

enhanced fundamental interactions and the development of sophisticated quantum machines and

networks?

In this chapter, we provide a definite answer to this question and demonstrate the possibility of

enhancing the photon-mediated transfer of excitations. Guided by the developments in quantum

metrology using squeezed states [105–109], we propose to use parametric interactions, which give

rise to squeezed states of matter and light, to enhance the cavity-mediated transfer of excitations.

We would specifically apply the idea in the context of cavity magnonics [1, 20–22, 34, 110] and

show significant amplification of the photon-mediated transfer of spin currents between magnetic

samples [29] by using parametric interactions in cavities. We show that parametric interactions

can produce long-lived modes like BIC which result in substantial enhancement of the spin cur-

rents. We note that many other applications of parametric interactions have appeared in literature:

1A major part of this chapter is reprinted with permission from Quantum amplification of spin currents in cavity
magnonics by a parametric drive induced long-lived mode by D. Mukhopadhyay, J. M. P. Nair and G. S. Agarwal,
Phys. Rev. B 106, 184426 (2022), published by the American Physical Society. Collaboration with D. Mukhopadhyay
is acknowledged.
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enhanced cooling [54]; exponentially enhanced spin-cavity photon coupling [55, 56]; enhanced

phonon-mediated spin-spin coupling in a system of spins coupled to a cantilever [57]; possibility

of first order superradiant phase transitions [58]; enhancement in the generation of entangling gates

[59]; amplification of small displacements of trapped ions [60].

Here, we focus on cavity magnonics involving the coupling of high-quality microcavities and

YIG spheres. These systems are attracting increasing attention [23, 24, 26] as favorable candi-

dates to observe various semiclassical [30, 35, 66, 67, 70, 72, 74, 81, 82] and quantum phenomena

[25, 27, 32, 91] at the macroscopic level. Some of the key developments include the coupling of

magnons to a superconducting qubit [25] and phonons [27], microwave-to-optical interconversion

[35, 82], exceptional points [30], entanglement [32, 91] and many more. One of the remarkable

signatures of such a coupling was the observation of a cavity-mediated transfer of spin excitations

[29]. Two YIG samples were placed at the opposite ends of a microwave cavity and by manipu-

lating the cooperativity of one of them, researchers could detect the modifications in the magnon

population, namely, the spin current of the other. Here we demonstrate how the photon-mediated

transfer of spin-wave excitations can be significantly boosted by a two-photon parametric drive ap-

plied to the cavity. The parametric interaction could be produced either from a χ(2)-type or χ(3)-type

nonlinearity. By coherently pumping one of the samples, we probe modifications to the steady-

state magnon occupancy in the neighbouring sample as a function of the parametric drive strength.

Our analysis showcases the emergence of parametrically induced coherences characterized by a

long-lived mode leading to precipitous enhancement in the spin current response. The enhance-

ment can be extraordinarily large around the two-photon resonance condition ωd = ωp/2, where

ωd and ωp are the frequencies of the magnon drive and the parametric pump field respectively.

This phenomenon is brought to bear by the cumulative effect of two-photon-excitation events. The

cascaded absorption of photons by the concerned magnon mode opens up higher-order transition

pathways within the magnon Fock space. The fact that magnificent enhancement factors can be

achieved even within the permissible stable regime of the nonlinear dynamics underscores the util-

ity of this scheme. The analysis presented in this letter is generic, and pertinent to a wide class
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of systems with a parametrically driven component. This is because energy transfer is ubiquitous.

The investigated paradigm would apply, for example, to nonlinear Kerr boson systems driven far

from equilibrium [111].

4.1 Amplified spin currents

To set the stage, we shortly recapitulate the problem of two spatially separated macroscopic

ferrite samples of YIG coupled to the microcavity field. Owing to an effective cavity-mediated

coupling between the two spheres, an external driving field applied to the first YIG sample would

elicit a spin current from the second one. The system Hamiltonian, in the reference frame of the

driving field, assumes the form [1, 37]

H0/ℏ = ∆ca†a +
2∑

j=1

∆ jm
†

jm j +

2∑
j=1

g j[a†m j + am†]

+iΩ(m†1 − m1), (4.1)

where a is the annihilation operator representing the cavity, ∆c = ωc − ωd is the cavity detuning,

m1,m2 are the two Kittel modes representing magnonic excitations in the two samples, and ∆1 =

ω1 −ωd, ∆2 = ω2 −ωd the respective detunings. For each j, the parameter g j = (
√

5/2)γe
√

N jBvac

denotes the coherent magnon-photon interaction strength, with γe being the gyromagnetic ratio,

Bvac =

√
µ0ℏωc

2Vc
the magnetic field of vacuum, and N j the total number of spins in the sample.

Plus, Ω =
γe

2

√
5µ0ρ1d1Dp

3c
is the Rabi frequency of the applied drive, where ρ1 and d1 are the

respective spin density and diameter of the first sample, while Dp is incident power of the applied

drive. To understand this transfer of spin-wave excitations at the level of transitions among energy

levels, we note that in the absence of the extrinsic magnon drive, the Hamiltonian is excitation-

preserving, with only an oscillatory energy transfer between the magnon and the cavity modes.

Now let us label the eigenstates of the noninteracting system as |na, n1, n2⟩, where na, n1 and n2

indicate populations of the cavity and the two magnon modes respectively. If a weak coherent

drive (at the single-photon level) on m1 excites the system into the state |0, 1, 0⟩, energy would
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Figure 4.1: Schematic of two ferrimagnetic samples of YIG, coherently coupled to a single-mode
cavity, which is driven externally by a two-photon parametric drive. A uniform bias magnetic
field B0 applied to either of the YIG spheres generates the corresponding Kittel mode and the
YIG1 is driven externally by a coherent drive of low photon occupancy.

be exchanged back and forth among the energy levels |0, 1, 0⟩, |1, 0, 0⟩, and |0, 0, 1⟩, provided the

dissipation is negligible. The transfer happens via the pathway |0, 1, 0⟩ → |1, 0, 0⟩ → |0, 0, 1⟩, and

this simple scheme can be easily extended to the case of coherent drives.

We now demonstrate the impact of a parametric drive applied to the cavity on the associated

transfer efficiency in the system considered above. Precisely, we would be leveraging the potential

of parametrically enhanced spin-photon interactions to amplify the spin currents from magnetic

samples loaded into a cavity resonator. The new schematic is portrayed in Fig. 4.1, where the

cavity field is now parametrically driven. The preceding Hamiltonian has to be supplemented by

an additional contribution of the form Hp/ℏ = (G/2)(a2 + a†2), so that the Hamiltonian for the

parametric system [55, 56, 58] would be given by H = H0 +Hp. To quell the time-dependence

of the Hamiltonian, the frequency of the applied magnon drive ωd has been set equal to ωp/2. Our

objective is to investigate the steady-state spin-current response from the second YIG. Under the

semiclassical approximation, the dynamical equations for the mode amplitudes at the level of mean

fields can be obtained from the master equation of the system. These equations can be condensed
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Figure 4.2: Phase diagram highlighting the region of stable dynamics for (a) the three-mode
cavity-magnon system considered in this letter, and (b) a parametrically driven single-mode
cavity without any coupled accessories.

in the form of a 6 × 6-matrix-differential equation

Ẋ = −iHeffX + ΩFin, (4.2)

where X = (a m1 m2 a† m†1 m†2)T , Heff =

H(0)
eff J

−J −H∗(0)
eff

 is a 6 × 6 coupling matrix, and Fin =

(0 1 0 0 1 0)T . The expectation-value notations ⟨.⟩ have been dropped for brevity. The constituent

block elements of Heff are given by H(0)
eff =


∆c − iκ g1 g2

g1 ∆1 − iγ1 0

g2 0 ∆2 − iγ2

 and J =


G 0 0

0 0 0

0 0 0

, where

2κ, 2γ1, 2γ2 are the respective relaxation rates of the cavity mode and the two magnon modes.

Thus H(0)
eff denotes the coupling matrix in the absence of the parametric drive, i.e., with G set

equal to 0. Eq. (4.2) would permit a steady-state solution insofar as the eigenmodes of Heff have

decaying character. Subject to this assumption, the steady-state spin-current response from the

second magnetic sample could be expressed as M = |m2|
2, wherein m2 =

∑
j=2,5

[
− iH−1

eff

]
2 j
Ω.

To keep the analysis straightforward, we henceforth work with the assumption that ∆1 = ∆2 =

∆c = ∆, κ = γ1 = γ2 = γ, and g1 = g2 = g. As was just stated, the stability of the steady
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state hinges on the imaginary parts of the eigenvalues, which we label as λi’s. This is formally

equivalent to the Routh-Hurwitz criterion for the stability of nonlinear dynamics. The stable and

the unstable regimes for this parametric model are numerically plotted in Fig. 4.2(a), for the ratio

g/κ = 2, with the demarcating partition between the two identified by the equality Im(λi) = 0 for

at least one λi. Commensurately, there exists a critical parametric coupling strength Gc(∆) below

which the dynamics is stable. Contrast this with the corresponding stable regime obtained in the

absence of magnons, i.e., g = 0, which is juxtaposed for reference in Fig. 4.2(b). Not only does

the magnon-photon coupling skew the stablity criterion, it does so in a highly nontrivial fashion.

The effect is clearly not monotonic in ∆. It can also be shown that the stability criterion does not

depend on the two-photon detuning δ = ωd −ωp/2 and the same phase diagram would apply to the

case of non-zero detuning.

In order to capture the effect of the parametric drive, we introduce a dimensionless parameter

F that embodies the relevant enhancement in the spin-current response, F = MG,0
MG=0

. To start off, we

note that this ratio is independent of the Rabi frequency Ω, which, for this kind of experiments,

would correspond to the low-power regime, like 1µW. Moreover, for a specified value of G, this

ratio is fundamentally predicated on the properties intrinsic to the system. Consequently, any

departure of F from unity is construed as a reinforcement due to the two-photon driving term. In

other words, F would represent additional advantage of using the parametric drive over what is

achievable otherwise.

We next present detailed results for the spin current based on Eq. (4.2). Note that we choose

parameters such that the system is stable. Fig. 4.3(a,b) foregrounds the impact of variation in G

on F in the form of a two-dimensional (2D) plot. The color-coded expanse within the graph, with

G < Gc, pertains to the stable regime. Over a significant extent within the stable domain, the factor

remains appreciably higher than unity. Particularly prominent is the narrow belt near the partition

between the stable and unstable regimes, where the magnitude of F starts surging expeditiously

to larger orders of 10. In view of this, we have split the stable domain into two distinct regions.

Fig. 4.3(a) corresponds to the region over which the amplification factor is bounded above by 10.
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Figure 4.3: Spin-current amplification factor plotted (a,b) over the two-dimensional ∆ −G plane,
and (c) against G for ∆/κ = 3. The figures in (b,c), plotted in logarithmic scale, highlights the
region where F exceeds 10, and testify to the tremendous level of enhancement near the phase
boundary Gc/κ = 0.95. The inset in (b) depicts a narrow segment of this region while the inset in
(c) is a plot over the domain where F is bounded above by 10.
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For the range of parameters close to the stability partition, the logarithmic graph in Fig. 4.3(b)

displays a significantly large spot where the magnitude of F ≫ 10. To provide useful estimates,

a one-dimensional (1D) projection of the 2D plot onto the ∆/κ = 3 subspace is showcased in

Figs. 4.3(c). Initially, as the narrow strip near the boundary is approached, we encounter about a

tenfold enhancement in the spin-current response, i.e., F ≃ O(10). Further advances towards the

boundary renders prodigious enhancements by several orders of magnitude (F ≃ O(102 − 104)),

evidenced by the inset in Fig. 4.3(c). What is intrigiuing is that these remarkable enhancement

factors are all accessible within the stable regime. One may ask if it is possible to enhance the

standard (G = 0) photon mediated spin current by simply increasing the coupling strength g. Our

calculations show that for G = 0, corresponding to a fixed ∆, the spin current increases, peaks

and then saturates for large g-values. The peak value is less than 10 times the saturation value.

This behavior persists over a fairly large range of ∆. Thus, the kind of enhancement reported in

Fig. 4.3 cannot be achieved by increasing the coupling strength g. For completeness, in Fig. 4.4,

we also compare the enhancement factor for a non-zero magnitude of the two-photon detuning

δ = ωd − ωp/2 against the corresponding graph in the resonant setting. The inclusion of a two-

photon detuning serves to regularize the somewhat divergent behavior of F near the edge of the

phase boundary. The detuning merely translates the coupling matrix as Heff → Heff − δ. On

account of this rigid translation, the imaginary parts of the eigenvalues remain unaffected while

the real parts get shifted by −δ. This explains why the phase boundary does not change but the

almost divergent nature of the response near the boundary is further stabilized. We also remark

that the techniques for producing parametric drives in microwave domain are known from the

early work of Yurke [112] and many others [113, 114]. Josephson junction amplifiers operating

at low temperatures have evolved as the keystone for these experiments. This is in contrast to the

ones in the optical domain which work at room temperature and utilize second order nonlinearities

in crystals (see, for example, [115]). As an alternative strategy sustainable at room temperature, we

also float the possibility of modulating the parametric pump at twice the cavity frequency, thereby

generating the desired parametric interaction.
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Figure 4.4: Comparative graph illustrating the respective enhancement factors under the
two-photon resonance condition δ/κ = 0, and in the detuned scenario, with δ/κ = 0.2 chosen as an
example. Here, δ = ωd − ωp/2 signifies the two-photon detuning.

While we have presented the numerical results of the spin-current enhancement using the semi-

classical approach, it is worthwhile to examine the contributions from quantum fluctuations to these

semiclassical results. To account for quantum corrections, we need to work with the quantum

Langevin equations [32] and evaluate the covariance matrix of photon and magnon variables. The

analysis demonstrates that the quantum contribution remains many orders of magnitude smaller

than the semiclassical contribution and can be ignored. The physical reason behind this is the the

Langevin forces are delta-correlated, i.e.
〈
F(t)F†(t′)

〉
= 2γδ(t − t′), so that the fluctuations are

effectively driven by a flux of strength γ. The semiclassical response, on the contrary, ensues from

a classical driving field characterized by the Rabi frequency Ω. Since for a driving power of 1 µW,

(Ω/γ) ∼ 105, the quantum contribution remains strongly subordinated.

4.2 Parametric-drive-induced long-lived mode

The anomalously large enhancement observed along the inner fringes of the stability boundary,

and depicted in Fig. 4.3(c), is an immediate consequence of parametrically induced magnon-

photon coherences. In particular, strong coherence leads to the emergence of a long-lived mode
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Figure 4.5: (a) Real and (b) Imaginary parts of the eigenvalues of the reduced 4 × 4 system
involving the modes a and M = (m1 + m2)/

√
2 (as described by Eq. (4.3)).

which sharply reinforces the response function. We can streamline the characterization of eigen-

values by expressing the starting Hamiltonian in terms of the collective magnon operators M =

(m1 + m2)/
√

2 and m = (m1 − m2)/
√

2. This leads to

H /ℏ = ∆a†a + ∆M†M + ∆m†m + g[a†M + aM†]

+G(a2 + a†2) + iΩ[(M† + m†) − h.c)], (4.3)

Clearly, the mode m, which is decoupled from the cavity field, can be dispensed with, and the

coupled dynamics would involve only a, M, and their adjoints. The relevant dynamical equation

can now be cast as

Ẋ = −iHeffX + ΩFin, (4.4)

where we have X = (a M a† M†)T and Heff =

H
(0)

eff J

−J −H ∗(0)
eff

, with H (0)
eff =

∆ − iγ g

g ∆ − iγ

,
and J =

2G 0

0 0

. We now plot the four eigenvalues (real and imaginary parts) of the reduced
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Hamiltonian Heff at G/κ = 0.95 in Figs. 4.5(a,b). It is observed that there exists a particular

eigenvalue λ3 with vanishing real part, and whose imaginary part becomes tantalizingly close to

zero at ∆/κ ≈ 3. Viewed alternatively, the mode identified by λ3 is symbolic of a long-lived or

a bound state in continuum. Since H −1
eff ∼ (det[Heff])−1 ∼ (

∏
j λ
−1
j ), the effect of a vanishingly

diminutive eigenvalue is reflected in the dramatic amplification of the steady-state response. The

stark enhancement in the spin current stems from the energy of a two-photon parametric drive and

stands testimony to the emergence of higher-order energy transition pathways ensuing from the

parametric term (see Fig. 4.6). Without the parametric drive, the transfer efficiency was dictated

by the applied magnon drive. However, with the provision of a parametric drive, an elementary

two-photon excitation can raise the state |1, 0, 0⟩ to |3, 0, 0⟩. As the intracavity field interacts with

the magnons, this energy can be redistributed amongst all the participating entities, leading to a

myriad of allowed final states, such as |2, 1, 0⟩, |1, 1, 1⟩, and |1, 0, 2⟩, to cite a few. Therefore, the

possibility of effecting higher-order magnon occupancies opens up, even in the limit of very weak

pumping rates. In general, for adequately strong values of G, transitions from |1, 0, 0⟩ to higher-

order excited states of the form |2n + 1, 0, 0⟩ can be achieved with greater probabilities, which,

in turn, would engender higher-order excitations of the magnon modes. While we illustrate the

energy transitions assuming an external drive at the single-photon level, these arguments are easily

generalized to the case of larger coherent drives.

4.3 Summary

To sum things up, we have brought to light the emergence of parametrically induced strong

coherence effects in a cavity-QED system which can lead to magnificent enhancements in the

cavity-mediated transfer of spin excitations. In light of the recent upswing of interest in cavity

magnonics, we have highlighted the application of this principle to the parametric amplification

of spin currents in magnetic samples. To underline the origin of this enhancement, we have set

forth a compact explanation in terms of higher-order energy transitions from the system’s ground

state stimulated by the cascaded two-photon absorption from the parametric pump. Increasing

the strength of the parametric drive only serves to embolden this effect, with progressively higher
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Figure 4.6: Higher-order energy transitions afforded by the parametric drive, assuming that YIG1
is driven by a coherent field at one-photon level.

and higher spin currents being observed. The efficiency of this process peaks at the two-photon

resonance condition ωd = ωp/2, supporting enhancement by orders of magnitude even within

the stable phase of the system dynamics. The spectacular amplification of spin-current transfer at

the resonance condition stems from a parametrically produced long-lived mode in the system. The

developed formalism and the accompanying results would apply to various kinds of systems. Quite

generally, the energy-transfer protocol could be applied to systems of atoms, superconducting

qubits and quantum dots, trapped ions, and spin ensembles, in general. Likewise, nonlinear effects

such as bistability would also be reinforced on account of the parametrically induced coherences.

We have preliminary results which show that for typical values of the Kerr-like nonlinearities in

magnons and for power levels lower than 0.1 µ W, the results in Fig. 4.3 are not quite affected

except when G/κ exceeds 0.9. However, this subject requires a detailed analysis and will be a

topic of investigation in the future.
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5. ANTI-P̂T SYMMETRY IN MAGNONICS1

One of the axioms of quantum mechanics necessitates the Hamiltonian of a physical system

to be Hermitian, which ensures real energy eigenspectra. In 1998, Carl Bender introduced P̂T -

symmetric quantum mechanics, where the Hermiticity criterion was replaced by a less stringent

space-time reflection symmetry [116], in other words, the P̂T symmetry and where P̂ and T̂ respec-

tively denote parity and time-reversal operators. The spectrum of a Hamiltonian in the unbroken

P̂T -symmetric phase is real and it can be used to describe the physics of quantum mechanical

systems. Non-Hermitian systems involving P̂T symmetry have attracted considerable attention,

including, for example, in optics, acoustics, electrical circuits and recently in magnonics. In par-

ticular, non-Hermitian degeneracies of the P̂T symmetric systems, the exceptional points (EPs)

have found applications in enhanced sensing of linear perturbations. Note en passant, the real

nature of eigenvalues is not only a property of P̂T symmetry systems but a large class of systems,

namely pseudo-Hermitian systems.

Physical systems are inherently open, that is, systems interact with their environment leading to

open quantum dynamics which can be described either by master equation or quantum Langevin

approaches. This entails a non-Hermitian Hamiltonian to characterize the dynamics of the sys-

tem. The dynamics of the system depend heavily on the symmetry properties of the effective

non-Hermitian Hamiltonian. It is worth mentioning that P̂T symmetry requires the incorporation

of external gain into the system and they do not occur naturally in nature. In contrast, there ex-

ists another interesting symmetry known as anti-P̂T symmetry of the non-Hermitian Hamiltonian

Ĥ which does not require the incorporation gain into the system. It is defined by the condition

{P̂T , Ĥ} = 0 where {A, B} denotes the anti-commutator of A and B. In other words, the non-

Hermitian Hamiltonian with anti-P̂T symmetry changes sign under the action of the P̂T operator.

1A small portion of this chapter is reprinted with permission from Enhanced Sensing of Weak Anharmonicities
through Coherences in Dissipatively Coupled Anti-PT Symmetric Systems by J. M. P. Nair, D. Mukhopadhyay and G.
S. Agarwal, Phys. Rev. Lett. 126, 180401 (2021), published by the American Physical Society. Collaboration with D.
Mukhopadhyay is acknowledged.
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Anti-P̂T symmetry was first theoretically proposed by L. Ge et al in synthetic optical materials with

negative refractive index and later experimentally realized by several different groups. Recently,

the emergence of waveguide QED has opened up a new avenue in realizing anti-P̂T symmetric

systems. Note that anti-P̂T symmetric systems are the most naturally occurring systems in nature

when compared to their P̂T symmetric counterparts. In our research, we focus on the properties of

anti-P̂T symmetric systems specifically in the context of magnonic models.

This chapter is organized as follows. In section 5.1, we discuss the symmetry properties of a

generic two-mode system with a focus on anti-P̂T symmetry and we detail the possible experimen-

tal realizations of anti-P̂T symmetric systems in section 5.2. We summarize the chapter in section

5.3.

5.1 Symmetry properties of two-mode non-Hermitian systems

The dynamics of a two-mode system, according to the coupled-mode theory is provided by

Ẋ = −iH X + Fin, (5.1)

where the constituents of the column matrix X denote the mean-field amplitudes of the two modes,

H is an effective 2 × 2 non-Hermitian Hamiltonian and Fin describes the modality of external

pumping. P̂T -symmetry is defined by the condition [P̂T ,H ] = 0 where P̂ =

0 1

1 0

 and the action

T̂ results in complex conjugation of H , that is, T̂αT̂ = α∗ for any complex scalar α. Consider a

generic 2 × 2 Hamiltonian given by H =

α β

µ ν

 for complex values of the matrix constituents.

Under the action of P̂T , the Hamiltonian transforms into

P̂TH P̂T = H̃ =

ν
∗ µ∗

β∗ α∗

 . (5.2)

The Hamiltonian is said to be P̂T symmetric if H̃ =H and anti-P̂T symmetric when H̃ = −H .

Let us consider both the scenarios in detail.
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P̂T symmetry: P̂T symmetric mode hybridization is conformable with the parameter choices

α = δ/2 − iγ and β = g where δ, γ and g are real parameters. The Hamiltonian of a P̂T symmetric

system can be written as

H =

δ/2 − iγ g

g δ/2 + iγ

 . (5.3)

Notice the term H22 = δ/2 + iγ include external gain into the system commensurate with the

damping in the other mode. The eigenvalues are λ± = δ/2 ±
√

g2 − γ2 are the corresponding right

eigenstates are given by

|ψ⟩+ =
1
√

2

χ1
 , |ψ⟩− = 1

√
2

−χ
∗

1

 , (5.4)

where χ =
√

1 − (γ/g)2 − i2γ/g. The system is in an unbroken P̂T -symmetric phase if every

eigenfunction of H is also an eigenfunction of the P̂T operator. By the same token, if some of

the eigenfunctions of H are not eigenfunctions of P̂T , the P̂T symmetry of H is broken. There-

fore, the system is in the P̂T -symmetric phase for g ≥ γ leading to real eigenvalues. It follows

that the transition point γ = g, which defines the EP, introduces real singularities by quenching

the line widths to nought as depicted in Fig. 5.1. Note that the existence of EPs is a property of

non-Hermitian systems. It is apparent from Eq. (5.4) that at an EP of order 2, both eigenfunctions

|ψ⟩+ and |ψ⟩− coalesce to a unique eigenfunction. Stated differently, at an EP, both the eigen-

values and eigenfunctions of the system coincide and the non-Hermitian Hamiltonian becomes

non-diagonalizable. It is worth mentioning that a Hermitian Hamiltonian remains diagonalizable

irrespective of degeneracies in the eigenspectrum, thanks to the existence of a complete set of

eigenstates. In contrast, one must use a Jordan normal decomposition of the Hamiltonian at the

EP. As mentioned in the introduction, EPs have found applications in sensing linear perturbations

in classical systems which will be discussed later in this chapter.

anti-P̂T symmetry: An anti-P̂T symmetric realization of mode hybridization can be pinned
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down by the parameter choices α = δ/2 − iγ, β = −iΓ. Clearly, while the modes are oppo-

sitely detuned in character, both of them retain their lossy nature where H is substituted by

H =

δ/2 − iγ −iΓ

−iΓ −δ/2 − iγ

. The eigenvalues would be obtained as −iγ±
√
δ2/4 − Γ2 for |δ/2| > Γ

and −iγ ± i
√
Γ2 − δ2/4 (P̂T symmetric phase) for |δ/2| < Γ. The behaviour of the real and imagi-

nary parts of these eigenvalues is provided in Fig. 5.1. As long as the stability criterion is fulfilled,

the linear response of the system is inversely related to det[H ] = −[δ2/4−γ2+Γ2]. The P̂T phase

brings in real singularities at δ = 0 in the limit γ0 → 0, which is evidenced by the resonant inhibi-

tion in the imaginary part of λ+, as marked by the point X in Fig. 5.1 (d). The extreme condition

γ → Γ holds when none of the modes suffers spontaneous losses to its independent surround-

ing. The point X distinguishes an especially long-lived resonance, which leads to a tremendous

buildup in the steady-state amplitudes. We would demonstrate in Chapter 4 how the inclusion of

anharmonicity promptly regularizes the divergent linear response, with the nonlinear response be-

ing highly sensitive to variations in the strength of anharmonicity. Note that point X in anti-P̂T

symmetric systems is functionally analogous to the EP in P̂T symmetric systems.

5.2 Possible realizations of anti-P̂T symmetry

Before going into the possible realizations of anti-P̂T symmetry, let us begin by discussing the

emergence of P̂T symmetric systems. They have been realized in multitude of settings, includ-

ing for example in photonic structures and mechanical membranes. In particular, optical systems

with balanced loss and gain have evinced several exotic phenomena emerging out of P̂T symmetric

systems, including the observation of non-reciprocal transport, coherent perfect absorption, metrol-

ogy, etc. Of particular interest are the phase transition points in P̂T symmetric systems, the EPs

with exciting new phenomena. Some well-known examples include the observation of unidirec-

tional invisibility, enhanced sensing, laser mode selection etc. to name a few.

In stark contrast to P̂T symmetric systems, anti-P̂T symmetric systems do not require external

gain into the system. The first experimental realization of anti-P̂T symmetry in a physical system

came in 2016 using dissipative couplings between spin waves from flying atoms in a warm atomic
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Figure 5.1: a), b) Eigenfrequencies and linewidths for an anti-P̂T symmetric system, plotted
against a variable ∆ = δ/2, calculated in units of Γ. While EPs emerge at ∆ = ±Γ, the
VIC-induced linewidth suppression (designated as X) corresponds to δ = 0. c), d) Analogous
plots for the P̂T symmetric system, against the coupling strength g, in units of γ, at ∆ = 0. EPs
are found at g = ±γ.
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Figure 5.2: Schematic of a general two-mode system dissipatively coupled through a waveguide.
γa(b) and Γ describe decay into the surrounding (local heat bath) and coupling to the fiber (shared
bath) respectively.

vapour cell. In addition, anti-P̂T symmetric systems have been investigated, theoretically and ex-

perimentally, in a plentitude of settings including, but not limited to driven cold atoms [117, 118],

laser-cooled atomic ensembles [119], metamaterials [78], nonlinear optical systems [120], waveg-

uides [121, 122], diffusive systems [123], coupled cavity-magnon systems [76], qubits using nu-

clear spins [124] and have been revealed to entail many exotic physical phenomena. Recently,

in 2018, anti-P̂T symmetry was experimentally demonstrated in an electrical circuit employing

negative resistance units where they demonstrated phase transitions at an EP of the anti-P̂T sym-

metric system [125]. In the following, we detail the theory of the origin of anti-P̂T symmetry using

dissipative couplings.

5.2.1 Anti-P̂T symmetry through dissipative coupling

It is well-known that quantum mechanically, the spatial overlap between two sub-systems can

bring about coherent coupling which enters as a real off-diagonal term in the effective Hamiltonian

describing the dynamics of the system. In addition, these subsystems could be interfacing with a

dissipative environment. Dissipative environments in an open quantum system fall roughly under

two classifications - one, where the modes are coupled independently to their local heat baths, and

another, where a common reservoir interacts with both as depicted in Fig. 5.2. When the common
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reservoir is adiabatically eliminated, the dynamics of the system engenders a complex coupling

between the subsystems having coherent and dissipative components. The coupling is fundamen-

tally of quantum origin and waveguide QED offers a platform to manipulate such interactions. It

is interesting to note the generality of the scheme, i.e., any systems, for instance, atoms, supercon-

ducting qubits, cavities etc. can be used to engineer dissipative coupling through a waveguide. To

further explain the origin of anti-P̂T symmetry, we consider a two-mode system coupled through

a waveguide characterized by the Hamiltonian

H = ∆aa†a + ∆bb†b + iΩ(b† − b), (5.5)

where ∆a and ∆b are the frequency detunings of the modes relative to the external drive with Rabi

frequency Ω. Note that the coupling through the waveguide is not included in the Hamiltonian and

it enters through the master equation characterizing the full dynamics. A complete description of

the two-mode system, in terms of its density matrix ρ, is provided by the master equation [126]

(Appendix A)
dρ
dt
= −

i
ℏ

[H, ρ] + γaL (a)ρ + γbL (b)ρ + 2ΓL (c)ρ, (5.6)

where γa and γb are, respectively, the intrinsic damping rates of the modes, induced by coupling

with their independent heat baths. The parameter Γ introduces coherences, and the Liouvillian

operator L is defined by its action L (σ)ρ = 2σρσ† − σ†σρ − ρσ†σ. Assuming symmetrical

couplings of the modes to the common reservoir we have the relation c = 1
√

2
(a + b). The master

equation is valid under the condition that the phase difference of light propagation from one mode

to the other is a multiple of 2π. Therefore, the mean field equations for the dynamics of the system

are given by

ȧḃ
 = −iH

ab
 + Ω

01
 , (5.7)
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where H =

∆a − i(γa + Γ) −iΓ

−iΓ ∆b − i(γb + Γ)

. Palpably, the off-diagonal elements of the system

are purely imaginary, alluding to the dissipative form of coupling between the modes. In 2020,

Yang et al demonstrated the realization anti-P̂T symmetric system in a cavity magnonic setup by

dissipatively coupling a microwave cavity with a YIG sample through a waveguide. In the next few

chapters, we would focus on anti-P̂T symmetric systems, specifically in the context of magnonic

setups. In particular, the following chapter discusses the great utility of dissipatively coupled two-

mode systems for the sensing of anharmonic systems. Before that, in the next section, we review

the mechanism of sensing linear perturbations close to EPs in P̂T symmetric systems

5.3 Summary

In summary, we have reviewed the general properties of non-Hermitian dynamics in open quan-

tum systems. We discussed two interesting symmetries of the effective non-Hermitian Hamiltonian

demonstrating exotic physical effects. The first of them, P̂T symmetric systems require the incor-

poration of external gain and the non-Hermitian degeneracies in such systems, the EPs possess

excellent sensing capabilities. In contrast, anti-P̂T symmetric systems are the most naturally oc-

curring symmetries in nature. We have detailed various experimental platforms to realize it and

specifically illustrated the role of dissipative coupling in these setups. In the subsequent chapter, we

will discuss how anti-P̂T symmetric systems can be used for the enhanced sensing of anharmonic

perturbations.
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6. ENHANCED SENSING OF WEAK PERTURBATIONS IN DISSIPATIVELY COUPLED

TWO-MODE SYSTEMS1

The development of sensors with improved sensitivity and selectivity plays a quintessential role

in advancing newer technologies with far-reaching applications [127–131] across various scientific

disciplines. Over the last decade, there has been a significant amount of interest in EPs [132–

136] to engineer augmented response in an open quantum system [116, 137–149]. Some recent

experiments include the demonstration of enhanced sensitivity in microcavities near EPs [137] and

the observation of higher-order EPs in a coupled-cavity arrangement [138]. While this is a truly

remarkable development and has acquired a lot of traction, these methodologies are customized

to sense only linear perturbations. One would like to examine the possibilities of newer sensing

techniques, which could be tapped for the detection of anharmonic perturbations.

In this chapter, we outline a new protocol for the enhanced sensing of nonlinearities in dissipa-

tively coupled anti-P̂T systems where the coupling between subsystems is produced via interaction

through a common intermediary reservoir [126]. The sensing scheme hinges on the emergence of

VIC in such systems which has been the subject of intense activity [150–164] with applications

ranging from heat engines [154], nuclear gamma ray transmission [160] to photosynthesis [161]

and molecular isomerization in vision [164]. In a linear system with strong VIC, one of the eigen-

values characterizing its dynamics moves to the real axis generating a long-lived eigenmode pre-

cipitating in a prodigious response to external fields.We demonstrate that the response is strongly

sensitive to weak nonlinearities which are, otherwise, difficult to detect.

Guided by recent experiments, we show explicit results on enhanced sensing by employing

the VIC paradigm in an anti-P̂T symmetric configuration to the detection of very weak magnetic

nonlinearities in a YIG sphere coupled to a cavity [21, 22, 25, 37, 66, 67, 72, 74, 76, 165–169]. Dis-

1A major part of this chapter is reprinted with permission from Enhanced Sensing of Weak Anharmonicities through
Coherences in Dissipatively Coupled Anti-PT Symmetric Systems by J. M. P. Nair, D. Mukhopadhyay and G. S.
Agarwal, Phys. Rev. Lett. 126, 180401 (2021), published by the American Physical Society. Collaboration with D.
Mukhopadhyay is acknowledged.
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sipative coupling using YIGs has been observed in a multitude of settings, involving, for instance,

a Fabry-perot cavity [66] or a coplanar waveguide [67]. Note that under most circumstances,

weak nonlinearities of the order of nHZ would require immense drive power to be detected in

experiments. However, a dissipatively coupled system affords a prodigious response in the mag-

netization of the YIG which goes up spectacularly with the weakening strength of nonlinearity.

That this response is strongly sensitive to variations in the strength of anhamonicity underpins

the utility of our scheme in sensing applications. This new paradigm is applicable generally to a

wide class of systems encountered across various scientific disciplines. Examples include quantum

dots coupled to plasmonic excitations in a nanowire [170], superconducting transmon qubits [171],

quantum emitters coupled to metamaterials [150–152, 172], optomechanical systems [173], hybrid

magnon-photon systems [66] and more.

This chapter is organized as follows. In section 6.1, we expound the properties of the linear

response in a dissipatively coupled two mode system and the effects of VIC. In section 6.2, we

provide scheme for the enhanced sensing of weak anharmonic perturbations in such systems ex-

ploiting the VIC point and we specifically illustrate the sesning capabilities of our scheme in the

context of a cavity-magnon system in section 6.3. We conclude the chapter in section 6.4.

6.1 Linear response in a dissipatively coupled two-mode system

We start off by considering the general model for a two-mode anharmonic system, which is

pertinent to a wide range of physical systems. The Hamiltonian of the system, analogous to Eq.

(2.33) is given by

H/ℏ = ωaa†a + ωbb†b + g(ab† + a†b)

+U(b†2b2) + iΩ(b†e−iωdt − beiωdt),
(6.1)

where ωa and ωb denote the respective resonance frequencies of the uncoupled modes a and b, and

g constitutes the coherent hermitian coupling between them. The parameter U is a measure of the

strength of anharmonicity intrinsic to the mode b, which is driven externally by a laser at frequency
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ωd. The quantity Ω represents the Rabi frequency. If the two modes are coupled dissipatively at

strength Γ, the mean value equations for a and b are obtained to be

ȧḃ
 = −iH

ab
 − 2iU(b†b)R

ab
 + Ωe−iωdt

01
 , (6.2)

where H =

ωa − i(γa + Γ) g − iΓ

g − iΓ ωb − i(γb + Γ)

, R =
0 0

0 1

. A canonical transformation of the form

(a, b) → e−iωdt(a, b) stamps out the time dependence on the final term in Eq. (6.2) and translates

H to H (d) = H − ωd1 without tampering with the nonlinear term, where 1 is the 2 × 2 identity

matrix. This transformation takes us to the frame of the applied laser frequency.

Before proceeding with a generalized treatment, let us first deconstruct the linear dynamics in

the case of purely dissipative coupling, i.e. when U is dropped and g = 0. Defining δ = ωa − ωb

and the mode detunings ∆i = ωi − ωd (i = a, b), we have the eigenvalues of H (d) given by

λ± =
∆a+∆b

2 − i(γ0 +Γ)± i
√

(Γ2 − δ/2)2, for |δ/2| < Γ with γ0 = γa = γb. Contingent on the stability

condition, that is, making sure the imaginary parts of the eigenvalues of H (d) is less than zero

which averts exponential amplification, the steady-state solutions for the mean values O (i) = ⟨O⟩

(O (i) = A ,B; i = a, b) would unfold as

A

Γ
=

B

−iδ/2 − γ
=

Ω

Γ2 − (δ/2)2 − γ2 , (6.3)

where, we have set ∆a = −∆b = δ/2 and γ = γ0 + Γ. Palpably, in the limit when δ→ 0 and γ → Γ,

in other words, close to VIC, the linear response demonstrates a real singularity which can be used

for the enhanced sensing of both linear and nonlinear perturbations.

Sensing of linear perturbations close to VIC: Before going into the details of sensing nonlinear

perturbations, let us discuss the utility of VIC in sensing linear perturbations. In Eq. (6.3), we

obtained the expression for the linear response of a dissipatively coupled two mode system under

anti-P̂T symmetry. Consider a complex perturbation ϵ to one of the diagonal elements of H (d),
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for example, H (d)
22 = −δ/2 − iγ + ϵ. Subsequently, the linear response of the system in Eq. (6.3)

modifies to

A

Γ
=

B

−iδ/2 − γ
=

Ω

Γ2 − (δ/2)2 + (δ/2 − iγ)ϵ − γ2 . (6.4)

The sensitivity of the response functions in variations to the parameter ϵ can, then, be obtained as

∂A (ϵ)
∂ϵ

=
ΩΓ(δ/2 − iγ)

[Γ2 − (δ/2)2 + (δ/2 − iγ)ϵ − γ2]2 ,
∂B(ϵ)
∂ϵ

=
iΩΓ(γ + iδ/2)2

[Γ2 − (δ/2)2 + (δ/2 − iγ)ϵ − γ2]2 . (6.5)

When the system parameters are tuned tantalizing close to VIC, i.e., in the limit when δ → 0 and

γ → Γ, the sensitivities scales as ϵ−2, leading to a prodigious response to variations in the parameter

ϵ. In fact, adjacent to VIC, a perturbation in any of the four elements of the matrix H (d) would

engender a pronounced linear response which would scale as inverse square of the perturbation

parameter. In the following, we show how VIC and the accompanied diverging response can be

used for the enhanced sensing of nonlinear perturbations.

6.2 Enhanced sensing of weak nonlinear perturbations

Next, we illustrate the importance of the condition Im(λ+) → 0 in the context of the nonlinear

response observed in the system. The nonlinear behaviour depends on the intrinsic symmetry prop-

erties of the matrix H . Specifically, the extraordinary response achievable in anti-P̂T symmetric

models yields a convenient protocol for the fine-grained estimation of weak anharmonicity. We

now consider a full treatment of Eq. (6.2) by factoring in the effect of U. In the rotating frame,

upon setting g = 0 and choosing γa = γb = γ0, this leads to the modified steady-state relations:

−(iδ/2 + γ0 + Γ)a − Γb = 0,

−(−iδ/2 + γ0 + Γ)b − 2iU |b|2b − Γa + Ω = 0. (6.6)
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Defining γ = γ0 + Γ and eliminating a, the intensity x = |b|2 is found to satisfy a cubic relation

β2

γ2 + (δ/2)2 x −
2Uβδ

γ2 + (δ/2)2 x2 + 4U2x3 = I, (6.7)

where β = Γ2 − γ2 − (δ/2)2 and I = Ω2. Eq. (6.7) can entail a bistable response under the condition

Uδ < 0 and δ2 > 12γ2. However, throughout this manuscript, we operate at adequately low

drive powers to ward off bistable signatures. Now, in the limit γ0 → 0 and δ → 0, β becomes

vanishingly small, and the first two terms in Eq. (6.7) recede in importance, for a given Rabi

frequency Ω. Consequently, in the neighbourhood of δ = 0, the response becomes highly sensitive

to variations in U. To be more precise, for sufficiently low values of the detuning, the response

mimics the functional dependence x ≈ (I/4U2)1/3. A tenfold decrease in U, therefore, scales up the

peak intensity of b by a factor of 4.64. In this context, it is useful to strike a correspondence with

the sensitivity in eigenmode splitting around an EP which is typically employed in P̂T -symmetric

sensing protocols [137, 138, 141]. For two-mode systems, where the EP is characterized by a

square root singularity, this splitting δω scales as the square root of the perturbation parameter ϵ

implying a sensitivity that goes as
∣∣∣ δω
δϵ

∣∣∣ ∝ |ϵ|−1/2. However, in our setup, the sensitivity to U in the

response is encoded as
∣∣∣ δx
δU

∣∣∣ ∝ |U |−5/3.

6.3 Results on enhanced sensing for a dissipatively coupled cavity-magnon system

The importance of the above result in the context of sensing is hereby legitimized for dis-

sipatively coupled systems. Guided by the recent experiments on dissipatively coupled hybrid

magnon-photon systems [66, 67, 72, 76, 165–167], we apply these ideas to the specific example

of Kerr nonlinearity in a YIG sample [37]. However, the bulk of these works have restricted their

investigations to the linear domain. Here, we transcend this restriction and study the nonlinear

response to an external drive. We consider an integrated apparatus comprising a microwave cav-

ity and a YIG sphere, both interfacing with a one-dimensional waveguide [76, 165], as depicted

in Fig.6.1. Owing to the nonexistent spatial overlap between the cavity and magnon modes, the

direct coupling between them can be dropped. However, the interaction with the waveguide would
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Figure 6.1: Schematic of the cavity-magnonic setup. The microwave cavity, running transverse to
the waveguide, interacts with the YIG via the transmission line. A static magnetic field aligned
along the z-axis generates the Kittel mode in YIG. (Redrawn from Phys. Rev. Lett. 125, 147202
(2020).)

engender an indirect coupling between them. In order to excite the weak Kerr nonlinearity of the

YIG sphere, a microwave laser is used to drive the spatially uniform Kittel mode. The full Hamil-

tonian in the presence of the external drive can be cast exactly in the form of Eq. (6.1), with b

superseded by the magnonic operator m [37, 38].

As discussed earlier, the mediating effect of the waveguide is reflected as a dissipative coupling

between the two modes, which instills VIC into the system. With the anti-P̂T symmetric choices

∆a = −∆m = δ/2, γa = γb = γ0, and the redefinition γ0 + Γ = γ, we recover Eq. (6.7) in the

steady state, with the obvious substitution b→ m and x = |m|2 denoting the spin current response.

We now expound the utility of engineering a lossless system in sensing weak Kerr nonlinearity.

To that end, we zero in on the parameter subspace Γ = γ = 2π × 10 MHz. Since β = −δ2/4,

the contributions from the first two terms in Eq. (6.7) taper off as resonance is approached. As

outlined earlier, we find that for all practical purposes, the nonlinear response can be approximated

as x ≈ (I/4U2)1/3 in the region δ/2π < 1 MHz, which demonstrates its stark sensitivity to U.

A lower nonlinearity begets a higher response, as manifested in Fig. 6.2(a), where plots of x

against δ are studied at differing strengths of the nonlinearity. Even at Dp = 1 µW, we observe

a significant enhancement in the induced spin current of the YIG around δ = 0. The result is a
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Figure 6.2: a) The spin current plotted against δ at two different nonlinearities; b) spin currents
away from the VIC condition, compared against the lossless scenario, at different drive powers-
for ease of comparison, the blue and red curves have been scaled up by 10; c) contrasting
responses observed at a drive power of 1 mW for two different strengths of nonlinearity; d)
sensitivity for a nonzero coherent coupling g at Dp = 1 µW.
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Figure 6.3: a) Real and b) imaginary parts of the eigenvalues of HNL at a drive power of 0.1 W.

natural upshot of the VIC-induced divergent response in an anti-P̂T symmetric system in the linear

regime. Quite conveniently, the inclusion of nonlinearity dispels the seemingly absurd problem of

a real singularity noticed in the linear case. If Γ < γ, a strong quenching in the response is

observed, as depicted in Fig. 6.2(b). The sensitivity to variations in U also incurs deleterious

consequences. Nevertheless, we can counteract this decline by boosting the drive power. A drive

power close to 1 mW can bring back the augmented response and the pronounced sensitivity to

U (Fig. 6.2(c)). By the same token, the introduction of coherent coupling g between the two

modes prompts a decline in the sensitivity. The real singularity pertaining to a purely dissipative

linear model is now replaced by a complex one, i.e., with a finite linewidth, bringing down the

sharpness of the resonance and similarly, the sensitivity. Here, a tenfold depreciation in U barely

generates an enhancement factor of 1.39 in the response, as illustrated in Fig. 6.2 (d). This is

to be contrasted with the g = 0 case in Fig. 6.2(a), where the magnification factor is 4.64 for

an otherwise identical set of parameters. Propitiously, systems with zero coherent coupling were

engineered in recent experiments [76, 165]. This mechanism can, thus, serve as an efficient tool to

sense small anharmonicities present in a system.

The protocol hinges on the anti-P̂T symmetric character and eigenmodes of H , which largely

control the dynamics at low drive powers. At larger drive powers (∼ 0.1 W), the nonlinear cor-
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rection in (3) becomes important. This phenomenon can be understood by studying the mod-

ified spectroscopic character of the system in response to a weak probe field. The nonlinear

effects can be encapsulated as time-varying fluctuations to the steady-state values, viz. a(t) =

a + δa(t), b(t) = b + δb(t). By virtue of linearization [33], the dynamics of the fluctuations

δξ =
(
δa(t) δb(t) δa†(t) δb†(t)

)T

could be explained through a higher-dimensional Hamilto-

nian matrix,

HNL =



− δ2 − iγ −iΓ 0 0

−iΓ ∆̃ − iγ 0 2Ub2

0 0 δ
2 − iγ −iΓ

0 −2Ub∗2 −iΓ −∆̃ − iγ


, (6.8)

where ∆̃ = δ
2 + 4U |b|2. The eigenvalues of this matrix, for the cavity-magnon setting, appear in

Fig. 6.3. Strong anharmonicity alters the coherence properties of the system, as reinforced by the

extreme linewidth narrowing observed now around δ
2γ = −3.2 in Fig. 6.3(b). Note that the non-

linear corrections stem from the matrix elements 2Ub2 and −2Ub∗2. Thus, the higher-dimensional

eigensystem attains precedence over the linear model when the product U |b|2 becomes comparable

to Γ. However, in the event that U |b|2 ≪ Γ, the nonlinearity acts merely as a perturbation. It is

precisely in this weakly anharmonic regime that our sensing proposal holds relevance.

6.4 Summary

In summary, we have proposed a dissipative test bed that shows enhanced sensitivity to Kerr

nonlinearity of the mode, hence qualifying it as a prototypical agency to gauge the strength of an-

harmonic perturbations under optimal conditions. The sensitivity to anharmonicities can be traced

down to the existence of a remarkably long-lived eigenmode of the linear system, characterized by

a vanishing linewidth. The physical origin of this peculiar behaviour lies in an effective coupling

induced between the cavity and the magnon modes in the presence of a shared ancillary reservoir.

Optimal results vis-à-vis the estimation of nonlinearity are obtained when VIC strongly dominates,
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i.e., when spontaneous emissions from the modes to the surrounding environments become negligi-

ble in comparison to the waveguide-mediated coupling. Higher drive powers lead to new domains

of VIC on account of strongly anharmonic responses. The precise implications of these new VICs

would be a subject of future study. To provide numerical estimates, our analysis has been tailored

to demonstrate a pronounced sensitivity in the context of magnonic excitations. Nonetheless, the

essence of our assessment would be applicable to any two-mode nonlinear system.
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7. ULTRA-LOW THRESHOLD BISTABILITY AND GENERATION OF A LONG-LIVED

MODE1

The manipulation of coherent coupling in hybrid quantum systems has been a cornerstone

of research in quantum optics and information processing for several years. From classical to

quantum, the unremitting quest for superior information processing algorithms and technologies

has driven the field into the next dimension [2–4, 13, 174]. Researchers were able to maneuver the

dynamics of quantum systems in developing cutting-edge machinery for information processors,

involving, for example, atoms [10], trapped ions [11], spins [6], superconducting circuits [5] and

more. However, there exists no single all-encompassing quantum system capable of holding up

to all the requirements and vital performance metrics of a modern-day signal-processing network.

A photon, in spite of being a low-noise carrier of information, suffers from low storage potential.

However, integrated photonic circuits [7, 8], which exploit strong light-matter interaction, seem to

be progressively holding the leverage in the design of chip-scale information-processing devices

with multitasking capabilities.

Recently, hybrid optomagnonic systems utilizing ferrimagnetic materials like YIG have gained

traction among the optics community [1, 20–34, 38, 39]. YIGs are endowed with high spin den-

sity and the collective motion of these spins is embodied in the form of quasiparticles named

magnons. Strong coherent coupling between photons and magnons has been used to realize an

array of quantum and semiclassical effects including, but not restricted to, squeezing [31], en-

tanglement [32, 33, 39], multistability [1, 38], exceptional points [30] and dark modes [24]. In

2018, Harder et al observed a dissipative form of magnon-photon coupling [66] underscored by

the attractive nature of the eigenmodes, otherwise known as level crossing [67–70, 72]. While

coherent coupling stems from the spatial overlap between two modes, dissipative coupling can be

1A major part of this chapter is reprinted with permission from Ultralow threshold bistability and generation of
long-lived mode in a dissipatively coupled nonlinear system: Application to magnonics by J. M. P. Nair, D. Mukhopad-
hyay and G. S. Agarwal, Phys. Rev. B 103, 224401 (2021), published by the American Physical Society. Collaboration
with D. Mukhopadhyay is acknowledged.
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engineered by the inclusion of a shared reservoir (typically a waveguide) coupled independently

to the two modes. Such an indirect coupling is mediated by a narrow bandwidth of propagating

photons supported by the waveguide continuum, with dominant frequencies proximal to the mode

transitions. Recently, Yu et al [74] used an oscillator model to enunciate the physical origins of

dissipative couplings.

It is interesting to note that systematic studies on dissipatively coupled architectures with non-

linear components are far and few between. However, many systems that involve transmon qubits

[171] or magnonic excitations [37] have intrinsic anharmonicity, which is often ignored as an in-

consequential correction. The essence of our work is to drive home the imperative to examine the

nonlinear domain of a dissipatively coupled two-mode system. The nonlinearity induces optical

bistability, which finds applications as complex devices like photonic switches [175–177], quantum

memories [178, 179] etc. By taking up the model of a dissipative optomagnonic system interfac-

ing with a waveguide channel, we lay bare the prospect of remote transfer of bistability from a

spatially separated YIG sphere to a single-mode cavity. As a fruitful consequence, the dissipa-

tively coupled system manifests a remarkably low bistability threshold in contrast to a coherently

coupled system with comparable coupling strength. The bistable signature is also mirrored by the

modified polariton resonances of the waveguide transmission. In addition, the driven nonlinearity

spawns a long-lived eigenmode with ultra-small linewidth leading to anomalous transmission ef-

fects like enhanced sensitivity in waveguide transmission, with potential applications in futuristic

signal-processing networks.

This chapter is organized as follows. In section 7.1, we develop a theoretical model to in-

vestigate the nonlinear response of a two-mode system coupled via an intermediary waveguide.

We provide a detailed analysis of the bistability and the critical drive power required to achieve

the same. In section 7.2, we explore the specific example of a driven cavity-magnon system.

For experimentally realizable values of the system parameters, our simulations demonstrate bista-

bility in the cavity response. In section 7.3, we employ a spectroscopic technique to advance a

testable scheme for ratifying the bistability. Sec 7.4 contains a concise description of the higher-
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dimensional eignensystem, which is directly responsible for a new domain of coherences. Finally,

we summarize our results in section 7.5.

7.1 Bistability threshold in dissipatively coupled systems

Before delving into any particular empirical models, we spell out the theoretical formalism

describing a large class of two-mode anharmonic systems. The characteristic Hamiltonian resem-

bling Eq. (2.33) goes as

H /ℏ = ωaa†a + ωbb†b + g(ab† + a†b)

+U b†2b2 + iΩ(b†e−iωdt − beiωdt),
(7.1)

where ωa and ωb denote the respective resonance frequencies of the uncoupled modes a and b, and

g signifies the direct coupling between them. The parameter U is a measure of the strength of Kerr

nonlinearity intrinsic to the mode b and conjured up by an external laser (pump) at frequency ωd,

for which Ω signifies the Rabi frequency. While the Hamiltonian captures the effect of coherent

coupling between the modes, a an embodiment of the dissipative coupling introduced by an inter-

posing reservoir entails full recourse to the master-equation formalism. For a two-mode system

with a density matrix ρ, the corresponding the master equation would be given by

dρ
dt
= −

i
ℏ

[H , ρ] + γaL (a)ρ + γbL (b)ρ + 2ΓL (c)ρ, (7.2)

where γa and γb are the intrinsic damping rates of the modes respectively, while the parameter τ is

tied to coherences introduced by the common reservoir. L is the Liouillian defined by its action

L (σ)ρ = 2σρσ†−σ†σρ−ρσ†σ and c = 1
√

2
(a+eiϕb) is the jump operator for symmetrical couplings

to the reservoir. Here ϕ = 2πL/λ0 symbolizes the phase difference between the two couplings,

where λ0 represents the resonant wavelength and L denotes the spatial separation between a and

b. Assuming the wavelength of the resonant mode to be much bigger than the spatial separation,

it makes sense to approximate ϕ ≈ 0. In the rotating frame of the laser drive, the mean value

equations for a and b would be obtained as
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Figure 7.1: General two-mode system, with both coherent and dissipative pathways of interaction.
HBα = heat bath of mode α, with α = S denoting a shared reservoir.

ȧḃ
 = −i

δa − i(γa + Γ) g − iΓ

g − iΓ δb − i(γb + Γ)


ab


+2U (b†b)

0 0

0 1


ab

 +
0

Ω

 ,
(7.3)

where δi = ωi − ωd (i = a, b). For brevity, ⟨...⟩ notations have been excluded. Invoking the mean-

field approximation allows one to decouple the higher-order expectations as ⟨ξ1ξ2⟩ = ⟨ξ1⟩ ⟨ξ2⟩, so

that
〈
b†bb

〉
essentially reduces to |b|2b.

Purely dissipative models can be pinned down by the choices g = 0 and Γ , 0. Within this

category, one can achieve an anti-P̂T symmetric mode hybridization by tuning the control field to

a frequency such that δb = −δa = δ/2 and by enforcing equal damping rates γa = γb = γ0. Such

models then satisfy {P̂T ,H } = 0, where {., .} stands for the anti-commutator. When the stability

criterion is fulfilled, the time-dependent solutions decay into a stationary value in the long-time

limit, i.e. (a, b)→ (a0, b0), which can be easily derived from Eq. (7.3) by setting ȧ = ḃ = 0. These
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stationary values are, therefore, entwined via the constraints

(2γ − iδ)a0 + 2Γb0 = 0,

(2γ + iδ)b0 + 4iU |b0|
2b0 + 2Γa0 − 2Ω = 0, (7.4)

where γ = γ0 + Γ. So γ0 represents the spontaneous rate of emission into the local heat baths.

Eliminating b0, one has a polynomial equation for y = |a0|
2, predicting bistability in the ensuing

response,

β2

Γ2 y − 2U βδ
γ2 + (δ/2)2

Γ4 y2 + 4U 2 (γ2 + (δ/2)2)3

Γ6 y3 = I, (7.5)

with the definitions β = Γ2 − γ2 − (δ/2)2 and I = Ω2. Note, en passant, that this bistability is not

ingrained in mode a, rather, it is transferred from the anharmonic mode b. The turning points of the

bistability curve can be gleaned from the expression above by inspecting the solutions to dI
dy = 0,

which turn out to be

y± =
βΓ2

6U [γ2 + (δ/2)2]2

[
δ ±

√
(δ/2)2 − 3γ2

]
. (7.6)

Thus, the condition for observing bistable signature can be encoded as: U δ < 0 and δ2 > 12γ2. In

addition, there is a cutoff value for the pump power beyond which the bistable characteristics set

in. The appropriate magnitude of I(c) pertains to the inflection point in the I − y graph and can be

inferred from the conditions dI
dy =

d2I
dy2 = 0. For any generic two-mode system with the interaction

comprising both coherent and dissipative components, i.e. g , 0,Γ , 0, the cutoff power obeys

the relation

I(c) =
1

432
[
√

3(4γ2 − Γ2 + g2)sgn(U ) + 2gΓ]3

U γ3 , (7.7)

where sgn(x) is +1 when x > 0 and −1 for x < 0. For all the subsequent analyses in this paper, we
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shall work with the assumption U > 0. The precise ramifications of the expression (7) in relation

to the nature of coupling can be understood by comparing the cutoffs for coherently coupled and

dissipatively coupled systems by letting Γ = 0 and g = 0 respectively. This leaves us with

I(c)
dis

I(c)
coh

=

(4γ2 − Γ2

4γ2 + g2

)3

, (7.8)

where we have assumed that the two kinds of systems decay effectively at the same rate. Note that

for Γ , 0 and g , 0, the expression above is always less than one. Stated differently, a dissipa-

tively coupled system demonstrates a lower bistability threshold when compared to a coherently

coupled system with identical coupling strength. More importantly, we can achieve an extremely

low threshold in a dissipatively coupled system by signifiicantly boosting the waveguide-mediated

interaction relative to the intrinsic damping, such that γ ≈ Γ. To put this into perspective, for two

systems with identical coupling strengths, that is Γ ≈ g, the quantity in Eq. (7.8) goes over to a

finite value equaling 0.22 as γ → Γ. Despite the fact that a dissipatively coupled system show-

cases remarkably low bistability threshold, the 78% advantage is the best that can be attained in an

experimental apparatus.

7.2 Dissipatively coupled nonlinear magnonic system

To give substance to the foregoing discussion on dissipatively coupled systems, we consider

a hybrid optomagnonic apparatus that has already evolved into a topical system of experimental

activities. Our setup consists of a single-mode optical cavity and a YIG sphere separated by some

finite distance and interacting dissipatively with each other via an intermediary one-dimensional

waveguide, as illustrated in Fig. 7.2. The intrinsic anharmonicity of the YIG [37] is kindled by a

microwave laser acting as the pump. The Hamiltonian of this driven system can be laid out as

H /ℏ = −γeB0S z + γ
2
e
ℏKan

M2V
S 2

z + ωaa†a +HΩ, (7.9)
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Figure 7.2: Schematic of a YIG sphere interacting remotely with a single-mode cavity, with the
coupling mediated by a waveguide. (Redrawn from Phys. Rev. Lett. 125, 147202 (2020).)

where HΩ = iℏΩ
(
m†e−iωdt − meiωdt

)
, B0 is the static magnetic field applied along the +ẑ direction,

γe = e/mec is the gyromagnetic ratio for electron spin and S the collective spin operator of the YIG.

The quantity M = γeS/V denotes the magnetization, where V is the volume of the YIG. The second

term in Eq. (7.9) stems from the magnetocrystalline anisotropy. The parameter ωa represents the

cavity resonance frequency and a (a†) characterizes the annihilation (creation) operator of the

cavity. Invoking the Holstein-Primakoff transformation [85] in the limit of large spin, the above

Hamiltonian simplifies to Eq. (7.1) with g = 0, frequency ωb = γeB0 −
2ℏγ2

e S Kan

M2V , U =
γ2

e Kan

M2V .

The Bosonic operators (b, b†), which represent the magnonic quasiparticle, are related to the spin

operators as S + =
√

2S b, S − =
√

2S b† in the limit S ≫ ⟨b†b⟩. Here, S = 5
2ρV is the collective

spin of the YIG, with the Fe3+ ion density and the diameter of the YIG given by ρ = 4.22 × 1027

m−3 and d = 1 mm respectively. The Rabi frequency Ω = γe

√
5πρdDp

3c is determined by the system

characteristics as well as the pump power Dp. Here, c stands for the speed of light. As discussed

in the general setting, the cavity signal satisfies the multistable equation expressed in Eq. (7.5). In

Fig. 7.3(a), we plot the optical response against various pump powers. As we slowly ratchet up the

drive power, an abrupt jump is observed in the signal as opposed to the fairly linear ascent in the

domain of weaker drives. A similar precipitous transition is seen as we tamp down the drive power,
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Figure 7.3: Response in the cavity field plotted against the pump power, for varying strengths of
the dissipative coupling. Weaker dissipative couplings support larger ranges of the drive power
pertaining to bistable states in the response. The parameters γ0/2π = 5 MHz and U /2π = 42.1
nHz.
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this time at a different point, unravelling the transfer of bistability to the cavity. This is analogous

to the optical bistability reported in a coherently coupled cavity-magnon system [1], in which the

nonlinear resource (YIG) is contained in the cavity. However, the paradigm we explore has the

antithetical underpinnings of spatial separation being the source of coupling, as the YIG is only

remotely interacting with the cavity. A boost in the dissipative coupling brings about a diminishing

window of bistability, as illustrated in Fig. 7.3(b)-(c). This bears stark disparities with coherently

coupled systems, where a stronger coupling widens the region of bistability. Nevertheless, this

feature turns out to be quite advantageous as we can generate broader bistability windows for

modest values of the engineered dissipative coupling. The observed bistability is fairly robust

against intrinsic damping rates of the modes, as evident from Figs. 7.3(a)-(d).

It makes for a relevant observation that as the dissipative coupling is downsized, not only is

the bistability window broadened but the effect is also rendered accessible at lower drive powers.

This seems to be a subtle point of divergence between directly and indirectly coupled systems.

That said, one cannot, of course, make the dissipative coupling indefinitely weak and still expect

to harness bistable signatures to one’s advantage. This is a trivial consequence of the fact that weak

couplings cannot elicit strong responses from the cavity.

7.3 Probes of bistability via the waveguide transmission

Spectroscopy is a quintessential tool in science and engineering, and is routinely applied to

QED systems. The fundamental spectroscopic principle of is to probe the system using a weak

electromagnetic excitation, and from the transmission properties of the system, one extracts key

information about the system, including, but not limited to, its eigenmode configuration. Here,

we employ a similar technique to investigate the transmission properties of the nonlinear opto-

magnonic device with varying drive powers, as depicted in Fig. 7.2. Specifically, we show how

anharmonicity-induced shifts in the polariton minima reinforce the bistable nature of cavity sig-

nal. In the presence of a monochromatic probe field guided through the fiber, the Hamiltonian

in Eq. (7.1) gets modified to H + εH ′, where H ′ = iℏ[(a† + b†)e−iδpt − h.c.)], δp = ωp − ωd,
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Figure 7.4: Effect of intrinsic damping on the optical bistability. Other parameters are Γ/2π = 5
MHz and U /2π = 42.1 nHz. The detunings are scaled down by a factor S = 2π × 20 MHz.
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Figure 7.5: (a) The cavity response plotted against the pump power showcasing the two stable
states at Dp = 90 mW. (b) Transmission spectra through the waveguide as a function of the
scanning frequency. (c) Shifts in lower polariton frequency vs. the pump power Dp. Other
parameters are Γ/2π = 5 MHz, γ0/2π = 5 MHz and U /2π = 42.1 nHz. Scaling factor for
detunings S = 2π × 20 MHz.
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ε =
√

2ΓPε/ℏωp and Pε is the probe power. The updated Langevin equations then entail

ȧ = −(−iδ/2 + γ)a − 2Γb + εe−iδpt,

ḃ = −(iδ/2 + γ)b − 2iU |b|2b − Γa + Ω + εe−iδpt. (7.10)

The solution to this set of equations in the long-time limit can be written as a Fourier series expan-

sion,

a =
∞∑

n=−∞

a(n)e−inδpt, b =
∞∑

n=−∞

b(n)e−inδpt, (7.11)

where a(n) and b(n) are the amplitudes associated with n-th harmonic of the probe frequency. The

steady components a0, b0, which are actually oscillating at the pump frequency, conform to Eq.

(7.4). The probe being a weak field, we ignore the higher-order terms and truncate the series with

n running up to ±1. Utilizing Eqs. (7.10) and (7.11), we conclude the following set of linear

equations for the oscillating components of the steady state:

M X(1) = Fε, (7.12)

where M =

A B

B∗ C

, X(1) = (a+, b+, a∗−, b
∗
−)

T , Fε = ε(1, 1, 0, 0)T , with the elements A =

γ − i(δ/2 + δp) Γ

Γ −γ + i(∆̃ + δp)

, B =

0 0

0 2iU b2
0

, C =

γ − i(δ/2 − δp)) Γ

Γ γ − i(∆̃ + δp)

, and

∆̃ = δ
2 + 4U |b0|

2. The first-order fluctuations about the steady state can then be obtained numeri-

cally by inverting Eq. (7.12). Using the input-output relation εt = ε−2Γ(a+m), where εt designates

the transmitted signal, we obtain the transmission coefficient at the probe frequency,

t(NL) = εt/ε = 1 − 2Γ(a+ + m+)/ε

= 1 + 2Γ
2∑

r,s=1

(M −1)rs. (7.13)
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Figure 7.6: The lower polariton frequency shifts against pump power Dp for varying values of the
intrinsic damping. All the other parameters are identical to Fig. 7.4.

In the absence of a pump, when nonlinear effects remain dormant, the Rabi splitting between

the cavity-magnon polariton branches is substantiated in Fig. 7.5 (a). For a nonzero drive power,

under conditions of bistability, the higher polariton resonance remains largely unscathed while the

lower polariton sustains appreciable frequency shifts. Here, lower and higher polaritons (LP and

HP) refer to the polariton branches with lower (appearing on the left) and higher (appearing on

the right) frequencies in the transmission spectra. The respective minima are labelled as δLP and

δHP. The bistability in transmission is illustrated with two stable transmission spectra in Fig. 7.5(a)

at drive power 0.09 W. In addition, we draw information on the hysteresis curve in Fig. 7.3 by
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investigating shifts in the lower polariton minima. We numerically obtain the corresponding shifts

in polariton frequency ∆LP = δLP-δ(0)
LP as a function of input (pump) power, where δ(0)

LP is the detuning

of the lower branch at zero drive power. The bistability gets manifested in the frequency shifts in

Fig. 7.5 (c), which replicate the pattern of the spincurrent curve in Fig. 7.3 (b). Further, we provide

the frequency-shift curves (Figs. 7.6(a)-(d)) against the intrinsic decay parameters of the cavity and

magnon modes, testifying to the robustness of bistability against extraneous decoherence.

7.4 Anharmonicity-induced long-lived mode

In this section, we show how the presence of nonlinearity activates new coherences, which,

in turn, introduces optical anomalies in the fiber transmission. Owing to its nonlinear nature, the

system of coupled-mode equations in Eq. (7.10) does not yield readily to a Hamiltonian-based

analysis. However, an effective Hamiltonian can be eked out by appealing to a linearized approx-

imation about the steady state, viz. a(t) = a0 + δa(t), b(t) = b0 + δb(t). The fluctuations δa(t) and

δb(t) are presumed to be general, albeit small in relation to a0 and b0. This permits the dismissal of

higher-order effects in these variations, akin to what was invoked in the last section. The variables

δb(t) and δb†(t) get interlinked due to the anharmonicity. The inter-coupling is, of course, too weak

to bear on any observable effects at smaller drive powers. However, a drive power around 0.02 W

makes this coupling paramount. Defining Y(t) = Y +δξ(t), where Y(t) =
(
a(t) b(t) a†(t) b†(t)

)T

and Y =
(
a b a† b†

)T

are both 4-element vectors, the Langevin equations reduce to a linear

dynamical model,
[ d
dt
+ iHNL

]
δξ(t) = Ein(t), with

HNL =



− δ2 − iγ −iΓ 0 0

−iΓ ∆̃ − iγ 0 2U b2
0

0 0 δ
2 − iγ −iΓ

0 −2U b∗20 −iΓ −∆̃ − 2iγ


, (7.14)

Ein(t) = ε
(
e−iδpt e−iδpt eiδpt eiδpt

)T

and ∆̃ has been defined in relation to Eq. (7.12) earlier. A

straightforward comparison with Eq. (7.12) reveals that M = i(HNL − δp), implying that an-
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Figure 7.7: (a) Real parts and (b) Imaginary parts of the eigenvalues of HNL plotted against δ at
Dp = 0.02 W. (c) |t| is plotted against δp and δ at the same pump power. The vertical lines in (a),
(b) and (c), all at δ/2γ = −3.37, identify the exceptionally long-lived mode with extreme
linewidth suppression. Other parameters are identical to Fig. 7.5.
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harmonic resonances of the system are tied to the eigenmodes of HNL. Any exotic properties of

eigenmodes would, therefore, be translated to observable anomalies in the transmission signal.

The eigenfrequencies denoted as λi’s, with i running from 1 through 4, manifest characteristics

attributable to level attraction. This is portrayed, for Dp = 0.02 W and U /2π = 42.1 nHz in Fig.

7.7(a), (b). Since the effective dimensionality of the Hilbert space is augmented by the introduction

of anharmonicity, a major impact of U is to bring in new coherent phenomena in the transmission

across the hybridized cavity-magnon system. As Figs. 7.7(c) and Fig. 7.8(a)-(d) reveal, the nonlin-

ear coupling categorically skews the transmission lineshapes by introducing asymmetry. However,

the case of negative magnon detunings turns out to be particularly intriguing, as a new transparency

window crops up, which owes its origin to a long-lived mode of the system. With a significant Rabi

frequency (Dp ∼ 0.02 W), the enhanced pumping rate is brought to bear on the linewidths and one

of them shrinks close to nought, leading to a region of highly elevated transmission levels. This is

highlighted by a dark red smeared out streak shown in Fig. 7.7(c), and also illustrated for better

clarity in Figs. 7.8(a), (b) where the transmission is plotted for a pair of fixed values of delta. The

near-perfect transmission comes to light most prominently around δ/2γ = −2.1, for the chosen set

of system parameters. In fact, at this precise magnitude of the detuning, the waveguide photon gets

transmitted unimpeded, demonstrating perfect transparency. Equally interesting is the collateral

emergence of a strongly reflecting polariton minimum. Such fundamentally conflicting behaviors

transpire in a narrow neighborhood around δp = 0 across which the device flips between a state

of unidirectional reflection
(∣∣∣t(NL)

∣∣∣ ≪ 1
)

to complete transparency
(∣∣∣t(NL)

∣∣∣ ≈ 1
)
. This conspicuous

result suggests practical advantages in engineering driven systems for implementing nonlinearity-

assisted strong signal switching.

However, as evidenced by Fig. 7.7(c), although the switching effect seems to be further ampli-

fied as δ becomes more strongly negative, we find an obtrusive region of pump-induced gain that

makes the transmission surge past unity. Fig. 7.8(c) depicts an extraordinarily high transmission

peak around δ/2γ = −3.37, at which the imaginary part of one of the poles (marked by yellow

in 7(a), (b)) moves tantalizingly close to zero while the corresponding eigenfrequency remains
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Figure 7.8: Figures (a), (b) represent the transmission spectra against the probe detuning δp at two
different values of δ, portraying the asymmetry and the transition from unidirectional reflection to
perfect transmission. (c) Transmission spectra against δ with δp = 0, highlighting a region of
significant gain around δ/2γ = −3.7. (d) Transmission plot demonstrating pronounced sensitivity
around δp = 0. Other parameters are identical to Fig. 7.5. Scaling factor for detunings
S = 2π × 20 MHz.
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approximately zero. This is why the signal dramatically shoots up around δp = 0. Additionally,

it demonstrates a sharp sensitivity to the probe frequency, which is also responsible for the signal

flipping effect. The spectacular sensitivity in the signal can be accredited to the existence of a

second-order pole at δp ≈ 0, δ/2γ ≈ −3.37 in the derivative of the transmitted signal, i.e.

∂t(NL)

∂δp
= 2iΓ

2∑
r,s=1

{M −2}rs. (7.15)

The above relation follows from the consideration that M −1(δp + η) −M −1(δp) = iηM −1(δp +

η)M −1(δp) and subsequently taking the limit η → 0. One should, in practice, exercise caution by

avoiding excessive gain, as any unduly long-lived mode with negligible width augurs a breakdown

in the validity of linearized approximations to the steady state and requires a nonlinear treatment of

the probe. Nonetheless, even if one avoids this unstable terrain of extraordinary transmission, one

could carefully configure the detuning δ to enable transparent behavior and strong signal sensitivity

near to δp = 0 as discernible from Fig. 7.8(d). In this connection, we also note that sensitivity in

dissipatively coupled systems has been studied in the context of linear perturbations [180], and

more recently, for the detection of weak anharmonicities in an optomagnonic model [80].

7.5 Summary

To summarize, our foray into the nonlinear domain of dissipatively coupled models sheds light

on two fundamental anharmonic signatures of driven systems: optical bistability and anharmonicity-

induced coherences. Directly coupled nonlinear systems, such as a YIG sphere in a cavity, are al-

ready known to generate bistability. Our formulation demonstrates that dissipatively coupled mod-

els, like the one we study here, accords a lower pumping threshold for observing bistable states.

In the context of an optomagnonic system, the frequency shifts in the polariton minima bring out

the essential hallmarks of bistability, in lockstep with the cavity response. With the anharmonic-

ity factored in, the increased dimensionality of an intricate but predominantly stable eigensystem

imparts higher-order coherences to the hybridized polaritons, the significance of which is accentu-

ated by an enhanced pumping rate. Simulation of the transmission across the waveguide reveals a
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parameter regime of pump-induced gain, where external energy is funneled into the fiber causing

a coherent buildup of the output signal. The anharmonic gain is hardly an adventitious effect, but,

rather, an upshot of intense linewidth inhibition in one of the resonances. This long-lived mode

is also responsible for extreme sensitivity in the signal to the probe frequency. Fortuitously, the

existence of a transmission window, flanking a polariton minimum, extends well into the stable

regime. In this regime, the system demonstrates a stark duality in signal transport, marked by the

possibility of achieving both transparency and opacity, for the same set of system parameters. The

greater signal sensitivity and control incorporated by the anharmonicity could be harnessed for the

design of photonic devices with optical switching properties.

89



8. CAVITY-MEDITATED LEVEL ATTRACTION AND REPULSION BETWEEN

MAGNONS1

The expedient control of coherent magnon-photon coupling in hybrid cavity-spintronic sys-

tems has laid bare a plethora of new avenues for magnon-based quantum information transfer

[1, 20–34, 38, 39, 81]. The collective spin-wave excitations called magnons in magnetic systems

can efficiently interface with microwave photons, thereby consolidating the strength of dispersive

interaction to produce well-separated hybridized states demonstrating level repulsion and Rabi os-

cillations [181, 182]. Complementary to the phenomenon of coherent magnon-photon coupling in

a cavity, there exists a paradigm of dissipative coupling wherein the magnon mode interacts with

the modes of a waveguide [66, 73]. In contrast to the mode anticrossing in dispersively coupled

systems, dissipative coupling induces level attraction characterized by the coalescence of the po-

lariton modes at the exceptional points (EPs) as demonstrated in recent experiments [67–70, 72].

Note that general perspectives on EPs and diabolic points have been widely explored [183, 184].

Considering the ubiquity of both coherent and dissipative couplings in cavity-magnonics as well

as the wide disparity in the resulting physics, the competing effects of these couplings have evoked

significant interest of late. Consequently, cavity-magnonics has emerged as a premier platform to

translate some of the foremost ideas of non-Hermitian optics into scalable quantum technologies

with novel, multitasking capabilities. By exploiting strongly coupled magnon-photon systems,

a plenitude of exotic effects have been brought to the fore, some of which include single-spin

detection [185] and manipulation of spin current [23, 186], polaritonic dark modes [24, 187] and

magnonic quintuplets [188], observation of coherent perfect absorption and exceptional point [30],

multistability [1, 38], squeezing [31] and entanglement [32, 33, 39], sensing of anharmonicities

[80], and bidirectional microwave-to-optical transduction [35, 189, 190].

Owing to its potential applications in topological energy transfer [135, 191, 192] and quantum

1A major part of this chapter is reprinted with permission from Cavity-mediated level attraction and repulsion
between magnons by J. M. P. Nair, D. Mukhopadhyay and G. S. Agarwal, Phys. Rev. B 105, 214418 (2022), published
by the American Physical Society. Collaboration with D. Mukhopadhyay is acknowledged.
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sensing [137, 141, 143, 180, 193, 194], there has been a proliferation of efforts within the optics and

condensed matter community to realize level attraction in hybrid non-Hermitian systems. So far,

this effect has been successfully showcased in cavity-optomechanical systems [173], and cavity-

magnonic configurations integrated with waveguides [76] and split-ring resonators [67, 68]. It

is well known that two coherently coupled harmonic systems naturally exhibit level repulsion

while dissipatively coupled systems are characterized by level attraction. Therefore, a customary

technique to implement level crossing lies in mitigating the effect of dispersive interaction relative

to its dissipative counterpart. Both dispersive and dissipative couplings naturally occur in qubits

interacting with electromagnetic vacuum or with the modes of a poor cavity [126].

In the context of magnonics, magnon-photon level repulsion and level attraction have both

been experimentally realized [66–70, 72, 73]. In this work, we explore the distinctive qualities

of magnon-magnon hybridization in a system of two non-interacting magnetic systems coherently

coupled to a microwave cavity. We show that the mediating effect of the intracavity field brings

to bear the dual possibilities of effecting both level anticrossing and level crossing in two distinct

parameter regimes. Much to our anticipation, strong magnon-photon couplings result in well-

separated polaritonic states, or normal modes, characterizing level repulsion. Curiously, however,

we observe that the central peak is washed out when the frequencies of the bare modes are matched

to resonance and the magnons are symmetrically coupled to the cavity mode. As the symmetry

is broken and the magnons are antisymmetrically detuned relative to the cavity mode, the dark

polariton gets reexcited on account of energy transfer from the bright modes. The contrary feature

of level attraction transpires when the cavity leakage rate strongly dominates the dynamics, i.e.,

the magnon-photon couplings as well as the magnonic damping rates are much weaker than the

cavity relaxation rate. In the same parameter regime, on examining the spectral properties of

the hybrid system, we unveil a narrow transmission window, with the possibility of transparent

behavior in the limit of negligible magnon dissipation. Both these features, i.e., the inception of

level crossing and the appearance of transparency, are borne out by a purely dissipative form of

interaction that ensues between the magnons when the cavity field is adiabatically eliminated. In
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fact, the adiabatic limit reproduces the characteristic dynamics of two spatially separated systems

coupled through an interceding reservoir, thereby unveiling an equivalence with waveguide QED.

It should be noted that qubits get coherently coupled with each other in a dispersive cavity [195].

In a cavity-magnonic setup, such a coupling has been experimentally realized in the dispersive

limit, demonstrating level repulsion between the magnons [187]. In contrast, the level repulsion

discussed in our paper makes no reference to the dispersive regime, and the magnons could well

be on resonance with cavity mode.

This chapter is organized as follows. In section 8.1, we spell out the theoretical model de-

scribing a pair of magnetic systems coupled to a microwave cavity and highlight the two disparate

regimes in which level splitting and level crossing could be observed. Following this, we study

the induced magnetization in response to a cavity drive in section 8.2, to reaffirm the contrasting

spectral signatures to both these behaviours. In section 8.3, we address the emergence of a dark

polaritonic state and furnish the physical mechanism governing the excitation of this mode. Fi-

nally, in section 8.4, we illustrate the generation of a transmission window as a consequence of

dissipative coupling between the two magnons. The results are summarized in section 8.5.

8.1 Level repulsion and attraction between magnons

Our model comprises a hybrid cavity-magnonic system, in which two macroscopic yttrium iron

garnet (YIG) samples are placed inside a microwave cavity, as illustrated in Fig. 8.1. The YIG is

a high-spin-density magnetic material, and the low lying excitations of the collective angular mo-

mentum of these spins in such magnetically ordered systems gives rise to quasi-particles, namely

magnons. In our model, we consider a spatially uniform Kittel mode of either YIG as being dis-

persively coupled to the intracavity photons of a neighboring frequency. Therefore, in essence,

the magnetization associated with the YIG sphere can simply be written as the magnetization of a

ferromagnet with a single large spin S, i.e., M = γeS/V , where γe = e/mec is the gyromagnetic

ratio for electron spin and S denotes the collective spin operator, and V the volume of the YIG

sphere. The Hamiltonian of the hybrid magnon-cavity system as discussed in Chapter 2 is then
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Figure 8.1: Schematic of two YIGs coherently coupled to a single-mode microwave cavity. The
static magnetic fields exciting the Kittel mode in both the YIGs are aligned along the z-axis. The
intracavity field mode is propagating along the y-axis, with the corresponding magnetic field
directed along the x-axis.

provided by

H/ℏ = −γe

2∑
i=1

B0,iS i,z + ωaa†a − γe

2∑
i=1

S i,xBi,x, (8.1)

where B0,i’s are the applied bias magnetic fields along the z direction, S i,x (S i,z) denotes the x-

(z-) component of the collective spin S of the ith YIG, ωa is the cavity resonance frequency, and

a (a†) represents the annihilation (creation) operator of the cavity field. The magnetic field of the

cavity field (Bn,x) is assumed to be along the x direction. A typical YIG sample having diameter

d = 1 mm and an approximate spin density ρ = 4.22 × 1027 m−3 leads to the total number of spins

N ≈ 1018. In the limit of a high spin density, we invoke the Holstein-Primakoff transformation to

recast the raising and lowering operators as S +i =
√

2S imi, S −i =
√

2S im
†

i , with i = 1, 2 labeling

the two YIGs) and mi (m†i ) operators satisfying the Bosonic algebra. With such simplifications, we

can now tailor the Hamiltonian in Eq. (8.1) into its corresponding operator representation as

H/ℏ = ωaa†a +
2∑

i=1

[
ωim

†

i mi + gi(m
†

i a + mia†)
]

(8.2)
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Figure 8.2: Level anticrossing and level crossing in two different regimes of cavity QED; (a)
Eigenfrequencies of the cavity-magnon system for g = 2 and γi = 1 exhibiting level splitting; (b)
Eigenfrequencies and (c) Linewidths in the case of g = 0.2 and γi = 0.01, with the features of
level crossing; (d) Eigenfrequencies in the case of asymmetric decay rates γ1 = 0.01, γ2 = 0.012
and g = 0.2 demonstrating level attraction. All the parameters are chosen in units of κ.

where the frequency of Kittel mode ωi = γeB0,i with γe/2π = 28 GHz/T. The parameter gi =
√

5
2 γe
√

NBvac quantifies the coherent magnon-cavity coupling, with Bvac =
√

2πℏωc/V denoting

the magnetic field of vacuum.

In the frame rotating at frequency ωa, the Heisenberg equations of motion can be cast in the

form Ẋ = −iH X, where XT = [⟨a⟩ ⟨m1⟩ ⟨m2⟩], and the effective non-Hermitian Hamiltonian

describing the system dynamics is provided by

H =


−iκ g1 g2

g1 s − iγ1 0

g2 0 −s − iγ2

 . (8.3)

Here, we have set ωa = (ωm1 + ωm2)/2 (thus, the magnons are antisymmetrically detuned relative

to the cavity frequency) and defined s = (ωm1 − ωm2)/2. The parameters κ and γi denote the rates
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of dissipation appearing in the master equation. In what follows, we suppress the notation ⟨.⟩ in

the mode amplitudes, as we are interested in a semiclassical description of the system. The three

complex eigenvalues of H , resulting from the characteristic polynomial equation

(λ + iκ)(λ + s + iγ1)(λ − s + iγ2) − g2
1(λ + s + iγ2)

−g2
2(λ − s + iγ1) = 0, (8.4)

identify the normal modes of the hybridized system, also referred to as the polaritons. Here, we

present two distinct parametric regimes: (i) where g ≫ κ, γi with the features of level repulsion and

(ii), the weak coupling regime g, γi ≪ κ where the eigenvalues relevant to the system demonstrate

level attraction. We demonstrate in Fig. 8.2, the solutions of the characteristic equation (8.4) in the

two aforementioned parameter regimes where level repulsion and level attraction come to light.

Specifically, in case (ii), when the cavity is weakly coupled to the magnon modes and the photons

decay over a much shorter time scale than the magnons, we can observe signatures of level crossing

between the magnon-like polaritons. The contrasting features in Fig. 8.2(a, b) can be analytically

understood by inspecting the normal modes in these special regimes, as spelled out below.

For κ = γ1 = γ2 and g1 = g2 = g, the three eigenvalues of H are given by λ0 = −iκ,

λ± = −iκ ±
√

s2 + 2g2. The imaginary parts of the eigenvalues, which quantify the corresponding

linewidths, are all identical and insensitive to the variations in s. The real parts of these eigenvalues

are plotted against s in Fig. 8.2(a), where the minimum frequency gap between λ+ and λ−, equaling

2
√

2g, is a manifestation of level repulsion in the system. Note that the minimum separation must

be larger than the linewidth κ to observe level repulsion. However, in the limit κ ≫ γi and κ ≫ gi,

level crossing is introduced over a small band of frequency detunings s, as portrayed in Fig. 8.2(b,

c). We have assumed that γ1 = γ2 = γ and g1 = g2 = g. It is, therefore, imperative to design a

cavity with low quality factor to observe this effect. Neglecting the effect of γ, which is weak in
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reference to κ, leads to the characteristic equation

(λ + iκ)(λ2 − s2) − 2g2λ = 0. (8.5)

Since the eigenvalues in the absence of g equal λ0 = −iκ, and λ± = ±s, it can be argued that the

perturbative correction to each of them for sufficiently small g would go as O(g2). This consid-

eration pins down the approximate form of λ0 to be −iκ[1 − 2g2/(s2 + κ2)]. Next, in view of the

fact that both s and g2 are small compared to κ, we approximate λ± + iκ ≈ iκ, which permits the

reduction of the cubic equation into a quadratic one λ2
± + 2Γλ±i − s2 ≈ 0, where Γ = g2/κ. This

yields the remaining eigenvalues

λ± = −iΓ ± i
√
Γ2 − s2. (8.6)

The forms of λ± make apparent the level crossing between them, with EPs located at s = Γ. The

plots in Fig. 8.2(b, c) are found to be in remarkable agreement with the expressions obtained

above where we have used identical decay rates for the magnon samples and they couple to the

cavity field with equal strength. In Fig. 8.2(d), we have plotted the eigenfrequencies of the cavity-

magnon system for asymmetric decay rates of the magnon samples where γ2 − γ1 = 0.2γ1. We

observe that the features of level attraction persist, thereby exhibiting robustness against small

deviations around the symmetrical choice of system parameters.

In the following section, we extract spectroscopic information about the system of magnons

coupled to a cavity by applying an external probe, which renders an empirical tool to observe level

crossing and level anticrossing [196].
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Figure 8.3: (Panel A; a-e) Sumtotal of the spincurrent response |m1|
2 + |m2|

2 plotted as functions
of ∆a in the case of strong magnon-photon coupling g = 2 and equal relaxation rates γi = 1
(similar to Fig. 8.2(a)). Note the conspicuous extinction of the central resonance in (A; c). (Panel
B; a-e) Profiles for the case of g = 0.2, γi = 0.01 (similar to Fig. 8.2(b,c)). Only two peaks appear
in this scenario. Drive power P = 1 mW. Other parameters are given in the text.
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8.2 Spin currents under the conditions of level attraction and repulsion

In the presence of an external electromagnetic field at frequency ωd driving the cavity, the

Hamiltonian in Eq. (8.2) is superseded by

H/ℏ = ωaa†a +
2∑

i=1

[
ωim

†

i mi + gi(m
†

i a + mia†)
]

+i
√
κB[a†e−iωdt − aeiωdt]

(8.7)

with B =
√

P
ℏωd

being the strength of external drive and P the driving power.By switching to the

rotating frame of the drive, we deduce the mean-field equations for the cavity-magnon dynamics

to be

Ẋ = −i(H − ∆)X + F, (8.8)

where we have separated out the cavity detuning ∆ = ωd − ωa, and FT =
√
κ[B 0 0]. Recall that

H was defined in Eq. (8.3). The solution to the steady state can, therefore, be expressed as

X(∆) = −i(H − ∆)−1F, (8.9)

With the poles of this expression being accorded by the eigenvalues of H , key information

regarding the polaritonic properties would be encoded in the empirically observable response, such

as the steady-state spincurrents |m1|
2 and |m2|

2. The steady-state response functions are given by

m j = −i
√
κB[(H − ∆)−1] j1, (8.10)
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where j = 1 or 2 labels the magnon. Substituting the expression for H , we obtain,

m1 =
−i
√
κBg1(s + ∆ + iγ1)

D
,

m2 =
i
√
κBg2(s − ∆ − iγ1)

D
, (8.11)

where D = det(H − ∆) has the expression

D = (∆ + iκ)(s − ∆ − iγ1)(s + ∆ + iγ2) + g2
1(s + ∆ + iγ2)

−g2
2(s − ∆ − iγ1).

We now provide a numerical solution to the spectral features by scanning the probe frequency, and

assuming, for simplicity, g1 = g2 = g.

In Fig. 8.3, on either of the panels (A) and (B), we plot the sum of the spincurrents from the

individual magnon modes, i.e., |m1|
2+ |m2|

2 as a function of ∆ for five different values around s = 0.

The left panel (A) refers to the barely strong-coupling regime, i.e., gi > κ, γi, and κ = γi. The total

spincurrent, for s , 0, exhibits three distinct peaks corresponding to the resonant frequencies of

the system. The central peak at ∆ = 0 is flanked on either side by two symmetrical polaritonic

peaks. The disappearance of the central peak at s = 0 is symbolic of a dark polariton. We however

remark that the modality of driving is crucial to the detection of the dark mode. If instead of

the cavity, we drive one of the magnons, this mode will show up in the response function. We

note that dark polaritons have been extensively discussed in the context of molecules interacting

with cavities [104]. The underlying physics of this dark mode would be discussed at length in

the subsequent section. From the figures (a) to (e) in the panel (A), it is evident that the two

magnon-like polaritons move closer as s→ 0, leaving a minimum frequency gap between the two

levels at s = 0. Since the levels never intersect, it is referred to as mode anticrossing. However,

this picture incurs a dramatic inversion as we transition into the domain of weaker couplings and

higher relaxation rates of the cavity photons. Figure 8.3, panel (B), displays the sumtotal of the

spincurrents as a function of ∆ in the limit κ ≫ γi and κ ≫ gi, for five different values of s. In
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this scenario, around s = 0, the magnon-like polaritons coalesce together into a single peak. Note

that the cavity-like central resonance remains strongly quenched on account of its large linewidth.

The onset of level crossing points to a hidden dissipative interaction between the magnon modes.

In Appendix B, we establish parity with these numerical results by uncovering this dissipative

magnon-magnon coupling through the adiabatic elimination of the cavity mode. The parameters

used for the numerical results were taken from recent experiments [1, 76]. The cavity and magnon

resonance frequencies, as well as the driving frequency ωd fall in the microwave domain, and we

have used frequencies ranging from 9 GHz to 10 GHz. The cavity damping rate κ/2π is taken to

be 10 MHz.

8.3 Excitation of dark polariton via symmetry-breaking

As evidenced by the numerical illustration in Fig. 8.1, panel (A), when the magnon-photon

coupling is adequately strong, the tripartite cavity-magnon system is endowed with three distinct

spectral peaks characterizing the polaritonic modes of the hybrid composite. The two peripheral

peaks are pushed inward as s becomes smaller, settling for a minimum separation at resonance.

This limiting behavior is marked simultaneously by the complete extinction of the central peak,

laying bare a characteristic dark mode when the conditions conform to perfect symmetry, i.e.,

when all three modes have identical detunings, and the magnons are symmetrically coupled to

the intracavity field. We can delineate a physical argument supporting this observation by simply

inspecting the normal modes of the undamped system. In the rotating frame of the cavity field, the

Hamiltonian is given by

H = g[a†(m1 + m2) + h.c]. (8.12)

For this Hermitian system, the polaritonic modes turn out to be A =
m1 − m2
√

2
, B =

1
√

2

[
a +

m1 + m2
√

2

]
, and C =

1
√

2

[
a −

m1 + m2
√

2

]
, corresponding respectively to the eigenfrequencies λ0 = 0,
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λ+ =
√

2g, and λ− = −
√

2g, which recasts the Hamiltonian into the form

H =
√

2g[B†B −C†C]. (8.13)

Thus, B and C appear as two counteroscillating normal modes of the symmetric system, with the

frequency-splitting determined by the coupling strength g. Note, however, the conspicuous absence

of the mode A in Eq. (8.13). This mode, therefore, represents a dark polariton, whereas B and C

identify the bright polaritons with detectable spectral signatures. This is what is manifested in Fig.

8.3 (A; c). The picture obviously changes if we begin to steer away from the symmetry, which are

exemplified by the other subfigures in the same panel. For non-zero value of s, the Hamiltonian

transforms into s(m†1m1 − m†2m2) + g[a†(m1 + m2) + h.c]. This can be expressed in the original

polaritonic representation as

H =
√

2g[B†B −C†C] +
s
√

2
(A†B + AB†) −

s
√

2
(A†C + AC†). (8.14)

The additional terms in the new Hamiltonian, originating from the frequency discord between the

magnons, are clearly indicative of energy transitions from B and C to A and vice versa. These

new channels for energy exchange foreshadow how a mismatch in the magnon detunings would be

instrumental to the illumination of the non-radiative polariton. The stimulating effect of symmetry-

breaking can be experimentally observed via the spectroscopic properties of the system when it is

irradiated by a probe field. Note that the brightening of dark modes by the introduction of strong

nonlinearities has been reported earlier using a full quantum mechanical treatment beyond the

mean-field approximation [197]. However, we have showcased here the simplest method of illu-

minating the dark state which works even within the mean-field description.

To analytically clarify the polaritonic suppression at resonance, let us examine the spectral

signature of a real dissipative system, underpinned by the Hamiltonian H . In the event of sym-

metrical detunings (s = 0) and equal damping rates (κ = γ1 = γ2), the eigenvalues of H go as
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λ0 = −iκ, λ± = ±
√

2g − iκ. The common expression for the spincurrents then reduces to

m j =
i
√
κgB

(∆ +
√

2g + iκ)(∆ −
√

2g + iκ)
, (8.15)

for j = 1, 2. Clearly, the contribution from the pole at λ0 remains suppressed when the modes are on

resonance and the magnon-photon couplings are perfectly symmetrical. Given the equality of the

two spincurrents, it is no coincidence that the normal mode A =
m1 − m2
√

2
remains unpopulated in

the steady state. On the other hand, if a small asymmetry is introduced in the frequencies by letting

s become non-zero, the eigenvalues get modified into λ0 = −iκ and λ± = ±
√

s2 + 2g2 − iκ. In this

case, the pole at λ0 leaves a detectable signature as underscored by the corresponding spincurrents

m1 =
i
√
κgB(∆ + s + iκ)

(∆ + iκ)(∆ +
√

s2 + 2g2 + iκ)(∆ −
√

s2 + 2g2 + iκ)
,

m2 =
i
√
κgB(∆ − s + iκ)

(∆ + iκ)(∆ +
√

s2 + 2g2 + iκ)(∆ −
√

s2 + 2g2 + iκ)
, (8.16)

which also remain unequal insofar as s , 0. This explains the emergence of the central peak in

Fig. 8.3 as a signature of population transfer to the mode A. The corresponding peak height is

provided by the expression

|m1|
2 + |m2|

2 =
2g2B2(s2 + κ2)
κ(s2 + 2g2 + κ2)

. (8.17)

Clearly, the height reduces to a minimum at s = 0.

8.4 Dissipative-coupling-induced transparency

Having explored some of the distinctive regimes of cavity QED, which uncovered the contrast-

ing features of level splitting and level crossing, it is worthwhile to study the transmission char-

acteristics of the cavity-magnon system. For this purpose, we restrict our analysis to the regime

where κ ≫ γi and κ ≫ gi, and shed light on the possibility of effecting transparent behaviour. Note

that this is precisely the parameter domain that elicits level attraction.
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Figure 8.4: Reflection spectra for (a) s = 0.01 with γi = 0, and (b) s = 0.04 with γi = 0.01. Other
parameters are g = 0.2 and κ = 1, which yields Γ = g2/κ = 0.04.

For the cavity-driven system described by Eq. (8.7), we can obtain the reflected and transmitted

output fields from the input-output formalism, with the relevant input-output relations being

bout =
√
κa,

aout +B =
√
κa, (8.18)

where a = −i
√
κ[(H − ∆)−1]11B is the steady-state intracavity field obtained by setting Ẋ = 0

in Eq. (8.8). Substituting this into the aforementioned relations, we extract the transmission and

reflection coefficients to be

t =
iκ(∆ − s + iγ)(∆ + s + iγ)

(∆ + iκ)(∆ − s + iγ)(∆ + s + iγ) − 2g2(∆ + iγ)
,

r = −1 +
iκ(∆ − s + iγ)(∆ + s + iγ)

(∆ + iκ)(∆ − s + iγ)(∆ + s + iγ) − 2g2(∆ + iγ)
, (8.19)

At ∆ = 0, these expressions reduce to

t =
s2 + γ2

s2 + γ2 + 2γΓ
,

r = −
2γΓ

s2 + γ2 + 2γΓ
, (8.20)
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where Γ = g2/κ. As long as γΓ ≪ s2, the approximate behavior would be given by t ≈ 1 −

O(2γΓ/s2) and r ≈ O(2γΓ/s2). In Figs. 8.4(a, b), we sketch the reflection profiles for a couple of

values of s, vindicating the existence of a transmission window. As γ/κ → 0, perfect transparency

is observed at ∆ = 0. We note that this transparency effect is distinct from the well-known phe-

nomenon of Electromagnetically Induced Transparency (EIT) [198, 199] in which two oscillators

are coupled dispersively, i.e., through a Hermitian term in the Hamiltonian. In contrast, the trans-

parency we report owes its origin to a dissipative form of magnon-magnon coupling surfacing in

the limit of negligible magnon dissipation. The details on this origin are elaborated in Appendix

B.

As s becomes smaller, in the limit γ/κ ≈ 0, the EIT-like window gets progressively narrower

leading to a sharpening of the central dip. This can be understood from the behavior of the eigen-

values derived earlier in Sec. II. Through pertinent approximations, we had obtained them to be

λ0 = −iκ[1− 2g2/(s2 + κ2)] and λ± = −iΓ± i
√
Γ2 − s2. While λ0 had rather pedestrian features, the

other two normal modes λ± ≈ λ± = −iΓ± i
√
Γ2 − s2 were the source of level attraction. In the same

vein, the unfolding of the sharp, precipitous dip in the reflection lineshapes can be traced down to

the linewidths of the modes λ±. Apropos of our parameter choices, when s/Γ is tiny compared to

1, as is the case in Fig. 8.4(a), they can be further approximated as

λ+ ≈ −
is2

2Γ
,

λ− ≈ −2iΓ. (8.21)

While both of them have zero real parts, Im(λ+) pales in comparison to Im(λ−). In fact, the pole

at λ+ has a vanishingly small linewidth, which explains the sharp and narrow trough in the re-

flection spectrum. The effect of λ−, on the other hand, is embodied in the Lorentzian envelope

circumscribing both the peaks flanking the central minimum.
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8.5 Summary

In conclusion, we have discussed the feasibility of engineering both level repulsion and level

attraction between two magnons coupled to a single-mode cavity, by manipulating the relaxation

rates and the magnon-photon coupling strengths. In the weak-coupling regime, when the cavity

mode relaxes considerably faster than the magnon modes, an effective dissipative interaction is

engendered between the two magnons, which is directly responsible for the unfolding of level

attraction as well as a narrow transmission window. The level crossing is manifested as the coales-

cence of polaritonic peaks in the spincurrent response of the hybridized system. On the contrary,

the strong-coupling regime, for comparable relaxation rates, results in distinguishable polaritonic

peaks with the earmarks of level repulsion. Interestingly, when the magnons are tuned in reso-

nance to the cavity together with symmetrical couplings, the spectral response is characterized by

the appearance of a dark polaritonic state. The central dip designating the dark polariton transitions

into a peak as we deviate from resonance, indicating the transfer of population into the dark mode.

It could be noted that the bulk of the precursive literature on level attraction in cavity-magnonics

was grounded in the study of magnon-photon coupling and the resulting polariton characteristics.

On the other hand, the level attraction highlighted in our paper, is rooted in an effective magnon-

magnon coupling infused via the photonic interaction with the individual magnon modes.
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9. QUANTUM ENTANGLEMENT BETWEEN MACROSCOPIC FERRITE SAMPLES1

Quantum entanglement continues to attract considerable attention since it is a central resource

for many quantum protocols and quantum information tasks. A question of prime importance is

the existence of quantum effects at macroscopic scales. The earliest discussion started with the

thought experiment of the Schrodinger’s cat paradox. Since then, considerable progress has been

made in the demonstration of possible quantum effects at macroscopic scales, especially by using

atomic ensembles. For atomic ensembles, both long lived [200] and heralded entanglement [201–

203] have been demonstrated. Given the success with atomic ensembles, several other systems

have been studied- for example optomechanical systems have been used to demonstrate the entan-

glement between two mechanical mirrors. A recent work [204] reports heralded entanglement be-

tween two photonic crystal resonators containing mechanical elements; whereas Ockeloen-Korppi

et al [205] report deterministic entanglement between two micromechanical drum oscillators in a

superconducting resonator. In addition, entanglement between the cavity field and mechanical mo-

tion has been reported [206]. Given the overwhelming interest in entangling macroscopic systems,

it is worthwhile to examine the possibility of a different class of systems, especially the ones involv-

ing magnetic excitations. We show that a ferrimagnetic system like YIG provides another platform

to create and use quantum effects at macroscopic scale. The Kittel mode in YIG possesses unique

properties including rich magnonic nonlinearities [37] and a low damping rate [22], and further,

a high spin density in YIG allows strong coupling between magnons and microwave cavity pho-

tons, giving rise to quasiparticles, namely the cavity-magnon polaritons [21, 22, 97, 207]. Strong

coupling between the YIG sphere and the cavity photons have been observed both at cryogenic

and room temperatures [21]. Aided by these superior properties, YIG is reckoned to be the key in-

gredient in future quantum information networks [34], especially those with hybrid systems [174].

However, most of recent literature on the coupling of YIG spheres with the cavity field deal with

1A major part of this chapter is reproduced from Deterministic quantum entanglement between macroscopic ferrite
samples by J. M. P. Nair and G. S. Agarwal, Appl. Phys. Lett. 117, 084001 (2020), with the permission of AIP
Publishing.
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the observation of effects which belong to the semiclassical domain and can be explained in terms

of the mean field description. These include the observation of bistability [1], cavity spintronics

[29], level attraction for cavity magnon-polaritons [66], magnon dark modes, exceptional points,

magnon induced transparency and magnetically controllable slow light. There are much fewer

studies demonstrating the strictly quantum effects with YIG spheres. Cavity mediated interactions

have been employed to demonstrate the coupling of a superconducting qubit to magnons and for

the creation of a Fock state for the magnons. The earlier room temperature study of magnon-

photon-phonon interactions [27] has been used to generate a tripartite entangled state [32] and

squeezed states [31] in a hybrid magnon-photon-phonon system at mK temperatures i.e., under the

condition ℏωm/kBT >> 1. We note that previously phonon-phonon interactions and second order

Raman scattering were used to produce phonon squeezing [208–212].

It is thus important to examine the possibility of quantum entanglement at macroscopic scale

using two magnetic systems like YIG spheres. The YIG sphere consists of a macroscopic num-

ber of spins with value s = 5/2. Since the total number of spins in a sphere of size 250-µm is

about N ≈ 3.5 × 1016, the excitations in the sphere can be modelled in terms of an oscillator.

Thus, the entanglement between two YIG spheres can be thought of as the entanglement between

two macroscopic oscillators characterized by the bosonic operators m1, m2 ( m†1, m†2). In order to

produce entanglement between the two oscillators, we need an effective interaction of the type

(m†1m†2 + c.c.), which usually comes from considerations of parametric [77] or Kerr nonlinearities

[213]. However the interaction of the type (m1m†2+c.c.) is easy to produce, for example, by putting

the YIG spheres in a high quality cavity where the exchange of cavity photon can strongly couple

the two YIG spheres. The Kerr nonlinearities for the YIG spheres are very weak and require strong

driving powers [1]. It is better if the weak nonlinearity of the YIG spheres is avoided, although

these nonlinearities have been used to produce entanglement between two magnon modes in a

magnon-cavity system [33, 91].

Here we present a scheme to generate an entangled pair of YIG spheres without using any non-

linearities, thus, overcoming the problem of weak nonlinearities and use of strong drives. We show
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how driving fields with strictly quantum properties can produce remarkable macroscopic entan-

glement. As a byproduct of our work, we are able to generate the quantized states of the coupled

system of two YIG spheres. Our calculations are based on the following physical picture: we place

two YIG spheres in a high quality cavity and drive the cavity with a quantum field. Specifically, we

choose the field produced by a flux-driven Josephson parametric amplifier (JPA) for the quantum

field which generates the microwave field with strong squeezing properties. In addition, we work

in the parameter domain wherein the squeezing of the quantum drive is transferred to the cavity.

Since the cavity is strongly coupled to the two YIG spheres, the squeezed cavity field results in

the bipartite entanglement of the two macroscopic magnetic samples. Based on experimentally

available parameters, we show that significant bipartite entanglement can be generated between

the YIG samples. We also demonstrate that the entanglement is robust against temperature. Our

results can be extended to other sample sizes and other kind of modes of the ferrimagnetic spheres

[97]. Further, the method that we propose is quite generic and can be used for other macroscopic

systems.

This chapter is organized as follows. In section 9.1, we obtain the quantum Langevin equa-

tions describing the dynamics of the cavity-magnon system with quantum drive. Subsequently, in

section 9.2, we calculate Logarithmic negativity as a measure of quantum entanglement revealing

optimum conditions for the quantum correlations. In section 9.3, we provide two experimentally

realizable tests for entanglement, corroborating our results in section 9.2. As a byproduct of our re-

search, we observe squeezing in the collective magnon variables and explicate the details in section

section 9.4. The chapter is summarized in section section 9.5.

9.1 Quantum Langevin equations of the system

We consider the cavity-magnon system [27, 32] which consists of cavity microwave photons

and magnons, as shown in Fig. 9.1. The magnons are quasiparticles, a collective excitation of a

large number of spins each with spin value 5/2 in a YIG sphere. They are coupled to the cavity

photons via the magnetic dipole interaction. The Hamiltonian of the system reads
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Figure 9.1: Two YIG spheres are placed inside a microwave cavity near the maximum magnetic
field of the cavity mode, and simultaneously in a uniform bias magnetic field. The cavity is driven
by a weak squeezed vacuum field generated by a flux-driven JPA. The magnetic field of the cavity
mode is in the x direction and the bias magnetic field is applied along the z direction.

H /ℏ = ωaa†a + ωm1m
†

1m1 + ωm2m
†

2m2

+gm1a(a + a†)(m1 + m†1) + gm2a(a + a†)(m2 + m†2), (9.1)

where a (a†) are the annihilation (creation) operators of cavity mode, m1, m2 ( m†1, m†2) are the an-

nihilation (creation) operators of the two magnon modes, and they represent the collective motion

of spins via the Holstein-Primakoff transformation in terms of Bosons. The parameters ωa, ωmi

(i=1,2) are the resonance frequencies of the cavity and the magnon modes. Hereafter, wherever we

use a subscript ‘i’ it can take values from 1 to 2. The magnon frequency is given by the expres-

sion ωmi = γHi, where γ/2π = 28 GHz/T is the gyromagnetic ratio and Hi are the external bias

magnetic fields. The gm1a = gm2a = η
√

5µ0ℏωN/Vγ/2 in Eq. (9.1) are the linear photon-magnon

coupling strengths where µ0 is the permeability of vacuum and SI units are used throughout. Here,

N is the net number of spins in the YIG sample which determine the total magnetic moment, V

is the volume of the cavity and η describes the spatial overlap between the microwave field and

magnon mode. We emphasize that our model Hamiltonian (9.1) has no nonlinearities. This is

different from the entanglement in the context of optomechanical systems which are based on
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the nonlinearity of the optomechanical interactions [205]. The cavity is driven by a weak squeezed

vacuum field generated by a flux driven JPA. JPAs can, in principle, amplify a single signal quadra-

ture without adding any extra noise. The squeezed vacuum is generated by degenerate parametric

down-conversion using the nonlinear inductance of Josephson junctions [40–51], and a squeezing

down to 10% of the vacuum variance has been produced. The operation of generating squeezed

vacuum is depicted in Fig. 9.1. Vacuum fluctuations are at the signal port and the pump field is

applied at frequency 2ωs. The pump photon splits into a signal and an idler photon. Strong quan-

tum correlations between the degenerate signal and idler photons are generated which result in

squeezing. The output is at the frequency ωs [43]. The mathematical procedure is standard and we

give minimum of mathematical details so that we can focus on results. We use standard quantum

Langevin formalism [214] to model the system and the equations describing the evolution of the

system operators will contain the input drive terms. Applying the rotating-wave approximation,

gmia(a + a†)(mi + m†i ) becomes gmia(am†i + a†mi) [21, 22, 27, 207]. In the rotating frame at the

frequency ωs of the squeezed vacuum field, the quantum Langevin equations (QLEs) describing

the system can be written as follows

ȧ = −(i∆a + ka)a − igm1am1 − igm2am2 +
√

2kaain,

ṁ1 = −(i∆m1 + km1)m1 − igm1aa +
√

2km1m
in
1 , (9.2)

ṁ2 = −(i∆m2 + km2)m2 − igm2aa +
√

2km2m
in
2 ,

where ∆a = ωa − ωs, ∆mi = ωmi − ωs, ka is the dissipation rate of the cavity, kmi are the dis-

sipation rates of the magnon modes, and ain, min
i are the input noise operators of the cavity and

magnon modes, respectively. These input operators take into account the driving of the cavity

by a quantum field. They are characterized by zero mean and the following correlation relations

[215], ⟨ain(t)ain†(t′)⟩ = (N +1)δ(t − t′), ⟨ain†(t)ain(t′)⟩ = N δ(t − t′), ⟨ain(t)ain(t′)⟩ = M δ(t − t′),

⟨ain†(t)ain†(t′)⟩ =M ∗δ(t−t′), where N =sinh2 r+Na(ωa)
(

sinh2 r+cosh2 r
)
, M =eiθ sinh r cosh r

(
1+

2Na(ωa)
)
, with r and θ being the squeezing parameter and the phase of the input squeezed vacuum
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field, respectively. The thermal photon number Na(ωa) = [exp( ℏωa
kBT )−1]−1. We assume that the cou-

pling losses are inconsequential to avoid the degradation of squeezing properties of the input field.

The parameter M is the most significant parameter for generating macroscopic entanglement. We

assume that the bandwidth of the squeezed radiation is much bigger than ka. The case of finite

bandwidth requires non-markovian framework and is a subject of separate investigation. Without

loss of generality, we set θ = 0 for most of the discussion below. We have the other input correla-

tions for the magnon as ⟨min
i (t)min†

i (t′)⟩ = [Nmi(ωmi)+1]δ(t− t′), ⟨min†
i (t)min

i (t′)⟩ = Nmi(ωmi)δ(t− t′),

where Nmi(ωmi) = [exp( ℏωmi
kBT ) − 1]−1.

9.2 Logarithmic negativity as a measure of quantum entanglement

We now show that the YIG spheres can be entangled by resonantly driving the cavity with a

squeezed vacuum field. The quadratures of the cavity field and the two magnon modes are defined

as X = (a + a†)/
√

2, Y = i(a† − a)/
√

2, xi = (mi + m†i )/
√

2 and yi = i(m†i − mi)
√

2, and similarly

for the input noise operators. The QLEs describing the quadrature fluctuations (X,Y, x1, y1, x2, y2)

can be written as

u̇(t) = Au(t) + n(t), (9.3)

where u(t) = [X(t),Y(t), x1(t), y1(t), x2(t), y2(t)]T , n(t) = [
√

2kaXin,
√

2kaY in,
√

2km1 xin
1 ,

√
2km1y

in
1 ,

√
2km2 xin

2 ,√
2km2y

in
2 ]T and

A =



−ka ∆a 0 gm1a 0 gm2a

−∆a −ka −gm1a 0 −gm2a 0

0 gm1a −km1 ∆m1 0 0

−gm1a 0 −∆m1 −km1 0 0

0 gm2a 0 0 −km2 ∆m2

−gm2a 0 0 0 −∆m2 −km2



.

The system is a continuous variable (CV) three- mode Gaussian state, and it can be completely

described by a 6 × 6 covariance matrix (CM) V defined as Vi j(t)= 1
2⟨ui(t)u j(t) + u j(t)ui(t)⟩, (i, j =1,
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(a) (b)

Figure 9.2: Density plot of bipartite entanglement Em1m2 between the two magnon modes versus
∆a and ∆m1 (a) with ∆m2 = ∆m1 , r = 1, T = 20 mK, (b) with ∆m2 = ∆m1 , r = 1.5, T = 20 mK. Other
parameters are given in the text.

Figure 9.3: Plot of bipartite entanglement Em1m2 between the two magnon modes against
temperature with ∆a = ∆m1 = ∆m2 = 0 and r = 1.5.

2....6) which has symmetrized product of operators as the quadratures do not necessarily commute.

The steady state CM V can be obtained by solving the Lyapunov equation [216]

AV + VAT = −D, (9.4)

where D is the diffusion matrix defined as ⟨ni(t)n j(t′) + n j(t′)ni(t)⟩/2 = Di jδ(t − t′). Once we

obtain the six dimensional covariance matrix V , we find the covariance matrix Ṽ between the
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two magnon modes by writing Ṽ = Vi j where i, j runs from 3 to 6. We use logarithmic nega-

tivity [217, 218] as the quantitative measure to investigate the bipartite entanglement Em1m2 be-

tween the two magnon modes. It can be obtained from Em1m2 = max[0,−ln(2ν−)] where ν− =

min[eigenvalue(iΩP12ṼP12)], Ω = iσy
⊕

iσy, P12 = 1
⊕

σz and σy, σz are the Pauli matrices

[219]. The symbol
⊕

means the direct sum of operators on either side of the symbol. Fig-

ure 9.2(a)-(b) shows the bipartite entanglement between the two magnon modes at two different

squeezing parameters. We use a set of experimentally feasible parameters [27]: ka/2π = 5kmi/2π =

5 MHz, and T = 20 mK, Nm1 = Nm2 ≈ 0 at 20 mK. The YIG sphere has a diameter 250-µm and

the number of spins N ≈ 3.5 × 1016. For a cavity of dimensions 22 × 18 × 3 mm and resonance

frequency ωa/2π = 10 GHz [21], the coupling constant gmia given in section 2 becomes 40 MHz

with a spacial overlap of 1. Therefore, we take gmia = 4ka, a reasonable estimate for the coupling

constants. We have adopted the parameters so that the two magnon modes are identical. We ob-

serve that ∆a = ∆m1 = ∆m2 = 0, in other words ωa = ωs, ωmi = ωs are optimal for the entanglement

between the two YIG samples. At resonance we observe the maximum amount of entanglement

and it increases with the increase in the squeezing parameter. Figure 9.3 shows that the bipartite

entanglement is quite robust against temperature. We observe significant amount of entanglement

even at T =0.3 K which turns out to be better than the schemes based on nonlinearities [33, 91].

We have chosen identical coupling between photon and the two magnon modes. In the case of un-

equal coupling the entanglement goes down. Although we have chosen two identical YIG spheres,

one can have two cuboidal YIG samples, as in [29], with an angle θ between the external magnetic

field and the local microwave magnetic field at one YIG sample. This makes the resonance fre-

quencies of the two samples different. Figure 9.4 displays the bipartite entanglement between the

magnon modes with unequal resonance frequencies. We observe that small difference of the order

of ka in resonance frequencies does not produce significant change in the amount of entanglement

generated.
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Figure 9.4: Density plot of bipartite entanglement Em1m2 between the two magnon modes versus
∆a and ∆m1 (a) with ∆m2 = ∆m1/2, r = 1.5, T = 20 mK. (b) with ∆m2 = 0, r = 1.5, T = 20 mK.

9.3 Experimentally realizable tests for entanglement

Next we discuss two different criteria for entanglement in a two mode CV system. The advan-

tage of these criteria over logarithmic negativity is that the former can be easily examined through

experiments [204, 205], though in a qualitative way. The first inseparability condition proposed

by Simon [219] and Duan et al. [220] is the sufficient condition for entanglement in a two-mode

CV system. We define a set of operators M = (m1 + m2)/
√

2, m = (m1 − m2)/
√

2. The criterion

suggests that if the two modes are separable then they should satisfy the following inequality

⟨M2
x⟩ + ⟨m

2
y⟩ ≥ 1, (9.5)

where Mx and my are defined as Mx = (M + M†)/
√

2, my = i(m† − m)/
√

2. In other words,

violation of the inequality in Eq. (9.5) means the existance of entanglement between the two YIG

samples. Figure 9.5(a) shows that there is region around ∆a = 0 and ∆m1 = 0 (resonance) in which

⟨M2
x⟩+ ⟨m

2
y⟩ is less than one and it is a clear manifestation of the entanglement present between the

YIG samples.
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(a) (b)

Figure 9.5: (a) ⟨M2
x⟩ + ⟨m

2
y⟩ against ∆a and ∆m1 with ∆m2 = ∆m1 , r = 1.5, T = 20 mK. (b) ⟨M2

x⟩

against ∆a and squeezing parameter r with ∆m1 = ∆m2 = 0, T=20 mK.

We next present a test of entanglement based on the inequality of Mancini et al [221]

⟨M2
x⟩⟨m

2
y⟩ ≥ 1/4, (9.6)

with the violation of Eq. (9.6) implying that the YIG samples are entangled. We use identical

coupling strengths between the cavity and the two YIG samples. Therefore, when ∆m1 = ∆m2 = 0

the Hamiltonian of the system in the rotating frame of the drive can be written as

H /ℏ = ∆aa†a +
√

2gm1a(a + a†)(M + M†). (9.7)

The Hamiltonian does not contain a term involving m and m†. Hence the fluctuations in m will be

equal to the fluctuations at time t = 0. Since m at t = 0 is in the vacuum state (at low temperature

20 mK), we have ⟨m2
y⟩ = 1/2. Figure 9.5(b) shows that there is a region close to resonance

where the quantity ⟨M2
x⟩ is less than 1/2. This violates the inequality in equation (9.6) and hence

the two YIG samples are entangled. This further corroborates our results. Thus the generated

quantum entanglement can be monitored by examining the fluctuations in the collective variable M

which would radiate a field at the microwave frequency ωs. The quantum features like squeezing
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(a) (b)

Figure 9.6: (a) Variance of the first magnon quadrature ⟨x1(t)2⟩ versus ∆a and ∆m1 . (b) Variance of
the first magnon quadrature against squeezing parameter r and phase θ. The other parameters in
(a) are r = 1.5, ∆m1 = ∆m2 , T =20 mK. Other parameters in (b) are ∆a = ∆m1 = ∆m2 = 0 and T =20
mK. ⟨x2(t)2⟩ is identical to ⟨x1(t)2⟩.

can, in principle be detected by using methods based on mixing the radiated field with a local

oscillator [222]. These quantum features can be traced back to the entanglement of the spheres as

demonstrated by the discussion based on the inequalities (9.5) and (9.6).

9.4 Squeezed magnon states

As a byproduct of our results we investigate the squeezing of the two magnon modes and show

that it can be acheived by resonantly driving the cavity with a squeezed vacuum field. We note

that the previous work [31] examined the squeezing of magnons in a single YIG sphere, whereas,

here we consider two YIG spheres in the cavity. We are interested in the variances of the cavity

and magnon mode quadratures and they are given by diagonal elements of the time-dependent CM

V(t) as defined previously. As discussed in [31], when the cavity and the two magnon modes are

decoupled, the cavity field is squeezed as a result of the squeezed driving field and the magnon

modes possesses vacuum fluctuations. As we increase the coupling strength, squeezing is partially

transffered to the two identical YIG samples. The blue region in Fig. 9.6(a)-(b) represents the

region of squeezing. We observed a squeezing of about 2.17 dB for each of the two magnon modes

at resonance with T =20 mK. Note that Fig. 9.5 give the magnon quadrature when both the YIG
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samples are present. At resonance we also find a squeezing of about 6.72 dB for the Mx quadrature

of the collective variable M. This is comparable to the results when one had only one YIG sample

present.

9.5 Summary

To summarize, we have presented a scheme to generate an entangled pair of YIG samples

in a cavity-magnon system. Entanglement of magnon modes can be generated through resonantly

driving the cavity by a squeezed vacuum field and it can be realized using experimentally attainable

parameters. The entanglement produced is robust against temperature. Our scheme for entangling

YIG samples does not require any nonlinearities and hence goes against the conventional wisdom

of producing entanglement. This provides a different method for entangling macroscopic systems,

which can be used in other macroscopic systems as well.
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10. SUMMARY AND OUTLOOK

In summary, we investigated some of the semiclassical and quantum phenomena ensuing from

waveguide and cavity-integrated magnonic systems involving ferromagnetic Yttrium iron garnets.

They have attracted enormous interest of late as a new platform to observe quantum effects at

the macroscopic scales. More specifically, we studied the ramifications of anti-P̂T symmetry in

dissipatively coupled two-mode anharmonic systems, demonstrating, for example, the generation

of a BIC, which can be exploited for sensing perturbations, especially those of anharmonic nature.

IN the context of coherently coupled cavity-magnonic systems, Bai et al. reported an experiment

on the cavity-mediated transfer of spin current between two ferrite samples implemented in the

linear domain [29]. However, these magnetic systems are intrinsically anharmonic. Inspired by

this, we developed a theory for the spin current [38] in the nonlinear domain via the incorporation

of a strong external drive, wherein the Kerr anharmonicities of the ferrites were also factored in.

This leads to the emergence of nonlinear cavity-magnon polaritons and we could observe both

bistable and multistable characteristics of the spin current. Further, we developed a model for

the spectroscopic detection of nonlinear spin currents, revealing some of the key properties of

the nonlinear polaritons. The transmission of a weak probe field was used to obtain quantitative

information on the multistable behaviour of the spin current. Recently, our results were confirmed

by experimental data [223]. Recently, in the domain of weak external pumping, we explicated how

the application of a two-photon parametric drive could result in a strong amplification in the energy

transfer between two magnetic samples interacting via a cavity [52]. The spectacular amplification

of spin-current transfer at the resonance condition stems from a parametrically produced long-lived

mode in the system.

In the course of investigating different quantum optical platforms, we got interested in waveg-

uide integrated systems where experimental interest has flourished in the recent past. We proposed

a new scheme in the context of dissipatively coupled anti-P̂T symmetric systems for the sensing

of weak anharmonic perturbations [80]. We considered the case of two Bosonic modes interact-
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ing via a common reservoir, which can introduce a non-Hermitian form of coupling between the

interacting subsystems. The linear response of the system becomes highly sensitive to nonlinear

perturbations in the system, which owes its origin to an especially long-lived eigenmode. We

demonstrated the remarkable sensing capabilities of this scheme in a system involving a weakly

anharmonic YIG sample interacting with a cavity via a tapered fiber waveguide. As a natural con-

tinuation of this work, we subsequently investigated the properties of strongly driven dissipatively

coupled nonlinear systems [81]. We theoretically illustrated the remote transfer of bistability be-

tween two systems interacting via a waveguide and revealed the significantly lower threshold for

bistability in such systems when compared to their coherently coupled counterparts. It was found,

in fact, that the dissipatively coupled systems offered a nearly five-fold advantage over the latter.

Further, we spectroscopically investigated the hysteresis by applying a probe through the waveg-

uide, and the shift in polariton peaks of the transmission replicated the nonlinear response, while

also uncovering a region of anomalous transmission analogous to the Mollow gain effect. A recent

experiment by Dr. Hu’s group at the University of Manitoba confirmed our theoretical predictions

[224].

Extending our work on coherently coupled systems, we illustrated two disparate parameter

domains in the magnon-magnon interaction mediated by a cavity and foregrounds the possibility

of both level attraction and repulsion [83]. Aside from that, for antisymmetric detunings to the

magnon modes, a transmission window was found to emerge, exhibiting transparency in the limit

of negligible magnon dissipation rates. In addition, we provided a new scheme to entangle two

YIGs placed inside a microwave cavity, without using intrinsic nonlinearities in the system. The

cavity is driven externally by a flux-driven Josephson parametric amplifier (JPA) which produces

a microwave field with strong squeezing properties. We used logarithmic negativity as a measure

of entanglement while also investigating various testable inequalities for continuous variable (CV)

entanglement which are easily accessible in the experiments. For experimentally attainable param-

eters of the system, we demonstrated strong CV entanglement between magnetic samples that can

survive even at 300 mK. Prior to this research, we had noticed
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Although demonstrated in the context of magnonic systems, our results are generic, and appli-

cable to a large class of systems, for example, atomic ensembles, quantum dots, superconducting

qubits and many more. It is also worth noting that anti-P̂T symmetric systems with dissipative

coupling are the most naturally occurring when compared with their P̂T symmetric counterparts,

where the latter require the incorporation of gain. The physics of such systems, in particular, those

involving condensed matter architectures have opened up a new avenue in the study of collective

quantum phenomena. In the future, we would like to extend our analysis of dissipatively coupled

systems to multi-dimensions and their topological properties.

In the future, we would like to extend our research into topological insulators and topological

effects in non-Hermitian systems. The lion’s share of already existing research on non-Hermitian

systems involves lattices with coherently coupled subsystems. Some of the interesting topics to

explore include a one-dimensional SSH model with an array of dissipatively coupled Bosonic

modes. The system, under anti-P̂T symmetry, may lead to full and partial topological phases, and

we could possibly illustrate its rich topology in an experimentally realizable system, for instance,

an array of split ring resonators. The resonators can be coupled dissipatively via a mediating cavity

in the dissipative domain. Further, a circuit model may be used to enunciate the physical origin

of the topology and we could advance a protocol for the experimental observation of winding

numbers. In addition, we would also like to develop an exact theoretical model for the nonlinear

modifications to SSH models.
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pelmeyer, Sungkun Hong, and Simon Gröblacher. Remote quantum entanglement between

two micromechanical oscillators. Nature, 556(7702):473–477, 2018.

[205] CF Ockeloen-Korppi, E Damskägg, J-M Pirkkalainen, M Asjad, AA Clerk, F Massel,

MJ Woolley, and MA Sillanpää. Stabilized entanglement of massive mechanical oscilla-

tors. Nature, 556(7702):478–482, 2018.

[206] TA Palomaki, JD Teufel, RW Simmonds, and Konrad W Lehnert. Entangling mechanical

motion with microwave fields. Science, 342(6159):710–713, 2013.

[207] Maxim Goryachev, Warrick G. Farr, Daniel L. Creedon, Yaohui Fan, Mikhail Kostylev, and

139



Michael E. Tobar. High-cooperativity cavity qed with magnons at microwave frequencies.

Phys. Rev. Appl., 2:054002, Nov 2014.

[208] Nicim Zagury and Sergio M. Rezende. Theory of macroscopic excitations of magnons.

Phys. Rev. B, 4:201–209, Jul 1971.

[209] Xuedong Hu and Franco Nori. Squeezed phonon states: Modulating quantum fluctuations

of atomic displacements. Phys. Rev. Lett., 76:2294–2297, Mar 1996.

[210] Xuedong Hu and Franco Nori. Phonon squeezed states generated by second-order raman

scattering. Phys. Rev. Lett., 79:4605–4608, Dec 1997.

[211] GA Garrett, AG Rojo, AK Sood, JF Whitaker, and R Merlin. Vacuum squeezing of solids:

macroscopic quantum states driven by light pulses. Science, 275(5306):1638–1640, 1997.

[212] Xuedong Hu and Franco Nori. Phonon squeezed states: quantum noise reduction in solids.

Physica B: Condensed Matter, 263:16–29, 1999.

[213] Andreas Sizmann and Gerd Leuchs. V the optical kerr effect and quantum optics in fibers.

Progress in optics, 39:373–469, 1999.

[214] C. Genes, D. Vitali, and P. Tombesi. Emergence of atom-light-mirror entanglement inside

an optical cavity. Phys. Rev. A, 77:050307, May 2008.

[215] C. W. Gardiner. Inhibition of atomic phase decays by squeezed light: A direct effect of

squeezing. Phys. Rev. Lett., 56:1917–1920, May 1986.

[216] Patrick Christopher Parks and Volker Hahn. Stability theory. Prentice-Hall, Inc., 1993.

[217] G. Vidal and R. F. Werner. Computable measure of entanglement. Phys. Rev. A, 65:032314,

Feb 2002.

[218] M. B. Plenio. Logarithmic negativity: A full entanglement monotone that is not convex.

Phys. Rev. Lett., 95:090503, Aug 2005.

[219] R. Simon. Peres-horodecki separability criterion for continuous variable systems. Phys.

Rev. Lett., 84:2726–2729, Mar 2000.

[220] Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. Zoller. Inseparability criterion for continuous

variable systems. Phys. Rev. Lett., 84:2722–2725, Mar 2000.

140



[221] Stefano Mancini, Vittorio Giovannetti, David Vitali, and Paolo Tombesi. Entangling macro-

scopic oscillators exploiting radiation pressure. Phys. Rev. Lett., 88:120401, Mar 2002.

[222] C. Eichler, D. Bozyigit, and A. Wallraff. Characterizing quantum microwave radiation

and its entanglement with superconducting qubits using linear detectors. Phys. Rev. A,

86:032106, Sep 2012.

[223] Rui-Chang Shen, Yi-Pu Wang, Jie Li, Shi-Yao Zhu, GS Agarwal, and JQ You. Long-time

memory and ternary logic gate using a multistable cavity magnonic system. Physical Review

Letters, 127(18):183202, 2021.

[224] H. Pan, Y. Yang, Z. H. An, and C.-M. Hu. Bistability in dissipatively coupled cavity

magnonics. Phys. Rev. B, 106:054425, Aug 2022.

141



APPENDIX A

DERIVATION OF THE MASTER EQUATION FOR A CHAIN OF EMITTERS COUPLED TO

A WAVEGUIDE

As depicted in Fig. (A1), we consider an N-mode system (S) interacting dissipatively through

a shared one-dimensional bath (B) aligned along the x-axis 1. Keeping the model very basic, we

split the net Hamiltonian H into three contributions given by

HS = ℏ
N∑
λ=1

ωλc
†

λcλ,

HB = ℏ
∑

k

ωka
†

kak,

HS B = iℏ
∑

k

2∑
λ=1

gkλ(akeikxλ − a†ke−ikxλ)(cλ + c†λ), (A.1)

where we assume that the mode cλ is coupled to the waveguide at the location x = xλ. The

coupling coefficients gkλ’s are assumed to be real. Here, HS B exemplifies a typical two-body inter-

action among spatially separated modes with electromagnetic field quantized in a one-dimensional

1The derivation presented is reprinted with permission from Anti-PT symmetry enhanced interconversion be-
tween microwave and optical fields by D. Mukhopadhyay, J. M. P. Nair and G. S. Agarwal, Phys. Rev. B 105, 064405
(2022), published by the American Physical Society.

 

1 

𝛄𝟏 𝛄𝟏 𝛄𝟐 𝛄𝟐 𝛄𝑵 𝜸𝑵 

𝑥1 

.     .     .     .     .    2 N 

𝑥2 𝑥𝑁 

input 

input 

output 

output 

Figure A.1: An array of N single-mode quantum emitters coupled to the evanescent field of a
one-dimensional waveguide, with γα = καα denoting the individual coupling rates. The waveguide
can be adiabatically eliminated to yield the master equation of the emitter chain.
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geometry. We can adiabatically eliminate the reservoir degrees of freedom to obtain the master

equation under the Markov approximation as

ρ̇S (t) = −
i
ℏ

[HS , ρS (t)]

−
1
ℏ2

∫ ∞

0
dτTrB[HS B, [HS B(−τ), ρS (t)ρB]] (A.2)

where O(−τ) = exp
[
− i
ℏ
(HS +HB)τ

]
O exp

[
i
ℏ
(HS +HB)τ

]
, and ρB is the initial state of the bath

[77]. Idealizing the bath to be a thermalized vacuum at zero temperature, the reservoir signatures

would encoded as ⟨akak′⟩ =
〈
a†kak′

〉
= 0 and

〈
aka

†

k′

〉
= δk,k′ . Substituting these expressions into

(21), we obtain τ−integrals which, for the moment, can be expressed in terms of

T (±)
kµ =

∫ ∞

0
dτei(ωµ±ωk)τ = πδ(ωµ ± ωk) + iP

1
(ωµ ± ωk)

, (A.3)

where P(1/x) denotes the Cauchy Principal Value of its argument. Since ωk’s are all positive, terms

of the form δ(ωµ + ωk) can be stamped out. In light of these simplifications, we can compactify

(21) into the form

ρ̇S = −
i
ℏ

[HS , ρS ] −
1
ℏ2

N∑
α,β=1

(Wαβ +W †

αβ), (A.4)

where a typical contribution would appear as

Wαβ =
∑

k

gkαgkβeik(xα−xβ)
[
T (−)

kβ (c†αcβρS − cβρS c†α)+

T (+)
kβ (cαc†βρS − c†βρS cα)

]
. (A.5)

We have dropped the fast-oscillating terms that go as cαcβ or c†αc†β under the purview of the rotating

wave approximation. Using a linearized approximation to the reservoir frequencies by letting ωk ≈

vg|k|, we take the continuum limit
∑

k →
L
2π

∫
dk in computing Wαβ and W †

αβ. With the identification

Λ± =
1
π
P
∫ ∞
−∞

dk eik(xα−xβ)

ωβ±vg |k|
and the assumption that the coupling to the modes is independent of the
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field’s propagation direction, the cardinal intermediate relations could be codified as

∫ ∞

−∞

dke±ikxαβδ(ωβ − vg|k|) =
2
vg

cos
(
kβxαβ

)
,

Λ+ + Λ− =
2
vg

sin
(
kβxαβ

)
, (A.6)

where xαβ =
∣∣∣xα − xβ

∣∣∣ and kβ = ωβ/vg. Terms like P
∫ ∞
−∞

dk 1
ωβ±vg |k|

get reflected as small frequency

shifts in ω1 and ω2, which can be neglected. Then, collecting the like terms together in (23)

and exploiting the preceding relations in (24) and (25), we obtain the full master equation for the

dissipative dynamics of S:

ρ̇S = −
i
ℏ

[HS , ρS ] −
N∑

α,β=1

καβ(c†αcβρS − 2cβρS c†α + ρS c†αcβ)

−i
∑
α,β

Ωαβ[c†αcβ, ρS ], (A.7)

where the off-diagonal coefficients καβ, for α , β, signify dissipative couplings, whileΩαβ simulate

dispersive interactions. The relevant coefficients are given by

καβ =
g2
αL
vg

δαβ + Γαβ cos ϕαβ(1 − δαβ),

Γαβ = (καακββ)1/2 =
gαgβL

vg
,

Ωαβ = Γαβ sin ϕαβ, (A.8)

where, in view of the proximity between the transition frequencies, it is assumed that kλ ≈ k0 =

ω0/vg ∀λ ∈ {1,N}. gkα ≈ gα, and {k0, ω0} is the central waveguide mode in the vicinity of which the

linear dispersion holds valid. The phases ϕαβ are defined as ϕαβ = k0xαβ, and gkλ’s are taken to be

k-independent. When ϕαβ’s are integral multiples of π, the couplings are purely dissipative. Note

that the decay parameter καα =
g2
αL
vg

deduced here accounts only for the waveguide’s contribution

to the dynamics. When other decohering channels are considered in parallel, additional dissipative
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effects are tacked onto these terms.
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APPENDIX B

ADIABATIC THEORY OF LEVEL ATTRACTION

To explain the physics of cavity-mediated level attraction, in the limit κ ≫ γi and κ ≫ gi, we

employ an adiabatic model to advance an effective two-mode description for the magnon modes,

since the cavity mode relaxes rapidly into its steady state 1. This treatment reinforces forthwith the

emergence of a dissipative interaction between the magnons in the adiabatic limit, which underpins

the phenomenon of level attraction. In the rotating frame of the cavity mode, the mean field

equations of the hybrid cavity magnon system are given by

Ẋ = −iH X, (B.1)

In the adiabatic limit, we can eliminate the cavity mode by setting ȧ = 0, yielding

a =
−i(g1m1 + g2m2)

κ
. (B.2)

Substituting this into Eq. (B.1), we obtain a coupled system of differential equations encompassing

the dynamics of the magnon modes,

Ẏ = −iH̃ Y, (B.3)

with YT =[m1 m2] and

H̃ =

s − iγ̃1
−ig1g2
κ

−ig1g2
κ

−s − iγ̃2

 , (B.4)

1The derivation presented is reprinted with permission from Cavity-mediated level attraction and repulsion be-
tween magnons by J. M. P. Nair, D. Mukhopadhyay and G. S. Agarwal, Phys. Rev. B 105, 214418 (2022), published
by the American Physical Society.
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where γ̃i = γi +
g2

i
κ

. For identical couplings g1 = g2 = g and magnon relaxation rates γ1 = γ2 = γ,

we can simplify H̃ further into

H̃ =

s − i(γ + g2

κ
) −ig2

κ

−ig2

κ
−s − i(γ + g2

κ
)

 . (B.5)

The eigenvalues of the Hamiltonian are given by

λ± = −i
(
γ +

g2

κ

)
±

√
s2 − (g2/κ)2, (B.6)

which bear the earmarks of level attraction, and also reproduce Eq. (8.6) in the limit of vanishingly

small γ. For, |s| ≤ g2

κ
, the real parts remain identical, yielding the phase transition points s = ±g2

κ
.

So it is no coincidence that we had observed the onset of mode coalescence at this exact same point

in the preceding section. Thus, under the purview of the adiabatic approximation, in which the

short-lived nature of the intracavity field mode is accounted for, the full tripartite system reduces

to an effective two-mode subsystem with conformable properties in the linear response. The above

matrix exactly replicates the effective Hamiltonian of a two-mode system with density matrix ρ,

coupled through an interposing reservoir, and described by the master equation [77]

dρ
dt
= −

i
ℏ

[H, ρ] + γ1L (m1)ρ + γ2L (m2)ρ + 2ΓL (c)ρ, (B.7)

with H = ∆1m†1m1 + ∆2m†2m2, Γ = g2/κ, c = 1
√

2
(m1 + m2), and the Liouvillian L is defined

by L (σ)ρ = 2σρσ† − σ†σρ − ρσ†σ. More precisely, the mean-field equations resulting from

the above master equation are identical to Eq. (B.3). To put it into perspective, the cavity, when

weakly coupled to the magnons, merely acts as a common reservoir for the magnon modes in the

adiabatic limit, thereby precipitating in a dissipative form of interaction between them.
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