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ABSTRACT

Deep learning on graphs has garnered considerable attention across various machine learning

applications, encompassing social science, transportation services, and biomedical informatics.

Nonetheless, prevailing methods have predominantly focused on supervised learning, resulting in

several limitations, such as heavy reliance on labels and subpar generalization.

To address the scarcity of labels, self-supervised learning (SSL) has emerged as a promis-

ing approach for graph data. Traditional SSL methods for graphs primarily concentrate on en-

hancing model performance through advanced data augmentation strategies and contrastive loss

functions. Despite the significant progress made by existing studies, they encounter severe effi-

ciency challenges when dealing with large-scale graphs and resource-limited applications, such

as online services. To bridge this gap, I have developed a series of graph SSL models that sys-

tematically enhance the efficiency of self-supervised learning on graphs across the stages of model

training, inference, and deployment. Firstly, to improve training efficiency, we propose automating

the data augmentation process through Graph Personalized Augmentation (GPA) and conducting

augmentation-free training via model perturbation (PerturbGCL). Secondly, to expedite inference

efficiency, we suggest distilling the fine-tuned classification model into a lightweight model using

reliable knowledge distillation (Meta-MLP). Finally, to enhance deployment efficiency, we pro-

pose the development of a universal graph model (S2GAE) that enables the learned representation

to generalize across different types of downstream tasks in the graph system.

My research presents a significant contribution to the research community by advancing the

efficiency and applicability of self-supervised learning on graphs, addressing challenges related to

label scarcity and resource limitations. These innovations have the potential to revolutionize vari-

ous machine learning applications across disciplines, ranging from social science to transportation

services and biomedical informatics, ultimately paving the way for more effective and widespread

adoption of deep learning techniques in real-world graph scenarios.
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1. INTRODUCTION

1.1 Background and Motivation

Graphs have become the de facto natural language to represent objects and their relations across

various domains, including social networks [7, 8, 9], knowledge base [10, 11], recommendation

systems [12, 13, 14, 15, 16, 17], and molecules [18, 19, 20]. Within the realm of artificial in-

telligence research, graph neural networks [21, 22, 23, 24] (GNNs) have gained significant pop-

ularity as an effective deep learning paradigm for modeling graph-structured data. The majority

of GNN studies have focused on (semi-)supervised learning scenarios, wherein a substantial vol-

ume of task-specific labels is utilized for training models. However, the reliance on labels poses

limitations in numerous real-world applications due to factors such as label scarcity [25, 26, 27],

high costs [28, 29, 30], label imbalance [31, 32, 33], label noise [34], or even the absence of

labels [35, 36].

To address this challenge, self-supervised learning [37, 38, 39, 40] (SSL) has emerged as a

promising paradigm to alleviate the dependence on manual labels. SSL offers a learning frame-

work where representations are learned directly from unlabeled data. In scenarios where a limited

number of labeled data is available, SSL can serve as a pre-training stage, followed by fine-tuning

the pre-trained deep models using the labeled data for downstream tasks. This approach reduces

the reliance on extensive labeled data and opens avenues for leveraging large amounts of unlabeled

data to improve model performance.

Recognized as “the key to human-level intelligenc" by Turing Award winners Yoshua Bengio

and Yann LeCun, self-supervised learning (SSL) has recently made significant strides in computer

vision (CV) and natural language processing (NLP). Early SSL studies mainly focus on designing

various semantics-related pretext tasks, such as image inpainting [41], image colorizing [42], and

jigsaw puzzle [43] for images, as well as masked language model [44] for texts, to facilitate rep-

resentation learning. Currently, contrastive learning-based SSL frameworks, such as MoCo [45],
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SimCLR [46], and BYOL [47], have emerged as state-of-the-art approaches for learning visual

features by exploiting the invariance of semantics under data augmentation.

Building upon the remarkable achievements of SSL in CV and NLP, there is a growing in-

terest in extending SSL to graph-structured data. For example, GraphCL [48] introduced various

straightforward data augmentation strategies for graphs and extended the concept of SimCLR to

GNN pre-training. GCC [49] proposed a subgraph sampling-based contrastive method inspired

by MoCo. Additionally, BGRL [1] developed a negative-free contrastive learning approach for

graphs, drawing inspiration from BYOL.

Despite the plethora of graph SSL methods proposed in recent years, their primary focus lies

in enhancing model performance through advanced data augmentations and pre-training loss ob-

jectives. However, the efficiency aspect of GNN pre-training has been largely neglected, impeding

the practicality of self-supervised GNN models in real-world applications, particularly when con-

fronted with resource-constrained scenarios and large-scale graphs. Motivated by this research

gap, I aim to enhance the efficiency of SSL on graphs by addressing the following research ques-

tions. Firstly, how can we efficiently select the most informative augmentations for each instance

in a graph dataset from a pool of augmentation candidates, thereby eliminating the need for labori-

ous trial-and-error procedures? Secondly, given the time-consuming and expensive nature of graph

augmentation itself, is it possible to expedite the training of self-supervised graph models without

explicitly conducting data augmentation? Thirdly, apart from training efficiency, pre-trained GNN

models inherently face inference challenges as they require collecting neighbors multiple hops

away from the anchor node for effective message propagation. Therefore, can we distill the knowl-

edge of pre-trained GNN models into lightweight neural networks, enabling efficient deployment

in online scenarios while retaining the effectiveness of GNN? Furthermore, considering that real-

world graph systems often necessitate the provision of multiple graph services concurrently, can

we enhance the generalization capability of pre-trained GNN models to effectively address various

downstream tasks using a unified model?

Below, we provide a detailed analysis of each research question.

2



Augmenta)on Strategies:
1  →  Original
2 →  Node Dropping
3 →  Edge Perturba)on
4 →  Subgraph Sampling
5 →  AAribute Masking

E.g., 𝐴!,# means Edge Perturba)on 
vs AAribute Masking

Figure 1.1: The effect of different augmentation strategies toward four randomly sampled graphs
from MUTAG. X-axis denotes the id of augmentation pair. Y-axis is the graph id. The color
represents the performance. The darker the color is, the better performance GCL achieves under
the corresponding augmentation strategy.

1.1.1 The Training Efficiency Challenge Arises from the Personalized Augmentation

The performance of GCL is known to be heavily affected by the chosen augmentation types [50,

48], since different augmentations may impose different inductive biases about the data. Intensive

recent works have been devoted to exploring effective augmentations for different graph scenar-

ios [51, 52, 53]. Typical augmentation strategies include node dropping, edge perturbation, sub-

graph sampling, and attribute masking. The best augmentation option is often data-driven and

varies in graph scales or types [48]. For example, [48] revealed that edge perturbation may bene-

fit social networks but hurt biochemical molecules. Therefore, manually searching augmentation

strategies for a given scenario would involve extensive trials and efforts, hindering the practical

usages of GCL. Several studies have been proposed to address this issue by automating GCL.

Despite the recent advances, existing GCL might be suboptimal for augmentation configura-

tion, since they apply a well-chosen but identical augmentation option to all graphs in a dataset.

The rationale is: graphs in a scenario usually have different properties because the characteris-

tics of real-world graphs are complex and diverse [54, 55]. For example, by slightly changing

the structure of a molecular graph, its target function could be completely different [56]. Simi-

lar observations have also been found in many other graph domains, such as social communities

and protein-protein interaction networks [1]. Motivated by these observations, we conduct a pre-
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liminary experiment on the MUTAG dataset to test how different augmentation types impact the

GCL results. Results in Fig. 1.1 show that different graphs favor distinct perturbation operations

to achieve their best performance. For example, graph 1 performs better when using edge pertur-

bation vs attribute masking, while graph 2 prefers original vs node dropping. Such personalized

phenomenon of graph instances, in terms of their desirable augmentation strategies, poses signifi-

cant challenge in selecting the optimal augmentation strategies, since the personalized search space

becomes exponential to the number of graphs.

1.1.2 The Training Efficiency Challenge Arises from Graph Augmentation

To pre-train GNN models, existing studies mainly focus on generating augmented graphs based

on data augmentations. However, finding desirable augmentations requires cumbersome efforts,

as the optimal augmentations are domain-specific and vary from graph to graph [48]. While some

efforts have been devoted to accelerating the search process in an automated fashion [53, 57, 58],

conducting data augmentation during training is already expensive in itself, especially for complex,

dense, and large-scale graphs. This is because advanced data augmentation strategies are random

functions designed for individual nodes in the graph, for example, masking the attribute features

of each node or interfering with the local neighborhood structure of the anchor node. This local in-

terference with the graph is time-consuming when the input graph is dense and large-scale. What’s

worse, to avoid augmentation bias, data augmentation is often repeatedly performed per epoch or

iteration of the training process, which exacerbates the efficiency challenge of model optimization,

since the total number of epochs for empirical training could be hundreds or even thousands [1].

To improve the training efficiency of GCL, the intuitive idea is to avoid perturbing graph data.

Inspired by this, AFGRL [59] studies contrastive learning without augmentation on graphs. In-

stead of interfering with the input graph to generate contrastive samples, AFGRL suggests dis-

covering positive and negative pairs in the latent space directly. Nevertheless, it requires cluster-

ing nodes during training (e.g., k-means clustering and k-nearest neighbor search), which is still

training costly. Recently, SimGRACE [2] proposed an alternative contrastive learning solution by

adding Gaussian noise to the model weights of GNN branches. By only disturbing model weights,

4



SimGRACE achieves state-of-the-art training acceleration. However, it may lead to subpar per-

formance because it is completely data-agnostic and limited to learning representations that are

invariant to structural perturbations, which is crucial for self-supervised learning on graphs [60].

Therefore, we need an alternative contrastive learning approach to pre-train GNN models without

explicitly performing graph augmentation, while maintaining model prominence.

1.1.3 The Inference Efficiency Challenge Arises from Neighborhood Collection

After a GNN model is well fine-tuned for specific downstream task, such as node classification,

it still facing several challenges during inference, especially when going deeper [46, 61] and apply-

ing to large-scale graphs [62, 63]. The major reason [64] is that the message propagation among

neighbors from multi-hops always incurs heavy data dependency, causing substantially computa-

tional costs and memory footprints. Some preliminary efforts attempt to fill the gap from different

aspects. For example, [65] proposes to accelerate inference via model pruning, and [66] suggests

to directly reduce computational costs by weight quantization. Although they can speed up GNNs

to some extent, the improvements are rather limited, since the data dependency issue remains unre-

solved. Recently, GLNN [5] tries to tackle this issue by compressing GNNs to inference-friendly

multi-layer perceptrons (MLPs) via knowledge distillation (KD). Similar to standard KD proto-

cols [67], GLNN trains the MLP student by using the soft labels from GNN teacher as guidance,

and then deploys the distilled MLP student to conduct latency-constrained inference.

However, directly leveraging soft labels from the GNN teacher is suboptimal when the labeled

nodes are scarce, a common scenario in graph-structured data [21, 68, 69]. This is mainly because

a large portion of unlabeled nodes will be incorrectly predicted by GNNs due to its limited gener-

alization ability. For instance, many GNN variants [21, 70, 71] can achieve 100% accuracy on the

training set, yet their test accuracy is merely around 80% on Planetoid benchmarks. As a result, the

soft labels of those wrongly predicted unlabeled nodes would introduce noises to the optimization

landscape of the MLP student, leading to an obvious performance gap w.r.t. the GNN teacher [5].

It thus would be more desirable if we are able to filter out those unreliable soft labels out before

training the MLP student.
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1.1.4 The Deployment Efficiency Challenge Arises from Limited Model Capacity

Self-supervised generative models, exemplified by MAE [72] and BERT [44], have demon-

strated remarkable performance in acquiring generalizable representations in various domains such

as computer vision [73, 74] and natural language processing [75]. Such representations offer the

advantage of being easily adaptable to diverse downstream tasks. In graph domains, generalizable

representations also hold significant value in real applications, such as social network platforms

where we may want to conduct recommendation [76] (link prediction), community detection [77]

(node clustering) and malicious account detection [78] (node classification) simultaneously. Thus,

generalizable node representations are desirable.

However, we have observed that it is challenging for existing self-supervised generative models

on graphs to meet the above expectation. To date, no self-supervised graph studies have succeeded

in performing comparable results with GCL methods on node-level and graph-level classification

scenarios without sacrificing their promise on link prediction tasks. This phenomenon casts doubt

on the generalizability of self-supervised graph models as a universal graph learner, leading to seri-

ous deployment challenges as we need to design and maintain multiple graph models for different

downstream tasks within the same graph system. Consequently, we may want to know why tra-

ditional self-supervised graph models can not generalize well to graph classification tasks? How

to build a generalizable self-supervised graph framework that could perform well on link-level,

node-level, and graph-level learning tasks simultaneously?

1.2 Thesis Contributions

To address the aforementioned challenges, this thesis introduces a series of efficient self-

supervised learning (SSL) algorithms, aiming to explore the following research questions: (Q1)

Can we enable personalized augmentation strategies for each graph in a given scenario, facilitating

the identification of effective augmentations based on their unique characteristics? (Q2) Is data

augmentation indispensable for graphs? Can we develop an efficient SSL method based solely on

model perturbation, eliminating the need for explicit data augmentation? (Q3) How can we per-
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form latency-constrained SSL on graphs to enable the deployment of learned models in real-world

scenarios? (Q4) How can we enhance the generalization capability of self-supervised graph mod-

els, ensuring their efficacy across a diverse range of downstream tasks? The key contributions can

be summarized as below.

• The first contribution (C1) involves the development of an efficient personalized augmentation

selector for graph classification tasks. We begin by defining the personalized augmentation prob-

lem in graphs and highlighting the challenge of searching through an extensive search space.

Subsequently, we introduce a plug-and-play personalized augmentation module, which can be

seamlessly integrated with various graph SSL algorithms in an end-to-end manner.

• Recognizing the time-consuming and risky nature of conducting data augmentation on graphs,

the second contribution (C2) explores an alternative approach to achieve effective SSL on graphs.

Our focus lies in model perturbation for representation learning. Instead of searching for optimal

combinations to perturb nodes, edges, or attributes, we propose conducting perturbation on the

model architectures themselves, specifically Graph Neural Networks (GNNs).

• To expand the applicability of SSL on graphs to resource-constrained scenarios like online serv-

ing and edge devices, we delve into employing model compression techniques on well-trained

SSL models. The third contribution (C3) entails the development of a novel knowledge distilla-

tion framework for pre-trained GNNs, specifically targeting practical and challenging few-shot

learning scenarios. We propose a reliable knowledge distillation algorithm that effectively trans-

fers knowledge from a GNN teacher to a pure MLP student by leveraging both labeled and

unlabeled samples.

• Given the numerous graph learning tasks in industrial applications and their shared characteris-

tics, the fourth contribution (C4) of this thesis focuses on foundational settings and delves into

the development of a universal SSL algorithm for graphs. To accomplish this, we propose a self-

supervised Graph Autoencoder (GAE) framework that harnesses the potential of GAEs with

minimal, yet meaningful, endeavors. In particular, rather than reconstructing the entire input
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structure, we employ a random masking technique to conceal a portion of edges. Subsequently,

we aim to learn the reconstruction of these missing edges through the utilization of an effective

masking strategy and an expressive decoder network.

1.3 Related Work

The work in this thesis covers several research topics, including graph neural networks (GNN),

self-supervised learning, and GNN acceleration.

1.3.1 Graph Neural Networks

With the rapid advancement of graph neural networks (GNNs), a plethora of GNN-based graph

representation learning frameworks have been proposed [79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,

90], demonstrating promising performance. These methods can typically be categorized into su-

pervised and unsupervised approaches. While supervised methods [91, 92, 23, 93] achieve notable

results by leveraging labeled data, real-world scenarios often suffer from limited availability of reli-

able labels. Consequently, unsupervised graph learning approaches [94, 95, 22, 6] possess broader

applicability. For instance, the well-known method GAE [94] learns graph representations by re-

constructing the network structure within an autoencoder framework. Another popular approach,

GraphSAGE [22], trains GNNs through a random-walk-based objective.

1.3.2 Self-Supervised Learning

Inspired by the achievements in self-supervised learning for image and text data, researchers

have made extensive efforts to explore self-supervised learning on graphs. These studies can be

categorized into two main approaches: graph contrastive learning and graph generative learning.

Graph contrastive learning aims to learn node representations by pulling together representations

of related objects while pushing apart unrelated ones [50, 52]. For instance, some works [51, 96]

propose maximizing the mutual information between node-level and graph-level representations.

Others [50, 52] suggest maximizing agreement between two augmented views generated by spe-

cific data augmentations [97]. These methods have demonstrated promising results in classification

tasks, including node classification [98, 52, 3] and graph classification [48, 99, 58]. However, their
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performance heavily relies on informative augmentation strategies [100], which can be challenging

to achieve due to the complexity of interpreting perturbed graphs [6]. Moreover, complicated train-

ing strategies such as momentum update [49] or stop-gradient [1] are often required to stabilize the

training.

On the other hand, the graph autoencoder is a classical generative framework used for rep-

resentation learning on graphs. The earliest works can be traced back to DeepWalk [101] and

Node2vec [102], which design the encoder as a simple embedding lookup table and utilize random-

walk objectives [55] to train the model. More recently, work in GAE [94, 22] suggests adopt-

ing GNNs [21] as encoder and simplifying the reconstruction target as the input graph struc-

ture [103]. Subsequently, numerous studies have focused on leveraging the network structure (e.g.,

ARVGA [103]) or incorporating additional side information [104, 105, 106]. Currently, GAEs have

become the de facto standard for fine-grained graph analytical tasks such as link prediction in the

literature. Moreover, masked graph autoencoders [6, 107, 108] have recently garnered significant

attention. Instead of reconstructing the observed information in the original graphs, these meth-

ods involve masking a portion of the input data and subsequently learning to recover the masked

content for GNN pre-training.

1.3.3 GNN Acceleration

Due to the nature of message propagation in GNN models, there has been significant interest

in accelerating GNN models. Existing efforts for GNN speedup can be broadly categorized into

two main approaches: scalable training and inference acceleration. Scalable training focuses on

scaling GNNs to handle large-scale graphs with millions or even billions of nodes. Examples of

such methods include sampling-based approaches [22, 91, 63], clustering-based methods [62], and

decoupling techniques [109, 110, 111]. Unfortunately, these methods often face challenges during

inference due to the computational complexity of the message propagation process [112].

Inference acceleration, on the other hand, aims to reduce the inference latency of GNNs to ex-

tend their applicability in resource-constrained applications. Initial attempts have been made using

pruning-based [65, 61, 113] and quantization-based [114] techniques. However, the improvements

9



achieved by these methods are limited as they still rely on message propagation for embedding.

More recently, knowledge distillation (KD) has emerged as an alternative approach for acceler-

ating GNN inference. However, most existing methods focus on distilling large GNNs into smaller

ones [115, 116, 117, 118, 119] or propagating labels to student models [120]. Since message

propagation is still required in these approaches, they encounter the same inference issues as stan-

dard GNNs. To address this limitation, a recent work called GLNN [5] aims to accelerate GNN

inference by distilling it into a lightweight MLP student.

10



2. EFFICIENT GRAPH CONTRASTIVE TRAINING WITH AUTOMATED

AUGMENTATION SELECTION

The training process of graph contrastive learning (GCL) has faced challenges when it comes

to personalized augmentation for large-scale graphs. However, efficiently performing personalized

augmentations in GCL is difficult due to two main reasons. First, unlike traditional GCL settings,

the search space in personalized scenarios grows exponentially with the number of graphs (N ) in

a dataset. This vast search space becomes impractical when N reaches thousands or even tens of

thousands [121]. Consequently, the conventional trial-and-error approach is not feasible because

each trial, which involves testing an augmentation option for a dataset, is time-consuming. Sec-

ond, the choice of augmentations and the GCL model have a mutually reinforcing relationship.

The contrastive loss in GCL comprises augmented views and the GCL encoder. In other words,

improving GCL performance requires well-chosen augmentation strategies [48], while selecting

suitable augmentation operators relies on the signals provided by GCL as feedback [53]. There-

fore, performing effective personalized augmentation selection while considering this mutual effect

poses another challenge.

To address these challenges, we propose a novel contrastive learning framework called Graph

Personalized Augmentation (GPA). Our approach aims to investigate two research questions: 1)

What are the impacts of different augmentation strategies on a given graph instance within a graph

dataset? 2) Can we construct a stronger automated GCL model by allowing each graph instance

to choose its preferred augmentation types? GPA involves iteratively updating a personalized aug-

mentation selector and the GCL method. The former identifies the optimal augmentation types for

each graph instance, while the latter is trained based on an instance-level contrastive loss defined

using the assigned augmentation options.
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2.1 Problem Statement

Let G = {Gn : 1 ≤ n ≤ N} denote a graph set with N sample graphs, where Gn = (V , E) ∈ G

stands for an undirected graph with nodes V and edges E . Each node v ∈ V in Gn is described by

an F -dimensional feature vector Xv ∈ RF . We use A = {Ak : 1 ≤ k ≤ K} to denote a set of

data augmentation operators, where K is the maximum number of augmentation types of interest.

Each augmentation operator Ak : Gn → G̃n transforms a graph into its conceptually similar form

with certain prior. In previous GCL studies, they focus on identifying two optimal augmentation

types for the whole dataset G, such as the augmentation pair Ai,j = (Ai, Aj), where Ai, Aj ∈ A.

The optimal augmentation pair here is often manually picked via rules of thumb or trial-and-error.

However, as shown in Fig. 1.1, different graphs within the dataset may favor different augmentation

combinations. Therefore, we study personalized augmentation selection and formally define the

research problem as below.

Definition 1. Personalized augmentation selection. Given a set of graphs G = (Gn : 1 ≤ n ≤ N),

and the augmentation space A = {Ak : 1 ≤ k ≤ K} consisting of K different augmentation types,

to perform GCL, personalized augmentation selection aims to find the optimal augmentation pair

An
i,j = (An

i , A
n
j ) for each graph Gn ∈ G. The values of i and j are only determined by the

characteristic of the n-th sample graph Gn.

2.2 Methodology

In this section, we present the details of the proposed GPA shown in Fig. 2.1. In a nutshell, it

contains two critical components: the personalized augmentation selector and the GCL model. The

former module aims to infer augmentation choices for the downstream GCL methods when training

them on the training set, while the later provides reward to update the augmentation selector based

on the validation set. In the following, we first illustrate the exponential selection space of our

personalized augmentation setting. Then, we elaborate the details of the augmentation selector

and the GCL method. Finally, we show how to jointly optimize the two components in a unified

perspective.
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Figure 2.1: Illustration of our GPA framework. The personalized augmentation selector infers
the two most informative augmentation operators, and the GCL model trains GNN encoder based
on the sampled augmented views. Specifically, the personalized augmentation selector is learned
to adjust its selection strategy to infer optimal augmentations on each graph, according to the
characteristic of each graph and the GCL model’s performance, i.e., loss.

2.2.1 Personalized Augmentation Selection Space

Given the graph dataset G = {Gn : 1 ≤ n ≤ N} and a pool of augmentation operators

A = {A1, A2, · · · , AK}, existing GCL efforts aim to select two informative operators (e.g.,

(Ai, Aj | 1 ≤ i, j ≤ K)) for N graphs to create their augmented views. Since the augmenta-

tion operators are shared for the whole dataset, the total selection space is
(
K+1
2

)
, i.e., sampling

two operators with replacement. This collective selection strategy is widely adopted in existing

GCL works. However, as discussed before, various sample graphs may favor different augmenta-

tion operators owing to the diversity of graph-structured data. Therefore, we propose to adaptively

choose two augmentation strategies for different graphs. Following Definition 1, we define the

selected augmentations for each graph Gn as An
i,j = (An

i , A
n
j ). Then, the potential augmentation

selection size for each graph is
(
K+1
2

)
, and the total selection space for the whole dataset equals to(

K+1
2

)N
. Although K is empirically small (e.g., K = 5) in GCL domain, the total selection space
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in our personalized setting is still huge and intractable, since the complexity grows exponentially

to the number of graphs. For instance, when K = 5 and N = 100, we already have 15100 se-

lection configurations roughly. The situation is more serious in real-world scenarios where N is

thousands or even tens of thousands. In this paper, we adopt five essential augmentation operators

(i.e. K = 5), denoted by A = {Identical,NodeDrop,EdgePert,Subgraph,AttMask}. The

augmentation pairs are shown in Table 2.1, and the details of these augmentations are listed below.

• NodeDrop. Given the graph Gn, NodeDrop randomly discards a fraction of the vertices

and their connections. The dropping probability of each node follows the i.i.d. uniform

distribution. The underlying assumption is that missing part of vertices does not damage the

semantic information of Gn.

• EdgePert. The connectivity in Gn is perturbed through randomly adding or dropping a

certain portion of edges. We also follow the i.i.d. uniform distribution to add/drop each

edge. The underlying prior is that the semantic meaning of Gn is robust to the variance of

edges.

• AttMask. AttMask masks the attributes of a certain proportion of vertices. Similarly, each

node’s masking possibility follows the i.i.d. uniform distribution. Attribute masking implies

that the absence of some vertex attributes does not affect the semantics of Gn.

• Subgraph. This augmentation method samples a subgraph from the given graph Gn based

on random walk. It believes that most of the semantic meaning of Gn can be preserved in its

local structure.

In summary, by considering personalized augmentation, the search space per dataset increases

from
(
K+1
2

)
to

(
K+1
2

)N
. Therefore, common selection techniques such as rules of thumb or trial-

and-errors adopted by prior GCL approaches [53, 48] are no longer appropriate. Thus, a tailored

augmentation selector is needed to effectively tackle the challenging personalized augmentation

problem.
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Table 2.1: Distinct graph augmentation pairs.

Ai,j Ai, Aj Augmentation Augmentation
A1,1 A1,A1 Identical Identical
A1,2 A1, A2 Identical Node Dropping
A1,3 A1, A3 Identical Edge Perturbation
A1,4 A1, A4 Identical Subgraph
A1,5 A1, A5 Identical Attribute Masking
A2,2 A2, A2 Node Dropping Node Dropping
A2,3 A2, A3 Node Dropping Edge Perturbation
A2,4 A2, A4 Node Dropping Subgraph
A2,5 A2, A5 Node Dropping Attribute Masking
A3,3 A3, A3 Edge Perturbation Edge Perturbation
A3,4 A3, A4 Edge Perturbation Subgraph
A3,5 A3, A5 Edge Perturbation Attribute Masking
A4,4 A4, A4 Subgraph Subgraph
A4,5 A4, A5 Subgraph Attribute Masking
A5,5 A5, A5 Attribute Masking Attribute Masking

2.2.2 Personalized Augmentation Selector

In order to assign different augmentation operators to various sample graphs when performing

GCL on a specific dataset, random selection is the intuitive solution. Its key idea is to randomly

sample two augmentation types for each graph from the candidate set. Despite the simplicity,

the random selection approach fails to control the quality of sampled augmentation operators.

Therefore, directly coupling the existing GCL framework with random augmentation selection

would lead to performance degradation.

To address this issue, we focus on data-driven search by making the augmentation selection

process learnable. The principle idea is to parameterize our personalized augmentation selector

with a deep neural network, which takes a query graph as input and outputs its optimal augmen-

tation choices. There are two main hurdles to achieve this goal: (i) given the exponential aug-

mentation space, how can we make our personalized augmentation selector scale to the real-world

dataset with thousands of graphs; (ii) since the topology structure and node attributes are crucial to

graph-structured data, how can our personalized augmentation selector exploit this information to

produce a more precise augmentation choice? We illustrate our dedicated solutions below.
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Given the augmentation pool A = {Ai : 1 ≤ i ≤ K} and a query graph Gn, our augmentation

selector is required to select the most two informative augmentations, e.g., (An
1 , A

n
3 ), from the can-

didate set. This selection problem is well-known to be discrete and non-differentiable. Although

enormous efforts based on evolution or reinforcement learning have been proposed to address the

discrete selection problem, they are still not suitable for such a large selection space (illustrated in

Sec. 2.2.1) and are far from utilizing the properties of graphs. Therefore, we propose to make the

search space learnable by relaxing the discrete selection space to be continuous inspired by [122]

and further make this relaxation consider the characteristic of graphs. Specifically, given the sam-

pled augmentation pair An
i,j = (An

i , A
n
j ) of Gn, its importance score α̂n

i,j is computed as

α̂n
i,j =

exp(αn
i,j)∑

i′j′ exp(α
n
i′,j′)

, αn
i,j = gθ(fw(A

n
i (Gn) ∥ An

j (Gn))), (2.1)

where gθ denotes the score function that takes the representations of augmented views An
i (Gn) and

An
j (Gn) as input. This design enforces the score estimation to take into account the topology and

node attributes of Gn. In practice, gθ is parameterized as a two-layer MLP with a ReLU activation

function. fw is the GNN encoder for graph representation learning. ∥ indicates the concatenation

operation. Through Eq. (2.1), the discrete augmentation selection process reduces to learning a

score function gθ under the consideration of graph characteristic.

After the personalized selector is well-trained, let αn = [α̂n
1,1, · · · , α̂n

i,j, · · · , α̂n
K,K ] denote the

vector of importance scores associated with all different augmentation pairs of the graph Gn. The

optimal augmentation choice of Gn can be obtained by selecting the augmentation pair with the

maximum score in αn. For example, An = (An
i , A

n
j ) if α̂n

i,j = argmaxi′,j′ α̂
n
i′,j′ .

To summarize, the above equation provides a principled solution to our personalized augmen-

tation setting. On one hand, it allows augmentation selection in such a large search space via

the simple forward propagation of a shallow neural network, i.e., gθ. On the other hand, it can

also infer the most informative augmentations for each graph based on its own characteristic for

downstream GCL model training(discussed in Sec. 2.2.3).
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2.2.3 GCL Model Learning

After the personalized augmentation selector is plugged in, we can adopt it to train the GCL

model. Notice that our model is applicable to arbitrary GCL methods that rely on two augmented

views as input. In this section, we mainly focus on the most popular and generic GCL architecture

- GraphCL [48] as the backbone and leave other specific architectures for future work.

Assume (An
i , A

n
j ) is the optimal augmentation pair of graph Gn identified by our personalized

augmentation selector, and fw(·) is the GNN encoder. GraphCL proposes to learn fw(·) by maxi-

mizing the agreement between the two augmented views, i.e., An
i (Gn), A

n
j (Gn). The GNN encoder

can encode the whole graph into a hidden space RD. In practice, a shared projection head func-

tion RD → RD is often applied upon the output of GNN encoder to improve the model capacity.

In the following sections, we abuse the notation fw to denote both the GNN encoding function

and the projection function. Based on this notation, we can formally calculate the instance-level

contrastive loss as follows:

L(Gn) = − log
exp(sim(fw(A

n
i (Gn)), fw(A

n
j (Gn)))/τ)∑N

n′=1,n′ ̸=n exp(sim(fw(An
i (Gn)), fw(An′

j (Gn′)))/τ)
, (2.2)

where sim(·, ·) denotes the cosine similarity function and τ is the temperature parameter. By mini-

mizing Eq. (2.2), it encourages the two augmented views of the same sample graph to have similar

representations, while enforces the augmented representations of disparate graphs to be highly dis-

tinct. As the sum operation over all graphs G in the denominator of Eq. (2.2) is computationally

prohibitive, GCL is often trained under minibatch sampling [48], where the negative views are

generated from the augmented graphs within the same minibatch.

Although Eq. (2.2) looks similar to the traditional contrastive loss, the key difference between

them is that the augmentation operators An
i , A

n
j are closely related to the sample graph Gn in our

formulation. That is, the augmentation operators learned by our model vary from one graph to

another according to their own characteristics, which are previously enforced to be the same re-

gardless of the graph’s diverse nature. Benefiting from considering the graph’s personality, the

GCL method can learn the basic but essential features of graphs and thus achieve more expressive
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representations for downstream tasks.

2.2.4 Model Optimization

Until now, we have illustrated the detailed personalized augmentation selector as well as the

downstream GCL framework, the remaining question is how to effectively train the two modules.

The naive solution is to first train the personalized augmentation selector separately, and then op-

timize the GCL method using the identified personalized augmentations as input. However, such a

task-agnostic approach is sub-optimal, since it does not take the mutual reinforced effect between

augmentation and the GCL method into consideration. This is because learning a better GCL

method requires optimal augmentation strategies since they can augment more personalized fea-

tures to distinguish it from other objects. Meanwhile, obtaining suitable augmentation strategies

also needs the signals of a better GCL method as guidance for optimization. As a result, without

linking the two modules in a principled way, it is almost infeasible to enforce the personalized

augmentation selector to accurately infer optimal augmentation strategy for improving the perfor-

mance of the GCL method. To this end, we propose to tackle this problem by jointly training the

two modules under a bi-level optimization, expressed as:

argmin
θ

Lvalid(w
∗(θ), θ)

s.t. w∗(θ) = argmin
w

Ltrain(w, θ),

(2.3)

where θ denotes the trainable parameters of the personalized augmentation selector, and w is the

parameters for the GCL method. The upper-level objective Lvalid(w
∗(θ), θ) aims to find θ that min-

imizes the validation rewards on the validation set given the optimal w∗, and the lower-level ob-

jective Ltrain(w, θ
∗) targets to optimize w by minimizing the contrastive loss based on the training

set with θ fixed. We want to remark that GPA only exploits the signals from the self-supervisory

task itself without accessing labels. Thus, compared with conventional supervised methods, the

validation set here only contains a set of graphs without label information, which is much easier to

construct, e.g., randomly sampling 10% of the training set.

18



By optimizing Eq. (2.3), the personalized augmentation selector and the target GCL model will

be jointly trained to reinforce their reciprocal effects. Since deriving exact solutions for this bi-level

problem is indeed analytically intractable, we adopt the alternating gradient descent algorithm to

solve it as follows.

Figure 2.2: Empirical training curves of approximate gradient scheme in GPA on datasets PRO-
TEINS and NCI1 with different GNN encoders.

2.2.4.1 Lower Level Optimization

With θ fixed, we can update w with the standard gradient descent procedure as below.

w′ = w − ξ∇wLtrain(w, θ), (2.4)

where Ltrain = EGtrain
L(Gn) with L(Gn) is instance-level contrastive loss defined in Eq. (2.2),

Gtrain denotes the training set, and ξ is the learning rate.
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2.2.4.2 Upper Level Optimization

Since it is not intuitive to directly calculate the gradient w.r.t. θ over all augmentation options,

we first define the upper-level objective based on Eq. (2.2) as below:

Lvalid(w
∗(θ), θ) =

∑
Ai,Aj∈A

∑
Gn∈Gvalid

α̂n
i,jL(Gn), (2.5)

where α̂n
i,j is the selecting score computed by the score function gθ with parameter θ defined in

Eq. (2.1). Gvalid denotes the validation set. Based on the above loss function, we can update θ by

fixing w, expressed as:

θ′ = θ − ξ∇θLvalid(w
∗(θ), θ). (2.6)

However, evaluating the gradient w.r.t. θ exactly is intractable and computationally expensive,

since it requires solving for the optimal w∗(θ) whenever θ gets updated. To approximate the

optimal solution w∗(θ), we propose to take one step of gradient descent update for w, without

solving the lower-level optimization completely by training until convergence. To further compute

the gradient of θ, we apply chain rule to differentiate Ltrain(w
′(θ), θ) with respect to θ via w′,

where w′ is defined in Eq. (2.4). Therefore, the gradient of θ can be approximated as:

∇θLvalid(w
∗(θ), θ) ≈ ∇θLvalid(w

′, θ)

≈ ∇θLvalid(w − ξ∇wLtrain(w, θ), θ).

(2.7)

Applying chain rule to Eq. (2.7), we further obtain the gradient of θ as:

∇θLvalid(w
∗(θ), θ) ≈ ∇θLvalid(w

′, θ)

− ξ∇2
θ,wLtrain(w, θ)∇w′Lvalid(w

′, θ)

(2.8)
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Algorithm 1 The framework of GPA
Input: A graph dataset G, the personalized augmentation selector gθ(·), and a GCL model fw(·);
Output: The well-trained GCL model;

1 Split the input graph dataset G into train Gtrain and validation Gvalid set;
2 Initialize the selector parameter θ and the GCL model parameter w;
3 while not converge do
4 Randomly sample a minibatch of graphs from the training set;
5 Infer the optimal augmentation pairs for sampled graphs using the personalized augmentation

selector gθ(·);
6 Update parameters w of the GCL learner based on the sampled graphs and the identified aug-

mentation types according to Eq. (2.4);
7 Randomly sample a batch of graphs from validation set;
8 Compute the rewards based on the sampled validation graphs using the updated w′ according

to Eq. (2.5);
9 Update parameters θ of the personalized augmentation selector according to Eq. (2.6) and

Eq. (2.9);
10 Return The well-trained GCL model.

Since the computation cost of the second term in Eq. (2.8) is still high, it can be further approxi-

mated by the finite difference method:

ξ∇2
θ,wLtrain(w, θ)∇w′Lvalid(w

′, θ)

≈ ∇θLtrain(w
+, θ)−∇θLtrain(w

−, θ)

2ϵ

(2.9)

where w± = w ± ϵ∇w′Lvalid(w
′, θ) and ϵ denotes a small scalar.

By alternating the update rules in Eq. (2.4) and Eq. (2.6), we are able to progressively learn

the two modules. Although an optimizer with the theoretical guarantee of convergence for the bi-

level problem in Eq. (2.3) remains an open challenge, alternating gradient descent algorithm has

been widely adopted to solve similar objectives in Bayesian optimization [123], Reinforcement

learning [124, 125, 126, 127, 128], automatic differentiation [129, 130, 131, 132], and adversarial

training [133]. The complete optimization procedure of GPA is shown in the Algorithm 5. We also

show some level of empirical convergence in Figure 2.2.
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2.2.5 Complexity Analysis of GPA

We analyze the complexity of GPA and illustrate its impact on the GCL backbone –GraphCL [48].

Given a graph G = (V , E) and the GNN encoder fw. The time complexity for the GNN back-

bones used in common graph learning tasks is O(|V| + |E|). Since the proposed GPA method

is built upon GraphCL [48] and the personalized augmentation selector gθ, the additional cost

is mainly caused by the selector. For GraphCL, it performs two encoder computations per iter-

ation plus a prediction head. If we assume the backward cost is similar to that of the forward

pass, the complexity of GraphCL is 4Cencoder(|V| + |E|) + 2Chead(Nbatch) + Closs + 2Caug, where

C. are constants which rely on the neural architectures, and Nbatch is the batch size. For the se-

lector gθ, it takes K encoder computations per iteration to generate graph representations and

simple multilayer perceptrons (MLPs) to estimate the sampling probability. Thus its complexity

is KCencoder(|V| + |E|) + Cselector(Nbatch) + KCaug. Therefore, the total complexity for GPA and

GraphCL are (2K +4)Cencoder(|V|+ |E|) + (2K +2)Caug and 4Cencoder(|V|+ |E|) + 2Caug, respec-

tively, since the costs of GNN encoder and data augmentation are significantly higher than others.

Assume the time cost for data augmentation is 5 times of GNN encoder, i.e., Caug = 5Cencoder,

then the time complexity of GPA is 2K+4+(2K+2)∗5
4+2∗5 = 12K+14

14
times that of GraphCL. Given that

K = 5 in our experiments, the complexity of GPA is around 6 times of GraphCL in theory. How-

ever, due to the inefficient implementation of our current code (e.g., for loop in the loss function

and perform K augmentations in series), the empirical complexity of GPA is less than 7 times

of GraphCL. It is noteworthy that parallel techniques such as multiprocessing could be used to

accelerate the training.

2.2.6 Comparison of GPA and JOAO

While JOAO and GPA all focus on training GraphCL in an automated fashion, they differ in

two crucial ways: 1) The research problem is different. JOAO aims to learn a shared sampling

distribution for a given dataset, but GPA targets to learn a sampling vector for each instance (i.e.,

graph) in the dataset. Notably, due to randomness, JOAO can sample different augmentations to
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different graphs to some extent. However, since the sampling distribution is fixed, it is “fake”

personalization because it does not consider the characteristics of different graphs. In contrast,

GPA could explicitly generate personalized sampling distribution to each graph, which is tailored

and more challenging as the augmentation space grows exponentially to the dataset size. 2) The

sampler optimization process is different. JOAO adopts a sampling-based approach to directly train

a K-dimensional sampling distribution parameters. However, such a solution cannot be applied to

our personalized scenarios because i) the total trainable parameters will be linear to the size of the

dataset, i.e., K × |V|, where V is the dataset; and ii) it is restricted to transductive settings and

cannot generate distribution vectors for new graphs, i.e., unseen graphs during training. To this

end, we adopt a new approach to achieve personalized augmentation allocation by parameterizing

the sampler as a neural network taking the topological and node attributes of a graph as input. It

reduces the trainable parameters of the sampler to be independent with the size of the dataset.

2.3 Experiments

We evaluate the performance of GPA on multiple graph datasets with various scales and types.

We focus on exploring the following research questions.

• Q1: How effective is GPA in performing graph representation learning against state-of-the-

art GCL methods in unsupervised and semi-supervised evaluation tasks?

• Q2: How effective is the proposed personalized augmentation selector in identifying aug-

mentations across various datasets?

• Q3: Compared with random selection, how effective is our proposed personalized augmen-

tation selector?

• Q4: What are the impacts of hyperparameters on GPA, such as the embedding dimension d

of the score function?
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Table 2.2: Statistics of the datasets.

| G | Avg.Nodes Avg.Edges #Label

NCI1 4, 110 29.87 32.30 2
PROTEINS 1, 113 39.06 72.82 2

DD 1, 178 284.32 715.66 2
MUTAG 188 17.93 19.79 2
COLLAB 5, 000 74.49 2, 457.78 3

IMDB-BINARY 1, 000 19.77 96.53 2
REDDIT-BINARY 2, 000 429.63 497.75 2

REDDIT-MULTI-5K 4, 999 508.52 594.87 5
GITHUB 12, 725 113.79 234.64 2

ogbg-molhiv 41, 127 25.5 27.5 2

Table 2.3: Dataset statistics of graph-level benchmarks.

Domain | G | Avg.Nodes Avg.Edges #Label
NCI1 Molecule 4, 110 29.87 32.30 2

RDT-M5K social 4, 999 508.52 594.87 2
GITHUB Social 12, 725 113.79 234.64 2

2.3.1 Datasets and Experimental Settings

Datasets. For a comprehensive comparison, we evaluate the performance of GPA on ten

widely used benchmark datasets. Specifically, we include two small molecules networks (NCI1

and MUTAG), two bioinformatics networks (DD and PROTEINS), and five social networks

(COLLAB, REDDIT-BINARY, REDDIT-MULTI-5K, IMDB-BINARY, and GITHUB) from

TUDatasets [56]. To evaluate the scalability of our model, we also use one large-scale OGB [121]

dataset ogbg-molhiv. The data statistics are summarized in Table 5.2.

Learning protocols. Following common protocols [48], we aim to evaluate the performance

of GPA in unsupervised and semi-supervised settings. In our model training phase, we randomly

split 10% of graphs in each dataset into the validation set and use the remaining for training. After

the model is trained, in unsupervised setting, we train an SVM classifier on the graph represen-

tations generated by the trained GCL model, and apply 10-fold cross-validation to evaluate the
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performance. For semi-supervised setting, we finetune the GCL model (its GNN encoder) with a

logistic regression layer for semi-supervised learning, where the labeled sample ratio is 0.1. To

avoid randomness, we repeat the process for ten times and report the averaged results.

Implementation details. Our model is built upon Pytorch and PyG (PyTorch Geometric) li-

brary [134]. We train our model with Adam optimizer using a fixed batch size of 128. Similar to

GraphCL [48], the default augmentation ratio is set to 0.2 for all augmentation types. In unsuper-

vised setting, we adopt a three-layer GIN [135] encoder with hidden dimension 128 for all datasets.

In semi-supervised scenarios, we employ a five-layer ResGCN [136] encoder with dimension 128

for TUDatasets [56], while a five-layer GIN [135] encoder with dimension 300 for OGB datasets

as suggested in [121]. There is one hyper-parameter in our model, i.e., the hidden dimension d of

score function gθ. We search d within the set {128, 256, 512}. The impact of the hidden dimension

is analyzed in Sec. 2.3.5.

Table 2.4: Unsupervised learning performance for graph classification in TUdatasets (Averaged
accuracy ± std. over 10 runs). The bold numbers denote the best performance and the numbers in
blue represent the second best performance

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B Avg.Rank

InfoGraph 76.20± 1.06 74.44± 0.31 72.85± 1.78 89.01± 1.13 70.65± 1.13 82.50± 1.42 53.46± 1.03 73.03± 0.87 4.75
GraphCL 77.87± 0.41 74.39± 0.45 78.62± 0.40 86.80± 1.34 71.36± 1.15 89.53± 0.84 55.99± 0.28 71.14± 0.44 3.88
JOAO 78.07± 0.47 74.55± 0.41 77.32± 0.54 87.35± 1.02 69.50± 0.36 85.29± 1.35 55.74± 0.63 70.21± 3.08 5.00
JOAOv2 78.36± 0.53 74.07± 1.10 77.40± 1.15 87.67± 0.79 69.33± 0.34 86.42± 1.45 56.03± 0.27 70.83± 0.25 4.50

AD-GCL 69.67± 0.51 73.59± 0.65 74.49± 0.52 88.62± 1.27 73.32± 0.61 85.52± 0.79 53.00± 0.82 71.57± 1.01 5.13
AutoGCL 82.00± 0.29 75.80± 0.36 77.57± 0.60 88.64± 1.08 70.12± 0.68 88.58± 1.49 56.75± 0.18 73.30± 0.40 2.38

GPA 80.42± 0.41 75.94± 0.25 79.90± 0.35 89.68± 0.80 76.17± 0.10 89.32± 0.38 53.70± 0.19 74.64± 0.35 2.38

Baseline methods. To validate the effectiveness of GPA, we compare against three categories

of state-of-the-art competitors. First, to evaluate the effectiveness of contrastive learning, we in-

clude one traditional network embedding method GAE [94]. Second, to study why we need per-

sonalized augmentation, we include classic GCL methods that assign identical augmentation strate-

gies for all graphs InfoGraph [137], GraphCL [48], JOAO [53] and its variant JOAOv2 [53].
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Note that JOAO and JOAOv2 are two sample-based automated GCL methods that focus on se-

lecting the most suitable predefined augmentation strategies for each dataset. They are the most

relevant baselines to our proposed GPA. Third, we also include two view-generated automated

GCL methods: AD-GCL [58] and AutoGCL [57]. Ordinarily, they should not be considered as

our baselines since GPA belongs to GCL with augmentation selection, not view generation. We

add them to comprehensively show the power of GPA.

Table 2.5: Semi-supervised learning performance for graph classification in TUdatasets (Averaged
accuracy ± std. over 10 runs). The bold numbers denote the best performance and the numbers in
blue represent the second best performance

Dataset NCI1 PROTEINS DD RDT-B RDT-M5K GITHUB ogbg-molhiv Avg.Rank

GAE 74.36± 0.24 70.51± 0.17 74.54± 0.68 87.69± 0.40 53.58± 0.13 63.89± 0.52 - 6.67

InfoGraph 74.86± 0.26 72.27± 0.40 75.78± 0.34 88.66± 0.95 53.61± 0.31 65.21± 0.88 - 4.50
GraphCL 74.63± 0.25 74.17± 0.34 76.17± 1.37 89.11± 0.19 52.55± 0.45 65.81± 0.79 55.48± 1.32 4.29
JOAO 74.48± 0.25 72.13± 0.92 75.69± 0.67 88.14± 0.25 52.83± 0.54 65.00± 0.30 56.83± 1.39 5.71
JOAOv2 74.86± 0.39 73.31± 0.48 75.81± 0.73 88.79± 0.65 52.71± 0.28 66.60± 0.60 57.39± 1.39 4.00

AD-GCL 75.18± 0.31 73.96± 0.47 77.91± 0.73 90.10± 0.15 53.49± 0.28 67.13± 0.52 - 2.33
AutoGCL 73.75± 2.25 75.65± 2.40 77.50± 4.41 79.80± 3.47 49.91± 2.70 62.46± 1.51 - 5.83

GPA 75.50± 0.14 74.27± 1.11 76.68± 0.81 89.99± 0.32 54.92± 0.35 68.31± 0.13 60.76± 1.01 1.57

2.3.2 Comparison with Baselines

We start by comparing the performance of GPA with the state-of-the-art baseline methods un-

der two settings (Q1). Table 2.4 & Table 2.5 report the results of all methods on diverse datasets un-

der unsupervised and semi-supervised settings, respectively. We have the following Observations.

① With personalized augmentations for each graph, GPA outperforms vanilla GCL meth-

ods with fixed augmentation per dataset. By identifying different augmentations for different

sample graphs, GPA performs generally better than vanilla GCL methods on two evaluation scenar-

ios (Table 2.4 and Table 2.5). Specifically, in the semi-supervised evaluation task, GPA consistently

outperforms GAE, InfoGraph, GraphCL, JOAO, and JOAOv2 on all datasets. In the unsupervised

setting, GPA outperforms the vanilla GCL methods on 6 out of 8 datasets. In particular, GPA im-
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proves 7.8%, 9.9%, 9.6%, and 6.7% over InfoGraph, JOAOv2, JOAO, and GraphCL on COLLAB

in Table 2.4, respectively. This observation validates the effectiveness of performing personalized

augmentation in GCL training.

② Across diverse datasets, GPA performs better than (or on par with) the view-generated

GCL methods on two evaluation settings. On all datasets originating from diverse domains, GPA

generally performs better or sometimes on par with the state-of-the-art AD-GCL and AutoGCL

methods, as shown in the average rank. In unsupervised setting, GPA outperforms AD-GCL on

all datasets while GPA beats AutoGCL on 6 out of 8 datasets. In semi-supervised setting, GPA

outperforms both AD-GCL and AutoGCL on NCI1, RDT-B, RDT-M5K, and GITHUB datasets

and achieves the second best on PROTEINS.

③ GPA scales well on large datasets. To study the scalability of our model, we further con-

duct experiment on the large-scale OGB dataset: ogbg-molhiv. View-generated GCL methods are

excluded for this dataset since they are not officially tested on OGB datasets. From the Table 2.5,

GPA consistently performs better than GraphCL and JOAO. To be specific, GPA improves 9.5%

and 5.9% over GraphCL and JOAOv2 on ogbg-molhiv, respectively.

2.3.3 Personalized Augmentation Analysis

To study the effectiveness of our model in identifying informative augmentation types for var-

ious graphs (Q2), we visualize the learned augmentation distribution on Fig. 2.3. By comparing

across different types of datasets, we observe the following.

④ By learning from the data, GPA can effectively assign different augmentations for var-

ious datasets. Our model GPA can identify different augmentations for different sample graphs,

and allow different datasets to have their own augmentation distributions (see Fig. 2.3). Specifi-

cally, on MUTAG, 19 graphs prefer (Identical, NodeDrop) augmentations, while 30 graphs favor

(Subgraph, Subgraph) augmentation combinations. Notice that (Subgraph, Subgraph) will gen-

erate two different subgraph-perturbation-induced augmented views, owning to sample random-

ness. Besides, COLLAB more likes the (AttMask, AttMask) augmentation pair, while DD prefers

(EdgePert, EdgePert) operations. These observations empirically echo the necessity of performing
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Figure 2.3: Augmentation distribution learned by GPA over molecules, bioinformatics, and social
networks, in terms of the unsupervised setting.
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Figure 2.4: Personalized augmentation selector dimension analysis of GPA
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Table 2.6: Ablation study of GPA under unsupervised setting in terms of mean classification accu-
racy

GPA-random GPA

NCI1 77.71± 0.60 80.42± 0.41
PROTEINS 74.21± 0.39 75.94± 0.25

DD 77.25± 0.69 79.90± 0.35
MUTAG 86.08± 2.93 89.68± 0.80
IMDB-B 71.80± 1.13 74.64± 0.35

personalized augmentation for GCL methods.

Another promising observation is that our model can assign (Identical, Identical) choice (i.e.,

two identical views) to some portion of graphs over all datasets. Given that the mutual information

between two identical views (i.e., representations) is always maximized, such pure identical aug-

mentations can be regarded as a skip operation. That is, these graphs abandon themselves during

the GCL model training. The possible reason is that the existing augmentation strategies are not

suitable to capture their characteristics or damage their semantic meanings. In this case, blindly

selecting any combination of other augmentation types may incur huge performance degradation

or noise. This observation sheds light on designing more advanced augmentation strategies beyond

the current basic augmentations. On the other hand, it verifies the effectiveness of the proposed

augmentation selector in skipping noisy graphs during model training by providing identical aug-

mentations.

2.3.4 Ablation Study

To further investigate the effectiveness of the proposed personalized augmentation selector

(Q3), we compare it with a random-search based variant, i.e., GPA-random. GPA-random replaces

the personalized augmentation selector with a random mechanism. Specifically, it assigns one

random augmentation pair to each graph. Noticed that GPA-random still assigns different aug-

mentations to each graph while GraphCL assigns one pre-defined pair of augmentation strategies
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to the whole dataset. Table 2.6 shows the results in terms of unsupervised setting. From the table,

we can observe that GPA consistently performs better than GPA-random in all cases. In particu-

lar, GPA improves 3.5%, 2.3%, 3.4%, 4.2%, and 4.0% over GPA-random on NCI1, PROTEINS,

DD, MUTAG, and IMDB-B, respectively. This comparison validates our motivation to develop a

tailored and learnable personalized augmentation selector for GCL methods.

2.3.5 Parameter Sensitivity Analysis

We now study the impact of the parameter, i.e., the hidden dimension d of the score function to

answer Q4. Specifically, we search d from the set {64, 128, 256, 512} and plot the results of GPA

on three representative datasets in Fig. 2.4. Similar observations are obtained by other datasets.

From the figure, we can see that GPA generally performs stably across various dimension choices.
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3. EFFICIENT GRAPH CONTRASTIVE TRAINING WITH MODEL PERTURBATION

To improve the training efficiency of GCL, in this work, we propose a novel contrastive learn-

ing framework, PerturbGCL, to train GNN encoders by customized model perturbations. Different

from SimGRACE [2] that only focuses on weight perturbation, we further design effective model-

level perturbation to provide local disturbances between contrastive views. Following prior work

on GNN [109], we treat each layer of GNN as two main operations: message propagation (MP) and

feature transformation, and then develop two tailored perturbation functions (randMP and weight-

Prune) to perturb them separately. Specifically, randMP offers local perturbation to the nodes in

both views by performing a random number of message propagation steps at each GNN layer. This

design is inspired by the fact that performing MP k times can be considered as a convolution [138]

on the k-hops of neighbors of the anchor node. On this basis, we can learn diverged but corre-

lated representations from two contrasting models with different k values due to the homophily

theory [139]. weightPrune can provide weight-level perturbations by pruning the transformation

weights of the target GNN branch on-the-fly. Unlike the Gaussian noise in [2], our pruned model

will co-evolve with the target GNNs, leading to adaptively mining noise perturbations from the

data, i.e., data-driven. Coupling these two strategies together yields a principled model perturba-

tion solution tailored for the GCL.

3.1 Problem Statement

Let G = (V , E ,X,A) be an undirected graph, where V is the set of nodes and E is the set of

edges. X ∈ R|V|×D is the node feature matrix where the i-th row of X denote the D-dimensional

feature vector of the i-th node in V . A ∈ R|V|×|V| indicates the adjacency matrix, where Ai,j = 1

if the i-th node and j-th node is connected (i.e., (i, j) ∈ E), otherwise Ai,j = 0. We use fw denote

the mapping function that encodes each node v ∈ G into a d-dimensional representation hv ∈ Rd.

Graph neural networks. To learn representations on graph data, we often utilize graph neural

networks (GNN) [21, 22, 112] as the backbone encoder fw. Without loss of generality, we present
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GNN as a message passing network:

h(l)
v = σ(a(l−1)

v Wl), a(l−1)
v = g(l−1)(h(l−1)

v , {h(l−1)
u : u ∈ Nv}), (3.1)

where h
(l)
v ∈ Rd is the intermediate representation of node v at the l-the layer, Nv denotes the

direct neighbors of node v. We use g to denote the message propagation (MP) function, which

updates node representations by integrating its neighbors using graph convolution, such as the

spectral graph convolution in [21]. Wl ∈ Rd×d is the weight transformation matrix and σ is the

activation function, such as ReLU.

Assume we have L layers in total; the final representation of node v is given by hv = hL
v ,

where hL
v is the output of the L layer defined in Eq. (3.1). In addition to node representation, we

are also interested in graph-level representation hG ∈ RD for graph-level applications. To this end,

a readout function is often built upon the GNN layers to obtain the whole graph representation as:

hG = READOUT({hL
v : v ∈ V}), zG = h(hG) = MLP(hG). (3.2)

Here READOUT(·) can be the simple average pooling function or more sophisticated ones [140].

h(·) is the projection head, and zG ∈ RD denotes the embedding towards loss estimation. In

the development of our method, we follow the existing graph contrastive learning practices and

consider three state-of-the-art GNNs: GCN [21], GIN [135], and ResGCN [136].

Problem formulation. Given the notations above, we formally define the problem of graph

contrastive learning with model perturbation interested in this work as below.

Given an unlabeled graph G and a GNN encoder fw, we aim to learn node (or graph) rep-

resentations H (or HG) using contrastive learning by creating contrastive samples via disturbing

the GNN encoder fw. As a result, not only is the training process more efficient compared to

state-of-the-art data augmentation-based baseline methods, but also the learned representations

can achieve satisfactory results in both node and graph classification tasks.
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Figure 3.1: The overview of the proposed PerturbGCL framework. The original graph is fed into
two asymmetric GNN branches: one is the target encoder fw to be trained, and the other is the
perturbed version f ′

w that is pruned from the former online. The two branches share weights for
their non-pruned parameters. Either branch has independent message propagation (MP) operations
perturbed by a random number, i.e., k, to disturb nodes locally. Since the pruned branch is always
obtained and updated from the latest target model, the two branches will co-evolve during training.

3.2 Methodology

To address the tradeoff between efficiency and effectiveness of existing GCL methods, we pro-

pose a principled approach to manipulate the structure of GNN models (see the overall paradigm

in Figure 3.1) so that the models can be trained efficiently without degrading performance. In

this section, we first elaborate the two customized perturbation functions in Section 3.2.1, and

then show its relation to the data augmentation-based GCL approach in Section 3.2.2. Finally, we

present how to empirically train our method in Section 3.2.3.

3.2.1 Perturbation Functions

As shown in Figure 3.1, the proposed framework follows an asymmetric architecture contain-

ing a target GNN branch fw and an online encoder branch f
′
w, where fw and f

′
w share the same

GNN architecture and weights. The main difference is that the degree of perturbations injected on

the message propagation and model weights differ (we will illustrate this later). Given an input
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graph G, rather than performing data augmentations to generate two augmented views, we directly

take the original graph as input and then output two different representations for the same node

through two perturbed GNN encoders. After that, we add another projection head function h(·)

to avoid representation collapse [141], which maps the latent space into the estimation space for

loss computation. Note that we do not rely on tricks such as “stop gradient” to stabilize the train-

ing. Instead, the model parameters of two GNN branches will be jointly optimized via stochastic

gradient descent, accelerating the model convergence.

Now, we will illustrate how to effectively disturb the two GNN branches in a principled manner.

Motivated by the fact that GNN could be divided into the message passing and transformation

operations [109], we design two types of model perturbations as below.

Perturbation function for message passing: randMP. Message passing [112] is the rev-

olutionary design that generalizes convolution operation in regular data (e.g., images) to non-

Euclidean graphs. Its success relies on determining a graph filter F to aggregate messages from

neighboring nodes. Specifically, taking the spectral graph convolution in [21] for example, it

adopts a fixed filter based on the graph characteristics (e.g., degree information) and formalize the

message passing function g(·) as below.

g(A,X) = FX,

where F = D− 1
2 (A+ IG)D

− 1
2 .

(3.3)

D ∈ R|V|×|V| is a diagonal degree matrix where each entry on the diagonal is equal to the row-sum

of the adjacency matrix, i.e., Di,i =
∑

j Ai,j . IG denotes the identify matrix.

According to graph theory [54], F is related to the Laplacian matrix, which measures the degree

to which a node differs from the values of nearby nodes. In other words, if we operate on the filter

matrix F, then it is similar to disturbing the original graph structure represented by A, because the

filter matrix can implicitly reflect the strength of the connection between two nodes in G.

Inspired by this, we propose to disturb the filter matrix F to inject some noise for contrastive

learning, namely randMP. Specifically, let k act as a perturbation factor which is randomly gen-
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erated from a uniform distribution. The high-level idea of randMP is to randomly perform the

convolution process k times in each GNN layer, instead of once. Formally, the perturbed version

of Eq. (3.3) could be expressed as:

g(A,X) = FkX = F...F︸ ︷︷ ︸
k−1

FX, (3.4)

where Fk is the matrix power. In the case of the GNN domain, Eq. (3.4) is equivalent to updating

the node representation according to its k-hop local subgraph. Note that we do not need to compute

the expensive Fk term in practice, since it can be approximated by repeating the convolution pro-

cess (FX) k times. This perturbation is also similar to the higher-order convolution trick in [142],

but we apply it to model perturbations for contrastive learning.

Benefits. By perturbing the message propagation using a random factor k, it is possible to

include more high-order neighbors for GNN encoding, which enriches the training set from the

perspective of local subgraphs. On the other hand, this perturbation is much safer for contrastive

learning than standard data augmentation, such as edge deletion and addition, since k controls

the orders of neighbors of the anchor node. That is, different values of k for two GNN branches

indicate that we utilize neighbors with different hops to obtain node representation, which are

both still centered on the anchor node. Therefore, their outputs should be similar to some extent

according to the homophily theory.

Perturbation function for feature transformation: weightPrune. In addition to graph con-

volution, feature transformation is another critical component of each GNN layer as it contains the

primary trainable parameters W operating on the feature space, simplified as:

H = FXW. (3.5)

In fact, the training goal of graph contrastive learning is to learn the set of weight matrices {Wl}Ll=1

from the GNN encoder with L layers. Recently, work in [61] found that GNN encoder maybe

over-parameterized, since a sparse sub-network can be identified to achieve on par results with
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the complete one under the lottery ticket hypothesis [143]. Inspired by this, we argue that the

GNN encoders in contrastive learning could be also over-parameterized and propose to enforce

the sparsity of the learned GNN encoder to improve the generalization ability. In particular, we

develop weightPrune, which creates the perturbed GNN branch by pruning the model parameters

of the target GNN encoder. Formally, assume s ∈ [0, 1] is the pre-defined prune ratio, Mw ∈ {0, 1}

indicate the mask indicator of weight matrix W ∈ Rd×d, we perturb the weight matrix of the online

encoder as follows.
H = FX(W ⊙Mw).

s.t. ||Mw||0 = (1− s)d2,

(3.6)

where || · ||0 is the l0-norm and ||Mw||0 indicates the number of nonzero elements in Mw. By

changing s, we can control the distortion degree of the target GNN branch to a certain extent, i.e.,

sd2 elements in the W is reserved. Note that different from [61] which aims to identify the optimal

sub-network for model pruning, we adopt model pruning as a perturbation function to disturb the

weight matrix of target GNN encoder in contrastive learning to generate contrastive views.

Benefits. By perturbing the model weights using pruning technique with ratio s, the mask

indicator Mw will be continuously updated from the latest target model, making the two GNN

branches in Figure 3.1 co-evolve during training. In addition, unlike simply injecting Guassian

noise to model weights as done in [2], the perturbation pattern in our case is dynamic and data-

driven, since the mask indicator Mw can change along the optimization. This dynamic nature

makes our weightPrune works well over both node and graph application scenarios.

In summary, we propose a principled approach to effectively perturb GNN architectures from

the message passing and feature transformation aspects through two easily implemented pertur-

bation functions: randMP and weightPrune. randMP aims to map the same input graph into two

semantically similar representations by performing a random number of message-passing steps.

Meanwhile, weightPrune seeks to increase the diversity of the two representations by dynamic

pruning. Combining these two strategies, we are able to find the sweet spot [144] between two

view representations that are related but sufficiently divergent.
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Figure 3.2: The alignment and uniformity plot for BGRL [1], SimGRACE [2], GRACE [3], CCA-
SSG [4], and our PerturbGCL on the same perturbed graphs generated by data augmentation. Black
circles indicate the baselines. Orange circles represent the performance of SimGRACE. Red starts
are the results of PerturGCL.

3.2.2 Why is PerturbGCL Effective?

Data augmentation [145] has become the common practice for generating augmented views in

graph contrastive learning. Although several augmentation strategies have been proposed recently,

the key insight is how to effectively disturb the structure information in A and feature information

in X. For example, Zhu et al. [146] empirically observed that the most successful augmentation

choice for node representation learning is a combined scheme consisting of structure- and feature-

level perturbations. You et al. [48] also found that composing augmentations from the structure

and feature aspects are beneficial, since they provide relatively difficult and comprehensive per-

turbations on the graph. Formally, let HDA indicate the embedding matrix of data augmentation

based method, and T1 ∈ T and T2 ∈ T denote the structure- and feature-level augmentation func-

tions, where T is the augmentation distribution. Following [109], the forward propagation of GNN

encoder in GCL could be simplified as:

HDA = FT1XT2W. (3.7)

FT1 = D̂− 1
2 (Â + IG)D̂

− 1
2 represents the augmentation-based graph filter, wherein Â is the per-

turbed adjacency matrix after applying augmentation function T1 on A, such as edge perturbation

(e.g., edge deletion or addition), and D̂ii =
∑

j Âi,j . XT2 is the perturbed feature matrix after
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applying augmentation function T2 on X, such as attribute masking.

Connection to data augmentation. We analyze the theoretical connection between the pro-

posed PerturbGCL and the popular graph augmentation-based approach to explain why Pertur-

bGCL can learn comparable or even more informative representations. In a nutshell, we find that

our PerturbGCL actually creates view representations similar to standard data augmentation, but

in a global way, thanks to the design of perturbation functions for message passing (i.e., randMP)

and transformation (i.e., weightPune).

Formally, let gk(A; k) and p(W; s) denote the perturbation functions on GNN’s message pass-

ing and transformation operations, as defined in Eq. (3.4) and Eq. (3.6) respectively. The forward

propagation of the GNN encoder in our PerturbGCL can be simplified as:

H =gk(A; k)p(W; s) = F...F︸ ︷︷ ︸
k

XW ⊙Mw.

= (Fk)(XW ⊙Mw).

(3.8)

Here, we misuse the notation of gk and p depending on the adjacency matrix A and feature matrix

X, respectively. We can find that Eq. (3.8) is a special implementation of Eq. (3.7) by: 1) designing

the local edge perturbation as gk(A; k), which acts globally on the graph filter matrix F instead of

the original adjacency matrix A; and 2) treating the local attribute masking on the feature dimen-

sion as a global perturbation function p(W; s) of the latent space. Note that p(W; s) can mask

some feature dimensions by specifying the corresponding columns in Mw as zeros. In conclusion,

the correspondence between the data augmentation strategy and our PerturbGCL proposal in terms

of structure-level and feature-level interference guarantees its effectiveness. Meanwhile, unlike

data augmentation that requires disturbing the original graph locally, the global operational nature

of our PerturbGCL from the GNN encoder perspective sheds light on its efficiency in training.

3.2.3 Model Optimization

Given a graph G as input, the two GNN branches in Figure 3.1 will output two representations

for the same node (or graph). Specifically, let (zv, z+v ) denote the representations of positive pairs
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of node v, and (zv, z
−
v ) be the negative pairs. We follow [48] about the representations of different

nodes as negative samples. Then, our model can be trained to minimize the standard instance-wise

InforNCE objective, expressed as:

Lv = − log
exp(sim(zv, z

+
v )/τ)

exp(sim(zv, z+v )/τ) +
∑

u∈V,u̸=v exp(sim(zv, z−u )/τ)
, (3.9)

where τ is the temperature parameter, sim(·, ·) denotes the similarity function. By minimizing

Eq. (3.9), the GNN encoder will be trained to enforce the similarity of the positive pairs while

enlarging the distance of negative pairs in the hidden space. It is also worth noting that some GCL

variants [1, 147] do not rely on negative samples, such as Barlow Twins [98] and Bootstrap [1].

3.2.4 Sanity Check

In this section, we analyze the effectiveness of representations learned by our PerturbGCL.

To benchmark the quality of representations, we consider two popular metrics: alignment and

uniformity introduced in [148], expressed as:

Lalign(fw;α) ≜ E(x,y)∼Ppos [||hx − hy||α2 ], α > 0

Luniform(fw; t) ≜ logE
(x,y)

i.i.d∼Pdata
[e−t||hx−hy ||22 ], t > 0.

(3.10)

Ppos is the distribution of positive pairs, i.e., augmentations of the same sample, Pdata is the data

distribution. Lalign is used to measure if positive samples stay close in the hidden space. Luniform

is used to measure if random samples are scattered on the hypersphere of hidden space. In our

experiments, we set α = t = 2 following [2]. For all methods, we first pre-train them according to

their official configurations. Then, we follow BGRL [1] to create the augmented views using data

augmentation to compute Lalign and Luniform.

Figure 3.2 reports the test results of several state-of-the-art data augmentation-based GCL

methods [4, 1, 3] and the naive model perturbation method (SimGRACE [2]) on the same aug-

mented graphs. As can be observed, the proposed PerturbGCL consistently outperforms strong

data augmentation baselines across three datasets. However, SimGRACE performs substantially
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worse than these data augmentation baselines. This is mainly because SimGRACE only focuses on

weight perturbation and does not support message passing-level perturbation. These results shed

light on the effectiveness of PerturbGCL in learning informative representations compared with

data augmentation competitors.

Algorithm 2 The pre-training procedure of PerturbGCL

1: Input: Graph G = (V , E ,X), GNN encoder fw(·) with weight W, projection head h(·), the
maximum propagation step K, and the pruning ratio s

2: Initialize the encoder fw(·) and head h(·).
3: Set mask indicator matrix Mw to ones.
4: for iterate 1, 2, ... times until convergence do
5: Sample the random propagation steps k′, k′′ from the uniform distribution ∼ U(1, K).
6: Conduct weight pruning to update the mask indicator Mw

7: Compute the target representation hv based on fw and the message passing perturbation
function g(A; k′).

8: Compute the online representation h+
v based on fw, mask indicator Mw, and the message

passing perturbation function g(A; k′′).
9: Optimize model weights according to Eq. (3.9).

10: end for
11: return the pre-trained GNN encoder fw(·)

3.2.5 Complexity Analysis

In this section, we show why PerturbGCL is efficient during training. In addition to the sig-

nificant time savings in searching for optimal graph enhancement strategies, we analyze the com-

plexity of PerturbGCL. Given a graph G = (V , E) and the GNN encoder fw. The time complexity

for most popular GNN architectures [21, 23, 112] is O(|E| + |V|), where O(|E|) and O(|V|) are

mainly caused by the message propagation and feature transformation operations, respectively.

PerturbGCL performs two encoder computations per update step (one for each GNN branch) plus

a node-level projection head. Assuming that the backward pass is approximately as costly as a for-

ward pass and ignoring the cost for weight pruning as it is small and negligible. Thus the total time

complexity per update step for PerturbGCL is 4Cencoder(K|E|+ |V|s) + 2Chead(|V|) +Closs, where
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Algorithm 3 PerturbGCL on graph level task

1: Input: A set of graphs G = {Gn}Nn=1, where Gn = (V , E ,X), GNN encoder fw(·) with weight
W, projection head h(·), the maximum propagation step K, and pruning ratio s

2: Initialize the encoder fw(·).
3: Initialize the mask indicator matrix Mw to ones.
4: for iterate 1, 2, ... times until convergence do
5: for sampling batches Gn from G, where n = 1, 2, ..., N do
6: Sample the random propagation steps k′, k′′ from the uniform distribution ∼ U(1, K).
7: Conduct weight pruning to update the mask indicator Mw.
8: Compute the target representation hv based on fw and the message passing perturbation

function g(A; k′).
9: Compute the online representation h+

v based on fw, mask indicator Mw, and the message
passing perturbation function g(A; k′′).

10: Obtain the graph-level representation hGn and h+
Gn

via readout function.
11: Optimize model weights according to Eq. (3.9).
12: end for
13: end for
14: return The pre-trained GNN encoder fw(·)

C. are constants depending on the architecture of the different components, K is the maximum

number of MP operations considered (e.g., K = 3), and s is the pruning ratio.

It is worth noting that although our model at most takes K times MP operations in the forward

pass, due to weight pruning (e.g., s = 70%), the computation costs for feature transformation

and backpropagation are significantly lower (i.e., 30% of weights) than standard GCL methods.

Therefore, the overall running cost of PerturbGCL per epoch can be further accelerated in practice.

More importantly, we empirically observe that our PerturbGCL model can significantly speed

up the convergence (i.e., the total number of training epochs) as shown in Section 3.3.5, due to

the online perturbation fashion. Algorithm 2 and 3 summarizes the optimization procedure of

PerturbGCL on node and graph classification tasks, respectively.

3.3 Experiments

In this section, we try to answer the following research questions through experiments.

• RQ1 What the proposed two strategies actually do?
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• RQ2 How effective is PerturbGCL compared with state-of-the-art contrastive learning base-

lines over two classification scenarios?

• RQ3 How efficient is PerturbGCL compared with strong baseline methods?

• RQ4 What are the contributions of different components in PerturbGCL?

• RQ5 What is the impact of hyper-parameters, such as propagation factor and prune ratio, on

PerturbGCL?

Figure 3.3: Visualization of weight distribution (from left to right: initial weights, PerturbGCL
w/o. weightPrune, and PerturbGCL) on Coauthor-Phy. The x-axis indicates weight values and
y-axis is the count. Obviously, the number of activated neurons after using weightPrune is signifi-
cantly smaller than others. It shows that weightPrune can regularize the model.
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Figure 3.4: The visualization of PerturbGCL w.r.t. different k values on the original graphs and
the perturbed graphs generated by data augmentation. The x-axis indicates propagation steps and
y-axis is the Lalign ↓. The gap between the blue and orange lines indicate the generalization ability.
Apparently, performing more MP steps will increase the diversity of two positive views since Lalign

increases. Sweet spots (i.e., minimum performance gap) exist across three scenarios.
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3.3.1 Datasets and Experimental Settings

Datasets. For a comprehensive comparison, we use fourteen benchmark datasets from two cru-

cial graph analysis scenarios: node classification and graph classification. For node classification

task, we consider six popular datasets including two Planetoid datasets (Cora and PubMed [149]),

and four popular contrastive learning benchmarks (including two co-purchase networks from Ama-

zon [150]: Amazon-Computer Compute), Amazon-Photo (Photo), and two academic networks

from Microsoft Academic Graph [151]: Coauthor-CS (CS), and Coauthor-Physics (Phy). For

graph classification task, we consider eight graph-level datasets, including five social networks

(COLLAB, REDDIT-BINARY (RDT-B), REDDIT-MULTI-5K (RDT-M5K), IMDB-BINARY

(IMDB-B), and GITHUB)), and two molecules networks (NCI1 and MUTAG), and two bioin-

formatics networks (PROTEINS and DD) from the benchmark TUDdataset [152]. We summarize

their statistics in Tables 5.2 and 5.3.

Competitors. To demonstrate the effectiveness, we compare our model with state-of-the-art

GCL methods of two fields. For node classification task, we consider eight data augmentation-

based GCL methods (DGI [51], MVGRL [50], GRACE [3], GCA [52], BGRL [1], InfoGCL [99],

CCA-SSG) [4], three augmentation-free GCL methods (AFGRL [59], SimGRACE [2], and MA-

GCL [153]), and two supervised GNNs (GCN [21] and GAT [23]). For graph classification task, we

consider three kernel-based methods ((GL) [154], Weisfeiler-Lehman sub-tree kernel (WL) [155],

and deep graph kernel (DGK) [156]), three network embedding methods (node2vec [102], sub2vec [157],

and graph2vec [158]), four GCL methods with data augmentation (MVGRL [50], InfoGraph [99],

GraphCL [48], and JOAO [53]), and two GCL methods without data augmentation (SimGRACE [2],

and MA-GCL [153])

Implementation details. For a fair comparison, we follow previous protocols [1, 48] to set

up the node-level and graph-level evaluation scenarios. For baseline methods, we report the re-

sults published in original papers when available. We implement PerturbGCL with PyTorch and

use Adam optimizer to train the model. The graph encoder fw is specified as a standard two-

layer GCN model for all the datasets. We have two hyperparameters (pruning ratio s and random
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Table 3.1: Test accuracy on benchmark datasets in TUdatasets in terms of the unsupervised setting
for graph classification. − means that results are not available in published papers. A.R. denotes
the averaged rank.

Methods NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B A.R. ↓

GL − − − 81.66± 2.11 − 77.34± 0.18 41.01± 0.17 65.87± 0.98 10.50
WL 80.01± 0.50 72.92± 0.56 − 80.72± 3.00 − 68.82± 0.41 46.06± 0.21 72.30± 3.44 8.17
DGK 80.31± 0.46 73.30± 0.82 − 87.44± 2.72 − 78.04± 0.39 41.27± 0.18 66.96± 0.56 7.33

node2vec 54.89± 1.61 57.49± 3.57 − 72.63± 10.20 − − − − 11.67
sub2vec 52.84± 1.47 53.03± 5.55 − 61.05± 15.80 − 71.48± 0.41 36.68± 0.42 55.26± 1.54 12.50
graph2vec 73.22± 1.81 73.30± 2.05 − 83.15± 9.25 − 75.78± 1.03 47.86± 0.26 71.10± 0.54 9.00
MVGRL − − − 75.40± 7.80 − 82.00± 1.10 − 63.60± 4.20 10.67
InfoGraph 76.20± 1.06 74.44± 0.31 72.85± 1.78 89.01± 1.13 70.65± 1.13 89.53± 0.84 55.99± 0.28 73.03± 0.87 4.13
GraphCL 77.87± 0.41 74.39± 0.45 78.62± 0.40 86.80± 1.34 71.36± 1.15 89.53± 0.84 55.99± 0.28 71.14± 0.44 4.50
JOAO 78.07± 0.47 74.55± 0.41 77.32± 0.54 87.35± 1.02 69.50± 0.36 85.29± 1.35 55.74± 0.63 70.21± 3.08 6.50
JOAOv2 78.36± 0.53 74.07± 1.10 77.40± 1.15 87.67± 0.79 69.33± 0.34 86.42± 1.45 56.03± 0.27 70.83± 0.25 5.63
SimGRACE 79.12± 0.44 75.35± 0.09 77.44± 1.11 89.01± 1.31 71.72± 0.82 89.51± 0.89 55.91± 0.34 71.30± 0.77 3.50
MA-GCL 78.76± 0.34 75.26± 0.17 77.47± 0.82 88.38± 1.04 72.35± 0.66 87.52± 0.67 55.71± 0.52 71.55± 0.84 4.13

PerturbGCL 80.24± 0.45 76.08± 0.30 78.33± 0.37 89.97± 0.50 75.06± 0.87 88.98± 0.67 55.78± 0.72 74.14± 0.50 2.13

propagation step K) to tune. For each dataset, we search K ∈ [1, 2, 3] and s ∈ [0.5, 0.7, 0.9].

To avoid randomness, we report the mean accuracy with a standard deviation through 10 random

initialization.

Table 3.2: Test accuracy on benchmark datasets in TUdatasets in terms of semi-supervised graph
classification.

Dataset NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K GITHUB A.R. ↓

No pre-train 73.72± 0.24 70.40± 1.54 73.56± 0.41 73.71± 0.27 86.63± 0.27 51.33± 0.44 60.87± 0.17 9.86
Augmentations 73.59± 0.32 70.29± 0.64 74.30± 0.81 74.19± 0.13 87.74± 0.39 52.01± 0.20 60.91± 0.32 9.00

GAE 74.36± 0.24 70.51± 0.17 74.54± 0.68 75.09± 0.19 87.69± 0.40 53.58± 0.13 63.89± 0.52 7.00
InfoGraph 74.86± 0.26 72.27± 0.40 75.78± 0.34 73.76± 0.29 88.66± 0.95 53.61± 0.31 65.21± 0.88 5.43
ContextPred 73.00± 0.30 70.23± 0.63 74.66± 0.51 73.60± 0.37 84.76± 0.52 51.23± 0.84 − 10.50
GraphCL 74.63± 0.25 74.17± 0.34 76.17± 1.37 74.23± 0.21 89.11± 0.19 52.55± 0.45 65.81± 0.79 3.86
JOAO 74.48± 0.25 72.13± 0.92 75.69± 0.67 75.30± 0.32 88.14± 0.25 52.83± 0.54 65.00± 0.30 6.00
JOAOv2 74.86± 0.39 73.31± 0.48 75.81± 0.73 75.53± 0.18 88.79± 0.65 52.71± 0.28 66.60± 0.60 3.71
SimGRACE 74.60± 0.41 74.03± 0.51 76.48± 0.52 74.74± 0.28 88.86± 0.62 53.97± 0.64 65.33± 0.35 3.43
MA-GCL 74.35± 0.21 73.46± 0.44 76.02± 0.37 73.87± 0.35 88.57± 0.47 54.14± 0.38 66.40± 0.49 5.00

PerturbGCL 75.23± 0.52 74.11± 0.42 76.65± 0.57 74.50± 0.41 88.69± 0.63 55.39± 0.12 68.40± 0.10 2.14

3.3.2 What are weightPrune and randMP Doing? A Case Study

To answer RQ1, we visualize the weight distribution of PeruturbGCL during training in Fig-

ure 3.3. It shows that ① by continuously pruning the target model along the training, weight-
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Prune can regularize the target model progressively. From the weight histograms in Figure 3.3,

we can see that the bars around zero become higher and higher, which indicates more neurons

are inactivated in the end. This observation shows the regularization effect of weightPrune. Since

effective regularization can improve the generalization ability of neural networks, we believe that

why the proposed weightPrune can improve the performance.

To investigate the effect of randMP, we report the impacts of different k values on PerturbGCL

in terms of the alignment between positive views. From Figure 3.4, we observe that ② randMP

can improve the diversity of contrastive views when k increases, and sweet points widely exist

across three datasets. In Figure 3.4, with the increase of k, the generalization gap tends to first

decrease to the sweet points and then increase a little bit. It validates the effect of randMP in

generating correlated but diverged views. On the other hand, it indicates the potential of randMP

to improve the generalization ability, i.e., these sweet points.

3.3.3 Comparison on Graph Classification Task

To validate the effectiveness of PerturbGCL on graph classification (RQ2), we compare it with

strong graph-level GCL methods on different datasets. Table 3.1 and Table 3.2 report the results

on unsupervised and semi-supervised settings, respectively. We made one major observation.

③ PerturbGCL generally outperformed the augmented and free GCL-based baselines in

both graph learning scenarios. In the unsupervised setting (see Table 3.1), PerturbGCL achieves

the best (or fairly good) results on 6 of the 8 datasets and substantial improvements on the COL-

LAB and IMDB-B datasets. In the semi-supervised setting (see Table 3.2, PerturbGCL generally

outperformed the other baselines in seven comparisons, consistently ranking in the top three on

all datasets. These results demonstrate the effectiveness of PerturbGCL on graph learning tasks.

Another interesting observation is that MA-GCL always performs worse than PerturbGCL in both

evaluation cases. We believe this is because GNN models tend to overfit graph-level datasets,

which are small in size compared to node-level graphs. Therefore, perturbations to the model

weights, as done in PerturbGCL, generalize better than in MA-GCL, which does not consider

perturbations at the model weights.
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Table 3.3: Test accuracy on benchmark datasets in terms of node classification. We report both
mean accuracy and standard deviation. A.R. denotes the averaged rank.

Method Cora PubMed Compute Photo CS Phy A.R. ↓

Supervised
GCN 81.5 79.0 86.51± 0.54 92.42± 0.22 93.03± 0.31 95.65± 0.16 9.17
GAT 83.0± 0.7 79.0± 0.3 86.93± 0.29 92.56± 0.35 92.31± 0.24 95.47± 0.15 8.83

Data augmentation

DGI 82.3± 0.6 76.8± 0.6 83.95± 0.47 91.61± 0.22 92.15± 0.63 94.51± 0.52 11.50
MVGRL 83.5± 0.4 80.1± 0.7 87.52± 0.11 91.74± 0.07 92.11± 0.12 95.33± 0.03 8.33
GRACE 81.9± 0.4 80.6± 0.4 89.53± 0.35 92.78± 0.45 91.12± 0.20 − 7.20

GCA 83.4± 0.3 80.3± 0.4 87.85± 0.31 92.49± 0.09 93.10± 0.01 95.68± 0.05 6.00
BGRL 81.8± 0.3 80.4± 0.5 89.68± 0.31 92.87± 0.27 93.21± 0.18 95.56± 0.12 5.50

InfoGCL 83.5± 0.3 79.1± 0.2 − − − − 6.00
GBT − − 88.14± 0.33 92.63± 0.44 92.95± 0.17 95.07± 0.17 8.00

CCA-SSG 84.2± 0.4 81.6± 0.4 88.74± 0.28 93.14± 0.14 93.31± 0.22 95.38± 0.06 3.83

Augmentation-free
AFGRL 82.3± 0.4 79.7± 0.2 89.88± 0.33 93.22± 0.28 93.27± 0.17 95.69± 0.10 4.33

SimGRACE 78.5± 0.3 79.3± 0.5 86.42± 0.35 91.55± 0.22 92.37± 0.33 94.37± 0.15 11.33
MA-GCL 83.3± 0.4 83.5± 0.4 88.83± 0.30 93.80± 0.10 94.19± 0.10 95.12± 0.22 3.67

PerturbGCL 83.3± 0.5 82.10± 0.3 88.45± 0.77 93.62± 0.40 94.58± 0.09 95.85± 0.08 3.00

3.3.4 Comparison on Node Classification Task

To answer RQ2, we first examine the effectiveness of PerturbGCL in node classification. Re-

sults of 13 baseline methods across 6 benchmark datasets are collected in Table 3.3. We make the

following observations.

④ PerturbGCL usually performs better than SOTA GCL methods using data augmen-

tation. From table 3.3, PerturbGCL obtained the four best results in six evaluation scenarios

compared to strong GCL methods such as BGRL and CCA-SSG. These results validate the effec-

tiveness of training contrast learning models on graphs without explicit data augmentation.

⑤ PerturbGCL achieved very competitive results compared to three augmentation-free

GCL baselines. In six datasets, PerturbGCL outperformed AFGRL and SimGRACE in most

cases. Specifically, PerturbGCL improved over SimGRACE on Cora, PubMed, Computer, Photo,

CS, and Phy by 6.11%, 3.53%, 2.34%, 2.26%, 1.95%, and 1.56%, respectively. MA-GCL was a

contemporary work, and PerturbGCL performed slightly better than MA-GCL in general. Specif-

ically, PerturbGCL won MA-GCL on CS and Phy, lost to PubMed, and tied with Cora, Compute,

and Photo datasets. However, since CS and Phy are much larger datasets than the others, our

method may scale better on practical large-scale graphs.
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Figure 3.5: Left: Ablation study of PerturbGCL. Middle: The impact of different contrastive
objectives. Right: Empirical training curves of PerturbGCL with different s values.

Table 3.4: Running time per epoch (in seconds). Baseline indicates BGRL and GraphCL for node
and graph classification, respectively. All the methods are evaluated on GeForce RTX 2080 Ti
GPUs. “method”-(x)-(y) implies that this method requires x and y epochs of training to converge
on node and graph benchmarks, respectively. Considering running time per epoch and the total
training epochs, PerturbGCL runs faster than all methods.

Node Benchmark Graph Benchmark

PubMed Computer Photo CS NCI1 COLLAB RDT-B RDT-M2K

Baseline-(1000)-(20) 0.14 0.16 0.08 0.21 4.02 10.84 38.35 80.79
SimGRACE-(≥ 200)-(20) 0.07(2.00x) 0.05(3.2x) 0.03(2.67x) 0.12(1.75x) 0.86(4.67x) 1.82(5.95x) 4.17(9.19x) 7.79(10.37x)
MA-GCL-(≥ 200)-(20) 0.12(1.17x) 0.13(1.23x) 0.07(1.14x) 0.18(1.17x) 1.75(2.29x) 4.25(2.55x) 7.85(4.89x) 15.77(5.12x)
PerturbGCL-(≤ 100)-(≤ 10) 0.10(1.40x) 0.09(1.77x) 0.05(1.60x) 0.17(1.23x) 1.42(2.83x) 3.01(3.60x) 6.21(6.17x) 12.80(6.31x)

3.3.5 Efficiency Analysis

We compare the training cost of the PerturbGCL with strong GCL baselines (RQ3) in Table 3.4

and report the optimization curves in Figure 3.5 (right panel). We observed that ⑥ PerturbGCL

generally runs faster than augmentation-based and free baseline methods during training.

As seen in Table 3.4, although PerturbGCL runs slower than strong baseline (SimGRACE), Per-

turbGCL converges significantly faster than SimGRACE (see Figure 3.5 (Right)). As a result, the

total training cost of PerturbGCL is lower. For example, SimGRACE takes 7.79 ∗ 20 = 155.8 sec-

onds to train on RDT-M2K, while PerturbGCL takes 12.80 ∗ 10 = 128 seconds, which is close to

1.2 times speedup. These results demonstrate the efficiency of PerturbGCL compared with strong

baseline methods.
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Figure 3.6: Ablation study of PerturbGCL on node benchmarks.

3.3.6 Ablation Study

We investigate the contributions of different components in PerturbGCL (RQ4). Figure 3.5

(left panel) and Figure 3.6 report the results on graph and node datasets, respectively. We ob-

serve that ⑦ PerturbGCL benefits from the combination of randMP with weightPrune. From

the figures, PerturbGCL consistently outperforms two variants (i.e., w/o MP and w/o WP) in all

cases, indicating the reciprocal effects of using randMP and weightPrune together. Moreover, ⑧

replacing weightPrune with Gaussian noise, PerturbGCL drops significantly. In both node

and graph scenarios, PerturbGCL outperforms the "noise" variant with a great margin, verifying

the effectiveness of the weightPrune proposal.

We also test the results of PerturbGCL under different contrastive objectives, such as Barlow

Twins [98], Bootstrap [1], and InfoNCE [48]. From Figure 3.5 (middle), we observe that ⑨ Per-

turbGCL performs generally better on InfoNCE and Barlow Twins objectives. Given that

InfoNCE is standard contrastive loss with negative samples and Barlow Twins is negative-sample

free, PerturbGCL is ready to be applied on scenarios with informative negative sample or without

negative samples by using different losses.
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3.3.7 Further Analysis

We finally investigate the sensitivity (RQ5) of PerturbGCL w.r.t. the propagation degree K

and prune ratio s in Figure 3.7 (Left), and the impact of graph augmentation on PerturbGCL in

Figure 3.7 (Right). We made two major observations.

(i) PerturbGCL performs stably when K ∈ [1, 2, 3, 4, 5] and s ∈ [0.7, 0.9]. In Figure 3.7

(left), the performance of PerturbGCL when K = 0.9 (or 0.7) is consistently better than oth-

ers. (ii) PerturbGCL is complementary with advanced graph augmentation. From Figure 3.7

(Middle), by feeding the augmented graphs as input, PerturbGCL can be further improved. How-

ever, the trade-off is that the improvement is not huge but the time to search optimal augmentation

strategies is costing.
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4. EFFICIENT FINE-TUNED GNN INFERENCE VIA RELIABLE KNOWLEDGE

DISTILLATION

Given a fine-tuned GNN model with limited labeled samples, knowledge distillation [67] is

the intuitive solution to boost its inference efficiency. However, directly leveraging soft labels

from the GNN teacher is suboptimal since a large portion of unlabeled nodes will be incorrectly

predicted by GNNs due to its limited generalization ability. To avoid the influence of mislabeled

nodes, the common practice is to analyze their logit distributions from the teacher model [159,

160, 161]. For example, Zhang et al. [161] propose to assign larger weights to samples if their

teacher predictions are close to one-hot labels. Zhu et al. [160] suggest filtering out data points if

their teacher predictions mismatch with ground truth labels. Nevertheless, these methods cannot be

applied in real-world graphs where node labels are expensive to access. Recently, Kwon et al. [159]

suggest discriminating samples based on entropy values, by assuming that teacher predictions

with lower entropy are more reliable. However, we found that entropy values are ineffective to

distinguish the correct and wrong decision boundaries of GNN models since they are often largely

overlapped, as we show in Figure 5.2 (right panel). Therefore, it still remains an open challenge to

effectively distill semi-supervised GNN models to light-weight MLP students.

Motivated by this, we propose a novel KD framework – RKD-MLP to boost the MLP student

via noise-aware distillation. It is noteworthy that while we focus on the MLP student for efficiency

purposes, our solution is ready for other student types, such as GNNs. Specifically, RKD-MLP

uses a meta-policy to filter out those unreliable soft labels by deciding whether each node should

be used in distillation given its node representations. The student then only distills the soft labels

of the nodes that are kept by the meta-policy. To train the meta-policy, we design a reward-driven

objective based on a meta-set, where the meta-policy is rewarded for making correct filtering. The

meta-policy is optimized with policy gradient to achieve the best expected reward and then be ap-

plied to unlabeled nodes. We iteratively update the meta-policy and the student model, achieving a

win-win scenario: it substantially improves the performance of the vanilla MLP student by teach-
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Figure 4.1: Left: The influence of unlabeled nodes on vanilla solution–GLNN [5]. GLNN-label
is a variant of GLNN by excluding unlabeled nodes. Middle: The impacts of wrongly predicted
nodes on the MLP student under different noise ratios. Right: Entropy distributions of wrongly
and correctly predicted nodes by GNN teacher.

ing it with reliable guidance while maintaining the inference efficiency of MLPs without increasing

the model size.

4.1 Problem Statement

Let G = (V , E) be a graph with N nodes, where V and E stand for the node set and edge set,

respectively. We use X ∈ RN×D to denote node features, with row xv being the D-dimensional

feature vector of node v ∈ V . We denote Y ∈ RN×C as the label matrix with C classes of interest,

where yv ∈ RC represents the one-hot label vector of node v. In semi-supervised learning, which

is a common task in graph analysis, we have a small portion of nodes being labeled while the

majority of the nodes are unlabeled. We mark labeled nodes with superscriptL, i.e., VL, XL, and

YL, and unlabeled nodes with superscriptU , i.e., VU , XU , and YU .

4.1.1 A Closer Look at Knowledge Distillation in Semi-Supervised Learning

To bridge the gap between vanilla MLPs and more advanced GNNs for graph analysis, an

intuitive solution is to conduct cross-model knowledge distillation. Formally, let zv ∈ RC denote

the soft labels of node v predicted by a GNN teacher model, and ŷv ∈ RC be the predictions of the

MLP student model. The standard distillation process in [5] is expressed as:

L = λ
∑
v∈VL

LCE(ŷv,yv) + (1− λ)
∑

v∈VL∪VU

LKL(ŷv, zv), (4.1)
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where LCE is the standard cross-entropy loss on labeled nodes, while LKL is knowledge distilla-

tion loss, i.e., the Kullback–Leibler divergence between the predictions of the MLPs student and

GNNs teacher. λ is a trade-off parameter. Note that, different from supervised learning, the distilla-

tion loss in Eq. (4.1) naturally includes two parts in the semi-supervised scenario: labeled node set

VL and unlabeled node set VU . This design choice is inspired by standard semi-supervised learn-

ing philosophy, where unlabeled data is believed to be helpful in promoting model performance.

According to our empirical results in Figure 5.2 (left), we observed that this tendency holds in KD.

Without the soft labels of unlabeled nodes, the MLPs student can only perform comparably to the

vanilla MLP baseline.

However, as aforementioned in the Introduction, we argue that blindly leveraging soft labels of

all the nodes in Eq. (4.1) is suboptimal, since the soft labels from the teacher are noisy, especially

for unlabeled nodes VU . Here, “noisy soft labels“ refer to the soft labels of the nodes whose true

labels mismatch the predictions of the GNN teacher. To verify this point, we conduct preliminary

experiments from the oracle perspective, by assuming that the ground truths of unlabeled nodes are

known. Then, we manually control the ratio of noisy soft labels in the knowledge distillation loss.

Specifically, we use the same setting of GLNN to set up the MLP student, and then use the soft

labels of correctly predicted nodes and a portion of wrongly predicted unlabeled nodes via random

sample to train the MLP student. Figure 5.2 (middle) reports the results w.r.t. different ratios of

wrongly predicted nodes.

Observation: The soft labels of incorrectly predicted nodes restrict the capacity of MLPs

student; By reducing the noise ratios, a stronger MLPs student can be easily achieved. As

shown in the middle panel of Figure 5.2, the MLP student’s performance drops significantly as the

noise ratio increases. If we can control the error ratio to some extent, e.g., 15%, the MLPs student

can easily achieve comparable or even better results than GNNs teacher.

Nevertheless, it is a non-trivial task to effectively identify those wrongly predicted nodes from

the correctly classified ones, following the standard entropy-based heuristic approach [159]. This

is because the entropy distributions of the two groups are often largely overlapped in GNNs. For
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example, the entropy distributions of wrongly and correctly predicted nodes are generally over-

lapped with 40% areas on different GNNs models as shown in Figure 5.2 (right).

The above observations pose a nature research question: Can we filter out the noisy teacher

guidance in an automatic fashion, such that a stronger MLP student can be achieved using reliable

GNN knowledge?

4.2 Methodology

In this part, we present a simple, generic, and effective KD framework to tackle the unreli-

able GNN guidance issues revealed in the Motivation section. Specifically, we first introduce the

problem formulation in Section 4.2.1, and then elaborate on our proposal in Section 4.2.2.

4.2.1 Definition of Reliable Knowledge Distillation

Given a graph G = {V , E}, its feature matrix X ∈ RN×d, and label matrix Y ∈ RN×C . We

use Z ∈ RN×C to denote the soft label matrix produced by the teacher GNN model and fstudent to

denote a student model parameterized by multi-layer perceptrons. In traditional knowledge distil-

lation settings [5], the student model is optimized according to two soft-label sets: (1) the labeled

set RL = {(xv, zv)|v ∈ VL}, and (2) the unlabeled set RU = {(xv, zv)|v ∈ VU}. Nevertheless, as

discussed in the Motivation section, using the soft labels of all nodes in V would degrade the per-

formance of student models, since many unlabeled nodes are incorrectly predicted by the teacher

model, which introduces unreliable guidance.

To this end, we study the reliable knowledge distillation (RKD) problem. The core idea of RKD

is to filter out the wrongly predicted nodes by GNN teacher and construct a reliable soft-label set

(i.e., Rr) for student training. Formally, Rr = RL
r ∪RU

r consists of two parts, where RL
r (or RU

r )

includes those labeled (or unlabeled) nodes that are correctly predicted by the GNNs teacher. In

practice, we can directly obtain the soft-label set RL
r from labeled nodes since we already have the

ground truths. Specifically, given a labeled node v, if the prediction from the teacher matches the

ground truth, then v ∈ RL
r ; otherwise, v /∈ RL

r . Therefore, the main obstacle in RKD is how to

determine the soft-label set RU
r from unlabeled nodes, since no ground truth is available to check
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their validity.

4.2.2 The Proposal

We present RKD-MLP, a general reinforced framework for training student MLPs via reliable

GNN distillation. The full framework is illustrated in Figure 4.2. The key idea is to 1) learn a

meta-policy network to determine the reliable soft label set and 2) train the student MLP based

on the reliable guidance. After that, 3) an unified framework is designed to train the meta-policy

network and student model jointly.

4.2.2.1 Meta Policy

To obtain the reliable soft label set Rr, an intuitive solution is to utilize the uncertainty of

teacher predictions [159]. For example, we can compute the entropy of all the nodes using their

soft labels from the teacher GNNs, and then filter out those whose entropy values are higher than a

pre-defined threshold. However, as shown in Figure 5.2 (Right), entropy can not well differentiate

between the correct and incorrect nodes since they are largely overlapped. To overcome this limi-

tation, we propose to develop a learning-based approach to automatically fit the complex decision

boundary between them. Specifically, following [162], we assume that a meta-set with ground

truth labels is available; in this work, we use the validation set as the meta-set. Then we propose

to train a meta-policy with reinforcement learning (RL) to identify the reliable soft labels, where

the meta-policy is updated based on the reward from the meta-set.

Formally, let Mmeta = {(xv, zv,yv, Iv)}mv=1 denote a meta-set with m samples, where zv is the

teacher prediction and yv denotes the ground truth. Iv = 1 if the teacher model makes correct

prediction; Iv = 0 otherwise. We define the state, action and reward as follows. Let S be the state

space; in this work, we use node representations (we will illustrate how to obtain these later) as

the states, i.e., x ∈ S . Let A = {0, 1} be the action space, where 0 indicates that the soft label

is unreliable, and 1 suggests that the soft label is reliable. Given a node xv, an agent takes action

av and receives a scalar reward rv, where a positive reward rv = 1 is given if the label is indeed

reliable (i.e., correct teacher prediction) when av = 1 or indeed unreliable (i.e., incorrect teacher
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prediction) when av = 0, and rv = 0 otherwise. Let π : S → A be a meta-policy that maps states

to actions. With neural function approximators, we use πθ to denote a parameterized meta-policy

with parameters θ and πθ(a|xv) to denote the probability of sampling a at state xv. The objective

is to train the meta-policy network πθ such that it can maximize the expected reward:

Jmeta = E[rv], (4.2)

where node v is any node from all the nodes in the graph. Following the policy gradient theo-

rem [163], we can calculate the gradient of J w.r.t. θ as

▽θJmeta = ▽θE[rv]

= E[rv ▽θ log πθ(av|xv)],

(4.3)

where av is the currently selected action for node v. We approximate the above gradient with the

samples in the meta-set Mmeta:

▽θJmeta ≈
∑

v∈Mmeta

rv ▽θ [log πθ(av|xv)], (4.4)

where rv can be obtained based on the ground truths in the meta-set by regarding the reliable soft

labels as the ones that the teacher model makes correct predictions. The update of Eq. (4.4) can be

unstable due to the high variance of the gradients. Thus, we introduce a baseline [164] for variance

reduction. The final gradient can be written as

▽θJmeta ≈
∑

v∈Mmeta

(rv −B)▽θ [log πθ(av|xv)], (4.5)

where the baseline B = (
∑

v∈Mmeta
rv)/m is the mean reward across the nodes in the meta-set, and

(rv−B) can be interpreted as the advantage, i.e., the extent to which the current action is better than

the average case. Then we use the meta-policy πθ to predict the reliable soft labels for the unlabeled

nodes. Specifically, the soft label of an unlabeled node u is considered reliable if the predicted
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Figure 4.2: The RKD-MLP framework. Our meta-policy filters out noisy GNN teacher guidance,
which is then used to train MLP student.

probability of a = 1 is larger than 0.5, i.e., RU
r = {(xu, zu)|∀u ∈ VU , πθ(a = 1|xu) > 0.5}.

Rationale. Despite the simplicity of RL in Eq. (4.5), the reward-driven objective enables the

meta-policy to reason about the reliability of the soft labels based on node features. Once trained

on the meta-set, the meta-policy can transfer to the unlabeled nodes to take the most rewarding

action (i.e., reliable or unreliable) for each node.

4.2.2.2 Student Model Training with Reliable Guidance

By querying the meta-policy, we can train the student MLPs with better guidance. Formally,

we rewrite Eq. (4.1) as:

L = λ
∑
v∈VL

LCE(fstudent(xv),yv)+

(1− λ)
∑
v∈V

Iπθ(a=1|xv)>πθ(a=0|xv)LKL(fstudent(xv), zv),

(4.6)

Iπθ(a=1|xv)>πθ(a=0|xv) is an indicator function, which returns 1 if πθ(a = 1|xv) > πθ(a = 0|xv);

otherwise 0. That is, we only consider reliable soft labels identified by the meta-policy to compute

the second term. Compared with traditional KD objective in Eq. (4.1), which leverages all soft

labels from unlabeled nodes, the above training objective is noise-less, so the MLPs student model
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Algorithm 4 Alternating Gradient Descent for RKD-MLP
Input: The meta-policy network πθ, MLPs student fstudent, the pre-trained GNN
teacher

1: Initialize πθ and fstudent.
2: while not converge do
3: Obtain the node embedding h of unlabeled nodes based on MLP student.
4: Train the meta-policy network πθ based on policy gradient in Eq. (4.5) and meta-set Mmeta.

5: Fix meta-policy πθ and update the student model fstudent based on reliable knowledge distil-
lation loss in Eq. (4.6).

6: end while
7: return The well-trained MLP student fstudent

will be trained with more reliable information from the teacher model.

4.2.2.3 The Unified Training Objective

Instead of training the meta-policy and student MLPs in a two-stage fashion, e.g., training the

meta-policy first and then optimizing the student model, we propose to simultaneously train fmeta

and fstudent according to the following bi-level optimization framework:

min
fstudent

L(X,Y , f ∗
meta) s.t. π∗

θ := argmax
πθ

Jmeta(Mmeta, f
∗
student). (4.7)

The outer objective L is defined in Eq. (4.6), which requires the meta-policy πθ to select reliable

soft-label predictions from the GNN teacher. The inner objective Jmeta is defined in Eq. (4.5), and

it takes node representations from the MLP student and soft label vectors from the GNN teacher

as input. It is worth noting that the design of πθ can take other node embeddings as input such

as the raw features or hidden embedding from the GNN teacher. However, we find that using

hu as state representation is beneficial since jointly training the policy network and MLP student

could reinforce their reciprocal effects. This is because learning a better MLP student requires πθ to

generate a more reliable soft label set while training a high-qualified policy needs more informative

node embeddings as input. From Table 5.5 and 4.2, we can see that the MLP student performs

better than the corresponding GNN teacher when it converges. Thus, it is reasonable to conjecture
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that hidden representations of the MLP student are more informative. Following the common

practice [53], we adopt the Alternating Gradient Descent (AGD) algorithm to optimize Eq. (4.7),

by iteratively updating the outer and inner optimization objectives, as outlined in Algorithm 4.

4.3 Experiments

In this section, extensive experiments are reported to explore the following research questions.

• RQ1: How effective is RKD-MLP compared with state-of-the-art baselines in transductive

and inductive settings?

• RQ2: Can RKD-MLP scale up to large-scale graphs?

• RQ3: What are the impacts of noisy node features or topology structures on RKD-MLP?

• RQ4: How effective is our meta-policy in identifying reliable teacher guidance?

• RQ5: How does each component of RKD-MLP contribute to the performance?

• RQ6: How efficient is RKD-MLP compared with other acceleration methods?

4.3.1 Datasets and Experimental Settings

Benchmark datasets. For comprehensive comparison, we use seven popular semi-supervised

classification datasets with various scales and types, including Cora, CiteSeer, and PubMed [149],

WikiCS, Amazon-Computers (Compute), Amazon-Photo (Photo), Coauthor-CS (CS) [165]. For

experiments on large-scale graphs, we use two Open Graph Benchmark datasets [121]: ogbn-arxiv

and ogbn-products.

Teacher GNNs. For a thorough comparison, we consider five promising GNNs architectures

as teacher models in our knowledge distillation framework: GraphSAGE [22] (SAGE), GCN [21],

APPNP [70], GAT [23], and SGC [109]. For extremely large-scale datasets such as ogbn-product,

we consider two scalable teacher GNNs: ClusterGCN [62] and GraphSAINT [63].

Student competitors. In addition to the GNN teachers, we also include two types of student

baselines for comparison. First, we consider three heuristic-based approaches: Cluster, Entropy,
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and sample re-weighting (SW), which construct reliable soft-label set via clustering, relative pre-

diction rankings, and sample re-weighting, respectively. Second, we include two MLPs based

related work: vanilla MLPs and GLNN [5].

Transductive vs. Inductive. Follow previous studies [5], we evaluate our model under two

node classification settings: transductive and inductive. The main difference between them is

whether to use the test data for training or not. For the inductive setting, the test nodes as well as

their edge links will not be used.

Implementation details. We build our model based on Pytorch and PyG library. For GNN

teachers, following common practice in [52, 121], we employ a three-layer GNN encoder with

dimension d = 256 for OGB benchmarks (ogbn-arxiv, and ogbn-products), while a two-layer

GNN encoder with dimension d = 128 for other datasets. For MLP students, following [5], we set

the number of layers and the hidden dimension of each layer to be the same as the teacher GNN.

We set λ = 0 if not specified, since we empirically found that the proposed model is robust to λ as

shown our preliminary experiments. All the experiments are run 5 times on GeForce RTX 2080 Ti

GPUs, and we report the mean and the standard deviation.

4.3.2 How Effective is RKD-MLP Against other Baselines on Small Datasets?

Table 5.5& 4.2 report the results of our RKD-MLP with heuristic and MLPs based baselines

(RQ1). We make three major observations. ① Compared with vanilla MLPs and intuitive KD

method - GLNN, RKD-MLP performs significantly better than them in all cases. Specifically,

RKD-MLP improves GLNN by up to 5.82% in the transductive setting (See Table 5.5). ②RKD-

MLP outperforms three heuristic solutions (SW, Entropy, and Cluster), especially on OGB

datasets. The possible explanation is that our meta-policy is trained end-to-end with the MLP

student, so that they can reinforce their reciprocal effects. ③ Compared with 5 GNN teachers,

our proposal consistently achieves better results across different benchmark datasets and two

evaluation scenarios. Another interesting result is that the two heuristic methods (Entropy and

Cluster) generally perform on par with or even better than GLNN across two settings. These results

shed light on our motivation to study reliable knowledge distillation for MLP student training.
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Table 4.1: Node classification accuracy on commonly used graph datasets in transductive learning.
The best and second-best results are highlighted in Bold font and underlined, respectively.

Teacher Student Cora CiteSeer PubMed WikiCS Compute Photo CS

MLPs - 58.04± 0.75 59.22± 1.31 70.54± 0.77 63.73± 1.51 67.80± 1.06 78.77± 1.74 84.80± 0.59

SAGE

- 79.70± 0.52 68.59± 0.27 76.55± 0.29 65.59± 0.88 82.97± 2.16 90.90± 0.84 90.56± 0.38

SW 48.88± 6.81 54.47± 9.39 76.48± 0.59 58.77± 2.28 56.30± 3.31 63.15± 4.85 37.18± 1.22
Entropy 80.73± 0.76 69.48± 0.52 78.48± 0.29 69.02± 1.41 83.53± 0.65 92.42± 0.74 91.79± 0.39
Cluster 74.60± 0.35 70.23± 0.55 80.66± 0.07 67.05± 0.67 81.48± 0.95 87.84± 0.35 91.54± 0.15

GLNN 80.00± 0.52 68.95± 0.70 76.97± 0.28 67.82± 1.36 83.04± 1.70 92.02± 1.15 90.95± 0.51
RKD-MLP 81.52± 0.66 70.23± 0.48 80.97± 0.20 71.77± 0.64 84.23± 0.53 93.78± 0.46 92.58± 0.30

GCN

- 82.09± 0.28 69.62± 0.28 78.38± 0.27 67.29± 0.64 82.93± 0.67 91.09± 0.49 90.31± 0.25

SW 52.24± 3.40 61.35± 2.00 75.91± 1.53 55.89± 0.70 54.01± 2.04 56.56± 5.07 35.93± 1.28
Entropy 81.45± 0.27 69.95± 0.49 79.26± 0.24 70.10± 0.53 82.46± 0.79 92.78± 0.45 91.23± 0.38
Cluster 74.32± 0.45 70.42± 0.33 80.90± 0.14 67.87± 0.43 81.63± 0.74 87.49± 0.26 91.66± 0.13

GLNN 81.64± 0.90 69.86± 0.80 79.05± 0.30 69.43± 0.83 83.05± 0.72 92.12± 0.67 91.92± 0.52
RKD-MLP 82.53± 0.16 71.52± 0.58 81.61± 0.39 72.13± 0.65 84.44± 0.57 93.27± 0.31 92.88± 0.15

APPNP

- 81.59± 0.64 70.44± 0.21 79.68± 0.19 67.84± 1.08 81.67± 1.21 91.92± 0.95 90.69± 0.28

SW 51.02± 4.11 53.02± 3.63 77.92± 0.46 55.20± 1.76 56.06± 5.88 60.25± 4.27 35.67± 0.51
Entropy 80.62± 0.37 70.37± 0.61 79.26± 0.25 68.97± 1.22 82.69± 1.35 92.16± 0.40 92.27± 0.26
Cluster 75.14± 0.54 71.41± 0.35 80.59± 0.25 68.40± 0.54 81.10± 0.83 87.61± 0.48 91.64± 0.16

GLNN 81.83± 0.78 70.67± 0.57 80.27± 0.36 69.87± 1.03 81.76± 1.11 91.92± 1.08 90.88± 0.40
RKD-MLP 82.80± 0.49 71.91± 0.38 81.37± 0.50 71.44± 0.56 83.06± 1.01 93.27± 0.56 92.74± 0.22

GAT

- 82.64± 0.63 69.60± 0.42 77.80± 0.25 68.66± 0.97 81.90± 1.51 91.42± 0.74 89.73± 0.72

SW 45.85± 7.67 47.00± 13.05 73.70± 2.63 51.82± 3.56 47.87± 13.00 62.23± 7.28 33.69± 5.14
Entropy 80.67± 0.69 70.05± 1.24 79.11± 0.36 70.14± 1.21 82.26± 1.73 92.88± 0.70 89.64± 2.67
Cluster 75.85± 0.52 70.39± 0.52 80.35± 0.30 67.96± 0.43 80.53± 1.40 87.46± 0.59 91.76± 0.19

GLNN 82.55± 0.84 69.92± 0.31 78.81± 0.45 70.69± 1.17 82.19± 1.38 91.67± 0.62 91.00± 0.91
RKD-MLP 84.12± 0.36 72.56± 0.68 82.19± 0.27 73.21± 0.84 83.85± 0.53 93.49± 0.66 92.77± 0.20

SGC

- 80.59± 0.47 69.59± 0.31 78.30± 0.14 67.78± 0.59 82.70± 0.64 91.30± 0.51 90.13± 0.38

SW 46.80± 4.24 45.11± 14.58 75.84± 1.05 60.44± 1.90 54.11± 6.35 59.29± 3.59 35.98± 1.00
Entropy 80.40± 0.40 70.34± 0.64 79.54± 0.15 69.79± 0.52 82.49± 1.17 92.22± 0.81 91.85± 0.48
Cluster 74.60± 0.99 70.08± 0.70 80.69± 0.19 67.62± 0.91 81.60± 0.75 87.32± 0.70 91.90± 0.15

GLNN 80.93± 0.75 69.87± 0.32 78.99± 0.16 69.87± 0.56 83.08± 0.70 92.54± 0.37 91.39± 0.65
RKD-MLP 82.99± 0.34 71.28± 0.92 81.72± 0.40 72.56± 0.83 84.56± 0.89 93.53± 0.46 93.02± 0.40

4.3.3 How does RKD-MLP Perform on Large-Scale Graphs?

Figure 4.3 and Figure 4.5 summarize the results on two challenging large-scale graphs like

ogbn-arixv and ogbn-products, from which we derive two insights (RQ2). ④ RKD-MLP is scal-

able and can achieve much higher results than vanilla KD method. As shown in Figure 4.3,

RKD-MLP improves GLNN 8.5% and 6.3% on ogbn-arxiv and ogbn-products, respectively. ⑤

Unlike small datasets, it is hard to train the MLP student on large graphs due to soft-label

noises. For instance, GLNN can achieve comparable results with GNN teacher on small datasets
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Table 4.2: Node classification accuracy on commonly used graph datasets in inductive learning.
The best and second-best results are highlighted in Bold font and underlined, respectively.

Teacher Student Cora CiteSeer PubMed WikiCS Compute Photo CS

MLPs - 59.09± 2.96 59.60± 1.57 67.73± 1.23 62.55± 1.85 67.84± 1.78 79.44± 1.72 85.57± 0.92

SAGE

- 80.00± 0.42 71.79± 0.22 77.50± 0.19 65.58± 1.47 75.53± 1.61 87.13± 0.34 91.31± 0.36

SW 45.81± 2.68 52.05± 17.53 78.56± 0.87 56.32± 2.34 46.74± 13.93 64.22± 6.53 34.60± 2.27
Entropy 81.02± 0.36 73.20± 0.58 79.74± 0.37 67.78± 0.93 80.95± 0.83 91.35± 0.49 91.37± 0.10
Cluster 72.98± 0.73 74.86± 0.80 80.20± 0.41 66.36± 0.57 81.25± 1.10 87.57± 0.44 91.24± 0.11

GLNN 80.19± 0.71 72.31± 0.58 78.76± 0.58 67.29± 1.31 76.30± 1.65 87.70± 0.40 91.38± 0.53
RKD-MLP 81.69± 0.96 75.00± 0.29 81.18± 0.65 69.62± 0.43 81.50± 0.77 91.58± 1.45 92.41± 0.54

GCN

- 80.29± 0.19 72.64± 0.45 78.88± 0.21 66.13± 0.15 80.33± 0.57 86.34± 0.57 89.02± 0.48

SW 47.12± 4.07 59.08± 6.00 76.88± 0.81 54.40± 2.23 48.58± 10.25 62.39± 6.65 35.81± 0.54
Entropy 80.87± 1.26 73.53± 0.77 79.28± 0.84 68.73± 0.70 82.30± 1.08 89.00± 0.83 91.59± 0.27
Cluster 72.30± 0.52 75.12± 0.63 80.22± 0.32 65.63± 0.55 81.62± 0.68 87.30± 0.74 91.34± 0.17

GLNN 79.23± 1.51 73.42± 0.41 79.36± 0.32 67.74± 0.49 80.56± 0.73 87.40± 0.57 90.64± 0.23
RKD-MLP 82.56± 0.74 75.22± 0.71 81.00± 0.50 69.88± 0.38 82.47± 0.49 90.36± 1.22 92.38± 0.31

APPNP

- 82.87± 1.06 72.50± 0.71 79.18± 0.12 67.33± 0.88 80.24± 0.62 77.30± 1.94 89.61± 0.22

SW 47.89± 3.89 59.22± 4.55 78.32± 0.94 54.46± 2.72 56.82± 4.46 61.88± 2.51 35.81± 2.63
Entropy 79.61± 1.63 74.23± 0.64 80.54± 0.43 68.47± 0.84 81.20± 0.23 82.88± 0.84 91.79± 0.17
Cluster 73.27± 0.52 74.23± 1.09 80.36± 0.42 66.21± 0.41 79.75± 0.81 80.61± 1.54 91.25± 0.10

GLNN 82.68± 0.68 72.75± 1.08 79.88± 0.23 68.78± 1.00 80.22± 0.54 78.08± 1.91 89.99± 0.29
RKD-MLP 83.38± 1.28 74.93± 0.79 81.44± 0.51 69.83± 1.01 82.60± 1.24 85.10± 0.90 92.60± 0.19

GAT

- 81.07± 0.79 72.72± 0.60 78.00± 0.28 67.77± 1.19 80.20± 1.38 90.38± 1.02 89.24± 0.86

SW 43.68± 3.29 50.13± 9.22 76.98± 2.02 54.50± 2.58 57.40± 3.04 59.34± 4.60 34.44± 1.76
Entropy 81.89± 1.36 74.09± 0.60 78.56± 1.13 69.99± 1.51 81.13± 2.40 91.83± 1.24 90.64± 0.65
Cluster 73.85± 0.93 74.53± 0.57 80.36± 0.15 66.54± 0.50 80.58± 0.16 88.33± 0.57 90.15± 2.61

GLNN 81.89± 0.39 72.94± 0.73 79.68± 0.62 70.10± 1.41 80.69± 0.26 91.31± 1.08 90.97± 0.97
RKD-MLP 82.61± 1.30 74.86± 0.58 82.28± 0.40 71.54± 0.33 81.97± 0.39 92.41± 0.90 92.86± 0.26

SGC

- 66.15± 0.58 66.47± 0.74 75.60± 0.59 60.62± 0.26 72.70± 1.56 81.10± 0.75 87.03± 0.38

SW 45.86± 8.28 46.77± 3.72 76.44± 1.98 57.01± 1.09 48.21± 8.94 63.64± 1.47 34.14± 2.34
Entropy 68.23± 0.82 69.83± 0.99 78.32± 0.64 65.05± 1.18 78.11± 0.65 87.52± 0.64 89.98± 0.75
Cluster 70.07± 0.66 71.39± 0.63 80.42± 0.19 65.42± 0.75 80.15± 0.70 84.56± 0.35 90.35± 0.07

GLNN 66.54± 0.71 66.65± 0.36 76.70± 0.41 63.14± 1.12 75.48± 1.27 84.83± 2.60 88.09± 0.66
RKD-MLP 71.08± 1.00 71.45± 1.49 81.70± 0.26 66.04± 0.88 81.23± 0.93 89.03± 0.68 92.75± 0.69

(See Table 5.5), but performs significantly worse on large graphs (See Figure 4.3& 4.5). By avoid-

ing unreliable guidance, our RKD-MLP can easily outperform the GNN teacher on small datasets,

and bridge the gap between GLNN and the GNN teacher on large graphs.

4.3.4 How Robust is RKD-MLP w.r.t. Feature or Topology Noises?

Figure 4.6 & 4.7 report the results of RKD-MLP on two types of noise scenarios (RQ3). In

general, we observe that ⑥ our proposal performs consistently better than other baselines, and

is more robust on topology noise compared with feature noise. For example, the performance

61



ogbn-arxiv ogbn-products
30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

56.05
62.4764.95 67.45

70.49 71.6771.66

78.42

MLPs
GLNN
RKD-MLP
GNN Teacher

Figure 4.3: Accuracy results of RKD-MLP on large-scale graphs. Left: GraphSAGE teacher.
Right: clustergnn teacher.
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Figure 4.4: Visualization of the meta-policy’s decisions. The x-axis represents two groups of
unlabeled nodes, where 0 and 1 mean the GNN teacher makes the right and wrong predictions,
respectively. The performance of RKD-MLP indicates how many nodes being wrongly (or cor-
rectly) classified by the GNN teacher are filtered out (or preserved) by the meta-policy.

gap between RKD-MLP and the second best baseline on incomplete graph structure (left two

panels) is higher than that on noise feature (See Figure 4.6). We contribute this robustness gain to

the proposed meta-policy, since it can filter out noisy teacher guidance.

4.3.5 How Effective is RKD-MLP in Eliminating Noisy Guidance?

We check the policy’s action and visualize the results in Figure 4.4 (RQ4). As shown in the

figure, ⑦ our proposal can effectively detect nodes correctly predicted by the GNN teacher

while filtering out nodes being wrongly classified to some extent (the gap between in group "0").

For instance, RKD-MLP detects 93.34% unlabeled nodes being correctly predicted by the teacher

while filtering out 67.96% nodes being wrongly predicted on the ogbn-arxiv dataset.
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Table 4.3: Inference time (ms) on 10 randomly chosen nodes of two OGB datasets under the
inductive setting. Numbers are copied from GLNN [5] since we have the same configuration.

Dataset SAGE QSAGE PSAGE Neighbor Sample Ours

Arxiv 489.49 433.90 (1.13×) 465.43 (1.05×) 91.03 (5.37×) 3.34 (146.55×)
Products 2071.30 1946.49 (1.06×) 2001.46 (1.04×) 107.71 (19.23×) 7.56 (273.98×)

Table 4.4: Ablation study of RKD-MLP. clustergcn teacher for products while SAGE for others.

Cora CiteSeer PubMed WikiCS Computer Photo CS ogbn-arxiv ogbn-products

RKD-MLP-iso 79.66 69.10 77.65 68.65 82.87 91.57 90.76 65.86 67.86
RKD-MLP-rand 79.22 68.25 76.32 67.35 82.28 91.16 90.03 64.52 66.88
RKD-MLP 81.59 70.46 81.07 71.77 84.23 93.78 92.58 70.49 71.67

4.3.6 Ablation Study

We study the importance of joint optimization and random selection on RKD-MLP with two

ablations: RKD-MLP-iso and RKD-MLP-rand (RQ5). RKD-MLP-iso is obtained by separating

the training of meta-policy and the MLP student. RKD-MLP-rand is obtained by replacing the

meta-policy with random selection. We made two observations from Table 4.4. ⑧ Jointly opti-

mizing meta-policy and MLP student can reinforce their reciprocal effects, since RKD-MLP

outperforms RKD-MLP-iso in all cases by a great margin. Additionally, random selection fails

to distinguish the decision boundary between correctly predicted samples and incorrectly classified

samples by the GNN teacher, so it performs the worst.

4.3.7 Efficiency Analysis

To investigate the efficiency of our proposed model, we conduct experiments on two large-

scale OGB datasets Arxiv and Products (RQ6). Following [5], we include three types of baselines,

i.e., vanilla GNNs, common acceleration techniques (i.e., pruning and quantization), and sampling

approaches. From Table 4.3 we observe that our distilled MLP student runs significantly faster

than all other baselines. This is because our method reduces to a simple MLPs after distillation,

while all baseline require to fetch neighboring nodes for inference. Given the high performance of
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Figure 4.5: Accuracy results of RKD-MLP on large-scale graphs. Left: GCN teacher. Right:
GraphSAINT teacher.
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Figure 4.6: Accuracy results of RKD-MLP and other baselines w.r.t. noise graph topology.

RKD-MLP on Table 5.5 and 4.2, our model is more desired to be deployed on resource-sensitive

applications.

4.3.8 The Influence of Parameter λ

In this section, we analyze the impacts of λ on our RKD-MLP model. Specifically, we vary λ

from 0.1 to 1.0 with step size 0.1 and report the results on Figure 4.8.

From the figures, we can observe that our RKD-MLP model performs generally stable when

0.1 ≤ λ ≤ 0.9. When λ = 1.0, it reduces to the vanilla MLP baseline, so the performance drops

significantly.
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Figure 4.7: Accuracy results of RKD-MLP and other baselines w.r.t. noise node features.
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Figure 4.8: The impacts of trade-off parameter λ on RKD-MLP.
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5. EFFICIENT GNN DEPLOYMENT WITH GENERALIZABLE GRAPH

AUTOENCODERS *

Recently, some efforts [6, 107, 108, 166] have been devoted to advancing GAE for classifica-

tion tasks. For example, GPT-GNN [107] builds an autoregressive framework to conduct node and

edge reconstruction alternatively. GraphMAE [6] and GMAE [108] propose to reconstruct node

features using a re-mask decoding strategy inspired by MAE [167]. These models can achieve

competitive results with state-of-the-art graph contrastive learning (GCL) [60] methods on node-

level and graph-level classification tasks in most cases. However, compared to traditional GAE

models, GraphMAE and GMAE lose the ability to perform well on link prediction tasks, since

they only focus on reconstructing node features, discarding the standard network structure recon-

struction, which is crucial for inferring missing links [94, 103, 168].

To date, no GAE studies have succeeded in performing comparable results with GCL methods

on node-level and graph-level classification scenarios without sacrificing their promise on link

prediction tasks. This phenomenon casts doubt on the generalizability of GAEs as a universal

graph learner, and raises several research questions: Why traditional GAEs can not generalize well

to graph classification tasks? How to build a generalizable GAE framework that could perform

well on link-level, node-level, and graph-level learning tasks simultaneously?

In this paper, we answer the above questions and identify three roadblocks to constructing gen-

eralizable pre-trained models with GAEs. ❶ The graph topology structure is over-emphasized.

Most existing GAEs focus on accurately reconstructing the input graph structure (i.e., all pair-wise

connections) to preserve the topological closeness between neighbors [94, 104, 105]. This strict

requirement could be harmful to capturing the structure information among nodes [51], especially

for real-world graphs which contain redundant [61] and noisy information [169]. ❷ Graph recon-

*Part of this chapter is reprinted with permission from "S2GAE: Self-Supervised Graph Autoencoders are Gener-
alizable Learners with Graph Masking" by Qiaoyu Tan, Ninghao Liu, Xiao Huang, Soo-Hyun Choi, Li Li, Rui Chen,
and Xia Hu, Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, Pages
787–795, Copyright 2023 by Association for Computing Machinery.
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struction without corruption is prone to overfit data. Prior GAEs usually adopt advanced neural

encoders such as GNNs to learn node representations. Since the target links to be recovered are

also explicitly utilized in GNNs for node embedding, it risks learning trivial solutions because

GNNs are expressive under the homophily hypothesis. However, the masked autoencoders [167]

that corrupt input and then attempt to recover it has shown great success in vision tasks, which

might also be applicable to graphs. ❸ The decoder architectures are not expressive for edge re-

construction, especially after edge perturbation. Existing GAEs often parametrize their decoders

with multi-layer perceptrons (MLPs) to estimate the similarity between nodes based on their latent

representations. In traditional scenarios, an MLP-based decoder may be sufficient to model the

correlations between nodes. However, if the graph structure is corrupted, especially when the non-

trivial perturbation is conducted [167], the GNN encoder would inevitably be affected, leading to

noisy node representations. In this case, the vanilla MLP decoder alone may not be robust enough

to reconstruct edges. Notably, though some GAEs may have tackled one or two of the above issues

individually, none of them deals with the three challenges as a whole.

Inspired by the aformentioned challenges, we present a principled framework, called Self-

Supervised Graph Autoencoders (S2GAE), for generalizable graph representation learning. In a

nutshell, S2GAE works by randomly masking a portion of the graph structure and then learning

to reconstruct these missing edges with the unmasked graph structure. Compared with conven-

tional GAEs, S2GAE also focuses on reconstructing the input graph but differs in the model input,

training target, and decoder architecture. The key innovations lie in the new designs added to the

three perspectives, which work together to unleash the generalization ability of GAEs, and equip

S2GAE with broader applicability in practice. Table 5.1 compares the different design choices be-

tween GAEs and S2GAE. Specifically, S2GAE largely benefits from the following critical designs

for their contributions to performance improvements.

5.1 Problem Statement

Standard GAE framework vs. S2GAE. Graph autoencoder [94, 103] is the typical frame-

work to learn node representation in an unsupervised fashion. Assume G = (V , E) is an undirected
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Table 5.1: Comparison between generative SSL methods (GAE variants). AE: autoencoder frame-
work; Rec. Graph: structure reconstruction objective; Edge Perturb: using edge masking to perturb
input graph; Direc. Mask: direction-aware graph masking; CC Dec.: capturing cross-correlation
between end nodes for edge reconstruction.

Methods AE
Rec. Edge Direc. CC

Graph Perturb Mask Dec.
VGAE [94] ✓ ✓ − − −

ARVGA [103] ✓ ✓ − − −
LRR [166] ✓ ✓ ✓ − −

GPT-GNN [107] − ✓ ✓ − −
GMAE [108] ✓ − − − −

GraphMAE [6] ✓ − − − −
MaskGAE [170] ✓ ✓ ✓ − −

S2GAE ✓ ✓ ✓ ✓ ✓

graph with n nodes, where V and E denote the sets of nodes and edges, respectively. Standard

GAE aims to learn an encoder network f : V × E −→ H ∈ R|V|×d that maps each node v ∈ V into

a d-dimensional embedding vector hv ∈ Rd, and a decoder network g : H −→ E that reconstructs

the network structure (e.g., edges in E) from embeddings. The training objective of GAE is to

reconstruct the input network structure as follows:

H = f(V , E), Er = g(H). (5.1)

Er is the reconstructed network structure. It is worth noting that the reconstructed target could

also be node attributes. However, in this work, we follow the generic setting [94] to reconstruct

network structure, since node attributes are not always available in reality.

S2GAE. Although many GAE variants have been developed recently, they usually suffer from

generalization challenges in applications beyond link prediction, such as node or graph classifica-

tion. To bridge the gap, we present a novel GAE variant–S2GAE, which advances conventional

GAE from self-supervised learning. Figure 5.1 depicts the overall architecture of S2GAE. Its key

innovations lie in the direction-aware graph masking strategies and the cross-correlation decoder
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Figure 5.1: The proposed S2GAE architecture. Given a graph, we first apply direction-aware
graph masking strategies to disturb it, obtaining perturbed graph and masked edge set. Then,
the perturbed graph is fed into GNN encoder to produce hidden representations. Next, a tailored
cross-correlation decoder is designed to reconstruct these masked edges by capturing the cross-
correlation of their end nodes from multi-granularity representations. Finally, the whole framework
is trained end-to-end by maximizing the likelihood of the masked edge set.

network. The former assists in generating effective and meaningful self-supervisory signals for

input perturbation and target reconstruction, while the latter aids more accurate edge prediction by

capturing the cross-correlation between two end nodes from their multi-granularity features. We

summarize the differences between S2GAE and other GAE variants in Table 5.1.

In the following subsections, we will discuss our S2GAE method from model input, encoder,

decoder, and training objective aspects.

5.2 Methodology

In this section, we present the proposed Self-Supervised Graph Autoencoder framework–S2GAE,

which generalizes standard GAEs from the self-supervised learning perspective.

5.2.1 Perturbed Graph Input

Given a graph G = (V , E), standard GAE takes the complete graph G as input and learns to

reconstruct the input network structure (i.e., E) based on the similarity of encoded representations.

However, as discussed above, such a design may over-emphasize the proximity information and

lose sight of the structure information, leading to limited results on classification tasks. To address

this issue, we propose to perturb the input graph structure and utilize only part of it as the input for
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encoding. A similar idea has been successfully explored in the text [44] and image [167] fields. For

example, BERT [44] adopts random dropping to generate partially observed word sequences for

language modeling, and MAE [167] applies patch-aware random masking to yield masked image

channels for visual representation.

Motivated by these, we propose to perturb the input graph via random dropping (i.e., graph

masking). Formally, we randomly sample a subset of edges Emask from the observed edges (i.e.,

E) with some masking ratio ω, and then obtain the perturbed input graph Gperb as follows

Gperb = (V , Eremain), Eremain = E − Emask, (5.2)

where Eremain denotes the remained edge set after graph masking. In practice, we adopt a uniform

random sampling (with probability ω) without replacement to generate the masked edge set Emask.

This is mainly because a uniform sampling distribution could prevent a potential center bias, i.e.,

the masked edge set is predominantly composed of influential nodes.

Behind Eq. (5.2), another thing that has remained so far is how to generate the masked edge set

Emask. Similar to MAE [167], the intuitive solution is to treat nodes as pixels and then uniformly

sample neighboring nodes for edge masking. That is, we regard edges as undirectional as done

by graph contrastive methods [48]. This implementation is reasonable for images because they

are dense and grid-like data. However, it might be suboptimal to real-world graphs, especially

for large-scale data, since they are often sparse [171]. Therefore, it is desirable to consider graph

characteristics when applying edge masking. To this end, we suggest two elegant direction-aware

graph masking strategies that align with our proposal.

I. Undirected masking (UM). We treat the link between node v and v as undirected. That is,

ev,u and eu,v are regarded as the same, and only one copy is included in E . Therefore, after

performing random sampling over E , the resultant masked edge set Emask and Gperb are also

undirected.

II. Directed masking (DM). We treat links in the graph as directed (even for undirected graphs).
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Hence, ev,u and eu,v are regarded as different, and both of them are stored in E . Deleting ev,u

does not mean eu,v is also deleted. After performing random sampling over E , the resultant

masked edge set Emask and Gperb are directed.

Despite being conceptually simple, the two proposed graph masking strategies perform surpris-

ingly well in our experiments. Specifically, we found that the best graph masking strategy relates

to graph statistics and downstream tasks. For example, if the network is dense or known to have

redundant information, e.g., social networks, it is better to adopt the tougher strategy– undirected

masking. In contrast, the directed masking might be a better choice if the original graph is sparse.

We empirically verify these observations and provide more insights in Section 5.3.5. Notably, ex-

isting SSL studies [3, 48, 170] on graphs all belong to the UM strategy; we are the first to consider

DM schema for graph masking.

5.2.2 GNN Encoder

To effectively map nodes into hidden representations, GNNs [21, 22] are often applied as the

encoder backbone. The goal of GNNs is to update node representation by leveraging representa-

tions from itself and its neighboring nodes, expressed as:

h(k)
v = COM(h(k−1)

v ,AGG({h(k−1)
u : u ∈ Nv})), (5.3)

where h
(k)
v ∈ Rd denotes the embedding of node v at the k-th layer, and Nv = {u|u|ev,u ∈ E}

is a set of direct neighbors of node v, with h
(0)
v = xv. The function AGG is used to aggregate

features from neighbors [21], and function COM is used to combine the aggregated neighbor in-

formation and its own node embedding from the previous layer. For a GNN encoder with K layers,

there are K node representations {h(1)
v ,h

(2)
v , · · · ,h(K)

v } being generated, where h
(k)
v captures the

neighborhood structure within k hops.

Difference. Unlike traditional GAEs that take the original graph G as input in Eq. (5.3), our

S2GAE feeds the perturbed graph Gperb to the GNN encoder. Therefore, the encoded node repre-

sentations {h(1)
v ,h

(2)
v , · · · ,h(K)

v } would inevitably contain noises especially when ω is large. Thus
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important motifs for the formation of link between nodes 1 and 2.

we develop a specific cross-correlation decoder introduced in the next section to combat this issue

and improve the reconstruction capacity.

5.2.3 Cross-Correlation Decoder

Given an edge (v, u) and their hidden representations (h(K)
v ,h

(K)
u ), existing GAEs [94, 22, 105]

often define the decoder network as either the inner product of their embeddings (i.e., g(v, u) =<

h
(K)
v ,h

(K)
u > ) or an MLP layer built upon the concatenation of their embeddings, i.e., g(v, u) =

MLP(h(K)
v ||h(K)

u ). However, as discussed in Section 5.2.2, the representation quality is impaired

when we use the perturbed graph Gperb as input, especially when non-trivial graph masking (e.g.,

with a relatively high masking ratio) is performed. Consequently, directly applying standard de-

coder architecture is rather limited. Meanwhile, this limitation is caused by the incomplete graph

structure after masking, so merely adopting more advanced neural networks such as GNNs will

not solve the problem, since GNNs depend on reliable network structure for message propagation.

This is further validated through experiments in our ablation study (see Section 5.3.5).

An illustration of the above challenge is provided in Figure 5.2. The missing link between

nodes 1 and 2 can be originally inferred via two motifs: the triangle between nodes 1, 6, and

2, and the pentagon among nodes 1, 3, 4, 5, and 2. In a normal case, the anchor edge is easily
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predicted by information about either the orange or blue path in the last hidden layer of the GNN

encoder. After perturbation, however, the last hidden layer may not learn useful information, since

the information path is incomplete and includes no-negligible unrelated information flows (e.g.,

1⃝− 7⃝− 8⃝ and 2⃝− 9⃝). In this case, a better choice is to focus on the 1⃝– 3⃝ and 2⃝– 5⃝– 4⃝ paths

(shown in the bottom right figure) and activate the pentagon motif– 1⃝– 3⃝– 4⃝– 5⃝– 2⃝. From the

GNN’s perspective, it means we enforce the similarity between the first-layer and second-layer

hidden representations of node 1⃝ and 2⃝, respectively. That is, we need to model the cross-

correlation between the 1-hop neighbors of node 1⃝ and the 2-hop neighbors of 2⃝.

In light of this, we propose a novel cross-correlation decoder to explicitly capture this beneficial

cross-correlation similarity between two end nodes in different granularities. Formally, given the

K hidden representations of node v and u, i.e., {h(k)
v ,h

(k)
u }Kk=1, we generate its cross representation

hev,u as bellow.

hev,u = ||Kk,j=1h
(k)
v ⊙ h(j)

u , (5.4)

where ⊙ denotes the element-wise product, and hev,u ∈ RdK2 is the final edge representation. The

multiplication between the k-th and j-th embedding vectors of nodes v and u–h(k)
v ⊙ h

(j)
u , is an

effective manner to model their cross-correlations: highlighting common properties and diluting

discrepant information, thanks to the property of the element-wise product. As a result, most of the

elements in hev,u will be zero or small values, and only those elements that are highly correlated

between the two nodes are reserved, which helps the follow-up edge prediction.

After obtaining the cross-correlation representation of edge (v, u), we adopt an MLP layer to

predict its existent probability via g(v, u) = MLP(hev,u) ∈ R, which gives rise to the name of

cross-correlation decoder. We want to remark that another popular choice in the GNN community

is to concatenate all intermediate representations for node embedding. That is, we first obtain

v’s (or u’s) representation by combining all its intermediate embeddings, like ĥv = ||Kk=1h
(1)
v (or

ĥu = ||Kk=1h
(1)
u ), and then combine them for edge prediction, i.e., g(v, u) = MLP(ĥv||ĥu). This

strategy, at first glance, seems effective in preserving all information between two end nodes.

However, in our edge masking scenario, its effectiveness will be substantially offset due to the
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incomplete graph structure Gpreb, as each hidden representation is noisy. As a result, it’s difficult

for the edge predictor–g(·) to make the decision from them. By contrast, our cross-correlation

decoder can filter that inconsistent and unnecessary information out and help g(·) make predictions

based on these common and informative features. We empirically verify their differences in the

ablation study section 5.3.5.

5.2.4 Why is S2GAE Generalizable?

In traditional GAE methods, the learning task is reconstructing the observed edges in E . How-

ever, this training objective may tend to over-fit the proximity information [51], damaging the

generalization ability of GAEs. In this paper, we propose to predict the masked edges in Emask in

training, inspired by the success of masked autoencoding in computer vision [167]. We believe

this learning paradigm is useful for GAE, since it enforces the model to understand the topological

structure among nodes. For example, to estimate the missing link between nodes 1 and 2 in Fig-

ure 5.2 after masking, the model needs to recognize the pentagon structure among nodes 1, 3, 4, 5,

and 2.

Formally, let g(v, u) = g(f(v), f(u)) be the estimated link probability of nodes v and u, the

training objective of S2GAE is to reconstruct the masked edges:

L = − 1

|Emask|
∑

(v,u)∈Emask

log
exp(g(v, u))∑
z∈V exp(g(v, z))

. (5.5)

In practice, the summation operation in the denominator of Eq. (5.5) is often approximated by

negative sampling [171] to accelerate the training. We will show that, although the above loss

function is the same as traditional GAE losses [94, 22], by applying the masked-autoencoder train-

ing paradigm, the proposed framework could train more generalizable models.

Connection to contrastive learning. We analyze the theoretical connection between our

S2GAE and graph contrastive learning [1, 52] to explain why S2GAE could train generaliz-

able representations. In a nutshell, we found that our S2GAE actually optimizes an edge-aware

contrastive learning objective, thanks to the design of perturbing graph input and reconstructing
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masked edges.

Specifically, let hv,i and hv,j denote representations of v under two kinds of augmentations

strategies: i and j. The standard node-level contrastive learning loss [48] is formulated as:

ℓv = − log
exp(sim(hv,i,hv,j)/τ))∑N

v′=1,v′ ̸=v exp(sim(hv,i,hv′,j)/τ))
, (5.6)

where sim(·) denotes the similarity function, such as the dot product, and N is the number of

negative samples. τ is a temperature parameter. According to GraphCL [48], the key insight of

Eq. (5.6) is to generate two representations of the same node after creating two views with different

graph augmentation operations. In light of this, we can regard each edge (v, u) as a virtual node

and represent its two augmented views based on the end nodes, i.e., the perturbed local subgraphs

of nodes v and u. Then, we can rewrite Eq. (5.5) to its contrastive form as:

ℓv,u = − log
exp(g(f(Gv

perb), f(Gu
perb)))∑N

z=1,z ̸=v exp(g(f(Gv
perb), f(Gz

perb)))
, (5.7)

Here, we misuse notation Gv
perb to denote the augmented subgraph of node v after edge masking.

f(v) is a GNN encoder that generates v’s representation by using its perturbed local subgraph. We

could find that Eq. (5.7) is a special implementation of Eq. (5.6) by: 1) designing the similarity

function with g(·), 2) reducing two graph augmentation operations to one global edge masking

perturbation, and 3) treating an anchor edge as a virtual node and treating local subgraphs of two

end nodes as two augmented views. To summarize, the edge reconstruction training in graph

autoencoder guarantees its effectiveness on link prediction task. Meanwhile, the edge-wise con-

trastive nature of our S2GAE framework sheds light on its generalizability to other tasks, such as

classification.

5.2.5 Training and Inference

S2GAE is optimized via stochastic gradient descent as shown in Algorithm 5. It first perturbs

the input graph G using our direction-aware graph masking proposals to obtain the perturbed graph
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Gperb and masked edge set Emask. Then, the perturbed graph Gperb will be fed into the GNN encoder

f(·) to generate node representations. Next, the cross-correlation decoder g(·) estimates the exis-

tence probability of anchor edges based on multi-scale representations of their end nodes. Finally,

the model is trained end-to-end by maximizing the likelihood of masked edges in Emask.

After training, our S2GAE model can be applied to different downstream tasks, such as link

prediction, node classification, and graph classification, by feeding the original graph without

masking to generate node representations. Specifically, for classification, we directly use the

learned node representations for node-level classification, while adopting a non-parameterized

readout function (e.g., MaxPooling and MeanPooling) to obtain graph embedding for graph-level

classification. For link prediction, given an unseen edge, we estimate its existence probability by

further feeding the representations of its end nodes to the decoder g(·). Based on different appli-

cation recipes, we empirically show that our S2GAE model can achieve competitive results across

the three critical tasks.

Algorithm 5 Self-Supervised Graph Autoencoder (S2GAE)
Input: Graph G = (V, E), GNN encoder depth K, masking ratio ω, embedding dimension d;

11 while not converge do
12 Perturb input graph G with direction-aware graph masking (UM or DM) to generate the perturbed graph

Gperb and masked edge set Emask;
Perform GNN encoding on the perturbed graph Gperb according to Eq. (5.3);
Compute the cross representations of edges in Emask according to Eq. (5.4);
Update the GNN encoder f(·) and cross-correlation decoder g(·) by minimizing the reconstruction
loss defined on Emask according to Eq. (5.5);

13 Return The trained S2GAE model.

5.3 Experiments

In this section, we conduct extensive experiments to benchmark the generalization ability of

S2GAE over three important graph learning tasks: link prediction, node classification, and graph

classification.
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5.3.1 Datasets and Experimental Settings

Datasets. We include 14 node-level benchmark datasets (See Table 5.2 for statistics) and 7

graph-level benchmark datasets (See Table 7 for statistics) for experiments. These datasets are

publicly available online and have been frequently adopted by other researchers.

Table 5.2: Dataset statistics of node-level benchmarks.

Data # Nodes # Edges # Features Split ratio # Classes
Cora 2, 708 5, 429 1, 433 85/5/15 7

CiteSeer 3, 312 4, 660 3, 703 85/5/15 6
PubMed 19, 717 44, 338 500 85/5/15 3

BlogCatalog 5, 196 171, 743 8, 189 85/5/15 −
Flickr 7, 575 239, 738, 12, 047, 85/5/15 −

ogbl-ddi 4, 267 1, 334, 889 - 80/10/10 −
ogbl-collab 235, 868 1, 285, 465 128 92/4/4 −
ogbl-ppa 576, 289 30, 326, 273 58 70/20/10 −

Amazon-Computers 13, 752 245, 861 767 − 10
Amazon-Photo 7, 650 119, 081 745 − 8
Coauthor-CS 18, 333 81, 894 6, 805 − 15

Coauthor-Physics 34, 493 247, 962 8, 415 − 5
ogbn-arxiv 169, 343 1, 166, 243 128 − 40

ogbn-proteins 132, 534 39, 561, 252 8 − 112

Table 5.3: Dataset statistics of graph-level benchmarks.

Data # graphs Avg. # nodes # classes
IMDB-B 1, 000 19.8 2
IMDB-M 1, 500 13.0 3

PROTEINS 1, 113 39.1 2
COLLAB 5, 000 74.5 3
MUTAG 188 17.9 2

REDDIT-B 2, 000 429.7 2
NCI1 4, 110 29.8 2
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Table 5.4: Link prediction results on both contrastive and generative methods. The results are not
reported due to unavailable code or out-of-memory.

Cora CiteSeer PubMed Blog. Flickr ogbl-ddi ogbl-collab ogbl-ppa A.R.
AUC AUC AUC AUC AUC Hits@20 Hits@50 Hits@10

DGI 90.02± 0.80 95.53± 0.40 91.24± 0.60 74.85± 1.46 92.44± 0.30 − − − 7.60
GIC 93.54± 0.60 97.04± 0.50 93.71± 0.30 68.77± 2.68 86.71± 0.46 − − − 8.00
MVGRL 87.46± 0.38 88.95± 0.66 88.36± 0.59 73.80± 1.72 91.40± 0.36 − − − 10.60
BGRL 87.08± 0.24 85.82± 0.36 96.75± 0.12 73.56± 1.46 88.93± 0.27 − 21.58± 1.92 − 8.50

GAE 91.09± 0.01 90.52± 0.04 96.40± 0.01 84.91± 1.44 92.50± 0.40 37.07± 5.07 44.75± 1.07 2.52± 0.47 5.25
GraphSage 86.33± 1.06 85.65± 2.56 89.22± 0.87 78.62± 0.72 89.70± 0.14 53.90± 4.74 54.63± 1.12 1.87± 0.67 7.62
ARGE 92.40± 0.00 91.94± 0.00 96.81± 0.00 75.48± 0.25 87.73± 0.19 20.43± 4.66 28.39± 2.51 0.41± 0.26 7.12
GPT-GNN 92.28± 0.31 91.36± 0.66 97.83± 0.03 86.16± 0.14 92.54± 0.09 37.05± 5.96 42.41± 1.80 1.57± 0.94 4.37
RRL 88.46± 1.85 85.47± 1.01 93.10± 0.49 83.64± 0.69 93.13± 0.08 16.84± 2.23 29.88± 2.94 0.24± 0.19 7.62
GraphMAE 89.19± 0.00 91.20± 0.11 93.72± 0.00 76.60± 1.32 88.69± 0.04 − 22.79± 1.62 0.18± 0.28 7.75
MaskGAE 96.66± 0.17 98.00± 0.23 99.06± 0.05 81.06± 3.06 93.60± 0.14 16.25± 1.60 32.47± 0.59 0.23± 0.04 4.00

S2GAE-SAGE 95.05± 0.76 94.85± 0.49 97.38± 0.17 80.84± 1.15 92.32± 0.24 66.00± 9.49 49.27± 0.96 1.37± 0.38 4.00
S2GAE-GCN 93.52± 0.23 93.29± 0.49 98.45± 0.03 87.06± 0.37 94.38± 0.02 65.91± 3.50 54.74± 1.06 3.98± 1.33 2.13

Table 5.5: Node classification performance on both contrastive and generative methods. A.R. is
the average rank.

Method Cora CiteSeer PubMed Compute Photo CS Phy arxiv proteins A.R.

DGI 85.41± 0.34 74.51± 0.51 85.95± 0.66 84.68± 0.39 91.57± 0.25 92.77± 0.38 94.55± 0.13 67.08± 0.43 50.31± 0.55 6.44
GIC 87.70± 0.01 76.39± 0.02 85.99± 0.13 82.50± 0.22 90.65± 0.47 91.33± 0.30 93.49± 0.42 64.00± 0.22 48.55± 0.47 6.66
MVGRL 85.86± 0.15 73.18± 0.22 84.86± 0.31 88.70± 0.24 92.15± 0.20 92.87± 0.13 95.35± 0.08 68.33± 0.32 − 5.12
BGRL 86.16± 0.20 73.96± 0.14 86.42± 0.18 90.48± 0.10 93.22± 0.15 93.35± 0.06 96.16± 0.09 71.77± 0.19 − 3.00

GCN 83.60± 0.52 63.37± 1.21 78.23± 1.63 87.21± 0.26 90.05± 0.05 89.79± 0.09 93.26± 0.05 66.01± 0.37 61.67± 0.35 8.44
GraphSage 74.30± 1.84 60.20± 2.15 81.96± 0.74 87.05± 0.25 89.29± 0.17 89.74± 0.19 93.35± 0.06 64.79± 2.91 55.39± 0.79 9.22
ARGVA 85.86± 0.72 73.10± 0.86 81.85± 1.01 83.36± 0.43 86.55± 0.31 84.68± 0.26 92.89± 0.11 50.06± 1.21 40.73± 0.68 9.77
GPT-GNN 84.69± 0.09 71.82± 0.13 81.45± 0.18 83.06± 0.12 89.15± 0.28 91.07± 0.21 95.02± 0.15 70.16± 0.10 61.45± 0.23 7.77
RRL 57.29± 0.13 59.57± 1.77 75.06± 0.37 80.49± 0.10 82.66± 0.24 84.71± 0.95 94.90± 0.02 66.36± 0.13 60.26± 0.05 10.22
GraphMAE 85.45± 0.40 72.48± 0.77 85.74± 0.14 88.04± 0.61 92.73± 0.17 93.47± 0.04 96.13± 0.03 71.86± 0.00 60.99± 0.21 4.44
MaskGAE 87.31± 0.05 75.20± 0.07 86.56± 0.26 90.52± 0.04 93.33± 0.14 92.31± 0.05 95.79± 0.02 70.99± 0.12 61.23± 0.19 3.00

S2GAE 86.15± 0.25 74.60± 0.06 86.91± 0.28 90.94± 0.08 93.61± 0.10 91.70± 0.08 95.82± 0.03 72.02± 0.05 63.33± 0.12 2.22

5.3.2 Link Prediction

Datasets. For link prediction task, we include 3 Planetoid benchmarks (Cora, CiteSeer, and

PubMed [149]), 3 challenging OGB benchmakrs [171] (ogbl-ddi, ogbl-collab, ogbl-pppa), and 2

popular social networks [172] (BlogCatelog and Flickr) for experiments. To have a fair compar-

ison, we follow previous studies [94, 121] to construct the train/valid/test edge sets, and evaluate

model performance based on Hit rate (Hits@N) for OGB datasets, while AUC and AP (Average

Precision) scores for other datasets.

Competitors. We compare our S2GAE model with 7 generative SSL methods: GAE [94],

GraphSAGE [22], ARGVA [103], GPT-GNN [107], RRL [166], GraphMAE [6] and MaskGAE [170],
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and 4 SOTA contrastive methods: DGI [51], GIC [96], MVGRL [50], and BGRL [1]. Since four

contrastive methods, GPT-GNN, and GraphMAE are not officially tested on link prediction tasks,

we apply them for this task by training an MLP-based decoder (a.k.a. finetune).

Table 5.6: Link prediction results on Planetoid benchmarks and social networks. The best results
are highlighted.

Cora CiteSeer PubMed Blog. Flickr ogbl-ddi ogbl-collab ogbl-ppa
AP AP AP AP AP Hits@30 Hits@100 Hits@50

DGI 90.61± 1.00 95.72± 0.10 92.23± 0.50 73.81± 1.72 92.38± 0.22 − − −
GIC 93.33± 0.70 96.80± 0.50 93.54± 0.30 61.96± 2.55 86.08± 0.16 − − −
MVGRL 87.78± 0.51 89.90± 0.42 87.69± 0.38 70.53± 1.98 91.32± 0.29 − − −
BGRL 86.59± 0.18 79.02± 0.22 95.56± 0.13 70.28± 1.77 88.58± 0.21 − − −

GAE 92.83± 0.03 91.68± 0.05 96.50± 0.02 84.87± 1.57 92.43± 0.26 51.56± 4.19 52.30± 1.01 10.82± 1.04
GraphSage 88.24± 0.87 87.90± 2.54 89.44± 0.82 77.09± 0.87 89.30± 0.16 65.80± 6.94 60.23± 1.20 8.92± 2.28
ARGE 93.23± 0.00 93.03± 0.00 97.11± 0.00 72.29± 0.36 87.05± 0.08 23.86± 6.53 37.66± 1.98 3.83± 0.84
GPT-GNN 92.53± 0.63 92.09± 0.76 97.79± 0.04 85.00± 0.29 93.05± 0.14 42.57± 6.01 51.32± 1.45 7.88± 0.92
RRL 89.60± 1.45 87.84± 1.18 91.47± 0.57 82.22± 0.86 92.76± 0.05 19.33± 2.51 40.52± 2.23 3.85± 0.83
GraphMAE 90.32± 0.01 92.66± 0.35 94.07± 0.02 77.54± 1.06 88.94± 0.02 − 33.62± 1.50 3.62± 0.91
MaskGAE 96.29± 0.23 98.25± 0.16 98.99± 0.06 80.12± 2.79 92.87± 0.36 19.27± 1.59 39.98± 0.74 3.77± 0.06

S2GAE-SAGE 94.50± 0.86 94.68± 0.34 97.11± 0.19 78.99± 1.91 91.71± 0.20 75.18± 6.57 55.44± 0.82 4.79± 0.16
S2GAE-GCN 94.46± 0.24 93.81± 0.40 98.22± 0.05 86.12± 0.49 94.10± 0.04 75.02± 2.26 61.01± 1.18 9.97± 1.55

Results. Tables 5.4 and 5.6 list the results on all evaluation metrics. We found that S2GAE

outperforms both generative and contrastive baselines on 5 of 8 datasets and achieves compa-

rable results on other 2 of 3 datasets, with substantial performance gains on challenging OGB

datasets. Moreover, the generative baselines (i.e., GAE variants) perform generally better than

contrastive methods across 8 datasets, which is consistent with common belief. Compared with

MaskGAE, S2GAE wins on 5 large-scale datasets, including OGB benchmarks, while losing to 3

small datasets. This result sheds light on the scalability of our S2GAE model.

5.3.3 Node Classification

Datasets. For node classification task, we consider 4 widely-used datasets [165] (Amazon-

Computers, Amazon-Photo, Coauthor-CS, and Coauthor-Physics), 3 Planetoid graphs (Cora, Cite-

Seer, and PubMed), and 2 large-scale OGB datasets [121], ogbn-arxiv and ogbn-proteins. Fol-

lowing previous studies [1, 121], we evaluate the model performance based on AUC and accuracy
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Table 5.7: Graph classification performance on both contrastive and generative methods. A.R. is
the average rank.

Dataset IMDB-B IMDB-M PROTEINS COLLAB MUTAG REDDIT-B NCI1 A.R.

Graph Kernels
WL 72.30± 3.44 46.95± 0.46 72.92± 0.56 − 80.72± 3.00 68.82± 0.41 80.31± 0.46 8.00

DGK 66.96± 0.56 44.55± 0.52 73.30± 0.82 − 87.44± 2.72 78.04± 0.39 80.31± 0.46 7.66

Unsupervised
graph2vec 71.10± 0.54 50.44± 0.87 73.30± 2.05 − 83.15± 9.25 75.78± 1.03 73.22± 1.81 7.83
Infograph 73.03± 0.87 49.69± 0.53 74.44± 0.31 70.65± 1.13 89.01± 1.13 82.50± 1.42 76.20± 1.06 5.57

Contrastive

GraphCL 71.14± 0.44 48.58± 0.67 74.39± 0.45 71.36± 1.15 86.80± 1.34 89.53± 0.84 77.87± 0.41 6.28
JOAO 70.21± 3.08 49.20± 0.77 74.55± 0.41 69.50± 0.36 87.35± 1.02 85.29± 1.35 78.07± 0.47 6.57
GCC 72.0 49.4 − 78.9 − 89.8 − 4.75

MVGRL 74.20± 0.70 51.20± 0.50 − − 89.70± 1.10 84.50± 0.60 − 4.00
InfoGCL 75.10± 0.90 51.40± 0.80 − 80.00± 1.30 91.20± 1.30 − 80.20± 0.60 3.00

Generative
GraphMAE 75.52± 0.66 51.63± 0.52 75.30± 0.39 80.32± 0.46 88.19± 1.26 88.01± 0.19 80.40± 0.30 2.57

S2GAE 75.76± 0.62 51.79± 0.36 76.37± 0.43 81.02± 0.53 88.26± 0.76 87.83± 0.27 80.80+ 0.24 1.85

(ACC) scores for ogbn-proteins and other datasets, respectively.

Competitors. To have a rigorous and fair comparison between generative and contrastive SSL

methods on graphs, we include 7 SOTA generative SSL baselines: GAE [94], GraphSAGE [22],

ARGVA [103], GPT-GNN [107], RRL [166], GraphMAE [6] and MaskGAE [170], and 4 SOTA

contrastive arts: DGI [51], GIC [96], MVGRL [50], and BGRL [1]. After the model is trained,

we use the whole dataset to generate node representations for downstream evaluation. Then, we

train a LIBSVM classifier on the learned node presentations of all models, and apply 5-fold cross-

validation to estimate the performance. To avoid randomness, we repeat the process 10 times and

report the averaged results.

Results. Tables 5.5 reports the results. We found that S2GAE outperforms all baselines on 5

of 9 datasets and especially performs well on two large-scale OGB benchmarks. Compared with

traditional generative efforts (excluding GraphMAE, MaskGAE, and S2GA2), contrastive methods

achieve SOTA results on almost all classification scenarios. However, by refining GAE from the

masked autoencoding aspect, S2GAE, GraphMAE, and MaskGAE tend to perform on par with

or even better than SOTA contrastive methods. Specifically, our S2GAE performs especially well

on relatively large and more challenging benchmarks like orgn-arxiv and ogbn-proteins, compared

with GraphMAE and MaskGAE. These results validate the generalization ability of S2GAE on

node classification.
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5.3.4 Graph Classification

Datasets. For graph classification task, we test on 7 widely used benchmark datasets [156]:

MUTAG, IMDB-B, IMDB-M, PROTEINS, COLLAB, REDDIT-B, and NCI1, where each of them

is a collection of graphs. Following [6], we use node labels in MUTAG, PROTEINS, and NCI1 as

features, whereas node degrees in IMDB-B, IMDB-M, REDDIT-B, and COLLAB are used. We

feed the encoded graph-level representation into a downstream LIBSVM classifier to predict the

label, and report the mean 10-fold cross-validation accuracy with standard deviation after 5 runs.

Competitors. Follow previous studies [6, 48], we compare our S2GAE model with 2 graph

kernel methods: Weisfeiler-Lehman sub-tree kernel–WL [155] and deep graph kernel–DGK [156],

7 SOTA unsupervised and contrastive methods: graph2vec [158], Infograph [137], GraphCL [48],

JOAO [53], GCC [49], MVGRL [50], and InfoGCL [99], and 1 generative method–GraphMAE [6].

If available, we report results from previous papers and adopt GIN [135] as our encoder. We don’t

include MaskGAE for comparison because its source code does not support graph classification.

Results. Table 5.7 summarizes the results. We observed that our S2GAE outperforms exist-

ing contrastive and generative baselines on 5 of 7 datasets. In these benchmarks, only graph-level

contrastive models have been demonstrated to be effective. These results substantiate the general-

ization ability of S2GAE on graph-level tasks.

To summarize, our S2GAE not only inherits GAE’s capacity for link prediction (See Table 5.4

and 5.6), but also generalizes well to node-level (in Table 5.5) and graph-level (in Table 5.7) clas-

sification tasks, which was previously dominated by contrastive methods. The results manifest the

potential of GAE on graphs as a universal representation learner for a variety of applications.

5.3.5 Ablation Study

We further conduct a series of ablation studies to verify the effectiveness of our design choices.

Due to limited space, we selected 4 OGB benchmarks across link prediction and node classification

for this study. We follow the same experimental setups as above.

Self-supervised training of S2GAE is crucial. The core idea of S2GAE is to train GAE under
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Table 5.8: Ablation studies of S2GAE. "GP" indicates graph perturbation. "MGR" means masked
graph reconstruction. "GCN" means GNN encoder similar to [6]. "Concat" means concatenate all
intermediate representations.

Link Prediction Node Classification

ddi collab arxiv proteins
C

O
M

. S2GAE 65.91± 3.5054.74± 1.0672.02± 0.0563.33± 0.12
w/o GP 44.12± 2.4251.88± 0.5770.28± 0.0761.74± 0.23

w/o MGR54.27± 4.7850.29± 1.2670.70± 0.0460.46± 0.15

D
ec

od
er Concat 57.77± 3.3048.26± 1.2670.82± 0.0260.15± 0.20

GCN 53.50± 5.1645.75± 1.5271.00± 0.0159.82± 0.22
w/o CC 24.98± 5.1942.20± 1.6868.40± 0.1257.69± 0.13
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Figure 5.3: Ablation study of graph masking strategies on node classification.

a self-supervised setting. To verify the necessity, we explore the contributions of graph masking

(w/o GP) and masked edge reconstruction (w/o MGR) in Table 5.8. In general, by considering them

jointly, S2GAE outperforms either of them by a great margin. For example, S2GAE improves

21.44% and 1.86% of the best of them on ddi and arxiv, respectively. This result validates our

motivation to improve GAE from an SSL perspective.

Effect of cross-correlation decoder. Capturing the cross-correlation between nodes is impor-

tant to predict masked edges. To verify this, we compare S2GAE with different decoder variants

in Table 5.8. First, the performance gap between S2GAE and the "Concat" (or "GCN") variant
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Mask ratio !Datasets

Figure 5.4: Ablation study of graph masking strategies (left panel) and masking ratio (right panel).

shows that concatenating all hidden representations (or adopting an advanced GNN model as de-

coder) does not help to reconstruct masked edges from noisy representations. Second, without the

cross-correlation decoder, the resultant variant (w/o CC) performs poorly on 4 evaluation scenar-

ios. These observations demonstrate the effectiveness of the proposed cross-correlation decoder.

Effect of masking ratio. The right panel of Figure 5.4 shows the influences of masking ratios.

In general, a small marking ratio (e.g., ω < 0.5) is not good enough to learn generalizable features,

and our S2GAE model performs consistently well when ω reaches 0.7. Similar tendencies are

observed on other datasets, and the detailed configurations are listed in the original paper.

Effect of direction-aware graph masking. The left panel of Figure 5.4 shows the influence of

graph masking strategies. We observed that DM is more effective in the OGB datasets, which are

more sparse than the others. These results verify the necessary to perform direction-aware graph

masking for different types of graphs. We also see that DM generally performs better on node

classification tasks (See Table 5.3).
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we present a series of efficient algorithms aimed at enhancing self-supervised

learning on graphs at various levels. Our contributions encompass a personalized approach to

accelerate augmentation selection, the elimination of graph augmentation through model pertur-

bation, the distillation of fine-tuned GNN models into lightweight neural networks using reliable

knowledge distillation, and the development of universal graph models to improve their applica-

bility.

First, we extend the traditional architecture search technique to address the local augmentation

selection problem in graph contrastive learning. We advance conventional GCL by enabling each

graph to choose its own suitable augmentation operations. To handle the vast search space, we

design a tailored augmentation selector that converts the discrete space into a continuous one. This

module can be effectively trained with downstream GCL models in an end-to-end fashion. Through

visualization of the learned augmentation distributions across different datasets, we demonstrate

that our approach can effectively identify the most appropriate augmentations for each graph based

on its characteristics. Furthermore, as an augmentation selection method, our model has broad

applicability. It can flexibly incorporate new augmentation strategies created by domain experts by

modifying the augmentation pool without significant additional effort.

Next, to further accelerate the training efficiency of existing self-supervised graph models, we

propose an alternative contrastive learning framework based on model perturbation. Instead of

searching for the optimal combination of perturbing nodes, edges, or attributes, we conduct per-

turbations on the model architecture itself, specifically the GNNs. Model perturbation represents

a global disturbance of all nodes in the graph and is thus more efficient than data augmentation.

To enhance the effectiveness of our proposal, we introduce two customized perturbation strategies

for GNNs: "randMP" and "weightPrune." The former injects randomness into the message propa-

84



gation of GNNs to increase local variances between opposing views, while the latter sparsifies the

weight transformation of GNNs by pruning weights to enhance the diversity of views.

However, accelerating the pre-training of GNN models does not directly improve their effi-

ciency for inference. The major hindrance lies in the heavy data dependency incurred by the

message propagation among multi-hop neighbors in GNNs, resulting in substantial computational

costs and memory footprints. To address this issue, we propose compressing the pre-trained GNN

model into a lightweight MLP student through noise-aware distillation. Specifically, we employ

a meta-policy to filter out unreliable soft labels by determining whether each node’s representa-

tions should be used in distillation. The student model then only distills the soft labels of the

nodes retained by the meta-policy. To train the meta-policy, we design a reward-driven objective

based on a meta-set, where the meta-policy is rewarded for making accurate filtering decisions.

The meta-policy is optimized using policy gradient to achieve the highest expected reward and

is subsequently applied to unlabeled nodes. Through iterative updates to the meta-policy and the

student model, we achieve a win-win scenario: significantly improved performance of the vanilla

MLP student by providing reliable guidance while maintaining the inference efficiency of MLPs

without increasing the model size.

Finally, we explore methods to further enhance the generalization capability of self-supervised

GNN models, enabling a single model to be effectively applied to various graph analysis tasks,

thus reducing deployment efforts. To achieve this goal, we harness the power of the standard

graph autoencoder framework with minimal yet impactful modifications. Instead of reconstructing

the entire input structure, we randomly mask a portion of edges and learn to reconstruct these

missing edges using an effective masking strategy and an expressive decoder network. Moreover,

we theoretically demonstrate the effectiveness of our approach by revealing that it can be regarded

as an edge-level contrastive learning framework, providing insights into its ability to generalize

well to both link prediction and classification tasks.
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6.2 Future Work

My lifelong goal is to conduct impactful research that can be applied to industries, creating

tangible value for society. To achieve this, I plan to maintain an adaptive research agenda that

keeps me updated with emerging challenges in the long run. In the short term, my focus is on ad-

dressing the remaining challenges in my current research directions while exploring new frontiers.

Specifically, I have outlined my research plan in three directions:

Tiny machine learning. The research landscape, not only for graph models, has shifted from

traditional high-end systems to low-end clients such as edge computing and Internet of Things

(IoT) devices. This transition necessitates efficient machine learning approaches due to memory

and latency constraints. Our model RKD-MLP [173] serves as a preliminary work on graphs.

However, it is still in its early stages, as we observe a noticeable performance gap when dealing

with large-scale datasets. Additionally, designing compact graph models for tasks beyond classifi-

cation, such as link prediction, remains unclear. Consequently, I will continue developing scalable

and cost-efficient graph models.

Few-shot/zero-shot learning. The data hunger problem poses a significant challenge when

applying deep models in industries. Developing a powerful graph model for a specific downstream

task often requires a substantial amount of annotated samples, whereas limited labeled data is

common in real-world scenarios. I have recently explored self-supervised learning [174, 18] as a

means to alleviate the demand for labeled data to some extent. However, achieving satisfactory

classification results still requires a certain number of labeled samples for fine-tuning. It is crucial

to explore more labeling-efficient techniques to make models applicable in the industry.

Trustworthy ecosystems. In addition to advancing model performance and reducing latency,

deploying deep models in practice raises serious concerns related to ethics, fairness, safety, and

more. For instance, it has been revealed that state-of-the-art deep models may exhibit different

behavior across individuals based on characteristics such as race, gender, disabilities, and sexual

or political orientation. Moreover, the security of deep models can be easily compromised by

adversarial samples that introduce imperceptible perturbations to normal data. These limitations
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significantly restrict the widespread adoption of deep models as universal solutions in high-stakes

applications like financial systems and self-driving cars, as even a minor mistake can lead to sub-

stantial losses and potentially endanger lives. My prior work on model interpretability [55, 175]

aims to improve model transparency. To further pursue this direction, I plan to study adversarial

attacks and defenses for deep models on graphs, as well as explore model fairness to achieve a fair

and robust machine learning system.

Interdisciplinary research. I have valuable interdisciplinary collaboration experiences with

scientists and domain experts from both academia and industry. These collaborations have not

only broadened my horizons but also amplified the impact of my research. For example, I am

currently working on a healthcare project with researchers at UTHealth Houston, focusing on

applying machine learning to improve the fairness and predictive performance of organ transplan-

tation [176] and clinical trial matching [177]. Additionally, I have collaborated with engineers

from Alibaba DAOMO Academy to develop effective recommendation engines for online shop-

ping websites and with Samsung Research America to enhance real-time bidding systems through

model compression. These interdisciplinary endeavors have inspired me to leverage my expertise

in machine learning to drive positive societal outcomes. As a long-term goal, I aspire to pursue

interdisciplinary research opportunities across various domains such as social science, security,

biochemistry, and healthcare.
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