
ROBUST REINFORCEMENT LEARNING: THEORY AND ALGORITHMS

A Dissertation

by

KISHAN PANAGANTI BADRINATH

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Dileep Kalathil
Committee Members, P. R. Kumar

Bani Mallick
Srinivas Shakkottai

Head of Department, Costas Georghiades

August 2023

Major Subject: Electrical Engineering

Copyright 2023 Kishan Panaganti Badrinath

ABSTRACT

This research dissertation explores novel algorithms in the field of robust reinforcement learn-

ing (RL) that address the challenges of controlling dynamical systems in real-world scenarios.

Classical reinforcement learning is a powerful sub-field in machine learning for training intelligent

sequential decision-making agents in complex environments. However, these algorithms often

face challenges when it comes to uncertainties and variations in the environment, as well as the

requirement for a large number of training samples. In this work, we present novel robust rein-

forcement learning algorithms that address these challenges. Our algorithms focus on robustness

to uncertainties in the environment through the transition dynamics variations. By leveraging tech-

niques such as distributionally robust optimization, our algorithms aim to learn policies that can

withstand these uncertainties. We study robust reinforcement learning in online environment in-

teractions setting as well as when we are given historical without access to the environment. We

also study the problems of imitation learning and offline reinforcement learning that is relevant for

real-world applications where the goals differ from robust reinforcement learning, but we see the

tools of distributionally robust optimization and model pessimism involves crucial roles in helping

improve these areas of learning domain. The experimental results demonstrate the effectiveness of

our robust algorithms, showcasing their potential for real-world applications where uncertainties

and variations are prevalent.

ii

DEDICATION

In wholehearted appreciation to my parents, whose unconditional love and sacrifices have made

my educational pursuits possible. This dissertation stands as my gratitude for your unwavering

support and belief in me.

iii

ACKNOWLEDGMENTS

I extend my heartfelt gratitude to my advisor, Dr. Dileep Kalathil, for his exceptional men-

torship, unwavering generosity, and support throughout my PhD. This dissertation would not have

come to fruition without his invaluable guidance, extensive knowledge, infectious enthusiasm, and

continuous support. I am immensely thankful for the insightful feedback provided by my commit-

tee members, Dr. P. R. Kumar, Dr. Bani Mallick, and Dr. Srinivas Shakkottai, which significantly

contributed to the improvement of my research and this dissertation.

I am indebted to Dr. Mohammad Ghavamzadeh and Zaiyan Xu, who coauthored with me for

publications of my research, and their invaluable ideas and constructive comments helped improve

my research which shaped into this dissertation. My sincere thanks go out to the members of the

Learning and Emerging Networked Systems (LENS) Lab and members of Prof. P. R. Kumar’s

group at Texas A&M University, including (alphabetical) Akshay Sarvesh, Akshay Mete, Amit

Jena, Archana Bura, Aria HasanzadeZonuzy, Desik Rengarajan, Jaewon Kim, Khaled Nakhleh,

Nitin Ragothaman, Prabhasa Kalkur, Ruida Zhou, Sapana Chaudhary, Sarat Bobbili, Tao Liu,

Ujwal Dinesha, and, many more members met over the years, for fostering a conducive environ-

ment for intellectual discussions and making my PhD journey truly enjoyable.

During my academic journey, I had the privilege of completing my Masters in Communica-

tion and Networks at the Department of Electrical Communication Engineering, Indian Institute

of Science (IISc), under the invaluable guidance of Dr. Rajesh Sundaresan. It was during this

transformative period that I was first introduced to the captivating realm of research. I extend my

sincerest gratitude to Rajesh for illuminating the path and instilling in me a profound appreciation

for the world of academic research. To my dear friends outside of work in India, Germany, USA,

especially (random order) Karthik, Ganesh, Bhagyashree, Darshan, Dheeraj, Chiranth, Akash, Ak-

shay, Anuj, Harsha, Pavan, Lohith, Yeshashwini, Sachin, Sharath, and more, for whom I consider

myself fortunate to have such amazing individuals in my life.

I would like to express my deepest appreciation and heartfelt thanks to my parents, Badri-

iv

nath and Indrani, for their unwavering support and boundless patience, particularly during the

most challenging moments of this journey. I am particularly grateful for their understanding and

willingness to shoulder additional responsibilities, ensuring that I had the freedom to pursue my

dreams without any concerns about supporting our family. Their love and sacrifice have been a

constant source of motivation and inspiration, and I am truly blessed to have them as my parents. I

want to convey my heartfelt thanks also to my sisters, Bindu and Ashwini, and my brother-in-laws

Narayan and Raghu, for their support to my parents when I was almost eight thousand miles away

from home. Lastly, again, I am profoundly indebted to my father, Badrinath, thank you for being

a role model during my formative years and inspiring me to explore exciting endeavors beyond

work. Your unwavering support in all my endeavors has been exceptional, and I am grateful for

the lengths you went to in providing my sisters and me with the best possible education. I would

not have come this far without your own research experience in Botany that boosted me to pursue

this research journey ending up with this dissertation.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Dr. Dileep Kalathil (advi-

sor), Dr. Srinivas Shakkottai, and Dr. P.R. Kumar of the Department of Electrical and Computer

Engineering, and Dr. Bani Mallick of the Department of Statistics.

The work in Chapter 2 was published in 2021 at a machine learning conference called In-

ternational Conference on Machine Learning (ICML). The work in Chapter 3 was published in

2022 at a machine learning conference called Artificial Intelligence and Statistics (AISTATS). The

work in Chapter 4 was published in 2022 at a machine learning conference called Neural Infor-

mation Processing Systems (NeurIPS). The works in Chapters 5 and 6 are new contributions that

are preprints at the time of publication of this dissertation. The works in Chapters 4 to 6 was

performed in collaboration with Dr. Mohammad Ghavamzadeh, Senior Staff Research Scientist at

Google Research at the time of publication of this dissertation, and the supporting experiments for

these research works were conducted in collaboration with Zaiyan Xu.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a research assistantship from Texas A&M University. This

work was supported in part by the National Science Foundation (NSF) grants NSF-CRII-CPS-

1850206, NSF-CAREER-EPCN-2045783, and NSF ECCS 2038963. The views and opinions

expressed in this material are solely those of the authors and do not necessarily represent the

opinions, findings, or recommendations of the sponsoring agencies.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . vi

LIST OF FIGURES . xi

LIST OF TABLES. xiii

1. INTRODUCTION. 1

2. ROBUST REINFORCEMENT LEARNING USING LEAST SQUARES POLICY IT-
ERATION WITH PROVABLE PERFORMANCE GUARANTEES . 5

2.1 Introduction. 5
2.1.1 Related Work . 7

2.2 Background and Problem Formulation. 8
2.3 Robust Least Squares Policy Evaluation . 10

2.3.1 Robust TD(λ) Operator and the Challenges . 10
2.3.2 Robust Least Squares Policy Evaluation (RLSPE(λ)) Algorithm 13

2.4 Robust Least Squares Policy Iteration . 17
2.5 Experiments . 20
2.6 Conclusion and Future Work . 21

3. SAMPLE COMPLEXITY OF ROBUST REINFORCEMENT LEARNING WITH A
GENERATIVE MODEL. 24

3.1 Introduction. 24
3.1.1 Related Work . 26

3.2 Preliminaries: Robust Markov Decision Process . 27
3.3 Algorithm and Sample Complexity . 30

3.3.1 Robust Empirical Value Iteration (REVI) Algorithm . 31
3.3.2 Sample Complexity . 32

3.4 Why Do We Need Robust Policies? . 34
3.5 Sample Complexity Analysis . 35

3.5.1 Total variation uncertainty set. 36
3.5.2 Chi-square uncertainty set . 37

vii

Page

3.6 Experiments . 38
3.7 Conclusion and Future Work . 41

4. ROBUST REINFORCEMENT LEARNING USING OFFLINE DATA . 43

4.1 Introduction. 43
4.2 Preliminaries . 46
4.3 Offline Robust Reinforcement Learning . 49
4.4 Robust Fitted Q-Iteration: Algorithm and Main Results . 50

4.4.1 Dual Reformulation of Robust Bellman Operator . 50
4.4.2 Approximately Solving the Dual Optimization using Empirical Risk Min-

imization . 52
4.4.3 Robust Fitted Q-iteration . 54
4.4.4 Proof Sketch . 56

4.5 Experiments . 57
4.6 Conclusion. 59

5. IMPROVING BEHAVIORAL CLONING WITH DISTRIBUTIONALLY ROBUST OP-
TIMIZATION . 60

5.1 Introduction. 60
5.2 Imitation Learning . 63

5.2.1 Problem Formulation . 63
5.2.2 Covariate Shift Issue . 65
5.2.3 Distributionally Robust Behavioral Cloning . 67

5.3 Robust Imitation Learning . 71
5.3.1 Problem Formulation . 72
5.3.2 Robust Against Model Mismatch . 72
5.3.3 Need for Robust Imitation Learning . 74

5.4 Experiments . 74
5.4.1 Why Is BC the Only Fair Comparison? . 76
5.4.2 Fighting the Covariate Shift . 76
5.4.3 Test For Robustness . 77

5.5 Conclusion. 77

6. OFFLINE REINFORCEMENT LEARNING USING DISTRIBUTIONALLY ROBUST
REINFORCEMENT LEARNING . 79

6.1 Introduction. 79
6.2 Problem Formulation and Preliminaries . 82
6.3 Model-Pessimistic Q-Iteration (MPQI) . 83

6.3.1 MPQI Algorithm . 84
6.3.2 Results and Proofs . 85

6.4 Linear-MDP Model-Pessimistic Q-Iteration (LMMPQI) . 89
6.4.1 LMMPQI Algorithm . 89

viii

6.4.2 Results and Proofs . 91
6.5 Conclusion. 96

7. CONCLUSION. 97

REFERENCES . 100

APPENDIX A. APPENDIX FOR CHAPTER 2 . 120

A.1 Proofs of the Results in Section 2.3.1 . 120
A.1.1 Proof of Proposition 1 . 120
A.1.2 Proof of Proposition 2 . 121
A.1.3 Derivation of (2.7) . 121
A.1.4 Derivation of (2.8) . 122

A.2 Proofs of the Results in Section 2.3.2 . 122
A.2.1 Proof of Proposition 3 . 122
A.2.2 Proof of Theorem 1 . 123
A.2.3 Derivation of (2.13) . 127
A.2.4 Proof of Theorem 2 . 128

A.3 Proof of the Results in Section 2.4 . 133
A.4 Experiments . 141

APPENDIX B. APPENDIX FOR CHAPTER 3 . 147

B.1 Useful Technical Results. 147
B.2 Proof of the Theorems . 149

B.2.1 Concentration Results . 149
B.2.2 Proof of Theorem 4 . 150
B.2.3 Proof of Theorem 5 . 155
B.2.4 Proof of Theorem 6 . 159
B.2.5 Proof of Theorem 7. 164

APPENDIX C. APPENDIX FOR CHAPTER 4 . 167

C.1 Useful Technical Results. 167
C.2 Proof of the Proposition 6 . 170
C.3 Proof of Theorem 8 . 172
C.4 Related Works . 181
C.5 Experiment Details . 183

C.5.1 RFQI Practical Algorithm. 183
C.5.2 More Experimental Results . 187

APPENDIX D. APPENDIX FOR CHAPTER 5 . 193

D.1 Useful Technical Results. 193
D.2 Proof of Results in Section 5.2 . 195

D.2.1 Proof of Theorem 10 . 195

ix

D.2.2 Proof of Proposition 7 . 195
D.2.3 Proof of Theorem 11 . 195
D.2.4 Proof of Theorem 13 . 196
D.2.5 Proof of Theorem 12 . 197

D.3 Proof of Results in Section 5.3 . 199
D.3.1 Proof of Proposition 8 . 199
D.3.2 Proof of Theorem 14 . 200
D.3.3 Proof of Theorem 15 . 203

D.4 Experiment Details . 206
D.4.1 DR-BC Practical Algorithm . 206
D.4.2 DR-BC Model Details . 209
D.4.3 Expert Demonstration Generation . 209
D.4.4 More Simulation Results . 210
D.4.5 Details of Environment Perturbations . 211

x

LIST OF FIGURES

FIGURE Page

2.1 CartPole: Performance of RLSPI algorithm with random action sim2real parame-
ter. (Reprinted from [1]) . 23

2.2 MoutainCar: Performance of RLSPI algorithm with random action sim2real pa-
rameter. (Reprinted from [1]). 23

2.3 Acrobot: Performance of RLSPI algorithm with random action sim2real parameter.
(Reprinted from [1]) . 23

2.4 CartPole: Performance of RLSPI algorithm with force-mag sim2real parameter.
(Reprinted from [1]) . 23

2.5 CartPole: Performance of RLSPI algorithm with gravity of Earth sim2real param-
eter. (Reprinted from [1]) . 23

2.6 CartPole: Performance of RLSPI algorithm with pole length sim2real parameter.
(Reprinted from [1]) . 23

3.1 Experiment results for the Gambler’s problem. The first two plots shows the rate of
convergence with respect to the number of iterations (k) and the rate of convergence
with respect to the number of samples (N) for the TV and chi-square uncertainty
set, respectively. The third and fourth plots shows the robustness of the learned
policy against changes in the model parameter (heads-up probability). (Reprinted
from [2]) . 38

3.2 Experiment results for the FrozenLake8x8 environment. The first two plots shows
the rate of convergence with respect to the number of iterations (k) and the rate of
convergence with respect to the number of samples (N) for the TV and chi-square
uncertainty set, respectively. The third and fourth plots shows the robustness of
the learned policy against changes in the model parameter (probability of picking
a random action). (Reprinted from [2]) . 38

4.1 CartPole: Performance of RFQI algorithm with force-mag sim2real parameter.
(Reprinted from [3]) . 58

4.2 CartPole: Performance of RFQI algorithm with random action sim2real parameter.
(Reprinted from [3]) . 58

xi

4.3 Hopper: Performance of RFQI algorithm with leg_joint_stiffness sim2real param-
eter. (Reprinted from [3]) . 58

5.1 Mitigation of covariate shift. Average episodic reward on 10 differently seeded
episodes. In every decision step, a random Gaussian vector g ∼ N (0,ΣI) is added
to the action of the BC and DR-BC agents. 75

5.2 Walker2d-v3 perturbation results. Average episodic reward on 10 differently
seeded episodes. From left to right, the perturbations are in: ‘gravity’, ‘actua-
tor_ctrlrange’ of all joints, and ‘foot_joint_damping’ of both foot joints. 75

xii

LIST OF TABLES

TABLE Page

3.1 Comparison of the sample complexities of different uncertainty sets and the best
known result in the non-robust setting [4]. Here |S| and |A| are the cardinality of
the state and action spaces, cr is the robust RL problem parameter, and γ is the
discount factor. We consider the optimality gap ε ∈ (0, c/(1− γ)), where c > 0 is
a constant. We refer to Section 3.3.2 for further details. (Reprinted from [2]) 25

6.1 Comparison of provable offline RL algorithms in the tabular setting. Here the
algorithm-type column is describing the type of algorithm that is proposed and ana-
lyzed for solving offline RL problem. The data coverage assumption is based on the
constants C+

π∗ and Cπ∗ being small and bounded. Single-policy (with some given
comparator policy π∗) concentrability ℓ∞ and clipped ℓ∞ is C+

π∗ = maxs,a(
dπ

∗
(s,a)

µ(s,a)
)

and Cπ∗ = maxs,a(
min{dπ∗

(s,a),1/|S|}
µ(s,a)

) respectively, where dπ∗
(s, a) and µ(s, a) are

both discounted occupancy measures corresponding to comparator policy π∗ and
data generating policy. Finally, the suboptimality column is the statistical bounds
for the offline RL objective Eq. (6.1). We make these more formal in further sec-
tions from Section 6.2. 80

6.2 Comparison of provable offline RL algorithms in the linear MDP setting. Here the
algorithm-type column is describing the type of algorithm that is proposed and an-
alyzed for solving offline RL problem. The data coverage assumption is based on
the constants Co

π∗,φ and Cπ∗,φ being small and bounded. Single-policy (with some
given comparator policy π∗) concentrability feature coverage is defined as Cπ∗,φ =
maxx∈Rd (x⊤Σdπ∗x)/(x⊤Σµx), where Σdπ∗ and Σµ are both feature correlation ma-
trices that depend on discounted occupancy measures corresponding to comparator
policy π∗ and data generating policy. That is, Σdπ∗ = Es,a∼dπ∗ [φ(s, a)φ(s, a)⊤] and
Σµ = Es,a∼µ[φ(s, a)φ(s, a)

⊤] with d-dimensional feature vectors φ(s, a) ∈ Rd.
Likewise, the concentrability in [5] is Co

π∗,φ = Es,a∼dπ∗ [φ(s, a)⊤Λ−1φ(s, a)] where
Λ = Es,a∼µφ(s, a)φ(s, a)

⊤. Finally, the suboptimality column is the statistical
bounds for the offline RL objective Eq. (6.1). We make these notations more for-
mal from Section 6.2. Here we only note the algebraic relation Cπ∗,φ < Co

π∗,φ

which we formally show in Lemma 10. 81

xiii

1. INTRODUCTION

Many real-world problems require learning to actively control a dynamical system in a sequen-

tial way [6, 7], rather than making predictions like the state-of-the-art machine learning algorithms

[8] on well-curated historical data. For example, agile robots such as Google’s Robotics Bench-

marks for Learning (ROBEL) [9] have to learn to make appropriate decisions to achieve desired

objectives often in unknown environments in the real-world. The class of machine learning that ad-

dresses the problem of learning to control such systems is called Reinforcement Learning (RL). RL

has recently acquired remarkable feats by solutions such as DeepMind’s MuZero [10], Google’s

Dreamer [11], IBM’s Watson Health [12], UC Berkeley’s simulated robots [13], and many more.

However, most of these success stories are limited to such simulated environments. Major RL

algorithms [14, 15, 16] rely on exploring the dynamical systems which is considered dangerous

[17, 18, 19] in the real-world systems scenario. These RL algorithms also suffer from the issue

of epistemic uncertainty [20, 21, 22] that degrades their performance. This issue is coined as the

simulator-to-reality gap [23, 24] in RL literature and resolutions to it are an active area of re-

search in both academia [25, 26, 27] and industry [28, 29]. The goal of this research document

is to develop novel algorithms that are robust to changes in the real-world, robust to transitioning

from simulator to the real-world systems, improving the existing approaches through innovations

imparting robust, and contributing to the artificial intelligence revolution by enabling intelligent

systems designed and operated by RL.

In order to develop a control strategy/policy, reinforcement learning algorithms frequently need

a lot of data samples. Because of this, training RL algorithms directly on real-world systems is

costly and could be hazardous. They are often trained on a simulator (online RL) or using pre-

gathered offline datasets to solve this challenge (offline RL). The offline dataset is often compiled

from either historical measurements or a sophisticated simulation of the real-world system. The

trained RL policy is subsequently put into use under the presumption that the simulator, offline

data, or training environment accurately represents the model of the real-world system. This as-

1

sumption is frequently false for a variety of reasons [23, 25, 28], including the modeling approxi-

mation mistakes, changes in the real-world parameters over time, and potential hostile disruptions

in the real-world. In addition to alterations in the testing environment’s topography, weather, illu-

mination, and obstacle densities, conventional simulator settings for a mobile robot’s sensor noise,

action latency, friction, and mass may differ from those of the actual real-world robot. Unfortu-

nately, even little changes to the training and testing environments can cause the present RL control

mechanisms to drastically fail [30, 31, 32].

Learning a policy that is resilient to model parameter mismatches between the training and

testing environments is the aim of robust reinforcement learning (RL). The Robust Markov Deci-

sion Process (RMDP) framework is used to model the robust planning issue [33, 34]. The RMDP

formulation takes into account a collection of models known as the “uncertainty set”, as opposed to

the traditional MDP, which only takes into account one model (the transition probability function).

In this uncertainty set, the objective is to identify an optimal robust policy that operates at its best

under the worst model. The robust MDP and robust RL issues are much more difficult than their

non-robust counterparts due to the minimization across the uncertainty set.

We address the problem of model-free reinforcement learning for RMDPs with large state

spaces in Chapter 2, our work [1]. Finding a policy that is resistant to parameter uncertainties

resulting from the mismatch between the simulator model and real-world conditions is the aim of

the RMDP framework. As a multi-step online model-free learning method for policy evaluation,

we first propose the Robust Least Squares Policy Evaluation algorithm. Using stochastic approx-

imation techniques, we demonstrate the convergence of this approach. The Robust Least Squares

Policy Iteration (RLSPI) algorithm is then suggested as a method for discovering the near-optimal

robust policy. We also provide a general weighted Euclidean norm bound on the error of the algo-

rithm policy (its proximity to optimality). Finally, we demonstrate the performance of our RLSPI

algorithm on some standard benchmark problems.

We examine the problem of model-based reinforcement learning for RMDPs in Chapter 3,

our work [2]. Here, we focus on the tabular episodic learning environment, where the algorithm

2

has access to a generative model of the nominal (training) environment that the uncertainty set is

based on. To address this problem for the uncertainty sets defined by three distinct metrics - total

variation, chi-square, Kullback-Leibler - we present the Robust Empirical Value Iteration (REVI)

algorithm. We demonstrate that our algorithm achieves a sample complexity of O(|S|2 |A|H4),

which is uniformly better than the current findings by a factor of |S|. Here, |S| denotes the number

of states, |A| the number of actions, and H the horizon length. In our recent work [35], we provide

improved sample complexity bounds to O(|S| |A|H4). We also offer the Wasserstein uncertainty

set’s sample complexity, which is a first. We also demonstrate the performance of our algorithm

on some standard benchmark problems in both works.

We propose a robust RL technique called Robust Fitted Q-Iteration (RFQI) in Chapter 4, our

work [3], which solely makes use of an offline dataset to learn the best robust policy. Because the

robust Bellman operator minimizes over all models, robust RL with offline data is far more diffi-

cult to implement than its non-robust equivalent. This creates difficulties for offline data gathering,

model optimization, and unbiased estimation. In this study, we suggest a methodical strategy to

address these difficulties, leading to our RFQI algorithm. We illustrate RFQI’s improved perfor-

mance on common benchmark issues and demonstrate that it learns a robust policy that is close to

optimal under the usual assumptions.

In Chapter 5, we study Imitation Learning (IL) where an agent learns to mimic an expert

demonstrator without additional online environment interactions. The agent is only provided with

a dataset of state-action pairs from the expert, without any information about the true rewards from

the environment. Behavioral cloning (BC), a supervised learning method, is commonly used in

IL but can result in abnormal behavior (covariate shift issue) when the agent encounters states not

seen by the expert. We propose Distributionally Robust Behavioral Cloning (DR-BC) algorithm:

an algorithmic framework that utilizes the distributionally robust optimization (DRO) technique

with BC to solve the covariate shift in the IL problem efficiently both in theory and in practice. In

theory, from the adversarial nature of DRO picking the appropriate state visitation distributions, we

show that DR-BC can provably combat the covariate shift issue in IL. Additionally, we also show

3

that DR-BC’s performance is robust to the parameter uncertainties, due to the gap between the sim-

ulator and real-world, under the IL problem both in theory and in practice. We also demonstrate

that practical implementation of our approach mitigates both covariate shift and model perturba-

tions on benchmark MuJoCo continuous control tasks.

We propose an offline RL algorithm called Model-Pessimistic Q-Iteration (MPQI) in Chapter 6,

which solely makes use of offline data to learn any comparator policy. We use the pessimism in-

build in robust RL formulation to be able to disincentivize unseen state-action pairs in the available

offline data. In this study, we suggest a methodical strategy to address these difficulties, leading

to our MPQI algorithm. We compare the theoretical performance of our MPQI algorithm with

other state-of-the-art algorithms in terms of the provable suboptimality guarantees under the com-

mon data coverage assumption. We study both finite state space and large state space cases using

tabular and linear architectures respectively but with finite actions.

Lastly, in Chapter 7, we summarize our research carried out in this dissertation. We also discuss

about a new algorithm for robust RL based on policy gradient reinforcement learning algorithms,

as a potential future work, that can handle large scale or high dimensional problems. We put forth

all the important and open questions that needs addressing. We are excited to see that our current

research and future directions opening more avenues to more robust RL solutions that are necessary

to close the gap between simulator world and the real-world.

4

2. ROBUST REINFORCEMENT LEARNING USING LEAST SQUARES POLICY

ITERATION WITH PROVABLE PERFORMANCE GUARANTEES*

In this chapter, we focus on developing robust reinforcement learning algorithm that uses

stochastic approximation techniques.

2.1 Introduction

Model-free Reinforcement Learning (RL) algorithms typically learn a policy by training on a

simulator. In the RL literature, it is nominally assumed that the testing environment is identical to

the training environment (simulator model). However, in reality, the parameters of the simulator

model can be different from the real-world setting. This can be due to the approximation errors

incurred while modeling, due to the changes in the real-world parameters over time, and can even

be due to possible adversarial disturbances in the real-world. For example, in many robotics appli-

cations, the standard simulator parameter settings (mass, friction, wind conditions, sensor noise,

action delays) can be different from that of the actual robot in the real-world. This mismatch

between the training and testing environment parameters can significantly degrade the real-world

performance of the model-free learning algorithms trained on a simulator model.

The RMDP framework [33, 34] addresses the planning problem of computing the optimal pol-

icy that is robust against parameter uncertainties that cause the mismatch between the training and

testing environment parameters. The RMDP problem has been analyzed extensively in the tabular

case [33, 34, 36, 37, 38] and under the linear function approximation [39]. Algorithms for learning

the optimal robust policy with provable guarantees have been proposed, both in the model-free

[40] and model-based [41] reinforcement learning settings. However, the theoretical guarantees

from these works are limited to the tabular RMDP settings. Learning policies for problems with

large state spaces is computationally challenging. RL algorithms typically overcome this issue by

*Reprinted with permission from Kishan Panaganti, Dileep Kalathil, “Robust Reinforcement Learning using Least
Squares Policy Iteration with Provable Performance Guarantees.” International Conference on Machine Learning.
PMLR, 2021.

5

using function approximation architectures, such as linear basis functions [42], reproducing ker-

nel Hilbert spaces (RKHS) [43] and deep neural networks [44]. Recently, robust reinforcement

learning problem has been addressed using deep RL methods [45, 46, 47, 48, 49]. However, these

works are empirical in nature and do not provide any theoretical guarantees for the learned poli-

cies. The problem of learning optimal robust policies with provable performance guarantees for

RMDPs with large state spaces has not been well studied in the literature.

In this paper, we address the problem of learning a policy that is provably robust against the

parameter uncertainties for RMDPs with large state spaces. In particular, we propose an online

model-free reinforcement learning algorithm with linear function approximation for learning the

optimal robust policy, and provide theoretical guarantees on the performance of the learned policy.

Our choice of linear function approximation is motivated by its analytical tractability while pro-

viding the scaling to large state spaces. Indeed, linear function approximation based approaches

have been successful in providing algorithms with provable guarantees for many challenging prob-

lems in RL, including online model-free exploration [50, 43], imitation learning [51, 52], meta

reinforcement learning [53, 54], and offline reinforcement learning [55, 56]. Robust RL is much

more challenging than the standard (non-robust) RL problems due to the inherent nonlinearity as-

sociated with the robust dynamic programming. We overcome this issue by a cleverly designed

approximate dynamic programming approach. We then propose a model-free robust policy itera-

tion using this approach with provable guarantees. Our algorithmic and technical contributions are

as follows:

(i) Robust Least Squares Policy Evaluation (RLSPE(λ)) algorithm: A learning-based policy it-

eration algorithm needs to learn the value of a policy for performing (greedy) policy improvement.

For this, we first propose RLSPE(λ) algorithm, a multi-step, online, model-free policy evaluation

algorithm with linear function approximation. This can be thought as the robust version of classi-

cal least squares based RL algorithms for policy evaluation, like LSTD(λ) and LSPE(λ). We prove

the convergence of this algorithm using stochastic approximation techniques, and also characterize

its approximation error due to the linear architecture.

6

(ii) Robust Least Squares Policy Iteration (RLSPI) algorithm: We propose the RLSPI algo-

rithm for learning the optimal robust policy. We also give a general L2-norm bound on the error

(closeness to optimality) of the resulting policy at any iterate of the algorithm. To the best of our

knowledge, this is the first work that presents a learning based policy iteration algorithm for robust

reinforcement learning with such provable guarantees.

(iii) Finally, we demonstrate the performance of the RLSPI algorithm on various standard RL

test environments.

2.1.1 Related Work

RMDP formulation to address the parameter uncertainty problem was first proposed by [33]

and [34]. [33] showed that the optimal robust value function and policy can be computed using

the robust counterparts of the standard value iteration and policy iteration. To tackle the parameter

uncertainty problem, other works considered distributionally robust setting [37], modified policy

iteration [57], and more general uncertainty set [36]. We note that the focus of these works were

mainly on the planning problem in the tabular setting. Linear function approximation method

to solve large RMDPs was proposed in [39]. Though this work suggests a sampling based ap-

proach, a general model-free learning algorithm and analysis was not included. [40] proposed the

robust versions of the classical model-free reinforcement learning algorithms such as Q-learning,

SARSA, and TD-learning in the tabular setting. They also proposed function approximation based

algorithms for the policy evaluation. However, this work does not have a policy iteration algorithm

with provable guarantees for learning the optimal robust policy. [48] introduced soft-robust actor-

critic algorithms using neural networks, but does not provide any global convergence guarantees

for the learned policy. [58] proposed a min-max game framework to address the robust learning

problem focusing on the tabular setting. [59] proposed a kernel-based RL algorithm for finding

the robust value function in a batch learning setting. [46] employed an entropy-regularized pol-

icy optimization algorithm for continuous control using neural network, but does not provide any

provable guarantees for the learned policy.

Our work differs from the above in two significant ways. Firstly, we develop a new multi-

7

step model-free reinforcement learning algorithm, RLSPE(λ), for policy evaluation. Extending the

classical least squares based policy evaluation algorithms, like LSPE(λ) and LSTD(λ) [60, 61, 62],

to the robust case is very challenging due to the nonlinearity of the robust TD(λ) operator. We over-

come this issue by a cleverly defined approximate robust TD(λ) operator that is amenable to online

learning using least squares approaches. Also, as pointed out in [63], convergence analysis of least

squares style algorithms for RL is different from that of the standard temporal difference (TD)

algorithm. Secondly, we develop a new robust policy iteration algorithm with provable guarantees

on the performance of the policy at any iterate. In particular, we give a general weighted Euclidean

norm bound on the error of the resulting policy. While similar results are available for the non-

robust settings, this is the first work to provide such a characterization in the challenging setting of

robust reinforcement learning.

2.2 Background and Problem Formulation

A Markov Decision Process is a tuple M = (S,A, r, P, α) where S is the state space, A is the

action space, r : S × A → R is the reward function, and α ∈ (0, 1) is the discount factor. The

transition probability matrix Ps,a(s
′) represents the probability of transitioning to state s′ when

action a is taken at state s. We consider a finite MDP setting where the cardinality of state and

action spaces are finite (but very large). A (deterministic) policy π maps each state to an action.

The value of a policy π evaluated at state s is given by

Vπ,P (s) = Eπ,P [
∞∑
t=0

αtr(st, at) | s0 = s],

where at ∼ π(st) and st+1 ∼ Pst,at(·). The optimal value function and the optimal policy of an

MDP with the transition probability P are defined as V ∗
P = maxπ Vπ,P and π∗

P = argmaxπ Vπ,P .

The RMDP formulation considers a set of model parameters (uncertainty set) under the as-

sumption that the actual parameters lie in this uncertainty set, and the algorithm computes a robust

policy that performs best under the worst model. More precisely, instead of a fixed transition prob-

ability matrix P , we consider a set of transition probability matrices P . We assume that the set P

8

satisfies the standard rectangularity condition [33]. The objective is to find a policy that maximizes

the worst-case performance. Formally, the robust value function Vπ corresponding to a policy π

and the optimal robust value function V ∗ are defined as [33, 34]

Vπ = inf
P∈P

Vπ,P , V
∗ = sup

π
inf
P∈P

Vπ,P . (2.1)

The optimal robust policy π∗ is such that the robust value function corresponding to it matches the

optimal robust value function, that is, Vπ∗ = V ∗.

A generic characterization of the set P makes the RMDPs problems intractable to solve by

model-free methods. In the standard model-free methods, the algorithm has access to a simulator

that can simulate the next state given the current state and current action, according to a fixed

transition probability matrix (that is unknown to the algorithm). However, generating samples

according to each and every transition probability matrix from the set P is clearly infeasible. To

overcome this difficulty, we use the characterization of the uncertainty set used in [40].

Assumption 1 (Uncertainty Set). Each P ∈ P can be represented as Ps,a(·) = P o
s,a(·) + Us,a(·)

for some Us,a ∈ Us,a, where P o
s,a(·) is the unknown transition probability matrix corresponding to

the nominal (simulator) model and Us,a is a confidence region around it.

Using the above characterization, we can write P = {P o + U : U ∈ U}, where U = ∪s,aUs,a.

So, U is the set of all possible perturbations to the nominal model P o.

An example of the uncertainty set U can be the spherical uncertainty set with a radius parameter.

Define Us,a := {x | ∥x∥2 ≤ r,
∑

s∈S xs = 0,−P o
s,a(s

′) ≤ xs′ ≤ 1 − P o
s,a(s

′),∀s′ ∈ S}, for all

(s, a) ∈ (S,A), for some r > 0. Notice that, this uncertainty set uses the knowledge of the

nominal model P o in its construction. In practice, we do not know P o. So, in Section 2.3.2, we

introduce an approximate uncertainty set without using this information.

We consider robust Bellman operator for policy evaluation, defined as [33]

Tπ(V)(s) = r(s, π(s)) + α inf
P∈P

∑
s′

Ps,π(s)(s
′)V (s′), (2.2)

9

a popular approach to solve (2.1). Using our characterization of the uncertainty set, we can rewrite

(2.2) as

Tπ(V)(s) = r(s, π(s)) + α
∑
s′

P o
s,π(s)(s

′)V (s′) + α inf
U∈Us,π(s)

∑
s′

Us,π(s)(s
′)V (s′). (2.3)

For any set B and a vector v, define σB(v) = inf{u⊤v : u ∈ B}.We denote |S| as the cardinality of

the set S. Let σUπ(v) and rπ be the |S| dimensional column vectors defined as (σUs,π(s)
(v) : s ∈ S)⊤

and (r(s, π(s)) : s ∈ S)⊤, respectively. Let P o
π be the stochastic matrix corresponding to the policy

π where for any s, s′ ∈ S, P o
π(s, s

′) = P o
s,π(s)(s

′). Then, (2.3) can be written in the matrix form as

Tπ(V) = rπ + αP o
πV + ασUπ(V). (2.4)

It is known [33] that Tπ is a contraction in sup norm and the robust value function Vπ is the unique

fixed point of Tπ. The robust Bellman operator T can also be defined in the same way as in the

non-robust setting,

T (V) = max
π

Tπ(V). (2.5)

It is also known [33] that T is a contraction in sup norm, and the optimal robust value function V ∗

is its unique fixed point.

The goal of the robust RL is to learn the optimal robust policy π∗ without knowing the nominal

model P o or the uncertainty set P .

2.3 Robust Least Squares Policy Evaluation

In this section, we develop the RLSPE(λ) algorithm for learning the robust value function.

2.3.1 Robust TD(λ) Operator and the Challenges

In RL, a very useful approach for analyzing the multi-step learning algorithms like TD(λ),

LSTD(λ), and LSPE(λ) is to define a multi-step Bellman operator called TD(λ) operator [64, 62].

10

Following the same approach, we can define the robust TD(λ) operator as well. For a given policy

π, and a parameter λ ∈ [0, 1), the robust TD(λ) operator denoted by T (λ)
π : R|S| → R|S| is defined

as

T (λ)
π (V) = (1− λ)

∞∑
m=0

λmTm+1
π (V). (2.6)

Note that for λ = 0, we recover Tπ. The following result is straightforward.

Proposition 1 (informal). T (λ)
π is a contraction in sup norm and the robust value function Vπ is its

unique fixed point, for any α ∈ (0, 1), λ ∈ [0, 1).

For RMDPs with very large state space, exact dynamic programming methods which involve

the evaluation of (2.3) or (2.6) are intractable. A standard approach to overcome this issue is to

approximate the value function using some function approximation architecture. Here we focus on

linear function approximation architectures [62]. In linear function approximation architectures,

the value function is represented as the weighted sum of features as, V̄ (s) = φ(s)⊤w,∀s ∈ S,

where φ(s) = (φ1(s), φ2(s), . . . , φL(s))
⊤ is an L dimensional feature vector with L < |S|, and

w = (w1, · · · , wL)
⊤ is a weight vector. In the matrix form, this can be written as V̄ = Φw where Φ

is an |S| × L dimensional feature matrix whose sth row is φ(s)⊤. We assume linearly independent

columns for Φ, i.e., rank(Φ) = L.

The standard approach to find an approximate (robust) value function is to solve for a wπ, with

V̄π = Φwπ, such that Φwπ = ΠT
(λ)
π Φwπ, where Π is a projection onto the subspace spanned by

the columns of Φ. The projection is with respect to a d-weighted Euclidean norm. This norm

is defined as ∥V ∥2d = V ⊤DV , where D is a diagonal matrix with non-negative diagonal entries

(d(s), s ∈ S), for any vector V . Under suitable assumptions, [39] showed that ΠTπ is a contraction

in a d-weighted Euclidean norm. We also use a similar assumption stated below.

Assumption 2. (i) For any given policy π, there exists an exploration policy πe = πexp(π) and a

β ∈ (0, 1) such that αPs,π(s)(s
′) ≤ βP o

s,πe(s)
(s′), for all transition probability matrices P ∈ P and

for all states s, s′ ∈ S.

11

(ii) There exists a steady state distribution dπe = (dπe(s), s ∈ S) for the Markov chain with

transition probability P o
πe

with dπe(s) > 0,∀s ∈ S.

In the following, we will simply use d instead of dπe .

Though the above assumption appears restrictive, it is necessary to show that ΠTπ is a contrac-

tion in the d-weighted Euclidean norm, as proved in [39]. Also, a similar assumption is used in

proving the convergence of off-policy reinforcement learning algorithm [65]. In the robust case,

we can expect a similar condition because we are learning a robust value function for a set of tran-

sition probability matrices instead of a single transition probability matrix. We can now show the

following.

Proposition 2 (informal). Under Assumption 2, ΠT (λ)
π is a contraction mapping in the d-weighted

Euclidean norm for any λ ∈ [0, 1).

The linear approximation based robust value function V̄π = Φwπ can be computed using

the iteration, Φwk+1 = ΠT
(λ)
π Φwk. Since ΠT

(λ)
π is a contraction, wk will converge to w∗. A

closed form solution for wk+1 given wk can be found by least squares approach as wk+1 =

argminw ∥Φw − ΠT
(λ)
π Φwk∥2d. It can be shown that (details are given in the supplementary mate-

rial), we can get a closed form solution for wk+1 as

wk+1 = wk + (Φ⊤DΦ)−1Φ⊤D(T (λ)
π Φwk − Φwk). (2.7)

This is similar to the projected equation approach [62] in the non-robust setting. Even in the non-

robust setting, iterations using the (2.7) is intractable for MDPs with large state space. Moreover,

when the transition matrix is unknown, it is not feasible to use (2.7) exactly even for small RMDPs.

Simulation-based model-free learning algorithms are developed for addressing this problem in the

non-robust case. In particular, LSPE(λ) algorithm [61, 62] is used to solve the iterations of the

above form.

However, compared to the non-robust setting, there are two significant challenges in learning

the robust value function by using simulation-based model-free approaches.

12

(i) Non-linearity of the robust TD(λ) operator: The non-robust Tπ operator and the TD(λ) oper-

ator do not involve any nonlinear operations. So, they can be estimated efficiently from simulation

samples in a model-free way. However, the robust TD(λ) operator when expanded will have the

following form (derivation is given in the supplementary material).

T (λ)
π (V) = (1− λ)

∞∑
m=0

λm(
m∑
k=0

(αP o
π)

krπ + (αP o
π)

m+1V + α
m∑
k=0

(αP o
π)

kσUπ(T
(m−k)
π V)). (2.8)

The last term is very difficult to estimate using simulation-based model-free approaches due to the

composition of operations σUπ and Tπ. In addition, nonlinearity of the Tπ operator by itself adds

to the complexity.

(ii) Unknown uncertainty region U : In our formulation, we assumed that the transition proba-

bility uncertainty set P is given by P = P o + U . So, for each U ∈ U , P o + U should be a valid

transition probability matrix. However, in the model-free setting, we do not know the nominal

transition probability P o. So, it is not possible to know U exactly a priori. One can only use an

approximation Û instead of U . This can possibly affect the convergence of the learning algorithms.

2.3.2 Robust Least Squares Policy Evaluation (RLSPE(λ)) Algorithm

We overcome the challenges of learning the robust value function by defining an approximate

robust TD(λ) operator, and by developing a robust least squares policy evaluation algorithm based

on that.

Let Û be the approximate uncertainty set we use instead of the actual uncertainty set. An

example of the approximate uncertainty set Û can be the spherical uncertainty set defined without

using the knowledge of the model P o as Ûs,a := {x | ∥x∥2 ≤ r,
∑

s∈S xs = 0} for all (s, a) ∈

(S,A). Note that P o+U for U ∈ Û need not be a valid transition probability matrix and this poses

challenges both for the algorithm and analysis.

For a given policy π and a parameter λ ∈ [0, 1), approximate robust TD(λ) operator denoted

13

by T̃ (λ)
π : R|S| → R|S|, is defined as

T̃ (λ)
π (V) = (1− λ)

∞∑
m=0

λm

[
m∑
t=0

(αP o
π)

trπ

+α
m∑
t=0

(αP o
π)

t σÛπ
(V) + (αP o

π)
m+1V

]
. (2.9)

Note that even with Ûπ = Uπ, (2.9) is different from (2.8). We will show that this clever approxi-

mation helps to overcome the challenges due to the nonliterary associated with (2.8).

However, we emphasize that (2.9) is not an arbitrary definition. Note that, for Ûπ = Uπ, with

λ = 0, we recover the operator Tπ. Moreover, the robust value function Vπ is a fixed point of T̃ (λ)
π

when Ûπ = Uπ for any λ ∈ [0, 1). We state this formally below.

Proposition 3. Suppose Ûπ = Uπ. Then, for any α ∈ (0, 1) and λ ∈ [0, 1), the robust value

function Vπ is a fixed point of T̃ (λ)
π , i.e., T̃ (λ)

π (Vπ) = Vπ.

Intuitively, the convergence of any learning algorithm using the approximate robust TD(λ)

operator will depend on the difference between the actual uncertainty set U and its approximation

Û . To quantify this, we use the following metric. Let ρ = maxs∈S,a∈A ρs,a where

ρs,a = max

maxx∈Ûs,a
maxy∈Us,a\Ûs,a

∥x− y∥d/dmin,

maxx∈Us,a maxy∈Ûs,a\Us,a
∥x− y∥d/dmin

and dmin := mins∈S d(s). By convention, we set ρs,a = 0 when Ûs,a = Us,a for all (s, a) ∈ (S,A).

So, ρ = 0 if Û = U . Using this characterization and under some additional assumptions on

the discount factor, we show that the approximate robust TD(λ) operator is a contraction in the

d-weighted Euclidean norm.

Theorem 1. Under Assumption 2, for any V1, V2 ∈ R|S| and λ ∈ [0, 1),

∥ΠT̃ (λ)
π V1 − ΠT̃ (λ)

π V2∥d ≤ c(α, β, ρ, λ) ∥V1 − V2∥d, (2.10)

14

where c(α, β, ρ, λ) = (β(2− λ) + ρα)/(1− βλ). So, if c(α, β, ρ, λ) < 1, ΠT̃ (λ)
π is a contrac-

tion in the d-weighted Euclidean norm. Moreover, there exists a unique wπ such that Φwπ =

ΠT̃
(λ)
π (Φwπ). Furthermore, for this wπ,

∥Vπ − Φwπ∥d ≤
1

1− c(α, β, ρ, λ)

(
∥Vπ − ΠVπ∥d +

βρ∥Vπ∥d
1− βλ

)
. (2.11)

We note that despite the assumption on the discount factor, we empirically show in Section

2.5 that our learning algorithm converges to a robust policy even if this assumption is violated.

We also note that the upper bound in (2.11) quantifies the error of approximating the robust value

function Vπ with the approximate robust value function Φwπ. We will later use this error bound in

in characterizing performance of both RLSPE and RLSPI algorithms.

Using the contraction property of approximate robust TD(λ) operator, the linear approximation

based robust value function V̄π = Φwπ can be computed using the iteration, Φwk+1 = ΠT̃
(λ)
π Φwk.

Similar to (2.7), we can get a closed form solution for wk+1 using least squares approach as

wk+1 = wk + (Φ⊤DΦ)−1Φ⊤D(T̃ (λ)
π Φwk − Φwk). (2.12)

This can be written in a more succinct matrix form as given below (derivation is given in the

supplementary material).

wk+1 = wk +B−1(Awk + C(wk) + b), where, (2.13)

A = Φ⊤D(αP o
π − I)

∞∑
m=0

(αλP o
π)

mΦ, (2.14)

B = Φ⊤DΦ, (2.15)

C(w) = αΦ⊤D
∞∑
t=0

(αλP o
π)

tσÛπ
(Φw), (2.16)

b = Φ⊤D

∞∑
t=0

(αλP o
π)

trπ. (2.17)

15

Iterations by evaluating (2.13) exactly is intractable for MDPs with large state space, and infeasible

if we do not know the transition probability P o
π . To address this issue, we propose a simulation-

based model-free online reinforcement learning algorithm, which we call robust least squares pol-

icy evaluation (RLSPE(λ)) algorithm, for learning the robust value function.

RLSPE(λ) algorithm: Generate a sequence of states and rewards, (st, rt, t ≥ 0), using the

policy π. Update the parameters as

wt+1 = wt + γtB
−1
t (Atwt + bt + Ct(wt)), where, (2.18)

At =
1

t+ 1

t∑
τ=0

zτ (αφ
⊤(sτ+1)− φ⊤(sτ)), (2.19)

Bt =
1

t+ 1

t∑
τ=0

φ(sτ)φ
⊤(sτ), (2.20)

Ct(w) =
α

t+ 1

t∑
τ=0

zτ σÛsτ ,π(sτ)
(Φw), (2.21)

bt =
1

t+ 1

t∑
τ=0

zτr(sτ , π(sτ)), (2.22)

zτ =
τ∑

m=0

(αλ)τ−mφ(sm), (2.23)

where γt is a deterministic sequence of step sizes. We assume that the step size satisfies the

the standard Robbins-Munro stochastic conditions for stochastic approximation, i.e.,
∑∞

t=0 γt =

∞,
∑∞

t=0 γ
2
t <∞.

We use the on-policy version of the RLSPE(λ) algorithm in the above description. So, we

implicitly assume that the given policy π is an exploration policy according to the Assumption 2.

This is mainly for the clarity of the presentation and notational convenience. Also, this simplifies

the presentation of the policy iteration algorithm introduced in the next section. An off-policy

version of the above algorithm can be implemented using the techniques given in [65]. We now

give the convergence result of the RLSPE(λ) algorithm.

Theorem 2. Let Assumption 2 hold. Also, let c(α, β, ρ, λ) < 1 so that ΠT̃ (λ)
π is a contraction

16

according to Theorem 1. Let {wt} be the sequence generated by the RLSPE(λ) algorithm given

in (2.18). Then, wt converges to wπ with probability 1 where wπ satisfies the fixed point equation

Φwπ = ΠT̃
(λ)
π Φwπ.

The key idea of the proof is to show that the RLSPE(λ) update (2.18) approximates the exact

update equation (2.12) and both converge to the same valuewπ. One particularly challenging task is

in analyzing the behavior of the term Ct(w) due to the non-linearity of the function σÛπ
(.). We use

the tools from stochastic approximation theory [66, 61] to show this rigorously after establishing

the tractable properties of the function σÛπ
(.).

Note that Theorem 2 and Theorem 1 together give an error bound for the converged solution

of the RLSPE(λ) algorithm. More precisely, Theorem 2 shows the convergence of the RLSPE(λ)

algorithm to wπ and Theorem 1 gives the bound on ∥Vπ − Φwπ∥d, which is the error due to linear

function approximation. We will use this bound in the the convergence analysis of the RLSPI

algoirthm presented in the next section.

2.4 Robust Least Squares Policy Iteration

In this section, we introduce the robust least squares policy iteration (RLSPI) algorithm for

finding the optimal robust policy. RLSPI algorithm can be thought as the robust version of the LSPI

algorithm [42]. RLSPI algorithm uses the RLSPE(λ) algorithm for policy evaluation. However,

model-free policy improvement is difficult when working with value functions since the policy

update step will require us to solve

πk+1 = argmax
π

T̃ (λ)
π (V̄k), (2.24)

where V̄k is the approximate robust value function corresponding to the policy πk, in the (k + 1)th

policy iteration loop. To overcome this, we first introduce the robust state-action value function

(Q-function).

17

For any given policy π and state-action pair (s, a), we define the robust Q-value as,

Qπ(s, a) = inf
P∈P

EP [
∞∑
t=0

αtr(st, at) |s0 = s, a0 = a]. (2.25)

Instead of learning the approximate robust value function V̄π, we can learn the approximate robust

Q-value function Q̄π using RLSPE(λ). This can be done by defining the feature vector φ(s, a)

where φ(s, a) = (φ1(s, a), . . . , φL(s, a))
⊤ and the linear approximation of the form Q̄π(s, a) =

w⊤φ(s, a) where w is a weight vector. The results from the previous section on the convergence

of the RLSPE(λ) algorithm applies for the case of learning Q-value function as well.

RLSPI is a policy iteration algorithm that uses RLSPE(λ) for policy evaluation at each it-

eration. It starts with an arbitrary initial policy π0. At the kth iteration, RLSPE(λ) returns

a weight vector that represents the approximate Q-value function Q̄πk
= Φwπk

corresponding

to the policy πk. The next policy πk+1 is the greedy policy corresponding to Q̄πk
, defined as

πk+1(s) = argmaxa∈A Q̄πk
(s, a). For empirical evaluation purposes, we terminate the policy iter-

ation for some finite value K. RLSPI algorithm is summarized in Algorithm 1.

Algorithm 1 RLSPI Algorithm
1: Initialization: Policy evaluation weights error ε0, initial policy π0.
2: for k = 0 . . . K do
3: Initialize the policy weight vector w0. Initialize time step t← 0.
4: repeat
5: Observe the state st, take action at = πk(st), observe reward rt and next state st+1.
6: Update the weight vector wt according to RLSPE(λ) algorithm (c.f. (2.18)-(2.23))
7: t← t+ 1
8: until ∥wt − wt−1∥2 < ε0
9: wπk

← wt

10: Update the policy
πk+1(s) = argmax

a∈A
φ(s, a)⊤wπk

11: end for

We make the following assumptions for the convergence analysis of the RLSPI algoirthm. We

18

note that we work with value functions instead of Q-value functions for notational convenience

and consistency.

Assumption 3. (i) Each policy πk is an exploration policy, i.e. πexp(πk) = πk.

(ii) The Markov chain P o
πk

has a stationary distribution dπk
such that dπk

(s) > 0,∀s ∈ S.

(iii) There exists a finite scalar δ such that ∥Vπk
− Πdπk

Vπk
∥dπk < δ for all k, where Πdπk

is

a projection onto the subspace spanned by the columns of Φ under the dπk
-weighted Euclidean

norm.

(iv) For any probability distribution µ, define another probability distribution µk = µHk where

Hk is a stochastic matrix defined with respect to πk. Also assume that there exists a probability

distribution µ̄ and finite positive scalars C1, C2 such that µk ≤ C1µ̄ and dπk
≥ µ̄/C2 for all k.

We note that these are the standard assumptions used in the RL literature to provide theoretical

guarantees for approximate policy/value iteration algorithms with linear function approximation

in the non-robust settings [67, 68, 69]. We make no additional assumptions even though we are

addressing the more difficult robust RL problem. The specific form of the stochastic matrix Hk

specified in Assumption 3.(iv) is deferred to the proof of Theorem 3 for brevity of the presentation.

We now give the asymptotic convergence result for the RLSPI algorithm. We assume that,

similar to the non-robust setting [67], the policy evaluation step (inner loop) is run to the conver-

gence. We only present the case where ρ = 0. The proof for the general case is straightforward,

but involves much more detailed algebra. So, we omit those details for the clarity of presentation.

Theorem 3. Let Assumption 2 and Assumption 3 hold. Let {πk} be the sequence of the policies

generated by the RLSPI algorithm. Let Vπk
and V̄k = Φwπk

be true robust value function and

the approximate robust value function corresponding to the policy πk. Also, let V ∗ be the optimal

robust value function. Then, with c(α, β, 0, λ) < 1,

lim sup
k→∞

∥V ∗ − Vπk
∥µ ≤

2
√
C1C2 c(α, β, 0, λ)

(1− c(α, β, 0, λ))2
lim sup
k→∞

∥Vπk
− V̄k∥dπk . (2.26)

19

Moreover, from Theorem 1 and Assumption 3.(iii), we have

lim sup
k→∞

∥V ∗ − Vπk
∥µ ≤

2
√
C1C2 c(α, β, 0, λ)

(1− c(α, β, 0, λ))3
δ. (2.27)

The above theorem, in particular (2.27), gives a (worst case) guarantee for the performance of

the policy learned using the RLSPI algorithm. Note that the upper bound in (2.27) is a constant

where δ represents the (unavoidable) error due to the linear function approximation. We also note

that using ‘lim sup’ is necessary due to the policy chattering phenomenon in approximate policy

iteration algorithms which exists even in the non-robust case [62].

Instead of the asymptotic bound given in Theorem 3, we can actually get a bound for any K

given in the RLSPI algorithm by modifying Assumption 3.(iv). We defer the precise statements of

the assumption and theorem to Section A.3 in the supplementary material due to page limitation.

2.5 Experiments

We implemented our RLSPI algorithm using the MushroomRL library [70], and evaluated its

performance against Q-learning algorithm for an environment with discrete action space, deep

deterministic policy gradient (DDPG) [44] algorithm for continuous action space, and LSPI algo-

rithm [42]. For comparing with the performance of our RLSPI algorithm against another robust

RL algorithm, we implemented the soft-robust algorithms proposed in [48] which use deep neural

networks for function approximation.

We chose a spherical uncertainty set with a radius r. For such a set Û , a closed form solution

of σÛ(Φw) can be computed for faster simulation. We note that in all the figures shown below, the

quantity in the vertical axis is averaged over 100 runs, with the thick line showing the averaged

value and the band around shows the±0.5 standard deviation. These figures act as the performance

criteria for comparing results. We provide more details and additional experiment results in Section

A.4 of supplementary.

We used the CartPole, MountainCar, and Acrobot environments from OpenAI Gym [71]. We

trained LSPI algorithm and our RLSPI algorithm on these environments with nominal parame-

20

ters (default parameters in OpenAI Gym [71]). We also trained Q-learning with linear function

approximation and soft-robust deep Q-network(DQN) [48] algorithms on CartPole environment,

DQN and soft-robust DQN [48] algorithms on Acrobot environment, and DDPG and soft-robust

DDPG [48] algorithms on MountainCar environment. Then, to evaluate the robustness of the po-

lices obtained, we changed the parameters of these environments and tested the performance of the

learned polices on the perturbed environment.

In Figures 2.1-2.3, we show the robustness against action perturbations. In real-world settings,

due to model mismatch or noise in the environments, the resulting action can be different from the

intended action. We model this by picking a random action with some probability at each time

step. Figure 2.1 shows the change in the average episodic reward against the probability of picking

a random action for the CartPole environment. Figure 2.2 shows the average number of time steps

to reach the goal in the MountainCar environment. Figure 2.3 shows the average episodic reward

in the Acrobot environment. In all three cases, RLSPI algorithm shows robust performance against

the perturbations.

Figures 2.4-2.6 show the test performance on CartPole, by changing the parameters force_mag

(external force disturbance), gravity, length (length of pole on the cart). The nominal values of

these parameters are 10, 9.8, and 0.5 respectively. RLSPI again exhibits robust performance.

The performance of our RLSPI algorithm is consistently superior to that of the non-robust algo-

rithms. Moreover, the performance of RLSPI algorithm is comparable with that of the soft-robust

algorithms [48], even though the latter uses deep neural networks for function approximation while

our algorithm uses only linear function approximation architecture. We also would like to empha-

size that our work gives provable guarantees for the policy learned by the algorithm whereas [48]

does not provide any such guarantees.

2.6 Conclusion and Future Work

We have presented an online model-free reinforcement learning algorithm to learn control poli-

cies that are robust to the parameter uncertainties of the model, for system with large state spaces.

While there have been interesting empirical works on robust deep RL using neural network, they

21

only provide convergence guarantees to a local optimum. Different from such empirical works, we

proposed a learning based robust policy iteration algorithm called RLSPI algorithm with explicit

theoretical guarantees on the performance of the learned policy. To the best of our knowledge, this

is the first work that presents model-free reinforcement learning algorithm with function approx-

imation for learning the optimal robust policy. We also empirically evaluated the performance of

our RLSPI algorithm on standard benchmark RL problems.

In future, we plan to extend our theoretical results to nonlinear function approximation archi-

tectures. We also plan to characterize the sample complexity of robust reinforcement learning

algorithms. Extending offline RL approaches to robust setting is another research area that we plan

to pursue.

22

0.0 0.2 0.4 0.6 0.8
Prob. of picking random action

25

50

75

100

125

150

175

200
Av

er
ag

e
cu

m
ul

at
iv

e
Re

wa
rd QL-FA

LSPI
RLSPI
Soft-Robust DQN

Figure 2.1: CartPole: Performance of
RLSPI algorithm with random action
sim2real parameter. (Reprinted from
[1])

0.0 0.2 0.4 0.6 0.8
Prob. of picking random action

200

400

600

800

1000

Av
er

ag
e

tim
es

te
ps

 to
 re

ac
h

th
e

go
al DDPG

LSPI
RLSPI
Soft-Robust DDPG

Figure 2.2: MoutainCar: Performance
of RLSPI algorithm with random ac-
tion sim2real parameter. (Reprinted
from [1])

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prob. of picking random action

−900

−800

−700

−600

−500

−400

−300

−200

−100

Av
er

ag
e

cu
m

ul
at

iv
e

Re
wa

rd

DQN
LSPI
RLSPI
Soft-Robust DQN

Figure 2.3: Acrobot: Performance of
RLSPI algorithm with random action
sim2real parameter. (Reprinted from
[1])

0 20 40 60 80
Percentage change from nominal value of 'force_mag'

25

50

75

100

125

150

175

200
Av

er
ag

e
cu

m
ul

at
iv

e
Re

wa
rd

QL-FA
LSPI
RLSPI
Soft-Robust DQN

Figure 2.4: CartPole: Performance
of RLSPI algorithm with force-mag
sim2real parameter. (Reprinted from
[1])

−100 −80 −60 −40 −20 0 20 40
Percentage change from nominal value of 'gravity'

60

80

100

120

140

160

180

200

Av
er

ag
e

cu
m

ul
at

iv
e

Re
wa

rd

QL-FA
LSPI
RLSPI
Soft-Robust DQN

Figure 2.5: CartPole: Performance of
RLSPI algorithm with gravity of Earth
sim2real parameter. (Reprinted from
[1])

−80 −60 −40 −20 0 20 40 60 80
Percentage change from nominal value of 'length'

0

25

50

75

100

125

150

175

200

Av
er

ag
e

cu
m

ul
at

iv
e

Re
wa

rd

QL-FA
LSPI
RLSPI
Soft-Robust DQN

Figure 2.6: CartPole: Performance
of RLSPI algorithm with pole length
sim2real parameter. (Reprinted from
[1])

23

3. SAMPLE COMPLEXITY OF ROBUST REINFORCEMENT LEARNING WITH A

GENERATIVE MODEL*

In this chapter, we focus on providing sample complexity bounds for robust reinforcement

learning in finite state and action spaces.

3.1 Introduction

Reinforcement Learning (RL) algorithms typically require a large number of data samples

to learn a control policy, which makes the training of RL algorithms directly on the real-world

systems expensive and potentially dangerous. This problem is typically avoided by training the

RL algorithm on a simulator and transferring the trained policy to the real-world system. However,

due to multiple reasons such as the approximation errors incurred while modeling, changes in the

real-world parameters over time and possible adversarial disturbances in the real-world, there will

be inevitable mismatches between the simulator model and the real-world system. For example, the

standard simulator settings of the sensor noise, action delays, friction, and mass of a mobile robot

can be different from that of the actual real-world robot. This mismatch between the simulator and

real-world model parameters, often called ‘simulation-to-reality gap’, can significantly degrade the

real-world performance of the RL algorithms trained on a simulator model.

Robust Markov Decision Process (RMDP) addresses the planning problem of computing the

optimal policy that is robust against the parameter mismatch between the simulator and real-world

system. The RMDP framework was first introduced in [33, 34]. The RMDP problem has been ana-

lyzed extensively in the literature [37, 36, 38, 72, 73], considering different types of uncertainty set

and computationally efficient algorithms. However, these works are limited to the planning prob-

lem, which assumes the knowledge of the system. Robust RL algorithms for learning the optimal

robust policy have also been proposed [40, 1], but they only provide asymptotic convergence guar-

antees. Robust RL problem has also been addressed using deep RL methods [45, 48, 74, 46, 47].

*Reprinted with permission from Kishan Panaganti, Dileep Kalathil, “Sample Complexity of Robust Reinforce-
ment Learning with a Generative Model.” AISTATS 2022.

24

Table 3.1: Comparison of the sample complexities of different uncertainty sets and the best known
result in the non-robust setting [4]. Here |S| and |A| are the cardinality of the state and action
spaces, cr is the robust RL problem parameter, and γ is the discount factor. We consider the
optimality gap ε ∈ (0, c/(1− γ)), where c > 0 is a constant. We refer to Section 3.3.2 for further
details. (Reprinted from [2])

UNCERTAINTY SET TV CHI-SQUARE KL NON-ROBUST

SAMPLE COMPLEXITY O(|S|2|A|
(1−γ)4ε2

) O(cr|S|
2|A|

(1−γ)4ε2
) O(|S|

2|A| exp(1/(1−γ))
c2r(1−γ)4ε2

) O(|S||A|
(1−γ)3ε2

)

However, these works are empirical in nature and do not provide any theoretical guarantees for the

learned policies. In particular, there are few works that provide robust RL algorithms with provable

(non-asymptotic) finite-sample performance guarantees.

In this work, we address the problem of developing a model-based robust RL algorithm with

provable finite-sample guarantees on its performance, characterized by the metric of sample com-

plexity in a PAC (probably approximately correct) sense. The RMDP framework assumes that the

real-world model lies within some uncertainty set P around a nominal (simulator) model P o. The

goal is to learn a policy that performs the best under the worst possible model in this uncertainty

set. We do not assume that the algorithm knows the exact simulator model (and hence the exact un-

certainty set). Instead, similar to the standard (non-robust) RL setting [75, 76, 77, 78, 79, 4, 80], we

assume that the algorithm has access to a generative sampling model that can generate next-state

samples for all state-action pairs according to the nominal simulator model. In this context, we

answer the following important question: How many samples from the nominal simulator model

do we need to learn an ε-optimal robust policy with high probability?

Our contributions: The main contributions of our work are as follows:

(1) We propose a model-based robust RL algorithm, which we call the robust empirical value

iteration algorithm (REVI), for learning an approximately optimal robust policy. We consider three

different classes of RMDPs with three different uncertainty sets: (i) Total Variation (TV) uncer-

tainty set, (ii) Chi-square uncertainty set, and (iii) Kullback-Leibler (KL) uncertainty set, each

25

characterized by its namesake distance measure. Robust RL problem is much more challenging

than the standard (non-robust) RL problems due to the inherent nonlinearity associated with the

robust dynamic programming and the resulting unbiasedness of the empirical estimates. We over-

come this challenge analytically by developing a series of upperbounds that are amenable to using

concentration inequality results (which are typically useful only in the unbiased setting), where we

exploit a uniform concentration bound with a covering number argument. We rigorously charac-

terize the sample complexity of the proposed algorithm for each of these uncertainty sets. We also

make a precise comparison with the sample complexity of non-robust RL.

(2) We give a formal argument for the need for using a robust policy when the simulator model

is different from the real-world model. More precisely, we analytically address the question ‘why

do we need robust policies?’, by showing that the worst case performance of a non-robust policy

can be arbitrarily bad (as bad as a random policy) when compared to that of a robust policy. While

the need for robust policies have been discussed in the literature qualitatively, to the best of our

knowledge, this is the first work that gives an analytical answer to the above question.

(3) Finally, we demonstrate the performance of our REVI algorithm in two experiment settings

and for two different uncertainty sets. In each setting, we show that the policy learned by our

proposed REVI algorithm is indeed robust against the changes in the model parameters. We also

illustrate the convergence of our algorithm with respect to the number of samples and the number

of iterations.

3.1.1 Related Work

Robust RL: An RMDP setting where some state-action pairs are adversarial and the others

are stationary was considered by [41], who proposed an online algorithm to address this problem.

An approximate robust dynamic programming approach with linear function approximation was

proposed in [39]. State aggregation and kernel-based function approximation for robust RL were

studied in [81, 59]. [40] proposed a robust version of the Q-learning algorithm. [1] developed

a least squares policy iteration approach to learn the optimal robust policy using linear function

approximation with provable guarantees. A soft robust RL algorithm was proposed in [48] and

26

a maximum a posteriori policy optimization approach was used in [46]. While the above men-

tioned works make interesting contributions to the area of robust RL, they focus either on giving

asymptotic performance guarantees or on the empirical performance without giving provable guar-

antees. In particular, they do not provide provable guarantees on the finite-sample performance of

the robust RL algorithms.

The closest to our work is [82], which analyzed the sample complexity with a KL uncertainty

set. Our work is different in two significant aspects: Firstly, we consider the total variation uncer-

tainty set and chi-square uncertainty set, in addition to the KL uncertainty set. The analysis for

these uncertainty sets are very challenging and significantly different from that of the KL uncer-

tainty set. Secondly, we give a more precise characterization of the sample complexity bound for

the KL uncertainty set by clearly specifying the exponential dependence on (1− γ)−1, where γ is

the discount factor, which was left unspecified in [82].

While this paper was under review, we were notified of a concurrent work [83], which also

provides similar sample complexity bounds for robust RL. Our proof technique is significantly dif-

ferent from their work. Moreover, we also provide open-source experimental results that illustrate

the performance of our robust RL algorithm.

Other related works: Robust control is a well-studied area [84, 85] in the classical control

theory. Recently, there are some interesting works that address the robust RL problem using this

framework, especially focusing on the linear quadratic regulator setting [86]. Our framework of

robust MDP is significantly different from this line of work. Risk sensitive RL algorithms [87] and

adversarial RL algorithms [45] also address the robustness problem implicitly. Our approach is

different from these works also.

Notations: For any set X , |X | denotes its cardinality. For any vector x, ∥x∥ denotes its infinity

norm ∥x∥∞.

3.2 Preliminaries: Robust Markov Decision Process

A Markov Decision Process (MDP) is a tuple (S,A, r, P, γ), where S is the state space, A is

the action space, r : S × A → R is the reward function, and γ ∈ (0, 1) is the discount factor. The

27

transition probability function Ps,a(s
′) represents the probability of transitioning to state s′ when

action a is taken at state s. P is also called the the model of the system. We consider a finite MDP

setting where |S| and |A| are finite. We will also assume that r(s, a) ∈ [0, 1], for all (s, a) ∈ S×A,

without loss of generality.

A (deterministic) policy π maps each state to an action. The value of a policy π for an MDP

with model P , evaluated at state s is given by

Vπ,P (s) = Eπ,P [
∞∑
t=0

γtr(st, at) | s0 = s], (3.1)

where at = π(st), st+1 ∼ Pst,at(·). The optimal value function V ∗
P and the optimal policy π∗

P of an

MDP with the model P are defined as

V ∗
P = max

π
Vπ,P , π∗

P = argmax
π

Vπ,P . (3.2)

Uncertainty set: Unlike the standard MDP which considers a single model (transition prob-

ability function), the RMDP formulation considers a set of models. We call this set as the un-

certainty set and denote it as P . We assume that the set P satisfies the standard rectangularity

condition [33]. We note that a similar uncertainty set can be considered for the reward func-

tion at the expense of additional notations. However, since the analysis will be similar and the

samples complexity guarantee will be identical upto a constant, without loss of generality, we as-

sume that the reward function is known and deterministic. We specify a robust MDP as a tuple

M = (S,A, r,P , γ).

The uncertainty set P is typically defined as

P = ⊗Ps,a, where, Ps,a = {Ps,a ∈ [0, 1]|S| :

D(Ps,a, P
o
s,a) ≤ cr,

∑
s′∈S

Ps,a(s
′) = 1}, (3.3)

where P o = (P o
s,a, (s, a) ∈ S ×A) is the nominal transition probability function, cr > 0 indicates

28

the level of robustness, and D(·, ·) is a distance metric between two probability distributions. In

the following, we call P o as the nominal model. In other words, P is the set of all valid transition

probability functions in the neighborhood of the nominal model P o, where the neighborhood is

defined using the distance metric D(·, ·). We note that the radius cr can depend on the state-action

pair (s, a). We omit this to reduce the notation complexity. We also note that for cr ↓ 0, we recover

the non-robust regime.

We consider three different uncertainty sets corresponding to three different distance metrics

D(·, ·).

1. Total Variation (TV) uncertainty set (Ptv): We define Ptv = ⊗Ptv
s,a, where Ptv

s,a is defined as

in (3.3) using the total variation distance

Dtv(Ps,a, P
o
s,a) = (1/2)∥Ps,a − P o

s,a∥1. (3.4)

2. Chi-square uncertainty set (Pc): We define Pc = ⊗Pc
s,a, where Pc

s,a is defined as in (3.3) using

the Chi-square distance

Dc(Ps,a, P
o
s,a) =

∑
s′∈S

(Ps,a(s
′)− P o

s,a(s
′))2

P o
s,a(s

′)
. (3.5)

3. Kullback-Leibler (KL) uncertainty set (Pkl): We define Pkl = ⊗Pkl
s,a, where Pkl

s,a is defined as

in (3.3) using the Kullback-Leibler (KL) distance

Dkl(Ps,a, P
o
s,a) =

∑
s′

Ps,a(s
′) log

Ps,a(s
′)

P o
s,a(s

′)
. (3.6)

We note that the sample complexity and its analysis will depend on the specific form of the uncer-

tainty set.

Robust value iteration: The goal of the RMDP problem is to compute the optimal robust

policy which maximizes the value even under the worst model in the uncertainty set. Formally, the

robust value function Vπ corresponding to a policy π and the optimal robust value function V ∗ are

29

defined as [33, 34]

V π = inf
P∈P

Vπ,P , V ∗ = sup
π

inf
P∈P

Vπ,P . (3.7)

The optimal robust policy π∗ is such that the robust value function corresponding to it matches the

optimal robust value function, i.e., V π∗
= V ∗. It is known that there exists a deterministic optimal

policy [33] for the RMDP problem. So, we will restrict our attention to the class of deterministic

policies.

For any set B and a vector v, let

σB(v) = inf{u⊤v : u ∈ B}.

Using this notation, we can define the robust Bellman operator [33] as T (V)(s) = maxa (r(s, a)+

γσPs,a(V)). It is known that T is a contraction mapping in infinity norm and the V ∗ is the unique

fixed point of T [33]. Since T is a contraction, robust value iteration can be used to compute

V ∗, similar to the non-robust MDP setting [33]. More precisely, the robust value iteration, defined

as Vk+1 = TVk, converges to V ∗, i.e., Vk → V ∗. Similar to the optimal robust value function,

we can also define the optimal robust action-value function as Q∗(s, a) = r(s, a) + γσPs,a(V
∗).

Similar to the non-robust setting, it is straight forward to show that π∗(s) = argmaxaQ
∗(s, a) and

V ∗(s) = maxaQ
∗(s, a).

3.3 Algorithm and Sample Complexity

The robust value iteration requires the knowledge of the nominal model P o and the radius of

the uncertainty set cr to compute V ∗ and π∗. While cr may be available as design parameter, the

form of the nominal model may not be available in most practical problems. So, we do not assume

the knowledge of the nominal model P o. Instead, similar to the non-robust RL setting, we assume

only to have access to the samples from a generative model, which can generate samples of the next

state s′ according to P o
s,a(·), given the state-action pair (s, a) as the input. We propose a model-

30

Algorithm 2 Robust Empirical Value Iteration (REVI) Algorithm
1: Input: Loop termination number K
2: Initialize: Q0 = 0
3: Compute the empirical uncertainty set P̂ according to (3.8)
4: for k = 0, · · · , K − 1 do
5: Vk(s) = maxaQk(s, a), ∀s
6: Qk+1(s, a) = r(s, a) + γσP̂s,a

(Vk), ∀(s, a)
7: end for
8: Output: πK(s) = argmaxaQK(s, a),∀s ∈ S

based robust RL algorithm that uses these samples to estimate the nominal model and uncertainty

set.

3.3.1 Robust Empirical Value Iteration (REVI) Algorithm

We first get a maximum likelihood estimate P̂ o of the nominal model P o by following the

standard approach [76, Algorithm 3]. More precisely, we generate N next-state samples cor-

responding to each state-action pairs. Then, the maximum likelihood estimate P̂ o is given by

P̂ o
s,a(s

′) = N(s, a, s′)/N , where N(s, a, s′) is the number of times the state s′ is realized out of the

total N transitions from the state-action pair (s, a). Given P̂ o, we can get an empirical estimate P̂

of the uncertainty set P as,

P̂ =⊗ P̂s,a, where, P̂s,a = {P ∈ [0, 1]S :

D(Ps,a, P̂s,a) ≤ cr,
∑
s′∈S

Ps,a(s
′) = 1}, (3.8)

where D is one of the metrics specified in (3.4) - (3.6).

For finding an approximately optimal robust policy, we now consider the empirical RMDP

M̂ = (S,A, r, P̂ , γ) and perform robust value iteration using P̂ . This is indeed our approach,

which we call the Robust Empirical Value Iteration (REVI) Algorithm. The optimal robust policy

and value function of M̂ are denoted as π̂⋆, V̂ ⋆, respectively.

31

3.3.2 Sample Complexity

In this section we give the sample complexity guarantee of the REVI algorithm for the three

uncertainty sets. We first consider the TV uncertainty set.

Theorem 4 (TV Uncertainty Set). Consider an RMDP with a total variation uncertainty set Ptv.

Fix δ ∈ (0, 1) and ε ∈ (0, 24γ/(1−γ)). Consider the REVI algorithm withK ≥ K0 andN ≥ N tv,

where

K0 =
1

log(1/γ)
log(

8γ

ε(1− γ)2
) and (3.9)

N tv =
72γ2|S|

(1− γ)4ε2
log(

144γ|S||A|
(δε(1− γ)2)

). (3.10)

Then, ∥V ∗ − V πK∥ ≤ ε with probability at least 1− 2δ.

Remark 1. The total number of samples needed in the REVI algorithm is Ntotal = N |S||A|. So

the sample complexity of the REVI algorithm with the TV uncertainty set is O(|S|2|A|
(1−γ)4ε2

).

Remark 2 (Comparison with the sample complexity of the non-robust RL). For the non-robust

setting, the lowerbound for the total number of samples from the generative sampling device is

Ω(|S||A|
ε2(1−γ)3

log |S||A|
δ

) [76, Theorem 3]. The variance reduced value iteration algorithm proposed

in [78] achieves a sample complexity ofO(|S||A|
ε2(1−γ)3

log |S||A|
δε

), matching the lower bound. However,

this work is restricted to ε ∈ (0, 1), whereas ε can be considered upto the value 1/(1− γ) for the

MDP problems. Recently, this result has been further improved recently by [79] and [4], which

considered ε ∈ (0, 1/
√

(1− γ)) and ε ∈ (0, 1/(1− γ)), respectively.

Theorem 4 for the robust RL setting also considers ε upto O(1/(1− γ)). However, the sample

complexity obtained is worse by a factor of |S| and 1/(1 − γ) when compared to the non-robust

setting. These additional terms are appearing in our result due to a covering number argument we

used in the proof, which seems necessary for getting a tractable bound. However, it is not clear if

this is fundamental to the robust RL problem with TV uncertainty set. We leave this investigation

for our future work.

32

We next consider the chi-square uncertainty set.

Theorem 5 (Chi-square Uncertainty Set). Consider an RMDP with a Chi-square uncertainty set

Pc. Fix δ ∈ (0, 1) and ε ∈ (0, 16γ/(1− γ)), for an absolute constant c1 > 1. Consider the REVI

algorithm with K ≥ K0 and N ≥ N c, where K0 is as given in (3.9) and

N c =
64γ2(2cr + 1)|S|

(1− γ)4ε2
log(

192|S||A|γ
(δε(1− γ)2)

). (3.11)

Then, ∥V ∗ − V πK∥ ≤ ε with probability at least 1− 2δ.

Remark 3. The sample complexity of the algorithm with the chi-square uncertainty set isO(|S|
2|A|cr

(1−γ)4ε2
).

The order of sample complexity remains the same compared to that of the TV uncertainty set given

in Theorem 4.

Finally, we consider the KL uncertainty set.

Theorem 6 (KL Uncertainty Set). Consider an RMDP with a KL uncertainty setPkl. Fix δ ∈ (0, 1)

and ε ∈ (0, 1/(1− γ)). Consider the REVI algorithm with K ≥ K0 and N ≥ Nkl, where K0 is as

in (3.9) and

Nkl=
8γ2|S|

c2r(1− γ)4ε2
exp(

2λkl + 4

λkl(1− γ)
) log(

9|S||A|
δλkl(1− γ)

), (3.12)

and λkl is a problem dependent parameter but independent of Nkl. Then, ∥V ∗ − V πK∥ ≤ ε with

probability at least 1− 2δ.

Remark 4. The sample complexity with the KL uncertainty set is O(|S|2|A|
(1−γ)4ε2c2r

exp(1
(1−γ)

)). We

note that [82] also considered the robust RL problem with KL uncertainty set. They provided

a sample complexity bound of the form O(C|S|2|A|
(1−γ)4ε2c2r

), However the exponential dependence on

1/(1 − γ) was hidden inside the constant C. In this work, we clearly specify the depends on the

factor 1/(1− γ).

33

3.4 Why Do We Need Robust Policies?

In the introduction, we have given a qualitative description about the need for finding a robust

policy. In this section, we give a formal argument to show that the worst case performance of a

non-robust policy can be arbitrarily bad (as bad as a random policy) when compared to that of a

robust policy.

We consider a simple setting with an uncertainty set that contains only two models, i.e., P =

{P o, P ′}. Let π∗ be the optimal robust policy. Following the notation in (3.2), let πo = πP o and

π′ = πP ′ be the non-robust optimal policies when the model is P o and P ′, respectively. Assume

that nominal model is P o and we decide to employ the non-robust policy πo. The worst case

performance of πo is characterized by its robust value function V πo which is min{Vπo,P o , Vπo,P ′}.

We now state the following result.

Theorem 7 (Robustness Gap). There exists a robust MDP M with uncertainty set P = {P o, P ′},

discount factor γ ∈ (γo, 1], and state s1 ∈ S such that

V πo

(s1) ≤ V π∗
(s1)− c/(1− γ),

where c is a positive constant, π∗ is the optimal robust policy, and πo = πP o is the non-robust

optimal policy when the model is P o.

Theorem 7 states that the worst case performance of the non-robust policy πo is lower than

that of the optimal robust policy π∗, and this performance gap is Ω(1/(1 − γ)). Since |r(s, a)| ≤

1,∀(s, a) ∈ S ×A by assumption, ∥Vπ,P∥ ≤ 1/(1− γ) for any policy π and any model P . There-

fore, the difference between the optimal (robust) value function and the (robust) value function of

an arbitrary policy cannot be greater than O(1/(1 − γ)). Thus the worst-case performance of the

non-robust policy πo can be as bad as an arbitrary policy in an order sense.

34

3.5 Sample Complexity Analysis

In this section we explain the key ideas used in the analysis of the REVI algorithm for obtaining

the sample complexity bound for each of the uncertainty sets. Recall that we consider an RMDP

M and its empirical estimate version as M̂ .

To bound ∥V ∗ − V πK∥, we split it into three terms as ∥V ∗ − V πK∥ ≤ ∥V ∗ − V̂ ∗∥ + ∥V̂ ∗ −

V̂ πK∥+ ∥V̂ πK − V πK∥, and analyze each term separately.

Analyzing the second term, ∥V̂ ∗ − V̂ πK∥, is similar to that of non-robust algorithms. Due to

the contraction property of the robust Bellman operator, it is straight forward to show that ∥V̂ ∗ −

V̂ πk+1∥ ≤ γ∥V̂ ∗ − V̂ πk∥ for any k. This exponential convergence, with some additional results

from the MDP theory, enables us to get a bound ∥V̂ ∗ − V̂ πK∥ ≤ 2γK+1/(1− γ)2.

The analysis of terms ∥V ∗ − V̂ ∗∥ and ∥V̂ πK − V πK∥ are however non-trivial and significantly

more challenging compared to the non-robust setting. We will focus on the latter, and the analysis

of the former is similar.

For any policy π and for any state s, and denoting a = π(s), we have

V π(s)− V̂ π(s) = γσPs,a(V
π)− γσP̂s,a

(V̂ π)

= γ(σPs,a(V
π)− σPs,a(V̂

π)) + γ(σPs,a(V̂
π)− σP̂s,a

(V̂ π)) (3.13)

To bound the first term in (3.13), we present a result that shows that σPs,a is 1-Lipschitz in the

sup-norm.

Lemma 1. For any (s, a) ∈ S × A and for any V1, V2 ∈ R|S|, we have |σPs,a(V1) − σPs,a(V2)| ≤

∥V1 − V2∥ and |σP̂s,a
(V1)− σP̂s,a

(V2)| ≤ ∥V1 − V2∥.

Using the above lemma, the first term in (3.13) will be bounded by γ∥V π − V̂ π∥ and the

discount factor makes this term amenable to getting a closed form bound.

Obtaining a bound for σPs,a(V̂
π) − σP̂s,a

(V̂ π) is the most challenging part of our analysis. In

the non-robust setting, this will be equivalent to the error term P o
s,aV − P̂s,aV , which is unbiased

and can be easily bounded using concentration inequalities. In the robust setting, however, because

35

of the nonlinear nature of the function σ(·), E[σP̂s,a
(V̂ π)] ̸= σPs,a(V̂

π). So, using concentration

inequalities to get a bound is not immediate. Our strategy is to find appropriate upperbound for

this term that is amenable to using concentration inequalities. To that end, we will analyze this

term separately for each of the three uncertainty set.

3.5.1 Total variation uncertainty set

We will first get following upperbound:

Lemma 2 (TV uncertainty set). Let V = {V ∈ R|S| : ∥V ∥ ≤ 1/(1− γ)}. For any (s, a) ∈ S ×A

and for any V ∈ V ,

|σP̂tv
s,a
(V)− σPtv

s,a
(V)| ≤ 2max

µ∈V
|P̂s,aµ− P o

s,aµ|. (3.14)

While the term |P̂s,aµ − P o
s,aµ| in (3.14) can be upperbounded using the standard Hoeffding’s

inequality, bounding maxµ∈V |P̂s,aµ − P o
s,aµ| is more challenging as it requires a uniform bound.

Since µ can take a continuum of values, a simple union bound argument will also not work. We

overcome this issue by using a covering number argument and obtain the following bound.

Lemma 3. Let V ∈ R|S| with ∥V ∥ ≤ 1/(1− γ). For any η, δ ∈ (0, 1),

max
µ:0≤µ≤V

max
s,a
|P̂s,aµ− P o

s,aµ| ≤

1

1− γ

√
|S|
2N

log(
12|S||A|

(δη(1− γ))
+ 2η,

with probability at least 1− δ/2.

We note that this uniform bound adds an additional
√
|S| factor compared to the non-robust

setting, which results in an additional |S| in the sample complexity. Combining these, we finally

get the following result.

Proposition 4. Let V = {V ∈ R|S| : ∥V ∥ ≤ 1/(1− γ)}. For any η, δ ∈ (0, 1), with probability at

36

least 1− δ,

max
V ∈V

max
s,a
|σP̂tv

s,a
(V)− σPtv

s,a
(V)| ≤ Ctv

u (N, η, δ), where,

Ctv
u (N, η, δ) = 4η +

2

1− γ

√
|S| log(6|S||A|/(δη(1− γ)))

2N
. (3.15)

Tracing back the steps to (3.13), we can get an arbitrary small bound for ∥V π−V̂ π∥ by selecting

N appropriately, as specified in Theorem 4.

3.5.2 Chi-square uncertainty set

We will first get the following upperbound:

Lemma 4 (Chi-square uncertainty set). For any (s, a) ∈ S × A and for any V ∈ R|S|, ∥V ∥ ≤

1/(1− γ),

|σP̂c
s,a
(V)− σPc

s,a
(V)| ≤

max
µ:0≤µ≤V

|
√
crVarP̂s,a

(V − µ)−
√
crVarP o

s,a
(V − µ)|

+ max
µ:0≤µ≤V

|P̂s,a(V − µ)− P o
s,a(V − µ)|. (3.16)

The second term of (3.16) can be bounded using Lemma 3. However, the first term, which

involves the square-root of the variance is more challenging. We use a concentration inequality

that is applicable for variance to overcome this challenge. Finally, we get the following result.

Proposition 5. Let V = {V ∈ R|S| : ∥V ∥ ≤ 1/(1− γ)}. For any η, δ ∈ (0, 1), with probability at

least (1− δ),

max
V ∈V

max
s,a
|σP̂c

s,a
(V)− σPc

s,a
(V)| ≤ Cc

u(N, η, δ), where,

37

Cc
u(N, η, δ) ≤

√
32ηcr
1− γ

+ 2η+

1

1− γ

√
(2cr + 1)|S| log(12|S||A|/(δη(1− γ)))

N
, (3.17)

Now, by selecting appropriate N as specified in Theorem 5, we can show the ε-optimality of

πK .

The details on the KL uncertainty set analysis is included in the appendix.

3.6 Experiments0.2 0.3 0.4 0.5 0.6 0.7
7est heads-up prRbability

0.0

0.2

0.4

0.6

0.8

1.0

5a
tiR
 R
f w
in
ni
ng
 in
 1
00
0
ga
m
es chi-sTuare uncertainty set

nRn-rRbust Rptimal rRbust Rptimal rRbust, N 100 rRbust, N 500 rRbust, N 3000

1 2 3 4 5 6 7
iteration k ■

0.1

0.2

0.3

0.4

0.5

||V
k
−
V

* |
|

■

102 103
N samples ▾

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||V
K

−
V

* |
|

▾

TV uncertainty set

1 2 3 4 5 6
iteration k ■

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

||V
k
−
V

* |
|

■

102 103
N samples ▾

0.05

0.10

0.15

0.20

||V
K

−
V

* |
|

▾

chi-square uncertainty set

0.2 0.3 0.4 0.5 0.6 0.7
Test heads-up probability

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f w

in
ni

ng
 in

 1
00

0
ga

m
es TV uncertainty set

0.2 0.3 0.4 0.5 0.6 0.7
Test heads-up probability

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f w

in
ni

ng
 in

 1
00

0
ga

m
es chi-square uncertainty set

Figure 3.1: Experiment results for the Gambler’s problem. The first two plots shows the rate of
convergence with respect to the number of iterations (k) and the rate of convergence with respect
to the number of samples (N) for the TV and chi-square uncertainty set, respectively. The third
and fourth plots shows the robustness of the learned policy against changes in the model parameter
(heads-up probability). (Reprinted from [2])

0.0 0.1 0.2 0.3 0.4 0.5
3rRbability Rf picking randRP actiRn

0.0

0.2

0.4

0.6

0.8

1.0

5a
tiR
 R
f w
in
ni
ng
 in
 1
00
0
ga
P
es

ℓ1 uncertainty set

nRn-rRbust RptiPal rRbust RptiPal rRbust, N 50 rRbust, N 1000 rRbust, N 3000

0 25 50 75 100 125 150 175
iteration k ■

0.1

0.2

0.3

0.4

0.5

0.6

0.7

||V
k
−
V

* |
|

■

102 103
N samples ▾

0.10

0.12

0.14

0.16

0.18

||V
K

−
V

* |
|

▾TV uncertainty set

0 2 4 6 8 10 12
iteration k ■

0.2

0.3

0.4

0.5

0.6

0.7

||V
k
−
V

* |
|

■

102 103
N samples ▾

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

||V
K

−
V

* |
|

▾

chi-square uncertainty set

0.0 0.1 0.2 0.3 0.4 0.5
Probability of picking random action

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f w

in
ni

ng
 in

 1
00

0
ga

m
es TV uncertainty set

0.0 0.1 0.2 0.3 0.4 0.5
Probability of picking random action

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f w

in
ni

ng
 in

 1
00

0
ga

m
es chi-square uncertainty set

Figure 3.2: Experiment results for the FrozenLake8x8 environment. The first two plots shows the
rate of convergence with respect to the number of iterations (k) and the rate of convergence with
respect to the number of samples (N) for the TV and chi-square uncertainty set, respectively. The
third and fourth plots shows the robustness of the learned policy against changes in the model
parameter (probability of picking a random action). (Reprinted from [2])

In this section we demonstrate the convergence behavior and robust performance of our REVI

38

algorithm using numerical experiments. We consider two different settings, namely, the Gambler’s

Problem environment [6, Example 4.3] and FrozenLake8x8 environment in OpenAI Gym [71]. We

also consider the TV uncertainty set and chi-square uncertainty set. We solve the optimization

problem σP̂ and σP using the Scipy [88] optimization library.

We illustrate the following important characteristics of the REVI algorithm:

(1) Rate of convergence with respect to the number of iterations: To demonstrate this, we plot

∥Vk − V ∗∥ against the iteration number k, where Vk is the value at the kth step of the REVI al-

gorithm with N = 5000. We compute V ∗ using the full knowledge of the uncertainty set for

benchmarking the performance of the REVI algorithm.

(2) Rate of convergence with respect to the number of samples: To show this, we plot ∥VK(N)− V ∗∥

against the number of samples N , where VK(N) is final value obtained from the REVI algorithm

using N samples.

(3) Robustness of the learned policy: To demonstrate this, we plot the number of times the robust

policy πK (obtained from the REVI algorithm) successfully completed the task as a function of

the change in an environment parameter. We perform 1000 trials for each environment and each

uncertainty set, and plot the fraction of the success.

Gambler’s Problem: In gambler’s problem, a gambler starts with a random balance in her

account and makes bets on a sequence of coin flips, winning her stake with heads and losing with

tails, until she wins $100 or loses all money. This problem can be formulated as a chain MDP with

states in {1, · · · , 99} and when in state s the available actions are in {0, 1, · · · ,min(s, 100 − s)}.

The agent is rewarded 1 after reaching a goal and rewarded 0 in every other timestep. The biased

coin probability is fixed throughout the game. We denote its heads-up probability as ph and use 0.6

as a nominal model for training our algorithm. We also fix cr = 0.2 for the chi-square uncertainty

set experiments and cr = 0.4 for the TV uncertainty set experiments.

The red curves with square markers in the first two plots in Fig. 3.1 show the rate of conver-

gence with respect to the number of iterations for TV and chi-square uncertainty sets respectively.

As expected, convergence is fast due to the contraction property of the robust Bellman operator.

39

The blue curves with triangle markers in the first two plots in Fig. 3.1 show the rate of conver-

gence with respect to the number of samples for TV and chi-square uncertainty sets. We generated

these curves for 10 different seed runs. The bold line depicts the mean of these runs and the er-

ror bar is the standard deviation. As expected, the plots show that VK(N) converges to V ∗ as N

increases.

We then demonstrate the robustness of the approximate robust policy πK (obtained with N =

100, 500, 3000) by evaluating its performance on environments with different values of ph. We

plot the fraction of the wins out of 1000 trails. We also plot the performance the optimal robust

policy π∗ as a benchmark. The third and fourth plot in Fig. 3.1 show the results with TV and

chi-square uncertainty sets respectively. We note that the performance of the non-robust policy

decays drastically as we decrease the parameter ph from its nominal value 0.6. On the other hand,

the optimal robust policy performs consistently better under this change in the environment. We

also note that πK(N) closely follows the performance of π∗ for large enough N .

Frozen Lake environment: FrozenLake8x8 is a gridworld environment of size 8 × 8. It

consists of some flimsy tiles which makes the agent fall into the water. The agent is rewarded

1 after reaching a goal tile without falling and rewarded 0 in every other timestep. We use the

FrozenLake8x8 environment with default design as our nominal model except that we make the

probability of transitioning to a state in the intended direction to be 0.4 (the default value is 1/3).

We also set cr = 0.35 for the chi-square uncertainty set experiments and cr = 0.7 for the TV

uncertainty set experiments.

The red curves in the first two plots in Fig. 3.2 show the rate of convergence with respect to the

number of iterations for TV and chi-square uncertainty sets respectively. The blue curves in the

first two plots in Fig. 3.2 show the rate of convergence with respect to the number of samples for

TV and chi-square uncertainty sets respectively. The behavior is similar to the one observed in the

case of gambler’s problem.

We demonstrate the robustness of the learned policy by evaluating it on FrozenLake test en-

vironments with action perturbations. In the real-world settings, due to model mismatch or noise

40

in the environments, the resulting action can be different from the intended action. We model this

by picking a random action with some probability at each time step. In addition, we change the

probability of transitioning to a state in the intended direction to be 0.2 for these test environments.

We observe that the performance of the robust RL policy is consistently better than the non-robust

policy as we introduce model mismatch in terms of the probability of picking random actions. We

also note that πK(N) closely follows the performance of π∗ for large enough N .

We note that we have included our code for experiments in this GitHub page. We note that we

can employ a hyperparameter learning strategy to find the best value of cr. We demonstrate this on

the FrozenLake environment for the TV uncertainty set. We computed the optimal robust policy

for each cr ∈ {0.1, 0.2, . . . , 1.6}. We tested these policies across 1000 games with random action

probabilities {0.1, 0.2, . . . , 0.5} on the test environment. We found that the policy for cr = 1.2

has the best winning ratio across all the random action probabilities. We do not exhibit exhaustive

experiments on this hyperparameter learning strategy as it is out of scope of the intent of this

manuscript.

3.7 Conclusion and Future Work

We presented a model-based robust reinforcement learning algorithm called Robust Empirical

Value Iteration algorithm, where we used an approximate robust Bellman updates in the vanilla

robust value iteration algorithm. We provided a finite sample performance characterization of

the learned policy with respect to the optimal robust policy for three different uncertainty sets,

namely, the total variation uncertainty set, the chi-square uncertainty set, and the Kullback-Leibler

uncertainty set. We also demonstrated the performance of REVI algorithm on two different en-

vironments showcasing its theoretical properties of convergence. We also showcased the REVI

algorithm based policy being robust to the changes in the environment as opposed to the non-

robust policies.

The goal of this work was to develop the fundamental theoretical results for the finite state

space and action space regime. As mentioned earlier, the sub-optimality of the sample complexity

of our REVI algorithm in factors |S| and 1/(1 − γ) needs more investigation and refinements in

41

https://github.com/kishanpb/RobustRL

the analyses. In the future, we will extend this idea to robust RL with linear and nonlinear function

approximation architectures and for more general models in deep RL.

42

4. ROBUST REINFORCEMENT LEARNING USING OFFLINE DATA*

In this chapter, we focus on developing robust reinforcement learning algorithm for large state

space with access to offline historical data.

4.1 Introduction

Reinforcement learning (RL) algorithms often require a large number of data samples to learn a

control policy. As a result, training them directly on the real-world systems is expensive and poten-

tially dangerous. This problem is typically overcome by training them on a simulator (online RL)

or using a pre-collected offline dataset (offline RL). The offline dataset is usually collected either

from a sophisticated simulator of the real-world system or from the historical measurements. The

trained RL policy is then deployed assuming that the training environment, the simulator or the

offline data, faithfully represents the model of the real-world system. This assumption is often in-

correct due to multiple factors such as the approximation errors incurred while modeling, changes

in the real-world parameters over time and possible adversarial disturbances in the real-world. For

example, the standard simulator settings of the sensor noise, action delay, friction, and mass of a

mobile robot can be different from that of the actual real-world robot, in addition to changes in the

terrain, weather conditions, lighting, and obstacle densities of the testing environment. Unfortu-

nately, the current RL control policies can fail dramatically when faced with even mild changes in

the training and testing environments [30, 31, 32].

The goal in robust RL is to learn a policy that is robust against the model parameter mismatches

between the training and testing environments. The robust planning problem is formalized using

the framework of Robust Markov Decision Process (RMDP) [33, 34]. Unlike the standard MDP

which considers a single model (transition probability function), the RMDP formulation considers

a set of models which is called the uncertainty set. The goal is to find an optimal robust policy that

performs the best under the worst possible model in this uncertainty set. The minimization over

*Reprinted with permission from Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, Mohammad Ghavamzadeh, “Ro-
bust Reinforcement Learning using Offline Data.” Neural Information Processing Systems. PMLR, 2022.

43

the uncertainty set makes the robust MDP and robust RL problems significantly more challenging

than their non-robust counterparts.

In this work, we study the problem of developing a robust RL algorithm with provably optimal

performance for an RMDP with arbitrarily large state spaces, using only offline data with function

approximation. Before stating the contributions of our work, we provide a brief overview of the re-

sults in offline and robust RL that are directly related to ours. We leave a more thorough discussion

on related works to Appendix C.4.

Offline RL: Offline RL considers the problem of learning the optimal policy only using a pre-

collected (offline) dataset. Offline RL problem has been addressed extensively in the literature

[89, 63, 90, 91, 92, 93, 94]. Many recent works develop deep RL algorithms and heuristics for

the offline RL problem, focusing on the algorithmic and empirical aspects [95, 96, 97, 98, 99].

A number of theoretical work focus on analyzing the variations of Fitted Q-Iteration (FQI) al-

gorithm [100, 101], by identifying the necessary and sufficient conditions for the learned policy

to be approximately optimal and characterizing the performance in terms of sample complexity

[68, 102, 69, 91, 103, 94]. All these works assume that the offline data is generated according to

a single model and the goal is to find the optimal policy for the MDP with the same model. In

particular, none of these works consider the offline robust RL problem where the offline data is

generated according to a (training) model which can be different from the one in testing, and the

goal is to learn a policy that is robust w.r.t. an uncertainty set.

Robust RL: The RMDP framework was first introduced in [33, 34]. The RMDP problem has

been analyzed extensively in the literature [37, 36, 38, 72, 73] providing computationally efficient

algorithms, but these works are limited to the planning problem. Robust RL algorithms with

provable guarantees have also been proposed [41, 39, 40, 1, 104], but they are limited to tabular

or linear function approximation settings and only provide asymptotic convergence guarantees.

Robust RL problem has also been addressed using deep RL methods [45, 48, 74, 46, 47]. However,

these works do not provide any theoretical guarantees on the performance of the learned policies.

The works that are closest to ours are by [82, 83, 2] that address the robust RL problem in a

44

tabular setting under the generative model assumption. Due to the generative model assumption,

the offline data has the same uniform number of samples corresponding to each and every state-

action pair, and tabular setting allows the estimation of the uncertainty set followed by solving

the planning problem. Our work is significantly different from these in the following way: (i) we

consider a robust RL problem with arbitrary large state space, instead of the small tabular setting,

(ii) we consider a true offline RL setting where the state-action pairs are sampled according to

an arbitrary distribution, instead of using the generative model assumption, (iii) we focus on a

function approximation approach where the goal is to directly learn optimal robust value/policy

using function approximation techniques, instead of solving the tabular planning problem with the

estimated model. To the best of our knowledge, this is the first work that addresses the offline

robust RL problem with arbitrary large state space using function approximation, with provable

guarantees on the performance of the learned policy.

Offline Robust RL: Challenges and Our Contributions: Offline robust RL is significantly

more challenging than its non-robust counterpart mainly because of the following key difficulties.

(i) Data generation: The optimal robust policy is computed by taking the infimum over all models

in the uncertainty set P . However, generating data according to all models in P is clearly infeasi-

ble. It may only be possible to get the data from a nominal (training) model P o. How do we use

the data from a nominal model to account for the behavior of all the models in the uncertainty set

P?

(ii) Optimization over the uncertainty set P: The robust Bellman operator (defined in (4.3)) in-

volves a minimization over P , which is a significant computational challenge. Moreover, the

uncertainty set P itself is unknown in the RL setting. How do we solve the optimization over P?

(iii) Function approximation: Approximation of the robust Bellman update requires a modified

target function which also depends on the approximate solution of the optimization over the uncer-

tainty set. How do we perform the offline RL update accounting for both approximations?

As the key technical contributions of this work, we first derive a dual reformulation of the

robust Bellman operator which replaces the expectation w.r.t. all models in the uncertainty set P

45

with an expectation only w.r.t. the nominal (training) model P o. This enables using the offline data

generated by P o for learning, without relying on high variance importance sampling techniques to

account for all models in P . Following the same reformulation, we then show that the optimization

problem over P can be further reformulated as functional optimization. We solve this functional

optimization problem using empirical risk minimization and obtain performance guarantees using

the Rademacher complexity based bounds. We then use the approximate solution obtained from the

empirical risk minimization to generate modified target samples that are then used to approximate

robust Bellman update through a generalized least squares approach with provably bounded errors.

Performing these operations iteratively results in our proposed Robust Fitted Q-Iteration (RFQI)

algorithm, for which we prove that its learned policy achieves non-asymptotic and approximately

optimal performance guarantees.

Notations: For a set X , we denote its cardinality as |X |. The set of probability distribution

over X is denoted as ∆(X), and its power set sigma algebra as Σ(X). For any x ∈ R, we denote

max{x, 0} as (x)+. For any function f : S × A → R, state-action distribution ν ∈ ∆(S ×A),

and real number p ≥ 1, the ν-weighted p-norm of f is defined as ∥f∥p,ν = Es,a∼ν [|f(s, a)|p]1/p.

4.2 Preliminaries

A Markov Decision Process (MDP) is a tuple (S,A, r, P, γ, d0), where S is the state space,

A is the action space, r : S × A → R is the reward function, γ ∈ (0, 1) is the discount factor,

and d0 ∈ ∆(S) is the initial state distribution. The transition probability function Ps,a(s
′) is the

probability of transitioning to state s′ when action a is taken at state s. In the literature, P is

also called the model of the MDP. We consider a setting where |S| and |A| are finite but can be

arbitrarily large. We will also assume that r(s, a) ∈ [0, 1], for all (s, a) ∈ S × A, without loss of

generality. A policy π : S → ∆(A) is a conditional distribution over actions given a state. The

value function Vπ,P and the state-action value function Qπ,P of a policy π for an MDP with model

P are defined as

Vπ,P (s) = Eπ,P [
∞∑
t=0

γtr(st, at) | s0 = s], Qπ,P (s, a) = Eπ,P [
∞∑
t=0

γtr(st, at) | s0 = s, a0 = a],

46

where the expectation is over the randomness induced by the policy π and model P . The optimal

value function V ∗
P and the optimal policy π∗

P of an MDP with the model P are defined as V ∗
P =

maxπ Vπ,P and π∗
P = argmaxπ Vπ,P . The optimal state-action value function is given by Q∗

P =

maxπQπ,P . The optimal policy can be obtained as π∗
P (s) = argmaxaQ

∗
P (s, a). The discounted

state-action occupancy of a policy π for an MDP with model P , denoted as dπ,P ∈ ∆(S ×A), is

defined as dπ,P (s, a) = (1− γ)Eπ,P [
∑∞

t=0 γ
t
1(st = s, at = a)].

Robust Markov Decision Process (RMDP): Unlike the standard MDP which considers a sin-

gle model (transition probability function), the RMDP formulation considers a set of models. We

refer to this set as the uncertainty set and denote it as P . We consider P that satisfies the standard

(s, a)-rectangularity condition [33]. We note that a similar uncertainty set can be considered for

the reward function at the expense of additional notations. However, since the analysis will be

similar and the sample complexity guarantee will be identical up to a constant factor, without loss

of generality, we assume that the reward function is known and deterministic.

We specify an RMDP as M = (S,A, r,P , γ, d0), where the uncertainty set P is typically

defined as

P = ⊗(s,a)∈S×APs,a, where Ps,a = {Ps,a ∈ ∆(S) : D(Ps,a, P
o
s,a) ≤ ρ}, (4.1)

P o = (P o
s,a, (s, a) ∈ S × A) is the nominal model, D(·, ·) is a distance metric between two

probability distributions, and ρ > 0 is the radius of the uncertainty set that indicates the level

of robustness. The nominal model P o can be thought as the model of the training environment.

It is either the model of the simulator on which the (online) RL algorithm is trained, or in our

setting, it is the model according to which the offline data is generated. The uncertainty set P

(4.1) is the set of all valid transition probability functions (valid testing models) in the neigh-

borhood of the nominal model P o, which by definition satisfies (s, a)-rectangularity condition

[33], where the neighborhood is defined using the distance metric D(·, ·) and radius ρ. In this

work, we consider the Total Variation (TV) uncertainty set defined using the TV distance, i.e.,

47

D(Ps,a, P
o
s,a) = (1/2)∥Ps,a − P o

s,a∥1.

The RMDP problem is to find the optimal robust policy which maximizes the value against the

worst possible model in the uncertainty set P . The robust value function V π corresponding to a

policy π and the optimal robust value function V ∗ are defined as [33, 34]

V π = inf
P∈P

Vπ,P , V ∗ = sup
π

inf
P∈P

Vπ,P . (4.2)

The optimal robust policy π∗ is such that the robust value function corresponding to it matches the

optimal robust value function, i.e., V π∗
= V ∗. It is known that there exists a deterministic optimal

policy [33] for the RMDP. The robust Bellman operator is defined as [33]

(TQ)(s, a) = r(s, a) + γ inf
Ps,a∈Ps,a

Es′∼Ps,a [max
b
Q(s′, b)]. (4.3)

It is known that T is a contraction mapping in the infinity norm and hence it has a unique fixed point

Q∗ with V ∗(s) = maxaQ
∗(s, a) and π∗(s) = argmaxaQ

∗(s, a) [33]. The Robust Q-Iteration

(RQI) can now be defined using the robust Bellman operator as Qk+1 = TQk. Since T is a

contraction, it follows that Qk → Q∗. So, RQI can be used to compute (solving the planning

problem) Q∗ and π∗ in the tabular setting with a known P . Due to the optimization over the

uncertainty set Ps,a for each (s, a) pair, solving the planning problem in RMDP using RQI is much

more computationally intensive than solving it in MDP using Q-Iteration.

Offline RL: Offline RL considers the problem of learning the optimal policy of an MDP when

the algorithm does not have direct access to the environment and cannot generate data samples in

an online manner. For learning the optimal policy π∗
P of an MDP with model P , the algorithm will

only have access to an offline dataset DP = {(si, ai, ri, s′i)}Ni=1, where (si, ai) ∼ µ, µ ∈ ∆(S ×A)

is some distribution, and s′i ∼ Psi,ai . Fitted Q-Iteration (FQI) is a popular offline RL approach

which is amenable to theoretical analysis while achieving impressive empirical performance. In

addition to the dataset DP , FQI uses a function class F = {f : S × A → [0, 1/(1 − γ)]}

to approximate Q∗
P . The typical FQI update is given by fk+1 = argminf∈F

∑N
i=1(r(si, ai) +

48

γmaxb fk(s
′
i, b) − f(si, ai))

2, which aims to approximate the non-robust Bellman update using

offline data with function approximation. Under suitable assumptions, it is possible to obtain

provable performance guarantees for FQI [105, 91, 103].

4.3 Offline Robust Reinforcement Learning

The goal of an offline robust RL algorithm is to learn the optimal robust policy π∗ using a

pre-collected offline dataset D. The data is typically generated according to a nominal (training)

model P o, i.e.,D = {(si, ai, ri, s′i)}Ni=1, where (si, ai) ∼ µ, µ ∈ ∆(S×A) is some data generating

distribution, and s′i ∼ P o
si,ai

. The uncertainty set P is defined around this nominal model P o as

given in (4.1) w.r.t. the total variation distance metric. We emphasize that the learning algorithm

does not know the nominal model P o as it has only access to D, and hence it also does not know

P . Moreover, the learning algorithm does not have data generated according to any other models

in P and has to rely only on D to account for the behavior w.r.t. all models in P .

Learning policies for RL problems with large state-action spaces is computationally intractable.

RL algorithms typically overcome this issue by using function approximation. In this paper, we

consider two function classes F = {f : S × A → [0, 1/(1 − γ)]} and G = {g : S × A →

[0, 1/(1 − γ)]}. We use F to approximate Q∗ and G to approximate the dual variable functions

which we will introduce in the next section. For simplicity, we will first assume that these function

classes are finite but exponentially large, and we will use the standard log-cardinality to character-

ize the sample complexity results, as given in Theorem 8. We note that, at the cost of additional

notations and analysis, infinite function classes can also be considered where the log-cardinalities

are replaced by the appropriate notions of covering number.

Similar to the non-robust offline RL, we make the following standard assumptions about the

data generating distribution µ and the representation power of F .

Assumption 4 (Concentratability). There exists a finite constant C > 0 such that for any ν ∈

{dπ,P o | any policy π} ⊆ ∆(S ×A), we have ∥ν/µ∥∞ ≤
√
C.

Assumption 4 states that the ratio of the distribution ν and the data generating distribution µ,

49

ν(s, a)/µ(s, a), is uniformly bounded. This assumption is widely used in the offline RL literature

[67, 106, 91, 55, 94] in many different forms. We borrow this assumption from [91], where they

used it for non-robust offline RL. In particular, we note that the distribution ν is in the collection

of discounted state-action occupancies on model P o alone for the robust RL.

Assumption 5 (Approximate completeness). Let µ ∈ ∆(S × A) be the data distribution. Then,

supf∈F inff ′∈F ∥f ′ − Tf∥22,µ ≤ εc.

Assumption 5 states that the function classF is approximately closed under the robust Bellman

operator T . This assumption has also been widely used in the offline RL literature [106, 91, 55, 94].

One of the most important properties that the function class F should have is that there must

exist a function f ′ ∈ F which well-approximates Q∗. This assumption is typically called ap-

proximate realizability in the offline RL literature. This is typically formalized by assuming

inff∈F ∥f − Tf∥22,µ ≤ εr [91]. It is known that the approximate completeness assumption and

the concentratability assumption imply the realizability assumption [91, 94].

4.4 Robust Fitted Q-Iteration: Algorithm and Main Results

In this section, we give a step-by-step approach to overcome the challenges of the offline robust

RL outlined in Section 4.1. We then combine these intermediate steps to obtain our proposed

RFQI algorithm. We then present our main result about the performance guarantee of the RFQI

algorithm, followed by a brief description about the proof approach.

4.4.1 Dual Reformulation of Robust Bellman Operator

One key challenge in directly using the standard definition of the optimal robust value function

given in (4.2) or of the robust Bellman operator given in (4.3) for developing and analyzing robust

RL algorithms is that both involve computing an expectation w.r.t. each model P ∈ P . Given that

the data is generated only according to the nominal model P o, estimating these expectation values

is really challenging. We show that we can overcome this difficulty through the dual reformulation

of the robust Bellman operator, as given below.

50

Proposition 6. Let M be an RMDP with the uncertainty set P specified by (4.1) using the total

variation distance D(Ps,a, P
o
s,a) = (1/2)∥Ps,a−P o

s,a∥1. Then, for any Q : S ×A → [0, 1/(1−γ)],

the robust Bellman operator T given in (4.3) can be equivalently written as

(TQ)(s, a) = r(s, a)− γ inf
η∈[0, 1

(1−γ)
]
(Es′∼P o

s,a
[(η − V (s′))+]− η + ρ(η − inf

s′′
V (s′′))+), (4.4)

where V (s) = maxa∈AQ(s, a). Moreover, the inner optimization problem in (4.4) is convex in η.

Note that in (4.4), the expectation is now only w.r.t. the nominal model P o, which opens up the

possibility of using empirical estimates obtained from the data generated according to P o. This

avoids the need to use importance sampling based techniques to account for all models in P , which

often have high variance, and thus, are not desirable.

While (4.4) provides a form that is amenable to estimation using offline data, it involves finding

infs′′ V (s′′). Though this computation is straightforward in a tabular setting, it is infeasible in a

function approximation setting. In order to overcome this issue, we make the following assump-

tion.

Assumption 6 (Fail-state). The RMDP M has a ‘fail-state’ sf , such that r(sf , a) = 0 and

Psf ,a(sf) = 1, ∀a ∈ A, ∀P ∈ P .

We note that this is not a very restrictive assumption because such a ‘fail-state’ is quite natural

in most simulated or real-world systems. For example, a state where a robot collapses and is not

able to get up, either in a simulation environment like MuJoCo or in real-world setting, is such a

fail state.

Assumption 6 immediately implies that Vπ,P (sf) = 0, ∀P ∈ P , and hence V ∗(sf) = 0 and

Q∗(sf , a) = 0, ∀a ∈ A. It is also straightforward to see that Qk+1(sf , a) = 0, ∀a ∈ A, where

Qk’s are the RQI iterates given by the robust Bellman update Qk+1 = TQk with the initialization

Q0 = 0. By the contraction property of T , we have Qk → Q∗. So, under Assumption 6, without

loss of generality, we can always keep Qk(sf , a) = 0, ∀a ∈ A and for all k in RQI (and later in

RFQI). So, in the light of the above description, for the rest of the paper we will use the robust

51

Bellman operator T by setting infs′′ V (s′′) = 0. In particular, for any function f : S × A →

[0, 1/(1− γ)] with f(sf , a) = 0, the robust Bellman operator T is now given by

(Tf)(s, a) = r(s, a)− γ inf
η∈[0, 1

((1−γ))
]
(Es′∼P o

s,a
[(η −max

a′
f(s′, a′))+]− (1− ρ)η). (4.5)

4.4.2 Approximately Solving the Dual Optimization using Empirical Risk Minimization

Another key challenge in directly using the standard definition of the optimal robust value

function given in (4.2) or of the robust Bellman operator given in (4.3) for developing and analyzing

robust RL algorithms is that both involve an optimization over P . The dual reformulation given

in (4.5) partially overcomes this challenge also, as the optimization over P is now replaced by

a convex optimization over a scalar η ∈ [0, 2/(ρ(1 − γ))]. However, this still requires solving

an optimization for each (s, a) ∈ S × A, which is clearly infeasible even for moderately sized

state-action spaces, not to mention the function approximation setting. Our key idea to overcome

this difficulty is to reformulate this as a functional optimization problem instead of solving it as

multiple scalar optimization problems. This functional optimization method will make it amenable

to approximately solving the dual problem using an empirical risk minimization approach with

offline data.

Consider the probability (measure) space (S×A,Σ(S×A), µ) and let L1(S×A,Σ(S×A), µ)

be the set of all absolutely integrable functions defined on this space.* In other words, L1 is the

set of all functions g : S × A → C ⊂ R, such that ∥g∥1,µ is finite. We set C = [0, 1/(1 −

γ)], anticipating the solution of the dual optimization problem (4.5). We also note µ is the data

generating distribution which is a σ-finite measure.

For any given function f : S ×A → [0, 1/(1− γ)], we define the loss function Ldual(·; f) as

Ldual(g; f) = Es,a∼µ[Es′∼P o
s,a
[(g(s, a)−max

a′
f(s′, a′))+]− (1− ρ)g(s, a)], ∀g ∈ L1. (4.6)

*In the following, we will simply denote L1(S ×A,Σ(S ×A), µ) as L1 for conciseness.

52

In the following lemma, we show that the scalar optimization over η for each (s, a) pair in (4.5)

can be replaced by a single functional optimization w.r.t. the loss function Ldual.

Lemma 5. Let Ldual be the loss function defined in (4.6). Then, for any function f : S × A →

[0, 1/(1− γ)], we have

inf
g∈L1

Ldual(g; f) = Es,a∼µ

[
inf

η∈[0, 1
(1−γ)

]

(
Es′∼P o

s,a

[(
η −max

a′
f(s′, a′)

)
+

]
− (1− ρ)η

)]
. (4.7)

Note that the RHS of (4.7) has minimization over η for each (s, a) pair and minimization is

inside the expectation Es,a∼µ[·]. However, the LHS of (4.7) has a single functional minimization

over g ∈ L1 and this minimization is outside the expectation. For interchanging the expectation

and minimization, and for moving from point-wise optimization to functional optimization, we use

the result from [107, Theorem 14.60], along with the fact that L1 is a decomposable space. We

also note that this result has been used in many recent works on distributionally robust optimization

[108, 109] (see Appendix C.1 for more details).

We can now define the empirical loss function L̂dual corresponding to the true loss Ldual as

L̂dual(g; f) =
1

N

N∑
i=1

(g(si, ai)−max
a′

f(s′i, a
′))+ − (1− ρ)g(si, ai). (4.8)

Now, for any given f , we can find an approximately optimal dual function through the empirical

risk minimization approach as infg∈L1 L̂dual(g; f).

As we mentioned in Section 4.3, our offline robust RL algorithm is given an input function

class G = {g : S × A → [0, 1/(1 − γ)]} to approximate the dual variable functions. So, in

the empirical risk minimization, instead of taking the infimum over all the functions in L1, we

can only take the infimum over all the functions in G. For this to be meaningful, G should have

sufficient representation power. In particular, the result in Lemma 5 should hold approximately

even if we replace the infimum over L1 with infimum over G. One can see that this is similar to

the realizability requirement for the function class F as described in Section 4.3. We formalize the

representation power of G in the following assumption.

53

Assumption 7 (Approximate dual realizability). For all f ∈ F , there exists a uniform constant

εdual such that infg∈G Ldual(g; f)− infg∈L1 Ldual(g; f) ≤ εdual

Using the above assumption, for any given f ∈ F , we can find an approximately optimal dual

function ĝf ∈ G through the empirical risk minimization approach as ĝf = argming∈G L̂dual(g; f).

In order to characterize the performance of this approach, consider the operator Tg for any

g ∈ G as

(Tgf)(s, a) = r(s, a)− γ(Es′∼P o
s,a
[(g(s, a)−max

a′
f(s′, a′))+]− (1− ρ)g(s, a)), (4.9)

for all f ∈ F and (s, a) ∈ S × A. We will show in Lemma 28 in Appendix C.3 that the error

supf∈F ∥Tf − Tĝff∥1,µ is O(log(|F|/δ)/
√
N) with probability at least 1− δ.

4.4.3 Robust Fitted Q-iteration

The intuitive idea behind our robust fitted Q-iteration (RFQI) algorithm is to approximate the

exact RQI update stepQk+1 = TQk with function approximation using offline data. The exact RQI

step requires updating each (s, a)-pair separately, which is not scalable to large state-action spaces.

So, this is replaced by the function approximation as Qk+1 = argminf∈F ∥TQk − f∥22,µ. It is still

infeasible to perform this update as it requires to exactly compute the expectation (w.r.t. P o and µ)

and to solve the dual problem accurately. We overcome these issues by replacing both these exact

computations with empirical estimates using the offline data. We note that this intuitive idea is

similar to that of the FQI algorithm in the non-robust case. However, RFQI has unique challenges

due to the nature of the robust Bellman operator T and the presence of the dual optimization

problem within T .

Given a dataset D, we also follow the standard non-robust offline RL choice of least-squares

residual minimization [91, 94, 55]. Define the empirical loss of f given f ′ (which represents the

54

Q-function from the last iteration) and dual variable function g as

L̂RFQI(f ; f
′, g) =

1

N

N∑
i=1

(
r(s, a) + γ

(
− (g(si, ai)−maxa′ f

′(s′i, a
′))+

+ (1− ρ)g(si, ai)
)
− f(si, ai)

)2

. (4.10)

The correct dual variable function to be used in (4.10) is the optimal dual variable g∗f ′ = argming∈G

Ldual(g; f
′) corresponding to the last iterate f ′, which we will approximate it by ĝf ′ = argming∈G

L̂dual(g; f
′). The RFQI update is then obtained as argminf∈F L̂RFQI(f ; f

′, ĝf ′).

Summarizing the individual steps described above, we formally give our RFQI algorithm be-

low.

Algorithm 3 Robust Fitted Q-Iteration (RFQI) Algorithm

1: Input: Offline dataset D = (si, ai, ri, s
′
i)
N
i=1, function classes F and G.

2: Initialize: Q0 ≡ 0 ∈ F .

3: for k = 0, · · · , K − 1 do

4: Dual variable function optimization: Compute the dual variable function corresponding

to Qk through empirical risk minimization as gk = ĝQk
= argming∈G L̂dual(g;Qk) (see

(4.8)).

5: Robust Q-update: Compute the next iterate Qk+1 through least-squares regression as

Qk+1 = argminQ∈F L̂RFQI(Q;Qk, gk) (see (4.10)).

6: end for

7: Output: πK = argmaxaQK(s, a)

Now we state our main theoretical result on the performance of the RFQI algorithm.

Theorem 8. Let Assumptions 4-7 hold. Let πK be the output of the RFQI algorithm after K

iterations. Denote Jπ = Es∼d0 [V
π(s)] where d0 is initial state distribution. Then, for any δ ∈

55

(0, 1), with probability at least 1− 2δ, we have

Jπ∗ − JπK ≤ γK

(1− γ)2
+

√
C(
√
6εc + γεdual)

(1− γ)2
+

10

(1− γ)3

√
18C log(2|F||G|/δ)

N
.

Remark 5. Theorem 8 states that the RFQI algorithm can achieve approximate optimality. To see

this, note that with K ≥ O(1
log(1/γ)

log(1
ε(1−γ)

)), and neglecting the second term corresponding

to (inevitable) approximation errors εc and εdual, we get Jπ∗ − JπK ≤ ε/(1− γ) with probability

greater than 1−2δ for any ε, δ ∈ (0, 1), as long as the number of samplesN ≥ O(1
ε2(1−γ)4

log |F||G|
δ

).

So, the above theorem can also be interpreted as a sample complexity result.

Remark 6. The known sample complexity of robust-RL in the tabular setting is Õ(|S|2|A|
ε2(1−γ)4

) [83, 2].

Considering Õ(log(|F||G|)) to be Õ(|S||A|), we can recover the same bound as in the tabular

setting (we save |S| due to the use of Bernstein inequality).

Remark 7. Under similar Bellman completeness and concentratability assumptions, RFQI sample

complexity is comparable to that of a non-robust offline RL algorithm, that is,

O(1
ε2(1−γ)4

log |F|
δ
) [91]. As a consequence of robustness, we have ρ−2 and log(|G|) factors in our

bound.

4.4.4 Proof Sketch

Here we briefly explain the key ideas used in the analysis of RFQI for obtaining the optimality

gap bound in Theorem 8. The complete proof is provided in Appendix C.3.

Step 1: To bound Jπ∗ − JπK , we connect it to the error ∥Qπ∗ − QK∥1,ν for any state-action

distribution ν. While the similar step follows almost immediately using the well-known perfor-

mance lemma in the analysis of non-robust FQI, such a result is not known in the robust RL

setting. So, we derive the basic inequalities to get a recursive form and to obtain the bound

Jπ∗ − JπK ≤ 2∥Qπ∗ −QK∥1,ν/(1− γ) (see (C.12) and the steps before in Appendix C.3).

Step 2: To bound ∥Qπ∗ − QK∥1,ν for any state-action distribution ν such that ∥ν/µ∥∞ ≤
√
C,

we decompose it to get a recursion, with approximation terms based on the least-squares regres-

56

sion and empirical risk minimization. Recall that ĝf is the dual variable function from the al-

gorithm for state-action value function f ∈ F . Denote f̂g as the least squares solution from

the algorithm for the state-action value function f ∈ F and dual variable function g ∈ G, i.e.,

f̂g = argminQ∈F L̂RFQI(Q; f, g). By recursive use of the obtained inequality (C.13) (see Appendix

C.3) and using uniform bound, we get

∥Qπ∗ −QK∥1,ν ≤
γK

1− γ
+

√
C

1− γ
sup
f∈F
∥Tf − Tĝff∥1,µ +

√
C

1− γ
sup
f∈F

sup
g∈G
∥Tgf − f̂g∥2,µ.

Step 3: We recognize that supf∈F ∥Tf−Tĝff∥1,µ is an empirical risk minimization error term. Us-

ing Rademacher complexity based bounds, we show in Lemma 28 that this error isO(log(|F|/δ)/
√
N)

with high probability.

Step 4: Similarly, we also recognize that supf∈F supg∈G ∥Tgf − f̂g∥2,µ is a least-squares regres-

sion error term. We also show that this error is O(log(|F||G|/δ)/
√
N) with high probability. We

adapt the generalized least squares regression result to accommodate the modified target functions

resulting from the robust Bellman operator to obtain this bound (see Lemma 29).

The proof is complete after combining steps 1-4 above.

4.5 Experiments

Here, we demonstrate the robust performance of our RFQI algorithm by evaluating it on

Cartpole and Hopper environments in OpenAI Gym [71]. In all the figures shown, the quan-

tity in the vertical axis is averaged over 20 different seeded runs depicted by the thick line and

the band around it is the ±0.5 standard deviation. We provide our code in a github repository

https://github.com/zaiyan-x/RFQI containing instructions to reproduce all results in

this paper. We also provide more detailed description of the experiments and more results on

additional experiments in Appendix C.5.

For the Cartpole, we compare RFQI algorithm against the non-robust RL algorithms FQI and

DQN, and the soft-robust RL algorithm proposed in [48]. We test the robustness of the algorithms

by changing the parameter force_mag (to model external force disturbance), and also by introduc-

57

https://github.com/zaiyan-x/RFQI

−80 −70 −60 −50 −40 −30 −20
Percentage change from nominal value

60

80

100

120

140

160

180

200

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es "force_mag" perturbation

RFQI
SR-DQN
FQI
DQN

Figure 4.1: CartPole: Performance
of RFQI algorithm with force-mag
sim2real parameter. (Reprinted from
[3])

0 20 40 60 80 100
Prob. of picking a random action

25

50

75

100

125

150

175

200

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es Action perturbation
RFQI
SR-DQN
FQI
DQN

Figure 4.2: CartPole: Performance of
RFQI algorithm with random action
sim2real parameter. (Reprinted from
[3])

0 10 20 30 40 50 60
'leg_joint_stiffness' values (default=0.0)

500

1000

1500

2000

2500

3000

3500

4000

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es "leg_joint_stiffness" perturbation
RFQI
SRDDPG
FQI
TD3

Figure 4.3: Hopper: Perfor-
mance of RFQI algorithm with
leg_joint_stiffness sim2real parameter.
(Reprinted from [3])

ing action perturbations (to model actuator noise). Fig. 4.1 and Fig. 4.2 shows superior robust

performance of RFQI compared to the non-robust FQI and DQN. The RFQI performance is sim-

ilar to that of soft-robust DQN. We note that soft-robust RL algorithm (here soft-robust DQN) is

an online deep RL algorithm (and not an offline RL algorithm) and has no provable performance

guarantee. Moreover, soft-robust RL algorithm requires generating online data according a num-

ber of models in the uncertainty set, whereas RFQI only requires offline data according to a single

nominal training model.

For the Hopper, we compare RFQI algorithm against the non-robust RL algorithms FQI and

58

TD3 [110], and the soft-robust RL (here soft-robust DDPG) algorithm proposed in [48]. We test

the robustness of the algorithms by changing the parameter leg_joint_stiffness. Fig. 4.3 shows

the superior performance of our RFQI algorithm against the non-robust algorithms and soft-robust

DDPG algorithm. The average episodic reward of RFQI remains almost the same initially, and

later decays much less and gracefully when compared to the non-robust FQI and TD3.

4.6 Conclusion

In this work, we presented a novel robust RL algorithm called Robust Fitted Q-Iteration algo-

rithm with provably optimal performance for an RMDP with arbitrarily large state space, using

only offline data with function approximation. We also demonstrated the superior performance of

the proposed algorithm on standard benchmark problems.

One limitation of our present work is that, we considered only the uncertainty set defined with

respect to the total variation distance. In future work, we will consider uncertainty sets defined

with respect to other f -divergences such as KL-divergence and Chi-square divergence. Finding a

lower bound for the sample complexity and relaxing the assumptions used are also important and

challenging problems.

59

5. IMPROVING BEHAVIORAL CLONING WITH DISTRIBUTIONALLY ROBUST

OPTIMIZATION*

In this chapter, we focus on leveraging a distributionally robust optimization tool in imitation

learning problems to alleviate covariate shift and system model perturbations.

5.1 Introduction

A child, a dog, or even a reptile is capable of learning through imitation [111]. Such intuitive

way of learning naturally extends from animal’s survival instincts to solving potentially compli-

cated control tasks. Hence, it serves as the primary philosophy underlying most, if not all, methods

in Imitation Learning, a very fundamental reinforcement learning (RL) setting in which the goal is

to learn a control policy exclusively from expert demonstrations. However simple and fundamental

the idea of Imitation Learning may sound, it is by no means the easy fix for everything. In fact,

although it is quite clear its strength is the simplicity, its drawbacks are equally straightforward:

an imitator merely mimics, and once it encounters anything unseen in the expert demonstration, it

hardly knows how to cope with the new challenges. Mistakes compound in the decision horizon,

making the learner never recover from the moment it deviates from the expert trajectories.

Imitation Learning: Learning through imitation can be traced back to as early as [112]. Imita-

tion learning assumes access to only expert demonstrations. This has given rise to the most natural

approach behavior cloning [113], which is a supervised learning method, and learns by simply min-

imizing differences between the actions of the learners and those of the experts. In this approach,

once the imitator enters an uncharted territory, its mistakes compound such that it never recovers

after since. Named covariate shift, this issue has been long studied. [114] studied the behavior

cloning approach and characterized a tight bound on sub-optimality gap of order O(εH2). Most

of works in imitation learning then try to improve this bound with additional assumptions. [115]

proposed DAGGER and showed that the above bound on the sub-optimality gap can be improved

*Reprinted with permission from Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, Mohammad Ghavamzadeh, “Im-
proving Behavioral Cloning with Distributionally Robust Optimization.” Preprint, 2023.

60

to O(εuH), where u is the cost of taking different action than the expert at one step and following

the expert’s suggestion afterward, by querying the expert and interacting with the environment. In

worse cases, u can be as large as H . DRIL [116] needs environment interactions but no expert

query, and achieves a sub-optimality gap bound that is linear in H . These works are closes to ours

as we also aim to mitigate the covariate shift issue both theoretically and empirically. However,

they are also different from our work in that we try to mitigate the covariate shift issue by only

bootstrapping around the expert demonstrations and not asking for additional offline data or the

ability to query. In this aspect, we are very close to the classical behavior cloning. A recent work

[117] showed that the lower bound Ω(εH) on sub-optimality gap for the known model P o setting.

Access to the environment essentially allows limited queries and does not have the full power of

the known model setting. Still, the ability to interact with the environment helps to mitigate the

covariate shift issue. For example, GAIL [118] uses a discriminator network to distinguish expert

states from those visited by learner’s policy. [119] provides a game theoretic framework to mitigate

covariate shift that naturally competes with noisy expert policies.

Inverse RL (IRL): This is a framework where an agent learns the underlying true reward func-

tion of an expert and uses it in the usual RL algorithm to produce a policy that imitates an expert.

Notable works include [120, 51, 121, 122, 52]. Although this is not the setting we consider, there

are works trying to mitigate the covariate shift issue in the imitation learning by using inverse RL

methodologies. [123] proposed MIMIC-MD which estimates the expert trajectory distribution and

gets a tight sub-optimality bound, but their algorithm is not practically implementable as is. [124]

proposed MILO which uses an additional offline dataset to estimate environment dynamics and

has great empirical performance when trained with extremely limited expert demonstration where

BC fails to produce any working policy. [125] proposed an IRL algorithm to learn cost functions

that are robust in noisy systems. These are all inherently adversarial approaches which are using

critics to disturb the underlying systems or to distinguish and pick good reward representations.

Robust RL: The framework of the robust Markov decision process (RMDP) [33, 34] addresses

the problem of learning a policy that is robust against model mismatches between the training and

61

testing environments. This is the goal of distributionally robust reinforcement learning (DR-RL).

Robust RL finds applications in many real-world evolving systems where there is always a gap to

the simulator model. Deploying naive RL policies [126] can be catastrophic when there is such

obvious differences in the models. The RMDP problem is well-studied. [37, 36, 38, 72, 73] have

investigated various types of uncertainty sets and sought tractable methods to solve RMDP. [127,

128, 35] study the sample complexity of model-based robust RL algorithms in a tabular setting us-

ing a generative model, which is a strong oracle enabling learners to query arbitrary transitions. [1]

developed a model-free online robust RL algorithm with linear function approximation to tackle

potentially infinite state spaces. [104] proposed an online robust Q-learning with R-contamination

uncertainty set. Many of the optimization techniques and analyses were developed in the context

of supervised learning [109, 129, 130, 131, 132, 133].

Main Contributions: We summarize our contributions in this paper as follows and refer to the

relevant sections:

(i) We propose Distributionally Robust Behavioral Cloning (DR-BC) algorithm, a novel imitation

learning algorithm that utilizes DRO methodology. Despite suffering from the covariate shift issue,

the BC method is computationally efficient, which makes any other imitation learning algorithm

falls short on. Contrarily, IL optimization mitigates the covariate shift issue but needs possibly infi-

nite computational access. Our proposed method cleverly bridges these two methods shining light

upon their positive aspects while suppressing bad characteristics. We discuss this in Section 5.2.

(ii) We introduce the problem of robust imitation learning for the model parameter mismatches. In

this work, we consider mismatch in system transition dynamics. Robust learning in RL is stud-

ied widely but not in imitation learning. We only know of [134], but it is in the IRL framework

for making fair comparison. Critical real-world applications like power systems, healthcare, self-

driving automobiles, etc have guidance from expert across diverse scenarios [135, 136, 137]. We

propose a robust imitation learning algorithm which is closely related to our DR-BC algorithm

from (i) to address the model mismatch. We also give its theoretical guarantees. We discuss fur-

ther in Section 5.3.

62

(iii) We make significant theoretical contributions in this paper. As per our knowledge, we are the

first to use the DRO technique in imitation learning. Although we provide intuitive remarks for

the DR-BC method, DRO alone is not the key. We had to bring together many different techniques

from literature in RL on policy gradient methods, statistical theory, class of instances where co-

variate shift issue is mitigated and robust for model changes, to finally showcase the prowess of

the DR-BC sub-optimality result. We provide detailed proofs for our results in Appendices.

(iv) We perform extensive simulations on three notable continuous-action OpenAI [71] Gym Mu-

JoCo [138] environments. We show that the learned DR-BC policy is able to mitigate the covariate

shift issue. We also demonstrate that the DR-BC policy is robust against model perturbations in

that when BC has catastrophic drop in performance, DR-BC weathers model mismatches for much

severer model perturbations.

5.2 Imitation Learning

In this section, we formally introduce the imitation learning problem using the MDP frame-

work. We then discuss the issue of covariate shift that the BC algorithm suffers from. We also

discuss the optimality of the original imitation learning optimization method by [115] and its

drawbacks. We then propose the DR-BC algorithm to address the covariate shift issue in imitation

learning using the DRO technique and discuss its theoretical guarantees.

5.2.1 Problem Formulation

The goal of Imitation Learning (IL) in sequential decision-making [116, 117] is to imitate

an expert’s policy using only demonstrations generated by its interactions with an environment.

More formally, consider an infinite-horizon Markov decision process (MDP), denoted by the tuple

{S,A, P o, γ, r, µ}, where S and A are the state and action spaces, P o : S × A → ∆(S) is

the transition dynamics (model) of the environment, γ is a discount factor, µ is the initial state

distribution, and r : S × A → [0, 1] is the true reward function (unknown to the learner). In

this paper, we consider a system with finite actions and a large state space. A stochastic policy

π : S → ∆(A) maps states to distributions over actions. For any policy π, the value function of an

63

initial state s0 ∼ µ is given by Vπ(s0) = E[
∑∞

t=0 γ
tr(st, at)|at ∼ π(·|st), st+1 ∼ P o

st,at]. We denote

Vπ = Es0∼µVπ(s0) and drop the explicit dependence on µ going forward for notation simplicity.

For any policy π, denote dπP o ∈ ∆(S) as the state distribution of π under the evaluation of model

P o with initial state picked from µ. In this section, we simply denote such state-distributions as dπ

and make explicit dependence on P o where brevity is needed. Formally, let Prt(s|π, s0 ∼ µ) be

the probability of visiting state s ∈ S at time t following policy π on model P o starting at initial

state s0 ∼ µ. Then, the state distribution of π is dπ(s) = (1− γ)
∑∞

t=0 γ
tPrt(s|π, s0 ∼ µ, P o). We

can now rewrite the value of π as Vπ = Es∼dπ ,a∼π[r(s, a)]/(1− γ).

In the vanilla IL setting, the true reward function r is unknown to the learner. We instead

have the dataset generated by rolling an expert policy (which is unknown to the learner) specified

by πe : S → ∆(A). Concisely speaking, we have an expert dataset in the form of i.i.d. tuples

De = {si, ai}Ni=1 sampled from state distribution dπe
P o . We let πe ∈ Π, where Π is the class of

stochastic policies such that Vπe ≥ Vπ for all π ∈ Π. The IL problem: The goal of an IL

algorithm is to output a policy π̂ that imitates the expert policy πe by satisfying Vπ̂ ≈ Vπe .

Now, we assume a specific structure for the expert policy to be used for the imitation learning

problem. Towards this, we first define the entropy regularized value function. For any policy π and

τ > 0, Ṽπ = E[
∑∞

t=0 γ
tr̃(st, at)|at ∼ π(·|st), st+1 ∼ P o

st,at],where r̃(s, a) = r(s, a)−τ log π(a|s).

The optimal policy, for any τ > 0, is given by π∗
τ = argmaxπ∈Π Ṽπ. Our main motivation using

the entropy regularized class of MDPs is its usefulness in improving the regret bounds on factor

H in online policy gradient algorithms [139, 140]. We also let τ ′ = τ log(|A|) for presenting our

results. We now make the following assumption for our results in Section 5.2.

Assumption 8. πe = π∗
τ for an unknown small τ ∈ (0, ετ].

This may appear restrictive but there are many real-world applications (see Section 5.1) where

experts are near-optimal.

64

5.2.2 Covariate Shift Issue

We first formalize one of the earliest IL algorithms, behavioral cloning (BC), which is a super-

vised learning method to solve the IL problem. The BC algorithm finds a policy πbc by solving the

following optimization problem:

argmin
π

Lbc(π) = Es∼dπe [l(πe(· | s), π(· | s))], (5.1)

where the surrogate loss function l(πe(·|s), π(·|s)) measures how far the learner policy π is with

respect to the expert action for the states visited by the expert. Examples of the loss function l

comprise of 0-1 loss (described by Ea∼π(·|s)1(a ̸= πe(s)) for deterministic expert policies), total

variation loss (described byDTV(πe(·|s), π(·|s)) = 0.5 ∥πe(·|s)− π(·|s)∥1), KL loss (described by

DKL(π(·|s)∥πe(·|s)) =
∑

a π(a|s) log(π(a|s)/πe(a|s)) with π absolutely continuous to πe), and

many more such quantifiers. We remark that the BC algorithm can be solved approximately using

the expert dataset De since its optimization problem Eq. (5.1) only depends on the expert state

distribution dπe . So we note that the BC algorithm does not need to know the model P o, but when

given access to P o, it does not improve. We discuss this further in the following.

We assume we know the model P o. Hence we now have access to sampling possibly large data

from the expert state distribution dπe to calculate the loss Lbc(πbc) up to some small error. BC now

has the following sub-optimal result.

Theorem 9 ([114]). Assume Lbc(πbc) = εbc. Then we have Vπe − Vπbc
≤ εbc/(1− γ)2.

Proof. This follows from [114, Theorem 2.1] since εbc is an upper bound on the 0-1 loss of πbc.

This bound is tight as mentioned in [114], that is, there exist imitation learning examples with

Vπbc
= Vπe(1 − εbcH) + εbcH

2, where H = 1/(1 − γ) is an effective horizon [106]. We also

provide such an instance in Theorem 12. [117, Theorem 5.1(b)] provides the lower-bound Ω(εH)

for the known model P o setting. The tightness of the BC sub-optimality result suggests that it is

65

one factor of H away from optimality. This is the consequence of the covariate shift or the data

distribution shift issue [116, 117, 106].

Consider the following original imitation learning [115] optimization problem.

πil = argmin
π

Lil(π) = Es∼dπ [l(πe(· | s), π(· | s))]. (5.2)

We again assume we know the model P o. We also assume we can query the expert for its actions in

any state. Hence we now have access to sampling possibly large data from the state distributions

dπ of all learner policies π to calculate the loss Lil(πil) up to some small error. The imitation

learning objective Eq. (5.2) now has the following sub-optimal result for the DKL(π(·|s)∥πe(·|s))

surrogate loss function l.

Theorem 10. Fix τ > 0. AssumeLil(πil) = εil. Then we have Vπe−Vπil
≤ τ ′εil + ετ/(1− γ) log(|A|).

This indeed mitigates the covariate shift issue. This result is actually an improvement from the

sub-optimality boundO(εil/(1−γ)2) in [115]. We provide a proof of this theorem in Section D.2.1.

When we know the model P o, solving the imitation learning objective Eq. (5.2) suffices for tight

sub-optimality guarantee. So, why is this not good enough? We remark that to solve the imitation

learning objective Eq. (5.2), we need to generate samples from dπ for all policies π. Clearly, this

demands a very high computational capability. It is computationally expensive for solving large-

scale problems. Even knowing the model P o, it is still computationally intractable to compute

dπ for MDPs with large state-action spaces. Another major drawback of the imitation learning

objective Eq. (5.2) is that we need expert supervision to get its actions at any state. This is an

expensive requirement in real-world systems where experts are generally human agents and are

rarely available. This is also an unrealistic requirement in simulators when we do not have the

underlying true reward signals. The best one can do is to solve the imitation learning problem for

some heuristic reward function given as a black box model.

This motivates us to propose a new imitation learning algorithm in the following. In summary,

we want to avoid both the expensive computations and expensive expert access of IL optimization

66

Eq. (5.2). We also want to mitigate the covariate shift issue of the BC algorithm. But we want to

capture the positive aspects of IL optimization and BC algorithm. Namely, the covariate shift mit-

igation by the IL optimization Theorem 10 and the inexpensive computation of the BC algorithm

Eq. (5.1). In the following, we build this middle ground between the two by the methodology of

distributionally robust optimization.

5.2.3 Distributionally Robust Behavioral Cloning

We propose a principled adversarial approach by the methodology of distributionally robust

optimization (DRO) to solve the imitation learning problem. DRO is now a well-established area

[109, 141, 132], whose formulation is identical to that in the classical RMDP [33, 34] in DR-RL.

The distributionally robust behavioral cloning algorithm solves the following optimization problem

getting the policy πdrbc:

argmin
π

max
π′ :D(dπ′ ,dπe)≤ρc

Es∼dπ
′

Po
[l(πe(·|s), π(·|s))], (5.3)

where D(dπ
′
, dπe) is a distance measure between two probability distributions (e.g., total vari-

ation, chi-square, Kullback-Liebler (f -divergences in general), Wasserstein), ρc is the covariate

shift radius parameter which is a problem-dependent constant, and l(πe(·|s), π(·|s)) is the surro-

gate loss function that we discussed in the previous section. We note that the DR-BC policy πdrbc

depends on ρc but simply choose to make it inherent for notation simplicity.

We define the class of policies parameterized by ρc as Πρc = {π : D(dπ, dπe) ≤ ρc}. The

DR-BC algorithm Eq. (5.3) finds πdrbc for the IL problem by minimizing an observed surrogate

loss between its actions and the actions of an expert policy under the adversarial state distribu-

tion for policy in class Πρc which acts as a worse-case distribution. We define the loss function

Ldrbc(π, ρc) = maxπ′∈Πρc
Es∼dπ′ [l(πe(·|s), π(·|s))] for any policy π and ρc. But we immediately

notice that to solve the inner optimization in Eq. (5.3) we need access to all the state distribu-

tions around the expert’s state distribution. Even knowing the model P o, this is computationally

intractable. Moreover, we would also need the capability of querying an expert for actions for

67

various states chosen by such state distributions. The IL optimization Eq. (5.2) faces similar chal-

lenges that we discussed in Section 5.2.2. We now discuss how we circumvent this challenge using

the DRO methodology [129, 109].

We restrict to the total-variation distance DTV for the measure D in this paper and leave other

measures for future work. Towards this, we specialize the class of policies parameterized by ρc as

Πρc = {π ∈ Π : DTV(d
π, dπe) ≤ ρc}. For DTV, we can naturally restrict ρc ∈ (0, 1]. We now have

the following result that provides a dual reformulation for the inner maximization in Eq. (5.3) as a

consequence of the DRO methodology.

Proposition 7 (Informal). Fix the underlying model P o. For all π ∈ Π and ρc > 0,

max
π′∈Πρc

Es∼dπ
′

Po
[l(πe(·|s), π(·|s))]

= min
η∈R

Es∼dπePo
[f̃(l(πe(·|s), π(·|s)), ρc, η)],

where the structure of the function f̃ depends on DTV.

We give formal statement and proof in Section D.2. We give our DR-BC algorithm that only

requires an expert dataset De generated according to model P o in Algorithm 4 based on Proposi-

tion 7. The DRO technique in Proposition 7 transforms the inner maximization in Eq. (5.3) to an

unconstrained scalar variables convex optimization problem. We remark that this new optimiza-

tion problem due to the dual reformulation only depends on the expert’s state distribution. This

enables us to use the expert dataset to solve the DR-BC objective Eq. (5.3). We emphasize that

we need access to all the state distributions to solve the inner optimization in Eq. (5.3) directly

which is computationally intractable for large-scale problems. Now we are overcoming this chal-

lenge through this dual reformulation result. We note that we provide the practical implementable

algorithm and more details for DR-BC in Section D.4.

68

Algorithm 4 Distributionally Robust Behavioral Cloning

1: Input: Expert datasetDe = (si, ai)
N
i=1 according to model P o, covariate shift radius parameter

ρc.

2: Initialize: Policy πθ parameterized by θ.

3: Calculate the empirical loss for Ldrbc(πθ, ρc):

min
λ>0,η∈R

(1/N)
∑

(s,a)∈De
f̃(l(a, πθ(s)), λ, ρc, η). (5.4)

4: θ ← argminθ Ldrbc(πθ, ρc).

5: Output policy: π̂drbc = πθ

We emphasize that our DR-BC objective Eq. (5.3) addresses the covariate shift issue in a prin-

cipled manner compared to other adversarial methods mentioned in Section 5.1. Intuitively, the

inner maximization in the DR-BC objective Eq. (5.3) implicitly perturbs the expert’s state distri-

bution, up to the radius parameter ρc. Then it minimizes the loss between the learner and expert

actions on the states that the worse perturbed state distribution chooses. We also provide a theo-

retical DR-BC algorithm in Algorithm 4 that only requires an expert dataset De by incorporating

the DRO methodology. We remark that our DR-BC algorithm is as computationally inexpensive

as the BC algorithm in terms of not needing access to the learner’s state distribution, which the

IL optimization needs. We note that Step 3 in the DR-BC algorithm is a scalar variable convex

optimization problem. Assuming we have a computationally efficient method to solve Step 3 in

the DR-BC algorithm, we are as computationally efficient as the BC algorithm.

We assume the model P o is known. We now turn to our main question to address the covariate

shift issue: Can we give an order optimal sub-optimality bound for the DR-BC algorithm? That is,

can we achieve Vπe − Vπdrbc
≤ O(εH)? Yes, we do achieve it as discussed below.

Before giving the result, we consider a class of DR-BC policies as follows. LetLdrbc(πdrbc, ρc) =

εdrbc(ρc) > 0 be a small optimization error for all ρc ∈ (0, 1]. We then define a feasibility set

U = {x ∈ (0, 1] : γ2εdrbc(x) ≤ x(1− γ)2} which is a collection of all DR-BC policies that satisfy

69

the aforementioned constraint. We now give the following sub-optimality result for πdrbc Eq. (5.3)

with loss function l as the DKL(π(·|s)∥πe(·|s)) divergence.

Theorem 11 (DR-BC sub-optimality bound). For any ρc ∈ U , DR-BC policy πdrbc satisfies

Vπe − Vπdrbc
≤ 1

1− γ
· τ

′εdrbc(ρc) + ετ
log(|A|)

.

Remark 8. This result Vπe−Vπdrbc
≤ O(εdrbc(ρc)H) is order optimal which mitigates the covariate

shift issue. In other words, the DR-BC algorithm recovers the positive aspect of IL optimization

discussed in Section 5.2.2. We note that εdrbc(ρc) increases with ρc and finding the closed-form

for εdrbc(ρc) is problem dependent. This suggests characterizing the feasibility set U is problem

dependent as well. That being said, we provide examples where DR-BC algorithm achieves a tight

sub-optimality bound in Theorem 12. MILO [124] also achieves optimal O(εH) sub-optimality

bound under the known model P o. Although a direct comparison between these two methods is

unfair since MILO is an IRL approach that relies on decoding the true reward function and our

DR-BC is an imitation learning algorithm that learns to mimic expert actions directly.

We now show that there are examples in which the BC algorithm suffers with quadratic horizon

dependence whereas DR-BC is able to recover the linear horizon dependence.

Theorem 12 (Covariate Shift mitigation). Consider a class of MDPs {S,A, P o, γ, r} and corre-

sponding MDP dependent covariate shift parameter ρc > 0. There exists some arbitrarily small

ε > 0 with Lbc(πbc) ≤ ε and all Ldrbc(πdrbc, ρc) ≤ ε. There exists expert policy πe and initial state

s0 ∈ S such that we have Vπbc
(s0) ≤ Vπe(s0)−εγ/(1− γ)2 and Vπe(s0)−ε/(1−γ) = Vπdrbc

(s0).

We also present the approximation result for the sub-optimality of π̂drbc returned by Algo-

rithm 4 that uses the expert dataset De. We consider emin, the minimum non-zero probability value

in πe, as a problem dependent constant. We again consider Ldrbc(πdrbc,
√
ρc) = εdrbc(ρc) > 0 be a

small optimization error for all ρc.

70

Theorem 13 (Approximate DR-BC sub-optimality bound). Let the data dependent feasibility set

be UN = {x ∈ (0, 1] : γ2ε̂drbc(x) ≤ x(1−γ)2}where ε̂drbc(ρc) = εdrbc(ρc)+Õ(ρc
√

log(1/δ)/(eminN)).

Then, for any ρc ∈ UN , policy π̂drbc satisfies Vπe−Vπ̂drbc
≤ τ ′ε̂drbc(ρc) + ετ/(1− γ) log(|A|), with

probability at least 1− δ.

Remark 9. We note that Õ(·) is order optimal up to a logarithmic term on N and its exact form

is available in Section D.2. We know that the feasibility set UN is problem dependent. This imme-

diately poses the question whether the DR-BC policy is able to mitigate the covariate shift even

with considerably small expert dataset sizes. We indeed showcase this with our practical version

of the DR-BC algorithm provided in Sections D.4 and 5.4. In particular, Section D.4.2 has details

on expert data sizes.

We end this section with this remark for when the model P o is not known. Suppose we have

access to large offline data from non-expert policies. We use it to estimate the model P o as P̂ o.

We then use it in Proposition 7, also in DR-BC algorithm, by quantifying the state-distribution

error between dπe

P̂ o
̸= d̂πe

P o . Here d̂πe
P o is the empirical state distribution of the expert dataset De. We

have already illustrated the statistical error between d̂πe
P o ̸= dπe

P o in Theorem 13. From Lemma 35,

the statistical error between dπe

P̂ o
̸= dπe

P o amounts for an approximation error of ∥P̂ o − P o∥1 ≤

O(εapproxH), which is widely available in the literature [102, 142, 106, 50, 143, 3]. Putting these

things together, we get an additional error O(εapproxH2) for the DR-BC sub-optimality Theo-

rem 13. This also matches the lower bound Ω(εH2) in [117] for the unknown model P o setting

with interaction. We skip presenting this result due to these existing analyses from the literature

and a straightforward extension of techniques already presented in this paper. We instead introduce

the robust imitation learning problem in the next section.

5.3 Robust Imitation Learning

In this section, we formally introduce the imitation learning problem addressing parameter

mismatches (w.r.t transition dynamics) between the real-world and simulator models. We then

propose a robust imitation learning algorithm for this problem that is closely related to DR-BC

71

algorithm in Algorithm 4. We end this section by discussing why we need to study robust imitation

learning.

5.3.1 Problem Formulation

We use the RMDP framework [33, 34] subsuming the MDP discussions in Section 5.2.1. Con-

sider an RMDP tuple {S,A,P , γ, r, µ} where γ ∈ [0.5, 1) and the uncertainty set P is defined

as

P = ⊗(s,a)∈S×APs,a with

Ps,a = {Ps,a ∈ ∆(S) : DTV(Ps,a, P
o
s,a) ≤ ρ′r}, (5.5)

where P o = (P o
s,a, (s, a) ∈ S ×A) is the simulator model and ρ′r ∈ (0, (1− γ)/γ] is the radius of

the uncertainty set indicating the level of robustness. We assume the real-world model belongs to

this uncertainty set P .

From the RMDP literature [33, 83, 3, 35], we introduce the robust value function as V rob
π (s) =∑

a π(a|s)Qrob
π (s, a) and the corresponding robust Q-value function as Qrob

π (s, a) = r(s, a) +

γ infPs,a∈Ps,a P
⊤
s,aV

rob
π for policy π. We do not introduce the entropy regularization here. Instead

for Section 5.3, similar to [114], we consider some expert policy πe ∈ Π that need not be the

non-robust optimal policy as in Assumption 8. The robust IL problem: A robust IL policy π̂

must satisfy V rob
π̂ ≈ V rob

πe
. We have provided real-world applications that motivate this problem

formulation in Section 5.1. We make the same data assumption as in Section 5.2, that an expert

dataset De = {si, ai}Ni=1 is sampled i.i.d. from dπe
P o .

5.3.2 Robust Against Model Mismatch

We let the robustness radius parameter ρr be γρ′r/(1 − γ) ∈ (0, 1]. We define uncertainty set

M = {P ∈ P : DTV(d
πe
P , d

πe
P o) ≤ ρr}. It is straightforward from its definition and Lemma 35 that

M = P . With slight misuse, we reuse notations Ldrbc(π) and πdrbc from Section 5.2 here. We

72

define the model mismatch distributionally robust behavioral cloning loss for any policy π as

Ldrbc(π) = max
P∈M

Es∼dπeP
[DKL(π(·|s)∥πe(·|s))]. (5.6)

Now the model mismatch distributionally robust behavioral cloning policy is πdrbc = argminπ∈Π Ldrbc(π).

This immediately poses a challenge that we cannot directly solve this optimization problem since

we will need samples from all the models inM (assuming having access to all models inM is un-

realistic). So, motivated from the DR-RL literature [83, 3, 35], we now state a dual reformulation

result to overcome this challenge (similar to Proposition 7) here.

Proposition 8 (Informal). For a fixed expert policy πe ∈ Π, we have, for all π ∈ Π and ρr ∈ (0, 1],

max
P∈M

Es∼dπeP
[DKL(π(·|s)∥πe(·|s))]

= min
η∈R

Es∼dπePo
[f̃(DKL(π(·|s)∥πe(·|s)), ρr, η)].

We provide a formal statement and a proof in Section D.3. We do not assume that the model P o

is known. Now it immediately follows from Proposition 8 that the DR-BC algorithm (Algorithm 4)

can be used to address the robust IL problem albeit with a different tuning robustness parameter

ρr. We now give the sub-optimality guarantee of model mismatch DR-BC policy.

Theorem 14 (Model mismatch DR-BC sub-optimality bound). Assume small optimization error

Ldrbc(πdrbc) = εdrbc(ρr). We have V rob
πe
− V rob

πdrbc
≤ 2
√
εdrbc(ρr)/(1− γ)2.

Note that approximate results similar to that in Theorem 13 hold for model mismatch DR-BC

with similar analysis.

Remark 10. We have an O(εdrbc(ρr)H2) sub-optimality bound. When the robustness parameter

ρr = 0, we recover the non-robust BC algorithm and its quadratic horizon dependence [114]. This

sub-optimality bound is in fact tight Ω(εH2) [117] under the unknown model P o setting. It is not

immediately clear if the DR-BC method can avoid the covariate issue as in Section 5.2 when model

73

P o is known. One reason is that the dual reformulation results in Propositions 7 and 8 hold only

when either the model or the policy, respectively, is fixed.

5.3.3 Need for Robust Imitation Learning

In this section, we formally show that the IL policy can be arbitrarily bad (as bad as a random

policy) and the DR-BC policy recovers a robust performance under model parameter mismatch.

We emphasize that the DR-BC policy Eq. (5.6) despite suffering from covariate issue is still able

to mitigate the changes in the model parameters showcasing robust performance.

We consider a simple setting with P = {P o, P ′} where P o is the simulator model and P ′ is the

perturbed model. We give the following result.

Theorem 15 (Robustness Gap). There exists an uncertainty set P = {P o, P ′}, expert policy πe

for nominal model P o, discount factor γ ∈ (γo, 1], and initial state s0 ∈ S such that Vπil,P ′(s0) ≤

maxπ Vπ,P ′(s0) − c/(1− γ), where c is a positive constant, Vπ,P ′ is the value of any policy π for

model P ′, and πil is the imitation learning policy. Furthermore, for a class of uncertainty sets P ,

there exists some arbitrarily small ε > 0 with Ldrbc(πdrbc) ≤ ε with ρr ∈ (0, 1] and Lbc(πbc) ≤ ε,

such that V rob
πbc

(s0) ≤ V rob
πe

(s0)− c/(1− γ) and V rob
πe

(s0)− ε/(1− γ) ≤ V rob
πdrbc

(s0).

Remark 11. The imitation learning policy πil deployed on a perturbed model is bad with a per-

formance gap Ω(1/(1 − γ)). Since |r(s, a)| ≤ 1 uniformly by assumption, ∥Vπ,P∥ ≤ 1/(1 − γ)

for any policy π and any model P . Therefore, the difference between the optimal/expert value

function and the value function of an arbitrary policy cannot be greater than O(1/(1− γ)). Thus

the performance of an imitation learning policy πil can be as bad as an arbitrary policy in an

order sense. Furthermore, there also exists instances where the DR-BC policy is able to recover

the robust value of the expert policy whereas the BC policy is as bad as an arbitrary policy in an

order sense with a similar argument mentioned above for robust value functions.

5.4 Experiments

We aim to answer the following questions: (1) Does the DR-BC algorithm mitigate the covari-

ate shift? (2) When model mismatches are present, is the DR-BC algorithm robust compared to

74

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Gaussian noise variance Σ

1800

2000

2200

2400

2600

2800

3000

3200

Av
g.

 e
pi

so
di

c
re

wa
rd

 in
 1

0
ga

m
es

Hopper-v3
DR-BC
BC

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Gaussian noise variance Σ

1000

2000

3000

4000

5000

6000

7000
HalfCheetah-v3

DR-BC
BC

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Gaussian noise variance Σ

0

1000

2000

3000

4000

5000 Walker2d-v3
DR-BC
BC

Figure 5.1: Mitigation of covariate shift. Average episodic reward on 10 differently seeded
episodes. In every decision step, a random Gaussian vector g ∼ N (0,ΣI) is added to the ac-
tion of the BC and DR-BC agents.

0 2 4 6 8 10 12 14
Percentage change in 'gravity'

1000

2000

3000

4000

5000

Av
g.

 e
pi

so
di

c
re

wa
rd

 in
 1

0
ga

m
es DR-BC

BC

0.95 0.96 0.97 0.98 0.99 1.00
Bound on actuator range (default=1.0)

1000

2000

3000

4000

5000 DR-BC
BC

0 20 40 60 80 100 120 140
Percentage change in 'foot_joint_damping'

1500

2000

2500

3000

3500

4000

4500

5000

DR-BC
BC

Figure 5.2: Walker2d-v3 perturbation results. Average episodic reward on 10 differently
seeded episodes. From left to right, the perturbations are in: ‘gravity’, ‘actuator_ctrlrange’ of
all joints, and ‘foot_joint_damping’ of both foot joints.

the non-robust BC algorithm?

We consider three OpenAI Gym [71] environments simulated with MuJoCo [138]: Hopper-v3,

HalfCheetah-v3, and Walker2d-v3. We train both the BC and DR-BC algorithms on the

expert data generated by the pre-trained TD3 [110] policies from the RL Baselines3 Zoo reposi-

tories [144]. [124] pointed out that BC is very effective at imitating the expert when given large

number of samples. Hence, like [116, 124], we give both BC and DR-BC relatively low number

of expert trajectories. See Appendix D.4.2 for the selections of the expert datasizes for different

environments. Here we point out that since the Gym MuJoCo control tasks have the episode length

capped at 1000 steps, we roughly equate 1000 data samples to 1 expert trajectory.

We provide access to our code, more detailed explanation of the experiments, and more simu-

75

lation results in Section D.4.

5.4.1 Why Is BC the Only Fair Comparison?

As summarized in Section 5.1, most of the Imitation Learning works add additional assump-

tions in order to improve on the covariate shift issue. If the learner is given the access to a simulator

or outright the transition model P o itself, then one can estimate the state visitation distribution dπP o

however well it wants, or one can simply use the model to precisely characterize the state visitation

distribution. Once the state visitaion distribution is in hand, the covariate shift issue can be reliably

mitigated using imitation learning objective (see Theorem 10). Our goal is to use only the expert

demonstrations for mitigating the covariate shift issue as well as learning robustness against model

perturbations.

5.4.2 Fighting the Covariate Shift

As mentioned in Section 5.2.3, Eq. (5.3) implicitly perturbs the expert’s state distribution dπe
P o .

Theorem 13 suggests that with a high probability, by performing Eq. (5.3), we can capture the

learner’s state visitation distribution dπP o in the uncertainty set. And we know that the proximity to

dπP o gets us closer to the imitation learning objective and mitigates the covaraite shift issue. Now

let’s move to the empirical side. If we have captured dπe
P o many times using the uncertainty set

(based on Theorem 13) during optimization steps in training, then the slightly perturbed learned

policy π + g, where g ∼ N (0,ΣI) is a small Gaussian noise, should have its state visitation

distribution dπ+g
P o close to the one of the expert’s which is dπe

P o . It’s well-known that the occupancy

measure has a one-to-one correspondence with a policy (see Lemma 32). This suggests that the

learner π + g should be somewhat “robust” against small action perturbation. In Fig. 5.1, when a

small Gaussian noise is added to the action, it shows that the DR-BC maintains its performance

better than the BC does, which translates to being close to the expert policy based on our rationale

above.

76

5.4.3 Test For Robustness

We test the robustness of the BC and DR-BC algorithms on perturbed environments. Here we

include the simulation results on perturbed Walker2d-v3. The simulation results on perturbed

Hopper-v3 and HalfCheetah-v3 as well as more on Walker2d can be found in Appendix

D.4. We perturb Walker2d-v3 by changing the model parameter ‘gravity’, ‘actuator_ctrlrange’

of all six joints, and ‘joint_damping’ of both left and right foot joints. Fig. 5.2 shows that DR-BC

is tenacious under model perturbations. For example, in the middle figure, when the value of

‘actuator_ctrlrange’ decreases from the nominal value 1.0, the agent exerts less force on all six

joints on the walker. Such perturbation greatly undermines the controllability of the object. A

non-robust policy such as BC cannot withstand such mismatch between the training and testing

environments. Meanwhile, the DR-BC agent fights on and refuses to drop in performance for

much wider range of perturbations.

Thus DR-BC is able to mitigating the covariate shift issue as well as be robust against model

perturbations.

5.5 Conclusion

In this paper, we present a novel approach for Imitation Learning problem, Distributionally

Robust Behavioral Cloning (DR-BC) algorithm. Our proposed DR-BC algorithm utilizes the dis-

tributionally robust optimization (DRO) technique for BC to efficiently solve the covariate shift

problem in IL and also to address robustness for the changes in the real-world parameters. We

have shown through both theoretical and practical analysis that DR-BC can effectively and com-

putation efficiently combat both the covariate shift issue and model perturbations.

While in this paper we only consider the total variation distance for the inner maximization,

future work will explore using other types measures such as KL-divergence and Chi-square di-

vergence. The same applies for the loss function considered in this work which is limited to

KL-divergence. Another limitation in this paper is the restriction of the expert policy for mitigat-

ing covariate shift issue that we want to address in future. We also plan to work on the scenario

77

where the model is not known in large-scale problems using general function approximations. An

interesting practical direction could be to use DR-BC algorithm to fine-tune the policy network in

online IL algorithms like GAIL which generate more diverse and realistic examples.

78

6. OFFLINE REINFORCEMENT LEARNING USING DISTRIBUTIONALLY ROBUST

REINFORCEMENT LEARNING*

In this chapter, we propose a novel Model(transition dynamics) Pessimistic Q-Iteration (MPQI)

algorithm for finite state-action space setting and Linear-MDP Model-Pessimistic Q-Iteration (LMM-

PQI) algorithm for a linear architecture setting to solve the offline reinforcement learning problem.

6.1 Introduction

Offline reinforcement learning (RL) has gained attention due to its potential to overcome the

limitations of online data collection in various real-world applications. While RL has demonstrated

impressive performance in gaming scenarios with abundant training data, obtaining real-time data

in domains like clinical trials and online advertising is challenging and resource-intensive. To

address this issue, leveraging previously collected historical data has emerged as a promising

approach. This data-driven approach has been explored in diverse domains, including robotics

[145, 146], autonomous driving [147, 148], and healthcare [149, 150]. Offline RL, also known as

batch RL, refers to the subfield that focuses on utilizing historical data without additional explo-

ration of the environment.

The primary objective of offline RL is to learn an optimal policy only using offline/historical

data collected in the environment of interest. Furthermore, the goal of offline RL algorithms is to

achieve the desired statistical accuracy to learn an optimal policy while minimizing the number of

required offline data samples. Offline RL problem has been addressed extensively in the literature

[89, 63, 90, 91, 92, 93, 94]. Many recent works also develop deep RL algorithms and heuristics

for the offline RL problem, focusing on the algorithmic and empirical aspects [95, 96, 97, 98, 99].

Many theoretical work focus on analyzing the variations of reward pessimistic-bonus based algo-

rithm [151, 152], by identifying the necessary and sufficient conditions (data coverage assumption)

for the learned policy to be approximately optimal and characterizing the performance in terms of

*Reprinted with permission from Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, Mohammad Ghavamzadeh, “Of-
fline Reinforcement Learning using Distributionally Robust Reinforcement Learning.” Preprint, 2023.

79

sample complexity [151, 152, 153]. In this work, we focus on benchmarking our results in tabular

setting [154, 152, 155, 153, 156] and linear architecture (in particular, linear MDP [50]) setting

[151, 5, 156] for the offine RL problem.

Before stating the contributions of our work, we provide a brief overview of the results in

offline RL that are directly related to ours in Table 6.1. We mainly make comparisons with the

state-of-the-art pessimistic reward bonus type value iteration algorithms and with the recent work

which proposed transition dynamics model pessimism algorithm [156].

Algorithm Algorithm-type Data coverage assumption Suboptimality
Lower Bound

[153] - single-policy, clipped ℓ∞ O
(√

SCπ∗
(1−γ)3N

)
[152] Reward single-policy, ℓ∞ O

(√
SC+

π∗
(1−γ)5N

)
-pessimism

[153] Reward single-policy, clipped ℓ∞ O
(√

SCπ∗
(1−γ)3N

)
-pessimism

[156] Oracle-Model single-policy, ℓ∞ O

(√
S2AC+

π∗
(1−γ)4N

)
-pessimism

MPQI VI-Model single-policy, clipped ℓ∞ O

(√
SC+

π∗
(1−γ)4N

)
(this work) -pessimism

Table 6.1: Comparison of provable offline RL algorithms in the tabular setting. Here the algorithm-
type column is describing the type of algorithm that is proposed and analyzed for solving offline
RL problem. The data coverage assumption is based on the constants C+

π∗ and Cπ∗ being small and
bounded. Single-policy (with some given comparator policy π∗) concentrability ℓ∞ and clipped
ℓ∞ is C+

π∗ = maxs,a(
dπ

∗
(s,a)

µ(s,a)
) and Cπ∗ = maxs,a(

min{dπ∗
(s,a),1/|S|}

µ(s,a)
) respectively, where dπ∗

(s, a)

and µ(s, a) are both discounted occupancy measures corresponding to comparator policy π∗ and
data generating policy. Finally, the suboptimality column is the statistical bounds for the offline
RL objective Eq. (6.1). We make these more formal in further sections from Section 6.2.

We also extend our results to provide offline RL guarantee for large state space setting and

compare with existing results related to ours in Table 6.2. We mainly focus on the special linear

80

architecture of the problem where we assume the true transition dynamics is a linear MDP. We

provide more details in further sections regarding this linear architecture. We compare our Linear-

MDP Model-Pessimistic Q-Iteration (LMMPQI) algorithm with the state-of-the-art pessimistic

reward bonus type value iteration algorithms and the transition dynamics model pessimism algo-

rithm [156] under the linear architecture of linear MDP true transition dynamics.

Algorithm Algorithm-type Data coverage assumption Suboptimality
Lower Bound

[5, Theorem 3.5] - Co
π∗,φ <∞ Õ

(√
dCo

π∗,φ
(1−γ)3N

)
[5] Reward Co

π∗,φ <∞ Õ
(√

dCo
π∗,φ

(1−γ)3N

)
-pessimism

[156] Oracle-Model Cπ∗,φ <∞, Õ
(√

d2Cπ∗,φ
(1−γ)4N

)
-pessimism infs,a,s′ P

o
s,a(s

′) > 0

LMMPQI VI-Model Cπ∗,φ <∞ Õ
(√

dCπ∗,φ
(1−γ)4N

)
(this work) -pessimism

Table 6.2: Comparison of provable offline RL algorithms in the linear MDP setting. Here the
algorithm-type column is describing the type of algorithm that is proposed and analyzed for solving
offline RL problem. The data coverage assumption is based on the constants Co

π∗,φ and Cπ∗,φ

being small and bounded. Single-policy (with some given comparator policy π∗) concentrability
feature coverage is defined as Cπ∗,φ = maxx∈Rd (x⊤Σdπ∗x)/(x⊤Σµx), where Σdπ∗ and Σµ are
both feature correlation matrices that depend on discounted occupancy measures corresponding to
comparator policy π∗ and data generating policy. That is, Σdπ∗ = Es,a∼dπ∗ [φ(s, a)φ(s, a)⊤] and
Σµ = Es,a∼µ[φ(s, a)φ(s, a)

⊤] with d-dimensional feature vectors φ(s, a) ∈ Rd. Likewise, the
concentrability in [5] is Co

π∗,φ = Es,a∼dπ∗ [φ(s, a)⊤Λ−1φ(s, a)] where Λ = Es,a∼µφ(s, a)φ(s, a)
⊤.

Finally, the suboptimality column is the statistical bounds for the offline RL objective Eq. (6.1).
We make these notations more formal from Section 6.2. Here we only note the algebraic relation
Cπ∗,φ < Co

π∗,φ which we formally show in Lemma 10.

Connection of offline RL to robust RL: The robust Markov decision process (RMDP) frame-

work was first introduced in [33, 34]. The RMDP problem has been analyzed extensively in the

literature [37, 36, 38, 72, 73] providing computationally efficient algorithms, but these works are

limited to the planning problem. The learning methodologies to solve the RMDP problems termed

81

Distributionally Robust RL (DRRL) algorithms with provable guarantees have also been proposed

[41, 39, 40, 104] including our line of works presented in this thesis [1, 143, 3, 2, 35]. We empha-

size in offline RL we are only given access to offline data and cannot collect more data from the

environment for the purposes of exploration that is crucial in RL. Thus to penalize the algorithm

for visiting unseen areas in the offline data, we have reward pessimistic-bonus based algorithms

[151, 152] proposed. Recently, [156] proposes another algorithm which is penalizing the algorithm

by being pessimistic with the transition dynamics model instead of a perturbing reward. They show

initial guarantees for an unimplementable algorithm as described in Table 6.1. We note that DRRL

also focuses on learning the optimal policy for the worse pessimistic model. This important obser-

vation motivates us to solve the offline RL problem using the robust MDP framework.

Contributions of our work: (i) We propose novel implementable algorithm based on DRRL to

solve the offline RL problem in the finite state-action space. We give good suboptimal guarantees

almost matching the lower bound (see Table 6.1), that is, the suboptimality guarantee is one horizon

factor (O(1/(1−γ))) away in terms of sample complexityN from the state-of-the-art lower bound.

(ii) We also extend and propose novel implementable algorithm to solve the offline RL problem for

large a state space setting using a linear architecture. We also give better suboptimal guarantee (see

Table 6.2), that is, the suboptimality guarantee is one horizon factor (O(1/(1− γ))) away in terms

of sample complexity N from the state-of-the-art lower bound. We remark that variance-based

analyses techniques in literature [154, 153, 5] can be used to close the gap in terms of horizon and

postpone this improvement to our future works.

Notations: For a set X , we denote its cardinality as |X |. The set of probability distribution

over X is denoted as ∆(X). We define total variation distance between two distributions p and q as

DTV(p, q) = 0.5 ∥p− q∥1. For any vector x and a positive semidefinite matrixA, ∥x∥A =
√
x⊤Ax.

Let tr(·) denote the trace operator.

6.2 Problem Formulation and Preliminaries

As in the offline RL literature [151, 152, 153], we consider Markov decision processes (MDPs)

to formulate this problem. We consider an MDP tuple (S,A, r, P o, γ, ρ) where S is a finite state

82

space,A is a finite set of actions, r : S ×A → [0, 1] is a stochastic reward function, P o : S ×A →

∆(S) is a probability transition function (model) describing an environment, γ is a discount factor,

and ρ is the starting state distribution. A stationary (stochastic) policy π : S → ∆(A) specifies a

distribution over actions in each state. Each policy π ∈ Π induces a discounted occupancy density

over state-action pairs dπ : S × A → [0, 1] defined as dπ(s, a) = (1 − γ)
∑∞

t=0 γ
tPt(st = s, at =

a; π), where Pt(st = s, at = a; π) denotes the visitation probability of state-action pair (s, a) at

time step t, starting at s0 ∼ ρ(·) and following π on the model P o. For simplicity, we denote

Pt(st = s, at = a; π) by dπt (s, a).

The value function of a policy π is V π(s) = E
[∑∞

t=0 γ
trt | s0 = s, at ∼ π(·|st), st+1 ∼ P o

st,at , ∀ t ≥ 0
]

starting at state s ∈ S where rt ∼ r(st, at). Similarly, we define Q function of a policy

Qπ(s, a) = E

[
∞∑
t=0

γtrt | s0 = s, a0 = a, at ∼ π(·|st), st+1 ∼ P o
st,at , ∀ t > 0

]
.

We study offline RL where we assume access only to a historical and fixed dataset of inter-

actions D = {(si, ai, ri, s′i)}Ni=1, where ri ∼ r(si, ai), s′i ∼ P o
si,ai

. We assume that (si, ai) pairs

are generated i.i.d. according to a data distribution µ ∈ ∆(S × A). Furthermore, without loss of

generality, we assume known rewards, that is ri = r(si, ai). The goal of offline RL is to learn a

good policy π̂ based on the offline data D. More formally, the goal is to characterize the statistical

gap

Es0∼d0 [V
π∗
(s0)− ED[V

π̂(s0)]], (6.1)

where d0 = ρ is the starting state distribution and the randomness for ED is from offline data D.

6.3 Model-Pessimistic Q-Iteration (MPQI)

In this section, we first propose our MPQI algorithm to solve offline RL problem in the tabular

setting (finite state-action space). We also provide its theoretical guarantees and give complete

proof.

83

6.3.1 MPQI Algorithm

In this section, we first mention the required details that help us to propose our MPQI algo-

rithm in Algorithm 5. We denote N(s, a), N(s, a, s′) as the number of samples for (s, a)-pair and

(s, a, s′)-tuple in the offline data D. Now, the maximum likelihood estimate for the model P o
s,a(s

′)

for any s, a, s′ is given by

P̂ o
s,a(s

′) =
N(s, a, s′)

N(s, a)
· 1{N(s, a) ≥ 1}+ 1

|S|
· 1{N(s, a) = 0}.

We now construct P̂ with small data-dependent radius as follows:

P̂ =
⊗
s,a

P̂s,a where

P̂s,a = {P ∈ ∆(S) : DTV(P, P̂
o
s,a) ≤ min{1,

√
|S| log(2|S × A|/δ)

8N(s, a)
1(N(s, a) ≥ 1)}}.

This set P̂ referred to as uncertainty set in robust RL literature satisfies SA-rectangularity [33,

1, 143, 2, 3, 35]. This is an important construction which enables the usage of robust Bellman

equation [33]. We would like to point out that the uncertainty set construction in [156] does not

satisfy SA-rectangularity. Letting Q be any Q-function, we define the robust Bellman operator T̂

for the uncertainty set P̂ as follows for every s, a-pair:

(T̂Q)(s, a) = r(s, a) + γ inf
Ps,a∈P̂s,a

Es′∼Ps,a [max
b
Q(s′, b)].

We remark on the efficient computation of the above robust Bellman equation here. We use our

practical algorithms from the Chapters 3 and 4 to get an implementable algorithm for the Algo-

rithm 5.

84

Algorithm 5 Model-Pessimistic Q-Iteration (MPQI) Algorithm

1: Input: Offline data D = (si, ai, ri, s
′
i)
N
i=1

2: Initialize: Q0 ≡ 0

3: for k = 0, · · · , K − 1 do

4: Pessimistic Q-update: Compute the next iterate Qk+1 = T̂Qk

5: end for

6: Output: πK = argmaxaQK(s, a)

6.3.2 Results and Proofs

Here is a useful concentration inequality for our proofs.

Lemma 6 (Hoeffding’s inequality [157, see Theorem 2.8]). Let X1, . . . , Xn be independent ran-

dom variables such that Xi takes its values in [ai, bi] almost surely for all i ≤ n. Let

S =
n∑

i=1

(Xi − E [Xi]).

Then for every t > 0,

P (S ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Furthermore, if X1, . . . , Xn are a sequence of independent, identically distributed random vari-

ables with mean µ. Let Xn = 1
n

∑n
i=1Xi. Suppose that Xi ∈ [a, b], ∀i. Then for all t > 0

P
(∣∣Xn − µ

∣∣ ≥ t
)
≤ 2exp

(
− 2nt2

(b− a)2

)
.

We first make the observation that the true model P o lies in the uncertainty set P̂ with high

probability. Intuitively, the empirical estimator P̂ o of P o are statistically closer which is dependent

on the number of samples. We make this observation and intuition formal in the lemma below.

Lemma 7. We have P o ∈ P̂ with probability at least 1− δ.

85

Proof. We start with the fact that DTV(p, q) ≤ 1 for any distributions p, q. For the case N(s, a) <

1, i.e., N(s, a) = 0, it is trivial that P o
s,a ∈ P̂s,a, almost surely, since P̂s,a = ∆(S).

From Hoeffding’s inequality (Lemma 6), we have
∥∥∥P o

s,a − P̂s,a

∥∥∥
1
≤
√
|S| log(2/δ)/(2N(s, a))

for any s, a pair with probability at least 1 − δ/(|S × A|). Thus ⊗s,aP
o
s,a ∈ ⊗s,aP̂s,a holds with

probability at least 1− δ.

We are now ready to present our main result of this chapter. With the above result, we now

provide the offline RL suboptimality guarantee below.

Theorem 16. Let πK be the MPQI policy afterK iterations. With probability at least 1−δ it holds

that

Es0∼d0 [V
π∗
(s0)− ED[V

πK (s0)]] ≤
4γ
√
C+

π∗

(1− γ)2

√
2|S| log(2|S × A|/δ)

N
+

2γK+1

(1− γ)2
.

Proof. We first make important definitions that will be useful for our analyses. We denote the value

function of policy π for the transition dynamics model P as V π
P . We now denote the robust value

function [2, 35, 3] for uncertainty set P̂ as V π
P̂ = minP∈P̂ V

π
P and its optimal robust policy as π̂∗ =

argmaxπ V
π
P̂ . We let Qπ

P̂ be its corresponding robust Q-function. From robust RL [2, 35, 3] we can

write the following robust Bellman equation: Qπ
P̂(s, a) = r(s, a)+γminPs,a∈P̂s,a

Es′∼Ps,a(V
π
P̂ (s

′)).

To make it notationally easy, we write V π∗ (dπ) as V π∗
P o (dπP o) making the dependence on the model

P o explicit.

We now start analyzing offline RL suboptimality as:

Es0∼d0 [V
π∗

P o (s0)− V πK
P o (s0)] = Es0∼d0 [V

π∗

P o (s0)− V πK

P̂
(s0) + V πK

P̂
(s0)− V πK

P o (s0)]

(a)

≤ Es0∼d0 [V
π∗

P o (s0)− V πK

P̂
(s0)]

= Es0∼d0 [V
π∗

P o (s0)− V π̂∗

P̂ (s0) + V π̂∗

P̂ (s0)− V πK

P̂
(s0)]

≤ Es0∼d0 [V
π∗

P o (s0)− V π̂∗

P̂ (s0)] +
∥∥∥V π̂∗

P̂ − V
πK

P̂

∥∥∥
∞

(b)

≤ Es0∼d0 [V
π∗

P o (s0)− V π̂∗

P̂ (s0)] +
2γK+1

(1− γ)2
, (6.2)

86

where (a) follows from Lemma 7 and definition of robust value function V πK

P̂
(s0) and (b) follows

from robust amplification lemma [2, Lemma 10, eq.(28)]. For the rest of the analysis, we focus on

analyzing Es0∼d0 [V
π∗
P o (s0)− V π̂∗

P̂ (s0)].

Observe that,

Es0∼d0 [V
π∗

P o (s0)− V π̂∗

P̂ (s0)] = Es0∼d0 [Q
π∗

P o(s0, π
∗(s0))−Qπ̂∗

P̂ (s0, π̂
∗(s0))]

(c)

≤ Es0∼d0 [Q
π∗

P o(s0, π
∗(s0))−Qπ̂∗

P̂ (s0, π
∗(s0))]

(d)
= Es0∼d0 [r(s0, π

∗(s0)) + γEs′∼P o
s0,π

∗(s0)
(V π∗

P o (s′))

− r(s0, π∗(s0))− γ min
Ps0,π

∗(s0)∈P̂s0,π
∗(s0)

Es′∼Ps0,π
∗(s0)

(V π̂∗

P̂ (s′))]

= Es0∼d0 [γEs′∼P o
s0,π

∗(s0)
(V π∗

P o (s′))− γEs′∼P o
s0,π

∗(s0)
(V π̂∗

P̂ (s′))]+

Es0∼d0 [γEs′∼P o
s0,π

∗(s0)
(V π̂∗

P̂ (s′))]− γ min
Ps0,π

∗(s0)∈P̂s0,π
∗(s0)

Es′∼Ps0,π
∗(s0)

(V π̂∗

P̂ (s′))]

= Es0∼d0 [γEs′∼P o
s0,π

∗(s0)
(V π∗

P o (s′)− V π̂∗

P̂ (s′))]+

Es0∼d0 [γEs′∼P o
s0,π

∗(s0)
(V π̂∗

P̂ (s′))]− γ min
Ps0,π

∗(s0)∈P̂s0,π
∗(s0)

Es′∼Ps0,π
∗(s0)

(V π̂∗

P̂ (s′))︸ ︷︷ ︸
(I)

], (6.3)

where (c) follows since π̂∗ is optimal robust policy of V π
P̂ and (d) follows from classical and robust

Bellman equations.

Analyzing (I) in Eq. (6.3) for any Ps0,π∗(s0) ∈ P̂s0,π∗(s0):

(I) = Es0∼d0 [γEs′∼P o
s0,π

∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼P̂ o
s0,π

∗(s0)
(V π̂∗

P̂ (s′))

γEs′∼P̂ o
s0,π

∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼Ps0,π
∗(s0)

(V π̂∗

P̂ (s′))]

(g)

≤ γ

1− γ
min{1,

√
log(2|S × A|/δ)
8N(s0, π∗(s0))

1(N(s0, π
∗(s0)) ≥ 1)}+

γEs0∼d0 [Es′∼P̂ o
s0,π

∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼Ps0,π
∗(s0)

(V π̂∗

P̂ (s′))]

(h)

≤ 2γ

1− γ

√
log(2|S × A|/δ)
8N(s0, π∗(s0))

1(N(s0, π
∗(s0)) ≥ 1), (6.4)

87

where (g), holds with probability at least 1− δ, follows from Holder’s inequality and by Lemma 7,

and (h) by Holder’s inequality and the definition of uncertainty set P̂ .

Substituting Eq. (6.4) back in Eq. (6.3) and via recursion we get,

Es0∼d0 [V
π∗

P o (s0)− V π̂∗

P̂ (s0)] ≤
2γ

1− γ

∞∑
t=0

γtEs∼dπ
∗

Po,t
[

√
log(2|S × A|/δ)
8N(s, π∗(s))

1(N(s, π∗(s)) ≥ 1)]

=
2γ

(1− γ)2
Es∼dπ

∗
Po
[

√
log(2|S × A|/δ)
8N(s, π∗(s))

1(N(s, π∗(s)) ≥ 1)],

where last equality follows by the definition of state-distribution dπ∗
P o = (1−γ)

∑∞
t=0 γ

tdπ
∗

P o,t. Now,

putting this back in Eq. (6.2), the offline RL guarantee becomes:

ED[Es0∼d0 [V
π∗

P o (s0)− V πK
P o (s0)]] ≤

2γK+1

(1− γ)2
+

2γ

(1− γ)2
Es∼dπ

∗
Po
[ED[

√
|S| log(2|S × A|/δ)

8N(s, π∗(s))
1(N(s, π∗(s)) ≥ 1)]]

(i)

≤ 2γK+1

(1− γ)2
+

2γ

(1− γ)2
Es∼dπ

∗
Po
[

√
16|S| log(2|S × A|/δ)

8Nµ(s, π∗(s))
]

(j)

≤ 2γK+1

(1− γ)2
+

2γ

(1− γ)2
Es∼dπ

∗
Po
[

√
C+

π∗16|S| log(2|S × A|/δ)
8Ndπ

∗
P o(s, π∗(s))

]

(k)

≤ 2γK+1

(1− γ)2
+

4γ
√
C+

π∗

(1− γ)2

√
2|S| log(2|S × A|/δ)

N
,

where (i) follows from [152, Lemma 14], (j) by recalling the definition of single-policy clipped

concentrability with comparator policy π∗, that is,

C+
π∗ = max

s,a

dπ
∗

P o(s, a)

µ(s, a)
,

and (k) by Cauchy-Schwarz inequality and recognizing dπ∗
P o(·, π∗(·)) as a probability distribution.

This completes the proof of this main theorem.

88

6.4 Linear-MDP Model-Pessimistic Q-Iteration (LMMPQI)

In this section, we first propose our LMMPQI algorithm to solve offline RL problem in the

linear representation setting with large state space and finite actions. We also provide its theoretical

guarantees and give complete proof.

6.4.1 LMMPQI Algorithm

In this section, we first mention the required details that help us to propose our LMMPQI

algorithm in Algorithm 6.

We now define the linear architecture called linear MDP used in RL literature [50, 151, 5] for

handling large state space setting.

Definition 1 (Linear MDP [50]). We say an MDP M = (S,A, r, P, γ) is a linear MDP with

a known feature map φ : S × A → Rd, if there exists d unknown (signed) measures ρ =

(ρ1(·), . . . , ρd(·)) over S and an unknown vector θ ∈ Rd, such that for any (s, a) ∈ S × A,

we have

Ps,a = ⟨φ(s, a), ρ(·)⟩, r(s, a) = ⟨φ(s, a), θ⟩. (6.5)

We now state the linear architecture assumption which we use to propose the algorithm and

give the offline RL suboptimality guarantee Eq. (6.1).

Assumption 9 (Linear MDP assumption). 1. M = (S,A, r, P o, γ) is linear MDP with ρo, φ.

Wolog we assume r is known.

2. ∥φ(s, a)∥ ≤ 1, for all (s, a) ∈ S × A and φmin = mins,a:φ(s,a)>0 φ(s, a) . Wolog we assume

Λ = Es,a∼µφ(s, a)φ(s, a)
⊤ is positive semi-definite (psd) matrix.

Let us define the following useful matrix notations. With some abuse of notation, let P o be an

|S||A| × |S| matrix for the transition dynamics P o
s,a(·), Φ be an |S||A| × d matrix for the feature

vector φ(s, a) ∈ Rd, and ρo be a d×|S|matrix for the functionals ρo(·). We consider the following

89

multi-variate linear regression problem to estimate the model P o.

P̂ o = argmin
Φρ

N∑
i=1

(φ(si, ai)
⊤ρ(s′i)− φ(si, ai)⊤ρo(s′i))2.

Furthermore, we note by the structure of the offline dataset D, we know δ(s′i) is an unbiased esti-

mate of P o
si,ai

(s′i) = φ(si, ai)
⊤ρo(s′i) which can be used as the target in the above linear regression

problem. Following [106, Section 8.3], there is a closed-form solution to the above linear regres-

sion problem as follows. That is, the linear MDP model-based estimate P̂ o can be written as:

P̂ o
s,a(s

′) = φ(s, a)⊤ρ̂(s′) where

ρ̂(s′) =
1

N

N∑
t=1

Λ−1
N φ(st, at)1(s

′ = s′t), ΛN =
λ

N
I +

1

N

N∑
t=1

φ(st, at)φ(st, at)
⊤.

Fix δ ∈ (0, 1). We now define M̂ with small data-dependent radius as follows:

M̂ =
⊗
i∈[d]

M̂i where M̂i = {ρi ∈ ∆(S) : dV(ρi, ρ̂i) ≤ Õ
(

log(N/δ)

φmin(1− γ)
√
N

)
}.

Here dV is integral probability metric (IPM) defined as dV(p, q) = supV ∈V |
∫
s
(p(s)−q(s))V (s)ds|

with V = {V ∈ R|S| : ∥V ∥∞ ≤ 1/(1−γ)}, and Õ involves logarithmic dependence on parameters

d, 1/(1− γ), and N which we ignore for brevity. Furthermore, we define P̂ as follows:

P̂ = {

∑
i∈[d]

φi(s, a)ρi(s
′)

sas′

: ρi ∈ M̂i, ∀i ∈ [d]}.

This set P̂ referred to as uncertainty set in robust RL literature satisfies d-rectangularity [158]. We

note that all models in the set P̂ are linear MDP models. This is an important construction which

enables the usage of robust Bellman equation [33] or specifically [158, Eq.(6)]. We would like to

point out that the uncertainty set construction in [156] does not satisfy d-rectangularity. Letting Q

be any Q-function, we define the robust Bellman operator L̂ for the uncertainty set P̂ as follows

90

for every s, a-pair:

(L̂Q)(s, a) = r(s, a) + γ inf
Ps,a∈P̂s,a

Es′∼Ps,a [max
b
Q(s′, b)].

By construction of the linear MDP models set P̂ , the robust Bellman operator L̂ further simplifies

to the following

(L̂Q)(s, a) = r(s, a) + γ
∑
i∈[d]

φi(s, a) min
ρi∈M̂i

Es′∼ρi(max
b
Q(s′, b)). (6.6)

We remark on the efficient computation of Eq. (6.6) here. Firstly we note that we use distribution-

ally robust optimization tools directly on the optimization over the sets M̂i for all i ∈ [d]. Now

with the known metric relation dV(p, q) = DTV(p, q)/(1− γ) [159, Theorem 2], we use our prac-

tical algorithms from the Chapters 2 and 4 to get an implementable algorithm for the Algorithm 6.

Algorithm 6 Linear-MDP Model-Pessimistic Q-Iteration (MPQI) Algorithm

1: Input: Offline data D = (si, ai, ri, s
′
i)
N
i=1

2: Initialize: Q0 ≡ 0, Evaluate: ΛN with λ = N3/4.

3: for k = 0, · · · , K − 1 do

4: Linear-MDP Model-Pessimistic Q-update:

Compute the next iterate Qk+1 = L̂Qk Eq. (6.6)

5: end for

6: Output: πK = argmaxaQK(s, a)

6.4.2 Results and Proofs

In the following, we always use c > 0 for a small universal constant whose exact value might

be changing.

91

We first make similar observation as in Lemma 7 that the true model functionals ρo lies in the

uncertainty set M̂ with high probability. We make this formal in the lemma below.

Lemma 8. We have ρo ∈ M̂ with probability at least 1− δ.

Proof. We start with the following algebraic inequality,

1

N

N∑
t=1

sup
V ∈V
|
∫
S
(P o

st,at − P̂st,at)V (ds′)| = 1

N

N∑
t=1

d∑
i=1

φi(st, at) · dV(ρ
o
i , ρ̂i)

≥
d∑

i=1

φmin · dV(ρ
o
i , ρ̂i) ≥ φmind ·max

i∈[d]
dV(ρ

o
i , ρ̂i).

From [106, Lemma 8.7], we have |
∫
S(P

o
st,at−P̂st,at)V (ds′)| ≤ Õ

(
d log(N/δ)/((1− γ)

√
N)
)

with probability at least 1 − δ for any t, V uniformly. Thus we have a high probability event that

ρoi ∈ M̂i for any i ∈ [d] simultaneously with probability at least 1− δ.

Before presenting our main result here is an important high probability result.

Lemma 9. Let λ = N3/4. For all s, a simultaneously, with probability at least 1 − δ we have

ED∥φ(s, a)∥Λ−1
N
≤ ∥φ(s, a)∥Λ−1 +

d
4
√

c log(d/δ)
8√
N

where ΛN = λ
N
I + 1

N

∑N
t=1 φ(st, at)φ(st, at)

⊤ and

Λ = Es,a∼µφ(s, a)φ(s, a)
⊤.

Proof. Using the fact
√
a+ b ≤

√
a+
√
b and for any realization of D, we only need to show that

∥φ(s, a)∥2
Λ−1
N

−∥φ(s, a)∥2Λ−1 ≤ d2
√

c log(d/δ)

N1/4 . Furthermore, we have ∥φ(s, a)∥2
Λ−1
N

−∥φ(s, a)∥2Λ−1 =

φ(s, a)⊤(Λ−1
N − Λ−1)φ(s, a) = φ(s, a)⊤Λ−1

N (Λ− ΛN)Λ
−1φ(s, a).

For psd matrices we have tr(AB) ≤ tr(A)tr(B). We further have

φ(s, a)⊤Λ−1
N Λ−1φ(s, a) = tr(φ(s, a)φ(s, a)⊤Λ−1

N Λ−1) ≤ dtr(Λ−1
N Λ−1) = dtr(Λ−1Λ−1

N)

(a)

≤ d2 sup
x∈Rd

x⊤Λx

x⊤ΛNx
≤ d2 sup

x∈Rd

∥x∥22
(λ/N)∥x∥22

= d2N1/4,

where (a) follows from [156, Lemma 15] and last equality follows because λ = N3/4.

92

From the feature vector properties, we have Es,a∼µ[φ(s, a)φ(s, a)
⊤] ≤ 1d×d. So, from Hoeffd-

ing’s inequality Lemma 6, we get Λ − ΛN ≤
√

c log(1/δ)
N

1d×d with probability at least 1 − δ/d2.

Now combining the above, we get the required result.

We are now ready to present our main result of this chapter. With the above result, we now

provide the offline RL suboptimality guarantee below.

Theorem 17. Let Assumption 9 hold. Let πK be the LMMPQI algorithm (Algorithm 6) policy after

K iterations. With probability at least 1− δ it holds that

Es0∼d0 [V
π∗
(s0)− ED[V

πK (s0)]] ≤
2γK+1

(1− γ)2
+

2γ

(1− γ)2
Õ

(√
log(dN/δ)

N

)
max{

√
dCπ∗,φ,

d

φmin

}+ d

(1− γ)2
Õ
(
(log(d/δ))3/4

N5/8

)
.

Proof. We first recall our analyses of Theorem 16. We denote the value function of policy π

for the transition dynamics model P as V π
P . We now denote the robust value function [2, 35, 3]

for uncertainty set P̂ as V π
P̂ = minP∈P̂ V

π
P and its optimal robust policy as π̂∗ = argmaxπ V

π
P̂ .

We let Qπ
P̂ be its corresponding robust Q-function. From robust RL [2, 35, 3] we can write the

following robust Bellman equation: Qπ
P̂(s, a) = r(s, a)+γminPs,a∈P̂s,a

Es′∼Ps,a(V
π
P̂ (s

′)). To make

it notationally easy, we write V π∗ (dπ) as V π∗
P o (dπP o) making the dependence on the model P o

explicit.

We again recall Eq. (6.2):

Es0∼d0 [V
π∗

P o (s0)− V πK
P o (s0)] ≤ Es0∼d0 [V

π∗

P o (s0)− V π̂∗

P̂ (s0)] +
2γK+1

(1− γ)2
. (6.7)

Further recalling Eq. (6.3) we know,

Es0∼d0 [V
π∗

P o (s0)− V π̂∗

P̂ (s0)] ≤ Es0∼d0 [γEs′∼P o
s0,π

∗(s0)
(V π∗

P o (s′)− V π̂∗

P̂ (s′))]+

Es0∼d0 [γEs′∼P o
s0,π

∗(s0)
(V π̂∗

P̂ (s′))]− γ min
Ps0,π

∗(s0)∈P̂s0,π
∗(s0)

Es′∼Ps0,π
∗(s0)

(V π̂∗

P̂ (s′))︸ ︷︷ ︸
(I)

]. (6.8)

93

Analyzing (I) in Eq. (6.8) for any P ∈ P̂:

(I) = Es0∼d0 [γEs′∼P o
s0,π

∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼P̂ o
s0,π

∗(s0)
(V π̂∗

P̂ (s′))

+ γEs′∼P̂ o
s0,π

∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼Ps0,π
∗(s0)

(V π̂∗

P̂ (s′))]

(g)

≤ γ

1− γ
∥φ(s0, π∗(s0))∥Λ−1

N
Õ

(√
log(d/δ)

N

)
+

γEs0∼d0 [Es′∼P̂ o
s0,π

∗(s0)
(V̂ π̂∗

(s′))− Es′∼Ps0,π
∗(s0)

(V̂ π̂∗
(s′))]

(h)

≤ γ

1− γ
∥φ(s0, π∗(s0))∥Λ−1

N
Õ

(√
log(d/δ)

N

)
+
∑
i∈[d]

φi(s0, π
∗(s0))dV(ρ̂i, ρi)

(h′)

≤ γ

1− γ
∥φ(s0, π∗(s0))∥Λ−1

N
Õ

(√
log(d/δ)

N

)
+ Õ

(
d log(N/δ)

φmin(1− γ)
√
N

)
, (6.9)

where (g) holds with probability at least 1−δ, which follows from [106, Lemma 8.7], and (h), (h′)

follows by the definition of set P̂ .

Substituting Eq. (6.9) back in Eq. (6.8) and via recursion we get,

Es0∼d0 [V
π∗

P o (s0)− V π̂∗

P̂ (s0)]

≤ 2γ

1− γ

∞∑
t=0

γtEs∼dπ
∗

Po,t
[∥φ(s, π∗(s))∥Λ−1

N
Õ

(√
log(d/δ)

N

)
+
dÕ(log(N/δ))
φmin

√
N

]

=
2γdÕ(log(N/δ))
φmin(1− γ)2

√
N

+
2γ

(1− γ)2
Õ

(√
log(d/δ)

N

)
Es∼dπ

∗
Po
[∥φ(s, π∗(s))∥Λ−1

N
],

where last equality follows by the definition of state-distribution dπ∗
P o = (1−γ)

∑∞
t=0 γ

tdπ
∗

P o,t. Now,

putting this back in Eq. (6.7), the offline RL guarantee becomes:

ED[Es0∼d0 [V
π∗

P o (s0)− V πK
P o (s0)]] ≤

2γK+1

(1− γ)2
+

2γdÕ(log(N/δ))
φmin(1− γ)2

√
N
+

2γ

(1− γ)2
Õ

(√
log(d/δ)

N

)
Es∼dπ

∗
Po
[ED[∥φ(s, π∗(s))∥Λ−1

N
]]

(i)

≤ 2γK+1

(1− γ)2
+

2γdÕ(log(N/δ))
φmin(1− γ)2

√
N
+

94

2γ

(1− γ)2
Õ

(√
log(d/δ)

N

)
(Es∼dπ

∗
Po
[∥φ(s, π∗(s))∥Λ−1] +

d 4
√
c log(d/δ)

8√
N

)

(j)

≤ 2γK+1

(1− γ)2
+

2γdÕ(log(N/δ))
φmin(1− γ)2

√
N
+

2γ

(1− γ)2
Õ

(√
log(d/δ)

N

)
(
√
dCπ∗,φ +

d 4
√
c log(d/δ)

8√
N

)

≤ 2γK+1

(1− γ)2
+

2γ

(1− γ)2
Õ

(√
log(dN/δ)

N

)
max{

√
dCπ∗,φ,

d

φmin

}

+
d

(1− γ)2
Õ
(
(log(d/δ))3/4

N5/8

)
,

where (i) follows from Lemma 9 with probability at least 1− δ, (j) follows by similar analysis in

[156, Section C.3] and single-policy concentrability with comparator policy π∗:

Cπ∗,φ = max
x∈Rd

x⊤Σdπ
∗

Po
x

x⊤Σµx
.

This completes the proof of this main theorem.

We remark that wolog we scale the feature vector space such that it satisfies φmin ≥
√
d/Cπ∗,φ.

With this, the offline RL suboptimality guarantee for the linear architecture is Õ
(√

dCπ∗,φ
(1−γ)4N

)
as

mentioned in Table 6.2.

We show the relation between feature concentrability Co
π∗,φ [5] and Cπ∗,φ to complete the com-

parisons provided in Table 6.2.

Lemma 10. Cπ∗,φ ≤ Co
π∗,φ.

Proof. Let us define matrix M = Λ−1/2Σdπ∗Λ−1/2. From definition, we immediately see that

Cπ∗,φ can be rewritten as maxx∈Rd (x⊤Mx)/(∥x∥22). So, from linear algebra, it is straightfor-

ward that Cπ∗,φ is the maximum eigenvalue of M . Again from definition, we have Co
π∗,φ =

Es,a∼dπ∗ [φ(s, a)⊤Λ−1φ(s, a)] = tr(Es,a∼dπ∗ [Λ−1/2φ(s, a)φ(s, a)⊤Λ−1/2])

= tr(Λ−1/2Es,a∼dπ
∗ [φ(s, a)φ(s, a)⊤]Λ−1/2). Thus Co

π∗,φ is the trace of M . Now, since the trace of

M is the sum of eigenvalues of M , the lemma quickly follows.

95

6.5 Conclusion

In this work, we presented a novel offline RL algorithm called Model-Pessimism Q-Iteration

algorithm with provably optimal performance in finite/large state space and finite action space

using only offline data. We also provided performance comparisons in terms of provable offline

RL suboptimality guarantees with state-of-the-art algorithms.

One limitation of our present work is that there is a gap of one factor of 1/(1 − γ) from the

lower bound for our MPQI/LMMPQI’s suboptimality guarantee. In future work, we will tighten

this bound. More important future direction is to provide offline RL algorithms based on MPQI

that can handle large state space and action space under function approximation setting.

96

7. CONCLUSION

In this final chapter of this dissertation, we conclude with the summary of this thesis and also

discuss future research directions in line with what was discussed thus far.

In Chapter 2, we have developed an online model-free reinforcement learning algorithm, called

RLSPI, to learn control policies that can handle parameter uncertainties in large state spaces. Un-

like previous empirical approaches, our algorithm provides theoretical guarantees for the perfor-

mance of the learned policy. It is the first model-free reinforcement learning algorithm with func-

tion approximation designed specifically for acquiring an optimal robust policy. We have also

conducted empirical evaluations on standard benchmark RL problems to assess the effectiveness

of our RLSPI algorithm. This was our first adventure and contribution in the robust RL research

area.

In Chapter 3, we propose the Robust Empirical Value Iteration (REVI) algorithm, which is a

model-based approach for robust reinforcement learning. Our algorithm approximates the robust

Bellman updates in robust dynamic programming. We specifically investigate four distinct uncer-

tainty sets - total variation, chi-square, Kullback-Leibler, - and provide sample complexity results

for the learned policy compared to the optimal robust policy. To highlight the theoretical aspects of

our REVI algorithm, we showcase its performance in the “Gambler’s Problem" and “Frozen Lake“

environments. Overall, our paper presents a novel approach for robust reinforcement learning and

provides insights into its theoretical properties and empirical performance. We also improve our

theoretical results in our recent work [35].

In Chapter 4, we introduced a new robust reinforcement learning (RL) algorithm known as

the Robust Fitted Q-Iteration algorithm. This algorithm offers provably optimal performance for

a Reinforcement MDP (RMDP) with a large state space, utilizing only offline data and function

approximation. Additionally, we showcased the remarkable performance of our proposed algo-

rithm by conducting experiments on well-known benchmark problems. This work demonstrates

the effectiveness of our algorithm in tackling robust RL tasks and contributes to the advancement

97

of RL algorithms in challenging environments.

In the preliminary dissertation, we introduced the problem of imitation learning and proposing a

new algorithm using the principled approach of distributionally robust optimization. In Chapter 5,

we introduce a new algorithm called Distributionally Robust Behavioral Cloning (DR-BC) as a

novel approach to the Imitation Learning (IL) problem. Our proposed DR-BC algorithm leverages

distributionally robust optimization (DRO) techniques to address the covariate shift problem in IL

and enhance robustness against changes in real-world parameters. Through rigorous theoretical

analysis and practical evaluations, we demonstrate that DR-BC effectively mitigates the covariate

shift issue and model perturbations while being computationally efficient. This work presents a

valuable contribution to the field of IL by providing an innovative solution that tackles both the

covariate shift problem and robustness challenges.

In our final chapter Chapter 6, we introduced a novel offline RL algorithm known as the Model-

Pessimistic Q-Iteration algorithm. This algorithm offers provably optimal performance in environ-

ments with finite states and action spaces by leveraging solely offline data. We also provided

performance comparisons, specifically focusing on provable suboptimality guarantees in offline

RL, with state-of-the-art algorithms. We also extended our setting to linear architecture to sup-

port for large state spaces leading to our Linear-MDP Model-Pessimistic Q-Iteration algorithm.

This research contributes to the field by presenting an innovative algorithm that achieves optimal

performance hoping for future extensions to large scale problems under general large function

architectures.

Finally, as a potential future direction where the contributions of this thesis will be impactful,

we hope to utilize policy gradient methods for robust RL. Due to its simplicity in a model-free

environment, scalability to large/continuous state and action spaces, and applicability to any dif-

ferentiable policy parameterization, the policy gradient method [160, 161, 162], which models and

optimizes the policy directly, has been widely used in RL. The development of a policy gradient

method for robust RL with demonstrable resilience to model uncertainty and optimality guarantee

still remains substantially open in the robust RL literature. Towards this, we hope to motivate this

98

future direction based on the current research in this dissertation.

As final comments to end this chapter and dissertation, we have worked on various domains

of RL like robust RL, offline RL, imitation learning with the distributionally robust optimization

or robust MDP techniques working towards making real world impact by RL algorithms and also

giving theoretical support to make the ideas provably concrete.

99

REFERENCES

[1] K. Panaganti and D. Kalathil, “Robust reinforcement learning using least squares policy

iteration with provable performance guarantees,” in International Conference on Machine

Learning (ICML), 2021, pp. 511–520. xi, 2, 23, 24, 26, 44, 62, 82, 84, 182

[2] ——, “Sample complexity of robust reinforcement learning with a generative model,”

in International Conference on Artificial Intelligence and Statistics (AISTATS), 2022, pp.

9582–9602. [Online]. Available: https://proceedings.mlr.press/v151/panaganti22a.html xi,

xiii, 2, 25, 38, 44, 56, 82, 84, 86, 87, 93, 182

[3] K. Panaganti, Z. Xu, D. Kalathil, and M. Ghavamzadeh, “Robust reinforcement learning

using offline data,” Advances in Neural Information Processing Systems (NeurIPS), 2022.

xi, xii, 3, 58, 71, 72, 73, 82, 84, 86, 93, 194

[4] G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen, “Breaking the sample size barrier in model-

based reinforcement learning with a generative model,” in Advances in Neural Information

Processing Systems, vol. 33, 2020, pp. 12 861–12 872. xiii, 25, 32, 181

[5] M. Yin, Y. Duan, M. Wang, and Y.-X. Wang, “Near-optimal offline reinforcement learn-

ing with linear representation: Leveraging variance information with pessimism,” arXiv

preprint arXiv:2203.05804, 2022. xiii, 80, 81, 82, 89, 95

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

1, 39, 199, 204

[7] S. Meyn, Control Systems and Reinforcement Learning. Cambridge University Press, 2022.

1

[8] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning. Springer,

2006, vol. 4, no. 4. 1

100

https://proceedings.mlr.press/v151/panaganti22a.html

[9] M. Ahn, H. Zhu, K. Hartikainen, H. Ponte, A. Gupta, S. Levine, and V. Kumar, “ROBEL:

RObotics BEnchmarks for Learning with low-cost robots,” in Conference on Robot Learn-

ing (CoRL), 2019. 1

[10] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,

E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver, “Mastering Atari, Go,

chess and shogi by planning with a learned model,” Nature, vol. 588, no. 7839, pp. 604–

609, 2020. 1

[11] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control: Learning behaviors by

latent imagination,” arXiv preprint arXiv:1912.01603, 2019. 1

[12] “IBM Watson Health.” [Online]. Available: https://www.ibm.com/watson-health 1

[13] “Berkeley Artificial Intelligence Research.” [Online]. Available: https://bair.berkeley.edu/

software.html 1

[14] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement

learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38,

2017. 1

[15] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez,

“Deep reinforcement learning for autonomous driving: A survey,” IEEE Transactions on

Intelligent Transportation Systems, 2021. 1

[16] B. Singh, R. Kumar, and V. P. Singh, “Reinforcement learning in robotic applications: a

comprehensive survey,” Artificial Intelligence Review, pp. 1–46, 2021. 1

[17] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-based reinforce-

ment learning with stability guarantees,” Advances in neural information processing sys-

tems, vol. 30, 2017. 1

[18] B. Lütjens, M. Everett, and J. P. How, “Certified adversarial robustness for deep reinforce-

ment learning,” in Conference on Robot Learning. PMLR, 2020, pp. 1328–1337. 1

101

https://www.ibm.com/watson-health
https://bair.berkeley.edu/software.html
https://bair.berkeley.edu/software.html

[19] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester,

“Challenges of real-world reinforcement learning: definitions, benchmarks and analysis,”

Machine Learning, vol. 110, no. 9, pp. 2419–2468, 2021. 1

[20] F. L. Da Silva, P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “Uncertainty-aware action

advising for deep reinforcement learning agents,” in Proceedings of the AAAI conference on

artificial intelligence, vol. 34, no. 04, 2020, pp. 5792–5799. 1

[21] D. Ghosh, J. Rahme, A. Kumar, A. Zhang, R. P. Adams, and S. Levine, “Why generalization

in rl is difficult: Epistemic pomdps and implicit partial observability,” Advances in Neural

Information Processing Systems, vol. 34, pp. 25 502–25 515, 2021. 1

[22] O. Lockwood and M. Si, “A review of uncertainty for deep reinforcement learning,” in

Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital En-

tertainment, vol. 18, no. 1, 2022, pp. 155–162. 1

[23] E. Salvato, G. Fenu, E. Medvet, and F. A. Pellegrino, “Crossing the reality gap: A survey

on sim-to-real transferability of robot controllers in reinforcement learning,” IEEE Access,

vol. 9, pp. 153 171–153 187, 2021. 1, 2

[24] D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai, “Retinagan: An object-aware

approach to sim-to-real transfer,” in 2021 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2021, pp. 10 920–10 926. 1

[25] “Closing the Reality Gap in Sim2Real transfer for robotics.” [Online]. Available:

https://sim2real.github.io/ 1, 2

[26] Y. Shukla and J. Sinpov, “A framework for curriculum schema transfer from low-fidelity to

high-fidelity environments.” 1

[27] M. Navardi, P. Dixit, T. Manjunath, N. R. Waytowich, T. Mohsenin, and T. Oates, “Toward

real-world implementation of deep reinforcement learning for vision-based autonomous

drone navigation with mission,” UMBC Student Collection, 2022. 1

102

https://sim2real.github.io/

[28] “Closing the Simulation-to-Reality gap for Deep Robotic Learning.” [Online]. Available:

https://ai.googleblog.com/2017/10/closing-simulation-to-reality-gap-for.html 1, 2

[29] “Closing the Sim2Real Gap with NVIDIA Isaac sim and NVIDIA

Isaac replicator.” [Online]. Available: https://developer.nvidia.com/blog/

closing-the-sim2real-gap-with-nvidia-isaac-sim-and-nvidia-isaac-replicator/ 1

[30] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft, P. Abbeel,

W. Burgard, M. Milford et al., “The limits and potentials of deep learning for robotics,” The

International journal of robotics research, vol. 37, no. 4-5, pp. 405–420, 2018. 2, 43

[31] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain randomization

for transferring deep neural networks from simulation to the real world,” in 2017 IEEE/RSJ

international conference on intelligent robots and systems (IROS), 2017, pp. 23–30. 2, 43

[32] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of robotic

control with dynamics randomization,” in 2018 IEEE international conference on robotics

and automation (ICRA). IEEE, 2018, pp. 3803–3810. 2, 43

[33] G. N. Iyengar, “Robust dynamic programming,” Mathematics of Operations Research,

vol. 30, no. 2, pp. 257–280, 2005. 2, 5, 7, 9, 10, 24, 28, 30, 43, 44, 47, 48, 61, 67, 72,

81, 84, 90, 151, 153, 155, 160, 178, 181, 182

[34] A. Nilim and L. El Ghaoui, “Robust control of Markov decision processes with uncertain

transition matrices,” Operations Research, vol. 53, no. 5, pp. 780–798, 2005. 2, 5, 7, 9, 24,

30, 43, 44, 48, 61, 67, 72, 81, 161, 166, 181

[35] Z. Xu∗, K. Panaganti∗, and D. Kalathil, “Improved sample complexity bounds for distri-

butionally robust reinforcement learning,” in Proceedings of The 25th International Con-

ference on Artificial Intelligence and Statistics. Conference on Artificial Intelligence and

Statistics, 2023. 3, 62, 72, 73, 82, 84, 86, 93, 97

[36] W. Wiesemann, D. Kuhn, and B. Rustem, “Robust Markov decision processes,” Mathemat-

ics of Operations Research, vol. 38, no. 1, pp. 153–183, 2013. 5, 7, 24, 44, 62, 81, 182

103

https://ai.googleblog.com/2017/10/closing-simulation-to-reality-gap-for.html
https://developer.nvidia.com/blog/closing-the-sim2real-gap-with-nvidia-isaac-sim-and-nvidia-isaac-replicator/
https://developer.nvidia.com/blog/closing-the-sim2real-gap-with-nvidia-isaac-sim-and-nvidia-isaac-replicator/

[37] H. Xu and S. Mannor, “Distributionally robust Markov decision processes,” in Advances in

Neural Information Processing Systems, 2010, pp. 2505–2513. 5, 7, 24, 44, 62, 81, 182

[38] P. Yu and H. Xu, “Distributionally robust counterpart in Markov decision processes,” IEEE

Transactions on Automatic Control, vol. 61, no. 9, pp. 2538–2543, 2015. 5, 24, 44, 62, 81

[39] A. Tamar, S. Mannor, and H. Xu, “Scaling up robust mdps using function approximation,”

in International Conference on Machine Learning, 2014, pp. 181–189. 5, 7, 11, 12, 26, 44,

82, 121, 182

[40] A. Roy, H. Xu, and S. Pokutta, “Reinforcement learning under model mismatch,” in Ad-

vances in Neural Information Processing Systems, 2017, pp. 3043–3052. 5, 7, 9, 24, 26, 44,

82, 123, 141, 144, 182

[41] S. H. Lim, H. Xu, and S. Mannor, “Reinforcement learning in robust Markov decision pro-

cesses,” in Advances in Neural Information Processing Systems, 2013, pp. 701–709. 5, 26,

44, 82

[42] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of Machine Learn-

ing Research, vol. 4, pp. 1107–1149, 2003. 6, 17, 20, 141

[43] L. Yang and M. Wang, “Reinforcement learning in feature space: Matrix bandit, kernels,

and regret bound,” in International Conference on Machine Learning. PMLR, 2020, pp.

10 746–10 756. 6

[44] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,

“Continuous control with deep reinforcement learning.” in ICLR (Poster), 2016. 6, 20

[45] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversarial reinforcement

learning,” in International Conference on Machine Learning, 2017, pp. 2817–2826. 6, 24,

27, 44, 182

[46] D. J. Mankowitz, N. Levine, R. Jeong, A. Abdolmaleki, J. T. Springenberg, Y. Shi, J. Kay,

T. Hester, T. Mann, and M. Riedmiller, “Robust reinforcement learning for continuous con-

104

trol with model misspecification,” in International Conference on Learning Representations,

2020. 6, 7, 24, 27, 44, 182

[47] H. Zhang, H. Chen, D. S. Boning, and C.-J. Hsieh, “Robust reinforcement learning on

state observations with learned optimal adversary,” in International Conference on Learning

Representations, 2020. 6, 24, 44

[48] E. Derman, D. J. Mankowitz, T. A. Mann, and S. Mannor, “Soft-robust actor-critic policy-

gradient,” in AUAI press for Association for Uncertainty in Artificial Intelligence, 2018, pp.

208–218. 6, 7, 20, 21, 24, 26, 44, 57, 59, 144, 182, 187

[49] E. Vinitsky, Y. Du, K. Parvate, K. Jang, P. Abbeel, and A. Bayen, “Robust reinforcement

learning using adversarial populations,” arXiv preprint arXiv:2008.01825, 2020. 6

[50] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan, “Provably efficient reinforcement learning with

linear function approximation,” in Conference on Learning Theory, 2020, pp. 2137–2143.

6, 71, 80, 89

[51] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” in

International Conference on Machine Learning, 2004, p. 1. 6, 61

[52] S. Arora, S. Du, S. Kakade, Y. Luo, and N. Saunshi, “Provable representation learning

for imitation learning via bi-level optimization,” in International Conference on Machine

Learning. PMLR, 2020, pp. 367–376. 6, 61

[53] L. Wang, Q. Cai, Z. Yang, and Z. Wang, “On the global optimality of model-agnostic meta-

learning,” in International Conference on Machine Learning, 2020, pp. 9837–9846. 6

[54] W. Kong, R. Somani, Z. Song, S. Kakade, and S. Oh, “Meta-learning for mixed linear

regression,” in International Conference on Machine Learning. PMLR, 2020, pp. 5394–

5404. 6

[55] R. Wang, D. Foster, and S. M. Kakade, “What are the statistical limits of offline {rl} with

linear function approximation?” in International Conference on Learning Representations,

2021. [Online]. Available: https://openreview.net/forum?id=30EvkP2aQLD 6, 50, 54

105

https://openreview.net/forum?id=30EvkP2aQLD

[56] Y. Duan, Z. Jia, and M. Wang, “Minimax-optimal off-policy evaluation with linear function

approximation,” in International Conference on Machine Learning, 2020, pp. 2701–2709.

6

[57] D. L. Kaufman and A. J. Schaefer, “Robust modified policy iteration,” INFORMS Journal

on Computing, vol. 25, no. 3, pp. 396–410, 2013. 7, 182

[58] C. Tessler, Y. Efroni, and S. Mannor, “Action robust reinforcement learning and applications

in continuous control,” in International Conference on Machine Learning, 2019, pp. 6215–

6224. 7, 182

[59] S. H. Lim and A. Autef, “Kernel-based reinforcement learning in robust Markov decision

processes,” in International Conference on Machine Learning, 2019, pp. 3973–3981. 7, 26,

182

[60] D. P. Bertsekas and S. Ioffe, “Temporal Differences-Based Policy Iteration and Applications

in Neuro-Dynamic Programming,” Lab. for Info. and Decision Systems Report LIDS-P-

2349, MIT, Cambridge, MA, vol. 14, 1996. 8

[61] A. Nedić and D. P. Bertsekas, “Least squares policy evaluation algorithms with linear func-

tion approximation,” Discrete Event Dynamic Systems, vol. 13, no. 1-2, pp. 79–110, 2003.

8, 12, 17, 128, 130, 131, 132

[62] D. P. Bertsekas, Dynamic programming and optimal control, Vol - 2. Athena scientific

Belmont, MA, 2012. 8, 10, 11, 12, 20, 126

[63] ——, “Approximate policy iteration: A survey and some new methods,” Journal of Control

Theory and Applications, vol. 9, no. 3, pp. 310–335, 2011. 8, 44, 79, 181

[64] J. N. Tsitsiklis and B. Van Roy, “Analysis of temporal-difference learning with function

approximation,” in Advances in Neural Information Processing Systems, 1997, pp. 1075–

1081. 10, 121, 124, 129

106

[65] D. P. Bertsekas and H. Yu, “Projected equation methods for approximate solution of large

linear systems,” Journal of Computational and Applied Mathematics, vol. 227, no. 1, pp.

27–50, 2009. 12, 16

[66] V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint. Springer, 2009,

vol. 48. 17

[67] R. Munos, “Error bounds for approximate policy iteration,” in ICML, vol. 3, 2003, pp. 560–

567. 19, 50, 133

[68] R. Munos and C. Szepesvári, “Finite-time bounds for fitted value iteration,” Journal of Ma-

chine Learning Research, vol. 9, no. 27, pp. 815–857, 2008. 19, 44, 181

[69] A. Lazaric, M. Ghavamzadeh, and R. Munos, “Finite-sample analysis of least-squares policy

iteration,” Journal of Machine Learning Research, vol. 13, no. Oct, pp. 3041–3074, 2012.

19, 44, 138, 181

[70] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters, “Mushroomrl: Simplifying

reinforcement learning research,” arXiv preprint arXiv:2001.01102, 2020. [Online].

Available: https://github.com/MushroomRL/mushroom-rl 20

[71] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016. 20, 21, 39, 57, 63,

75, 142, 146, 183, 188, 190, 209, 212

[72] S. Mannor, O. Mebel, and H. Xu, “Robust mdps with k-rectangular uncertainty,” Mathemat-

ics of Operations Research, vol. 41, no. 4, pp. 1484–1509, 2016. 24, 44, 62, 81

[73] R. H. Russel and M. Petrik, “Beyond confidence regions: Tight bayesian ambiguity sets for

robust mdps,” Advances in Neural Information Processing Systems, 2019. 24, 44, 62, 81

[74] E. Derman, D. Mankowitz, T. Mann, and S. Mannor, “A bayesian approach to robust rein-

forcement learning,” in Uncertainty in Artificial Intelligence, 2020, pp. 648–658. 24, 44

107

https://github.com/MushroomRL/mushroom-rl

[75] S. P. Singh and R. C. Yee, “An upper bound on the loss from approximate optimal-value

functions,” Machine Learning, vol. 16, no. 3, pp. 227–233, 1994. 25, 152, 181

[76] M. G. Azar, R. Munos, and H. J. Kappen, “Minimax PAC bounds on the sample complexity

of reinforcement learning with a generative model,” Mach. Learn., vol. 91, no. 3, pp.

325–349, 2013. [Online]. Available: https://doi.org/10.1007/s10994-013-5368-1 25, 31,

32, 181

[77] W. B. Haskell, R. Jain, and D. Kalathil, “Empirical dynamic programming,” Mathematics

of Operations Research, vol. 41, no. 2, pp. 402–429, 2016. 25, 181

[78] A. Sidford, M. Wang, X. Wu, L. F. Yang, and Y. Ye, “Near-optimal time and sample com-

plexities for solving markov decision processes with a generative model,” in Proceedings

of the 32nd International Conference on Neural Information Processing Systems, 2018, pp.

5192–5202. 25, 32, 181

[79] A. Agarwal, S. Kakade, and L. F. Yang, “Model-based reinforcement learning with a gener-

ative model is minimax optimal,” in Conference on Learning Theory, 2020, pp. 67–83. 25,

32, 181

[80] D. Kalathil, V. S. Borkar, and R. Jain, “Empirical Q-Value Iteration,” Stochastic Systems,

vol. 11, no. 1, pp. 1–18, 2021. 25, 181

[81] M. Petrik and D. Subramanian, “Raam: The benefits of robustness in approximating aggre-

gated mdps in reinforcement learning.” in NIPS, 2014, pp. 1979–1987. 26

[82] Z. Zhou, Q. Bai, Z. Zhou, L. Qiu, J. Blanchet, and P. Glynn, “Finite-sample regret bound for

distributionally robust offline tabular reinforcement learning,” in International Conference

on Artificial Intelligence and Statistics, 2021, pp. 3331–3339. 27, 33, 44, 159, 182

[83] W. Yang, L. Zhang, and Z. Zhang, “Towards theoretical understandings of robust markov

decision processes: Sample complexity and asymptotics,” arXiv preprint arXiv:2105.03863,

2021. 27, 44, 56, 72, 73, 182

108

https://doi.org/10.1007/s10994-013-5368-1

[84] K. Zhou, J. C. Doyle, K. Glover et al., Robust and optimal control. Prentice hall New

Jersey, 1996, vol. 40. 27, 182

[85] G. E. Dullerud and F. Paganini, A course in robust control theory: a convex approach.

Springer Science & Business Media, 2013, vol. 36. 27, 182

[86] K. Zhang, B. Hu, and T. Basar, “Policy optimization for H2 linear control with H∞ ro-

bustness guarantee: Implicit regularization and global convergence,” in Proceedings of the

2nd Annual Conference on Learning for Dynamics and Control, L4DC 2020, Online Event,

Berkeley, CA, USA, 11-12 June 2020, ser. Proceedings of Machine Learning Research, vol.

120, 2020, pp. 179–190. 27, 182

[87] V. S. Borkar, “Q-learning for risk-sensitive control,” Mathematics of operations research,

vol. 27, no. 2, pp. 294–311, 2002. 27, 182

[88] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,

E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-

son, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,

İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen-

riksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van

Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020. 39, 209

[89] A. Antos, C. Szepesvári, and R. Munos, “Learning near-optimal policies with Bellman-

residual minimization based fitted policy iteration and a single sample path,” Machine

Learning, vol. 71, no. 1, pp. 89–129, 2008. 44, 79, 138, 181

[90] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learning,” in Reinforcement

learning. Springer, 2012, pp. 45–73. 44, 79, 181

[91] J. Chen and N. Jiang, “Information-theoretic considerations in batch reinforcement learn-

ing,” in International Conference on Machine Learning, 2019, pp. 1042–1051. 44, 49, 50,

54, 56, 79, 181

109

[92] T. Xie and N. Jiang, “Q* approximation schemes for batch reinforcement learning: A theo-

retical comparison,” in Conference on Uncertainty in Artificial Intelligence, 2020, pp. 550–

559. 44, 79, 181

[93] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial, review,

and perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020. 44, 79, 181,

186, 190, 191

[94] T. Xie, C.-A. Cheng, N. Jiang, P. Mineiro, and A. Agarwal, “Bellman-consistent pessimism

for offline reinforcement learning,” Advances in neural information processing systems,

vol. 34, 2021. 44, 50, 54, 79, 181

[95] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning without

exploration,” in International Conference on Machine Learning, 2019, pp. 2052–2062. 44,

79, 181, 183, 184, 185, 186, 190

[96] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, “Stabilizing off-policy q-learning

via bootstrapping error reduction,” in Advances in Neural Information Processing Systems,

2019, pp. 11 784–11 794. 44, 79, 181

[97] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for offline re-

inforcement learning,” Advances in Neural Information Processing Systems, vol. 33, pp.

1179–1191, 2020. 44, 79, 181

[98] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma, “Mopo: Model-

based offline policy optimization,” in Advances in Neural Information Processing Systems,

2020. 44, 79, 181

[99] S. Zhang and N. Jiang, “Towards hyperparameter-free policy selection for offline reinforce-

ment learning,” in Advances in Neural Information Processing Systems, 2021, pp. 12 864–

12 875. 44, 79, 181

110

[100] G. J. Gordon, “Stable function approximation in dynamic programming,” in Machine Learn-

ing, Proceedings of the Twelfth International Conference on Machine Learning, 1995,

A. Prieditis and S. Russell, Eds., 1995, pp. 261–268. 44, 181

[101] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode reinforcement learning,”

Journal of Machine Learning Research, vol. 6, pp. 503–556, 2005. 44, 181

[102] A.-m. Farahmand, C. Szepesvári, and R. Munos, “Error propagation for approximate policy

and value iteration,” Advances in Neural Information Processing Systems, vol. 23, 2010. 44,

71, 181

[103] Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill, “Provably good batch off-policy re-

inforcement learning without great exploration,” in Neural Information Processing Systems,

2020. 44, 49, 181, 183, 184, 185, 186, 190, 191

[104] Y. Wang and S. Zou, “Online robust reinforcement learning with model uncertainty,” Ad-

vances in Neural Information Processing Systems, vol. 34, pp. 7193–7206, 2021. 44, 62,

82

[105] C. Szepesvári and R. Munos, “Finite time bounds for sampling based fitted value iteration,”

in Proceedings of the 22nd international conference on Machine learning, 2005, pp. 880–

887. 49

[106] A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun, “Reinforcement learning: Theory and

algorithms,” CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 2019. 50, 65, 66, 71, 90,

92, 94, 175, 179, 194, 201

[107] R. T. Rockafellar and R. J.-B. Wets, Variational analysis. Springer Science & Business

Media, 2009, vol. 317. 53, 168, 169

[108] A. Shapiro, “Distributionally robust stochastic programming,” SIAM Journal on Optimiza-

tion, vol. 27, no. 4, pp. 2258–2275, 2017. 53, 169

[109] J. Duchi and H. Namkoong, “Learning models with uniform performance via distribution-

ally robust optimization,” arXiv preprint arXiv:1810.08750, 2018. 53, 62, 67, 68, 169, 194

111

[110] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-

critic methods,” in International Conference on Machine Learning, 2018, pp. 1582–1591.

59, 75, 189, 209

[111] A. Kis, L. Huber, and A. Wilkinson, “Social learning by imitation in a reptile (pogona

vitticeps),” Animal cognition, vol. 18, 09 2014. 60

[112] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,”

in Advances in Neural Information Processing Systems, D. Touretzky, Ed., vol. 1.

Morgan-Kaufmann, 1988. [Online]. Available: https://proceedings.neurips.cc/paper/1988/

file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf 60

[113] M. Bain and C. Sammut, “A framework for behavioural cloning,” in Machine Intelligence

15, 1995. 60

[114] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,” in Proceedings of the

thirteenth international conference on artificial intelligence and statistics. JMLR Work-

shop and Conference Proceedings, 2010, pp. 661–668. 60, 65, 72, 73

[115] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured pre-

diction to no-regret online learning,” in Proceedings of the fourteenth international confer-

ence on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings,

2011, pp. 627–635. 60, 63, 66

[116] K. Brantley, W. Sun, and M. Henaff, “Disagreement-regularized imitation learning,” in In-

ternational Conference on Learning Representations, 2019. 61, 63, 66, 75

[117] N. Rajaraman, L. Yang, J. Jiao, and K. Ramchandran, “Toward the fundamental limits of

imitation learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 2914–

2924, 2020. 61, 63, 65, 66, 71, 73

[118] J. Ho and S. Ermon, “Generative adversarial imitation learning,” Advances in neural infor-

mation processing systems, vol. 29, 2016. 61

112

https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf

[119] M. A. Bashiri, B. Ziebart, and X. Zhang, “Distributionally robust imitation learning,” Ad-

vances in neural information processing systems, vol. 34, pp. 24 404–24 417, 2021. 61

[120] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learning,” in Proceedings

of the Seventeenth International Conference on Machine Learning, ser. ICML ’00. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, p. 663–670. 61

[121] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse reinforce-

ment learning,” in Proceedings of the 23rd National Conference on Artificial Intelligence -

Volume 3, ser. AAAI’08. AAAI Press, 2008, p. 1433–1438. 61

[122] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse optimal control via

policy optimization,” in Proceedings of the 33rd International Conference on International

Conference on Machine Learning - Volume 48, ser. ICML’16. JMLR.org, 2016, p. 49–58.

61

[123] N. Rajaraman, Y. Han, L. F. Yang, K. Ramchandran, and J. Jiao, “Provably breaking

the quadratic error compounding barrier in imitation learning, optimally,” arXiv preprint

arXiv:2102.12948, 2021. 61

[124] J. Chang, M. Uehara, D. Sreenivas, R. Kidambi, and W. Sun, “Mitigating covariate shift in

imitation learning via offline data with partial coverage,” Advances in Neural Information

Processing Systems, vol. 34, pp. 965–979, 2021. 61, 70, 75

[125] Y. Xu, W. Gao, and D. Hsu, “Receding horizon inverse reinforcement learning,” in Advances

in Neural Information Processing Systems, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho,

Eds., 2022. [Online]. Available: https://openreview.net/forum?id=CgkjJaKBvkX 61

[126] N. Corporation, “Closing the sim2real gap with nvidia isaac sim and nvidia

isaac replicator,” 2021. [Online]. Available: https://developer.nvidia.com/blog/

closing-the-sim2real-gap-with-nvidia-isaac-sim-and-nvidia-isaac-replicator/ 62

113

https://openreview.net/forum?id=CgkjJaKBvkX
https://developer.nvidia.com/blog/closing-the-sim2real-gap-with-nvidia-isaac-sim-and-nvidia-isaac-replicator/
https://developer.nvidia.com/blog/closing-the-sim2real-gap-with-nvidia-isaac-sim-and-nvidia-isaac-replicator/

[127] W. Yang, L. Zhang, and Z. Zhang, “Towards theoretical understandings of robust markov

decision processes: Sample complexity and asymptotics,” 2021. [Online]. Available:

https://arxiv.org/abs/2105.03863 62

[128] K. Panaganti and D. Kalathil, “Sample complexity of robust reinforcement learning

with a generative model,” in Proceedings of The 25th International Conference

on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning

Research, vol. 151. PMLR, 28–30 Mar 2022, pp. 9582–9602. [Online]. Available:

https://proceedings.mlr.press/v151/panaganti22a.html 62

[129] A. Shapiro, “Distributionally robust stochastic programming,” SIAM Journal on Optimiza-

tion, vol. 27, no. 4, pp. 2258–2275, 2017. 62, 68

[130] R. Gao and A. Kleywegt, “Distributionally robust stochastic optimization with wasserstein

distance,” Mathematics of Operations Research, 2022. 62

[131] D. Bertsimas, V. Gupta, and N. Kallus, “Data-driven robust optimization,” Math.

Program., vol. 167, no. 2, p. 235–292, feb 2018. [Online]. Available: https:

//doi.org/10.1007/s10107-017-1125-8 62

[132] H. Namkoong and J. C. Duchi, “Stochastic gradient methods for distributionally robust op-

timization with f-divergences,” Advances in neural information processing systems, vol. 29,

2016. 62, 67

[133] J. Blanchet, Y. Kang, and K. Murthy, “Robust wasserstein profile inference and applications

to machine learning,” Journal of Applied Probability, vol. 56, no. 3, p. 830–857, 2019. 62

[134] B. Eysenbach and S. Levine, “Maximum entropy rl (provably) solves some robust rl prob-

lems,” in International Conference on Learning Representations, 2022. 62

[135] S. Meinecke, L. Thurner, and M. Braun, “Review of steady-state electric power

distribution system datasets,” Energies, vol. 13, no. 18, 2020. [Online]. Available:

https://www.mdpi.com/1996-1073/13/18/4826 62

114

https://arxiv.org/abs/2105.03863
https://proceedings.mlr.press/v151/panaganti22a.html
https://doi.org/10.1007/s10107-017-1125-8
https://doi.org/10.1007/s10107-017-1125-8
https://www.mdpi.com/1996-1073/13/18/4826

[136] M. Travers, “10 best healthcare data sets & examples,” 2021. [Online]. Available:

https://www.cprime.com/resources/blog/10-best-healthcare-data-sets-examples/ 62

[137] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. Qi,

Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J. Shlens,

and D. Anguelov, “Large scale interactive motion forecasting for autonomous driving : The

waymo open motion dataset,” arXiv, 2021. 62

[138] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,”

in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp.

5026–5033. 63, 75

[139] J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans, “On the global convergence rates

of softmax policy gradient methods,” in International Conference on Machine Learning.

PMLR, 2020, pp. 6820–6829. 64, 193

[140] B. O’Donoghue, I. Osband, and C. Ionescu, “Making sense of reinforcement learning and

probabilistic inference,” arXiv preprint arXiv:2001.00805, 2020. 64

[141] R. Chen, I. C. Paschalidis et al., “Distributionally robust learning,” Foundations and

Trends® in Optimization, vol. 4, no. 1-2, pp. 1–243, 2020. 67

[142] C. Dann and E. Brunskill, “Sample complexity of episodic fixed-horizon reinforcement

learning,” Advances in Neural Information Processing Systems, vol. 28, 2015. 71

[143] K. Panaganti and D. Kalathil, “Sample complexity of model-based robust reinforcement

learning,” in 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021,

pp. 2240–2245. 71, 82, 84

[144] A. Raffin, “Rl baselines3 zoo,” https://github.com/DLR-RM/rl-baselines3-zoo, 2020. 75,

209

[145] S. Cabi, S. G. Colmenarejo, A. Novikov, K. Konyushkova, S. Reed, R. Jeong, K. Zolna,

Y. Aytar, D. Budden, M. Vecerik et al., “Scaling data-driven robotics with reward sketching

and batch reinforcement learning,” arXiv preprint arXiv:1909.12200, 2019. 79

115

https://www.cprime.com/resources/blog/10-best-healthcare-data-sets-examples/
https://github.com/DLR-RM/rl-baselines3-zoo

[146] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets for deep data-driven

reinforcement learning,” 2020. 79, 186, 190, 191

[147] W. Li, C. Pan, R. Zhang, J. Ren, Y. Ma, J. Fang, F. Yan, Q. Geng, X. Huang, H. Gong et al.,

“Aads: Augmented autonomous driving simulation using data-driven algorithms,” Science

robotics, vol. 4, no. 28, p. eaaw0863, 2019. 79

[148] A. Amini, I. Gilitschenski, J. Phillips, J. Moseyko, R. Banerjee, S. Karaman, and D. Rus,

“Learning robust control policies for end-to-end autonomous driving from data-driven sim-

ulation,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1143–1150, 2020. 79

[149] H. V. Dang, H. Tran-Ngoc, T. V. Nguyen, T. Bui-Tien, G. De Roeck, and H. X. Nguyen,

“Data-driven structural health monitoring using feature fusion and hybrid deep learning,”

IEEE Transactions on Automation Science and Engineering, vol. 18, no. 4, pp. 2087–2103,

2020. 79

[150] J. Hu, A. Perer, and F. Wang, “Data driven analytics for personalized healthcare,” Healthcare

Information Management Systems: Cases, Strategies, and Solutions, pp. 529–554, 2016. 79

[151] Y. Jin, Z. Yang, and Z. Wang, “Is pessimism provably efficient for offline rl?” in Inter-

national Conference on Machine Learning. PMLR, 2021, pp. 5084–5096. 79, 80, 82,

89

[152] P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, and S. Russell, “Bridging offline reinforcement

learning and imitation learning: A tale of pessimism,” Advances in Neural Information

Processing Systems, vol. 34, pp. 11 702–11 716, 2021. 79, 80, 82, 88

[153] G. Li, L. Shi, Y. Chen, Y. Chi, and Y. Wei, “Settling the sample complexity of model-based

offline reinforcement learning,” arXiv preprint arXiv:2204.05275, 2022. 80, 82

[154] G. Li, L. Shi, Y. Chen, Y. Gu, and Y. Chi, “Breaking the sample complexity barrier to regret-

optimal model-free reinforcement learning,” Advances in Neural Information Processing

Systems, vol. 34, pp. 17 762–17 776, 2021. 80, 82

116

[155] P. Rashidinejad, H. Zhu, K. Yang, S. Russell, and J. Jiao, “Optimal conservative of-

fline rl with general function approximation via augmented lagrangian,” arXiv preprint

arXiv:2211.00716, 2022. 80

[156] M. Uehara and W. Sun, “Pessimistic model-based offline reinforcement learning under par-

tial coverage,” arXiv preprint arXiv:2107.06226, 2023. 80, 81, 82, 84, 90, 92, 95

[157] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic

Theory of Independence. OUP Oxford, 2013. [Online]. Available: https://books.google.

com/books?id=koNqWRluhP0C 85

[158] X. Ma, Z. Liang, L. Xia, J. Zhang, J. Blanchet, M. Liu, Q. Zhao, and Z. Zhou, “Distri-

butionally robust offline reinforcement learning with linear function approximation,” arXiv

preprint arXiv:2209.06620, 2022. 90

[159] B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, and G. R. Lanckriet,

“On integral probability metrics,\phi-divergences and binary classification,” arXiv preprint

arXiv:0901.2698, 2009. 91

[160] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning,” Machine learning, vol. 8, no. 3, pp. 229–256, 1992. 98

[161] S. M. Kakade, “A natural policy gradient,” in Advances in neural information processing

systems, vol. 14, 2001, pp. 1531–1538. 98

[162] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “On the theory of policy gradient

methods: Optimality, approximation, and distribution shift,” Journal of Machine Learning

Research, vol. 22, no. 98, pp. 1–76, 2021. 98

[163] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., NJ, 2005. 120

[164] R. Vershynin, High-Dimensional Probability: An Introduction with Applications in Data

Science. Cambridge University press, 2018, vol. 47. 147, 167

117

https://books.google.com/books?id=koNqWRluhP0C
https://books.google.com/books?id=koNqWRluhP0C

[165] A. Maurer and M. Pontil, “Empirical bernstein bounds and sample-variance penalization,”

in COLT 2009 - The 22nd Conference on Learning Theory, Montreal, Quebec, Canada,

June 18-21, 2009, 2009. 147

[166] R. van Handel, “Probability in High Dimension,” Princeton University NJ, Tech. Rep., 2014.

148

[167] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to

algorithms. Cambridge university press, 2014. 167

[168] I. Csiszár, “Information-type measures of difference of probability distributions and indirect

observation,” studia scientiarum Mathematicarum Hungarica, vol. 2, pp. 229–318, 1967.

169, 194

[169] A. K. Moses and R. Sundaresan, “Further results on geometric properties of a family of rela-

tive entropies,” in 2011 IEEE International Symposium on Information Theory Proceedings,

2011, pp. 1940–1944. 169

[170] L. A. Prashanth and M. Ghavamzadeh, “Variance-constrained actor-critic algorithms for

discounted and average reward mdps,” Mach. Learn., vol. 105, no. 3, pp. 367–417, 2016.

182

[171] Y. Fei, Z. Yang, Y. Chen, and Z. Wang, “Exponential bellman equation and improved regret

bounds for risk-sensitive reinforcement learning,” in Annual Conference on Neural Infor-

mation Processing Systems 2021, 2021, pp. 20 436–20 446. 182

[172] Y. Zhang, Z. Yang, and Z. Wang, “Provably efficient actor-critic for risk-sensitive and ro-

bust adversarial rl: A linear-quadratic case,” in International Conference on Artificial Intel-

ligence and Statistics, 2021, pp. 2764–2772. 182

[173] P. Huang, M. Xu, F. Fang, and D. Zhao, “Robust reinforcement learning as a stackelberg

game via adaptively-regularized adversarial training,” arXiv preprint arXiv:2202.09514,

2022. 182

118

[174] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013. 184

[175] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014. 185, 209

[176] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-

mization algorithms,” arXiv preprint arXiv:1707.06347, 2017. 186

[177] A. Raffin, “Rl baselines3 zoo,” https://github.com/DLR-RM/rl-baselines3-zoo, 2020. 186

[178] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor,” in International conference on

machine learning, 2018, pp. 1861–1870. 186

[179] Y. Chow, O. Nachum, and M. Ghavamzadeh, “Path consistency learning in tsallis entropy

regularized mdps,” in International conference on machine learning. PMLR, 2018, pp.

979–988. 193

[180] T. M. Cover and J. A. Thomas, “Information theory and the stock market,” Elements of

Information Theory. Wiley Inc., New York, pp. 543–556, 1991. 194, 203

[181] A. L. Gibbs and F. E. Su, “On choosing and bounding probability metrics,” International

statistical review, vol. 70, no. 3, pp. 419–435, 2002. 194

[182] A. Basu, H. Shioya, and C. Park, Statistical Inference: The Minimum Distance Approach,

ser. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. CRC Press,

2011. [Online]. Available: https://books.google.com/books?id=C-lOIgDp5_0C 194

[183] D. Bertsekas, Reinforcement learning and optimal control. Athena Scientific, 2019. 200

[184] D. Kraft, “A software package for sequential quadratic programming,” Forschungsbericht-

Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1988. 209

119

https://github.com/DLR-RM/rl-baselines3-zoo
https://books.google.com/books?id=C-lOIgDp5_0C

APPENDIX A

APPENDIX FOR CHAPTER 2*

In this appendix, we include complete proofs, all experiments, and all supporting details for

the corresponding chapter.

A.1 Proofs of the Results in Section 2.3.1

A.1.1 Proof of Proposition 1

We first restate Proposition 1 formally and then give the proof.

Proposition 9. (i) For any V1, V2 ∈ R|S| and λ ∈ [0, 1), ∥T (λ)
π V1−T (λ)

π V2∥∞ ≤ α(1−λ)
(1−αλ)

∥V1−V2∥∞.

So, T (λ)
π is a contraction in sup norm for any α ∈ (0, 1), λ ∈ [0, 1).

(ii) The robust value function Vπ is the unique fixed point of T (λ)
π , i.e., T (λ)

π Vπ = Vπ, for all α ∈

(0, 1) and λ ∈ [0, 1).

Proof. From (2.6) we have

∥T (λ)
π (V1)− T (λ)

π (V2)∥∞ = ∥(1− λ)
∞∑

m=0

λm(Tm+1
π (V1)− Tm+1

π (V2))∥∞

≤ (1− λ)
∞∑

m=0

λm∥Tm+1
π (V1)− Tm+1

π (V2)∥∞

(a)

≤ (1− λ)
∞∑

m=0

λmαm+1∥V1 − V2∥∞ =
α(1− λ)
(1− αλ)

∥V1 − V2∥∞

where (a) follows since Tπ is a contraction operator with contraction modulus α. This proves (i).

Since Vπ is the unique fixed point of Tπ, (ii) directly follows from (i) and the Banach Fixed Point

Theorem [163, Theorem 6.2.3].
*Reprinted with permission from Kishan Panaganti, Dileep Kalathil, “Robust Reinforcement Learning using Least

Squares Policy Iteration with Provable Performance Guarantees.” International Conference on Machine Learning.
PMLR, 2021.

120

A.1.2 Proof of Proposition 2

We first restate Proposition 2 formally and then give the proof.

Proposition 10. Under Assumption 2, for any V1, V2 ∈ R|S| and λ ∈ [0, 1),

∥ΠT (λ)
π V1 − ΠT

(λ)
π V2∥d ≤ β(1−λ)

(1−βλ)
∥V1 − V2∥d. So, ΠT (λ)

π is a contraction mapping in d-weighted

Euclidean norm for any β ∈ (0, 1), λ ∈ [0, 1).

Proof. From (2.6) we have

∥T (λ)
π (V1)− T (λ)

π (V2)∥d = ∥(1− λ)
∞∑

m=0

λm(Tm+1
π (V1)− Tm+1

π (V2))∥d

≤ (1− λ)
∞∑

m=0

λm∥Tm+1
π (V1)− Tm+1

π (V2)∥d

(a)

≤ (1− λ)
∞∑

m=0

λmβm+1∥V1 − V2∥d =
β(1− λ)
(1− βλ)

∥V1 − V2∥d

where (a) follows since ΠTπ is a contraction in the d-weighted Euclidean norm with contraction

modulus β [39, Corollary 4]. From [64], Π is a nonexpansive mapping in the d-weighted Euclidean

norm. So, ΠT (λ)
π has the stated proptery.

A.1.3 Derivation of (2.7)

Given wk, wk+1 which satisfies the equation Φwk+1 = ΠT
(λ)
π Φwk can be written as the solution

of the minimization problem wk+1 = argminw ∥Φw − T (λ)
π Φwk∥2d. Taking gradient w.r.t. w and

equating to zero, we get Φ⊤D(Φw−T (λ)
π Φwk) = 0, which implieswk+1 = (Φ⊤DΦ)−1Φ⊤DT

(λ)
π Φwk.

This can be written as

wk+1 = (Φ⊤DΦ)−1Φ⊤DT (λ)
π Φwk = wk + (Φ⊤DΦ)−1(Φ⊤DT (λ)

π Φwk − Φ⊤DΦwk)

= wk + (Φ⊤DΦ)−1Φ⊤D(T (λ)
π Φwk − Φwk).

121

A.1.4 Derivation of (2.8)

We have

TV = rπ + αP o
πV + ασUπ(V) (A.1)

T 2V = rπ + αP o
π(TV) + ασUπ(TV)

= (1 + αP)rπ + (αP o
π)

2V + α(αP o
π)σUπ(V) + ασUπ(TV).

Suppose we have an induction hypothesis for TmV , i.e.,

TmV =
m−1∑
k=0

(αP o
π)

krπ + (αP o
π)

mV + α
m−1∑
k=0

(αP o
π)

kσUπ(T
(m−1−k)V).

Now, to verify an induction step, observe that,

Tm+1V =
m−1∑
k=0

(αP o
π)

krπ + (αP o
π)

mTV + α
m−1∑
k=0

(αP o
π)

kσUπ(T
(m−1−k)TV)

(a)
=

m−1∑
k=0

(αP o
π)

krπ + (αP o
π)

m(r + αP o
πV + ασUπ(V)) + α

m−1∑
k=0

(αP o
π)

kσUπ(T
(m−1−k)TV)

=
m∑
k=0

(αP o
π)

krπ + (αP o
π)

m+1V + α
m∑
k=0

(αP o
π)

kσUπ(T
(m−k)V)

where (a) follows from (A.1). Now, (2.8) directly follows from (2.6).

A.2 Proofs of the Results in Section 2.3.2

A.2.1 Proof of Proposition 3

Proof. With Ûπ = Uπ, we have,

T̃ (λ)
π (Vπ) = (1− λ)

∞∑
m=0

λm

[
m∑
t=0

(αP o
π)

trπ + α
m∑
t=0

(αP o
π)

t σUπ(Vπ) + (αP o
π)

m+1Vπ

]
(a)
= (1− λ)

∞∑
m=0

λm

[
m∑
t=0

(αP o
π)

t(rπ + ασUπ(Vπ)) + (αP o
π)

m+1Vπ

]

122

= (1− λ)
∞∑

m=0

λm

[
m∑
t=0

(αP o
π)

t(I − αP o
π)Vπ + (αP o

π)
m+1Vπ

]
(b)
= (1− λ)

∞∑
m=0

λmVπ = Vπ.

Here, to get (a), we wrote rπ + ασUπ(Vπ) = (I − αP o
π)Vπ since TπVπ = Vπ. (b) is from the

telescopic sum of the previous equation.

A.2.2 Proof of Theorem 1

We have the following lemma which is similar to Lemma 4.2 in [40].

Lemma 11. For any vector V ∈ R|S| and for all (s, a) ∈ S ×A,

|σÛs,a
(V)− σUs,a(V)| ≤ ρ∥V ∥d.

Proof. First note that, for any x, y ∈ R|S| we have

x⊤y ≤ (x⊤Dy)/dmin

(a)

≤ (∥x∥d∥y∥d)/dmin, (A.2)

where (a) follows from Cauchy-Schwarz inequality with respect to ∥ · ∥d norm.

Consider any p ∈ Ûs,a and q ∈ Us,a \ Ûs,a. For any V ∈ R|S|, we have

p⊤V = q⊤V + (p− q)⊤V ≥ σUs,a(V) + (p− q)⊤V ≥ σUs,a(V) + min
x∈Ûs,a

min
y∈Us,a\Ûs,a

(x− y)⊤V

= σUs,a(V)− max
x∈Ûs,a

max
y∈Us,a\Ûs,a

(y − x)⊤V
(b)

≥ σUs,a(V)− max
x∈Ûs,a

max
y∈Us,a\Ûs,a

(∥y − x∥d∥V ∥d)/dmin

≥ σUs,a(V)− ρs,a∥V ∥d,

where (b) follows from (A.2). By taking infimum on both sides with respect to p ∈ Ûs,a, we get,

σÛs,a
(V) ≥ σUs,a(V)− ρs,a∥V ∥d.

123

We can also get σUs,a(V) ≥ σÛs,a
(V)− ρs,a∥V ∥d by similar arguments. Combining, we get,

|σÛs,a
(V)− σUs,a(V)| ≤ ρs,a∥V ∥d.

Since ρ = maxs,a ρs,a, we get the desired result.

We will use the following result which follows directly from [64, Lemma 1].

Lemma 12. Under Assumption 2, for any V , we have ∥P o
πe
V ∥d ≤ ∥V ∥d.

Remark 12. The inequality in the Assumption 2 can be written as, αP o
s,π(s)(s

′) + αUs,π(s)(s
′) ≤

βP o
s,πe(s)

(s′). From this, we can conclude that αUs,π(s)(s
′) ≤ βP o

s,πe(s)
(s′).

Next, we show the following.

Lemma 13. For any V1, V2 ∈ R|S|,

∥σÛπ
(V1)− σÛπ

(V2)∥d ≤
(
β

α
+ ρ

)
∥V1 − V2∥d.

Proof. For any s ∈ S we have

σÛs,π(s)
(V2)− σÛs,π(s)

(V1) = inf
q∈Ûs,π(s)

q⊤V2 − inf
q̃∈Ûs,π(s)

q̃⊤V1 = inf
q∈Ûs,π(s)

sup
q̃∈Ûs,π(s)

q⊤V2 − q̃⊤V1

≥ inf
q∈Ûs,π(s)

q⊤(V2 − V1) = σÛs,π(s)
(V2 − V1)

(a)

≥ σUs,π(s)
(V2 − V1)− ρ∥V1 − V2∥d, (A.3)

where (a) follows from Lemma 11. By definition, for any arbitrary ε > 0, there exists a Us,π(s) ∈

Us,π(s) such that

U⊤
s,π(s)(V2 − V1)− ε ≤ σUs,π(s)

(V2 − V1). (A.4)

Using (A.4) and (A.3),

α(σÛs,π(s)
(V1)− σÛs,π(s)

(V2)) ≤ αU⊤
s,π(s)(V1 − V2) + αε+ ρα∥V1 − V2∥d

124

≤ αU⊤
s,π(s)|(V2 − V1)|+ αε+ ρα∥V1 − V2∥d

(b)

≤ β(P o
s,πe(s))

⊤|(V1 − V2)|+ αε+ ρα∥V1 − V2∥d (A.5)

where (b) follows from Remark 12. Since ε is arbitrary, we get,

α(σÛs,π(s)
(V1)− σÛs,π(s)

(V2)) ≤ β(P o
s,πe(s))

⊤|(V1 − V2)|+ ρα∥V1 − V2∥d.

By exchanging the roles of V1 and V2, we get α(σÛs,π(s)
(V2) − σÛs,π(s)

(V1)) ≤ β(P o
s,πe(s)

)⊤|(V1 −

V2)|+ ρα∥V1 − V2∥d. Combining these and writing compactly in vector form, we get

α|σÛπ
(V1)− σÛπ

(V2)| ≤ βP o
πe
|V1 − V2|+ ρα∥V1 − V2∥d1,

where 1 = (1, 1, . . . , 1)⊤, an |S|-dimensional unit vector. Since α|σÛπ
(V1)− σÛπ

(V2)| ≥ 0, by the

property of the norm, we get

α∥σÛπ
(V1)− σÛπ

(V2)∥d ≤ ∥βP o
πe
|V1 − V2|+ ρα∥V1 − V2∥d1∥d

(c)

≤ β∥P o
πe
|V1 − V2|∥d + ρα∥V1 − V2∥d∥1∥d

(d)

≤ β∥V1 − V2∥d + ρα∥V1 − V2∥d

where (c) follows from triangle inequality and (d) from Lemma 12 and from the fact that and

∥1∥d = 1. Dividing by α and rearranging, we get the desired result.

Proof of Theorem 1. We first observe

∥αP o
π |V |∥d

(a)

≤ ∥βP o
πe
|V |∥d

(b)

≤ β∥V ∥d, (A.6)

where (a) follows from the Assumption 2 and (b) from the Lemma 12.

125

Notice that for any finite t we have,

∥(αP o
π)

t|V |∥d = ∥αP o
π(αP

o
π)

t−1|V |∥d
(c)

≤ β∥(αP o
π)

t−1|V |∥d (A.7)

where (c) follows from (A.6). Using this repeatedly, we get,

∥(αP o
π)

t|V |∥d ≤ βt∥V ∥d. (A.8)

Now,

∥T̃ (λ)
π (V1)− T̃ (λ)

π (V2)∥d

= ∥(1− λ)
∞∑

m=0

λm[α
m∑
t=0

(αP o
π)

t (σÛπ
(V1)− σÛπ

(V2)) + (αP o
π)

m+1(V1 − V2)]∥d

≤ (1− λ)
∞∑

m=0

λm[α
m∑
t=0

∥(αP o
π)

t|σÛπ
(V1)− σÛπ

(V2)|∥d + ∥(αP o
π)

m+1|V1 − V2|∥d]

(d)

≤ (1− λ)
∞∑

m=0

λm[α
m∑
t=0

(β)t ∥σÛπ
(V1)− σÛπ

(V2)∥d + βm+1∥V1 − V2∥d]

(e)

≤ (1− λ)
∞∑

m=0

λm[(β + ρα)
m∑
t=0

(β)t ∥(V1 − V2)∥d + βm+1∥(V1 − V2)∥d] (A.9)

=

[
(β + ρα)

(1− β)

(
1− β(1− λ)

(1− βλ)

)
+
β(1− λ)
(1− βλ)

]
∥(V1 − V2)∥d

=
β(2− λ) + ρα

(1− βλ)
∥(V1 − V2)∥d, (A.10)

where (d) follows from (A.8) and (e) follows from Lemma 13.

From [62], Π is a non-expansive operator in ∥ · ∥d. Thus,

∥ΠT̃ (λ)
π V1 − ΠT̃ (λ)

π V2∥d ≤ ∥T̃ (λ)
π (V1)− T̃ (λ)

π (V2)∥d ≤ c(α, β, ρ, λ) ∥V1 − V2∥d. (A.11)

where c(α, β, ρ, λ) = (β(2− λ) + ρα)/(1− βλ). This concludes the proof of getting (2.10).

126

For proving (2.11), first denote the operator T̃ (λ)
π as T̄ (λ)

π when Ûπ = Uπ. Now observe that

∥T̄ (λ)
π (V)− T̃ (λ)

π (V)∥d = ∥(1− λ)
∞∑

m=0

λm[α
m∑
t=0

(αP o
π)

t (σUπ(V)− σÛπ
(V))]∥d

≤ (1− λ)
∞∑

m=0

λm[α
m∑
t=0

∥(αP o
π)

t |(σUπ(V)− σÛπ
(V))|∥d]

(f)

≤ (1− λ)
∞∑

m=0

λm[α
m∑
t=0

βt∥σUπ(V)− σÛπ
(V)∥d]

(g)

≤ (1− λ)
∞∑

m=0

λm[
(1− βm+1)

1− β
αρ∥V ∥d] =

αρ∥V ∥d
1− βλ

(A.12)

where (f) follows (A.8) and (g) from Lemma 11.

Now,

∥Vπ − Φwπ∥d ≤ ∥Vπ − ΠVπ∥d + ∥ΠVπ − Φwπ∥d
(h)
= ∥Vπ − ΠVπ∥d + ∥ΠT̄ (λ)

π Vπ − ΠT̃ (λ)
π Φwπ∥d

(i)

≤ ∥Vπ − ΠVπ∥d + ∥ΠT̄ (λ)
π Vπ − ΠT̃ (λ)

π Vπ∥d + ∥ΠT̃ (λ)
π Vπ − ΠT̃ (λ)

π Φwπ∥d
(j)

≤ ∥Vπ − ΠVπ∥d +
βρ∥Vπ∥d
1− βλ

+ c(α, β, ρ, λ)∥Vπ − Φwπ∥d

We get (h) because T̄ (λ)
π Vπ = Vπ from Proposition 3 and ΠT̃

(λ)
π Φwπ = Φwπ by the premise of the

proposition, (i) by triangle inequality, (j) from (A.12) and (2.10). Rearranging, we get,

∥Vπ − Φwπ∥d ≤
1

1− c(α, β, ρ, λ)

(
∥Vπ − ΠVπ∥d +

βρ∥Vπ∥d
1− βλ

)
. (A.13)

This completes the proof of Theorem 1.

A.2.3 Derivation of (2.13)

For any bounded mapping W , observe that

∞∑
t=0

(αλP o
π)

tW = (1− λ)
∞∑

m=0

λm
m∑
t=0

(αP o
π)

tW,

127

yielded by exchanging summations. Using this observation with equations (2.9) and (2.12) we get

(2.13).

A.2.4 Proof of Theorem 2

To prove this theorem, we will use the following result from [61]. Let ∥ · ∥ denote the standard

Euclidean norm.

Proposition 11. [61, Proposition 4.1] Consider a sequence {xt} generated by the update equation

xt+1 = xt + γt(ht(xt) + et),

where ht : Rn → Rn, γt is a positive deterministic stepsize, and et is a random noise vector. Let

f : Rn → R be a continously differentiable function. Assume the following:

(i) Function f is positive, i.e., f(x) ≥ 0. Also, f has Lipschitz continuous gradient, i.e., there

exists some scalar L > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀ x, y ∈ Rn. (A.14)

(ii) Let Ft = {x0, x1, . . . , xt}. There exists positive scalars c1, c2, and c3 such that

(∇f(xt))⊤E[ht(xt)|Ft] ≤ −c1∥∇f(xt)∥2, ∀ t, (A.15)

∥E[et|Ft]∥ ≤ c2εt(1 + ∥∇f(xt)∥), ∀ t, (A.16)

E[∥ht(xt) + et∥2|Ft] ≤ c3(1 + ∥∇f(xt)∥2), ∀ t, (A.17)

where εt is a positive deterministic scalar.

(ii) The deterministic sequences {γt} and {εt} satsify

∞∑
t=0

γt =∞,
∞∑
t=0

γ2t <∞,
∞∑
t=0

γtε
2
t <∞, lim

t→∞
εt = 0. (A.18)

Then, with probability 1:

128

(i) The sequence {f(xt)} converges.

(ii) The sequence {∇f(xt)} converges to zero.

(iii) Every limit point of {xt} is a stationary point of f .

Using the above result, we now prove Theorem 2.

Proof of Theorem 2. We rewrite (2.18) as wt+1 = wt + γt(ht(wt) + et), where,

ht(wt) = B−1(Awt + b+ C(wt)),

et = B−1
t (Atwt + bt + Ct(wt))−B−1(Awt + b+ C(wt)).

Define

f(w) =
1

2
(w − wπ)

⊤Φ⊤DΦ(w − wπ).

We now verify the conditions given in Proposition 11.

Verifying (A.14): By definition f(w) ≥ 0. Also, ∇f(w) = Φ⊤DΦ(w − wπ). Hence,

∥∇f(w)−∇f(w′)∥ = ∥Φ⊤DΦ(w − w′)∥ ≤ ∥Φ⊤DΦ∥op∥w − w′∥,

where ∥ · ∥op is the operator norm corresponding to the Euclidean space. Set L = ∥Φ⊤DΦ∥op.

From (ii) in Assumption 2 and Φ being full rank, we know that Φ⊤DΦ is a positive definite matrix

and hence L is a positive scalar. This verifies (A.14).

Verifying (A.15): It is straightforward to verify that Awt+ b+C(wt) = Φ⊤D(T̃
(λ)
π Φwt−Φwt)

by comparing (2.12) - (2.16). Then,

(∇f(wt))
⊤E[ht(wt)|Ft] = (wt − wπ)

⊤(Awt + b+ C(wt))

= (wt − wπ)
⊤Φ⊤D(T̃ (λ)

π Φwt − Φwt) < 0,

where the last inequality is by using Lemma 9 from [64] with the fact that, from Theorem 1, ΠT̃ (λ)
π

is a contraction. Since (∇f(wt))
⊤E[ht|Ft] is strictly negative, we can find a positive scalar c2 that

129

satisfies (A.15).

Verifying (A.16): We can write et = ∆1
twt +∆2

t +∆3
t (wt), where,

∆1
t = B−1

t At −B−1A, ∆2
t = B−1

t bt −B−1b, ∆3
t (wt) = B−1

t Ct(wt)−B−1C(wt).

From Proposition 2.1 of [61], we have

∥E[∆1
t]∥ ≤

c̄1√
t+ 1

, ∥E[∆2
t]∥ ≤

c̄2√
t+ 1

∀ t. (A.19)

So, we will now bound E[∆3
t (wt)|Ft].

∥E[∆3
t (wt)|Ft]∥ = ∥E[B−1

t Ct(wt)−B−1C(wt)|Ft]∥

= ∥E[B−1
t Ct(wt)−B−1Ct(wt) +B−1Ct(wt)−B−1C(wt)|Ft]∥

≤ E[∥(B−1
t −B−1)∥ ∥Ct(wt)∥ | Ft] + ∥B−1∥ E[∥Ct(wt)− C(wt)∥ | Ft]. (A.20)

First consider ∥Ct(wt)∥. We can bound

∥zτ∥ ≤
τ∑

m=0

(αλ)τ−m∥φ(sm)∥
(a)

≤ c̄31 (A.21)

|σÛsτ ,π(sτ)
(Φwt)| = | inf

u∈Ûsτ ,π(sτ)

u⊤(Φwt)| ≤ sup
u∈Ûsτ ,π(sτ)

|u⊤(Φwt)|

≤ sup
u∈Ûsτ ,π(sτ)

∥u∥ ∥Φwt∥
(b)

≤ c̄32∥wt∥ (A.22)

where c̄31 and c̄32 are finite positive scalars. For (a), we used the fact that sups ∥φ(s)∥ < ∞. For

(b), we used the fact that supu∈Ûsτ ,π(sτ)
∥u∥ < ∞ since Ûs,π(s) is a finite set for any s ∈ S and

∥Φwt∥ ≤ c′∥wt∥ for some finite positive scalar c′. Using (A.21) and (A.22),

∥Ct(wt)∥ ≤
α

(t+ 1)

t∑
τ=0

∥zτσÛsτ ,π(sτ)
(Φwt)∥ ≤

α

(t+ 1)

t∑
τ=0

∥zτ∥ |σÛsτ ,π(sτ)
(Φwt)| ≤ c̄33∥wt∥.

(A.23)

130

From Lemma 4.3 of [61], we have E[∥(B−1
t −B−1)∥] ≤ c̄34/

√
(t+ 1). Using this and (A.23), we

get,

E[∥(B−1
t −B−1)∥ ∥Ct(wt)∥] ≤

c̄35√
t+ 1

∥wt∥. (A.24)

For bounding E[∥Ct(wt)− C(wt)∥] in (A.20), we define Vt and nt as,

Vt =
α

(t+ 1)

t∑
m=0

φ(sm)
∞∑

τ=t+1

[
(αλP o

π)
τ−mσÛπ

(Φwt)
]
(sm), nt(s) =

t∑
τ=0

I{sτ = s}.

Note that nt(s) is the number of visits to state s until time t. Then,

E[Ct(wt)|Ft] = E

[
α

(t+ 1)

t∑
τ=0

τ∑
m=0

(αλ)τ−mφ(sm)σÛsτ ,π(sτ)
(Φwt)|Ft

]

= E

[
α

(t+ 1)

t∑
τ=0

τ∑
m=0

(αλ)τ−mφ(sm)E
[
σÛsτ ,π(sτ)

(Φwt)|Fm

]
|Ft

]
(a)
= E

[
α

(t+ 1)

t∑
τ=0

τ∑
m=0

(αλ)τ−mφ(sm)((P
o
π)

τ−mσÛπ
(Φwt))(sm)|Ft

]
(b)
= E

[
α

(t+ 1)

t∑
m=0

φ(sm)
t∑

τ=m

((αλP o
π)

τ−mσÛπ
(Φwt))(sm)|Ft

]

= E

[
α

(t+ 1)

t∑
m=0

φ(sm)
∞∑

τ=m

((αλP o
π)

τ−mσÛπ
(Φwt))(sm)|Ft

]
− E[Vt|Ft]

(c)
= E

[
α

(t+ 1)

∑
s∈S

nt(s)φ(s)
∞∑
i=0

((αλP o
π)

iσÛπ
(Φwt))(s)|Ft

]
− E[Vt|Ft], (A.25)

where (a) follows since the transition probability matrix governing along policy π is P o
π , (b) by

exchanging the order of summation, and (c) by using the definition of nt(s). Note that,

E[C(wt)|Ft] = E[αΦ⊤D
∞∑
i=0

(αλP o
π)

iσÛπ
(Φwt)|Ft]

= E[α
∑
s∈S

dsφ(s)
∞∑
i=0

((αλP o
π)

iσÛπ
(Φwt))(s)|Ft]. (A.26)

131

So, using (A.26) and (A.25),

∥E [(Ct(wt)− C(wt)) |Ft]∥

=

∥∥∥∥∥α∑
s∈S

(
E[nt(s)]

t+ 1
− ds

)
φ(s)

∞∑
i=0

((αλP o
π)

iσÛπ
(Φwt))(s)− E[Vt|Ft]

∥∥∥∥∥
(d)

≤ c̄36
∑
s∈S

∣∣∣∣(E[nt(s)]

t+ 1
− ds

)∣∣∣∣ ∥wt∥+ E[∥Vt∥ |Ft]
(e)

≤ c̄37
t+ 1

∥wt∥+
c̄38
t+ 1

∥wt∥ (A.27)

For getting (d), note that ∥φ(s)
∑∞

i=0((αλP
o
π)

iσÛπ
(Φwt))(s)∥ ≤ c′∥wt∥ for some positive constant

c′, using (A.22) and the fact that the summation is bounded due to the discounted factor (αλ). For

getting (e), we use the result from Lemma 4.2 [61] that
∣∣∣E[nt(s)]

t+1
− ds

∣∣∣ ≤ c′

t+1
for some positive

number c′. Also, it is straightforward to show that E[∥Vt∥ |Ft] ≤ c′ ∥wt∥
t+1

for some positive number

c′ using (A.22) and the fact that the summation is bounded due to the discounted factor (αλ).

Using (A.24) and (A.27) in (A.20), we get

∥E[∆3
t (wt)]∥ ≤

c̄3√
t+ 1

∥wt∥. (A.28)

Notice that

∥wt∥ ≤ ∥wt − wπ∥+ ∥wπ∥ ≤ ∥(Φ⊤DΦ)−1∥ ∥(Φ⊤DΦ)(wt − wπ)∥+ ∥wπ∥

≤ c̄39(1 + ∥∇f(wt)∥). (A.29)

Now,

∥E[et|Ft]∥ = ∥E[∆1
t]∥ ∥wt∥+ ∥E[∆2

t]∥+ ∥E[∆3
t (wt)|Ft]∥

(f)

≤ c̄1√
t+ 1

∥wt∥+
c̄2√
t+ 1

+
c̄3√
t+ 1

∥wt∥
(g)

≤ c2√
t+ 1

(1 + ∥∇f(wt)∥) (A.30)

where (f) is by using (A.19) and (A.28) and (g) is by using (A.29). This completes the verification

of the condition (A.16).

132

Verifying (A.17): From definition, we have ht(wt) + et = B−1
t (Atwt + bt + Ct(wt)), for all t.

Using similar steps as before, it is straightforward to show that ∥Bt∥ ≤ c41, |At| ≤ c42, |bt| ≤ c43

for some positive scalars c41, c42, c43. From (A.23) we have ∥ct(wt)∥ ≤ c̄33∥wt∥. Combining these,

we get

∥ht(wt) + et∥ ≤ c44(1 + ∥wt∥). (A.31)

Now, from (A.29) and (A.14), ∥ht(wt) + et∥2 ≤ c45(1+ ∥∇f(wt)∥2) for all t. So, finally we have,

E[∥ht(wt) + et∥2|Ft] = E[∥ht(wt) + et∥2|wt] ≤ c3(1 + ∥∇f(wt)∥2) ∀ t,

showing that (A.17) is satisfied.

Verifying (A.18): From (A.30), εt = 1/
√
(t+ 1). So, this condition is satisfied. ‘ So, all

the assumption of Proposition 11 are satisfied. Hence the result of that Proposition is true. In

particular, ∇f(wt) = Φ⊤DΦ(wt − wπ) converges to 0. Since Φ⊤DΦ is positive definite, this

implies that wt → wπ.

A.3 Proof of the Results in Section 2.4

Let V̄k = Φwπk
and V ∗ be the optimal robust value function. Define

ek = Vπk
− V̄k, lk = V ∗ − Vπk

, gk = Vπk+1
− Vπk

. (A.32)

Interpretations of these expressions: Since the robust value function in the kth iteration V̄k is used

as a surrogate for the robust value function Vπk
, ek quantifies the approximation error. gk signifies

the gain of value functions between iterations k and k + 1. Finally, lk encapsulates the loss in the

value function because of using policy πk instead of the optimal policy.

Let |x| denote element-wise absolute values of vector x ∈ R|S|. We first prove the following

result. This parallels to the result for the nonrobust setting in [67].

133

Lemma 14. We have

|lk+1| ≤ c(α, β, 0, λ)H̄∗(|lk|+ |ek|) + c(α, β, 0, λ)H̄k(|gk|+ |ek|) and (A.33)

|gk| ≤ c(α, β, 0, λ)(I − c(α, β, 0, λ)H̄k+1)
−1(H̄k+1 + H̄k)|ek| (A.34)

where the stochastic matrices H̄∗, H̄k, and H̄k+1 are defined in (A.37)-(A.38).

Proof. As before, denote the operator T̃ (λ)
π as T̄ (λ)

π when Ûπ = Uπ. Now, similar to (A.9), for any

policy π and V1, V2, we get that

|T̄ (λ)
π (V1)− T̄ (λ)

π (V2)|

= |(1− λ)
∞∑

m=0

λm[α
m∑
t=0

(αP o
π)

t (σUπ(V1)− σUπ(V2)) + (αP o
π)

m+1(V1 − V2)]|

≤ (1− λ)
∞∑

m=0

λm[α
m∑
t=0

|(αP o
π)

t|σUπ(V1)− σUπ(V2)| |+ |(αP o
π)

m+1|V1 − V2||]

(a)

≤ (1− λ)
∞∑

m=0

λm[α
m∑
t=0

(βP o
πe
)t|σUπ(V1)− σUπ(V2)|+ |(βP o

πe
)m+1|V1 − V2||]

(b)

≤ (1− λ)
∞∑

m=0

λm[β
m∑
t=0

(βP o
πe
)t|V1 − V2|+ |(βP o

πe
)m+1|V1 − V2||] (A.35)

where (a) follows from Assumption 2 and πe (dependent on π) being the exploration policy. (b)

follows from (A.5) in Lemma 13.

Recall that the optimal robust value function V ∗ and the optimal robust policy π∗ satisfy the

equation T̄ (λ)
π∗ V ∗ = V ∗. Using this,

lk+1 = V ∗ − Vπk+1
= T̄

(λ)
π∗ V ∗ − T̄ (λ)

πk+1
Vπk+1

= (T̄
(λ)
π∗ V ∗ − T̄ (λ)

π∗ Vπk
) + (T̄

(λ)
π∗ Vπk

− T̄ (λ)
π∗ V̄k) + (T̄

(λ)
π∗ V̄k − T̄ (λ)

πk+1
V̄k)

+ (T̄ (λ)
πk+1

V̄k − T̄ (λ)
πk+1

Vπk
) + (T̄ (λ)

πk+1
Vπk
− T̄ (λ)

πk+1
Vπk+1

)

(c)

≤ (T̄
(λ)
π∗ V ∗ − T̄ (λ)

π∗ Vπk
) + (T̄

(λ)
π∗ Vπk

− T̄ (λ)
π∗ V̄k)

+ (T̄ (λ)
πk+1

V̄k − T̄ (λ)
πk+1

Vπk
) + (T̄ (λ)

πk+1
Vπk
− T̄ (λ)

πk+1
Vπk+1

)

134

(d)

≤ (1− λ)
∞∑

m=0

λm[β
m∑
t=0

(βP o
π∗)t(|lk|+ |ek|) + (βP o

π∗)m+1(|lk|+ |ek|)]

+ (1− λ)
∞∑

m=0

λm[β
m∑
t=0

(βP o
πk+1

)t(|gk|+ |ek|) + (βP o
πk+1

)m+1(|gk|+ |ek|)]

(e)
= c(α, β, 0, λ)H̄∗(|lk|+ |ek|) + c(α, β, 0, λ)H̄k+1(|gk|+ |ek|) (A.36)

Here (c) follows because πk+1 is the greedy policy w.r.t. V̄k and hence T̄ (λ)
π∗ V̄k − T̄ (λ)

πk+1V̄k ≤ 0. (d)

follows from (A.35) noting (i) in Assumption 3. Finally, (e) follows by taking

H̄∗ =
1

c(α, β, 0, λ)
(1− λ)

∞∑
m=0

λm[β
m∑
t=0

(βP o
π∗)t + (βP o

π∗)m+1], and (A.37)

H̄j =
1

c(α, β, 0, λ)
(1− λ)

∞∑
m=0

λm[β
m∑
t=0

(βP o
πj
)t + (βP o

πj
)m+1], for j ≥ 1. (A.38)

Note that, matrices H̄∗ and H̄j are stochastic matrices. This follows easily by verifying H̄∗1 = 1,

H̄j1 = 1 using algebra analysis as in (A.10).

The same argument can be repeated to get

− lk+1≤c(α, β, 0, λ)H̄∗(|lk|+ |ek|) + c(α, β, 0, λ)H̄k+1(|gk|+ |ek|).

Combining, we get

|lk+1| ≤ c(α, β, 0, λ)H̄∗(|lk|+ |ek|) + c(α, β, 0, λ)H̄k+1(|gk|+ |ek|).

Now,

gk = T̄ (λ)
πk+1

Vπk+1
− T̄ (λ)

πk
Vπk

= T̄ (λ)
πk+1

Vπk+1
− T̄ (λ)

πk+1
Vπk

+ T̄ (λ)
πk+1

Vπk
− T̄ (λ)

πk+1
V̄k + (T̄ (λ)

πk+1
V̄k − T̄ (λ)

πk
V̄k) + T̄ (λ)

πk
V̄k − T̄ (λ)

πk
Vπk

≥ T̄ (λ)
πk+1

Vπk+1
− T̄ (λ)

πk+1
Vπk

+ T̄ (λ)
πk+1

Vπk
− T̄ (λ)

πk+1
V̄k + T̄ (λ)

πk
V̄k − T̄ (λ)

πk
Vπk

135

where the last inequality follows because πk+1 is the greedy policy w.r.t. V̄k and hence (T̄ (λ)
πk+1V̄k −

T̄
(λ)
πk V̄k) ≥ 0. From (A.35), noting (i) in Assumption 3, we have

−gk ≤ (1− λ)
∞∑

m=0

λm[β
m∑
t=0

(βP o
πk+1

)t(|gk|+ |ek|) + (βP o
πk+1

)m+1(|gk|+ |ek|)]

+ (1− λ)
∞∑

m=0

λm[β
m∑
t=0

(βP o
πk
)t(|ek|) + (βP o

πk
)m+1(|ek|)]

≤c(α, β, 0, λ)H̄k+1(|gk|+ |ek|) + c(α, β, 0, λ)H̄k(|ek|).

Repeating the above argument for −gk = T̄
(λ)
πk Vπk

− T̄ (λ)
πk+1Vπk+1

, we get

|gk| ≤ c(α, β, 0, λ)H̄k+1(|gk|+ |ek|) + c(α, β, 0, λ)H̄k(|ek|).

So, |gk| ≤ c(α, β, 0, λ)(I − c(α, β, 0, λ)H̄k+1)
−1(H̄k+1 + H̄k)|ek|. Thus, proving the lemma.

Proof of Theorem 3. From the Lemma 14, taking lim sup on both sides of (A.33) we have

lim sup
k→∞

|lk| ≤ lim sup
k→∞

c(α, β, 0, λ)(I − c(α, β, 0, λ)H̄∗)
−1(H̄∗ + H̄k)|ek|

+ c(α, β, 0, λ)(I − c(α, β, 0, λ)H̄∗)
−1H̄k|gk|

(a)

≤ lim sup
k→∞

c(α, β, 0, λ)(I − c(α, β, 0, λ)H̄∗)
−1(H̄∗ + H̄k)|ek|

+ c2(α, β, 0, λ)(I − c(α, β, 0, λ)H̄∗)
−1H̄k(I − c(α, β, 0, λ)H̄k+1)

−1(H̄k+1 + H̄k)|ek|

(b)
=

2c(α, β, 0, λ)

(1− c(α, β, 0, λ))2
lim sup
k→∞

Hk|ek| (A.39)

where (a) follows from (A.34) in Lemma 14. (b) follows by taking

Hk = (1− c(α, β, 0, λ))2(I − c(α, β, 0, λ)H̄∗)
−1

(
(H̄∗ + H̄k)

2

+ c(α, β, 0, λ)H̄k(I − c(α, β, 0, λ)H̄k+1)
−1 (H̄k+1 + H̄k)

2

)
. (A.40)

136

Notice thatHk is a stochastic matrix. To see this, we know that, if Pi, i = {1, 2, 3, 4} are stochastic

matrices and c < 1, then P1P2P3P4, (P1 + P2)/2, and (1 − c)(I − cP1)
−1 are valid stochastic

matrices as well. Now, it is easy to verify that Hk1 = 1. Then, µk = µHk is a valid probability

distribution.

Let x2 denote element-wise squares of vector x ∈ R|S| and also let ∥x∥2µ =
∫
s∈S |x(s)|

2dµ(s) =

µ|x|2. Now, from (A.39) we have

lim sup
k→∞

∥lk∥2µ = lim sup
k→∞

µ|lk|2 ≤
4c2(α, β, 0, λ)

(1− c(α, β, 0, λ))4
lim sup
k→∞

µ[Hk|ek|]2

(c)

≤ 4c2(α, β, 0, λ)

(1− c(α, β, 0, λ))4
lim sup
k→∞

µHk|ek|2

=
4c2(α, β, 0, λ)

(1− c(α, β, 0, λ))4
lim sup
k→∞

µk|ek|2 =
4c2(α, β, 0, λ)

(1− c(α, β, 0, λ))4
lim sup
k→∞

∥ek∥2µk

(d)

≤ 4C1C2c
2(α, β, 0, λ)

(1− c(α, β, 0, λ))4
lim sup
k→∞

∥ek∥2dπk .

Here (c) follows from Jensen’s inequality. To see this, let

Hk =

−q1−

−q2−
...

−q|S|−

where qi ∈ R|S|, for all i, are probability vectors.

For any x ∈ R|S|, let x(j) denote the j th coordinate value in x. Now, for each i ∈ {1, 2, . . . , |S|},

define |S|-discrete valued random variable Xi such that it takes value |ek|(j) with probability qi(j)

for all j ∈ {1, 2, . . . , |S|}. Thus, from Jensen’s inequality, we have

[Hk|ek|]2 = ((E[X1])
2, (E[X2])

2, · · · , (E[XS])
2)⊤ ≤ (E[X2

1],E[X2
2], · · · ,E[X2

S])
⊤ = Hk|ek|2.

(A.41)

(d) follows by noting that for any x ∈ R|S|, from (iv) in Assumption 3, we have ∥x∥2µk
≤

C1∥x∥2µ̄ ≤ C1C2∥x∥2dπk for all k. Thus proving (2.26) of this theorem.

137

Now, since ρ = 0, (2.27) of this theorem directly follows from (iii) in Assumption 3 and (2.11)

in Theorem 1. This completes the proof of this theorem.

Now we make an alternative assumption to Assumption 3.(iv) to get a guarantee for any K th

iteration of the RLSPI algorithm.

Assumption 10. For an arbitrary sequence of stationary policies {πi}i≥1, let some probability

distributions µ and µ̄ satisfy

Cµ,µ̄ = (1− c(α, β, 0, λ))
∑
m≥1

(c(α, β, 0, λ))mcµ,µ̄(m) <∞, (A.42)

where for any given m ≥ 1 the coefficients are defined as

cµ,µ̄(m) = sup
π1,...,πm

∥∥∥∥d(µH̄1H̄2 . . . H̄m)

dµ̄

∥∥∥∥
∞
, (A.43)

and H̄k is a stochastic matrix that depends on P o
πk

for any 1 ≤ k ≤ m. Also assume that dπk
≥

µ̄/C for all k.

We note that cµ,µ̄(m) can potentially diverge to∞, but Cµ,µ̄ is finite as long as (c(α, β, 0, λ))m

converges to 0 at a faster rate. Assumption 10 being similar as in the non-robust setting, we refer

the reader to [89, 69] for its detailed interpretation.

Here is a result that provides a guarantee for the performance of the policy learned in K th

iteration of the RLSPI algorithm.

Theorem 18. Let Assumption 2, Assumption 3.(i)-(iii), and Assumption 10 hold. Let the range of

reward function r be (0, Rmax]. Let {πk}Kk=1 be the sequence of policies generated by the RLSPI

algorithm for some K ≥ 1. Let Vπk
and V̄k = Φwπk

be true robust value function and the

approximate robust value function corresponding to the policy πk. Also, let V ∗ be the optimal

138

robust value function. Then, with c(α, β, 0, λ) < 1,

∥V ∗ − VπK
∥µ ≤

2
√
2(c(α, β, 0, λ))(K+1)/2

(1− c(α, β, 0, λ))3/2
Rmax +

2
√
2c(α, β, 0, λ)

√
CCµ,µ̄

(1− c(α, β, 0, λ))2
max
0≤k<K

∥Vπk
− V̄k∥dπk .

(A.44)

Moreover, from Theorem 1 and Assumption 3.(iii), as K →∞ we have

∥V ∗ − VπK
∥µ ≤

2
√
2c(α, β, 0, λ)

√
CCµ,µ̄

(1− c(α, β, 0, λ))3
δ. (A.45)

Proof of Theorem 18. Let ζ = c(α, β, 0, λ). From the Lemma 14, using (A.34) in (A.33) we have

|lk+1| ≤ ζH̄∗|lk|+ ζ(H̄∗ + H̄k)|ek|+ ζH̄k|gk|

≤ ζH̄∗|lk|+ ζ(H̄∗ + H̄k)|ek|+ ζ2H̄k(I − ζH̄k+1)
−1(H̄k+1 + H̄k)|ek|

(a)
= ζH̄∗|lk|+

2ζ

1− ζ
Hk|ek|, (A.46)

where (a) follows since

Hk = (1− ζ)

(
(H̄∗ + H̄k)

2
+ ζH̄k(I − ζH̄k+1)

−1 (H̄k+1 + H̄k)

2

)
. (A.47)

Taking (K − 1)-recursions of (A.46) we get

|lK | ≤ (ζH̄∗)
K |l0|+

2ζ

1− ζ

K−1∑
k=0

(ζH̄∗)
K−k−1Hk|ek|. (A.48)

Note that since α ≤ β, we have that α ≤ ζ . Now, since the rewards are in (0, Rmax], we also have

that |l0| = |V ∗ − Vπ0 | ≤ 2Rmax

(1−α)
1 ≤ 2Rmax

(1−ζ)
1. Thus, bounding (A.48) further we get

|lK | ≤
2ζKζ

(1− ζ)2

[
αKGKRmax1+

K−1∑
k=0

αkGk|ek|

]
, (A.49)

139

where ζK = ζK−1(2− ζ − ζK) ≤ 2, the positive coefficients αs are

αk =
ζK−k−1(1− ζ)

ζK
, for 0 ≤ k ≤ K − 1, and αK =

ζK−1(1− ζ)
ζK

, (A.50)

and the operators Gs are

Gk = (H̄∗)
K−k−1Hk, for 0 ≤ k ≤ K − 1, and GK = (H̄∗)

K .

Note that
∑K

k=0 αk = 1 and Gk for 0 ≤ k ≤ K are stochastic matrices.

Now, from (A.49) we have

∥lK∥2µ
(b)

≤ 4ζ2Kζ
2

(1− ζ)4
µ

[
αK(GKRmax1)

2 +
K−1∑
k=0

αk(Gk|ek|)2
]

(c)

≤ 4ζ2Kζ
2

(1− ζ)4
µ

[
αKGKR

2
max1+

K−1∑
k=0

αkGk|ek|2
]

=
4ζ2Kζ

2

(1− ζ)4

[
αKR

2
max + µ

K−1∑
k=0

αkGk|ek|2
]

(d)

≤ 4ζ2Kζ
2

(1− ζ)4

[
αKR

2
max + (1− ζ)

K−1∑
k=0

αk

∑
m≥0

ζmcµ,µ̄(m+K − k)∥ek∥2µ̄

]
(e)

≤ 4ζ2Kζ
2

(1− ζ)4

[
αKR

2
max + (1− ζ)∥e∥2µ̄

K−1∑
k=0

αk

∑
m≥0

ζmcµ,µ̄(m+K − k)

]
(f)
=

4ζKζ
2

(1− ζ)4

[
ζK−1(1− ζ)R2

max + (1− ζ)∥e∥2µ̄
K−1∑
k=0

ζK−k−1(1− ζ)
∑
m≥0

ζmcµ,µ̄(m+K − k)

]
(g)

≤ 8ζ2

(1− ζ)4
[
ζK−1(1− ζ)R2

max + ∥e∥2µ̄Cµ,µ̄

]
=

8ζK+1

(1− ζ)3
R2

max +
8ζ2

(1− ζ)4
∥e∥2µ̄Cµ,µ̄

(h)

≤ 8ζK+1

(1− ζ)3
R2

max +
8ζ2CCµ,µ̄

(1− ζ)4
∥e∥2dπk ,

where (b) follows from Jensen’s inequality, i.e., f(
∑K

k=0 αkxk) ≤
∑K

k=0 αkf(xk) for any convex

function f . Also, (c) follows from Jensen’s inequality, similar to (A.41), with stochastic matrix

Gk. (d) follows from the definition of the coefficients cµ,µ̄(m) (A.43), (e) follows by taking e

140

such that ∥e∥2µ̄ = max0≤k≤K−1 ∥ek∥2µ̄, (f) follows from (A.50), (g) follows since ζK ≤ 2 and the

definition of Cµ,µ̄ (A.42), and (h) follows by noting that for any x ∈ R|S|, from Assumption 10, we

have ∥x∥2µ̄ ≤ C∥x∥2dπk for all k. Using the fact that a2 + b2 ≤ (a+ b)2 for a ≥ 0, b ≥ 0 completes

the proof of (A.44) in this theorem.

Now, since ρ = 0, (A.45) of this theorem directly follows from (iii) in Assumption 3 and

(2.11) in Theorem 1. This completes the proof of this theorem.

A.4 Experiments

In all the experiments reported, we use a spherical uncertainty set {x : ∥x∥2 ≤ r} where r is

the radius parameter. For such a set, we can compute a closed form solution for σÛs,π(s)
(Φw) as

√
rw⊤Φ⊤Φw [40]. Note that, we can precompute Φ⊤Φ once and reuse it in every iteration of the

RLSPI Algorithm, thus saving the computational overhead.

Chain MDP: We first consider a tabular MDP problem represented in the Figure A.1 for ver-

ifying the convergence of RLSPI algorithm. This MDP consists of 10 states depicted by circles

here. We have two actions, that is, move left or right. The actions fail to remain in a given direction

with probability 0.1, depicted by the red arrows. Thus, with probability 0.9, actions succeed to be

in a given direction, depicted by the blue (action left being unchanged) and green (action right

being unchanged) arrows. Finally, visiting states of yellow color, that is 0 and 9, are rewarded 1,

and visiting other states are rewarded 0.

[42] observes that learning algorithms often attain sub-optimal policies under such MDPs due

to the randomization of actions (as depicted by red arrows in the Figure A.1). It is also straightfor-

ward that the optimal policy of this MDP is moving left for states 0 through 4 and moving right for

states 5 through 9. We train RLSPI algorithm on this MDP with α = 0.9, λ = 0. We use the space

spanned by polynomials, degree up to 2, as the feature space and set δ = 0.1 (error of weights as

mentioned in Step 8 of the RLSPI algorithm). We select r as 0.01 times the constant ∥Φ⊤Φ∥−1
F

where ∥ · ∥F is the Frobenius norm.

Figure A.2 shows how the Q-value functions in RLSPI algorithm training evolve as the iteration

progress. From this, we note that RLSPI algorithm is able to find the optimal policy with relatively

141

s=0 s=1 s=2 s=9s=8s=3

Figure A.1 0 2 4 6 8
States

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Q
va

lu
es

RLSPI with RLSPE for simple MDP with 10 states and 2 actions Iter 0, action 0
Iter 0, action 1
Iter 5, action 0
Iter 5, action 1
Iter 10, action 0
Iter 10, action 1
Iter 15, action 0
Iter 15, action 1
Iter 19, action 0
Iter 19, action 1
DP: Optimal V

Figure A.2

less number of iterations. From this figure, we also note that the Q-value functions corresponding

to the optimal policy in RLSPI algorithm converges to the optimal robust value function.

Examples from OpenAI Gym [71]: We now provide more details for the OpenAI Gym ex-

periments demonstrated in Section 2.5. We use the radial basis functions (RBFs) for the purpose of

feature spaces in our experiments. The general expression for RBFs is ψ(x) = exp(−∥x−µ∥2/σ)

where the RBF parameters µ and σ are chosen before running the experiment. Here x is a con-

catenation of states and actions when both S,A are continuous spaces. In this case, the feature

map is simply defined as φ(s, a) = ψ((s, a)) where (s, a) represents the concatenation operation.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

RB
F

va
lu

e

exp((x + 0.5)2/) exp((x 0.5)2/)

RBF 1
RBF 2

Figure A.3: We have discretized x with 104 points
here. The overlap percentage (ratio of the area in the
yellow region to the area of either RBF 1 or RBF 2) is
2.88.

While working with experiments whose

action space is discrete, we naturally

choose φ(s, a) to be the vector (1(a =

1)ψ(s), . . . ,1(a = |A|)ψ(s))⊤ where

1(E) is the indicator function which pro-

duces value 1 if the event E is true, and 0

otherwise. After a few trials, we observed

that using few (typically 3-4) uniformly

spaced RBFs in each dimension of x, here

x is as described before, with approximate

overlap percentage of 2.5 works suitably

142

for getting the desired results shown here

and in Section 2.5. Figure A.3 illustrates

this for the case of using two(= n) uni-

formly spaced RBFs with one dimensional x variable. For this illustration, we have the low(l)

and high(h) values of x to be −0.5 and 0.5 respectively. Thus, the centers (i.e., parameter µ) of

the two uniformly spaced RBFs in Figure A.3 are −0.5 and 0.5. We select the parameter σ as

(h− l)2/n3 = 0.125. We execute this idea on the OpenAI Gym environments. We also experiment

on FrozenLake8x8 OpenAI Gym environment, for which we use the tabular feature space since

the state space is discrete.

A short description of the OpenAI Gym tasks CartPole, MountainCar, Acrobot, and Frozen-

Lake8x8 we used are as follows.

CartPole: By a hinge, a pole is attached to a cart, which moves along a one-dimensional path.

The motion of the cart is controllable, which is either to move it left or right. The pole starts

upright, and the goal is to prevent it from falling over. A reward of +1 is provided for every time-

step that the pole remains upright. CartPole consists of a 4-dimension continuous state space with

2 discrete actions.

MountainCar: A car is placed in the valley and there exists a flag on top of the hill. The goal is

to reach the flag. The control signal is the acceleration and deceleration in continuous domain. A

reward of 0 is provided if the car reaches goal, otherwise it is provided −1. MountainCar consists

of a 3-dimension S ×A continuous space.

Acrobot: Two poles attached to each other by a free moving joint and one of the poles is attached

to a hinge on a wall. Initially, the poles are hanging downwards. An action, positive and negative

torques can be applied to the movable joint. A reward of −1 is provided every time-step until the

end of the lower pole reaches a given height, at termination 0 reward is provided. The goal is to

maximize the reward gathered. Acrobot consists of a 6-dimension continuous state space with 3

discrete actions.

FrozenLake8x8: A grid of size 8× 8 consists of some tiles which lead to the agent falling into the

143

water. The agent is rewarded 1 after reaching a goal tile without falling and rewarded 0 in every

other timestep.

−40 −20 0 20 40 60
Percentage change from nominal value of 'max_speed'

100

120

140

160

180

200

220

Av
er

ag
e

tim
es

te
ps

 to
 re

ac
h

th
e

go
al DDPG

LSPI
RLSPI
Soft-Robust DDPG

Figure A.4

10 20 30 40 50
Percentage change from nominal value of 'power'

0

20

40

60

80

Av
er

ag
e

cu
m

ul
at

iv
e

Re
wa

rd

DDPG
LSPI
RLSPI
Soft-Robust DDPG

Figure A.5

0.2 0.3 0.4 0.5 0.6 0.7
Prob. of picking random action

0

10

20

30

40

50

Av
er

ag
e

cu
m

ul
at

iv
e

Re
wa

rd QL
LSPI
RLSPI
Soft-Robust QL

Figure A.6

In Section 2.5, we provided performance evaluation curves in Figures 2.1-2.6. Here, we provide

more results.

Figures A.4 shows the average time steps to reach the goal in MountainCar environment as we

change the parameter max_speed. The nominal value of this parameter is 0.07. As the parameter

deviates from the nominal value, the performance of the policy obtained by the LSPI algorithm

degrades quickly whereas the performance of the policy obtained by the RLSPI algorithm is fairly

robust. Figure A.5 shows the average cumulative reward on the MountainCar environment as we

change the parameter power. The nominal value of this parameter is 15×10−4. We again note that

the RLSPI algorithm showcases robust performance. Figure A.6 shows the ratio of average time to

reach the goal and the number of trajectories which actually reach the goal on the FrozenLake8x8

environment against probability of picking a random action. Note that for large values of this

probability all algorithms take more time to reach the goal or often fall into the water. Here again,

RLSPI shows robust performance. Intuitively, perturbation in the parameters (like the action space,

CartPole’s force_mag, gravity, length, MountainCar’s max_speed, power) of the environment is

captured by the uncertainty set in the RMDP framework. Thus we see good performances of the

robust algorithms like our RLSPI algorithm, Soft-Robust algorithms [48], and Robust Q-learning

algorithm [40] compared to the non-robust algorithms.

144

In each policy iteration loop, in both LSPI and RLSPI algorithms, we generate t trajectories of

horizon length h using the last updated policy (the initial policy π0 is random.) We generally stop

the simulation after 10-20 policy iteration loops. The details of the hyper-parameters are shown in

Table A.1 in addition to λ being set to zero.

OpenAI Gym Discount Weights error
Environment α ε0 t h

CartPole 0.95 0.01 150 200
MountainCar 0.95 0.05 1000 20

Acrobot 0.98 0.1 100 200
FrozenLake8x8 0.99 0.01 3000 200

Table A.1: Details of hyper-parameters in LSPI and RLSPI algorithms experiments.

Here are the details on the Q-learning based algorithms. The Q-learning algorithm with linear

function approximation on CartPole uses 64 parameterized (centers and variances) RBFs chosen by

the Adam optimizer. Both Q-learning and Soft-Robust Q-learning algorithms for FrozenLake8x8

uses the tabular method, instead of deep neural or linear function architectures. We use the usual

decaying-epsilon-greedy for the exploration policies, such that it exponentially decays to 0.01 at

half-way through the total number of training episodes (Epochs in Table A.2) starting from 0.99.

We provide the hyper-parameters in Table A.2 like the discount factor, size of hidden layers h

starting from the first hidden layer in the given array, and size of the batch of tuples (state, action,

next state, reward) chosen uniformly from the experience buffer of size 5000 to update the neural

network (Batch in Table A.2). For all neural networks, we used the relu activation functions. Note

that the DDPG algorithm uses two same sized neural networks for actor and critic.

For completeness, we also point out some weaknesses of the experiments we have done. Firstly,

we are not optimizing over the parameter r which is the radius of the spherical set associated

with the uncertainty. We believe that performing a hyper-parameter search for the best r will

make the policy obtained by the RLSPI further robust. Secondly, since we are focusing on the

145

OpenAI Gym Discount Hidden layers Batch Epochs
Environment α h

CartPole 0.9 [200, 100] 200 3000
MountainCar 0.99 [300, 200] 40 1000

Acrobot 0.995 [128, 64, 64] 500 10000
FrozenLake8x8 0.95 - - 80000

Table A.2: Details of hyper-parameters in Q-learning based algorithms experiments.

linear approximation architecture for developing the theoretical understanding of model-free robust

RL, the experiments may not be immediately scalable to very high dimensional OpenAI Gym

environments which typically require nonlinear approximation architecture.

To end this section, we mention the software configurations used to generate these results:

Python3.7 with OpenAI Gym [71] and few basic libraries (non-exhaustive) like numpy, scipy, mat-

plotlib. Also, the hardware configurations used was macOS High Sierra Version 10.13.6, 16 GB

LPDDR3, Intel Core i7.

146

APPENDIX B

APPENDIX FOR CHAPTER 3*

In this appendix, we include complete proofs, all experiments, and all supporting details for

the corresponding chapter.

B.1 Useful Technical Results

In this section we state some existing results that are useful in our analysis.

Lemma 15 (Hoeffding’s inequality [164, Theorem 2.2.6]). Let X1, · · · , XT be independent ran-

dom variables. Assume that Xt ∈ [mt,Mt] for every t with Mt > mt. Then, for any ε > 0, we

have

P

(
T∑
t=1

(Xt − E[Xt]) ≥ ε

)
≤ exp

(
− 2ε2∑T

t=1(Mt −mt)2

)
.

Lemma 16 (Self-bounding variance inequality [165, Theorem 10]). Let X1, · · · , XT be indepen-

dent and identically distributed random variables with finite variance, that is, Var(X1) < ∞.

Assume that Xt ∈ [0,M] for every t with M > 0, and let S2
T = 1

T

∑T
t=1X

2
t − (1

T

∑T
t=1Xt)

2. Then,

for any ε > 0, we have

P
(
|ST −

√
Var(X1)| ≥ ε

)
≤ 2 exp

(
− Tε2

2M2

)
.

Proof. The proof of this lemma directly follows from [165, Theorem 10] by noting that we can

rewrite S2
T as follows

T

T − 1
S2
T =

1

T (T − 1)

T∑
i,j=1

(Xi −Xj)
2.

Also, note that we apply [165, Theorem 10] for the scaled random variables Xt/M ∈ [0, 1].

We now provide a covering number result that is useful to get high probability concentration

*Reprinted with permission from Kishan Panaganti, Dileep Kalathil, “Sample Complexity of Robust Reinforce-
ment Learning with a Generative Model.” AISTATS 2022.

147

bounds for value function classes. We first define minimal η-cover of a set.

Definition 2 (Minimal η-cover; [166, Definition 5.5]). A set NV(η) is called an η-cover for a

metric space (V , d) if for every V ∈ V , there exists a V ′ ∈ N such that d(V, V ′) ≤ η. Furthermore,

NV(η) with the minimal cardinality (|NV(η)|) is called a minimal η-cover.

From [166, Exercise 5.5 and Lemma 5.13] we have the following result.

Lemma 17 (Covering Number). Let V = {V ∈ R|S| : ∥V ∥ ≤ Vmax}. Let NV(η) be a minimal

η-cover of V with respect to the distance metric d(V, V ′) = ∥V − V ′∥ for some fixed η ∈ (0, 1).

Then we have

log |NV(η)| ≤ |S| · log
(
3Vmax

η

)
.

Proof. We will consider the normalized metric space (Vn, dn), where

Vn := V/Vmax = {V ∈ R|S| : ∥V ∥ ≤ 1}

and dn := d/Vmax to make use of the fact that the covering number is invariant to the scaling of a

metric space. Let ηn := η/Vmax. Then, it follows from [166, Exercise 5.5 and Lemma 5.13] that

log |NV(η)| = log |NVn(ηn)| ≤ |S| · log
(

3

ηn

)
= |S| · log

(
3Vmax

η

)
.

This completes the proof.

Here we present another covering number result, with a similar proof as Lemma 17, that is

useful to get our upperbound for the KL uncertainty set.

Lemma 18 (Covering Number of a bounded real line). Let Θ ⊂ R with Θ = [l, u] for some

real numbers u > l. Let NΘ(η) be a minimal η-cover of Θ with respect to the distance metric

d(θ, θ′) = |θ − θ′| for some fixed η ∈ (0, 1). Then we have |NΘ(η)| ≤ 3(u− l)/η.

148

B.2 Proof of the Theorems

B.2.1 Concentration Results

Here, we prove Lemma 3. We state the following result first.

Lemma 19. For any V ∈ R|S| with ∥V ∥ ≤ Vmax, with probability at least 1− δ,

max
(s,a)
|P o

s,aV − P̂s,aV | ≤ Vmax

√
log(2|S||A|/δ)

2N

Proof. Fix any (s, a) pair. Consider a discrete random variable X taking value V (j) with proba-

bility P o
s,a(j) for all j ∈ {1, 2, · · · , |S|}. From Hoeffding’s inequality (Lemma 15), we have

P(P o
s,aV − P̂s,aV ≥ ε) ≤ exp(−2Nε2/V 2

max), P(P̂s,aV − P o
s,aV ≥ ε) ≤ exp(−2Nε2/V 2

max).

Choosing ε = Vmax

√
log(2|S||A|/δ)

2N
, we get P(|P o

s,aV − P̂s,aV | ≥ Vmax

√
log(2|S||A|/δ)

2N
) ≤ δ

|S||A| . Now,

using union bound, we get

P(max
(s,a)
|P o

s,aV − P̂s,aV | ≥ Vmax

√
log(2|S||A|/δ)

2N
) ≤

∑
s,a

P(|P o
s,aV − P̂s,aV | ≥ Vmax

√
log(2|S||A|/δ)

2N
)≤ δ.

This completes the proof.

Proof of Lemma 3: Let V = {V ∈ R|S| : ∥V ∥∞ ≤ 1/(1− γ)}. Let NV(η) be a minimal η-cover

of V . Fix a µ ≤ V . By the definition of NV(η), there exists a µ′ ∈ NV(η) such that ∥µ− µ′∥ ≤ η.

Now, for these particular µ and µ′, we get

|P̂s,aµ− P o
s,aµ| ≤ |P̂s,aµ− P̂s,aµ

′|+ |P̂s,aµ
′ − P o

s,aµ
′|+ |P o

s,aµ
′ − P o

s,aµ|
(a)

≤ ∥P̂s,a∥1∥µ− µ′∥∞ + |P̂s,aµ
′ − P o

s,aµ
′|+ ∥P o

s,a∥1∥µ′ − µ∥∞

≤ sup
µ′∈NV (η)

max
s,a
|P̂s,aµ

′ − P o
s,aµ

′|+ 2η

where (a) follows from Hölder’s inequality. Now, taking max on both sides with respect to µ and

149

(s, a) we get

sup
µ∈V

max
s,a
|P̂s,aµ− P o

s,aµ| ≤ sup
µ′∈NV (η)

max
s,a
|P̂s,aµ

′ − P o
s,aµ

′|+ 2η

(b)

≤ 1

1− γ

√
log(4|S||A||NV(η)|/δ)

2N
+ 2η

(c)

≤ 1

1− γ

√
|S| log(12|S||A|/(δη(1− γ)))

2N
+ 2η,

with probability at least 1 − δ/2. Here, (b) follows from Lemma 19 and the union bound and (c)

from Lemma 17.

B.2.2 Proof of Theorem 4

Proof of Lemma 1. We only prove the first inequality since the proof is analogous for the other

inequality. For any (s, a) ∈ S ×A we have

σPs,a(V2)− σPs,a(V1) = inf
q∈Ps,a

q⊤V2 − inf
q̃∈Ps,a

q̃⊤V1 = inf
q∈Ps,a

sup
q̃∈Ps,a

q⊤V2 − q̃⊤V1

≥ inf
q∈Ps,a

q⊤(V2 − V1) = σPs,a(V2 − V1). (B.1)

By definition, for any arbitrary ε > 0, there exists a Ps,a ∈ Ps,a such that

P⊤
s,a(V2 − V1)− ε ≤ σPs,a(V2 − V1). (B.2)

Using (B.2) and (B.1),

σPs,a(V1)− σPs,a(V2) ≤ P⊤
s,a(V1 − V2) + ε

(a)

≤ ∥Ps,a∥1∥V1 − V2∥+ ε = ∥V1 − V2∥+ ε

where (a) follows from Holder’s inequality. Since ε is arbitrary, we get, σPs,a(V1) − σPs,a(V2) ≤

∥V1 − V2∥. Exchanging the roles of V1 and V2 completes the proof.

150

Proof of Lemma 2. Fix any (s, a) pair. From [33, Lemma 4.3] we have that

σPtv
s,a
(V) = P o

s,aV + max
µ:0≤µ≤V

(
− P o

s,aµ− cr max
s

(Vµ(s)) + cr min
s
(Vµ(s))

)
(B.3)

σP̂tv
s,a
(V) = P̂s,aV + max

µ:0≤µ≤V

(
− P̂s,aµ− cr max

s
(Vµ(s)) + cr min

s
(Vµ(s))

)
, (B.4)

where 0 ≤ µ ≤ V is an elementwise inequality and Vµ(s) = V (s)− µ(s) for all s ∈ S.

Using the fact that |maxx f(x)−maxx g(x)| ≤ maxx |f(x)− g(x)|, it directly follows that

|σP̂tv
s,a
(V)− σPtv

s,a
(V)| ≤ |P̂s,aV − P o

s,aV |+ max
µ:0≤µ≤V

|P̂s,aµ− P o
s,aµ|.

Further simplifying we get

|σP̂tv
s,a
(V)− σPtv

s,a
(V)| ≤ |P̂s,aV − P o

s,aV |+ max
µ:0≤µ≤V

|P̂s,aµ− P o
s,aµ|

≤ max
µ∈V
|P̂s,aµ− P o

s,aµ|+ max
µ:0≤µ≤V

|P̂s,aµ− P o
s,aµ| ≤ 2max

µ∈V
|P̂s,aµ− P o

s,aµ|.

This completes the proof.

We are now ready to prove Proposition 4.

Proof of Proposition 4. For any given V ∈ V and (s, a), from Lemma 2, we have

|σP̂tv
s,a
(V)− σPtv

s,a
(V)| ≤ 2max

µ∈V
|P̂s,aµ− P o

s,aµ| ≤ 2max
µ∈V

max
s,a
|P̂s,aµ− P o

s,aµ|.

Taking the maximum over V and (s, a) on both sides, we get

max
V ∈V

max
s,a
|σP̂tv

s,a
(V)− σPtv

s,a
(V)| ≤ 2max

µ∈V
max
s,a
|P̂s,aµ− P o

s,aµ|. (B.5)

151

Now, from the proof of Lemma 3, for any η, δ ∈ (0, 1), we get

max
µ∈V

max
s,a
|P̂s,aµ− P o

s,aµ| ≤
1

1− γ

√
|S| log(6|S||A|/(δη(1− γ)))

2N
+ 2η, (B.6)

with probability greater than 1− δ. Using (B.6) in (B.5), we get the desired result.

We also need the following result that specifies the amplification when replacing the algorithm

iterate value function with the value function of the policy towards approximating the optimal

value.

Lemma 20. Let Vk and Qk be as given in the REVI algorithm for k ≥ 1. Also, let πk =

argmaxaQk(s, a). Then,

∥V̂ ∗ − V̂ πk∥ ≤ 2γ

1− γ
∥Vk − V̂ ∗∥.

Furthermore,

∥V ∗ − V πk∥ ≤ 2

1− γ
∥Qk −Q∗∥.

Proof. The proof is similar to the proof in [75, Main Theorem, Corollary 2]. A straight forward

modification to this proof, using the fact that σP̂s,a
and σPs,a are 1-Lipschitz functions as shown in

Lemma 1, will give the desired result.

Proof of Theorem 4. Recall the empirical RMDP M̂ = (S,A, r, P̂tv, γ). For any policy π, let V̂ π

be robust value function of policy π with respect to the RMDP M̂ . The optimal robust policy, value

function, and state-action value function of M̂ are denoted as π̂⋆, V̂ ⋆ and Q̂⋆, respectively. Also,

for any policy π, we have Q̂π(s, a) = r(s, a) + γσP̂tv
s,a
(V̂ π) and Qπ(s, a) = r(s, a) + γσPtv

s,a
(V π).

Let Vk andQk be as given in the REVI algorithm for k ≥ 1. Also, let πk(s) = argmaxaQk(s, a).

Now,

∥V ∗ − V πk∥ ≤ ∥V ∗ − V̂ ∗∥+ ∥V̂ ∗ − V̂ πk∥+ ∥V̂ πk − V πk∥. (B.7)

152

1) Bounding the first term in (B.7): Let V = {V ∈ R|S| : ∥V ∥ ≤ 1/(1− γ)}. For any s ∈ S,

V ∗(s)− V̂ ∗(s) = Q∗(s, π∗(s))− Q̂∗(s, π̂∗(s))
(a)

≤ Q∗(s, π∗(s))− Q̂∗(s, π∗(s))

(b)
= γσPtv

s,π∗(s)
(V ∗)− γσP̂tv

s,π∗(s)
(V̂ ∗)

= γ(σPtv
s,π∗(s)

(V ∗)− σP̂tv
s,π∗(s)

(V ∗)) + γ(σP̂tv
s,π∗(s)

(V ∗)− σP̂tv
s,π∗(s)

(V̂ ∗))

(c)

≤ γ(σPtv
s,π∗(s)

(V ∗)− σP̂tv
s,π∗(s)

(V ∗)) + γ∥V ∗ − V̂ ∗∥

≤ γ max
V ∈V

max
s,a
|σP̂tv

s,a
(V)− σPtv

s,a
(V)|+ γ∥V ∗ − V̂ ∗∥

where (a) follows since π̂∗ is the robust optimal policy for M̂ , (b) follows from the definitions of

Q∗ and Q̂∗, (c) follows from Lemma 1. Similarly analyzing for V̂ ∗(s)− V ∗(s), we get

∥V ∗ − V̂ ∗∥ ≤ γ

(1− γ)
max
V ∈V

max
s,a
|σP̂tv

s,a
(V)− σPtv

s,a
(V)|. (B.8)

Now, using Proposition 4, with probability greater than 1− δ, we get

∥V ∗ − V̂ ∗∥ ≤ γ

(1− γ)
Ctv

u (N, η, δ), (B.9)

where Ctv
u (N, η, δ) is given in equation (3.15) in the statement of Proposition 4.

2) Bounding the second term in (B.7): Let T̂ be the robust Bellman operator corresponding to

M̂ . So, T̂ is a γ-contraction mapping and V̂ ∗ is its unique fixed point [33]. The REVI iterates

Vk, k ≥ 0, with V0 = 0, can now be expressed as Vk+1 = T̂ Vk. Using the properties of T̂ , we get

∥Vk − V̂ ∗∥ = ∥T̂ Vk−1 − T̂ V̂ ∗∥ ≤ γ∥Vk−1 − V̂ ∗∥ ≤ · · · ≤ γk∥V0 − V̂ ∗∥ ≤ γk/(1− γ). (B.10)

Now, using Lemma 20, we get

∥V̂ πk − V̂ ∗∥ ≤ 2γk+1

(1− γ)2
. (B.11)

153

3) Bounding the third term in (B.7): This is similar to bounding the first term. For any s ∈ S,

V πk(s)− V̂ πk(s) = Qπk(s, πk(s))− Q̂πk(s, πk(s)) = γσPs,πk(s)
(V πk)− γσP̂s,πk(s)

(V̂ πk)

= γ(σPs,πk(s)
(V πk)− σPs,πk(s)

(V̂ πk)) + γ(σPs,πk(s)
(V̂ πk)− σP̂s,πk(s)

(V̂ πk))

(d)

≤ γ∥V πk − V̂ πk∥+ γ(σPs,πk(s)
(V̂ πk)− σP̂s,πk(s)

(V̂ πk))

≤ γ∥V πk − V̂ πk∥+ γ max
V ∈V

max
s,a
|σP̂tv

s,a
(V)− σPtv

s,a
(V)|

where (d) follows from Lemma 1. Similarly analyzing for V̂ πk(s)− V πk(s), we get,

∥V πk − V̂ πk∥ ≤ γ

(1− γ)
max
V ∈V

max
s,a
|σP̂tv

s,a
(V)− σPtv

s,a
(V)|. (B.12)

Now, using Proposition 4, with probability greater than 1− δ, we get

∥V πk − V̂ πk∥ ≤ γ

(1− γ)
Ctv

u (N, η, δ). (B.13)

Using (B.9) - (B.13) in (B.7), we get, with probability at least 1− 2δ,

∥V ∗ − V πk∥ ≤ 2γk+1

(1− γ)2
+

2γ

(1− γ)
Ctv

u (N, η, δ). (B.14)

Using the value of Ctv
u (N, η, δ) as given in Proposition 4, we get

∥V ∗ − V πk∥ ≤ 2γk+1

(1− γ)2
+

4γ

(1− γ)2

√
|S| log(6|S||A|/(δη(1− γ)))

2N
+

8γη

(1− γ)
(B.15)

with probability at least 1− 2δ.

Now, choose η = ε(1 − γ)/(24γ). Since ε ∈ (0, 24γ/(1 − γ)), this particular η is in (0, 1).

Now, choosing

k ≥ K0 =
1

log(1/γ)
log(

6γ

ε(1− γ)2
), (B.16)

154

N ≥ N tv =
72γ2

(1− γ)4
|S| log(144γ|S||A|/(δε(1− γ)2))

ε2
, (B.17)

we get ∥V ∗ − V πk∥ ≤ ε with probability at least 1− 2δ.

B.2.3 Proof of Theorem 5

Proof of Lemma 4. Fix an (s, a) pair. From [33, Lemma 4.2], we have

σPc
s,a
(V) = max

µ:0≤µ≤V

(
P o
s,a(V − µ)−

√
crVarP o

s,a
(V − µ)

)
, (B.18)

where VarP o
s,a
(V −µ) = P o

s,a(V −µ)2− (P o
s,a(V −µ))2. We get a similar expression for σP̂c

s,a
(V).

Using these expressions, with the additional facts that |maxx f(x)−maxx g(x)| ≤ maxx |f(x)−

g(x)| and maxx(f(x) + g(x)) ≤ maxx f(x) + maxx g(x), we get the desired result.

We state the following concentration result that is useful for the proof of Proposition 5.

Lemma 21. For any V ∈ R|S|
+ with ∥V ∥ ≤ Vmax, with probability at least 1− δ,

max
(s,a)
|
√

VarP o
s,a
V −

√
VarP̂s,a

V | ≤ Vmax

√
2 log(2|S||A|/δ)

N

Proof. Fix any (s, a) pair. Consider a discrete random variable X taking value V (j) with proba-

bility P o
s,a(j) for all j ∈ {1, 2, · · · , |S|}. From the Self-bounding variance inequality (Lemma 16),

we have

P(|
√

VarP o
s,a
V −

√
VarP̂s,a

V | ≥ ε) ≤ 2 exp(−Nε2/(2V 2
max)).

Choosing ε = Vmax

√
2 log(2|S||A|/δ)

N
, we get P(|P o

s,aV − P̂s,aV | ≥ Vmax

√
2 log(2|S||A|/δ)

N
) ≤ δ

|S||A| .

Now, using union bound, we get

P(max
(s,a)
|
√

VarP o
s,a
V −

√
VarP̂s,a

V | ≥ Vmax

√
2 log(2|S||A|/δ)

N
)

155

≤
∑
s,a

P(|
√

VarP o
s,a
V −

√
VarP̂s,a

V | ≥ Vmax

√
2 log(2|S||A|/δ)

N
)≤ δ.

This completes the proof.

We are now ready to prove Proposition 5.

Proof of Proposition 5. Fix an (s, a) pair. From Lemma 4, for any given V ∈ V , we have

|σP̂c
s,a
(V)− σPc

s,a
(V)| ≤ max

µ:0≤µ≤V
|
√

crVar
P̂s,a

(V − µ)−
√

crVarP o
s,a
(V − µ)|+ max

µ:0≤µ≤V
|P̂s,a(V − µ)− P o

s,a(V − µ)|.

By a simple variable substitution, we get

|σP̂c
s,a
(V)− σPc

s,a
(V)| ≤ max

µ∈V+

max
s,a
|
√
crVarP̂s,a

µ−
√
crVarP o

s,a
µ|+max

µ∈V
max
s,a
|P̂s,aµ− P o

s,aµ|,

which will give

max
V ∈V

max
s,a
|σP̂c

s,a
(V)− σPc

s,a
(V)| ≤ max

µ∈V+

max
s,a
|
√
crVarP̂s,a

µ−
√
crVarP o

s,a
µ|+max

µ∈V
max
s,a
|P̂s,aµ− P o

s,aµ|,

(B.19)

where V+ = {V ∈ R|S|
+ : ∥V ∥ ≤ 1/(1− γ)}.

We will first bound the second term on the RHS of (B.19). From the proof of Lemma 3, for

any η, δ ∈ (0, 1), we get

max
µ∈V

max
s,a
|P̂s,aµ− P o

s,aµ| ≤
1

1− γ

√
|S| log(12|S||A|/(δη(1− γ)))

2N
+ 2η, (B.20)

with probability greater than 1− δ/2.

Now, we will focus on the first term on the RHS of (B.19). Fix a µ ∈ V+. Consider a minimal

η-cover NV+(η) of the set V+. By definition, there exists µ′ ∈ NV+(η) such that ∥µ− µ′∥ ≤ η.

156

Now, following the same step as in the proof of Lemma 3, we get

|
√

VarP̂s,a
µ−

√
VarP o

s,a
µ| ≤ |

√
VarP̂s,a

µ−
√

VarP̂s,a
µ′|+ |

√
VarP̂s,a

µ′ −
√

VarP o
s,a
µ′|+ |

√
VarP o

s,a
µ−

√
VarP o

s,a
µ′|

(a)

≤ |
√

VarP̂s,a
µ′ −

√
VarP o

s,a
µ′|+

√
|VarP̂s,a

µ− VarP̂s,a
µ′|+

√
|VarP o

s,a
µ− VarP o

s,a
µ′|

(b)

≤ |
√

VarP̂s,a
µ′ −

√
VarP o

s,a
µ′|+

√
|P̂s,a(µ2 − µ′2)|+

√
|(P̂s,aµ)2 − (P̂s,aµ′)2)|+√

|P o
s,a(µ

2 − µ′2)|+
√
|(P o

s,aµ)
2 − (P o

s,aµ
′)2)|

(c)

≤ |
√

VarP̂s,a
µ′ −

√
VarP o

s,a
µ′|+

√
32η

1− γ

≤ sup
µ′∈NV+

(η)

max
s,a
|
√

VarP̂s,a
µ′ −

√
VarP o

s,a
µ′|+

√
32η

1− γ

where (a) follows from the fact |
√
x−√y| ≤

√
|x− y| for all x, y ∈ R+, (b) follows from the fact

|
√
x+ y| ≤

√
x+
√
y for all x, y ∈ R+, and (c) follows by using the fact x2−y2 = (x+y)(x−y),

∥µ∥ ≤ 1/(1− γ), and ∥µ′∥ ≤ 1/(1− γ) with Hölder’s inequality. Now, taking max on both sides

with respect to µ and (s, a) we get

sup
µ∈V+

max
s,a
|
√

VarP̂s,a
µ−

√
VarP o

s,a
µ| ≤ sup

µ′∈NV+
(η)

max
s,a
|
√

VarP̂s,a
µ′ −

√
VarP o

s,a
µ′|+

√
32η

1− γ

(d)

≤ 1

1− γ

√
2 log(4|S||A||NV+(η)|/δ)

N
+

√
32η

1− γ
(e)

≤ 1

1− γ

√
2|S| log(12|S||A|/(δη(1− γ)))

N
+

√
32η

1− γ
,

(B.21)

with probability at least 1 − δ/2. Here, (d) follows from Lemma 21 and the union bound and (e)

from Lemma 17.

Applying (B.20) and (B.21) in (B.19), we get

max
V ∈V

max
s,a
|σP̂c

s,a
(V)− σPc

s,a
(V)| ≤ 1

1− γ

√
2cr|S| log(12|S||A|/(δη(1− γ)))

N
+

√
32ηcr
1− γ

+
1

1− γ

√
|S| log(12|S||A|/(δη(1− γ)))

2N
+ 2η,

157

with probability greater than 1− δ. This completes the proof.

Proof of Theorem 5. The basic steps of the proof is similar to that of Theorem 4. So, we present

only the important steps.

Following the same steps as given before (B.9) and using Proposition 5, we get, with probability

greater than 1− δ,

∥V ∗ − V̂ ∗∥ ≤ γ

(1− γ)
Cc

u(N, η, δ) (B.22)

Similarly, following the steps as given before (B.11), we get

∥V̂ πk − V̂ ∗∥ ≤ 2γk+1

(1− γ)2
. (B.23)

In the same vein, following the steps as given before (B.13) and using Proposition 5, we get, with

probability greater than 1− δ,

∥V πk − V̂ πk∥ ≤ γ

(1− γ)
Cc

u(N, η, δ). (B.24)

Using (B.22) - (B.24), similar to (B.14), we get, with probability greater than 1− 2δ,

∥V ∗ − V πk∥ ≤ 2γk+1

(1− γ)2
+

2γ

(1− γ)
Cc

u(N, η, δ). (B.25)

Using the value of Cc
u(N, η, δ) as given in Proposition 5, we get, with probability greater than

1− 2δ,

∥V ∗ − V πk∥ ≤ 2γk+1

(1− γ)2
+

8γ
√
2ηcr

(1− γ)3/2
+

4γη

1− γ
+

2γ

(1− γ)2

√
(2cr + 1)|S| log(12|S||A|/(δη(1− γ)))

N
.

We can now choose k, ε, η to make each of the term on the RHS of the above inequality small.

In particular, we select ε ∈ (0,min{16γ/(1 − γ), 32γ
√
2cr/(1 − γ)3/2}) and η = min{ε(1 −

158

γ)/(16γ), ε2(1− γ)3/(2048crγ2)}. Note that this choice also ensure η ∈ (0, 1). Now, by choosing

k ≥ K0 =
1

log(1/γ)
· log(8γ

ε(1− γ)2
), (B.26)

N ≥ N c =
64γ2

(1− γ)4
· (2cr + 1)|S| log(12|S||A|/(δη(1− γ)))

ε2
, (B.27)

we will get ∥V ∗ − V πk∥ ≤ ε with probability at least 1− 2δ.

B.2.4 Proof of Theorem 6

We state a result from [82] that will be useful in the proof of Theorem 6.

Lemma 22 ([82, Lemma 4]). Fix any δ ∈ (0, 1). Let X ∼ P be a bounded random variable with

X ∈ [0,M] and let PN denote the empirical distribution of P with N samples. For t > 0, for any

λ∗ ∈ argmax
λ≥0

{−λ log(EP [exp(−X/λ)])− λt} ,

(1) λ∗ = 0. Furthermore, let the support of X be finite. Then there exists a problem dependent

constant

N ′(δ, t, P) := max{log(2/δ)/ log(1/(1− min
x∈supp(X)

P (X = x))) , 2M2 log(4/δ)/(P (X = ess infX)−exp(−t))2},

such that for N ≥ N ′(δ, t, P) we have, with probability at least 1− δ,

0 ∈ argmax
λ≥0

{−λ log(EPN
[exp(−X/λ)])− λt} .

(2) λ∗ > 0. Then there exists a problem dependent constant

N ′′(δ, t, P) := max
λ∈{λ,λ∗,M/t}

8M2 exp(2M/λ)

τ 2
log(6/δ),

159

where λ = λ∗/2 > 0 (independent of N) and

τ = min{λ log(EP [exp(−X/λ)]) + λt, (M/t) log(EP [exp(−tX/M)]) +M}

− (λ∗ log(EP [exp(−X/λ∗)]) + λ∗t) > 0,

such that for N ≥ N ′′(δ, t, P), with probability at least 1− δ, there exists a

λ̂∗ ∈ argmax
λ≥0

{−λ log(EPN
[exp(−X/λ)])− λt} ,

such that λ∗, λ̂∗ ∈ [λ,M/t].

We now prove the following result.

Lemma 23. For any (s, a) ∈ S ×A and for any V ∈ R|S| with ∥V ∥ ≤ 1/(1− γ),

|σP̂kl
s,a
(V)− σPkl

s,a
(V)| ≤ exp(1/λkl(1− γ))

cr(1− γ)
max

λ∈[λkl,
1

cr(1−γ)
]
|(P o

s,a − P̂s,a) exp(−V/λ)| (B.28)

holds with probability at least 1−δ/(2|S||A|) forN ≥ max{N ′(δ/(4|S||A|), cr, P o
s,a), N

′′(δ/(4|S||A|), cr, P o
s,a)},

where both N ′, N ′′ are defined as in Lemma 22.

Proof. Fix any (s, a) pair. From [33, Lemma 4.1], we have

σPkl
s,a
(V) = max

λ≥0
(−crλ− λ log(P o

s,a exp(−V/λ))), σP̂kl
s,a
(V) = max

λ≥0
(−crλ− λ log(P̂s,a exp(−V/λ))),

(B.29)

where exp(−V/λ) is an element-wise exponential function. It is straight forward to show that

(−crλ − λ log(P o
s,a exp(−V/λ))) is a concave function in λ. So, there exists an optimal solution

λ∗. Similarly, let λ̂∗ be the optimal solution of the second problem above.

We can now give an upperbound for λ∗, λ̂∗ as follows: Since σPkl
s,a
(V) ≥ 0, we have

0 ≤ −crλ∗ − λ∗ log(P o
s,a exp(−V/λ∗))

(a)

≤ −crλ∗ − λ∗ log(exp(−1/(λ∗(1− γ)))) ≤ −crλ∗ + 1/(1− γ),

160

from which we can conclude that λ∗ ≤ 1/(cr(1− γ)). Same argument applies for the case of λ̂∗.

From [34, Appendix C] it follows that whenever the maximizer λ∗ is 0 (λ̂∗ is 0), we have

σPkl
s,a
(V) = Vmin (σP̂kl

s,a
(V) = Vmin) where Vmin = minj∈S V (j). We include this part in detail for

completeness.

lim
λ↓0
−crλ− λ log(P o

s,a exp(−V/λ)) = lim
λ↓0
−crλ− λ log(exp(−Vmin/λ)

∑
s′

P o
s,a(s

′) exp((Vmin − V (s′))/λ))

= lim
λ↓0

Vmin − crλ− λ log(
∑
s′

P o
s,a(s

′) exp((Vmin − V (s′))/λ))

= lim
λ↓0

Vmin − crλ− λ log(
∑

s′:V (s′)=Vmin

P o
s,a(s

′) +
∑

s′:V (s′)>Vmin

P o
s,a(s

′) exp((Vmin − V (s′))/λ))

(a)
= lim

λ↓0
Vmin − crλ− λ log(

∑
s′:V (s′)=Vmin

P o
s,a(s

′) +O(exp(−t/λ)))

(b)
= lim

λ↓0
Vmin − crλ− λ log(

∑
s′:V (s′)=Vmin

P o
s,a(s

′))− λ log(1 +O(exp(−t/λ)))

(c)
= lim

λ↓0
Vmin − λ(cr + log(

∑
s′:V (s′)=Vmin

P o
s,a(s

′)))−O(λ exp(−t/λ)) = Vmin,

where (a) follows by taking t = mins′:V (s′)>Vmin
V (s′) − Vmin > 0, and (b) and (c) follows from

the Taylor series expansion. Thus when λ∗ is 0, we have σPkl
s,a
(V) = Vmin. A similar argument

applies for σP̂kl
s,a
(V).

Now consider the case when λ∗ = 0. From Lemma 22, it follows that, with probability at least

1 − δ/(4|S||A|), λ̂∗ = 0 for N ≥ N ′(δ/(4|S||A|), cr, P o
s,a), where N ′ is defined in Lemma 22.

Thus, whenever λ∗ = 0, we have |σP̂s,a
(V) − σPs,a(V)| = |Vmin − Vmin| = 0, with probability

at least 1 − δ/(4|S||A|). Thus having resolving this trivial case, we now focus on the case when

λ∗ > 0.

Consider the case when λ∗ > 0. Let λkl := λ∗/2 > 0 (dependent on P o
s,a, V, and cr but

independent of N). Again from Lemma 22, if λ∗ ∈ [λkl, 1/(cr(1− γ))], then with probability at

least 1− δ/(4|S||A|) we have λ̂∗ ∈ [λkl, 1/(cr(1− γ))] for N ≥ N ′′(δ/(4|S||A|), cr, P o
s,a), where

N ′′ is defined in Lemma 22.

161

From these arguments, it is clear that we can restrict the optimization problem (B.29) to the

set λ ∈ [λkl, 1/(cr(1 − γ)). Using this, with the additional fact that |maxx f(x) −maxx g(x)| ≤

maxx |f(x)− g(x)|, we get

|σP̂kl
s,a
(V)− σPkl

s,a
(V)| ≤ max

λ∈[λkl,
1

cr(1−γ)
]
|λ log(P̂s,a exp(−V/λ)

P o
s,a exp(−V/λ)

)|. (B.30)

Now,

∣∣∣∣∣log(P̂s,a exp(−V/λ)
P o
s,a exp(−V/λ)

)

∣∣∣∣∣ =
∣∣∣∣∣log(1 + (P̂s,a − P o

s,a) exp(−V/λ)
P o
s,a exp(−V/λ)

)

∣∣∣∣∣ ≤ |(P o
s,a − P̂s,a) exp(−V/λ)|
|P o

s,a exp(−V/λ)|

(d)

≤
|(P o

s,a − P̂s,a) exp(−V/λ)|
exp(−1

λkl(1−γ)
)

,

(B.31)

where (d) follows since λ ≥ λkl and ∥V ∥ ≤ 1/(1− γ). Using (B.31) in (B.30) along with the fact

that λ ≤ 1/(cr(1− γ)), we get the desired result.

Proof of Theorem 6. The basic steps of the proof is similar to that of Theorem 4. So, we present

only the important steps.

Following the same steps as given before (B.8) and (B.12) , we get

∥V ∗ − V̂ ∗∥+ ∥V πk − V̂ πk∥ ≤ 2γ

(1− γ)
max
V ∈V

max
s,a
|σP̂kl

s,a
(V)− σPkl

s,a
(V)|. (B.32)

Similarly, following the steps as given before (B.11), we get

∥V̂ πk − V̂ ∗∥ ≤ 2γk+1

(1− γ)2
. (B.33)

162

Using Lemma 23 in (B.32), we get

∥V ∗ − V̂ ∗∥+ ∥V πk − V̂ πk∥ ≤ 2γ

(1− γ)
exp(1/(λkl(1− γ)))

cr(1− γ)
max
s,a

max
V ∈V

max
λ∈[λkl,

1
cr(1−γ)

]
|(P o

s,a − P̂s,a) exp(−V/λ)|.

(B.34)

We now bound the max term in (B.34). We reparameterize 1/λ as θ and consider the set Θ =

[cr(1 − γ), 1
λkl

]. Also, consider the minimal η-cover NΘ(η) of Θ and fix a V ∈ V . Then, for any

given θ ∈ Θ, there exits a θ′ ∈ NΘ(η) such that |θ − θ′| ≤ η. Now, for this particular θ, θ′,

|(P o
s,a − P̂s,a) exp(−V θ)| = |(P̂s,a − P o

s,a)(exp(−V θ′) ◦ exp(−V (θ − θ′))|
(c)

≤ |(P̂s,a − P o
s,a) exp(−V θ′)| exp(η/(1− γ)) ≤ max

s,a
max

θ′∈NΘ(η)
|(P̂s,a − P o

s,a) exp(−V θ′)| exp(η/(1− γ)),

where (c) follows because V is non-negative and ∥V ∥ ≤ 1/(1 − γ). Now consider a minimal

η-cover NV(η) of the set V . By definition, there exists V ′ ∈ NV(η) such that ∥V − V ′∥ ≤ η. So,

we get

|(P o
s,a − P̂s,a) exp(−V θ)| ≤ |(P̂s,a − P o

s,a) exp(−V θ′)| exp(η/(1− γ))

= |(P̂s,a − P o
s,a)(exp(−V ′θ′) ◦ exp(θ′(V ′ − V)))| exp(η/(1− γ))

(d)

≤ |(P̂s,a − P o
s,a)(exp(−V ′θ′))| exp(η/(1− γ)) exp(η/λkl)

≤max
s,a

max
V ′∈V

max
θ′∈NΘ(η)

|(P̂s,a − P o
s,a)(exp(−V ′θ′))| exp(η/(1− γ)) exp(η/λkl)

where (d) follows because θ′ ∈ NΘ(η) ⊆ Θ. Now, taking maximum on both sides with respect to

(s, a), θ, and V , we get

max
s,a

max
θ∈Θ

max
V ∈V
|(P̂s,a − P o

s,a) exp(−V θ)| ≤ exp(η/(1− γ)) exp(η/λkl)max
s,a

max
V ′∈V

max
θ′∈NΘ(η)

|(P̂s,a − P o
s,a) exp(−V ′θ′)|

(e)

≤ exp(η/(1− γ)) exp(η/λkl)
√

log(2|S||A||NΘ(η)||NV(η)|/δ)
2N

163

(f)

≤ exp(η/(1− γ)) exp(η/λkl)
√
|S| log(18|S||A|/(δη2(1− γ)λkl))

2N

(B.35)

with probability greater than 1−δ. Here, (e) follows from Lemma 19 with a union bound account-

ing for |NΘ(η)|, |NV(η)| and the fact that ∥ exp(−V ′θ′)∥ ≤ 1, and (f) follows from Lemmas 17

and 18.

Using (B.32) - (B.35), we get, with probability greater than 1− δ,

∥V ∗ − V πk∥ ≤ 2γk+1

(1− γ)2
+

2γ

(1− γ)
exp(1/(λkl(1− γ)))

cr(1− γ)
exp(η/(1− γ)) exp(η/λkl)

√
|S| log(18|S||A|/(δη2(1− γ)λkl))

2N
.

We can now choose k, ε, η to make each of the term on the RHS of the above inequality small. In

particular, choosing η = 1, ε ∈ (0, 1/(1− γ)), and k,N satisfying the conditions

k ≥ K0 =
1

log(1/γ)
· log(4

ε(1− γ)2
) and

N ≥ Nkl = max

{
max
s,a

N ′(δ/(4|S||A|), cr, P o
s,a), max

s,a
N ′′(δ/(4|S||A|), cr, P o

s,a),

8γ2|S|
c2r(1− γ)4ε2

exp(
4 + 2λkl
λkl(1− γ)

) log(
18|S||A|
δλkl(1− γ)

)

}
,

we get ∥V ∗ − V πk∥ ≤ ε with probability greater than 1− δ.

B.2.5 Proof of Theorem 7

Proof. We consider the deterministic MDP (S,A, r, P o, γ) shown in Fig.B.1 to be the nominal

model. We fix γ ∈ (0.01, 1] and s1 = 0. The state space is S = {0, 1} and action space is

A = {al, ar}, where al denotes ‘move left’ and ar denotes ‘move right’ action. Reward for state

1 and action ar pair is r(1, ar) = 1, for state 0 and action ar pair is r(0, ar) = −100γ/99, and the

reward is 0 for all other (s, a). Transition function P o is deterministic, as indicated by the arrows.

Similarly, we consider another deterministic model P ′, as shown in Fig.B.2. We consider the

164

10

$%, −100*/99

$(, 0 $%, 1$(, 0

Figure B.1: Transitions and rewards corre-
sponding to the nominal model P o. The states
{0, 1} are given inside the circles, and the ac-
tions {al, ar} and associated rewards are given
on the corresponding transitions.

10

$%, −100*/99

$(, 0

$%, 1

$(, 0

Figure B.2: Transitions and rewards corre-
sponding to the model P ′.

set P = {P o, P ′}.

It is straight forward to show that taking action ar in any state is the optimal non-robust policy

πo corresponding to the nominal model P o. This is obvious if for state s = 1. For s = 0, notice

that taking action al will give a value zero and taking action ar will give a value γ
1−γ
− 100γ

99
. Since

γ > 0.01, taking action ar will give a positive value and hence is optimal. So, we get

Vπo,P o(0) =
γ

1− γ
− 100γ

99
.

We can now compute Vπo,P ′(0) using the recursive equation

Vπo,P ′(0) = −100γ

99
+ γ + γ2Vπo,P ′(0).

Solving this, we get Vπo,P ′(0) = −γ/(99(1− γ2)).

Now the robust value of πo is given by

V πo

(0) = min{Vπo,P o(0), Vπo,P ′(0)} = −γ/(99(1− γ2)).

We will now compute the optimal non-robust value from state 0 of model P ′.

max
π

Vπ,P ′(0) = max{V(π(0)=ar,π(1)=ar),P ′(0), V(π(0)=al,π(1)=al),P ′(0),

V(π(0)=ar,π(1)=al),P ′(0), V(π(0)=al,π(1)=ar),P ′(0)}

165

= max{ − γ

99(1− γ2)
, 0, − 100γ

99(1 + γ2)
, 0} = 0.

Now, we find the optimal robust value V ∗(0). From the perfect duality result of robust MDP

[34, Theorem 1], we have

V ∗(0) = min{max
π

Vπ,P o(0),max
π

Vπ,P ′(0)} = min{Vπo,P o(0),max
π

Vπ,P ′(0)} = 0.

We finally have

V ∗(0)− V πo

(0) =
γ

99(1− γ2)
≥ γ

198(1− γ)
,

where the inequality follows since 1 + γ ≤ 2. Thus, setting c = γ/198 and γo = 0.01, completes

the proof of this theorem.

166

APPENDIX C

APPENDIX FOR CHAPTER 4*

In this appendix, we include complete proofs, all experiments, and all supporting details for

the corresponding chapter.

C.1 Useful Technical Results

In this section, we state some existing results from concentration inequalities, generalization

bounds, and optimization theory that we will use later in our analysis. We first state the Berstein’s

inequality that utilizes second-moment to get a tighter concentration inequality.

Lemma 24 (Bernstein’s inequality [164, Theorem 2.8.4]). Let X1, · · · , XT be independent ran-

dom variables. Assume that |Xt − E[Xt]| ≤M , for all t. Then, for any ε > 0, we have

P

(∣∣∣ 1
T

T∑
t=1

(Xt − E[Xt])
∣∣∣ ≥ ε

)
≤ 2 exp

(
− T 2ε2

2σ2 + 2MTε
3

)
,

where σ2 =
∑T

t=1 E[X2
t]. Furthermore, if X1, · · · , XT are independent and identically distributed

random variables, then for any δ ∈ (0, 1), we have

∣∣∣E[X1]−
1

T

T∑
t=1

Xt

∣∣∣ ≤√2E[X2
1] log(2/δ)

T
+
M log(2/δ)

3T
,

with probability at least 1− δ.

We now state a result for the generalization bounds on empirical risk minimization (ERM)

problems. This result is adapted from [167, Theorem 26.5, Lemma 26.8, Lemma 26.9].

Lemma 25 (ERM generalization bound). Let P be the data generating distribution on the spaceX

and let H be a given hypothesis class of functions. Assume that for all x ∈ X and h ∈ H we have

*Reprinted with permission from Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, Mohammad Ghavamzadeh, “Ro-
bust Reinforcement Learning using Offline Data.” Neural Information Processing Systems. PMLR, 2022.

167

that |l(h, x)| ≤ c1 for some positive constant c1 > 0. Given a dataset D = {Xi}Ni=1, generated

independently from P , denote ĥ as the ERM solution, i.e. ĥ = argminh∈H(1/N)
∑N

i=1 l(h,Xi).

For any fixed δ ∈ (0, 1) and h∗ ∈ argminh∈H EX∼P [l(h,X)], we have

EX∼P [l(ĥ, X)]− EX∼P [l(h
∗, X)] ≤ 2R(l ◦ H ◦ D) + 5c1

√
2 log(8/δ)

N
, (C.1)

with probability at least 1− δ, where R(·) is the Rademacher complexity of l ◦ H given by

R(l ◦ H ◦ D) = 1

N
E{σi}Ni=1

(
sup

g ∈ l◦H

N∑
i=1

σig(Xi)

)
,

in which σi’s are independent from Xi’s and are independently and identically distributed accord-

ing to the Rademacher random variable σ, i.e. P(σ = 1) = 0.5 = P(σ = −1).

Furthermore, if H is a finite hypothesis class, i.e. |H| < ∞, with |h ◦ x| ≤ c2 for all h ∈ H

and x ∈ X , and l(h, x) is c3-Lipschitz in h, then we have

EX∼P [l(ĥ, X)]− EX∼P [l(h
∗, X)] ≤ 2c2c3

√
2 log(|H|)

N
+ 5c1

√
2 log(8/δ)

N
, (C.2)

with probability at least 1− δ.

We now mention two important concepts from variational analysis [107] literature that is useful

to relate minimization of integrals and the integrals of pointwise minimization under special class

of functions.

Definition 3 ([107, Definition 14.59, Example 14.29] Decomposable spaces and Normal integrands).

A space X of measurable functions is a decomposable space relative to an underlying measure

space (Ω,A, µ), if for every function x0 ∈ X , every set A ∈ A with µ(A) <∞, and any bounded

measurable function x1 : A→ R, the function x(ω) = x0(ω)1(ω /∈ A)+x1(ω)1(ω ∈ A) belongs

to X . A function f : Ω × R → R (finite-valued) is a normal integrand, if and only if f(ω, x) is

A-measurable in ω for each x and is continuous in x for each ω.

168

Remark 13. A few examples of decomposable spaces are Lp(S ×A,Σ(S ×A), µ) for any p ≥ 1

andM(S ×A,Σ(S ×A)), the space of all Σ(S ×A)-measurable functions.

Lemma 26 ([107, Theorem 14.60]). Let X be a space of measurable functions from Ω to R that

is decomposable relative to a σ-finite measure µ on the σ-algebra A. Let f : Ω × R → R (finite-

valued) be a normal integrand. Then, we have

inf
x∈X

∫
ω∈Ω

f(ω, x(ω))µ(dω) =

∫
ω∈Ω

(
inf
x∈R

f(ω, x)

)
µ(dω).

Moreover, as long as the above infimum is not −∞, we have that

x′ ∈ argmin
x∈X

∫
ω∈Ω

f(ω, x(ω))µ(dω),

if and only if x′(ω) ∈ argminx∈R f(ω, x) · µ almost surely.

We now give one result from distributionally robust optimization. The f -divergence between

the distributions P and P o is defined as

Df (P∥P o) =

∫
f(

dP

dP o
)dP o, (C.3)

where f is a convex function [168, 169]. We obtain different divergences for different forms of the

function f , including some well-known divergences. For example, f(t) = |t − 1|/2 gives Total

Variation (TV), f(t) = t log t gives Kullback-Liebler (KL), f(t) = (t− 1)2 gives Chi-square, and

f(t) = (
√
t− 1)2 gives squared Hellinger divergences.

Let P o be a distribution on the space X and let l : X → R be a loss function. We have the

following result from the distributionally robust optimization literature, see e.g., [109, Proposition

1] and [108, Section 3.2].

169

Proposition 12. Let Df be the f -divergence as defined in (C.3). Then,

sup
Df (P∥P o)≤ρ

EP [l(X)] = inf
λ>0,η∈R

EP o

[
λf ∗

(
l(X)− η

λ

)]
+ λρ+ η, (C.4)

where f ∗(s) = supt≥0{st− f(t)} is the Fenchel conjugate.

Note that on the right hand side of (C.4), the expectation is taken only with respect to P o. We

will use the above result to derive the dual reformulation of the robust Bellman operator.

C.2 Proof of the Proposition 6

As the first step, we adapt the result given in Proposition 12 in two ways: (i) Since Propo-

sition 6 considers the TV uncertainty set, we will derive the specific form of this result for the

TV uncertainty set, (ii) Since Proposition 6 considers the minimization problem instead of the

maximization problem, unlike in Proposition 12, we will derive the specific form of this result for

minimization.

Lemma 27. LetDf be as defined in (C.3) with f(t) = |t−1|/2 corresponding to the TV uncertainty

set. Then,

inf
Df (P∥P o)≤ρ

EP [l(X)] = − inf
η∈R

EP o [(η − l(X))+] + (η − inf
x∈X

l(x))+ × ρ− η,

Proof. First, we will compute the Fenchel conjugate of f(t) = |t− 1|/2. We have

f ∗(s) = sup
t≥0
{st− 1

2
|t− 1|} = max

{
sup
t∈[0,1]
{(s+ 1

2
)t− 1

2
} , sup

t>1
{(s− 1

2
)t+

1

2
}
}
.

It is easy to see that for s > 1/2, we have f ∗(s) = +∞, and for s ≤ −1/2, we have f ∗(s) = −1/2.

For s ∈ [−1/2, 1/2], we have

f ∗(s) = max
{

sup
t∈[0,1]

{(s+ 1

2
)t− 1

2
} , sup

t>1
({(s− 1

2
)t+

1

2
}
}

= max
{
((s+

1

2
) · 1− 1

2
), ((s− 1

2
) · 1 + 1

2
)
}
= s.

170

Thus, we have

f ∗(s) =

−1

2
s ≤ −1

2
,

s s ∈ [−1
2
, 1
2
]

+∞ s > 1
2
.

.

From Proposition 12, we obtain

sup
Df (P∥P o)≤ρ

EP [l(X)] = inf
λ>0,η∈R

EP o [λf ∗(
l(X)− η

λ
)] + λρ+ η

= inf
λ,η:λ>0,η∈R, supx∈X l(x)−η

λ
≤ 1

2

EP o [λmax{ l(X)− η
λ

,−1

2
}] + λρ+ η

= inf
λ,η:λ>0,η∈R, supx∈X l(x)−η

λ
≤ 1

2

EP o [max{l(X)− η,−λ/2}] + λρ+ η

= inf
λ,η:λ>0,η∈R, supx∈X l(x)−η

λ
≤ 1

2

EP o [(l(X)− η + λ/2)+]− λ/2 + λρ+ η

= inf
λ,η′:λ>0,η′∈R, supx∈X l(x)−η′

λ
≤1

EP o [(l(X)− η′)+] + λρ+ η′.

The second equality follows since f ∗(l(X)−η
λ

) = +∞ whenever l(X)−η
λ

> 1
2
, which can be ignored

as we are minimizing over λ and η. The fourth equality follows form the fact that max{x, y} =

(x − y)+ + y for any x, y ∈ R. Finally, the last equality follows by making the substitution

η′ = η − λ/2. Taking the optimal value of λ, i.e., λ = (supx∈X l(x)− η′)+, we get

sup
Df (P∥P o)≤ρ

EP [l(X)] = inf
η∈R

EP o [(l(X)− η)+] + (sup
x∈X

l(x)− η)+ρ+ η.

Now,

inf
Df (P∥P o)≤ρ

EP [l(X)] = − sup
Df (P∥P o)≤ρ

EP [−l(X)]

= − inf
η∈R

EP o [(−l(X)− η)+] + (sup
x∈X
−l(x)− η)+ρ+ η

= − inf
η′∈R

EP o [(η′ − l(X))+] + (η′ − inf
x∈X

l(x))+ρ− η′,

171

which completes the proof.

We are now ready to prove Proposition 6.

Proof of Proposition 6.

For each (s, a), the optimization problem in (4.3) is given by minPs,a∈Ps,a Es′∼Ps,a [V (s′)], and

our focus is on the setting where Ps,a is given by the TV uncertainty set. So, Ps,a can be equiva-

lently defined using the f -divergence with f(t) = |t− 1|/2 as Ps,a = {Ps,a : Df (Ps,a||P o
s,a) ≤ ρ}.

We can now use the result of Lemma 27 to get

inf
Ps,a∈Ps,a

Es′∼Ps,a [V (s′)] = − inf
η∈R

Es′∼P o
s,a
[(η − V (s′))+] + (η − inf

s′′∈S
V (s′′))+ρ− η.

From Proposition 12, the function h(η) = Es′∼P o
s,a
[(η− V (s′))+] + ρ(η− infs′′ V (s′′))+− η is

convex in η. Now, solving dh(η)/dη = 0 yields

Es′∼P o
s,a
[1[η∗>V (s′)]] + ρ · 1[η∗>infs′′ V (s′′)] = 1.

It now follows that we can limit our search space of η since the optimal η∗ ∈ [0, 1
(1−γ)

] according

to the above equation.

Using these, we get

(TQ)(s, a) = r(s, a) + γ inf
Ps,a∈Ps,a

Es′∼Ps,a [V (s′)]

= r(s, a) + γ · −1 · inf
η∈[0, 1

(1−γ)
]
Es′∼P o

s,a
[(η − V (s′))+] + (η − inf

s′′∈S
V (s′′))+ρ− η.

This completes the proof of Proposition 6.

C.3 Proof of Theorem 8

We start by proving Lemma 5 which mainly follows from Lemma 26 in Appendix C.1.

172

Proof of Lemma 5. Let h((s, a), η) = Es′∼P o
s,a
((η − maxa′ f(s

′, a′))+ − (1 − ρ)η). We note that

h((s, a), η) is Σ(S×A)-measurable in (s, a) ∈ S×A for each η ∈ [0, 1/(1− γ)] and is continuous

in η for each (s, a) ∈ S×A. Now it follows that h((s, a), η) is a normal integrand (see Definition 3

in Appendix C.1). We now note that L1(S × A,Σ(S × A), µ) is a decomposable space (Remark

13 in Appendix C.1). Thus, this lemma now directly follows from Lemma 26.

Now we state a result and provide its proof for the empirical risk minimization on the dual

parameter.

Lemma 28 (Dual Optimization Error Bound). Let ĝf be the dual optimization parameter from the

algorithm (Step 4) for the state-action value function f and let Tg be as defined in (4.9). With

probability at least 1− δ, we have

sup
f∈F
∥Tf − Tĝff∥1,µ ≤

2γ(2− ρ)
(1− γ)

√
2 log(|G|)

N
+

15γ

(1− γ)

√
2 log(8|F|/δ)

N
+ γεdual.

Proof. Fix an f ∈ F . We will also invoke union bound for the supremum here. We recall

from (4.8) that ĝf = argming∈G L̂dual(g; f). From the robust Bellman equation, we directly obtain

∥Tĝff − Tf∥1,µ = γ(Es,a∼µ|Es′∼P o
s,a
((ĝf (s, a)−max

a′
f(s′, a′))+ − (1− ρ)ĝf (s, a))

− inf
η∈[0,1/(1−γ)]

Es′∼P o
s,a
((η −max

a′
f(s′, a′))+ − (1− ρ)η)|)

(a)
= γ(Es,a∼µEs′∼P o

s,a
((ĝf (s, a)−max

a′
f(s′, a′))+ − (1− ρ)ĝf (s, a))

− Es,a∼µ[inf
η∈[0,1/(1−γ)]

Es′∼P o
s,a
((η −max

a′
f(s′, a′))+ − (1− ρ)η)])

(b)
= γ(Es,a∼µ,s′∼P o

s,a
((ĝf (s, a)−max

a′
f(s′, a′))+ − (1− ρ)ĝf (s, a))

− inf
g∈L1

Es,a∼µ,s′∼P o
s,a
((g(s, a)−max

a′
f(s′, a′))+ − (1− ρ)g(s, a)))

= γ(Es,a∼µ,s′∼P o
s,a
((ĝf (s, a)−max

a′
f(s′, a′))+ − (1− ρ)ĝf (s, a))

− inf
g∈G

Es,a∼µ,s′∼P o
s,a
((g(s, a)−max

a′
f(s′, a′))+ − (1− ρ)g(s, a)))

+ γ(inf
g∈G

Es,a∼µ,s′∼P o
s,a
((g(s, a)−max

a′
f(s′, a′))+ − (1− ρ)g(s, a))

173

− inf
g∈L1

Es,a∼µ,s′∼P o
s,a
((g(s, a)−max

a′
f(s′, a′))+ − (1− ρ)g(s, a)))

(c)

≤ γ(Es,a∼µ,s′∼P o
s,a
((ĝf (s, a)−max

a′
f(s′, a′))+ − (1− ρ)ĝf (s, a))

− inf
g∈G

Es,a∼µ,s′∼P o
s,a
((g(s, a)−max

a′
f(s′, a′))+ − (1− ρ)g(s, a))) + γεdual

(d)

≤ 2γR(l ◦ G ◦ D) + 15γ

(1− γ)

√
2 log(8/δ)

N
+ γεdual

(e)

≤ 2γ(2− ρ)
(1− γ)

√
2 log(|G|)

N
+

15γ

(1− γ)

√
2 log(8/δ)

N
+ γεdual.

(a) follows since infg h(g) ≤ h(ĝf). (b) follows from Lemma 5. (c) follows from the approximate

dual realizability assumption (Assumption 7).

For (d), we consider the loss function l(g, (s, a, s′)) = (g(s, a) − maxa′ f(s
′, a′))+ − (1 −

ρ)g(s, a) and dataset D = {si, ai, s′i}Ni=1. Note that |l(g, (s, a, s′))| ≤ 3/(1− γ) (since f ∈ F and

g ∈ G). Now, we can apply the empirical risk minimization result (C.1) in Lemma 25 to get (d),

where R(·) is the Rademacher complexity.

Finally, (e) follows from (C.2) in Lemma 25 when combined with the facts that l(g, (s, a, s′))

is (2− ρ)-Lipschitz in g and g(s, a) ≤ 1/(1− γ), since g ∈ G.

With union bound, with probability at least 1− δ, we finally get

sup
f∈F
∥Tf − Tĝff∥1,µ≤

2γ(2− ρ)
(1− γ)

√
2 log(|G|)

N
+

15γ

(1− γ)

√
2 log(8|F|/δ)

N
+ γεdual,

which concludes the proof.

We next prove the least-squares generalization bound for the RFQI algorithm.

Lemma 29 (Least squares generalization bound). Let f̂g be the least-squares solution from the

algorithm (Step 5) for the state-action value function f and dual variable function g. Let Tg be as

defined in (4.9). Then, with probability at least 1− δ, we have

sup
f∈F

sup
g∈G
∥Tgf − f̂g∥2,µ ≤

√
6εc +

10

(1− γ)

√
18 log(2|F||G|/δ)

N
.

174

Proof. We adapt the least-squares generalization bound given in [106, Lemma A.11] to our setting.

We recall from (4.10) that f̂g = argminQ∈F L̂RFQI(Q; f, g). We first fix functions f ∈ F and

g ∈ G. For any function f ′ ∈ F , we define random variables zf
′

i as

zf
′

i = (f ′(si, ai)− yi)2 − ((Tgf)(si, ai)− yi)2 ,

where yi = ri − γ(g(si, ai) − maxa′ f(s
′
i, a

′))+ + γ(1 − ρ)g(si, ai), and (si, ai, s
′
i) ∈ D with

(si, ai) ∼ µ, s′i ∼ P o
si,ai

. It is straightforward to note that for a given (si, ai), we have Es′i∼P o
si,ai

[yi] =

(Tgf)(si, ai).

Also, since g(si, ai) ≤ 1/(1−γ) (because g ∈ G) and f(si, ai), f ′(si, ai) ≤ 1/(1−γ) (because

f, f ′ ∈ F), we have (Tgf)(si, ai) ≤ 3/(1− γ). This also gives us that yi ≤ 3/(1− γ).

Using this, we obtain the first moment and an upper-bound for the second moment of zf
′

i as

follows:

Es′i∼P o
si,ai

[zf
′

i] = Es′i∼P o
si,ai

[(f ′(si, ai)− (Tgf)(si, ai)) · (f ′(si, ai) + (Tgf)(si, ai)− 2yi)]

= (f ′(si, ai)− (Tgf)(si, ai))
2,

Es′i∼P o
si,ai

[(zf
′

i)2] = Es′i∼P o
si,ai

[(f ′(si, ai)− (Tgf)(si, ai))
2 · (f ′(si, ai) + (Tgf)(si, ai)− 2yi)

2]

= (f ′(si, ai)− (Tgf)(si, ai))
2 · Es′i∼P o

si,ai
[(f ′(si, ai) + (Tgf)(si, ai)− 2yi)

2]

≤ C1(f
′(si, ai)− (Tgf)(si, ai))

2,

where C1 = 102/(1− γ)2. This immediately implies that

Esi,ai∼µ,s′i∼P o
si,ai

[zf
′

i] = ∥Tgf − f ′∥22,µ ,

Esi,ai∼µ,s′i∼P o
si,ai

[(zf
′

i)2] ≤ C1 ∥Tgf − f ′∥22,µ .

From these calculations, it is also straightforward to see that |zf
′

i − Esi,ai∼µ,s′i∼P o
si,ai

[zf
′

i]| ≤ 2C1

almost surely.

Now, using the Bernstein’s inequality (Lemma 24), together with a union bound over all f ′ ∈

175

F , with probability at least 1− δ, we have

|∥Tgf − f ′∥22,µ −
1

N

N∑
i=1

zf
′

i | ≤

√
2C1∥Tgf − f ′∥22,µ log(2|F|/δ)

N
+

2C1 log(2|F|/δ)
3N

, (C.5)

for all f ′ ∈ F . Setting f ′ = f̂g, with probability at least 1− δ/2, we have

∥Tgf − f̂g∥22,µ ≤
1

N

N∑
i=1

z
f̂g
i +

√
2C1∥Tgf − f̂g∥22,µ log(4|F|/δ)

N
+

2C1 log(4|F|/δ)
3N

. (C.6)

Now we upper-bound (1/N)
∑N

i=1 z
f̂g
i in the following. Consider a function f̃ ∈ argminh∈F ∥h−

Tgf∥22,µ. Note that f̃ is independent of the dataset. We note that our earlier first and second moment

calculations hold true for f̃ , replacing f ′, as well. Now, from (C.5) setting f ′ = f̃ , with probability

at least 1− δ/2 we have

1

N

N∑
i=1

zf̃i − ∥Tgf − f̃∥22,µ ≤

√
2C1∥Tgf − f̃∥22,µ log(4|F|/δ)

N
+

2C1 log(4|F|/δ)
3N

. (C.7)

Suppose (1/N)
∑N

i=1 z
f̃
i ≥ 2C1 log(4|F|/δ)/N holds, then from (C.7) we get

1

N

N∑
i=1

zf̃i − ∥Tgf − f̃∥22,µ ≤

√√√√∥Tgf − f̃∥22,µ · 1N
N∑
i=1

zf̃i +
2C1 log(4|F|/δ)

N
. (C.8)

We note the following algebra fact: Suppose x2 − ax + b ≤ 0 with b > 0 and a2 ≥ 4b, then we

have x ≤ a. Taking x = (1/N)
∑N

i=1 z
f̃
i in this fact, from (C.8) we get

1

N

N∑
i=1

zf̃i ≤ 3∥Tgf − f̃∥22,µ +
4C1 log(4|F|/δ)

3N
≤ 3∥Tgf − f̃∥22,µ +

2C1 log(4|F|/δ)
N

. (C.9)

Now suppose (1/N)
∑N

i=1 z
f̃
i ≤ 2C1 log(4|F|/δ)/N , then (C.9) holds immediately. Thus, (C.9)

always holds with probability at least 1− δ/2. Furthermore, recall f̃ ∈ argminh∈F ∥h− Tgf∥22,µ,

176

we have

1

N

N∑
i=1

zf̃i ≤ 3∥Tgf − f̃∥22,µ +
2C1 log(4|F|/δ)

N

= 3min
h∈F
∥h− Tgf∥22,µ +

2C1 log(4|F|/δ)
N

≤ 3εc +
2C1 log(4|F|/δ)

N
, (C.10)

where the last inequality follows from the approximate robust Bellman completion assumption

(Assumption 5).

We note that since f̂g is the least-squares regression solution, we know that (1/N)
∑N

i=1 z
f̂g
i ≤

(1/N)
∑N

i=1 z
f̃
i . With this note in (C.10), from (C.6), with probability at least 1− δ, we have

∥Tgf − f̂g∥22,µ ≤ 3εc +
2C1 log(4|F|/δ)

N

+

√
2C1∥Tgf − f̂g∥22,µ log(4|F|/δ)

N
+

2C1 log(4|F|/δ)
3N

≤ 3εc +
3C1 log(4|F|/δ)

N
+

√
3C1∥Tgf − f̂g∥22,µ log(4|F|/δ)

N
.

From the earlier algebra fact, taking x = ∥Tgf − f̂g∥22,µ, with probability at least 1− δ, we have

∥Tgf − f̂g∥22,µ ≤ 6εc +
9C1 log(4|F|/δ)

N
.

From the fact
√
x+ y ≤

√
x+
√
y, with probability at least 1− δ, we get

∥Tgf − f̂g∥2,µ ≤
√
6εc +

√
9C1 log(4|F|/δ)

N
.

Using union bound for f ∈ F and g ∈ G, with probability at least 1− δ, we finally obtain

sup
f∈F

sup
g∈G
∥Tgf − f̂g∥2,µ ≤

√
6εc +

√
18C1 log(2|F||G|/δ)

N
,

which completes the least-squares generalization bound analysis.

177

We are now ready to prove the main theorem.

Proof of Theorem 8. We let Vk(s) = Qk(s, πk(s)) for every s ∈ S. Since πk is the greedy policy

w.r.t Qk, we also have Vk(s) = Qk(s, πk(s)) = maxaQk(s, a). We recall that V ∗ = V π∗ and

Q∗ = Qπ∗ . We also recall from Section 4.2 thatQπ∗ is a fixed-point of the robust Bellman operator

T defined in (4.3). We also note that the same holds true for any stationary deterministic policy π

from [33] thatQπ satisfiesQπ(s, a) = r(s, a)+γminPs,a∈Ps,a Es′∼Ps,a [V
π(s′)].We can now further

use the dual form (4.5) under Assumption 6. We first characterize the performance decomposition

between V π∗ and V πK . For a given s0 ∈ S, we observe that

V π∗
(s0)− V πK (s0) = (V π∗

(s0)− VK(s0))− (V πK (s0)− VK(s0))

= (Qπ∗
(s0, π

∗(s0))−QK(s0, πK(s0)))− (QπK (s0, πK(s0))−QK(s0, πK(s0)))

(a)

≤ Qπ∗
(s0, π

∗(s0))−QK(s0, π
∗(s0)) +QK(s0, πK(s0))−QπK (s0, πK(s0))

= Qπ∗
(s0, π

∗(s0))−QK(s0, π
∗(s0)) +QK(s0, πK(s0))−Qπ∗

(s0, πK(s0))

+Qπ∗
(s0, πK(s0))−QπK (s0, πK(s0))

(b)

≤ Qπ∗
(s0, π

∗(s0))−QK(s0, π
∗(s0)) +QK(s0, πK(s0))−Qπ∗

(s0, πK(s0))

+ γ sup
η
(Es1∼P o

s0,πK (s0)
((η − V πK (s1))+ − (η − V π∗

(s1))+))

(c)

≤ |Qπ∗
(s0, π

∗(s0))−QK(s0, π
∗(s0))|+ |Qπ∗

(s0, πK(s0))−QK(s0, πK(s0))|

+ γEs1∼P o
s0,πK (s0)

(|V π∗
(s1)− V πK (s1)|).

(a) follows from the fact that πK is the greedy policy with respect to QK . (b) follows from the

Bellman optimality equations and the fact | supx f(x)− supx g(x)| ≤ supx |f(x)− g(x)|. Finally,

(c) follows from the facts (x)+ − (y)+ ≤ (x− y)+ and (x)+ ≤ |x| for any x, y ∈ R.

We now recall the initial state distribution d0. Thus, we have

Es0∼d0 [V
π∗
]− Es0∼d0 [V

πK] ≤

178

Es0∼d0

[
|Qπ∗

(s0, π
∗(s0))−QK(s0, π

∗(s0))|+ |Qπ∗
(s0, πK(s0))−QK(s0, πK(s0))|

+ γEs1∼P o
s0,πK (s0)

(|V π∗
(s1)− V πK (s1)|)

]
.

Since V π∗
(s) ≥ V πK (s) for any s ∈ S, by telescoping we get

Es0∼d0 [V
π∗
]− Es0∼d0 [V

πK] ≤
∞∑
h=0

γh×(
Es∼dh,πK

[|Qπ∗
(s, π∗(s))−QK(s, π

∗(s))|+ |Qπ∗
(s, πK(s))−QK(s, πK(s))|]

)
, (C.11)

where dh,πK
∈ ∆(S) for all natural numbers h ≥ 0 is defined as

dh,πK
=

d0 if h = 0,

P o
s′,πK(s′) otherwise, with s′ ∼ dh−1,πK

.

We emphasize that the state distribution dh,πK
’s are different from the discounted state-action oc-

cupancy distributions. We note that a similar state distribution proof idea is used in [106].

Recall ∥f∥2p,ν = (Es,a∼ν |f(s, a)|p)1/p, where ν ∈ ∆(S ×A). With this we have

Es0∼d0 [V
π∗
]− Es0∼d0 [V

πK] ≤
∞∑
h=0

γh
(
∥Qπ∗ −QK∥1,dh,πK ◦π∗ + ∥Qπ∗ −QK∥1,dh,πK ◦πK

)
,

(C.12)

where the state-action distributions dh,πK
◦π∗(s, a) ∝ dh,πK

(s)1{a = π∗(s)} and dh,πK
◦πK(s, a) ∝

dh,πK
(s)1{a = πK(s)} directly follows by comparing with (C.11).

We now bound one of the RHS terms above by bounding for any state-action distribution ν

satisfying Assumption 4 (in particular the following bound is true for dh,πK
◦ π∗ or dh,πK

◦ πK in

(C.11)):

∥Qπ∗ −QK∥1,ν ≤ ∥Qπ∗ − TQK−1∥1,ν + ∥TQK−1 −QK∥1,ν

179

(a)

≤ ∥Qπ∗ − TQK−1∥1,ν +
√
C∥TQK−1 −QK∥1,µ

= (Es,a∼ν |Qπ∗
(s, a)− TQK−1(s, a)|) +

√
C∥TQK−1 −QK∥1,µ

(b)

≤ (Es,a∼νγ sup
η
|Es′∼P o

s,a
((η −max

a′
QK−1(s

′, a′))+ − (η −max
a′

Qπ∗
(s′, a′))+)|)

+
√
C∥TQK−1 −QK∥1,µ

(c)

≤ (Es,a∼ν |Es′∼P o
s,a
(max

a′
Qπ∗

(s′, a′)−max
a′

QK−1(s
′, a′))+|) +

√
C∥TQK−1 −QK∥1,µ

(d)

≤ γ(Es,a∼νEs′∼P o
s,a

max
a′
|Qπ∗

(s′, a′)−QK−1(s
′, a′)|) +

√
C∥TQK−1 −QK∥1,µ

(e)

≤ γ∥Qπ∗ −QK−1∥1,ν′ +
√
C∥TQK−1 −QK∥1,µ

(f)

≤ γ∥Qπ∗ −QK−1∥1,ν′ +
√
C∥TgK−1

QK−1 −QK∥2,µ +
√
C∥TQK−1 − TgK−1

QK−1∥1,µ,

(C.13)

where (a) follows by the concentratability assumption (Assumption 4), (b) from Bellman equa-

tion, operator T , and the fact | supx p(x) − supx q(x)| ≤ supx |p(x) − q(x)|, (c) from the fact

|(x)+ − (y)+| ≤ |(x − y)+| for any x, y ∈ R, (d) follows by Jensen’s inequality and by the facts

| supx p(x)− supx q(x)| ≤ supx |p(x)−q(x)| and (x)+ ≤ |x| for any x, y ∈ R, and (e) by defining

the distribution ν ′ as ν ′(s′, a′) =
∑

s,a ν(s, a)P
o
s,a(s

′)1{a′ = argmaxb |Qπ∗
(s′, b)−QK−1(s

′, b)|},

and (f) using the fact that ∥ · ∥1,µ ≤ ∥ · ∥2,µ.

Now, by recursion until iteration 0, we get

∥Qπ∗ −QK∥1,ν ≤ γK sup
ν̄
∥Qπ∗ −Q0∥1,ν̄ +

√
C

K−1∑
t=0

γt∥TQK−1−t − TgK−1−t
QK−1−t∥1,µ

+
√
C

K−1∑
t=0

γt∥TgK−1−t
QK−1−t −QK−t∥2,µ

(a)

≤ γK

1− γ
+
√
C

K−1∑
t=0

γt∥TQK−1−t − TgK−1−t
QK−1−t∥1,µ

+
√
C

K−1∑
t=0

γt∥TgK−1−t
QK−1−t −QK−t∥2,µ

(b)

≤ γK

1− γ
+

√
C

1− γ
sup
f∈F
∥Tf − Tĝff∥1,µ +

√
C

1− γ
sup
f∈F
∥Tĝff − f̂ĝf∥2,µ

180

≤ γK

1− γ
+

√
C

1− γ
sup
f∈F
∥Tf − Tĝff∥1,µ +

√
C

1− γ
sup
f∈F

sup
g∈G
∥Tgf − f̂g∥2,µ. (C.14)

where (a) follows since |Qπ∗
(s, a)| ≤ 1/(1 − γ), Q0(s, a) = 0, and (b) follows since ĝf is the

dual variable function from the algorithm for the state-action value function f and f̂g as the least

squares solution from the algorithm for the state-action value function f and dual variable function

g pair.

The proof is now complete combining (C.12) and (C.14) with Lemma 28 and Lemma 29.

C.4 Related Works

Here we provide a more detailed description of the related work to complement what we listed

in the introduction (Section 4.1).

Offline RL: The problem of learning the optimal policy only using an offline dataset is first

addressed under the generative model assumption [75, 76, 77, 78, 79, 4, 80]. This assumption

requires generating the same uniform number of next-state samples for each and every state-action

pairs. To account for large state spaces, there are number of works [89, 63, 90, 91, 92, 93, 94]

that utilize function approximation under similar assumption, concentratability assumption [91]

in which the data distribution µ sufficiently covers the discounted state-action occupancy. There

is rich literature [68, 102, 69, 91, 103, 94] in the conquest of identifying and improving these

necessary and sufficient assumptions for offline RL that use variations of Fitted Q-Iteration (FQI)

algorithm [100, 101]. There is also rich literature [95, 96, 97, 98, 99] that develop offline deep

RL algorithms focusing on the algorithmic and empirical aspects and propose multitude heuristic

approaches to advance the field. All these results assume that the offline data is generated according

to a single model and the goal is to find the optimal policy for the MDP with the same model. In

particular, none of these works consider the offline robust RL problem where the offline data is

generated according to a (training) model which can be different from the one in testing, and the

goal is to learn a policy that is robust w.r.t. an uncertainty set.

Robust RL: To address the parameter uncertainty problem, [33] and [34] introduced the RMDP

181

framework. [33] showed that the optimal robust value function and policy can be computed us-

ing the robust counterparts of the standard value iteration and policy iteration algorithms. To

tackle the parameter uncertainty problem, other works considered distributionally robust setting

[37], modified policy iteration [57], and more general uncertainty set [36]. These initial works

mainly focused on the planning problem (known transition probability dynamics) in the tabular

setting. [39] proposed linear function approximation method to solve large RMDPs. Though this

work suggests a sampling based approach, a general model-free learning algorithm and analy-

sis was not included. [40] proposed the robust versions of the classical model-free reinforcement

learning algorithms, such as Q-learning, SARSA, and TD-learning in the tabular setting. They

also proposed function approximation based algorithms for the policy evaluation. However, this

work does not have a policy iteration algorithm with provable guarantees for learning the opti-

mal robust policy. [48] introduced soft-robust actor-critic algorithms using neural networks, but

does not provide any global convergence guarantees for the learned policy. [58] proposed a min-

max game framework to address the robust learning problem focusing on the tabular setting. [59]

proposed a kernel-based RL algorithm for finding the robust value function in a batch learning

setting. [46] employed an entropy-regularized policy optimization algorithm for continuous con-

trol using neural network, but does not provide any provable guarantees for the learned policy. [1]

proposed least-squares policy iteration method to handle large state-action space in robust RL, but

only provide asymptotic policy evaluation convergence guarantees whereas [1] provide finite time

convergence for the policy iteration to optimal robust value.

Other robust RL related works: Robust control is a well-studied area in the classical control

theory [84, 85]. Recently, there are some interesting works that address the robust RL problem

using this framework, especially focusing on the linear quadratic regulator setting [86]. Risk sen-

sitive RL algorithms [87, 170, 171] and adversarial RL algorithms [45, 172, 173] also address the

robustness problem implicitly under different frameworks which are independent from RMDPs.

Our framework and approach of robust MDP is significantly different from these line of works.

The works that are closest to ours are by [82, 83, 2] that address the robust RL problem in a

182

tabular setting under the generative model assumption. Due to the generative model assumption,

the offline data has the same uniform number of samples corresponding to each and every state-

action pair, and tabular setting allows the estimation of the uncertainty set followed by solving

the planning problem. Our work is significantly different from these in the following way: (i) we

consider a robust RL problem with arbitrary large state space, instead of the small tabular setting,

(ii) we consider a true offline RL setting where the state-action pairs are sampled according to

an arbitrary distribution, instead of using the generative model assumption, (iii) we focus on a

function approximation approach where the goal is to directly learn optimal robust value/policy

using function approximation techniques, instead of solving the tabular planning problem with the

estimated model. To the best of our knowledge, this is the first work that addresses the offline

robust RL problem with arbitrary large state space using function approximation, with provable

guarantees on the performance of the learned policy.

C.5 Experiment Details

We provide more detailed and practical version of our RFQI algorithm (Algorithm 3) in this

section. We also provide more experimental results evaluated on Cartpole, Hopper, and Half-

Cheetah OpenAI Gym Mujoco [71] environments.

We provide our code in a github repository https://github.com/zaiyan-x/RFQI

containing instructions to reproduce all results in this paper. We implemented our RFQI algorithm

based on the architecture of Batch Constrained deep Q-learning (BCQ) algorithm [95] * and Pes-

simistic Q-learning (PQL) algorithm [103] †. We note that PQL algorithm (with b = 0 filtration

thresholding [103]) and BCQ algorithm are the practical versions of FQI algorithm with neural

network architecture.

C.5.1 RFQI Practical Algorithm

We provide the practical version of our RFQI algorithm in Algorithm 7 and highlight the dif-

ference with BCQ and PQL algorithms in blue (steps 8 and 9).

*Available at https://github.com/sfujim/BCQ
†Available at https://github.com/yaoliucs/PQL

183

https://github.com/zaiyan-x/RFQI
https://github.com/sfujim/BCQ
https://github.com/yaoliucs/PQL

Algorithm 7 RFQI Practical Algorithm
1: Input: Offline dataset D, radius of robustness ρ, maximum perturbation Φ, target update rate
τ , mini-batch size N , maximum number of iterations K, number of actions u.

2: Initialize: Two state-action neural networks Qθ1 and Qθ2 , one dual neural network gθ3
policy (perturbation) model: ξφ ∈ [−Φ,Φ]), and action VAE Ga

ω, with random parameters θ1,
θ2, φ, ω, and target networks Qθ′1

, Qθ′2
, ξφ′ with θ′1 ← θ1, θ

′
2 ← θ2, φ′ ← φ.

3: for k = 1, · · · , K do
4: Sample a minibatch B with N samples from D.
5: Train ω ← argminω ELBO(B;Ga

ω). Sample u actions a′i from Ga
ω(s

′) for each s′.
6: Perturb u actions a′i = a′i + ξφ(s

′, a′i).
7: Compute next-state value target for each s′ in B:

Vt = max
a′i

(0.75 ·min{Qθ′1
, Qθ′2
}+ 0.25 ·max{Qθ′1

, Qθ′2
}).

8: θ3 ← argminθ

∑
[max{gθ(s, a)− Vt(s′), 0} − (1− ρ)gθ(s, a)].

9: Compute next-state Q target for each (s, a, r, s′) pair in B:

Qt(s, a) = r − γ ·max{gθ3(s, a)− Vt(s′), 0}+ γ(1− ρ)gθ3(s, a).

10: θ ← argminθ

∑
(Qt(s, a)−Qθ(s, a))

2.
11: Sample u actions ai from Ga

ω(s) for each s.
12: φ← argmaxφ

∑
maxai Qθ1(s, ai + ξφ(s, ai)).

13: Update target network: θ′ = (1− τ)θ′ + τθ, φ′ = (1− τ)φ′ + τφ.
14: end for
15: Output policy: Given s, sample u actions ai from Ga

ω(s). Select action a =
argmaxai Qθ1(s, ai + ξφ(s, ai)).

RFQI algorithm implementation details: The Variational Auto-Encoder (VAE) Ga
ω [174] is

defined by two networks, an encoder Eω1(s, a) and decoder Dω2(s, z), where ω = {ω1, ω2}. The

encoder outputs mean and standard deviation, (µ, σ) = Eω1(s, a), of a normal distribution. A

latent vector z is sampled from the standard normal distribution and for a state s, the decoder maps

them to an action Dω2 : (s, z) 7→ ã. Then the evidence lower bound (ELBO) of VAE is given

by ELBO(B;Ga
ω) =

∑
B(a− ã)2 +DKL(N (µ, σ),N (0, 1)), where N is the normal distribution

with mean and standard deviation parameters. We refer to [95] for more details on VAE. We also

use the default VAE architecture from BCQ algorithm [95] and PQL algorithm [103] in our RFQI

algorithm.

184

We now focus on the additions described in blue (steps 8 and 9) in Algorithm 7. For all the

other networks we use default architecture from BCQ algorithm [95] and PQL algorithm [103] in

our RFQI algorithm.

(1) In each iteration k, we solve the dual variable function gθ optimization problem (step 4 in

Algorithm 3, step 8 in Algorithm 7) implemented by ADAM [175] on the minibatch B with the

learning rate l1 mentioned in Table C.1.

(2) Our state-action value target function corresponds to the robust state-action value target func-

tion described in (4.10). This is reflected in step 9 of Algorithm 7. The state-action value function

Qθ optimization problem (step 5 in Algorithm 3, step 9 in Algorithm 7) is implemented by ADAM

[175] on the minibatch B with the learning rate l2 mentioned in Table C.1.

Environment Discount Learning rates Q Neural nets Dual Neural nets

γ [l1, l2] θ1 = θ2 = [h1, h2] θ3 = [h1, h2]

CartPole 0.99 [10−3, 10−3] [400, 300] [64, 64]

Hopper 0.99 [10−3, 8× 10−4] [400, 300] [64, 64]

[3× 10−4, 6× 10−4]

Half-Cheetah 0.99 [10−3, 8× 10−4] [400, 300] [64, 64]

[3× 10−4, 6× 10−4]

Table C.1: Details of hyper-parameters in FQI and RFQI algorithms experiments.

Hyper-parameters details: We now give the description of hyper-parameters used in our

codebase in Table C.1. We use same hyper-parameters across different algorithms. Across all

learning algorithms we use τ = 0.005 for the target network update,K = 5×105 for the maximum

iterations, |D| = 106 for the offline dataset, |B| = 1000 for the minibatch size. We used grid-search

for ρ in {0.2, 0.3, · · · , 0.6}. We also picked best of the two sets of learning rates mentioned in Table

185

C.1. For all the other hyper-parameters we use default values from BCQ algorithm [95] and PQL

algorithm [103] in our RFQI algorithm that can be found in our code.

Offline datasets: Now we discuss the offline dataset used in the our training of FQI and RFQI

algorithms. For the fair comparison in every plot, we train both FQI and RFQI algorithms on same

offline datasets.

Cartpole dataset Dc: We first train proximal policy optimization (PPO) [176] algorithm, under

default RL baseline zoo [177] parameters. We then generate the Cartpole datasetDc with 105 sam-

ples using an ε-greedy (ε = 0.3) version of this PPO trained policy. We note that this offline dataset

contains non-expert behavior meeting the richness of the data-generating distribution assumption

in practice.

Mixed dataset Dm: For the MuJoCo environments, Hopper and Half-Cheetah, we increase

the richness of the dataset since these are high dimensional problems. We first train soft actor-

critic (SAC) [178] algorithm, under default RL baseline zoo [177] parameters, with replay buffer

updated by a fixed ε-greedy (ε = 0.1) policy with the model parameter actuator_ctrlrange set

to [−0.85, 0.85]. We then generate the mixed dataset Dm with 106 samples from this ε-greedy

(ε = 0.3) SAC trained policy. We note that such a dataset generation gives more diverse set

of observations than the process of Dc generation for fair comparison between FQI and RFQI

algorithms.

D4RL dataset Dd: We consider the hopper-medium and halfcheetah-medium offline datasets

in [146] which are benchmark datasets in offline RL literature [146, 93, 103]. These ‘medium’

datasets are generated by first training a policy online using Soft Actor-Critic [178], early-stopping

the training, and collecting 106 samples from this partially-trained policy. We refer to [146] for

more details.

We end this section by mentioning the software and hardware configurations used. The training

and evaluation is done using three computers with the following configuration. Operating system

is Ubuntu 18.04 and Lambda Stack; main softwares are PyTorch, Caffe, CUDA, cuDNN, Numpy,

Matplotlib; processor is AMD Threadripper 3960X (24 Cores, 3.80 GHz); GPUs are 2x RTX 2080

186

Ti; memory is 128GB RAM; Operating System Drive is 1 TB SSD (NVMe); and Data Drive is

4TB HDD.

C.5.2 More Experimental Results

0 20 40 60 80 100
Prob. of picking a random action

25

50

75

100

125

150

175

200

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es Action perturbation
RFQI
SR-DQN
FQI
DQN

−80 −70 −60 −50 −40 −30 −20
Percentage change from nominal value

60

80

100

120

140

160

180

200

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es "force_mag" perturbation

RFQI
SR-DQN
FQI
DQN

0 25 50 75 100 125 150 175 200
Percentage change from nominal value

25

50

75

100

125

150

175

200

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es "length" perturbation

RFQI
SR-DQN
FQI
DQN

Figure C.1: Cartpole simulation results on offline dataset Dc. Average cumulative reward in 20
episodes versus different model parameter perturbations mentioned in the respective titles.

0 5 10 15 20 25 30 35 40
Prob. of picking a random action

0

500

1000

1500

2000

2500

3000

3500

4000

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es Action perturbation
RFQI
FQI
TD3

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Bound on actuator (controller) range

1500

2000

2500

3000

3500

4000

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es "actuator_ctrlrange" perturbation

RFQI
FQI
TD3

0 5 10 15 20
"foot_joint_stiffness" values (default=0.0)

1000

1500

2000

2500

3000

3500

4000

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es "foot_joint_stiffness" perturbation
RFQI
FQI
TD3

Figure C.2: Hopper simulation results on offline dataset Dm. Average cumulative reward in 20
episodes versus different model parameter perturbations mentioned in the respective titles.

Here we provide more experimental results and details in addition to Fig. 4.1-4.3 in Section

4.5.

For the Cartpole, we compare RFQI algorithm against the non-robust RL algorithms FQI and

DQN, and the soft-robust RL algorithm proposed in [48]. We trained FQI and RFQI algorithms

on the dataset Dc (a detailed description of data set is provided in Appendix C.5.1). We test

the robustness of the algorithms by changing the parameters force_mag (to model external force

disturbance), length (to model change in pole length), and also by introducing action perturbations

(to model actuator noise). The nominal value of force_mag and length parameters are 10 and 0.5

respectively. Fig. C.1 shows superior robust performance of RFQI compared to the non-robust

187

FQI and DQN. For example, consider the action perturbation performance plot in Fig. C.1 where

RFQI algorithm improves by 75% compared to FQI algorithm in average cumulative reward for a

40% chance of action perturbation. We note that we found ρ = 0.5 is the best from grid-search for

RFQI algorithm. The RFQI performance is similar to that of soft-robust DQN. We note that soft-

robust DQN algorithm is an online deep RL algorithm (and not an offline RL algorithm) and has no

provable performance guarantee. Moreover, soft-robust DQN algorithm requires generating online

data according a number of models in the uncertainty set, whereas RFQI only requires offline data

according to a single nominal training model.

Before we proceed to describe our results on the OpenAI Gym MuJoCo [71] environments

Hopper and Half-Cheetah, we first mention their model parameters and its corresponding nominal

values in Table C.2. The model parameter names are self-explanatory, for example, stiffness con-

trol on the leg joint is the leg_joint_stiffness, range of actuator values is the actuator_ctrlrange. The

front and back parameters in Half-Cheetah are for the front and back legs. We refer to the perturbed

environments provided in our code and the hopper.xml, halfcheetah.xml files in the environment

assets of OpenAI Gym MuJoCo [71] for more information regarding these model parameters.

188

Environment Model parameter Nominal range/value

Hopper actuator_ctrlrange [−1, 1]

foot_joint_stiffness 0

leg_joint_stiffness 0

thigh_joint_stiffness 0

joint_damping 1

joint_frictionloss 0

joint_frictionloss 0

Half-Cheetah front actuator_ctrlrange [−1, 1]

back actuator_ctrlrange [−1, 1]

front joint_stiffness = (thigh_joint_stiffness,

shin_joint_stiffness, foot_joint_stiffness) (180, 120, 60)

back joint_stiffness = (thigh_joint_stiffness,

shin_joint_stiffness, foot_joint_stiffness) (240, 180, 120)

front joint_damping = (thigh_joint_damping,

shin_joint_damping, foot_joint_damping) (4.5, 3.0, 1.5)

back joint_damping = (thigh_joint_damping,

shin_joint_damping, foot_joint_damping) (6.0, 4.5, 3.0)

Table C.2: Details of model parameters for Hopper and Half-Cheetah environments.

For the Hopper, we compare RFQI algorithm against the non-robust RL algorithms FQI and

TD3 [110]. We trained FQI and RFQI algorithms on the mixed dataset Dm (a detailed description

of dataset provided in Appendix C.5.1). We note that we do not compare with soft robust RL

algorithms because of its poor performance on MuJoCo environments in the rest of our figures. We

test the robustness of the algorithm by introducing action perturbations, and by changing the model

189

parameters actuator_ctrlrange, foot_joint_stiffness, and leg_joint_stiffness. Fig. 4.3 and Fig. C.2

shows RFQI algorithm is consistently robust compared to the non-robust algorithms. We note that

we found ρ = 0.5 is the best from grid-search for RFQI algorithm. The average episodic reward of

RFQI remains almost the same initially, and later decays much less and gracefully when compared

to FQI and TD3 algorithms. For example, in plot 3 in Fig. C.2, at the foot_joint_stiffness parameter

value 15, the episodic reward of FQI is only around 1400 whereas RFQI achieves an episodic

reward of 3200. Similar robust performance of RFQI can be seen in other plots as well. We also

note that TD3 [95] is a powerful off-policy policy gradient algorithm that relies on large 106 replay

buffer of online data collection, unsurprisingly performs well initially with less perturbation near

the nominal models.

In order to verify the effectiveness and consistency of our algorithm across different offline

dataset, we repeat the above experiments, on additional OpenAI Gym MuJoCo [71] environment

Half-Cheetah, using D4RL dataset Dd (a detailed description of dataset provided in Appendix

C.5.1) which are benchmark in offline RL literature [146, 93, 103] than our mixed dataset Dm.

Since D4RL dataset is a benchmark dataset for offline RL algorithms, here we focus only on the

comparison between the two offline RL algorithms we consider, our RFQI algorithm and its non-

robust counterpart FQI algorithm. We now showcase the results on Hopper and Half-Cheetah for

this setting.

For the Hopper, we test the robustness by changing the model parameters gravity, joint_damping,

and joint_frictionloss. Fig. C.3 shows RFQI algorithm is consistently robust compared to the non-

robust FQI algorithm. We note that we found ρ = 0.5 is the best from grid-search for RFQI

algorithm. The average episodic reward of RFQI remains almost the same initially, and later de-

cays much less and gracefully when compared to FQI algorithm. For example, in plot 2 in Fig. C.3,

for the 30% change in joint_damping parameter, the episodic reward of FQI is only around 1400

whereas RFQI achieves an episodic reward of 3000 which is almost the same as for unperturbed

model. Similar robust performance of RFQI can be seen in other plots as well.

For the Half-Cheetah, we test the robustness by changing the model parameters joint_stiffness

190

50 40 30 20 10
Percentage change in 'gravity'

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es Perturbed "gravity"
RFQI
FQI

0 10 20 30 40 50 60 70
Percentage change in 'joint_damping'

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es "joint_damping" perturbation
RFQI
FQI

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
"joint_frictionloss" values (default=0.0)

1000

1500

2000

2500

3000

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es "joint_frictionloss" perturbation
RFQI
FQI

Figure C.3: Hopper evaluation simulation results on offline datasetDd. Average cumulative reward
in 20 episodes versus different model parameter perturbations mentioned in the respective titles.

0 10 20 30 40 50 60
Percentage change in front "joint_stiffness"

3000

3500

4000

4500

5000

5500

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es Front "joint_stiffness" perturbation

RFQI
FQI

0 10 20 30 40 50 60
Percentage change in back "joint_stiffness"

4200

4400

4600

4800

5000

5200

5400
Av

er
ag

e
cu

m
ul

at
iv

e
re

wa
rd

 in
 2

0
ga

m
es Back "joint_stiffness" perturbation

RFQI
FQI

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bound on back actuator (controller) range

2000

3000

4000

5000

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es Back "actuator_ctrlrange" perturbation
RFQI
FQI

Figure C.4: Half-Cheetah evaluation simulation results on offline dataset Dd. Average cumulative
reward in 20 episodes versus different model parameter perturbations mentioned in the respective
titles.

of front and back joints, and actuator_ctrlrange of back joint. Fig. C.4 shows RFQI algorithm is

consistently robust compared to the non-robust FQI algorithm. We note that we found ρ = 0.3 is

the best from grid-search for RFQI algorithm. For example, in plot 1 in Fig. C.4, RFQI episodic

reward stays at around 5500 whereas FQI drops faster to 4300 for more than 50% change in the

nominal value. Similar robust performance of RFQI can be seen in other plots as well.

As part of discussing the limitations of our work, we also provide two instances where RFQI

and FQI algorithm behave similarly. RFQI and FQI algorithms trained on the D4RL dataset Dd

perform similarly under the perturbations of the Hopper model parameters actuator_ctrlrange

and thigh_joint_stiffness as shown in Fig. C.5. We also make similar observations under the

perturbations of the Half-Cheetah model parameters joint_damping (both front joint_damping and

back joint_damping) and joint_frictionloss as shown in Fig. C.6. We observed that the robustness

performance can depend on the offline data available, which was also observed for non-robust

offline RL algorithms [103, 146, 93]. Also, perturbing some parameters may make the problem

191

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
"thigh_joint_stiffness" values (default=0.0)

2600

2800

3000

3200

3400
Av

er
ag

e
cu

m
ul

at
iv

e
re

wa
rd

 in
 2

0
ga

m
es "thigh_joint_stiffness" perturbation

RFQI
FQI

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Bound on actuator (controller) range

1000

1500

2000

2500

3000

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es "actuator_ctrlrange" perturbation
RFQI
FQI

Figure C.5: Similar performance of RFQI and
FQI in Hopper on dataset Dd w.r.t. parameters
actuator_ctrlrange and thigh_joint_stiffness.

50 40 30 20 10 0
Percentage change in 'joint_damping'

2000

3000

4000

5000

6000

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es "joint_damping" perturbation
RFQI
FQI

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
"joint_frictionloss" values (default=0.0)

4800

5000

5200

5400

5600

5800

Av
er

ag
e

cu
m

ul
at

iv
e

re
wa

rd
 in

 2
0

ga
m

es "joint_frictionloss" perturbation
RFQI
FQI

Figure C.6: Similar performance of RFQI and
FQI in Half-Cheetah on dataset Dd w.r.t. pa-
rameters joint_damping and joint_frictionloss.

really hard especially if the data is not representative with respect to that parameter. We believe that

this is the reason for the similar performance of RFQI and FQI w.r.t. some parameters. We believe

that this opens up an exciting area of research on developing online policy gradient algorithms for

robust RL, which may be able to overcome the restriction and challenges due to offline data. We

plan to pursue this goal in our future work.

192

APPENDIX D

APPENDIX FOR CHAPTER 5*

K Supplementary Materials K
In this appendix, we include complete proofs, all experiments, and all supporting details for

the corresponding chapter.

D.1 Useful Technical Results

The following result from [139, Lemma 26] is useful for characterizing the entropy regularized

value performance with respect to the policy.

Lemma 30 (Soft sub-optimality lemma). For any policy π and τ > 0,

Ṽπ∗
τ
− Ṽπ =

τ

1− γ
Es∼dπ [DKL(π(· | s)∥π∗

τ (· | s))].

The following lemma is a generalization from [179] for relating entropy regularized and classic

value functions.

Lemma 31. For any policy π and τ > 0, Vπ − τ log(|A|)/(1− γ) ≤ Ṽπ ≤ Vπ.

Proof. Recall the entropy regularized value function and value function definitions. That is, for

any policy π and τ > 0,

Ṽπ = Es0∼µ,at∼π(·|st),st+1∼P o
st,at

∞∑
t=0

γt(r(st, at)− τ log π(at | st)) and

Vπ = Es0∼µ,at∼π(·|st),st+1∼P o
st,at

∞∑
t=0

γtr(st, at).

Since r(st, at) − τ log π(at | st) ≤ r(st, at), it directly follows Ṽπ ≤ Vπ. Note that the entropy of

*Reprinted with permission from Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, Mohammad Ghavamzadeh, “Im-
proving Behavioral Cloning with Distributionally Robust Optimization.” Preprint, 2023.

193

any discrete distribution is bounded above by the entropy of the uniform distribution in its support

[168]. Now, the other side follows since
∑∞

t=0 γ
tτ log π(at | st) ≤ τ log(1/ |A|)/(1− γ).

We state a result which shows that the state-distributions are close when two policies are close

under the same model.

Lemma 32. Consider any model P and policies π, π′. We haveDTV(d
π, dπ

′
) ≤ γ

(1−γ)

√
Es∼dπ [DKL(π′(·|s)∥π(·|s))].

Proof. From the proof analyses in [106, Lemma 14.1] and Lemma 35, we get

∥∥∥dπ − dπ′
∥∥∥
1
≤ γ

(1− γ)
Es∼dπ [∥π′(·|s)− π(·|s)∥1].

From Pinsker’s and Jensen’s inequality [180], we get the required result.

Let P o be a distribution on the space X . We now state a result from [3] based on DRO method-

ology.

Lemma 33 ([3, Lemma 5]). Eqs. (5.3) and (5.6) is with DTV(·, ·). Let l : X → R be a loss

function. Then

sup
DTV(P,P o)≤ρ

Ex∼P [l(x)] = inf
η∈R

{
Ex∼P o [(l(x)− η)+] + (sup

x∈X
l(x)− η)+ · ρ+ η

}
. (D.1)

We now specialize [109, Corollary 2] for the total variation distance.

Lemma 34. Let Θ ⊆ Rd, l : X ×Θ 7→ [0,M] and fix any ρ ∈ (0, 1]. We have

sup
DTV(P,P o)≤ρ

EP [l(X, θ̂)] ≤ inf
θ∈Θ

sup
DTV(P,P o)≤√

ρ

EP [l(X, θ)] + cM(1 + ρ)

√
log(1/δ) + 2d log(N)

N
,

which holds with probability at least 1− δ, where c > 0 is some universal constant.

Proof. First set ρ = 2ρ′. We first note that from Pinsker’s inequality [180], [181, Theorem 5], and

[182, Lemma 11.1], we have 2Dχ2(p, q) ≤ DTV(p, q) ≤ 2
√
Dχ2(p, q) for any two distributions.

From this, it is easy to see that {p : DTV(p, q) ≤ 2ρ′} ⊆ {p : Dχ2(p, q) ≤ ρ′} ⊆ {p : DTV(p, q) ≤

2
√
ρ′}. This completes the proof by applying [109, Corollary 2] for Dχ2 with radius ρ/2.

194

D.2 Proof of Results in Section 5.2

D.2.1 Proof of Theorem 10

Proof. We recall πe = π∗
τ . Now substituting π = πil in Lemma 30 we get

Ṽπe − Ṽπil
=

τ

1− γ
Es∼dπil [DKL(πil(· | s)∥πe(· | s))] =

τLil(πil)

1− γ
, (D.2)

where the last equality follows from Eq. (5.2). We note that Lil(πil) = εil and τ ′ = τ log(|A|). The

proof of this theorem is now complete by combining Eq. (D.2) with Lemma 31.

D.2.2 Proof of Proposition 7

We provide the formal statement and its proof here.

Proposition 13. Fix the underlying model P o. For all π ∈ Π and ρc > 0,

max
π′∈Πρc

Es∼dπ
′

Po
[l(πe(·|s), π(·|s))]

= min
η∈R

Es∼dπePo
[(l(πe(·|s), π(·|s))− η)+] + (sup

s∈S:dπePo (s)>0

l(πe(·|s), π(·|s))− η)+ · ρ+ η.

Proof. We rewrite maxπ′∈Πρc
Es∼dπ

′
Po
[l(πe(·|s), π(·|s))] as

max
dπ

′
Po :DTV(dπ

′
Po ,d

πe
Po)≤ρc

Es∼dπ
′

Po
[l(πe(·|s), π(·|s))]

since Πρc = {π : DTV(d
π
P o , dπe

P o) ≤ ρc}. The result immediately follows from Lemma 33.

D.2.3 Proof of Theorem 11

Proof. Firstly, notice that from Lemma 32 we have

DTV(d
π, dπe) ≤ γ

1− γ
√
Lbc(π) ≤

γ

1− γ
√
Ldrbc(π, ρc), (D.3)

195

where in the last inequality we have used that the fact that Lbc(π) ≤ Ldrbc(π) for any π. Now, for

π = πdrbc, we further get

DTV(d
πdrbc , dπe) ≤ γ

1− γ
√
Ldrbc(πdrbc, ρc)

(a)
=
γ
√
εdrbc(ρc)

1− γ
(b)

≤ ρc, (D.4)

where (a) follows since Ldrbc(πdrbc, ρc) = εdrbc(ρc) and (b) since ρc is in the feasibility set U =

{x ∈ (0, 1] : γ2εdrbc(x) ≤ x(1− γ)2}.

We recall πe = π∗
τ . Letting π = πdrbc, we get

Lil(πdrbc) =
∑
s∈S

dπdrbc(s)DKL(πdrbc(· | s)∥πe(· | s))

= 1(DTV(d
πdrbc , dπe) ≤ ρc)

∑
s∈S

dπdrbc(s)DKL(πdrbc(· | s)∥πe(· | s))

+ 1(DTV(d
πdrbc , dπe) > ρc)

∑
s∈S

dπdrbc(s)

dπe(s)
dπe(s)DKL(πdrbc(· | s)∥πe(· | s))

(c)

≤ Ldrbc(πdrbc, ρc)
(d)
= εdrbc(ρc), (D.5)

where (c) holds by definition of Ldrbc Eq. (5.3) and Eq. (D.4), and (d) follows by Ldrbc(πdrbc, ρ) =

εdrbc(ρ). Now substituting π = πdrbc in Lemma 30 we get

Ṽπe − Ṽπdrbc
=

τ

1− γ
Es∼dπdrbc [DKL(πdrbc(· | s)∥πe(· | s))] =

τLil(πdrbc)

1− γ
, (D.6)

where the last equality follows from Eq. (5.2). We note that τ ′ = τ log(|A|). The proof of this

theorem is now complete by combining Eqs. (D.5) and (D.6) with Lemma 31.

D.2.4 Proof of Theorem 13

Proof. Firstly, from Lemma 34, we observe that Ldrbc(π̂drbc, ρc) ≤ ε̂drbc(ρc) holds with probability

at least 1− δ with

ε̂drbc(ρc) = εdrbc(ρc) + c(1 + ρc)

√
log(1/δ) + 2 |A| log(N)

eminN
,

196

where emin = mins,a:πe(a|s)>0 πe(a|s) and c > 0 is some universal constant.

For π = π̂drbc in Eq. (D.3), we get

DTV(d
π̂drbc , dπe) ≤ γ

1− γ
√
Ldrbc(π̂drbc, ρc)

(a)

≤
γ
√
ε̂drbc(ρc)

1− γ
(b)

≤ ρc,

where (a) follows with probability at least 1− δ since Ldrbc(π̂drbc, ρc) ≤ ε̂drbc(ρc) and (b) since ρc

is in the feasibility set UN = {x ∈ (0, 1] : γ2ε̂drbc(x) ≤ x(1− γ)2}. The proof is now complete by

following the proof analysis of Theorem 11.

D.2.5 Proof of Theorem 12

Proof. We consider a class of deterministic MDPs (S,A, P o, γ, r) shown in Fig.D.1 for any γ ∈

(0, 1). We fix the initial state s0 = 0. The state space is S = {0, 1, 2} and action space is

A = {a1, a2}. Reward for state 1 and action a2 pair is r(1, a2) = 1 and the reward is 0 for all other

(s, a). We note that any positive scalar multiple of this reward function can be considered for this

class of MDPs. Transition function P o is deterministic, as indicated by the arrows.

Figure D.1: Transitions and rewards for model P o. The states {0, 1, 2} are given inside the circles,
and the actions {a1, a2} and associated rewards are given on the corresponding transitions.

We denote state-distribution of model P o for policy π starting at fixed state s0 as dπs0,P o .

It is easy to see that taking action a1 in states 0, 2 and action a2 in state 1 is the optimal policy

π∗. This is obvious since action a2 at state 1 is the only rewarded pair among all state-actions.

197

So, the optimal value we get is Vπ∗(0) = γ/(1− γ). We consider this optimal policy as the expert

policy πe. Recall the arbitrarily small ε > 0 from the theorem statement.

For simplicity with action space size 2, since KL loss function is an upper bound on 0-1 loss, we

consider 0-1 loss for solving the optimization of all imitation learning algorithms in this theorem

proof.

Recalling the definition of state-distribution, dπs0,P (s) = (1− γ)
∑∞

t=0 γ
tPrt(s | π, s0, P), it is

easy to see that dπe
s0,P o(s = 1) = γ = 1− dπe

s0,P o(s = 0) and dπe
s0,P o(s = 2) = 0.

From BC algorithm Eq. (5.1), we have πbc = minπ(1− γ)π(a2|s = 0). This implies taking

πbc(·|s = 0) =

ε/(1− γ) if action a2

1− ε/(1− γ) if action a1

, πbc(a2|s = 1) = 1, πbc(a2|s = 2) = 1,

yields BC loss Eq. (5.1) as ε.

We consider ρ = γ and the distance metric l1 to find discrepancy between the state-distribution

of policy π′ and the expert policy. Since we are on a probability simplex of dimention 2, we have

the following five valid vertices for the state-distribution:

dπs0,P o(s) =

(1, 0, 0)

(1− 2γ, 2γ, 0)

(1− γ, 0, γ)

(1− γ, γ, 0)

(1− 2γ, γ, γ)

,

where the tuple notation follows as dπs0,P o(s) = (dπs0,P o(s = 0), dπs0,P o(s = 1), dπs0,P o(s = 2)). But,

from Fig.D.1, it is obvious that dπs0,P o(s = 0) = 1 − γ for any policy π, since after the time step

1 we never reach back state 0. So, the only two valid choices are dπ1
s0,P o(s) = (1 − γ, 0, γ) and

dπ2
s0,P o(s) = (1 − γ, γ, 0) for some policy π1 and π2 (note that there can be multiple stochastic

198

policies satisfying this).

Now, from DR-BC algorithm Eq. (5.3), we have

πdrbc = min
π

max{(1− γ)π(a2|s = 0) + γπ(a1|s = 1), (1− γ)π(a2|s = 0) + γπ(a2|s = 2)}.

This implies taking

πdrbc(·|s = 0) =

ε/(1− γ) if action a2

1− ε/(1− γ) if action a1

, πdrbc(a2|s = 1) = 1, πdrbc(a1|s = 2) = 1,

yields DR-BC loss Eq. (5.3) as ε.

Now, calculating the discounted value [6] we get

Vπbc
(s0 = 0) = (1− ε

1− γ
)

γ

1− γ
+

ε

1− γ
· 0 and Vπdrbc

(s0 = 0) = (1− ε

1− γ
)

γ

1− γ
+

ε

1− γ
· γ2

1− γ
.

Since Vπe(0) = γ/(1− γ), we can finally write

Vπbc
(0) = Vπe(0)−

εγ

(1− γ)2
and Vπdrbc

(0) = Vπe(0)−
εγ

1− γ
.

This completes the proof of this theorem.

D.3 Proof of Results in Section 5.3

D.3.1 Proof of Proposition 8

We provide the formal statement and its proof here.

Proposition 14. For a fixed expert policy πe ∈ Π, we have, for all π ∈ Π and ρr ∈ (0, 1],

max
P∈M

Es∼dπeP
[DKL(π(·|s)∥πe(·|s))]

= min
η∈R

Es∼dπePo
[(DKL(π(·|s)∥πe(·|s))− η)+] + (sup

s∈S
DKL(π(·|s)∥πe(·|s))− η)+ · ρ+ η.

199

Proof. We rewrite maxP∈M Es∼dπeP
[DKL(π(·|s)∥πe(·|s))] as

max
dπeP :DTV(dπeP ,dπePo)≤ρr

Es∼dπeP
[DKL(π(·|s)∥πe(·|s))]

sinceM = {P ∈ P : DTV(d
πe
P , d

πe
P o) ≤ ρr}. The result immediately follows from Lemma 33.

D.3.2 Proof of Theorem 14

We present a few results needed for proving Theorem 14.

First, we formally show that when two models are close, then their state-distributions are close

under the same roll-out policy.

Lemma 35. Consider any policy π and P ∈ P . We have DTV(d
π
P , d

π
P o) ≤ γρ′r/(1− γ).

Proof. By definition, since P ∈ P , we have DTV(Ps,a, P
o
s,a) ≤ ρ′r for all (s, a) ∈ S × A. We

denote matrices Pπ,Po
π : S × S → [0, 1] with Pπ(s

′, s) =
∑

a∈A π(a|s)Ps,a(s
′) and Po

π(s
′, s) =∑

a∈A π(a|s)P o
s,a(s

′). Now, we can write

dπP = (1− γ)
∞∑
t=0

γtPrt(s | π, s0 ∼ µ, P) = (1− γ)
∞∑
t=0

(γPπ)
tµ and

dπP o = (1− γ)
∞∑
t=0

γtPrt(s | π, s0 ∼ µ, P o) = (1− γ)
∞∑
t=0

(γPo
π)

tµ.

Denoting Pt,π = Pt
πµ,Po

t,π = (Po
π)

tµ, from triangle inequality we further get

∥dπP − dπP o∥1 ≤ (1− γ)
∞∑
t=0

γt
∥∥Pt,π − Po

t,π

∥∥
1
. (D.7)

Intuitively, Pt,π(Po
t,π) is state distribution resulting from π evolving in the model P (P o) at time step

t with µ as the initial state distribution. We now bound
∥∥Pt,π − Po

t,π

∥∥
1

for t ≥ 0 in a recursive

approach. From basic Markov chain theory [183] for any t ≥ 0, we have

∥∥Pt,π − Po
t,π

∥∥
1
=
∑
s′

|Pt,π(s
′)− Po

t,π(s
′)|

200

=
∑
s′

|
∑
s,a

(Pt−1,π(s)P (s
′|s, a)− Po

t−1,π(s)P
o(s′|s, a))π(a|s)|

=
∑
s′

|
∑
s,a

(P (s′|s, a)(Pt−1,π(s)− Po
t−1,π(s)) + Po

t−1,π(s)(P (s
′|s, a)− P o(s′|s, a)))π(a|s)|

≤
∑
s

|Pt−1,π(s)− Po
t−1,π(s)|

∑
a

π(a|s)
∑
s′

P (s′|s, a)

+
∑
s

Po
t−1,π(s)

∑
a

π(a|s)
∑
s′

|P (s′|s, a)− P o(s′|s, a)|

=
∥∥Pt−1,π − Po

t−1,π

∥∥
1
+
∑
s

Po
t−1,π(s)

∑
a

π(a|s)
∑
s′

|P (s′|s, a)− P o(s′|s, a)|

≤
∥∥Pt−1,π − Po

t−1,π

∥∥
1
+ 2ρ′r,

where the last inequality holds since DTV(Ps,a, P
o
s,a) = (1/2)

∥∥Ps,a − P o
s,a

∥∥
1
≤ ρ′r for all (s, a) ∈

S × A. By recursion, we have
∥∥Pt,π − Po

t,π

∥∥
1
≤ 2ρ′rt. Recall from algebra that

∑∞
t=0 γ

tt =

γ/(1− γ)2. Combining this with Eq. (D.7) completes the proof.

Now we state a result which extends the performance difference lemma [106, Lemma 1.16]

notion for robust MDPs.

Lemma 36 (Robust Performance Difference Lemma). For any π′, π policies, we get

V rob
π − V rob

π′ ≤
1

1− γ
· max
P :D(dπP ,dπPo)≤ρr

Es∼dπP

[∑
a

(π(a|s)− π′(a|s))Qrob
π′ (s, a)

]
.

Proof. We first define few useful notations for this proof. The robust model P rob,π for every π is

as follows:

P rob,π
s,a = argmin

Ps,a∈Ps,a

P⊤
s,aV

rob
π , (s, a) ∈ S ×A.

We call V P
π as the value function for policy π under the model P . Now we can write V rob

π′ =

V P rob,π′

π′ .

Fix s0 ∼ µ. For any π′, π policies, we have

V rob
π (s0)− V rob

π′ (s0)
(a)

≤ V P rob,π′

π (s0)− V rob
π′ (s0)

201

(b)
= V P rob,π′

π (s0)− V P rob,π′

π′ (s0)

(c)
=

1

1− γ
E

s∼dπ,P rob,π′
s0

[∑
a

(π(a|s)− π′(a|s))Qrob
π′ (s, a)

]
,

where (a) follows since by definition of V rob
π (s0) we have V rob

π (s0) ≤ V P rob,π′

π (s0), and (b) follows

from definition of P rob,π′ yielding V rob
π′ (s0) = V P rob,π′

π′ (s0). Observe P rob,π′ ∈ P . Now taking

expectation on s0 ∼ µ with Lemma 35 completes the proof of this result and it only remains to

show (c).

For (c), first denote Tπ,π′(s) = (st, at)t≥0 trajectory generated from rolling policy π from the

initial state s0 under the robust model P rob,π′ . Now,

V P rob,π′

π (s0)− V P rob,π′

π′ (s0) = ETπ,π′ (s)[
∑
t

γtr(st, at)]− V P rob,π′

π′ (s0)

(d)
= ETπ,π′ (s)[

∑
t

γt(r(st, at) + γV P rob,π′

π′ (st+1)− V P rob,π′

π′ (st)]

(e)
= ETπ,π′ (s)[

∑
t

γt(Qrob
π′ (st, at)− V rob

π′ (st)]

(f)
=

1

1− γ
E

s′∼dπ
′,P rob,π′

s0

∑
a′

π(a′|s′)(Qrob
π′ (s′, a′))

− 1

1− γ
E

s′∼dπ
′,P rob,π′

s0

∑
a′

π′(a′|s′)(Qrob
π′ (s′, a′))

=
1

1− γ
E

s′∼dπ
′,P rob,π′

s0

[∑
a′

(π(a′|s′)− π′(a′|s′))(Qrob
π′ (s′, a′))

]
,

where (d) follows by recursion, (e) follows since Qrob
π′ (s, a) = r(s, a) + γ(P rob,π′

s,a)⊤V P rob,π′

π′ , and

(f) from V rob
π′ (s) =

∑
a π

′(a|s)Qrob
π′ (s, a). This finally proves (c).

Proof of Theorem 14. We start by Lemma 36 with π′ = πdrbc and π = πe. We get

V rob
πe
− V rob

π′ ≤
1

1− γ
max

P :D(dπeP ,dπePo)≤ρr
Es∼dπeP

[∑
a

(πe(a|s)− π′(a|s))Qrob
π′ (s, a)

]
(a)

≤ 1

1− γ
max

P :D(dπeP ,dπePo)≤ρr
Es∼dπeP

[
∥πe(·|s)− π′(·|s)∥1

∥∥Qrob
π′ (s, ·)

∥∥
∞

]

202

(b)

≤ 2

(1− γ)2
max

P :D(dπeP ,dπePo)≤ρr
Es∼dπeP

[√
DKL(π′(·|s)∥πe(·|s))

]
(c)

≤ 2

(1− γ)2
√

max
P :D(dπeP ,dπePo)≤ρr

Es∼dπeP
[DKL(π′(·|s)∥πe(·|s))],

where (a) follows from Holder’s inequality, (b) from Pinsker’s inequality [180] and the fact that∥∥Qrob
π′ (s, ·)

∥∥
∞ ≤ 1/(1 − γ) for any π′, and (c) from Jensen’s inequality [180]. The proof of this

result is complete since Ldrbc(πdrbc, ρr) = εdrbc(ρr).

D.3.3 Proof of Theorem 15

Proof. We consider a class of deterministic MDPs (S,A, P o, γ, r) shown in Fig.D.2 to be the

nominal model for any γ ∈ (0.01, 1). We fix an initial state s0 = 0. The state space is S =

{0, 1} and action space is A = {al, ar}, where al denotes ‘move left’ and ar denotes ‘move right’

action. Reward for state 1 and action ar pair is r(1, ar) = 1, for state 0 and action ar pair is

r(0, ar) = −100γ/99, and the reward is 0 for all other (s, a). We note that any positive scalar

multiple of this reward function can be considered for this class of MDPs. Transition function

P o is deterministic, as indicated by the arrows. We consider deterministic model P ′, as shown in

Fig.D.3, as the perturbed model of P o. Thus the uncertainty set P is {P o, P ′}.

10

$%, −100*/99

$(, 0 $%, 1$(, 0

Figure D.2: Transitions and rewards corre-
sponding to the nominal model P o. The states
{0, 1} are given inside the circles, and the ac-
tions {al, ar} and associated rewards are given
on the corresponding transitions.

10

$%, −100*/99

$(, 0

$%, 1

$(, 0

Figure D.3: Transitions and rewards corre-
sponding to the model P ′.

We denote state-distribution of model P o for policy π starting at fixed state s0 as dπs0,P o . Simi-

larly for model P ′ it is dπs0,P ′ .

203

It is easy to see that taking action ar in any state is the non-robust optimal policy πo corre-

sponding to the nominal model P o. This is obvious if for state s = 1. For s = 0, notice that taking

action al will give a value zero and taking action ar will give a value γ
1−γ
− 100γ

99
. Since γ > 0.01,

taking action ar will give a positive value and hence is optimal. So, we get

Vπo,P o(0) =
γ

1− γ
− 100γ

99
.

Let ε > 0 be arbitrarily small. Let us consider the following expert policy

πe(·|s = 0) = πe(·|s = 1) =

ε/2 if action al,

1− ε/2 if action ar.

Recall Eq. (5.2). For simplicity with action space size 2, since KL loss function is an upper

bound on 0-1 loss, we consider 0-1 loss for solving the optimization of all imitation learning

algorithms in this theorem proof. It is easy to see that Lil(π
o) = ε and for all other policies π

(including stochastic) we have Lil(π) > ε. Thus, the imitation learning algorithm selects πil = πo

as its candidate.

We will now compute the optimal non-robust value from state 0 of model P ′. Since it is enough

to consider deterministic policies [6], we have

max
π

Vπ,P ′(0) = max{V(π(0)=ar,π(1)=ar),P ′(0), V(π(0)=al,π(1)=al),P ′(0),

V(π(0)=ar,π(1)=al),P ′(0), V(π(0)=al,π(1)=ar),P ′(0)}
(a)
= max{ − γ

99(1− γ2)
, 0, − 100γ

99(1− γ2)
, 0} = 0, (D.8)

where (a) follows by using the Bellman recursive equations [6]:

Vπo,P ′(0) = −100γ

99
+γ+γ2Vπo,P ′(0) and V(π(0)=ar,π(1)=al),P ′(0) = −100γ

99
+γ2V(π(0)=ar,π(1)=al),P ′(0).

204

We finally have

max
π

Vπ,P ′(0)− Vπil,P ′(0) =
γ

99(1− γ2)
≥ γ

198(1− γ)
,

where the inequality follows since 1 + γ ≤ 2. Thus, setting c = γ2/198 and γo = 0.01, completes

first part of the theorem.

Now we prove the second part of the theorem. We now consider s0 = 1 and expert policy πe

as taking action al in state 0 and ar in state 1. Recall the arbitrarily small ε > 0 from the theorem

statement.

Recalling the definition of state-distribution, dπs0,P (s) = (1− γ)
∑∞

t=0 γ
tPrt(s | π, s0, P), it is

easy to see that dπe
s0,P o(s = 0) = 0 = 1− dπe

s0,P o(s = 1) and dπe

s0,P ′(s = 0) = γ = 1− dπe

s0,P ′(s = 1).

From BC algorithm Eq. (5.1), we have πbc = minπ π(al|s = 1). This implies πbc taking

action ar in both states yields zero BC loss. Similarly, from DR-BC algorithm Eq. (5.6), we have

πdrbc = minπ max{π(al|s = 1), γπ(ar|s = 0) + (1− γ)π(al|s = 1)}. This implies taking

πdrbc(al|s = 0) = 1, πdrbc(·|s = 1) =

ε if action al,

1− ε if action ar,

yields DR-BC loss Eq. (5.6) as ε.

Following similar steps as in Eq. (D.8), the robust value of πbc at state s0 = 1 is given by

V rob
πbc

(1) = min{Vπbc,P o(0), Vπbc,P ′(0)} = 1− γ2/(99(1− γ2)),

the robust value of πdrbc at state s0 = 1 is given by

V rob
πdrbc

(1) = min{Vπdrbc,P o(0), Vπdrbc,P ′(0)} = min{ 1− ε
1− (1− ε)γ

, 1− ε} = 1− ε,

205

and the robust value of πe at state s0 = 1 is given by

V rob
πe

(1) = min{Vπe,P o(0), Vπe,P ′(0)} = min{ 1

1− γ
, 1} = 1.

We finally have V rob
πe

(1)− V rob
πdrbc

(1) ≤ ε/(1− γ) and

V rob
πe

(1)− V rob
πbc

(1) =
γ2

99(1− γ2)
≥ γ2

198(1− γ)
,

where the inequality follows since 1 + γ ≤ 2. Thus, setting c = γ2/198 and γo = 0.01, completes

the proof of this theorem.

D.4 Experiment Details

In this section, we provide more details of our DR-BC algorithm. We include the exact deriva-

tion of our empirical algorithm. We also present all the simulation configurations, including dataset

generation, model hyperparameters, experiment equipment, etc. We provide our code in an anony-

mous GitHub repository: https://github.com/ferocious-cheetah/DRBC.

We would like to mention the software and hardware used in simulations. We used three

Lambda Stack computers with the the operating system Ubuntu 18.04.6 LTS. The hardware con-

figurations include: processor is AMD Threadripper 3960X (24 Cores, 3.80 GHz); GPUs are 2x

RTX 2080 Ti; memory is 128GB RAM; Operating System Drive is 1 TB SSD (NVMe); and Data

Drive is 4TB HDD. The software are but not limited to PyTorch, Caffe, CUDA, cuDNN, Numpy,

Matplotlib. A detailed list of software dependencies will be included in our GitHub repository.

D.4.1 DR-BC Practical Algorithm

The practical version of our DR-BC algorithm can be found in Algorithm 8. We now explain

how we derived the practical algorithm.

(1) Specializing Algorithm 4 to total variation uncertainty set. We rely on the Lemma 33.

(2) Solving the optimization problem in Equation D.1. The following proposition shows that

with careful analysis, we can further reduce the total variation dual formulation to a scalar opti-

206

https://github.com/ferocious-cheetah/DRBC

Algorithm 8 DR-BC Practical Algorithm With Total Variation Uncertainty Set

1: Input: Expert demonstration data De = {(si, ai)Ni=1}, radius of robustness ρ, minibatch size
NB.

2: Initialize: Policy (actor) neural network πθ with random parameters θ.
3: for k = 1, . . . , K do
4: Sample a minibatch B of size NB from De.
5: Calculate the empirical DRO loss:

Ldrbc(πθ, ρ) = inf
η∈[0,(1+ρ)L]

{(
1

NB

∑
(s,a)∈B

(∥a− πθ(s)∥22−η)+
)
+
(

sup
(s,a)∈B

∥πe(s)− πθ(s)∥22−η
)
+
·ρ+η

}
.

6: θ ← argminθ Ldrbc(πθ, ρ).
7: end for
8: Output policy: πθ

mization over a finite interval.

Proposition 15. Suppose that we have deterministic policies πe, π and a bounded action spaceA.

Let the loss l be chosen as the squared L2 loss:

l(π(s), πe(s)) = ∥π(s)− πe(s)∥22 .

Further, denote L = sups∈S:dπe (s)>0 ∥π(s)− πe(s)∥
2
2. Then the dual reformulation in Lemma 33

can be further rewritten as

Ldrbc(π, ρ) = inf
η∈[0,(1+ρ)L]

{(
1

NB

∑
(s,a)∈B

(∥a− πθ(s)∥22−η)+
)
+
(

sup
s∈S:dπe (s)>0

∥πe(s)− πθ(s)∥22−η
)
+
·ρ+η

}
.

(D.9)

Proof. Denote the function

h(η) = Es∼dπe [(∥π(s)− πe(s)∥22 − η)+] + (L− η)+ · ρ+ η.

207

First, assuming η < 0, we have

h(η) = Es∼dπe [(∥π(s)− πe(s)∥22 − η)] + (L− η) · ρ+ η

= Es∼dπe [(∥π(s)− πe(s)∥22)] + (L− η) · ρ.

Now, assuming η = 0, we then have

h(0) = Es∼dπe [(∥π(s)− πe(s)∥22)] + Lρ.

Lastly, we need to find an upper bound. Consider the following:

h((1+ρ)L) = Es∼dπe [(∥π(s)− πe(s)∥22−(1+ρ)L)+]+(L−(1+ρ)L)+ ·ρ+(1+ρ)L = (1+ρ)L.

It is clear that h(0) ≤ h(η), ∀η < 0, and h(0) ≤ h((1 + ρ)L). Since h is convex in the dual

variable η, it is sufficient to consider η ∈ [0, (1 + ρ)L] for the above optimization problem. Note

that since the action space A is assumed to be bounded, we have L < ∞. Lastly, approximating

the expectation using sample mean over minibatches gives us the result.

Lemma 33 and Proposition 15 greatly simplify the optimization problem in the Equation 5.4

of Algorithm 4 into its practical form (Step 5 in Algorithm 8). Now we focus on describing our

practical algorithm (Algorithm 8). For all the hyperparameters mentioned in the description below,

we provide detailed records in the next section.

1. At initialization, we need an expert dataset De of size N , some radius of our uncertainty

set ρ, and a prescribed minibatch size. All of the three are treated as hyperparameters by

us. We also need to initialize a neural network πθ which is our policy (actor) with random

parameters θ.

2. In each iteration k, we need to minimize a single-variable η scalar function where the variable

η only takes values in a finite real interval. Note that all OpenAI Gym MuJoCo environments

208

have bounded action space. This suggests that the L can be further replaced by squared L2

distance between the upper bound and lower bound on the actions. Such specifications can be

found on their website [71]. We use the minimization solver from the powerful optimization

libraries in SciPy [88]. In particular, we use the SLSQP method [184] with the bounds as

prescribed in Proposition 15. Note that in Step 5 of Algorithm 8, we estimate the supremum

over the whole state space S using the supremum over the current minibatch.

3. Our policy (actor) is optimized based on the Ldrbc loss using ADAM [175] in Step 6 with

the learning rate l. We also provide the option to decay the learning rate. This creates three

new hyperparameters: a boolean flag lr_decay signaling to decay or not, decay rate of the

learning rate scheduler γ and decay frequency κ.

4. In all our simulations, we keep the maximum train steps K (Step 4 in Algorithm 8) to be two

millions.

D.4.2 DR-BC Model Details

Now we specify all the hyperparameters used in our simulations in Table D.1. Note that “lr” is

short for learning rate and the robust parameter ρ only applies to the DR-BC algorithm. We want

to point out that the size of the expert dataset is determined by the difficulty and complexity of an

environment. Hopper-v3 is the easiest among the three. With only 2000 expert samples, which

is roughly two expert trajectories, we are able to show the mitigation of covariate shift and the

robustness under model perturbations in DR-BC. The hyperparameters included above are picked

according to the results of extensive grid searches over the hyperparameter space.

D.4.3 Expert Demonstration Generation

We select the state-of-art, non-robust, online RL algorithm TD3 [110] to generate the expert

demonstrations. To further facilitate reproducibility, we choose to use the pre-trained policies

from the RL Baselines3 Zoo repositories [144] which is well-regarded in the reinforcement learn-

ing research community. The data generation utilities are also included in our repository (see

Section D.4.2 for the link).

209

Environment Expert dateset size Minibatch size Policy πθ Activation Max train steps
N NB hidden layers function K

Hopper-v3 2000 256 (256, 256) Tanh 2000000
HalfCheetah-v3 3000 256 (256, 256) Tanh 2000000
Walker2d-v3 6000 256 (256, 256) Tanh 2000000

Environment Robustness parameter Learning rate (lr) lr decay lr decay rate lr decay freq.
ρ l lr_decay γ κ

Hopper-v3 0.2 1e-4 True 0.9 10000
HalfCheetah-v3 0.3 1e-5 True 0.9 10000
Walker2d-v3 0.5 1e-4 True 0.95 10000

Table D.1: Hyperparameters used in training the BC and DR-BC algorithms.

D.4.4 More Simulation Results

In this section, we continue the discussion we have in Section 5.4. Also, we include all

validation results here. We perturb Hopper-v3 by changing the model parameter ‘gravity’,

‘thigh_joint_stiffness’, ‘joint_damping’, and ‘joint_frictionloss’. Fig. D.4 shows that DR-BC is

tenacious under model perturbations. For example, in the bottom left figure, when the ‘thigh_joint_stiffness’

parameter is positive and increasing, a joint spring is created in the thigh of hopper and becomes

stiffer. A non-robust policy such as BC cannot withstand such mismatch between the training and

testing environments. Meanwhile, our DR-BC agent refuses to drop in performance.

In Fig. D.5, we perturb HalfCheetah-v3 by changing: the model parameter ‘gravity’, the

parameter ‘joint_stiffness’ of all three joints in the back of the cheetah, the parameter ‘joint_damping’

of all six joints, and finally the parameter ‘joint_frictionloss’ of all six joints. BC performance

precipitates facing severe perturbations in all joints at once. Meanwhile, DR-BC refuses to lose

performance in wide ranges of perturbations.

We continue from the discussion in Section 5.4. In Fig. D.6, we preturb Walker2d-v3 by

changing: ‘gravity’, ‘actuator_ctrlrange’ of all joints, ‘foot_joint_damping’ of both foot joints,

‘leg_joint_stiffness’ of both leg joints, and ‘foot_joint_stiffness’ of both foot joints. We can see

that DR-BC is exceptionally robust when ‘joint_stiffness’ is perturbed in both foot joints. For such

210

wide range of perturbation, the performance of DR-BC only drops 500 in episodic reward averaged

over 10 differently seeded games.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Percentage change in 'gravity'

1000

1500

2000

2500

3000

Av
g.

 e
pi

so
di

c
re

wa
rd

 in
 1

0
ga

m
es

DR-BC
BC

0 20 40 60 80 100 120 140
Percentage change in 'joint_damping'

1500

2000

2500

3000

DR-BC
BC

0 20 40 60 80 100 120
'thigh_joint_stiffness' values (default=0.0)

1500

2000

2500

3000

DR-BC
BC

0 1 2 3 4 5 6
'joint_frictionloss' values (default=0.0)

2600

2700

2800

2900

3000

3100

3200

3300

DR-BC
BC

Figure D.4: Hopper-v3 perturbation results. Average episodic reward on 10 differently
seeded episodes. From left to right, the perturbations are in: ‘gravity’, ‘joint_damping’,
‘thigh_joint_stiffness’, and ‘joint_frictionloss’ of all joints.

D.4.5 Details of Environment Perturbations

We include all the model parameters we used and their corresponding nominal values in Ta-

ble D.2. The model parameter names should be self-explanatory. For example, foot_joint_stiffness

means the parameter that controls the stiffness on the joint on the foot. Note that the parameter

actuator_ctrlrange is actually a tuple in the form of (−x, x). Hence, we describe them as the

211

0 10 20 30 40 50
Percentage change in back 'joint_stiffness'

0

1000

2000

3000

4000

5000

6000

7000
Av

g.
 e

pi
so

di
c

re
wa

rd
 in

 1
0

ga
m

es DR-BC
BC

0 10 20 30 40 50 60 70 80
Percentage change in 'joint_damping'

0

2000

4000

6000

8000 DR-BC
BC

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
'joint_frictionloss' values (default=0.0)

0

2000

4000

6000

8000

Av
g.

 e
pi

so
di

c
re

wa
rd

 in
 1

0
ga

m
es DR-BC

BC

0 5 10 15 20 25 30 35 40
Percentage change in 'gravity'

1000

2000

3000

4000

5000

6000

7000 DR-BC
BC

Figure D.5: HalfCheetah-v3 perturbation results. Average episodic reward on 10 differ-
ently seeded episodes. From left to right and top to bottom, the perturbations are in: back
‘joint_stiffness’, ‘joint_damping’ of all joints, ‘joint_frictionloss’ of all joints, and the model pa-
rameter ‘gravity’.

range of actuator (controller). We provide all the source files containing the implementations of

the perturbed environments through our GitHub repository. They are readily usable if one wants to

use them to quantify the robustness of their policies. For more information regarding these model

parameters or any other information regarding these environments, including those not covered in

this paper, please refer to the hopper.xml, halfcheetah.xml, and walker2d.xml files in the environ-

ment assets of OpenAI Gym [71] MuJoCo which is accessible at OpenAI Gym repository MuJoCo

section.

212

https://github.com/openai/gym/tree/master/gym/envs/mujoco
https://github.com/openai/gym/tree/master/gym/envs/mujoco

0 2 4 6 8 10 12 14
Percentage change in 'gravity'

1000

2000

3000

4000

5000

Av
g.

 e
pi

so
di

c
re

wa
rd

 in
 1

0
ga

m
es DR-BC

BC

0.95 0.96 0.97 0.98 0.99 1.00
Bound on actuator range (default=1.0)

1000

2000

3000

4000

5000 DR-BC
BC

0 20 40 60 80 100 120 140
Percentage change in 'foot_joint_damping'

1500

2000

2500

3000

3500

4000

4500

5000

DR-BC
BC

0 10 20 30 40 50
'leg_joint_stiffness' values (default=0.0)

1000

2000

3000

4000

5000

Av
g.

 e
pi

so
di

c
re

wa
rd

 in
 1

0
ga

m
es DR-BC

BC

0 5 10 15 20 25
'foot_joint_stiffness' values (default=0.0)

1000

1500

2000

2500

3000

3500

4000

4500 DR-BC
BC

Figure D.6: Walker2d-v3 perturbation results. Average episodic reward on 10 differently
seeded episodes. From left to right and top to bottom, the perturbations are in: ‘gravity’, ‘ac-
tuator_ctrlrange’ of all joints, ‘foot_joint_damping’ of both foot joints, ‘leg_joint_stiffness’ of
both leg joints, and ‘foot_joint_stiffness’ of both foot joints.

213

Environment Model parameter Nominal range/value

Hopper-v3 gravity −9.81
all joint_frictionloss 0

all actuator_ctrlrange [−1, 1]
foot_joint_stiffness 0
leg_joint_stiffness 0

thigh_joint_stiffness 0
all joint_damping 1.0

HalfCheetah-v3 gravity −9.81
all joint_frictionloss 0

front actuator_ctrlrange [−1, 1]
back actuator_ctrlrange [−1, 1]

front joint_stiffness = (fthigh_joint_stiffness,
fshin_joint_stiffness, ffoot_joint_stiffness) (180, 120, 60)

back joint_stiffness = (bthigh_joint_stiffness,
bshin_joint_stiffness, bfoot_joint_stiffness) (240, 180, 120)

front joint_damping = (fthigh_joint_damping,
fshin_joint_damping, ffoot_joint_damping) (4.5, 3.0, 1.5)

back joint_damping = (bthigh_joint_damping,
bshin_joint_damping, bfoot_joint_damping) (6.0, 4.5, 3.0)

Walker2d-v3 gravity −9.81
all joint_frictionloss 0

left/right thigh_actuator_ctrlrange [−1, 1]
left/right leg_actuator_ctrlrange [−1, 1]
left/right foot_actuator_ctrlrange [−1, 1]

left/right thigh_joint_stiffness 0
left/right leg_joint_stiffness 0
left/right foot_joint_stiffness 0

left/right thigh_joint_damping 0.1
left/right leg_joint_damping 0.1
left/right foot_joint_damping 0.1

Table D.2: Model parameters of Hopper-v3, HalfCheetah-v3, and Walker2d-v3.

214

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Robust Reinforcement Learning using Least Squares Policy Iteration with Provable Performance Guarantees
	Introduction
	Related Work

	Background and Problem Formulation
	Robust Least Squares Policy Evaluation
	Robust TD() Operator and the Challenges
	Robust Least Squares Policy Evaluation (RLSPE()) Algorithm

	Robust Least Squares Policy Iteration
	Experiments
	Conclusion and Future Work

	Sample Complexity of Robust Reinforcement Learning with a Generative Model
	Introduction
	Related Work

	Preliminaries: Robust Markov Decision Process
	Algorithm and Sample Complexity
	Robust Empirical Value Iteration (REVI) Algorithm
	Sample Complexity

	Why Do We Need Robust Policies?
	Sample Complexity Analysis
	Total variation uncertainty set
	Chi-square uncertainty set

	Experiments
	Conclusion and Future Work

	Robust Reinforcement Learning using Offline Data
	Introduction
	Preliminaries
	Offline Robust Reinforcement Learning
	Robust Fitted Q-Iteration: Algorithm and Main Results
	Dual Reformulation of Robust Bellman Operator
	Approximately Solving the Dual Optimization using Empirical Risk Minimization
	Robust Fitted Q-iteration
	Proof Sketch

	Experiments
	Conclusion

	Improving Behavioral Cloning with Distributionally Robust Optimization
	Introduction
	Imitation Learning
	Problem Formulation
	Covariate Shift Issue
	Distributionally Robust Behavioral Cloning

	Robust Imitation Learning
	Problem Formulation
	Robust Against Model Mismatch
	Need for Robust Imitation Learning

	Experiments
	Why Is BC the Only Fair Comparison?
	Fighting the Covariate Shift
	Test For Robustness

	Conclusion

	Offline Reinforcement Learning using Distributionally Robust Reinforcement Learning
	Introduction
	Problem Formulation and Preliminaries
	Model-Pessimistic Q-Iteration (MPQI)
	MPQI Algorithm
	Results and Proofs

	Linear-MDP Model-Pessimistic Q-Iteration (LMMPQI)
	LMMPQI Algorithm
	Results and Proofs

	Conclusion

	Conclusion
	REFERENCES
	APPENDIX Appendix for Chapter 2
	Proofs of the Results in Section 2.3.1
	Proof of Proposition 1
	Proof of Proposition 2
	Derivation of (2.7)
	Derivation of (2.8)

	Proofs of the Results in Section 2.3.2
	Proof of Proposition 3
	Proof of Theorem 1
	Derivation of (2.13)
	Proof of Theorem 2

	Proof of the Results in Section 2.4
	Experiments

	APPENDIX Appendix for Chapter 3
	Useful Technical Results
	Proof of the Theorems
	Concentration Results
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	APPENDIX Appendix for Chapter 4
	Useful Technical Results
	Proof of the Proposition 6
	Proof of Theorem 8
	Related Works
	Experiment Details
	RFQI Practical Algorithm
	More Experimental Results

	APPENDIX Appendix for Chapter 5
	Useful Technical Results
	Proof of Results in sec:imitation-learning
	Proof of thm:original-il-suboptimality
	Proof of prop:informal-dual-reformulation
	Proof of thm:drbc-subopt-cov-shift
	Proof of thm:drbc-subopt-cov-shift-tv
	Proof of thm:covariate-shift-recovery

	Proof of Results in sec:robust-imitation-learning
	Proof of prop:informal-dual-reformulation-model-perturb
	Proof of thm:drbc-subopt-model-perturb
	Proof of thm:non-robust-policy-suboptimality

	Experiment Details
	DR-BC Practical Algorithm
	DR-BC Model Details
	Expert Demonstration Generation
	More Simulation Results
	Details of Environment Perturbations

