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ABSTRACT

We determine defining equations for the set of concise tensors of minimal border rank in
C"®@C™®C™ when m = 5 and the set of concise minimal border rank 1,-generic tensors when
m = 5, 6. We solve the classical problem in algebraic complexity theory of classifying minimal
border rank tensors in the special case m = 5. Our proofs utilize two recent developments:
111-equations defined by Buczyriska—Buczyiiski and results of Jelisiejew—Sivic on the variety
of commuting matrices. We introduce a new algebraic invariant of a concise tensor, its 111-
algebra, and exploit it to give a strengthening of Friedland’s normal form for 1-degenerate
tensors satisfying Strassen’s equations. We use the 111-algebra to characterize wild minimal

border rank tensors and classify them in C° @ C° @ C°.
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1. INTRODUCTION*

In today’s fast-paced digital world, matrix multiplications play a vital role in the efficient
functioning of the devices and services we rely on every day, from encrypting sensitive infor-
mation to displaying high-quality images. Therefore, being able to multiply matrices faster
would be beneficial for everyone, from an energy perspective, device performance perspective,
and in many other ways. If we multiply two 2 x 2 matrices the usual way then we need to do
2% = 8 multiplications of numbers, and similarly if we multiply two n x n matrices we use
n® multiplications. In 1969 V. Strassen showed that the usual way of multiplying matrices is
not optimal and gave an algorithm to multiply two 2 X 2 matrices using only 7 multiplications
instead of 8 [1] and also showed that two n x n matrices can be multiplied using O(n?%!)
multiplications. The exponent of matrix multiplication is the smallest constant w such that two
n X n matrices can be multiplied by performing O(n**¢) arithmetic operations for every € > 0.
It is known that 2 < w < 2.374 and it is conjectured that w = 2. The latest upper bound for the
exponent of matrix multiplication is obtained through a tensor, called Coppersmith-Winograd
tensor, and that tensor has interesting geometric properties. In particular it is of minimal bor-
der rank. In this thesis we studied the variety of minimal border rank tensors and found their

characterizing equations in small dimensions.

This research is also motivated by algebraic complexity theory and the study of secant
varieties in algebraic geometry. It takes first step towards overcoming complexity lower bound
barriers first identified in [2, 3]. It also provides new “minimal cost” tensors for Strassen’s
laser method to upper bound the exponent of the matrix multiplication that are not known to
be subject to the barriers identified in [4] and later refined in numerous works, in particular [5]

which shows there are barriers for minimal border rank binding tensors (defined below), as our

* Reprinted with permission from “Concise tensors of minimal border rank” by Joachim Jelisiejew, Joseph
M. Landsberg, and Arpan Pal, 2023. Math. Ann., https://doi.org/10.1007/s00208-023-02569-y, Copyright [2023]
by the Authors, under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.
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new tensors are not binding.

LetT € C"@C"®C™ = A® B C be atensor. One says T has rank one if T' = a®@b®c
for some non-zero vectors a € A, b € B, and ¢ € C. The rank of T, denoted R(T), is the
smallest r such that 7" may be written as a sum of r rank one tensors. The border rank of
T, denoted R(T'), is the smallest r such that 7" may be written as a limit of rank r tensors. In
geometric language, the border rank is the smallest r such that 7" belongs to the r-th secant

variety of the Segre variety, o, (Seg(P™~! x P! x Pm~1)) C P(C™ @ C™ @ C™).

Informally, a tensor 7" is concise if it cannot be expressed as a tensor in a smaller ambient
space. (See §1.3 for precise definition.) A concise tensor 7' € C" @ C™ ® C™ must have border

rank at least m, and if the border rank equals m, one says that 7" has minimal border rank.

As stated in [6], tensors of minimal border rank are important for algebraic complexity
theory as they are “an important building stone in the construction of fast matrix multiplication
algorithms”. More precisely, tensors of minimal border rank have produced the best upper
bound on the exponent of matrix multiplication [7, 8, 9, 10, 11] via Strassen’s laser method
[12]. Their investigation also has a long history in classical algebraic geometry as the study of

secant varieties of Segre varieties.

Problem 15.2 of [6] asks to classify concise tensors of minimal border rank. This is now
understood to be an extremely difficult question. The difficulty manifests itself in two substan-

tially different ways:

* Lack of structure. An important class of tensors (1-degenerate, see §1.3) had no or few

known structural properties.

* Complicated geometry. Under various genericity hypotheses that enable one to avoid
the previous difficulty, the classification problem reduces to hard problems in algebraic
geometry: for example the classification of minimal border rank binding tensors (see
§1.3) is equivalent to classifying smoothable zero-dimensional schemes in affine space
[13, §5.6.2], a longstanding and generally viewed as impossible problem in algebraic

geometry, which is however solved for m < 6 [14, 15].

The main contributions of this research are as follows:



(1) we give equations for the set of concise minimal border rank tensors for m < 5 and

classify them

(i1) we discuss and consolidate the theory of minimal border rank 1,-generic tensors, extend-

ing their characterization in terms of equations to m < 6

(iii)) we introduce a new structure associated to a tensor, its ///-algebra, and investigate new

invariants of minimal border rank tensors coming from the 111-algebra.

Our contributions allow one to streamline proofs of earlier results. This results from the
power of the 111-equations, and the utilization of the ADHM correspondence discussed below.
While the second leads to much shorter proofs and enables one to avoid using the classification
results of [16, 17], there is a price to be paid as the language and machinery of modules and
the Quot scheme need to be introduced. This language will be essential in future work, as
it provides the only proposed path to overcome the lower bound barriers of [2, 3], namely
deformation theory. We emphasize that this work is the first direct use of deformation theory

in the study of tensors. Existing results from deformation theory were previously used in [18].

Contribution (iii) addresses the lack of structure and motivates many new open questions,

see §1.5.

1.1 Definitions, Notations, and Background
1.1.1 Tensors

LetT € C"@C"®C™ = A® B C be atensor. One says T has rank one if T' = a®@b®c
for some non-zero vectors a € A, b € B, and ¢ € C. The rank of T, denoted R(T), is the
smallest r such that 7" may be written as a sum of r rank one tensors. The border rank of
T, denoted R(T'), is the smallest r such that 7" may be written as a limit of rank r tensors. In
geometric language, the border rank is the smallest r such that 7" belongs to the r-th secant
variety of the Segre variety, o,.(Seg(P™~! x Pm~1 x P 1)) C P(C™ @ C™ @ C™), see §1.1.2

for more on Secant varieties and their connection to this problem.

Given T € A ® B ® C, we can consider it as a linear map T : C* — A ® B. We let

T(C*) C A® B denote the image of 7 and similarly for 74 and Tz. Such a tensor is called



A — concise if the map Ty : A* — B ® C' is injective, i.e., it requires all basis vectors in A to

write down 7T in any basis, and 7" is called concise if itis A, B, and C concise.

Remark 1.1. One thing to note here is that if T' € C" @ C™ @ C™ is a concise tensor then
the minimal possible rank and border rank for T' is m. We’ll call such a concise tensor T' of

manimal rank or of minimal border rank if it is of rank m or of border rank m respectively.

Atensor T e C*C"®@C™ = A® B® Ciscalled 14 — genericif T(A*) C B® C
contains an element of full rank, i.e., of rank m. When a = m then 7' is called 1 — generic
if T"is 14, 15 and 1o-generic. A tensor 7' € C" @ C™ @ C™ is called 1, — generic if it is
at least one of 14, 15 or 1¢o-generic, and it is called binding if T' is at least two of 14, 15 and
1o-generic. We say 1" is 1 — degenerate if T is not 1,-generic. Note that if 7" is 14-generic

then it is both B and C concise, in particular a binding tensor is concise.

Fix a concise tensor 7' € A ® B® C = C™ ® C™ @ C™ which is 14-generic. Thus
there exist « € A* such that T4(«) € B ® C' = End(B*, () is of full rank. In other words

Ty(a) : B* — C'is an invertible linear map. Consider
Eo(T) := Ta(A")Ta(a)! CEnd(C) = C* ® C.
This space is 7"(A*) where 7" € A ® C* ® C' is an isomorphic tensor to 7', obtained by using

the isomorphism Idy ® (T(a) )t ® Idc on T.

Example 1.2 (R(T') > R(T)). Consider the tensor T € C* @ C* @ C%L T = (e; Q@ €1 @ €3) +

(e1 ®er®er) + (e ®e ®eq).

It is not hard to show that there does not exist 2 X 2 matrices A and B of rank one such

a b

that a,be C} = {aA+pBB|«,B € C}. That implies R(T) > 2 and hence
b 0

R(T) = 3.

Consider the tensor T(€) = £[(e1+ee2)® (e1+€e2) R (e1+€e2) —e1®erQe). R(T'(€)) = 2
andT(e) - T ase — 0. Thus R(T) =2 < 3 =R(T).

Proposition 1.3. 7' is of minimal rank if and only if £,(T) is simultaneously diagonalizable.

4



Proof. First note that since 7" and 7" are isomorphic tensors, so 7" is of minimal rank if and

only if 7" is of minimal border rank.

Let £,(T) C End(C) be simultaneously diagonalizable. Since 7" is concise so &, (7))
is an m dimensional subspace of End(C'), and since we assumed &,(7") is simultaneously
diagonalizable so there exists a basis of C' such that each matrix of £,(7") is a diagonal matrix.
Let this basis of C' be denoted by c;,--- ,c,, and let cf, - - - |, ¢, denote its dual basis. Then for

any basis a; - - - , a,, of A notice that

T'=a1® (> A€ @¢) + +an® ZAm“@@cJ

J=1

After rearranging the summands of this tensor we can write it as

m m
= O Mia) @@+ 4 (O A i) ® ¢y @ .
j=1 j=1
This tensor decomposition of 7" has m rank one tensor summands and so shows 7” is a minimal

rank tensor

On the other hand let 7" be a rank m tensor and let 7' = > a; ® 7; ® ¢; be a rank

j=1
decomposition of 7', where a; € A, v; € C*, and ¢; € C. Now since 7' is a concise tensor and
dim(A) = dim(C*) = dim(C') = m so q;’s, ;’s, and ¢;’s will form basis of A, C*, and C'
respectively. After a change of basis in C* we can replace 7; by ¢}, where ¢} denotes the dual
basis of ¢;. Note that this will induce a change of basis in the A factor of 7". To be specific, let
M = (M; ;) mxm be an invertible m x m matrix such that ) . M; ;v; = ciforl <j<m.If

M~ = (M} )mxm and a; = >, M{ ;a; for 1 < j < m then ajs form a basis of A and

m
= E a; ®cj & ¢y
Jj=1

From here it is clear that £,(T) is simultaneously diagonalizable.

O

Similarly it follows that 7" is of minimal border rank if and only if &,(7") is a limit of



spaces of simultaneously diagonalizable endomorphisms [16, Prop 2.8], [19]. Note that Idc =

TA(CY)TA<O()_1 € (C:a(T)

A necessary condition for a subspace £ C End(C') to be a limit of simultaneously diag-
onalizable spaces of endomorphisms is that the elements of £ must pairwise commute. The
A-Strassen’s equations [20, (1.1)] in 14-generic case are the translation of this condition to
the language of tensors, see e.g., [16, §2.1]. When we translate it in the language of tensors
a slightly more general condition also follows, namely it also gives out some conditions when
the tensor is not exactly 1,-generic but not too degenerate either. In particular it says that for

any X1, X and Y € T4(A*) we must have

adj (V) X1adj(Y) X2 — adj(Y) Xzadj (V) X, = 0 (1.1)

if 7" is of minimal border rank [21]. Notice that this condition does give us some equations
even if 7" is not 1 4-generic but there exists some Y € T4(A*) such that rank of Y is not less
than m — 1. If every element in 74 (A*) is of rank less than m — 1 then this equation does not
give us any new equations. The equations in 1.1 are called A-Strassen’s equations. The B and
C Strassen equations are defined analogously. Together, we call them Strassen’s equations.
Another necessary condition on a space to be a limit of simultaneously diagonalizable spaces
has been known since 1962 [22]: the space must be closed under composition of endomor-
phisms. The corresponding equations on the tensor are the A-End-closed equations. Note that
these equations only makes sense when the tensor is 1 4-generic. Together with it’s B and C'

counterparts these equations are called End-closed equations.

These two classical sets of equations, Strassen’s equations and End-closed equations, vanish
on concise tensors of minimal border rank. These equations are also sufficient for m < 4 [20,
21, 23]. See §1.2 for more on the equations for minimal border rank tensors. We never work
with these equations directly (except proving Proposition 1.6), we only consider the conditions

they impose on 1,.-generic tensors.



Throughout this work we adopt the index ranges

1<i,jk<a

2<s,t,u<a-—1,

and A, B, C denote complex vector spaces respectively of dimension a, m, m. Except for §2
we will also have a = m. The general linear group of changes of bases in A is denoted GL(A)
and the subgroup of elements with determinant one by SL(A) and their Lie algebras by gl(A)
and s[(A). The dual space to A is denoted A*. For Z C A, Z+ := {a € A* | a(z) = OVx € Z}
is its annihilator, and (Z) C A denotes the span of Z. Projective space is PA = (A \ {0})/C*.
When A is equipped with the additional structure of being a module over some ring, we denote

it A to emphasize its module structure.

Unital commutative algebras are usually denoted by .4 and polynomial algebras are denoted

by S.

Vector space homomorphisms (including endomorphisms) between m-dimensional vector
spaces will be denoted K;, X;, X, Y, Z, and we use the same letters to denote the corresponding
matrices when bases have been chosen. Vector space homomorphisms (including endomor-
phisms) between (m — 1)-dimensional vector spaces, and the corresponding matrices, will be

denoted by x,y, z.

We often write 7'(A*) as a space of m x m matrices (i.e., we choose bases). When we
do this, the columns index the B* basis and the rows the C' basis, so the matrices live in

Hom(B*, C'). (This convention disagrees with [13] where the roles of B and C' were reversed.)

For X € Hom(A, B), the symbol X* denotes the induced element of Hom(B*, A*), which

in bases is just the transpose of the matrix of X.

For a tensor 7" € C™ ® C™ ® C™, we say that T(A*) C B ® C is of bounded (matrix)
rank r if all matrices in T'(A*) have rank at most r, and we drop reference to “matrix” when

the meaning is clear. If rank r is indeed attained, we also say that T'(A*) is of corank m — r.



1.1.2 Secant Varieties

Given a variety X C PV, where V' denotes a finite dimensional complex vector space, the

r-th secant variety, denoted o,.(X) C PV is defined to be

o (X) = U (X1, 2

1, e €X
where (1, - - , x,) denotes the linear span in the projective space and the overline denotes the

Zariski closure.

Secant varieties of an irreducible variety are also irreducible, and the expected dimension
of the r-th secant variety of a variety X is min{rn +r — 1, N}, where X C P¥ is a variety of

dimension n. Here is another classical result known about secant varieties.

Theorem 1.4 (Terracini’s Lemma). [24, Theorem 3.1]
Let Py, -+, P, € X ber general points on the variety X C PN and P € (P,,--- ,P,) C

0-(X) be a general point on the r-th secant variety of X. Then

TP<UT(X)) = <TP1<X)7 e 7TPT(X)>

Where Tp,(X) denotes the tangent space to X at the point P; and Tp(0,(X)) denotes the

tangent space to the r-secant variety of X at P.

For the purposes of our project the variety X is going to be the three factor Segre variety
X = Seg(P™! x P~ x P~1) C P(C™ @ C™ ® C™), also the variety of rank one tensors,
and the border rank of a tensor 7' € P(C™ ® C™ ® C™) is the smallest r such that 7" € o,.(X).
As it turns out although these varieties are classically studied but very little is known about
their defining equations even for small values of m. For example, for m = 3 this question is

answered in [23].

1.1.3 p = 1 Koszul Flattenings

LetT € AQBRC = C"C™®C™ be atensor. Then Tz : B* — A®C' and we can tensor

T’s with Id 4 to obtain a linear map from B* ® A — A ® A ® C, and after skew-symmetrizing



the A ® A factor we obtain a map:
TV B®A— NARC (1.2)

If T = a®b® cis arank one tensor, then rank((a ® b ® ¢)}') = m — 1. To see this
expand a = a; to a basis ay, as, . . ., a,, of A with dual basis o, ..., a™ of A*. Then T}! =
Y oilaf @ b @ [ag A a; @ ¢], so the image is isomorphic to (A/a;) ® c.

A1
A

Thus if T € C™ ® C™ @ C™ be a tensor then it follows that R(7") > % If Tis a

concise tensor then R(7") > m. Note that if T’ is of border rank m then we must have
rank(T4") < m? —m (1.3)

We say a concise tensor 7 satisfies the p = 1 Koszul flattenings if it satisfies 1.3 along with all

its variants along B and C' directions.

Similarly these equations can be generalized for larger p. Namely, if p < (%} — 1, then we

can define the linear map

T :B*®@ APA — AP A®C. (1.4)

If T = a®b® cis arank one tensor then rank((a ® b ¢) > (™). See [25, Theorem 2.1]

and [13] for more on higher Koszul flattening equations.
1.2 Previous work on tensors of minimal border rank in C™ @ C™ g C™

When m = 2 it is classical that all tensors in C? ® C? ® C? have border rank at most two.

For m = 3 the ideal of o3(Seg(P? x P? x P?)) is generated by Strassen’s equations, 1.1,

and the proof can be found in [26, Theorem 1.3].

For m = 4 set theoretic equations for o4(Seg(P3 x P3 x IP3)) are given in [20] and lower
degree set-theoretic equations are given in [27, 28] where in the second reference they also
give numerical evidence that these equations generate the ideal. It is still an open problem to

prove the known equations generate the ideal. (This is the “salmon prize problem” posed by E.



Allman in 2007. At the time, not even set-theoretic equations were known).

For m = 5, it was proved in [16] that Strassen’s equations, 1.1, and End-closed equations

characterize the set of concise, 1,-generic tensors.

In this research we give more streamlined proof the fact that the Strassen’s equations along
with End-closed equations chatacterize the concise, 1,-generic tensors in C’®C°>® C° We
provide characterizing equations for concise 1-degenerate tensors for m = 5, and classify them
up to the action of GL;(C) x GL5(C) x GL5(C). We also prove that Strassen’s equations along

with End-closed equations also characterize the concise, 1.-generic tensors in C ® Cb @ CS.
Regarding the problem of classifying concise tensors of minimal border rank:
For m = 3 a complete classification of all tensors of border rank three is given in [29].

For m = 4, a classification of all 1,-generic concise tensors of border rank four in C*®

C* ® C*is given in [16].
When m = 5, alist of all abelian subspaces of End(C®) up to isomorphism is given in [17].

The equivalence of 1 and 4 in the m = 5 case of Theorem 1.8 follows from the results of
[16], but is not stated there. The argument proceeds by first using the classification in [30],
[17] of spaces of commuting matrices in End(C®). There are 15 isolated examples (up to
isomorphism), and examples that potentially depend on parameters. (We write “potentially”
as further normalization is possible.) Then each case is tested and the tensors passing the
End-closed condition are proven to be of minimal border rank using explicit border rank five
expressions. We give a new proof of this result that is significantly shorter, and self-contained.
Instead of listing all possible tensors, we analyze the possible Hilbert functions of the associated

modules in the Quot scheme living in the unique non-principal component.

1.3 Results on tensors of minimal border rank

Two classical sets of equations on tensors that vanish on concise tensors of minimal border
rank are Strassen’s equations and the End-closed equations. These are discussed in §1.1 and in

§2. These equations are sufficient for m < 4, [23, Prop. 22], [20, 21].

In [31, Thm 1.3] the following polynomials for minimal border rank were introduced:

10



LetT € A® B (C =C"®C™® C™. Consider the map

(T(A) @ A) & (T(B*) @ B)& (T(C"®C) > A B C & A BaC (15

that sends (77, Tz, T3) to (11 — Ty, To —T3), where the A, B, C' factors of tensors are understood
to be in the correct positions, for example 7'(A*) ® A is more precisely written as A®Q T (A*). If
T has border rank at most m, then the rank of the above map is at most 3m? — m. The resulting
equations are called the 711-equations.

Consider the space

(T(A*) @ A) N (T(B*) @ B) N (T(C*) & C). (1.6)

We call this space the triple intersection or the 111-space. We say that T' is 111-abundant if

the inequality

(111—abundance) dim ((T(A*) ® A) N (T(B*) @ B)N(T(C*) @ C)) > m (1.7)

holds. If the equality holds, we say 7' is //1-sharp. When 1" is concise, 111-abundance is
equivalent to requiring that the equations of [31, Thm 1.3] are satisfied, i.e., the map (1.5) has

rank at most 3m? — m.

Example 1.5. ForT = a1 @b, @cy+ a1 @by @c1 +a: @b, ®@c; € C2RC2®C?, a tangent vector
to the Segre variety, also called the W -state in the quantum literature, the triple intersection is

<T, aq (029 b1 X Cl>.

We show that for concise tensors, the 111-equations imply both Strassen’s equations and

End-closed equations:

Proposition 1.6. Let T' € C™ @ C™ @ C™ be concise. If T satisfies the 111-equations then
it also satisfies Strassen’s equations and the End-closed equations. If T is 14 generic, then it
satisfies the 111-equations if and only if it satisfies the A-Strassen equations and the A-End-

closed equations.
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The first assertion is proved in §3.3. The second assertion is Proposition 3.2.

In [32], and more explicitly in [25], equations generalizing Strassen’s equations for minimal
border rank, p = 1 Koszul flattenings, were introduced. (At the time it was notclear they were
a generalization, see [33] for a discussion.). The p = 1 Koszul flattenings of type 210 are
equations that are the size m(m — 1) + 1 minors of the map 74! : A® B* — A?A ® C given
by a®pB — >, T B(b;)a A a; @ cx. Type 201, 120, etc. are defined by permuting A, B and C'.
Together they are called p = 1 Koszul flattenings. These equations reappear in border apolarity

as the 210-equations, see [34].

Proposition 1.7. The p = 1 Koszul flattenings for minimal border rank and the 111-equations

are independent, in the sense that neither implies the other, even for concise tensors in C"™ ®

CreCm™

Proposition 1.7 follows from Example 3.5 where the 111-equations are nonzero and the
p = 1 Koszul flattenings are zero and Example 5.9 where the reverse situation holds.
We extend the characterization of minimal border rank tensors under the hypothesis of 1,-

genericity to dimension m = 6, giving two different characterizations:

Theorem 1.8. Let m < 6 and consider the set of tensors in C" QC™®@C™ which are 1,-generic

and concise. The following subsets coincide
1. the zero set of Strassen’s equations and the End-closed equations,
2. 111-abundant tensors,
3. 111-sharp tensors,
4. minimal border rank tensors.

More precisely, in 1, if the tensor is 1 4-generic, only the A-Strassen and A-End-closed condi-

tions are required.

The equivalence of 1, 2, 3 in Theorem 1.8 is proved by Proposition 3.2. The equivalence

of 1 and 4 is proved in §8.
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For 1 4-generic tensors, the p = 1 Koszul flattenings of type 210 or 201 are equivalent to
the A-Strassen equations, hence they are implied by the 111-equations in this case. However,
the other types are not implied, see Example 5.9.

The result fails for m > 7 by [16, Prop. 5.3], see Example 5.9. This is due to the existence
of additional components in the Quot scheme, which we briefly discuss here.

The proof of Theorem 1.8 introduces new algebraic tools by reducing the study of 14-
generic tensors satisfying the A-Strassen equations to deformation theory in the Quot scheme
(a generalization of the Hilbert scheme, see [35]) in two steps. First one reduces to the study
of commuting matrices, which implicitly appeared already in [21], and was later spelled out
in in [16], see §2. Then one uses the ADHM construction as in [35]. From this perspective,
the tensors satisfying 1-3 correspond to points of the Quot scheme, while tensors satisfying 4
correspond to points in the principal component of the Quot scheme, see §8.1 for explanations;
the heart of the theorem is that when m < 6 there is only the principal component. We expect
deformation theory to play an important role in future work on tensors. As discussed in [34], at
this time deformation theory is the only proposed path to overcoming the lower bound barriers

of [2, 3]. As another byproduct of this structure, we obtain the following proposition:

Proposition 1.9. Every 1-generic tensor in C" @ C™ @ C™ with m < 13 satisfying the A-
Strassen equations has minimal border rank. Every 1 4 and 1g-generic tensor in C" @ C™ @ C™

with m < 7 satisfying the A-Strassen equations has minimal border rank.

Proposition 1.9 is sharp: the first assertion does not hold for higher m by [36, Lem. 6.21]
and the second by [37].

Previously it was known (although not explicitly stated in the literature) that the A-Strassen
equations combined with the A-End-closed conditions imply minimal border rank for 1-generic
tensors when m < 13 and binding tensors when m < 7. This can be extracted from the
discussion in [13, §5.6].

While Strassen’s equations and the End-closed equations are nearly useless for 1-degenerate

tensors, this does not occur for the 111-equations, as the following result illustrates:

Theorem 1.10. When m < 5, the set of concise minimal border rank tensors in C" @ C" @ C™

is the zero set of the 111-equations.
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We emphasize that no other equations, such as Strassen’s equations, are necessary. More-
over Strassen’s equations, or even their generalization to the p = 1 Koszul flattenings, and the
End-closed equations are not enough to characterize concise minimal border rank tensors in
C® ® C° ® C>, see Example 3.5 and §1.5.2.

By Theorem 1.8, to prove Theorem 1.10 it remains to prove the 1-degenerate case, which
is done in §7. The key difficulty here is the above-mentioned lack of structure. We overcome
this problem by providing a new normal form, which follows from the 111-equations, that
strengthens Friedland’s normal form for corank one 1 4-degenerate tensors satisfying Strassen’s
equations [20, Thm. 3.1], see Proposition 3.3.

It is possible that Theorem 1.10 also holds for m = 6; this will be subject to future work. It
is false for m = 7, as already Theorem 1.8 fails when m = 7.

The 1,-generic tensors of minimal border rank in C® ® C® ® C® are essentially classified
in [16], following the classification of abelian linear spaces in [17]. We write “essentially”, as
the list has redundancies and it remains to determine the precise list. Using our normal form,
we complete (modulo the redundancies in the 1,-generic case) the classification of concise

minimal border rank tensors:

Theorem 1.11. Up to the action of GL5(C)*3 x &3, there are exactly five concise 1-degenerate,

minimal border rank tensors in C° @ C> @ C°. Represented as spaces of matrices, the tensors
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Then

To., =Tz + a5 @ (by @ ca — by @ ¢4)
:TM2
Tos,, =T + a5 ® by ® ¢y

TO55 :TMl + as X b3 (%9 Co

Moreover, each subsequent tensor lies in the closure of the orbit of previous: To,, > To,. >

TO56 > TO55 > TO54'

The subscript in the name of each tensor is the dimension of its GL(A) x GL(B) x GL(C)
orbit in projective space P(A ® B ® (). Recall that dim o5(Seg(P* x P* x P*)) = 64 and that
it is the orbit closure of the so-called unit tensor [Z?Zl a; ® b; ® ¢jl.

Among these tensors, 7o, 1s (after a change of basis) the unique symmetric tensor on the
list (see Example 4.6 for its symmetric version). The subgroup of GL(A) x GL(B) x GL(C)

preserving T, contains a copy of GL,(C) while all other stabilizers are solvable.

The smoothable rank of a tensor T' € A® B®C'is the minimal degree of a smoothable zero
dimensional scheme Spec(R) C PA x PB x PC which satisfies the condition 7" € (Spec(R)).
See, e.g., [38, 39] for basic definitions regarding zero dimensional schemes.

The smoothable rank of a polynomial with respect to the Veronese variety was introduced
in [40] and generalized to points with respect to arbitrary projective varieties in [41]. It arises
because the span of the (scheme theoretic) limit of points may be smaller than the limit of
the spans. The smoothable rank lies between rank and border rank. Tensors (or polynomials)
whose smoothable rank is larger than their border rank are called wild in [41]. The first example
of a wild tensor occurs in C? @ C3 ® C3, see [41, §2.3] and it has minimal border rank. We

characterize wild minimal border rank tensors:

Theorem 1.12. The concise minimal border rank tensors that are wild are precisely the concise

minimal border rank 1-degenerate tensors.
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Thus Theorem 1.11 classifies concise wild minimal border rank tensors in C° @ C°> @ C°.
The proof of Theorem 1.12 utilizes a new algebraic structure arising from the triple inter-

section that we discuss next.
1.4 The 111-algebra and its uses

We emphasize that 111-abundance, as defined by (1.7), is a necessary condition for border
rank m only when 7' is concise. The condition can be defined for arbitrary tensors and we

sometimes allow that.

Remark 1.13. The condition (1.7) is not closed: for example it does not hold for the zero tensor.
It is however closed in the set of concise tensors as then T (A*) varies in the Grassmannian,

which is compact.

For X € End(A) = A* ® A. let X o4 T denote the corresponding element of 7'(A*) ® A.
Explicitly, if X = a®a, then Xo4T = T'(a)®a and the map (—)o 7T : End(A) - AQ B&C
is extended linearly. Put differently, X o4 T = (X ® Idg ® Idc)(T). Define the analogous
actions of End(B) and End(C').

Definition 1.14. Let T be a concise tensor. We say that a triple (X, Y, Z) € End(A)xEnd(B) x
End(C) is compatible with T if X o T =Y og T = Z oc T. The 111-algebra of T is the set

of triples compatible with T. We denote this set by AT,,.
The name is justified by the following theorem:

Theorem 1.15. The 111-algebra of a concise tensorT' € A ® B ® C' is a commutative unital

subalgebra of End(A) x End(B) x End(C') and its projection to any factor is injective.
Theorem 1.15 is proved in §4.

Example 1.16. Let T’ be as in Example 1.5. Then

A{H - <(1d7 Id7 Id)? (al ® o, bl & 527 1 & 72»

In this language, the triple intersection is A7, - T'. Once we have an algebra, we may study
its modules. The spaces A, B, C are all Af|,-modules: the algebra A7}, acts on them as it

projects to End(A), End(B), and End(C'). We denote these modules by A, B, C respectively.
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Using the 111-algebra, we obtain the following algebraic characterization of all
111-abundant tensors as follows: a tensor 7" is 111-abundant if it comes from a bilinear map
N; x Ny — N3 between m-dimensional A-modules, where dim.A > m, A is a unital
commutative associative algebra and N;, Ny, N3 are A-modules, see Theorem 5.5. This
enables an algebraic investigation of such tensors and shows how they generalize abelian
tensors from [16], see Example 5.6. We emphasize that there are no genericity hypotheses
here beyond conciseness, in contrast with the 1,-generic case. In particular the
characterization applies to all concise minimal border rank tensors.

In summary, for a concise tensor 7' we have defined new algebraic invariants: the algebra

T, and its modules A, B, C. There are four consecutive obstructions for a concise tensor to

be of minimal border rank:

1. the tensor must be 111-abundant. For simplicity of presentation, for the rest of this list we
assume that it is 111-sharp (compare §1.5.1). We also fix a surjection from a polynomial
ring S = Clyi, ..., ym_1] onto A7}, as follows: fix a basis of A7}, with the first basis
element equal to (Id,Id,Id) and send 1 € S to this element, and the variables of S to the
remaining m— 1 basis elements. In particular A, B, C' become S-modules (the conditions

below do not depend on the choice of surjection).
2. the algebra A7}, must be smoothable (Lemma 5.7),

3. the S-modules A, B, C' must lie in the principal component of the Quot scheme, so there
exist a sequence of modules A, limiting to A with general A, semisimple, and similarly

for B, C' (Lemma 5.8),

4. the surjective module homomorphism A ® AT B — (' associated to T" as in Theorem 5.5
must be a limit of module homomorphisms A, ® 4, B, — C. for a choice of smooth

algebras .4, and semisimple modules A_, B, C..

Condition 3 is shown to be nontrivial in Example 5.9.
In the case of 1-generic tensors, by Theorem 1.12 above, they have minimal border rank
if and only if they have minimal smoothable rank, that is, they are in the span of some zero-

dimensional smoothable scheme Spec(R).
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Remark 1.17. While throughout we work over C, our constructions (except for explicit
computations regarding classification of tensors and their symmetries) do not use anything
about the base field, even the characteristic zero assumption. The only possible nontrivial
applications of the complex numbers are in the cited sources, but we expect that our main

results, except for Theorem 1.11, are valid over most fields.

1.5 Open questions and future directions
1.5.1 111-abundant, not 111-sharp tensors

At the time of submission of our paper [42] we did not know of any example of a tensor
which is 111-abundant but not 111-sharp, i.e., for which the inequality in (1.7) is strict. By
Proposition 3.2 such a tensor would have to be 1-degenerate, with T'(A*), T'(B*),T(C*) of
bounded (matrix) rank at most m — 2, and by Theorems 1.11 and 1.10 it would have to occur in
dimension greater than 5. After this work was submitted, Aldo Conca pointed out an explicit
example of a 111-abundant, not 111-sharp tensor when m = 9.

Here is the example pointed out by A. Conca. It is a symmetric tensor in C° @ C° ® C* so

note that it can be represented as a polynomial. The polynomial representing the example is:

2 2 2
T1T4 + 1225 + X1X3T6 + ToT7 + Tal3Tg + T5T9 (1.8)

We do not know if such tensors exist when m = 6,7, 8.
1.5.2 111-abundance v. classical equations

A remarkable feature of Theorem 1.10 is that 111-equations are enough: there is no need
for more classical ones, like p = 1 Koszul flattenings [25]. In fact, the p = 1 Koszul flattenings,
together with End-closed condition, are almost sufficient, but not quite: the 111-equations are
only needed to rule out one case, described in Example 3.5. Other necessary closed conditions
for minimal border rank are known, e.g., the higher Koszul flattenings of [25], the flag condition
(see, e.g., [16]), and the equations of [19]. As mentioned above, the 111-equations in general
do not imply the p = 1 Koszul flattening equations, see Example 5.9. The investigation of

relations between these, and the new conditions introduced in this work are yet to be done.
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1.5.3 111-algebra in the symmetric case

The 111-algebra is an entirely unexpected invariant in the symmetric case as well. How is

it computed and how can it be used?
1.5.4 The Segre-Veronese variety

While in [42] we focused on C™ @ C™ @ C™, the 111-algebra can be defined for any tensor
mV; ®V,® Vs ®...®V, and the argument from §4 generalizes to show that it is still an

algebra whenever ¢ > 3. It seems worthwhile to investigate it in greater generality.
1.5.5 Strassen’s laser method

An important motivation for this thesis was to find new tensors for Strassen’s laser method
for bounding the exponent of matrix multiplication. This method has barriers to further progress
when using the Coppersmith-Winograd tensors that have so far given the best upper bounds on
the exponent of matrix multiplication [4]. Are any of the new tensors we found in C° @ C°> ®
C® better for the laser method than the big Coppersmith-Winograd tensor CW3? Are any 1-

degenerate minimal border rank tensors useful for the laser method?
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2. DICTIONARIES FOR 1,-GENERIC, BINDING, AND 1-GENERIC TENSORS
SATISFYING STRASSEN’S EQUATIONS FOR MINIMAL BORDER RANK

A 1,-generic tensor satisfying Strassen’s equations may be reinterpreted in terms of
classical objects in matrix theory and then in commutative algebra, which allows one to apply

existing results in these areas to their study.

Fixatensor 7' € A® B® C = C* ® C™ @ C™ which is A-concise and 1 4-generic with
a € A* such that T4 («) : B* — C has full rank. Then we can define £,(7") as in 1.3, and by
Prop. 1.3 we know that if 7" is of minimal border rank then the space £,(7") C End(C) is in the

limit of spaces of simultaneously diagonalizable endomorphisms.

A necessary condition for a subspace E C End(C) to be a limit of simultaneously
diagonalizable spaces of endomorphisms is that the elements of E pairwise commute. The A-
Strassen equations in [20, (1.1)] in the 1 4-generic case are the translation of this condition to
the language of tensors, see, e.g., [16, § 2.1]. For the rest of this section, we additionally

assume that 7" satisfies the A-Strassen equations, i.e., &,(7T") is abelian.

2.1 Reinterpretation as modules

In this section we introduce the language of modules and the ADHM correspondence. This
extra structure will have several advantages: it provides more invariants for tensors, it enables
us to apply theorems in the commutative algebra literature to the study of tensors, and perhaps

most importantly, it will enable us to utilize deformation theory.

Let E C End(C') be a space of endomorphisms that contains Idc and consists of pairwise
commuting endomorphisms. Fix a decomposition E = (Ide) @ E. A canonical such
decomposition is obtained by requiring that the elements of E are traceless. To eliminate
ambiguity, we will use this decomposition, although in the proofs we never make use of the
fact that £ C (C). Let S = Sym(E) be a polynomial ring in dim £ = a — 1 variables. By the
ADHM correspondence [43], as utilized in [35, §3.2] we define the module associated to E to

be the S-module C' which is the vector space C' with action of S defined as follows: let
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€1,...,€ea1 be abasis of E, write S = Clyy, ..., Ya_1], define y;(c) := e;(c), and extend to

an action of the polynomial ring.

It follows from [35, §3.4] that E is a limit of simultaneously diagonalizable spaces if and
only if C is a limit of semisimple modules, which, by definition, are S-modules of the form
N1 & Ny @ ... D N, where dim N, = 1 for every h. The limit is taken in the Quot scheme,
see [35, §3.2 and Appendix] for an introduction, and [44, §5], [39, §9] for classical sources.

The Quot scheme will not be used until §5.2.

Now we describe a special case of the above, which is of main interest to us. Let A, B, C
be C-vector spaces, with dim A = a, dim B = dimC' = m, as above. Let T € AR B® C
be a concise 14-generic tensor that satisfies Strassen’s equations (see §1.1). To such a T" we
associated the space &,(7") C End(C'). The module associated to T is the module C associated
to the space E = E4(T) using the procedure above. The procedure involves a choice of o and

a basis of E, so the module associated to 7" is only defined up to isomorphism.

Example 2.1. Consider a concise tensor T € C™ @ C™ @ C™ of minimal rank, say T =
Yo ai @by @ ¢; with {a;}, {b;}, {¢;} bases of A, B,C and {a;} the dual basis of A* etc..
Set = Y_" ;. Then E,(T) is the space of diagonal matrices, so E = (E; — Eyy | 1 =
2,3,...,m) where E;; = v; ® ¢;. The module C decomposes as an S-module into ;" | C¢;

and thus is semisimple. Every semisimple module is a limit of such.

If a module C' is associated to a space E, then the space E may be recovered from C' as the
set of the linear endomorphisms corresponding to the actions of elements of S<; on C. If C'is
associated to a tensor 7', then the tensor 7" is recovered from C' up to isomorphism as the tensor

of the bilinear map S<; ® C' — C coming from the action on the module.

Remark 2.2. The restriction to S<; may seem unnatural, but observe that if Eis additionally
End-closed then for every s € S there exists an element s' € S<y such that the actions of s and

s" on C coincide.

Additional conditions on a tensor transform to natural conditions on the associated module.

We explain two such additional conditions in the next two sections.
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2.2 Binding tensors and the Hilbert scheme

Proposition 2.3. Let T € C" @ C™ @ C™ = A ® B ® C be concise, 1 5-generic, and satisfy
the A-Strassen equations. Let C be the S-module obtained from T as above. The following

conditions are equivalent:
1. the tensor T is 1-generic (so it is binding),

2. there exists an element c € C such that S<ic = C

~

3. the S-module C'is isomorphic to S/ for some ideal I and the space E,(T) is End-closed,
4. the S-module C is isomorphic to S/ 1 for some ideal I,

5. the tensor T’ is isomorphic to a multiplication tensor in a commutative unital rank m

algebra A.

The algebra A in 5 will be obtained from the module C' as described in the proof.

The equivalence of 1 and 5 for minimal border rank tensors was first obtained by Bliser

and Lysikov [18].

Proof. Suppose 1 holds. Recall that £,(T') = T'(A*) where T € A® C* ® C' is obtained from
T € A® B® C by means of (T'(«)™!)* : B — C*. Hence T" is 1¢+- generic, so there exists
an element ¢ € (C*)* ~ C such that the induced map A* — C' is bijective. But this map is

exactly the multiplication map by ¢, S<; — C, so 2 follows.

Let ¢ : S — C be defined by ¢(s) = sc and let I = ker¢. (Note that ¢ depends on
our choice of c.) Suppose 2 holds; this means that ¢|s_, is surjective. Since dim S<; = m =
dim C, this surjectivity implies that we have a vector space direct sum S = S<; @ I. Now
X € &E,(T) C End(C) acts on C in the same way as the corresponding linear polynomial
X € S<;. Thus a product XY € End(C) acts as the product of polynomials XY € Sc,.
Since S = I & S<; we may write XY = U + Z, where U € I and Z € S<;. The actions of
XY, Z € End(C) on C are identical, so XY = Z. This proves 3. Property 3 implies 4.

Suppose that 4 holds and take an S-module isomorphism ¢’ : C' — S/I. Reversing the

argument above, we obtain again S = I & S<;. Let A := S/I. This is a finite algebra of
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rank dim S<; = m. The easy, but key observation is that the multiplication in A is induced by
the multiplication S ® A — A on the S-module .A. The multiplication maps arising from the

S-module structure give the following commutative diagram:

Sqg ® C—C

L

S ® C——C

Lol

S/ ® C—C

I

S/I ® S/T —— S/I

The direct sum decomposition implies the map 1) is a bijection. Hence the tensor 7", which is
isomorphic to the multiplication map from the first row, is also isomorphic to the multiplication
map in the last row. This proves 5. Finally, if 5 holds, then 7" is 1g-generic, because the
multiplication by 1 € A from the right is bijective.

]

The structure tensor of a module first appeared in Wojtala [45]. The statement that binding
tensors satisfying Strassen’s equations satisfy End-closed conditions was originally proven
jointly with M. Michatek. A binding tensor is of minimal border rank if and only if C' is a
limit of semisimple modules if and only if S/ is a smoothable algebra. For m < 7 all

algebras are smoothable [37].
2.3 1-generic tensors

A 1-generic tensor satisfying the A-Strassen equations is isomorphic to a symmetric tensor
by [16]. (See [33] for a short proof.). For a commutative unital algebra A, the multiplication
tensor of A is 1-generic if and only if A is Gorenstein, see [13, Prop. 5.6.2.1]. By definition,
an algebra A is Gorenstein if A* = A¢ for some ¢ € A*, or in tensor language, if its structure
tensor 74 is 1-generic with T4(¢) € A* ® A* of full rank. For m < 13 all Gorenstein algebras

are smoothable [46], proving Proposition 1.9.

24



2.4 Summary
We obtain the following dictionary for tensors in C* @ C™ @ C™ with a < m:

tensor satisfying A-Strassen eqns. is isomorphic to multiplication tensor in

14-generic module

14- and 15-generic

(hence binding and a = m) unital commutative algebra

1-generic (a = m) Gorenstein algebra
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3. IMPLICATIONS OF 111-ABUNDANCE

For the rest of this article, we restrict to tensors 7' € A®Q B C = C™ @ C"™ @ C™. Recall
the notation X o4 7" from §1.4 and that {a;} is a basis of A. In what follows we allow ay, to be

arbitrary elements of A.

Lemma 3.1. Ler T = ), _, a, ® K}, where @), € A and K, € B ® C are viewed as maps
Kyn: B* — C. Let X € End(A), Y € End(B) and Z € End(C). Then

XoaT =Y X(a) ® Ky,

h=1

YopT =Y a® (KY"),

h=1

ZocT =Y @ (ZK)).
h=1

If T is concise and ) is an element of the triple intersection (1.6), then the triple (X,Y, Z) such
that Q) = X oy T =Y og T = Z o¢ T is uniquely determined. In this case we call X, Y, Z

the matrices corresponding to €.

Proof. The first assertion is left to the reader. For the second, it suffices to prove it for X. Write
T =3",a;®K,. The K; are linearly independent by conciseness. Suppose X, X’ € End(A)
are such that X oy 7' = X' o4 T. Then for X" = X — X' wehave 0 = X" o4 T =
Yo, X"(a;) ® K;. By linear independence of K;, we have X”(a;) = 0 for every . This

means that X” € End(A) is zero on a basis of A, hence X" = 0. O

3.1 1,4-generic case

Proposition 3.2. Suppose thatT € C" @ C" @ C" = A® B ® C'is 1 4-generic with o € A*
such that T(a) € B ® C has full rank. Then T is 111-abundant if and only if the space
ELT) = T(A")T ()™t C End(C) is m-dimensional, abelian, and End-closed. Moreover if

these hold, then T is concise and 111-sharp.
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Proof. Assume T is 111-abundant. The map (T'(«)!)*: B — C* induces an isomorphism of
T with atensor 7" € A ® C* @ C, so we may assume that ' = 7", T'(a) = Id¢c and B = C*.
We explicitly describe the tensors €2 in the triple intersection. We use Lemma 3.1 repeatedly.
Fix abasis aq, ..., a,, of Aand write T’ = Zzl a; ® K; where Ky = Idc, but we do not assume
the K; are linearly independent, i.e., that 7" is A-concise. Let {2 = 221 a;, Rw; € AR B C.
Suppose 2 =Yt op T = Z oc T for some Y € End(C) and Z € End(C).

The condition 2 = Y'* o T' means that w; = K;Y for every i. The condition Q = Z o T'
means that w; = ZK;. Fori =1weobtainY =Idg-Y =w; =2 -1dg = Z,s0Y = Z. For

other i we obtain ZK; = K;Z, which means that Z is in the joint commutator of T'(A*).

A matrix X such that 2 = X o, T exists if and only if w; € (K7,..., K,,) = T(A*) for
every 4. This yields ZK; = K;Z € T(A*) and in particular Z = Z - Idc € T'(A").

By assumption, we have a space of choices for ) of dimension at least m. Every (2 is
determined uniquely by an element Z € T(A*). Since dimT'(A*) < m, we conclude that
dim T'(A*) = m,i.e., T'is A-concise (and thus concise), and for every Z € T'(A*), the element
) = Z o¢ T lies in the triple intersection. Thus for every Z € T(A*) we have ZK; = K, Z,
which shows that 7'(A*) C End(C') is abelian and ZK,; € T'(A*), which implies that &,(T")
is End-closed. Moreover, the triple intersection is of dimension dim7'(A*) = m, so T is

111-sharp.

Conversely, if £,(7T) is m-dimensional, abelian and End-closed, then reversing the above
argument, we see that Z o T is in the triple intersection for every Z € T'(A*). Since (Z oc
T)(«) = Z, the map from T'(A*) to the triple intersection is injective, so that 7"is 111-abundant

and the above argument applies to it, proving 111-sharpness and conciseness. [

3.2 Corank one 1 4-degenerate case: statement of the normal form

We next consider the 1 4-degenerate tensors which are as “nondegenerate” as possible: there

exists a € A* with rank(7' (o)) = m — 1.

Proposition 3.3 (characterization of corank one concise tensors that are 111-abundant). Let

T = 35", a; ® K; be a concise tensor which is 111-abundant and not 1 4-generic. Suppose
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that Ky : B* — C has rank m— 1. Choose decompositions B* = B*' @ker(K;) =: B*' & (f3,,)
and C' = Im(K,) & (c,,) =: C' & (c,,) and use K, to identify B*' with C". Then there exist
bases of A, B, C' such that

Idc/ 0 xs 0 Xm W,

K, = , K, = for 2<s<m-—1, and K, = ,
0 0 0 0 Uy 0

3.1

for some x5, ..., X, € End(C") and 0 # u,, € B ®¢,, 2C"™, 0 # w, € 5, C =2’

where, setting x; := Id»,

~

U@ Wy, = 0 forevery j > 0and x € (X4, ...,X,,), so in particular u,,w,, = 0.

2. the space (X1,Xa,...,Xm-1) C End(C") is (m — 1)-dimensional, abelian, and End-

closed.
3. the space (X3, ..., X;,_1) contains the rank one matrix Wy, Uy,
4. Forall2 <s<m—1, uy,Xx; = 0and x,;w,, = 0.

5. For every s, there exist vectors u, € C'* and w, € C', such that

XX + Wslly, = XX + Wil € (Xoy ooy Xyp1)- (3.2)

The vector [u,, w?] € C2"=V* is unique up to adding multiples of [t,, wt,].

6. Foreveryj > land?2 <s<m—1

xsx{nwm =0and umxf;lxs =0. 3.3)

Moreover; the tensor T is 111-sharp.

Conversely, any tensor satisfying (3.1) and 1-5 is 111-sharp, concise and not 1 5-generic,

hence satisfies 6 as well.

Additionally, for any vectors u* € C' and w}, € (C')* with u,u* = 1 = w*w,,, we may
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normalize X, such that for every2 < s < m — 1

X,ut =0, wx,, =0, u, = wXX,,, and wy = X, X, u". (3.4)

Remark 3.4. Atkinson [47] defined a normal form for spaces of corank m — r where one

1d, x W A
element is and all others of the form and satisfy Ux?W = 0 for every
0 0 U 0
7 > 0. The zero block is clear and the equation follows from expanding out the minors of
d, +x W

with a variable £. This already implies (3.1) and 1 except for the zero blocks
U 0

in the K just using bounded rank.

Later, Friedland [20], assuming corank one, showed that the A-Strassen equations are
exactly equivalent to having a normal form satisfying (3.1), 1, and 6. In particular, this shows

the 111-equations imply Strassen’s equations in the corank one case.

Proof. We use Atkinson normal form, in particular we use K to identify B*' with C”.

Take (Y, Z) € End(B) x End(C) with0 # Y o T = Z oc T € T(A*) ® A, which exist
by 111-abundance. Write these elements following the decompositions of B* and C' as in the

statement:

vt y wy 7 z wyz

uy ty uz tlz

with y € End((B*)'), z € End(C") etc. The equality Y op T' = Z oc T € T(A*) ® A says
KY* = ZK, € T(A*) = (K\,. .., K,,). When i = 1 this is

y wy z 0

= € T(A"), (3.5)
0 0 uz 0

sowy = 0, uyz = 0, and y = z. For future reference, so far we have

z 0 Z Wy

Yyt = 7 = . (3.6)
Uy ty 0 tZ
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By conciseness, the subspace B’ @ C' N T(A*) is proper in T(A*), so it has dimension less
than m. The triple intersection has dimension at least m as 7" is 111-abundant, so there exists
apair (Y, Z) asin (3.6) withz = 0,and 0 # Y og T' = Z o¢ T Take any such pair (Y, Zp).

Consider a matrix X € T'(A*) with the last row nonzero and write it as

X Wy
X =
Uy 0
where u,, # 0. The equality
Wi U Wt Wz Uy, O
XYt = oI _gx =17 (3.7)
0 0 tzoum 0

implies w,,ty, = 0, 0 = tz, (as u,, # 0) and wz u, = wy,uy,. Observe that wy, # 0 as
otherwise Z; = 0 while we assumed Z, op T' # 0. Since u,, # 0 and wy, # 0, we have
an equality of rank one matrices wz,u,, = WyUy,. Thus u,, = Auy, and w,, = Awg, for
some nonzero A € C. It follows that w,, # 0, so ty, = 0. The matrix X was chosen as
an arbitrary matrix with nonzero last row and we have proven that every such matrix yields
a vector [u,, w},] proportional to a fixed nonzero vector [uy,, wy,|. It follows that we may
choose a basis of A such that there is only one such matrix X. The same holds if we assume

instead that X has last column nonzero. This gives (3.1).
Returning to (3.5), from uz = 0 we deduce that z € (xy,...,X;,_1).

Now Y, and Z are determined up to scale as

0 0 0 w,
th = Zy =
Uy, 0O 0 O

; (3.8)

so there is only a one-dimensional space of pairs (Y, Z) with Y o T = Z o T and upper
left block zero. The space of possible upper left blocks z is (xi,...,X,,_1) so it is (m —
1)-dimensional. Since the triple intersection is at least m-dimensional, for any matrix z €

(X1,...,Xmn_1) there exist matrices Y'* and Z as in (3.6) with this z in the top left corner.
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Consider any matrix as in  (3.6) corresponding to an  element
YopT =ZocT € T(A*) @ A. For2 < s < m — 1 we get zx; = X;Z € (X1,...,Xp;_1)-
Since for any matrix z € (Xj,...,X,_1) a suitable pair (Y, Z) exists, it follows that
(X1,...,Xm—1) € End(C") is abelian and closed under composition proving 2. The coefficient
of a,, inY og T = Z o T gives

XnZ + Wty Whyty ZXy + Wz Uy, ZWy,
= = AN K,, + Ky, (3.9

U Z 0 tzUm 0

where \y € C and Ky € (Ky,...,K,,_1). It follows that ty, = Ay = tz and that zw,, =

Ay w,, as well as u,,z = Ay t,.

Iterating over z € (xi,...,X,,_1), we see that w,, is a right eigenvector and wu,, a left
eigenvector of any matrix from this space, and u,,, w,, have the same eigenvalues for each
matrix. We make a GL(A) coordinate change: we subtract this common eigenvalue of x;
times x; from x;, so that x,w,, = 0 and u,,xs = 0 for all 2 < s < m — 1 proving 4. Take

z € (Xg,...,Xm_1) S0 that zw,, = 0 and u,,z = 0. The top left block of (3.9) yields

ZX, + Wzl = X2 + Wty = AyX,, + Ky. (3.10)

Since zw,, = 0, the upper right block of (3.9) implies A\y = 0 and we deduce that

ZXpy + Wyl = X2 + wpuy = Ky € (Xo, ..., Xm_1)- (3.11)

For a pair (Y, Z) with z = x,, set ws := wy and us := uy. Such a pair is unique up to adding
matrices (3.8), hence [u,, w!] is uniquely determined up to adding multiples of [u,,, wt |. With
these choices (3.11) proves 5. Since x4 determines u,, ws we see that 7" is 111-sharp.

The matrix (3.7) lies in T'(A*), hence wy,uy, € (X1,. .., Xm—1). Since 0 = (Up W)Uy, =
U (Wi, ) We deduce that w,,u,, € (Xa, ..., X, 1), proving 3.

Conversely, suppose that the space of matrices K4, ..., K,, satisfies (3.1) and 1-5.

Conciseness and 1 4-degeneracy of K1, ..., I, follow by reversing the argument above. That
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T is 111-sharp follows by constructing the matrices as above.

To prove 6, we fix s and use induction to prove that there exist vectors v, € C'* for h =
1,2, ... such that for every 7 > 1 we have

j—1

x!) X, + Zxﬁlwmvj,h € (X2, oy Xyp1)- (3.12)
h=0

The base case 7 = 1 follows from 5. To make the step from j to j+1 use 5 for the element (3.12)

of (xa,...,X;,_1), to obtain

j—1
j h
X | ) x5 + X Wi Vj—p | + Winvis1 € (X2, .., Xm_1),
h=0

for a vector v;;; € C'. This concludes the induction. For every j, by 4, the expression (3.12)

is annihilated by u,,:

j—1
j h
U, - | X, x5 + E X Wi Vj—p | = 0.

h=0

h

By 1 we have u,,x" w,, = 0 for every h, so u,,x/ x, = 0 for all j. The assertion x,x? w,, = 0

is proved similarly. This proves 6.

Finally, we proceed to the “Additionally” part. The main subtlety here is to adjust the bases

of B and C'. Multiply the tuple from the left and right respectively by the matrices

IdC/ Y IdB/* 0
e GL(C) € GL(B")
0 1 6 1
and then add aw,,u,, to x,,. These three coordinate changes do not change the x;, X, Uy,
or wy, and they transform x,, into x/, = x,,, + W0 + YU, + awypu,. Take (o, ,7) =
(WX u*, —w* X, —Xmu*), then x/ satisfies w*x/, = 0 and x/, u* = 0. Multiplying (3.2)

from the left by w* and from the right by u* we obtain respectively

Ws = XX + Wy (usu™).
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Multiply the second line by w* to obtain w*ws = usu*, so

[, wz] — w* (ws) [t w;“n] = (WX, (Xmxsu®)].

Replace [us, wt] by [us, wt] — w*(wg)[tm, wt] to obtain u, = W*XXy, Ws = XypXsu*,

proving (3.4). ]

Example 3.5. Consider the space of 4 X 4 matrices x| = Idy,xo = Fy4,x3 = F13,%X4 = Fs34.
Take x5 = 0, u,, = (0,0,0,1) and w,, = (1,0,0,0)*. The tensor built from this data as in
Proposition 3.3 does not satisfy the 111-condition, since X3 and x4 do not commute. Hence, it
is not of minimal border rank. However, this tensor does satisfy the A-End-closed equations
(described in §1.3) and Strassen’s equations (in all directions), and even the p = 1 Koszul
flattenings. This shows that 111-equations are indispensable in Theorem 1.10; they cannot be

replaced by these more classical equations.

3.3 Proof of Proposition 1.6

The 1 4-generic case is covered by Proposition 3.2 together with the description of the A-

Strassen and A-End-closed equations for 1 4-generic tensors which was given in §1.3.

In the corank one case, Remark 3.4 observed that the 111-equations imply Strassen’s

equations. The End-closed equations are: Let «y,...,a,, be a basis of A*. Then for all
O/, o' € A*,
(T(T ()" (")) ANT(ar) A+ AT(a) =0€ Am +1(B® C). (3.13)

Here, for Z € B ® C, Z"™ ! denotes the induced element of Am — 1B ® Am — 1C, which,
up to choice of volume forms (which does not effect the space of equations), is isomorphic to
C* @ B*,s0 (T(a/)T(a1)"™'T(a”")) € B® C. Inbases Z"™~! is just the cofactor matrix of
Z. (Aside: when T is 14-generic these correspond to &,(T") being closed under composition
of endomorphisms.) When T'(«;) is of corank one, using the normal form (3.1) we see
T(o/)T (o)1 T (") equals zero unless o' = o’ = «, in which case it equals w,,u,, so the

vanishing of (3.13) is implied by Proposition 3.33.
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Finally if the corank is greater than one, both Strassen’s equations and the End-closed

equations are trivial. O
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4. PROOF OF THEOREM 1.15

We prove Theorem 1.15 that A7}, is indeed a unital subalgebra of End(A) x End(B) x
End(C') which is commutative for 7" concise. The key point is that the actions are linear with

respect to A, B, and C. We have (Id,1d, 1d) € Af}, for any T

Lemma 4.1 (composition and independence of actions). Let T € AR B C. Forall X, X' €
End(A) andY € End(B),

XOA (X,OAT):(XX,) OAT, and (41)

Xog(YopT)=Yop(XouT). 4.2)

The same holds for (A, B) replaced by (B, C) or (C, A).
Proof. Directly from the description in Lemma 3.1. [

Lemma 4.2 (commutativity). Let T € A® B® C and suppose (X,Y,Z), (X', Y' . Z') € AL},
Then XX' oy T = X'X o T and similarly for the other components. If T is concise, then
XX =X'X,YY'=YYand Z7' = 7' Z.

Proof. We will make use of compatibility to move the actions to independent positions
and (4.2) to conclude the commutativity, much like one proves that w5 in topology is

commutative. Concretely, Lemma 4.1 implies

XX'opT=Xoy (X' 0sxT)=Xo4 (Y opgT)=Y"0p(XosT)=Y"o0p(ZocT), and

X/XOAT:X/OA(XOAT):X/OA(ZOCT):ZOC(X/OAT):Zoc(Y,OBT).

Finally Y’ op (Z oc T) = Z o (Y' o T) by (4.2). If T' is concise, then the equation (X X' —
X'X)os T = 0 implies XX’ — X'X = 0 by the description in Lemma 3.1, so X and X’

commute. The commutativity of other factors follows similarly. ]

Lemma 4.3 (closure under composition). Let T € A ® B ® C and suppose
(X,Y,2),(X")Y'" 7)€ AL, Then (XX',YY', Z7") € AL,,.
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Proof. By Lemma 4.1

XX'opT = Xop(X'0xT)=Xos(Y'ogT)=Y'0op(XosT) =Y og(YopT)=Y'YopT.

We conclude by applying Proposition 4.2 and obtain equality with Z'Z o¢ T similarly. U

Proof of Theorem 1.15. Commutativity follows from Lemma 4.2, the subalgebra assertion is

Lemma 4.3, and injectivity of projections follows from Lemma 3.1 and conciseness. ]

Remark 4.4. Theorem 1.15 without the commutativity conclusion still holds for a non-concise
tensor T'. An example with a noncommutative 111-algebrais ) ;_, a;Qb;®c;, wherer < m—2.

In this case the 111-algebra contains a copy of End(C™™").

Example 4.5. IfT' is a 1 o-generic 111-abundant tensor, then by Proposition 3.2 its 111-algebra
is isomorphic to E,(T). In particular, if T is the structure tensor of an algebra A, then Al is

isomorphic to A.

Example 4.6. Consider the symmetric tensor F' € S3C> C C°® C° ® C® corresponding to the
cubic form x3x? + 142179 + T573, Where, e.g., 1377 = 2(13 31, Q11 + 11 QT3 RQ T + 11 @
x1 @ x3). This cubic has vanishing Hessian, hence F' is 1-degenerate. The triple intersection
of the corresponding tensor is (F, x3, x3xo, v123, 3) and its 111-algebra is given by the triples

(x,x,x) where

z € (ld, 11 @ a3, T2 @ a3 + T1 ® au, Ta ® auy + T1 ® a5, To ® Q)

where «; is the basis vector dual to x;. Since all compositions of basis elements other than Id

are zero, this 111-algebra is isomorphic to Cley, &5, €3, 4]/ (€1, €2, €3, €4)*

Example 4.7. Consider a tensor in the normal form of Proposition 3.3. The projection of the

111-algebra to End(B) x End(C') can be extracted from the proof. In addition to (Id, Id) we
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have:

0 O 0 wy,

}/E) = 5 ZO = )
Uy 0 0 0
x, 0 Xg W

}/:9 = ) Zs =
us 0 0 0

Theorem 1.15 implies for matrices in End(C') that
XXt XsWe Xs Wg Xt Wy Xt Wy Xs Wg XiXs XiWg
0 0 0 O 0 O 0 0 0 O 0 0

which gives x;w; = xyws for any 2 < s,t < m— 1. Considering matrices in End(B) we obtain
UXs = ugXy for any 2 < s, t < m — 1. (Of course, these identities are also a consequence of

Proposition 3.3, but it is difficult to extract them directly from the Proposition.)
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5. NEW OBSTRUCTIONS TO MINIMAL BORDER RANK VIA THE 111-ALGEBRA

In this section we characterize 111-abundant tensors in terms of an algebra equipped with
a triple of modules and a module map. We then exploit this extra structure to obtain new

obstructions to minimal border rank via deformation theory.
5.1 Characterization of tensors that are 111-abundant

Definition 5.1. A tri-presented algebra is a commutative unital subalgebra A C End(A) X

End(B) x End(C).

For any concise tensor 7" its 111-algebra A7}, is a tri-presented algebra. A tri-presented
algebra A naturally gives an .A-module structure on A, B, C'. For every .A-module N the space
N* is also an A-module via, for any » € A,n € N, and f € N*, (r- f)(n) := f(rn). (This
indeed satisfies ry - (ry - f) = (rory) - f because A is commutative.) In particular, the spaces

A*, B*, C* are A-modules. Explicitly, if r = (X,Y, Z) € Aand a € A*, then ra = X*(«).

There is a canonical surjective map 7: A*®@ B* — A*® 4 B”, defined by m7(a®f) = a®40
and extended linearly. For any homomorphism ¢: A* ® 4 B* — C of .A-modules, we obtain a

linear map ¢ o m: A* ® B* — C hence a tensor in A ® B ® C which we denote by T,.

We need the following lemma, whose proof is left to the reader.

Lemma 5.2 (compatibility with flattenings). Let T € A® B® C, X € End(A), Z € End(C)
and o € A*. Consider T'(«) : B* — C. Then

(ZooT)(a) = Z-T(a), 5.1)
T (X)) = (X 0a T)(a), (5.2)
and analogously for the other factors. ]

Proposition 5.3. Let T' be a concise 111-abundant tensor. Then T' is 1 4-generic if and only if
the AL -module A* is generated by a single element, i.e., is a cyclic module. More precisely,

an element o € A* generates the AL|,-module A* if and only if T'(«) has maximal rank.
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Proof. Take any o € A*andr = (X,Y, Z) € AL},. Using (5.1)-(5.2) we have

T(ra)=T(X%a)) = (XoaT)(a)=(ZocT)(a) =7 -T(a). (5.3)

Suppose first that 7" is 14-generic with T'(«) of full rank. If » # 0, then Z # 0 by the
description in Lemma 3.1, so Z - T'(«) is nonzero. This shows that the homomorphism AT, —
A* of Al ;-modules given by r +— ra is injective. Since dim AL}, > m = dim A%, this
homomorphism is an isomorphism and so A* ~ AT, as A%, ;-modules.

Now suppose that A* is generated by an element « € A*. This means that for every
o € A*thereis anr = (X,Y,Z) € A%}, such that ra = o/. From (5.3) it follows that
ker T'(«) C ker T'(«’). This holds for every o/, hence ker T'(«v) is in the joint kernel of T'( A*).

By conciseness this joint kernel is zero, hence ker 7'(«v) = 0 and 7'(«v) has maximal rank. [J

Theorem 5.4. Let T € A ® B ® C and let A be a tri-presented algebra. Then A C AT, if
and only if the map T}, : A* @ B* — C factors through 7 : A* ® B* — A* ® 4 B* and induces

an A-module homomorphism p: A* @ 4 B* — C. If this holds, then T =T,

Proof. By the universal property of the tensor product over A, the map T¢, : A* ® B* — C
factors through 7 if and only if the bilinear map A* x B* — C given by («a, 8) — T'(«v, B) is
A-bilinear. That is, for every r = (X,Y,Z) € A, a € A*, and § € B* one has T'(ra, ) =
T(a,rB). By (5.2), T(ra, ) = (XoaT)(, ) and T(cv, rB) = (YopT)(c, 5). It follows that
the factorization exists if and only if for every r = (X,Y,Z) € Awehave X o4 T =Y op T.
Suppose that this holds and consider the obtained map ¢: A* ® 4 B* — C. Thus for o € A*
and € B* we have (o ®4 ) = T'(«, 5). The map ¢ is a homomorphism of .4-modules
if and only if for every r = (X,Y,Z) € A we have p(ra ®4 ) = ro(a @4 ). By (5.1),
ro(a®48) = (ZocT)(a, 5) and by (5.2), p(ra®45) = (X 04 T)(«a, ). These are equal for
all o, Bifand only if X oy T' = Z o T'. The equality T = T, follows directly from definition
of T,. 0

Theorem 5.5 (characterization of concise 111-abundant tensors). A concise tensor that is 111-
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abundant is isomorphic to a tensor T, associated to a surjective homomorphism of A-modules
Q. Ny XA NQ—>N3, (54)

where A is a commutative associative unital algebra, N1, Ns, N3 are A-modules and dim N, =
dim Ny = dim N3 = m < dim A, and moreover for every ny € Ni,n, € Ny the maps
o(n1 ®4 —): Ny = N3 and o(— ® 4 n2): Ny — Ns are nonzero. Conversely, any such T, is

111-abundant and concise.

The conditions p(n; ® 4 —) # 0, p(— ®4ny) # 0 for any nonzero n, ny have appeared in

the literature. Bergman [48] calls ¢ nondegenerate if they are satisfied.

Proof. By Theorem 5.4 a concise tensor 7' that is 111-abundant is isomorphic to 7,, where
A= AL, Ny = A*, N, = B*, Ny = C. Since T is concise, the homomorphism ¢ is onto
and the restrictions p(a ® 4 —), p(— ®4 () are nonzero for any nonzero o« € A*, 5 € B*.
Conversely, if we take (5.4) and set A := Ny, B := N;, C := N3, then T, is concise by the

conditions on ¢ and by Theorem 5.4, A C .Alel hence T, is 111-abundant. U

Example 5.6. By Proposition 5.3 we see that for a concise 1-generic tensor T’ the tensor
product A* @ 4 B* simplifies to A® 4 B* ~ B*. The homomorphism p: B* — C' is surjective,
hence an isomorphism of B* and C, so the tensor T,, becomes the multiplication tensor A @c
C — C of the A-module C. One can then choose a surjection S — A from a polynomial
ring such that S<, maps isomorphically onto A. This shows how the results of this section

generalize §2.1.

In the setting of Theorem 5.5, since 7" is concise it follows from Lemma 3.1 that the
projections of A7}, to End(A), End(B), End(C) are one to one. This translates into the fact

that no nonzero element of AlTH annihilates A, B or C. The same is then true for A*, B*, C*.
5.2 Two new obstructions to minimal border rank

Lemma 5.7. Let T' € C" @ C™ @ C™ be concise, 111-sharp and of minimal border rank. Then

AT\, is smoothable.
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Proof. By 111-sharpness, the degeneration 7. — 1" from a minimal rank tensor induces a
family of triple intersection spaces, hence by semicontinuity it is enough to check for 7. of
rank m. By Example 4.5 each T, has 111-algebra [[;", C. Thus the 111-algebra of 7" is the

limit of algebras isomorphic to [, C, hence smoothable. [l

Recall from §2 that for m < 7 every algebra is smoothable.

As in section §2.1 view A7}, as a quotient of a fixed polynomial ring S. Then the A7 ;-

modules A, B, C become S-modules.

Lemma 5.8. Let T € C" @ C™ @ C™ be concise, 111-sharp and of minimal border rank. Then

the S-modules A, B, C lie in the principal component of the Quot scheme.

Proof. As in the proof above, the degeneration 7, — 7' from a minimal rank tensor induces a
family of A7;, and hence a family of S-modules A, B,, C,. These modules are semisimple

when 7 has minimal border rank by Example 2.1. [
Already for m = 4 there are S-modules outside the principal component [35, §6.1], [49].

Example 5.9. In [30, Example 5.3] the authors exhibit a 1 4-generic, End-closed, commuting
tuple of seven 7 X T-matrices that corresponds to a tensor T of border rank higher than minimal.
By Proposition 3.2 this tensor is 111-sharp. However, the associated module C' is not in the
principal component, in fact it is a smooth point of another (elementary) component. This can
be verified using Biatynicki-Birula decomposition, as in [35, Proposition 5.5]. The proof of
non-minimality of border rank in [16, Example 5.3] used different methods. We note that the

tensor associated to this tuple does not satisfy all p = 1 Koszul flattenings.
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6. CONDITIONS WHERE TENSORS OF BOUNDED RANK FAIL TO BE CONCISE

In this section we investigate all the implication of conciseness on 7'(A*). The main result
we prove in the section is, if a 5 x 5 x 5 tensor 7" is concise and 1-degenerate then in 7'(A*) (or

in T'(B*) or T'(C*)) there exist an element of rank 4.

Proposition 6.1. Let T € C° @ C® ® C® be such that the matrices in T (A*) have the shape

e} =} =] e}
o
o
*
*

If T is concise, then T (C*) contains a matrix of rank at least 4.

Proof. Write the elements of T'(A*) as matrices

0 =
K; = € Hom(B*,C) fori=1,2,...,5
U; *
where u; € C®. Suppose T is concise. Then the joint kernel of (K, ..., K;5) is zero, so
uy,...,us span C3. After a change of coordinates we may assume w;, us, us are linearly

independent while u4 = 0, us = 0. Since K4 # 0, choose a vector v € C* such that - K # 0.
Choose ¢ € C such that (5 + £7) - K4 # 0. Note that T'(75) : B* — A has matrix whose rows

are the last rows of K, ..., K5. We claim that the matrix T'(y5 + £7v): B* — A has rank at
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least four. Indeed, this matrix can be written as

Uy x *
Uy * *
uz *
0 (15+87) - Ky
0 = *
This concludes the proof. [

Proposition 6.2. Let T € A® BRC with m = 5 be a concise tensor. Then one of its associated

spaces of matrices contains a full rank or corank one matrix.

Proof. Suppose that T'(A*) is of bounded rank three. We use [47, Theorem A] and its notation,

in particular = 3. By this theorem and conciseness, the matrices in the space 7'(A*) have the

shape
* X x
* Y 0
* 0 0

where the starred part consists of p rows and ¢ columns, for some p,q > 0, and ) forms
a primitive space of bounded rank at most 3 — p — ¢. Furthermore, since r + 1 < m and
r < 2+ 2, by [47, Theorem A, “Moreover” part] we see that 7'(A*) is not primitive itself,
hence at least one of p, g is positive. If just one is positive, say p, then by conciseness ) spans
5 — p rows and bounded rank 3 — p, which again contradicts [47, Theorem A, “Moreover”]. If
both are positive, we have p = ¢ = 1 and ) is of bounded rank one, so by [50, Lemma 2], up

to coordinate change, after transposing 7'( A*) has the shape as in Proposition 6.2. ]

Proposition 6.3. In the setting of Proposition 3.3, write T' = a1 @ X1 + -+ + Q1 @ X1 €
C"leCrleCm! = AC"®C, where x, = Idc.. If T is 1-degenerate, then T" is

1o+ and 1¢c/-degenerate.

Proof. Say T" is 1¢+-generic with 77(¢’) of rank m — 1. Then T'(¢’ + Au*) has rank m for

almost all A € C, contradicting 1-degeneracy. The 1./-generic case is similar. U
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Corollary 6.4. In the setting of Proposition 6.3, the module C' associated to T'(A”) via the
ADHM correspondence as in §2.1 cannot be generated by a single element. Similarly, the

module C"" associated to (T'(A’™))* cannot be generated by a single element.

Proof. By Proposition 2.3 the module C” is generated by a single element if and only if 7" is
1cr+-generic. The claim follows from Proposition 6.3. The second assertion follows similarly

since 1" is not 1¢/-generic. [
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7. PROOF OF THEOREM 1.10 IN THE 1-DEGENERATE CASE AND THEOREM 1.11

Throughout this section T' € C° @ C® ® C? is a concise 1-degenerate 111-abundant tensor.
We use the notation of Proposition 3.3 throughout this section.

We begin, in §7.1 with a few preliminary results. We then, in §7.2 prove a variant of the
m = 5 classification result under a more restricted notion of isomorphism and only require
111-abundance. Then the m = 5 classification of corank one 111-abundant tensors follows
easily in §7.3 as does the orbit closure containment in §7.4. Finally we give two proofs that

these tensors are of minimal border rank in §7.5.
7.1 Preliminary results

We first classify admissible three dimensional spaces of 4 Xx 4 matrices
(X9,X%3,%4) C End(C*). One could proceed by using the classification [17, §3] of abelian
subspaces of End(C*) and then impose the additional conditions of Proposition 3.3. We

instead utilize ideas from the ADHM correspondence to obtain a short, self-contained proof.

Proposition 7.1. Let (x; = Idy, X5, X3,%X4) C End(C*) be a 4-dimensional subspace spanned
by pairwise commuting matrices. Suppose there exist nonzero subspaces V,W C C* with
V @& W = C* which are preserved 