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ABSTRACT

The electric grid is the backbone of modern society, providing an essential service that powers

our homes, businesses, and industries. These intricate networks of power generation, transmis-

sion, and distribution work tirelessly to deliver reliable and uninterrupted electrical energy to meet

the ever-growing demands of our technologically advanced world. Over the past three decades,

extreme weather events such as hurricanes, floods, and droughts have historically increased in fre-

quency. In power systems, these events can lead to service disruptions due to damage to equipment

or failures in the network, resulting in outages or blackouts. While it is impossible to prepare for

every scenario, understanding and modeling the characteristics of the grid under the influence of

these events can help reduce downtime. High impact events, such as natural disasters and cyber-

attacks, are known to cause outages lasting anywhere from minutes to several days, affecting the

electric grid’s infrastructure and delaying restoration efforts. It takes power to generate power; this

is particularly important after a blackout. For a restoration to be successful following partial or

total system outages, a restoration plan must be organized, put into action, and tested as required

by reliability organizations. Restoring load after a prolonged interruption—generally referred to

as cold load pickup—requires additional power which can exceed equipment’s rating and restricts

grid operators from simultaneously re-energizing the affected area. Demand after an outage is

typically leads to cold load conditions. The additional power needed is caused by thermostatically

controlled loads (TCL) which commonly have a temperature set by the end-user and is referred to

as cold load; the naming is due to the equipment being "cold" or offline for a prolonged period.

When energizing cold load takes place, this procedure is generally described as cold load pickup

(CLPU). Modeling cold load is highly complex and dependent on various factors such as load type,

cause of outage, duration, and weather conditions. This thesis focuses on applying an end-use load

model to investigate cold load demand after a blackout. By using a state-space model, independent

load characteristics present when interruption occurs can be captured for unpredictable outages

based on system status and historical demand under normal conditions. Through the use of a load
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accumulation state variable, excess demand is determined based on outage duration where local

limitations can be set by utilities to fine tune actions to optimize restoration. Characteristic param-

eters were determined through sensitivity studies based on data from recorded blackstart events.

By applying the proposed model to a restoration test case, we can determine the effects energizing

cold load have on the system to assess grid operator’s flexibility during blackstart restorations. A

synthetic case is constructed with restoration performed for a baseline study as well as the study

where cold load is considered. The model proposed is applied to demonstrate the considerations

needed when formulating restoration procedures that meet federal regulatory organization require-

ments. The model is applied in this paper for integration into synthetic grids for blackout studies.

Initial results remain consistent with prior work and available data, and show the effects of some

of the factors affecting demand. With the ability to provide accurate load predictions, cold load

data can be integrated into synthetic grids to simulate blackout restorations that reflect impacts of

outages on the grid.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The electric grid is the backbone of modern society, providing an essential service that powers

our homes, businesses, and industries. These intricate networks of power generation, transmission,

and distribution work tirelessly to deliver reliable and uninterrupted electrical energy to meet the

ever-growing demands of our technologically advanced world. The electric grid, comprising of

interconnected power systems, forms a complex network of infrastructure that spans vast distances,

serving millions of customers.

The electric grid can be categorized into three different system types: generation, transmis-

sion and distribution. Bulk power systems are large electric systems comprised of generation and

transmission networks; the remaining portion is the distribution system which operates at a lower

voltage. In the United States, they are organized into three major interconnections: the Eastern

Interconnection, the Western Interconnection, and the Electric Reliability Council of Texas (ER-

COT). Within each of these interconnections are smaller, local networks with multiple pathways

for power to flow from generation to load centers to minimize loss of service in case of local

failures. These large sections of the grid operate to enable seamless flow of electricity across the

multiple smaller areas within each region. To ensure reliable and secure operation of these inter-

connections, various reliability organizations and entities play critical roles in overseeing and co-

ordinating power system activities. The North American Electric Reliability Corporation (NERC)

is a non-profit international regulatory authority that oversees all interconnected power systems in

North America, including Canada and parts of Mexico.

The Eastern Interconnection covers a vast area spanning the eastern part of the United States

and Canada. It encompasses numerous utilities, transmission operators, and balancing authorities

working together to ensure the reliable transmission of electricity across the interconnected grid.

Similarly, the Western Interconnection spans the western part of the United States and extends
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Figure 1.1: The three major interconnects in the U.S. Modified from [1].

into Canada and parts of Mexico. It consists of multiple utilities, transmission operators, and bal-

ancing authorities working in coordination to maintain grid reliability. The Western Electricity

Coordinating Council (WECC) serves as the reliability organization for this interconnection, re-

sponsible for promoting the reliability and effective operation of the Western Interconnection’s

power system. WECC develops and enforces reliability standards, facilitates system planning, and

coordinates emergency preparedness and response efforts across its vast jurisdiction.

In contrast to the Eastern and Western Interconnections, ERCOT operates as an independent

grid entity in the state of Texas. ERCOT is responsible for managing the flow of electric power
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to more than 25 million customers, covering approximately 90% of the load in Texas. As the

reliability coordinator for its region, ERCOT oversees the reliable operation of the electric grid

within its jurisdiction. It coordinates the real-time balancing of electricity supply and demand,

manages transmission constraints, and implements emergency procedures to ensure grid reliability

and stability.

The intricate web of interconnections, reliability organizations, utilities, transmission opera-

tors, and balancing authorities exemplifies the complexity of the U.S. power grid. The collabora-

tion and coordination among these entities are essential to maintain a resilient and reliable supply

of electricity across the nation. Maintaining and operating this complex network comes with sev-

eral challenges, some of which require preparation and planning for uncertain events.

One of the main goals of an electric power system is to economically and reliably maintain

a balance between generation and demand, responding to disturbances with minimal casualties.

Even with redundancy and careful planning, high impact low frequency (HILF) events, such as nat-

ural disasters, equipment failures, operator errors, and cyber-attacks can and have caused outages

lasting anywhere from minutes to days [4]. One example is the February 13-17, 2021 winter storm

(unofficially named Uri) was an extreme weather event that affected the United States, Canada, and

Northern Mexico and forced utility companies in Texas’ interconnect to conduct controlled outages

in order to prevent a complete collapse on the grid [5]. Aside from Texas having a significantly

higher peak demand due to extended low temperatures, the winter storm also affected oil wells,

wind turbines, and generators, limiting the amount of resources readily available for dispatch [6].

In North America, NERC oversees transmission and reliability coordinators and works with

stakeholders to develop standards for proficient power systems operation. NERC requires all sys-

tem operators to have restoration planning and testing in preparation for unpredictable high impact

events [7] so that when counter measures fail, the grid can return to normal operation. Regardless

of the severity and length of an outage, service restoration must consider abnormal system condi-

tions that extend from small disturbances to extreme cases of a full system outage. For residential

areas with high concentrations of thermostatically controlled end-use loads (TCL), service restora-
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tion can result in higher demand after outages as short as 10 minutes [4]. For blackstart studies,

TCLs are one of the main contributors to cold load, which come in the form of water heaters,

electric furnaces, air conditioning units, etc. These types of loads have on-off cycles that normally

operate diversely, or independently to maintain a range set by the end-user [8] and make up the

majority of residential demand [9]. Determining factors affecting higher demand after extreme

events can help formulate accurate models for extreme events [10].

The contribution of this thesis is on implementing a cold load model to a blackstart scenario,

following methodology in [11], to explore the impact of power system restoration for cold load

pick-up—increasing the number of test cases available for blackstart scenarios will help expand

ongoing studies in power system restoration. A test system that behaves identical to its realis-

tic counterpart, with the use of a cold load pick-up model, can help grid operators identify and

determine some of the obstacles present during restoration.
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2. BACKGROUND*

2.1 The Impact of Weather in Power Systems

Over the past three decades, extreme weather events such as hurricanes, floods, and droughts 

have historically increased in frequency. The severity of these events can be categorized into five 

levels: small impact, moderate, sesrious, major, and extreme. In power systems, these events 

can lead to service disruptions due to damage to equipment or failures in the network, resulting 

in outages or blackouts. The classification i s based on factors such as the number of customers 

affected, as well as the duration and frequency of the blackout. In the United States, the financial 

impact of weather-related blackouts varies between $20-$55 billion annually [12]. Table 2.1 shows 

a list of the most recent blackouts in North America.

Table 2.1: Significant blackouts in North America in the 21st century. Adapted from [3].

Date Country/Region Outage Cause Affected People
(Millions) Duration

February 2021 USA Loss of generation due to cold weather 4.5 4 days

December 2018 Canada High winds (up to 100km/h) 0.6 4 h

September 2017 USA Hurricanes Irma and Maria 6.7 10 days

March 2017 USA High winds (up to 100km/h) 1 9 days

October 2012 USA Hurricane Sandy 8 8 days

September 2011 USA
Cascading failure caused by loss of

500 kV line and subsequent operator error 2.7 12 h

August 2003 USA, Canada
Series of faults by tree falls on power lines

in combination with human error 55 4 days

While blackouts don’t occur often, the societal and economic impact validate the investment of

both financial resources and time in preparing for system restoration after such events.

* ©2022 IEEE. Reprinted, with permission from, J.J. Penaranda and A.B. Birchfield, "Application and Parameter
Sensitivities of a State-Space Cold Load Pickup Model for a Synthetic Restoration Test Case," North American Power
Symposium (NAPS), 2022.
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2.2 Modeling The Electric Grid

In the early stages of power systems analysis, modeling primarily relied on analytical methods,

which involved manual calculations and the use of physical modeling boards known as AC network

analyzers [13]. One of the earliest computer simulation tools available was the Electro-Magnetic

Transient Program (EMTP) [14], which utilized numerical methods to solve transient network

analysis problems. This initial software tool allowed the research community to expand simulation

capabilities to other areas by creating mathematical representations of the grid that computers

could solve [15, 16].

As computer technology advanced and limitations in simulation software, such as memory

capacity or processor capabilities, were overcome, more complex models became possible, leading

to improved digital representations of the electric grid.

Simultaneously, the electric grid itself has evolved in response to the needs of society and

newly available technologies. With both the grid and readily available technologies continually

changing and improving, power system tools must keep pace with these changes. Synthetic test

cases have emerged as a tool for comparing different algorithms and techniques in power system

studies. To protect the sensitive information of actual electric grids, the research community has

created fictitious models that statistically behave like realistic systems without exposing any critical

details.

Ongoing contributions have made test cases more accessible to the public, enabling investi-

gations into various aspects of power systems. Notable work has provided validation metrics,

strategies, and sensitivity analysis for large synthetic cases, which are publicly available for use by

the research community [17, 18, 19].

To examine the impact of cold load, a base case from [11] was utilized for the work presented in

this thesis. This approach allows for exploring the effects of power system restoration during cold

load pick-up, which is a condition that arises when power is restored after prolonged outages. Pre-

vious studies on blackstart scenarios have used existing test systems [20], modified versions [21],

or large cases [22] for validation, while some studies have implemented their work on actual grids
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[23]. Despite significant progress in addressing challenges related to blackstart scenarios, there is

still a need for public test systems. Authors in [11] have developed strategies to construct public

test cases for blackstart studies, as well as a synthetic case that can be used for benchmarking.

By using a realistic test system and incorporating a cold load pick-up model, grid operators can

identify and assess uncertainties that occur during abnormal states of the grid caused by extreme

events. The remainder of this section will breakdown multiple areas of models and tools as they

relate to blackstart.

2.3 Load Modeling

In transmission studies, load behavior is difficult to represent accurately due to the large num-

ber and types of loads present on the grid at any given time. It is common for large cases to

contain over 7000 buses. Including factors such as temperature and seasonality, the model in-

creases in complexity. One of the main challenges of accurately modeling load behavior is due

to the large number and types of loads present on the grid at any given time. Load modeling is

widely known and been studied extensively [24, 25, 18, 26]. Load models generally fit into two

categories: component-based or measurement-based and can be static or dynamic depending on

the type of study. Component, or physical based models consider the physical behavior of loads

to construct mathematical formulas based on these patterns. Measurement-based models make use

of multiple data-sets obtained from measuring equipment to build a model based on the data-set.

Measurement-based models tend to have higher accuracy but may not perform as well outside the

area where the data originated. For blackstart studies, the majority of demand comes from end-

user residential loads susceptible to weather conditions. Therefore, using a measurement-based

model cannot be easily applied to multiple locations [24], which makes physical models adequate

for studying CLPU characteristics [4].

During the February 2021 storm in Texas, customers faced power outages that varied in du-

ration, ranging from short periods to multiple days without electricity. Although load curtailment

measures helped mitigate the severity of this event, outrages resulting in cold load conditions could

not be avoided entirely. Figure 2.1 shows the storm’s impact extended beyond ERCOT to neigh-
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bouring interconnects which ultimately affected the majority of the state. Cold load conditions

have been extensively studied in literature for several decades [27]. However, due to the limited

availability of real-world data resulting from the low probability of complete system blackouts,

modeling cold-load conditions remains a challenging problem to investigate.

Figure 2.1: Outages during winter storm Uri in Texas; adapted from [2].
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2.4 Cold Load Models

Early studies on the effects of cold load began with a physical-based model of heating com-

ponents caused by a cold weather outage [28]. This fundamental study describes space areas as

heating zones and estimates an aggregate power flowing into multiple households in a residential

sector. The principle behind this model is behind the temperature decrease inside a home affected

by an outage, changing the duty cycle of heating equipment. The analytical expression describes

the continued energized behavior of loads within a network and identifies the key components to

accurately represent the increased demand. The purpose of the study was to focus on the perspec-

tive of a utility company operating the grid with load under this condition. Applying an accurate

model to predict network conditions helps utility companies reduce restoration time [11].

The entire process of cold load pickup can be described in four phases which consist of in-rush

current, motor starting, motor running, and an enduring phase, with each phase taking place in

different time-frames [29]. While the enduring phase is the main focus of this paper, we review

the first three phases below. During restoration, inrush, or cold load current, is one of the main

factors that initially affect load when energized. Depending on the type of load being picked up,

the current’s magnitude can reach up to 15 times normal values; this effect is only present for a

short amount of time but can cause delays in restoration [30]. The effects of inrush currents would

be studied by transient stability analysis with a model such as [31], but transient stability models

do not cover the CLPU enduring phase dominated by TCLs. Table I shows the characteristics of

in-rush currents when energizing loads which come into effect the moment cold load is energized.

Load variation during CLPU starts the moment a feeder is energized and can last for several

hours, depending on the severity of factors leading to the outage. Three of the four CLPU phases

occur within the first 3-5 seconds and are common in transient stability studies. The work presented

focuses on developing a static load model for the last phase of the load under CLPU characteristics

which take effect in the range of minutes to hours.
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Table 2.2: In-rush Current Effects.

Type of load in-rush current
(multiple of normal value) time-frame

Incandescent lighting
and small motors 10 miliseconds

End-user
controlled (TCL’s) 10-15 half a second

Large Motors 5-6 seconds
Endurance Phase 3-5 seconds to minutes

2.4.1 Previous Work

The exponential decay model closely matches previously recorded CLPU events and can be

used to describe load behavior more accurately by the use of a general model [32] and is used in

[29] to determine voltage levels. The formulation is described as follows:

S(t) =



SN , if t ≤ TB

0, if TB < t ≤ TR

SCLPU , if TR < t ≤ TN

SD if t > TN

(2.1)

Where: SD = SN + (SCLPU − SN) · e−α(t−TN )

SD is exponentially decaying load, SN is normal load should there be no outage, SCLPU is peak

load under CLPU, TB is time of blackout, TR is restoration time, TN is time load begins to normal-

ize, and α is the rate of decay of the load.

The delayed exponential model accurately matches demand by identifying a peak CLPU mag-

nitude, a duration of the peak, followed by an exponential decay as shown in Figure 2.2. The work

proposed focuses on the fourth CLPU phase and built a simple expression for quantifying the peak

and duration of CLPU demand.
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Figure 2.2: CLPU Model as Delayed Exponent.

2.4.2 Measurement-based Modeling

Substantial improvements in the grid have increased data fidelity with the addition of smart

meter measuring equipment. Measurement data was used in [8] to build a model focusing on

predicting residential demand of cold load. The model is composed of two layers which are at

the feeder level and at the end-user level. At the feeder level, the ratio of cold load to normal

(diversified) load was found using a least squares support vector machine auto-regression model.

A stochastic technique is used for the second layer to determine end-user behavior and loss in

diversity. The method proposed was able to accurately estimate cold load for the data-set the model

was trained on with only requiring access to historical CLPU data which is easily accessible to

utility companies. However, with limited CLPU data available, results could not be fully verified.

Another concern is the requirement for this method to be updated with any changes made to the
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power distribution system.

2.4.3 Voltage Drop Modeling

Load flow analysis allows planners to see power and voltages being handled by electrical com-

ponents to determine which equipment best provides reliable service at the lowest cost. Using

the formulation in (3.7) [28], voltage drop calculations were included in [29] to determine lev-

els at which equipment’s life or performance would be affected. Taking into account commonly

used step-wise restoration procedures, algorithms were used to determine component selection

for system planners in order to mitigate CLPU effects; a similar approach was used to determine

choosing a transformer’s size. A case study was conducted but the case used did not represent an

actual network on the grid.

2.4.4 Multi-State Models

Load models generally do not differentiate end-use loads but instead make use of a simpli-

fied model when representing demand. By combining a ZIP and physical-based load models, the

authors in [33] formulate an end-use load model that consists of multiple states corresponding to

different operational state and energy consumption. Each state uses a zip and/or a physical model

with transitions to account for outside factors, such as heating from the sun, to determine the de-

mand in a household. These states operate within defined set points and change depending on the

temperature inside a home falling below or above their perspective set point. Different case studies

were conducted to highlight the comparisons between existing end-use models and the proposed

multi-state model. The model currently requires solving coupled differential equations during sim-

ulations in order to determine load behavior. CLPU magnitude and duration were estimated in [4]

using this multi-state to account for end-use residential behavior.

2.5 Restoration

The objective of power system restoration is to restore power after an outage in the shortest

amount of time possible—in the case of a full system outage, this process is known as blackstart.

While outages generally occur in small sections of the grid and are not prolonged, blackouts are
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unpredictable, rare events where a wide-spread outage occurs on the system. There are three stages

that take place for during blackstart: planning for restart and integration, actions taken to maintain

critical loads online, and system restoration [34]. The process must be performed optimally while

considering contingencies for the degraded system. This time-critical process depends on network

topology, resources available, and state of the grid. Given the nature of blackouts, preparing for

unpredictable factors such as unserviceable areas or damaged equipment, restoration plans may

only serve as a guide to grid operators for recovery procedures [35]. In addition to operating the

grid in a degraded state, the majority of the recovery process is performed off-line due to inter-

dependent communication and monitoring systems, such as SCADA, not having back-up power

sources. The first phase begins with analyzing the grid’s condition to determine a course of action;

this may involve sending technicians to areas where equipment is damaged or no information is

known. Authors in [22] investigate how to improve restoration at a large-scale level by simultane-

ously optimizing management of repair technicians and DERs present in the grid. Other studies

make use of a resource management technique [23] to optimize the recovery and energizing phases

to account for unpredictable factors and utilize resources accordingly.

In the re-energizing phase generators are brought back online, an initial framework of the

system is energized, and load restoration is started. For loss of power in smaller sections of the

grid or a small number of generators tripping offline, power can be supplied from adjacent units

or unaffected areas. However, for cases of a full system outage, the majority of offline generators

will require external power to start up, increasing the restoration procedure’s complexity. Only a

small number of generators are capable of self-starting—these units are referred to as black start

units (BSUs). Maintaining and selecting BSUs varies for different grid operators but is a standard,

periodic procedure needed to account for regular changes or upgrades to infrastructure. ERCOT,

Texas’ reliability coordinator, awards biennial contracts for BSUs based on performance metrics to

produce 14–18 units for the state’s interconnect [36]. Notable efforts to reduce costs and improve

allocating BSUs have been made in [37] and [23]. One of the main challenges in the re-energizing

phase is optimizing the order of actions and network configuration that minimizes downtime given

13



the high number of unpredictable scenarios and limited resources.

Once an adequate starting point is identified and generators are online, load restoration be-

gins. Certain loads are considered critical and are given precedence for restoration. When loss of

power results in life-threatening conditions, data corruption, or system crashes, these key opera-

tions must be prioritized during the re-energizing phase; examples of critical loads are hospitals,

sewage plants, and airports. A restoration planning technique proposed in [38] was used to restore

critical loads while accounting for uncertainties with repair time activities affecting the recovery

phase. Prolonged outages will affect load behavior in the system, lead to higher demand than

forecasted, and potentially exceed equipment ratings which restrict a simultaneous restoration of

the grid [cite: vdrop?]. The starting condition of loads that are out of service for too long can

change from a hot-start to a cold-start, leading to the effect of cold load pick-up. These loads are

comprised of devices such as space heating and cooling, water pumps, fridges, and are referred

to as thermostatically controlled loads (TCL). After losing power for lengthened periods, temper-

atures from climate-controlled areas will have fallen outside user-set thresholds, leading to TCLs

becoming increasingly concentrated and uniform; this behavior can overload the transmission and

distribution equipment. Cold load pickup is the additional power required when reenergizing cold

load. Even with an optimal starting point, the effects of cold load restrict operators from restoring

load simultaneously.

Since demand will be very high when reenergizing, restoration is normally conducted by divid-

ing feeders into different sections, or islands with a respective BSU at the center. Considerations

and strategies involving islanding techniques were discussed in [39] and [40] as well as the use of

renewable energy sources that are continuously being added to the grid’s infrastructure. As already

discussed, TCLs that have on-off cycles and would otherwise operate diversely, or independently,

will now turn on together when energized; this characteristic in electric loads is the largest contrib-

utor to cold load pick-up [40] and makes up the majority of residential demand [9]. With limited

data and the rarity of blackouts, investigating the factors and developing methods that accurately

describe cold load remains a challenge in power system studies.
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Incrementing the number of open test systems will help fill the limited availability of synthetic

cases to improve ongoing studies in power system restoration. This paper proposes constructing a

case to assess the applicability of a cold load pick-up model [41] in order to benchmark restora-

tion techniques while accounting for load behaviour present after extreme events where the entire

system has lost load diversity. Preliminary results illustrate the additional resources needed when

accounting for increased demand due to cold load conditions present in the entire area prior to

returning the grid to normal conditions.

15



3. METHODOLOGY*

The focus of this study is to investigate the impact of cold load behavior on the grid during 

restoration after a full system outage. All methods discussed make use of publicly available data 

to ensure that properties such as network topology, equipment rating and types, and load profiles 

behave similar to the real grid. This section describes the test case properties, load modeling, how 

the cold load model was applied, and the restoration procedure.

3.1 Synthetic Test Case

Authors in [26] have proposed a general procedure for constructing synthetic test systems that 

behaves like the real grid representative of its area. A summary of the process is given in 3.1.

Table 3.1: Constructing Test Systems

Parameter Description

Devices
Generators, substations, or loads, are simulated
using mathematical models.

Operating
condition

A condition corresponding to a specific event is
determined based on the study in question.

System
Variables

Inputs are selected based on initial conditions and
set to match known values or an expected outcome.

Simulation
software Used to compute results for analysis.

Validation Performed using available data of the actual system.

The synthetic case in [11] was constructed from an existing case with the goal of accurately

representing the restoration process and level of control from grid operators; this case matches the

geographic footprint of Illinois and did not need any further adjustments.

* ©2022 IEEE. Reprinted, with permission from, J.J. Penaranda and A.B. Birchfield, "Application and Parameter
Sensitivities of a State-Space Cold Load Pickup Model for a Synthetic Restoration Test Case," North American Power
Symposium (NAPS), 2022.
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Notable characteristics of the case are as follow:

• To better represent the electric grid from a system operator’s perspective, loads are made

out of smaller blocks of 20MW or less which correspond to typical values in distribution

feeders.

• Units selected as BSUs for the test case should be geographically dispersed and close to

densely populated areas.

• Generators operate in 3 states depending on whether they are offline, starting up, or fully

operational.

• Transmission lines, generators, and loads can freely change status as necessary.

• With the exception of BSUs, the rest of the system is deenergized.

The use of this test case allows an initial assessment on the cold load pickup model and high-

lights the differences when restoration considers cold load for blackstart studies; results are dis-

cussed with details in

3.2 Accumulating Load Model

In this section, characteristic equations and parameters are formulated for the state-space model.

Three key parameters that contribute to cold load peaks are used to characterize restoration de-

mand. The first is outage duration which mainly affects load decay rate. The second is unique

to households on the network that affect the maximum demand needed to return load to normal

conditions and the rate of increment towards this value. The third is the magnitude of undiversified

demand to diversified demand which sets a peak value for load aggregated at the feeder level.

A state-space model is used to characterize the key parameters affecting load. State space mod-

els describe a dependence between the latent state variable and an observed input or measurement

which can be continuous or discrete; this technique allows observing the inherent load behavior

responses to blackouts separately. A similar approach was used in [33] to accurately predict load

demand and was later modified in [4] for CLPU modeling.
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Figure 3.1 shows a block diagram for the state-space model. Ut is a binary representation of

network status and Xt is the state variable which accounts for load accumulation or decay. The

outputs are expected CLPU demand Zt+1, and total accumulated load Xt+1; the accumulated load

from the previous state is used when updating a value for the next time step.

Ut

Xt Xt+1

Zt+1

SSM

Figure 3.1: State-space model for accumulating load.

From (2.1), a general expression describing exponentially decaying behavior is formulated. A

relationship between outage duration and increased demand was also observed in [42]:

Z(t) = A · e−at (3.1)

dZ

dt
= −a · A · e−at (3.2)

To account for total load accumulation, a state variable is constructed from 3.2. The model

takes as input P (t), the load demand under normal conditions:

Xt = X0 + P (t) (3.3)

3.3 State-Space Model

In order to capture the increasing and decreasing effects, (3.3) is modified to account for load

increasing and decreasing behaviors. Coefficients a0 and a2 account for the rates of increase and
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decrease respectively. Load increment uses a linear model and load decay uses an exponential

decay:

dX

dt
= a0 · P (t) (3.4)

When load accumulation decreases:

dX

dt
= −a2 ·X (3.5)

Rewriting state variable for increasing behavior results in:

Xt+1 = Xt · a0 · PN(t) (3.6)

and decreasing behavior:

Xt+1 = Xt − a2 ·Xt (3.7)

Total CLPU demand is a sum of accumulated and normal load:

PCLPU = P (t) + a1 ·X (3.8)

Where coefficient a1 accounts for historical load patterns in a home during winter. In [8],

recorded outage data revealed that while CLPU peak can reach values double of normal conditions,

restoration demand may be lower than historical peaks in some cases.

3.3.1 Load Model

A state space algorithm was used to represent cold load conditions. The model’s general pro-

cess is shown in 3.2. To estimate the power required during cold load enrgization, a state-space

model [41] is implemented to represent cold load conditions in TCLs. This model incorporates

the use of an accumulated load state variable that increases or decreases based on network status,
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adjusting as necessary.

start

check
network
status

outage?

calculate
accumu-

lated load

decompose
load

calculate
demand

load
restored?

stop

yes no

no

yes

Figure 3.2: Cold load algorithm.

Since each load type has its own unique characteristics, only residential loads were consid-

ered for this study. Approximately 20% of residential electric loads contribute to TCLs [ref: eia].

Therefore, the CLPU model must consider the electric devices affected under cold-load conditions.
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Extensive efforts have been made by NREL and research partners to develop synthetic load data

that realistically represents residential and commercial consumers [43]. This detailed model cap-

tures individual consumption from multiple components, making it compatible with the state-space

model used.

Since the cold load pickup model only accounts for active power, a constant power factor is

assumed for determining reactive power. While load modeling alone is a complex topic worthy

of its own study, this paper utilizes data from [43] to decompose load and account for cold load

conditions while retaining common characteristics observed in electric loads under any condition.

Load was decomposed into two categories based on component: TCL and non-TCL devices.

Non-TCL loads, such as lighting, remain unaffected by outages and continue to behave as they did

prior to the outage. TCL loads can have multiple operating states which can increase operating

time, consumption, or both. To preserve load profiles in households, all load data was normalized

using peak-load values during normal operation for a single household representative of the area.

The cold load model is applied to TCLs and combined with other load types to determine the

total consumption. Subsequently, this value is normalized as well. A ratio of cold load to normal

demand is used to represent the percentage demand relative to the peak load for a distribution

feeder. This approach facilitates scaling and implementation of demand for multiple scenarios,

where loads can be grouped based on similar characteristics, as is the case with residential loads.

It is important to note that even during a normal day with no interruptions, electric demand is

dependent on weather conditions, time of day, and season. Shown in 3.3 is demand during winter

storm Uri for the coast region of Texas, one of the eight weather zones ERCOT oversees. As

temperature fluctuations occur, demand increases or decreases accordingly. One key difference

is the large drop in demand during February 13th, which is when load shedding started; despite

the deliberate reduction in load, electric demand remained consistent in response to temperature

changes. Cold load condition has been studied extensively in literature, dating back to several

decades [27].
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Figure 3.3: Electric demand during winter storm Uri.

3.3.2 Restoration Scenario

As described in [ref: background], When external power sources are unavailable, restoration

utilizes BSUs located at specific points within the grid to form islands, serving as starting points

and providing auxiliary support for critical loads and to initiate generators.

To establish a general baseline for time, an initial assumption made is BSUs are fully started, al-

lowing restoration to begin. Furthermore, the applied cold load pickup model assumes that restora-

tion transients have settled and focuses on power flow studies of 15-minute time steps.

Restoration procedures typically follow multiple steps or milestones while optimizing for met-

rics such as time, cost, and equipment limitations. A restoration technique is adapted from [11]
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which aims to minimize the cost of load outages during power system restoration. This algorithm

consists of three stages: graph decomposition, target selection, and action selection; 3.4 describes

the algorithm’s general process. Simulation begins with BSUs starting the restoration process with

a selected network path defined based on resources available. Load is picked up based on its active

and reactive power depending on available generator capacity; critical loads and generators are

selected first. Generators will behave according to their operating states: offline, cranking, and

fully cranked. While cranking, generators act as a motor that consumes power until fully cranked.

Fully cranked units operate under normal conditions based on their physical capabilities. Limits

on transitions are set by generator capacities.

The restoration algorithm finds BSUs, creates islands at the bus of the selected units, finds

optimal paths to start reenergizing devices, and chooses actions depending on resources present.

A graph decomposition technique is used to form network islands. Paths between a generation

source and a deenergized generating unit are known as cranking paths. These cranking paths are

determined through a breadth first search algorithm where lower line susceptance is the preferred

path. During early restoration stages the grid is very fragile and voltage regulation is a main

concern. Actions account for a utility operator’s response based on information available during

the reenergizing phase; choices typically consists of picking up load, cranking up a generator,

switching a line on or off, or synchronizing islands. In addition to performing a restoration with

the cold load model, a second scenario is conducted without the model for comparison.

In the graph decomposition stage, the network graph is divided into islands using breadth-first

searches rooted at BSUs. The goal is to ensure that each bus is connected to the nearest black-

start unit in terms of electrical closeness measured by branch susceptance. This decomposition

creates a spanning forest with the BSU at its center, where minimal line capacitance is required for

energization.

In the target selection stage, restoration targets (loads and generators) are listed and prioritized

based on their importance. Critical loads have the highest priority, followed by generators and

remaining loads. The priority ordering takes into account required power to energize the target,
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Figure 3.4: Restoration algorithm.
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including cranking power for generators, as well as the reactive power generated by the lines along

the energizing path.

The action selection stage involves solving the full power flow solution iteratively to choose

restoration actions. Each island is given the opportunity to take an action based on the prioritized

targets. If load is picked up, the cold load demand is calculated. The cold load algorithm is applied

to each load at the bus prior to solving power flow. If an island cannot take an action, the next island

is given the opportunity. The chosen actions are based on the availability of reserve generation and

reactive power reserves.

During early restoration stages the grid is very fragile and voltage regulation is a main concern.

Actions account for a utility operator’s response based on available information: choices typically

consist of picking up load, cranking up a generator, or switching a line on or off. The goal is to

determine the impact of including cold load for restoration scenarios and provide a more realistic

load behavior to study the effectiveness of different restoration strategies.

3.4 Study Results

The first study was conducted to determine the model’s response and adjust parameters as

needed. The second study was a restoration scenario where the cold load model was applied in a

synthetic test case as discussed in methodology.

3.4.1 Load Model

The methods from studies in [42] and [44] consider identifying these parameters using load

measurement data collected from rotating interruptions. Generally, accurate load models met the

following criteria from findings in [44]:

• For a short outage, load should not be affected and diversity should start within minutes.

• After a longer outage, load diversity can take multiple hours to restore.

• For more severe cases where outages lasted a day or more, load diversity takes over 12 hours

to be reestablished.
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The first case study for the proposed model was conducted against recorded outage data in [4]

to determine values for load rate increment and decay. The outage lasted approximately 3 hours in

which load diversification took 40 minutes with a peak CLPU ratio of 1.49. Using the relationship

between outage duration and peak demand in (3.4), a value for a0, the rate of load increase, was

calculated to meet the criteria in [44]. Figure 3.5 shows the effects for different a values. The

y-axis is the ratio of undiversified demand and diversified load (normal conditions) and the x-axis

is minutes after outage.

Figure 3.5: Effects of Rate of Increase.

As discussed in [44], ratio of undiversified to diversified load ranges from less than 1.0 to

greater than 2.0, with values lower than 1 indicating that outages do not cause constraints. Ex-

tensive test case studies in [4] revealed that outage effects on load were lower during spring with
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simulation results showing an increase on CLPU peak values of 1.33 as the only response to an

outage. In all cases studied this parameter followed the general load response behavior to an out-

age.

Case 2 looks at the effects of multiple values of a2, load rate decay. As with case 1, a value for

a was calculated from the exponential decay relationship in (3.5) and data in [4]. It is important

to note that demand also depends on other factors such as temperature and equipment ratings.

Authors in [45] used a similar technique to show the effects of weather and substation ratings

to determine peak demand magnitudes and also concluded that load decay rate is not constant.

Simulation results agree with the findings in [45] on the tendency for piece-wise CLPU model in

[46] to predict a longer diversification period. Figure 3.6 shows results. As an indicator, the dashed

line shows the start time for normal conditions. Given that the diversification period increases with

outage duration, an inverse relationship between decay rates and outage duration can be observed.

3.4.2 System Parameters

Multiple limitations were included in the model to match physical characteristics of end-use

loads. Based on [47], at time of restoration CLPU peak will reach a maximum value of 2.5 which

will not be exceeded. The assumption is that restoration will not be performed in a single step due

to physical constraints in the grid. A limit is set for peak CLPU demand to meet this criterion:

Pmax ≤ 2.5 · PN (3.9)

Similarly, the state variable will reach a point in which load will not increase further regard-

less of the outage time. The state variable accounts for the extra demand needed to increase the

temperature in a household. To determine an initial maximum value, residential data from Pecan

Street was used to find the peak demand from end-use load profiles of 18 homes in Austin during

winter peak:

Xt ≤ Ppeak (3.10)
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Figure 3.6: Load Rate Decay Effects.

The model calculates end-use demand to be aggregated at a feeder level. Determining which

values best fit the model depends on factors unique to the types of load on each network. An

assumption made is that load characteristics, such as rate of decay, are identical from one household

to the next. Settings for model parameters can be specified by utility companies to accommodate

the characteristics of load profiles to their respective area of service [28].

3.4.3 Outage Effects

In the last case multiple blackout duration periods were selected to observe the resulting ef-

fects. With all parameters specified in 3.4.2, results were validated with work performed and mea-

surement data in [45]. Figure 3.7 shows results for the different outage periods where maximum

physical load value was reached for all cases where outage lasted 4 hours or more, as expected.

The inconsistency shown is with the 30 minutes outage which has a CLPU ratio of 1.0. Further
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improvements to the model will include temperature parameters to better fit load behavior as well

as correctly determine peak demand for outages of shorter duration.

CLPU peak duration and diversification duration agreed with results in [45]. Load diversifica-

tion increased with outage duration, with the period increasing drastically for outages past 8 hours.

For a known comparison, load pattern can take more than 12 hours to return to normal conditions

for outages of such lengths. Load diversity start time increased in each instance where outage

duration also increased, agreeing with [8], [44]. Table 3.2 summarizes simulation results:

Table 3.2: Simulation Results for Outage Duration

Outage Duration
(hours)

CLPU Peak
Duration
(hours)

Diversification
Time

(hours)

CLPU
Ratio

0.5 0 0.27 1.0
4 0.03 1 2.5
8 0.3 1.9 2.5
12 3.37 12.8 2.5
24 5.28 14.7 2.5
36 5.81 15.2 2.5

3.4.4 Restoration

The objective in this paper is to determine model parameter values that are consistent with

known load behavior from literature and industry data. The methods from studies in [42] and

[44] consider identifying these parameters using load measurement data collected from rotating

interruptions. Generally, accurate load models met the following criteria from findings in [44]:

• For a short outage, load should not be affected and diversity should start within minutes.

• After a longer outage, load diversity can take multiple hours to restore.

• For more severe cases where outages lasted a day or more, load diversity takes over 12 hours

to be reestablished.
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Figure 3.7: Outage Duration Effects.

3.4.5 Restoration Under Cold-load

Results provided are for the severe case of an outage lasting 12 hours. 3.8 shows loads re-

stored over time where a prolonged restoration period is observed—this is nearly two hours longer

compared to not considering cold load pickup.

Blackstart is a highly intricate process due to the fact that no amount of planning can prepare

operators for every scenario possible. The operation of most extensive power plants, be it coal, gas,

or nuclear-powered, requires a significant amount of electricity. While this may appear contradic-

tory, it should be noted that the configurations and equipment differs across different plants. By

accounting for cold load pickup, grid operators can anticipate and plan for the temporary, abnormal

state of the grid after an outage. This enables them to allocate appropriate resources, such as gen-

erators and transformers, to handle the this additional demand effectively. Additionally, utilities

can communicate with customers to provide guidance to common procedures that help reduce the

impact of cold load.
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Figure 3.8: Number of loads restored over time.
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4. SUMMARY AND CONCLUSIONS*

4.1 Conclusion and Future Work

The baseline of an end-use cold load pickup model is introduced in the work presented. The 

proposed state-space model is capable of determining CLPU through the use of an accumulated 

load state variable that increases or decreases based on system status. Characteristic model pa-

rameters and their effects are identified and tested against previous studies and resulted in similar 

responses to an outage. This model was constructed to be integrated into large synthetic grids 

with the long-term objective of providing future studies for blackstart simulations. There are still 

several areas to further explore to improve the model’s accuracy. As mentioned in prior work, 

weather conditions as well as time of day highly influence cold load b ehavior. Further consider-

ations, specifically for weather, would be required to expand onto the existing model and include 

the relationship between demand and ambient temperature; this would likely apply for both hot 

and cold weather as an independent state. Making use of a small sample of residential households 

served as a starting point to determine a localized peak demand. The second consideration will 

need to account for load composition using a technique to formulate end-use behavior more ad-

equately as is typically described in a bottom-up load model. Since CLPU is highly dependent 

on several factors such as type of load, increasing details in the model can only further represent 

accurately the effects of prolonged outages as well as make distinctions between end-users and 

expected demand. The third consideration will be to simulate results on a synthetic case to study 

restoration scenarios and begin preparation on studying the effects of CLPU during power system 

transients caused by utility switching operations during restoration.

* ©2022 IEEE. Reprinted, with permission from, J.J. Penaranda and A.B. Birchfield, "Application and Parameter
Sensitivities of a State-Space Cold Load Pickup Model for a Synthetic Restoration Test Case," North American Power
Symposium (NAPS), 2022.
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