
SEMANTIC ROAD DETECTION FOR NON-IDEAL RURAL ROADWAYS WITH LIMITED

APRIORI MAPS

A Thesis

by

JONAS LOSSNER

Submitted to the Office of Graduate and Professional School of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Reza Langari

Committee Member, Xingyong Song

Committee Member, Swaminathan Gopalswamy

Head of Department, Reza Langari

August 2023

Major Subject: Engineering Technology (Mechatronics)

Copyright 2023 Jonas Lossner

ii

ABSTRACT

In this work we provide a system that has the ability to detect the entire road area ahead

and provide semantic information about where to move within that area for an autonomous

vehicle on a wide array of road types in rural environments. This approach combines current

state of the art image road segmentation, image lane detection and lidar ground segmentation

techniques by fusing the output of algorithms based on these techniques to produce a costmap to

be used by a local planner for motion planning and vehicle control.

One of the main goals of this thesis was to prove whether this is a sensible task given the

current state of the art in the relevant algorithms and computational resources, and to propose

improvements that address the limitations of this work. These limitations were determined by

applying the proposed system to the real-world driving scenarios in simulation and by evaluation

on a test vehicle driven on real public rural roadways.

We have presented a functional system that works within the assumptions and limitations

set, and shows higher accuracy results compared to the traditional approach.

iii

DEDICATION

I dedicate this work to the memory of Mr. James K. B. Nelson, whose generosity and

wisdom continue to inspire me.

iv

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Langari, and my committee members, Dr.

Gopalswamy, Dr. Song for their support throughout the course of this research and prior to this

research.

Finally, thanks to my family, Aggie family and friends who have supported me

throughout my time at Texas A&M University.

v

CONTRIBUTORS AND FUNDING SOURCES

No outside contributors collaborated on this work. Graduate study was supported by a

fellowship/stipend from Texas A&M University. This work was also made possible in part by

USDOT/TxDOT under USDOT Project Number 693JJ319NF00001 and TxDOT Project

Number 0-7099. Its contents are solely the responsibility of the author and do not represent the

official views of the UDOT/TxDOT.

vi

NOMENCLATURE

Algorithm a program that solves a specific task

CVAT Computer Vision Annotation Tool

HD Map High-Definition Map

ILD Image Lane Detection

IRS Image Road Detection

LGS Lidar Ground Segmentation

Mapless Navigation without the use of HD maps

Maplight Navigation with minimal roadway maps

MC Motion Control

Model machine learning model, defines a neural network to perform a task

MP Motion Planner

OSM Open Street Maps, Road Network Map

PSPNet Pyramid Scene Parsing Network

RANSAC Random Sample Consensus

RELLIS Campus Texas A&M Testing Facility

RNP Road Network Map

vii

ROS Robot Operating System, Open-Source Middleware

YOLO “You Only Look Once”, Image Object Detection Algorithm

TP True positive

FP False positive

FN False negative

Precision purity of positive detections relative to the ground truth.

Recall completeness of positive predictions relative to the ground truth

F1 relation between Precision and Recall

IoU Intersection over Union

m.IoU mean IoU

Acc Accuracy, percent of pixels in the image which were correctly classified

aAcc average Accuracy

mAcc mean Accuracy

viii

TABLE OF CONTENTS

Page

ABSTRACT ... ii

DEDICATION ... iii

ACKNOWLEDGEMENTS ... iv

CONTRIBUTORS AND FUNDING SOURCES ...v

NOMENCLATURE .. vi

TABLE OF CONTENTS .. viii

LIST OF FIGURES ...x

LIST OF TABLES ... xi

INTRODUCTION ...1

LITERATURE REVIEW ..3

PROBLEM IDENTIFICATION ...6

METHODS ..9

Image Lane Detection ... 9

Image Road Segmentation .. 11

Switching Models ... 12

Lidar Ground Segmentation .. 13

Sensor Fusion/Projection .. 15

Output ... 17

Image Detection Subsystem .. 19

Lidar Detection Subsystem ... 20

ix

Page

ASSUMPTIONS ..22

LIMITATIONS ..23

SIGNIFICANCE ..24

TIMELINE ..25

IMPLEMENTATION ANALYSIS ...26

CONCLUSION ..37

FUTURE WORK ...38

REFERENCES ..40

APPENDIX ..42

x

LIST OF FIGURES

Page

Figure 1: Lane Detection Output Example ... 11

Figure 2: Road Segmentation Example Output .. 12

Figure 3: Ground/Non-Ground Segmentation Output Example ... 14

Figure 4: Lidar-Camera Projection Equations .. 16

Figure 5: Costmap Output Example ... 18

Figure 6: Image Detection Subsystem .. 19

Figure 7: Lidar Detection Subsystem ... 20

Figure 8: Nvidia system monitor Output .. 27

Figure 9: Separated Model, marked .. 31

Figure 10: combined model .. 31

Figure 11: detected lane next to gravel road, combined model .. 32

Figure 12: Emergency lane, combined model .. 33

Figure 13: Overexposure, no detection, same for combined/separated models 34

Figure 14: Full system visualization ... 36

xi

LIST OF TABLES

Page

Table 1: Annotations ... 28

Table 2: LaneAtt Training Metrics ... 29

Table 3: MMSeg PSPNet Training Metrics .. 30

 1

INTRODUCTION

One of the most important challenges for autonomous vehicles is to find a traversable

path in whichever environment they may operate. This challenge is usually addressed by

providing the vehicle automation system with a High Definition (HD) map that includes

information about the environment in which the vehicle operates. HD maps can include lane

markings, speed limits, curbs and other important elements of the roadway that can assist the

automated vehicle to localize, navigate and guide itself along the road. HD maps are generally

complex, expensive to produce and must be regularly updated to reflect any changes in the

environment since vehicles using these maps rely heavily on the accuracy of the information

provided in the map.

The majority of autonomous (or high autonomy) vehicles at this time are operated on

well-structured roads with sufficient lane markings, namely freeways and arterial roadways.

Examples of this are Ford’s Blue Cruise and GM’s Super Cruise systems which can only operate

on a limited range of pre-mapped roadways at this time. Tesla claims to operate autonomously in

additional environments without being fully reliant on HD maps but appears to be using some

form of map , information on this is sparse and it cannot be determined whether these maps are

considered HD maps or not [1]. Maps used by Tesla provide information about stop signs, lane

direction and approximate lane location, but may include more. Waymo, Motional and

TuSimple, companies that have demonstrated driver-out autonomous driving, were only able to

achieve this by keeping extremely detailed maps of the driving environment alongside remote

operators who can intervene at any given moment. This approach is not feasible in areas with

 2

little traffic to keep HD maps up to date1 or poor cell reception (or lack stable means of

communication) to enable remote (human) operators to intervene. Other brands, such as Honda,

Subaru, among others, offer Advanced Drivers Assistance Systems (ADAS) to keep the vehicle

in lane but may not function effectively or disengage when the road curvature is narrow, or road

markings are obstructed.

Given this heavy reliance on a priori knowledge (c.f. in terms of HD maps) and the

current limitations of automated road detection, it is impossible to have the current generation of

automated vehicles operate in rural areas without endangering road users. The present study

attempts to address this important problem with a view to utilizing an efficient approach to

automated road detection that can be combined with minimal digital maps such as Open Street

Maps (OSM) toward facilitating automated driving on rural roadways. To this we started with a

brief review of literature followed by a formal identification and definition of the problem.

1
 The reason traffic density is mentioned is to signify that keeping maps up to date is not feasible as many rural roads are not

traveled enough to update a map at sufficient rates to account for any changes.

 3

LITERATURE REVIEW

Literature in the area of Autonomous Vehicles (AVs) is plentiful. Many papers discuss

perception and motion planning in urban, suburban or highway environments but fail to address

the specific case of rural roads. Unfortunately, there is little published work that shows major

progress in the area of mapless or maplight navigation. Mapless and maplight seemingly are used

almost interchangeably, mapless refers to the navigation without the use of HD maps, -less

meaning not High definition, giving no clear guideline of “Definition” of the map, maplight

specifically means use of only Road Network maps such as Google Maps or Open Street Maps.

Reference [8] is among the few in this area based on work completed at MIT in 2018. Using

Open Street Maps, Ort et. al, set out to create a system for mapless navigation (mapless refers to

not having HD, just basic a Road Network Map (RNP) similar to Google Maps) in rural areas

augmented with Lidar sensor data. The augmentation is in the form of an online lidar road

detection algorithm. This system goes one step further and covers the local planning component

of the Motion Planner (MP) as well as Motion Control (MC). In this initial work, the MIT team

used a parametric approach to find the road area using a texture-based approach

(smoothness/flatness of the road is usually significantly different from non-road areas) combined

with a RANSAC algorithm to find the road boundaries and calculate the optimal trajectory.

RANSAC, or random sampling consensus, is an algorithm that filters outliers by fitting all points

to a plane equation and rejects points based on certain thresholds, in this case resulting in the

lidar data to be filtered into road points that fit within the plane. This did not allow for

discrimination between lanes within the road (if applicable) and may not be able to sufficiently

 4

differentiate between road/non-road on gravel roads where this difference in texture may not be

apparent.

As a follow-up work, [9] built upon the knowledge gained from [8]. The road

segmentation approach was changed to utilize model-based Lidar segmentation rather than a

parametric approach. By a model, we mean a neural network that has been trained with a specific

set of annotated data and thus has learned a given task and can perform inference on data that it

has not been trained on. In this approach convolutional neural networks were trained to detect the

road area based on lidar data. While there was significant improvement, the system struggled to

correctly segment the road on up/down-hill roads and required a significant amount of annotated

data for these edge cases. Some additional work in this study included creating HD maps and

updating road network maps (RNP) using this method. Eventually, they downgraded their

localization system, instead of using a high quality RTK supported INS system, as RTK may not

always be available due to lack of communication means and cost associated with high quality

GPS devices, they relied solely on lidar supported odometry (vehicle data such as steering angle

and wheel speeds filtered with lidar odometry) which required some additional manipulation of

the data to correctly localize within the Open Street Map (OSM) environment.

Reference [10] gives a good overview of navigation methods albeit for a smaller robot:

Map based, Map-building and mapless. As we are planning on going mapless in the project that

has supported this work, I focus only on this area. In their review, the authors of Reference [1]

mainly focus on image/visual based methods. This focuses mainly on navigating in an open area

with the main goal being to avoid objects through optical flow, appearance-based methods or

direct object recognition combined with feature tracking. Although this does not directly apply to

 5

our proposed method, one of their conclusions is that there are few mapless navigation strategies

that have been shown to be successful but vision-based approaches show a large potential that is

currently still untapped.

Reference [11] proposes camera and Lidar fusion in order to create a semantic 3D Map

(HD Map) - although they produce a High Definition Map as their output, and not directly for

processing on the vehicle for online control decisions, in structured, urban environments, the

method behind the system is quite similar to our proposed fusion method. While they only focus

on semantic segmentation of the road, objects, sidewalks, light poles, etc. but not segmentation

of the road area itself they were able to show very good results in creating meaningful 3D maps.

One major drawback mentioned in this reference is that the quality of their 3D map decreases

when focusing on minimizing runtime which is due to the process of creating the 3D map in the

first place and the specific algorithms used in parsing the Lidar data. Compared to this - as our

system will only use a basic Lidar processing algorithm and not create high-quality 3D maps we

can provide quicker runtime.

Reference [12], as part of their lane detection system, sets forth the idea that lanes need to

be predicted ahead of what is visible to the vision system. While valid, by using a simple Road

Network Map, we would be able to extract information much further ahead than any prediction

algorithm would be able to with similar if not better accuracy and as we will not be extracting

lanes but a costmap this is much more straightforward. A costmap is a predefined area divided

into smaller grids around the vehicle which are assigned a weight between 0 and 1, 0 signifying

no cost to traverse, 1 showing that area is not traversable/has a very high cost.

 6

PROBLEM IDENTIFICATION

Many rural roads are poorly marked, have minimal signature and are not well maintained.

In general, we define roads into two different categories: Marked and Unmarked. These can be

further divided into: Well Marked & Well Paved (WMWP), Poorly Marked & Poorly Paved

(PMPP), Unmarked & Paved (UMP), Unmarked & Unpaved (UMUP). This thesis limits

categorization to two categories, combining WMWP and PMPP, as well as combining UMP and

UMUP. During the annotation process we noted that many of the WMWP and PMPP roads had

similar structure and features that may not be easily distinguished by the neural networks we

aimed to train. This is the same case for UMP and UMUP. Thus we decided to combine these

together.

As noted above, given their location and limited traffic use - keeping HD maps of rural roads up

to date is not feasible. Additionally, some of these roads are not paved - often constructed of

gravel and are prone to corrugation - which can lead to changing road structure over time,

especially during or after heavy rain. This means that a system needs to be developed that can

detect the roadway ahead with minimal a priori knowledge and which is capable of not only

detecting the traversable area but also is able to semantically determine where within that area is

the most appropriate path to follow.

We have explored several different lane detection algorithms, many of which have been

trained and evaluated on large datasets such as CULANE [15], TuSimple [16] or Llamas [14] -

all of which encompass a large variety of roadways but in practice fail to detect lanes at a

reasonable level of accuracy on our test routes, both in the well paved & well marked case as

well as the unmarked & unpaved case.

 7

CULANE is a traffic lane detection dataset created in 2018 that encompasses a wide range

of roads in urban and suburban environments in Beijing. Their format is accepted by many

algorithms to train lane detection models. We have used the dataset for initial training and

evaluation, and have adopted their format for our own dataset. This dataset includes 133,235

images, just under 100,000 of them having annotations.

The TuSimple Dataset was created as part of the TuSimple Benchmark and challenge

competition. It encompasses lane detections for highways with different traffic densities. This

dataset has 10,000 images.

Llamas, the Labeled Lane Markers Dataset, was created by Bosch in 2019, and consists

of 100,000 annotated images. This dataset was created as part of their benchmark.

All of the previously mentioned benchmarks and their rankings of different lane detection

algorithms were used to decide which algorithm we would adopt for this work.

We have also explored several different road segmentation algorithms which have been

trained and evaluated on the KITTI dataset [17] which while performing better than the

aforementioned Lane Detection algorithms on a broader array of road types still struggled to

perform accurately on our test routes.

The KITTI dataset [17] was created by the Karlsruhe Institute of Technology as part of

their Vision Benchmark Suite for stereo, optical flow, visual odometry, 3D object detection and

3D tracking. It provides raw data, as well as annotated data to benchmark algorithms for the

tasks mentioned prior. We used the dataset to train road segmentation algorithms and evaluated

them on our own data.

 8

In spite of these limitations, we believe that the current state-of-the-art Image Lane

Detection (ILD) and Image Road Segmentation (IRS) algorithms can be fused to cover a broad

array of roads without the need for HD maps. Specifically, we propose a model-switching multi-

step fusion of ILD, IRS and Lidar Ground Segmentation (LGS) algorithms based on their

respective confidence levels along with some limited a priori information through publicly

accessible maps such as Open Street Maps (OSM). The idea is that an outside global path

planner can use the basic map information to give our fusion system an initial path/direction as

well as some information on potential intersections similar to how human drivers utilize a

navigation system such as those commonly available in mobile apps or specialized GPS based

devices. Furthermore, this approach provides a contingency base in case all sensors fail to detect

the road with sufficient confidence, which can happen in mountainous environments where a

significant part of the roadway may not be visible to the sensors - for example driving up a hill

will obstruct the road on the downhill portion of the roadway. Additionally, this may allow for

emergency pull-over in case the system fails to detect any road boundaries. Given that OSM does

not supply sufficient information as to the width of the road or what may be to the side of the

road, it may not be safe to use for a pull-over maneuver and thus may not work in many cases.

 9

METHODS

We consider three main detection algorithms: Image Road Segmentation (IRS) through

mm-segmentation [6], Image Lane Detection (ILD) through LaneAtt, [2] and [3], and Lidar

Ground Segmentation (LGS) through Segmenters_lib which is referenced in [4],[5] and

[13].

Image Lane Detection

For obvious reasons, a lane detection algorithm traditionally does not work when there

are no lane markings as many approaches (parametric or model-based) specifically look for the

lane marking itself (such as Hough-transform and Canny edge-detection [18]). LaneAtt is

strictly speaking not a traditional ILD algorithm but, similarly to Yolo (You Only Look Once)

[19], detects features in imagery by utilizing a single-stage model. During training, the model

learns to combine local and global features which allows it to detect occluded lanes or lanes

without proper lane markings. Through testing on our own data sets, we have seen that on well-

marked & well paved roads, a LaneAtt model trained on the CULANE dataset performs close to

correct with only few false-negatives or incomplete detections, meaning it detects a lane but

much shorter than the actual lane in the image. We have also found that with the standard

datasets it cannot detect any lanes on gravel roads. However, by adding several hundred frames

of gravel road with our own annotations we were able to detect large portions of our test area at

the RELLIS Campus that are unmarked & unpaved (gravel road). By adding custom frames of

the gravel road, overall accuracy decreases on well-marked roads which makes the case for why

one likely needs separate models that are specialized for the different types of roads. This is the

essence of our approach in this work. In order to create a custom dataset, we utilized CVAT

 10

(Computer Vision Annotation Tool) [22] and developed a Python script to convert the CVAT

format into the CULANE format [15]. CULANE is a dataset that was created in 2018 and its image

annotation format is easy to use and accepted by many lane detection algorithms for training

purposes. Thus, we decided to use this format for our own annotations as they could be reused

for future works on other algorithms.

The aforementioned approach shows that the LaneATT, lane detection model can be

trained to detect lanes on the best-case and worst-case road types. We have also tested the cases

in between when there are poor markings with good pavement or poor to no markings coupled

with poor pavement and confirmed that we are able to train the algorithm using our own

sufficiently annotated datasets to perform the task well. Figure 1 shows lane detection through

LaneAtt. The blue lines represent the detected lane marking. While these are not absolutely

correct they are close to the true lines. Additionally, it is important to highlight that in the center

of the road only one line is detected - this is due to the fact that a double yellow line represents a

centerline and as such is automatically combined into one line by the LaneAtt, lane detection

model.

 11

Figure 1: Lane Detection Output Example

Image Road Segmentation

Image Road Segmentation (IRS) works well in many scenarios and on many different

road types but has one drawback as it does not classify the segmented road by any metric,

meaning there is no discrimination between lanes, a driveway or emergency lane. This means

that road segmentation identifies any area that can be considered road/traversable which can be

useful for emergency maneuvers, such as swerving to avoid an obstacle. The point here is that

this shows the need for using both lane detection and road segmentation in parallel to provide

sufficient information to find the most appropriate area for the vehicle to move through.

In our application we use mm_segmentations implementation of the pyramid scene

parsing network (PSPNet) [7] which uses a neural network to construct a feature map from

 12

which it uses the pyramid pool process to provide the final classified segmentation output

through the convolutional layer. Similar to the previously mentioned issue of ILD not being able

to detect the road area on poorly paved or unpaved roads using only one model we also tested the

edge cases and found the same results again making the case for separate models that are

specialized for different types of roads which we will discuss after explaining the IRS output.

Figure 2 shows a typical IRS output. As can be seen, the road area is colored deep pink.

Obstacles, such as cars, will result in the areas not to be detected as road and are automatically

removed as extraneous artifacts by the algorithm and thus are not shown in the figure. To

highlight the difference from the output in Figure 1 it is evident that IRS goes beyond the actual

road marking and shows the entire (in this case paved) area beyond the lane markings.

Figure 2: Road Segmentation Example Output

Switching Models

Since we want our system to cover as many road types as possible, we propose to use

different neural network models for both the ILD and IRS cases which have been specifically

 13

trained for different road types. Specifically, when the system detects that the algorithm has a

low confidence level on its detection for longer periods of time it will switch through the

available models until the confidence is restored to a preset minimum value/threshold. The

confidence values are obtained from each model along with the detected lane points and

segmented road pixels. The original code for each algorithm has been modified in order to output

these values. By a model, we mean a neural network that has been trained with a specific set of

annotated data and thus has learned a given task (lane detection or road segmentation) and can

perform inference on imagery that it has not been trained on. In this implementation we have

chosen to average the confidence level over 10 detections (moving average) and reset the

confidence value after every switch. This results in each model running for approximately 1

second before a model switch is performed. This can be easily modified but averaging 10

detections has shown the best performance.

Lidar Ground Segmentation

LGS, as the label suggests, is a method capable of dividing the Lidar Point Cloud (PCD)

data into points that are i) ground, and ii) points above the ground that could be curbs, obstacles

or other objects. Out of the box, LGS often only works in one environment as the configuration

parameters need to be adjusted to certain environments. These parameters include allowable

angle of the road, maximum distance that will be used from the vehicle outward as well as

intensity values of the Lidar Point Cloud data. This is necessary as the ground structure on a

gravel road vs a paved road is different in flatness and horizontal curvature.

Once a model has been determined to work, we are able to provide that information to the

Lidar Ground Segmentation (LGS) algorithm - for example when the image lane detection and

 14

road detection switch to a model for gravel road we can pass parameters to the LGS algorithm to

adjust to the environment.

Figure 3 depicts a visualization of Lidar ground and non-ground segmentation through

Segmenters_lib which uses Ground Plane Fitting to detect ground-points and Region

Euclidian Segmentation for non-ground points. Segmenters_lib also includes Ground

RANSAC as an alternative for the ground segmentation which in our testing has performed

poorly compared to Ground Plane Fitting, even after adjusting configuration parameters.

Additionally, it also includes a non-region based Euclidean Cluster Segmentation for non-ground

points, but this also performs poorly compared to the one we chose.

Figure 3: Ground/Non-Ground Segmentation Output Example

 15

As previously mentioned, by using LGS, the original Lidar point cloud that includes all points is

split into two different point clouds - visualized above, the gray points show ground points, red

points show non-ground points.

Sensor Fusion/Projection

One Option for sensor/data fusion is at the raw level, meaning each image pixel is

matched with a lidar point prior to be used as input to an algorithm [21]. Although this is a viable

method, it requires very accurate extrinsic calibration (rotation matrix and translation vectors

between each sensor). Thus, we chose to use fusion at a detection level, meaning the output of

each algorithm is fused. The justification for fusing data at the detection level is that fusing data

at the “raw” level requires very accurate calibration between all used sensors that must stay

perfectly stable. Additionally, creating custom datasets for algorithms that do take fused data is

more complex as well. Therefore, we will implement fusion at the “object/detection” level which

is more robust to slight changes in calibrations. Moreover, as each algorithm operates by itself,

when one algorithm fails to provide sufficient detections, we are able to continue operations

based on the results from the alternate algorithm.

In order to project the 2D image detections into the 3D frame of the lidar sensor two

equations are required to obtain the 3D points (from the Lidar Point Cloud) that correspond to

each pixel in the camera image.

The calibration/parameters needed will be represented by

𝑃𝑐𝑎𝑚𝑙𝑖𝑑
= 𝑃𝑐𝑎𝑚 ∗ 𝑅𝑐𝑎𝑚 ∗ 𝑇𝑐𝑎𝑚𝑙𝑖𝑑

 16

Where 𝑃𝑐𝑎𝑚 is the projection matrix, 𝑅𝑐𝑎𝑚 the rectification matrix of the camera (intrinsic

calibration parameters) and 𝑇𝑐𝑎𝑚𝑙𝑖𝑑
 represents the rotation matrix and translation vector between

the camera and the Lidar sensor (extrinsic calibration parameters). These parameters can be

obtained by using a relatively simple checkerboard calibration setup through ROS or MATLAB

[20]. More advanced approaches utilize non-checkerboard targets, some use targetless

calibration.

Once the calibration parameters are obtained the two equations used to obtain the Lidar points

that correspond to the pixels are denoted in Figure 4 below [16]:

Figure 4: Lidar-Camera Projection Equations

Where [xv, yv, zv] denote the 3D Lidar point coordinate and [uc,vc] denote the pixel

corresponding to that point coordinate. The IRS and LGS algorithms output is transferred to the

fusion system in the form of pixel locations. For IRS, we provide an interpolated line of [u,v]

pixels. For the LGS, we provide the entire area of pixels classified as “road” in [u,v] pixels. Once

each pixel is matched, we can extract and project the pixels of interest (detection outputs from

ILD and IRS) to find their 3D location, most importantly, their depth as this is not possible based

 17

on monocular image detection alone. After the 3D location of each pixel is found, the costmaps

can be computed in the next step,

Output

A costmap is a predefined area divided into smaller grids around the vehicle which are

assigned a weight between 0 and 1, 0 signifying no cost to traverse, 1 showing that area is not

traversable/has a very high cost. This is used for example to associate a higher cost with moving

into a different lane or moving off the road where there are no obstacles in case of emergency.

Additionally, a cost map can be easily added onto or be modified to fit other semantic mapping

such as obstacles that are detected by one or more separate algorithms.

Other options such as potential fields or more vectorized outputs were considered but due

to costmaps being used by many standard ROS local planners and obstacle detection algorithms

this seemed most useful. Costmaps are also easy to visualize and thus preferred for presenting

the idea at hand. The outputs can be modified to fit different systems, such as for local planners

that do not use costmaps by adjusting the output format to the desired level, as aforementioned

some local planners may use vectorized formats while others can utilize potential field maps or

other means of communicating traversable area. To summarize, we implemented a road detection

algorithm that outputs:

1. Any traversable area considered to be road defined by gravel or pavement

2. Any road area defined by lane markings or road edges

3. Cost of traversing different areas within 1. & 2.

by utilizing IRS, ILD and LGS.

 18

Figure 5: Costmap Output Example

Figure 5 shows a sample output of the generated costmap. The road area is shown as

completely white area while everything surrounding is black. The road area starts out at an angle

on the left side due to the overlap of the Field of View of the camera and the lidar, gradually

growing wider to the right of the Figure. As the road area is the outline of all points that fall

within the detected road area, the area may not be immediately recognizable as road to the

human viewer. We chose to use 0 (minimum) cost for the detected road area while everything

surrounding has a cost of 1 (maximum). The lane markings have a cost of 0.5, showing that it

shouldn’t be traversed through unless a different higher cost item such as an obstacle or end of

road was to show up in the costmap. The lane markings cost of 0.5 was found to be reasonably

high to prevent local planners from ignoring it but low enough to not impede the path if obstacle

 19

avoidance is required. The global costmap would be provided by a global path planner which is

not covered in this thesis.

Image Detection Subsystem

Below Figure 6 depicts the proposed Image Detection Part of our system.

Figure 6: Image Detection Subsystem

The flowchart above shows the system of the Image Detection Algorithms. The image is

received from the front camera and sent to both the ILD and IRS algorithms. To reiterate, both

algorithms are able to switch to a different neural network model based on their confidence

value. There are two models specifically trained for marked and/or unmarked roads. Finally, the

 20

two image detection outputs will be combined with the ground points from the LGS system

through the previously described fusion process and converted into a costmap.

Lidar Detection Subsystem

Figure 7 depicts the Flowchart for the Lidar detection part of the proposed system.

Figure 7: Lidar Detection Subsystem

The Lidar data is segmented into ground and non-ground points which can be used for object

detection. The final ground output is additionally slightly filtered to minimize noise and points

that are out of range to reduce computational overhead in the fusion step. Finally, as

 21

aforementioned, the ground points will be fused with the image detection results into the

costmap.

 22

ASSUMPTIONS

- All sensors are running at least at 10 Hz

o Cameras can run around 30 Hz (depending on brightness etc.)

o Lidar can run at 20 Hz

o Global positioning through INS/GPS runs at 100 Hz with RTK support

- Computational resources on the vehicle can process detections in near real-time, or at

least around the specified frequency of 10 Hz

- Extrinsic calibration between camera and lidar stay consistent with minimal change

- Cell reception is adequate to receive RTK GPS corrections

 23

LIMITATIONS

- Vehicle travels at or below 55 mph (~24.6 m/s which at 10 Hz refresh rate will give

detections every 2.46 meters)

- Sensors are not experiencing noise, e.g. due to inclement weather (snow, rain, fog or

similar)

- Datasets used to train the neural networks may be limited due to time constraints and

what data can be collected (for obvious reasons it would be very hard for us to collect

data in the snow)

 24

SIGNIFICANCE

Proving or disproving that “state of the art” detection algorithms can be leveraged in a

non traditional way and fused to provide the roadway ahead of a vehicle in Real Time without

detailed apriori maps. Additionally, specialized datasets for lane detection as well as road

segmentation will be created and can be published along with the code implementation.

A different project - MapLite [8] and [9]- provides a similar problem statement:

Navigation in rural environments in unmapped areas. While there are similarities in the

implementation, MapLite relies solely on Lidar detection as well as Lidar segmentation and is

not able to provide lane information. In my opinion, the advantage of using camera detection

algorithms with switching between smaller, specially trained models, can reduce computational

resources required as well as cost since cameras are cheaper than lidars. The lidar we use being a

32 plane lidar further reduces cost and resource requirements as the MapLite implementation

requires a 64+ plane lidar for sufficient detections. Furthermore, many lidar detection algorithms

have poor domain transfer, meaning that between different lidar sensors or environments the

quality of the detections suffers.

 25

TIMELINE

Standalone Image Detection Testing and migration to ROS1 - Spring 2022

Standalone Lidar Segmentation Testing and migration to ROS1 - Summer 2022

Data Collection and Annotation for creating our own trained models - Fall 2022 & Spring 2023

Fusion of all algorithms - Fall 2022

Testing, debugging and demonstration - Spring 2023 & Summer 2023

Final Analysis - Summer 2023

 26

IMPLEMENTATION ANALYSIS

As proposed, the entire system is currently tested on Ubuntu 18.04 with ROS melodic.

Some programs run in Python2 while others run in Python3 due to specific library dependencies.

The system produces results at just around 10 Hz with room for improvement. The limiting

factor is the time it takes for the models to infer as well as loading/unloading data from the GPU.

This seems to be a CPU overutilization issue which could potentially be fixed by limiting the

number of threads or using a different inference library - each which comes with its own

limitations. Limiting the number of threads can further slow down inference data transfer to the

GPU is limited. Using other inference libraries may require modifications to the actual detection

models, simplifying the model and potentially reducing the detection accuracy.

The Lidar ground segmentation runs in C++ on the CPU, both image lane detection and

image road segmentation run in python utilizing the onboard Nvidia GPU for inference.

The total available GPU memory is (11 GB) based on one NVIDIA GPU (RTX 2080 TI).

A LaneAtt model requires 1200-1500 MiB. A mm_segmentation model requires 1500-1800

MiB. Additionally, the standard load is variable but when visualizing the data (images as well as

Lidar point cloud) it varies between 750-1500 MiB. Figure 8 below shows the Nvidia system

monitor (NVIDIA SMI) running the full system at just under 4000 MiB of GPU memory. This

value fluctuates between 3600 MiB at the lowest, and 4300 MiB at the highest.

 27

Figure 8: Nvidia system monitor Output

Switching between models does not take significant time or any additional resources on

the GPU as the models are held in RAM memory until switched. The entire system consumes

less than 5 GB of RAM memory; 1.9 GB for lane detection, 2 GB for road segmentation, 200

MB for Lidar Ground segmentation, 250 MB for fusion and 100 MB for costmap generation .

The goal was to only utilize one GPU, as in the future, other algorithms such as Image Object

Detection or Lidar Object Detection also need to be able to run simultaneously on a vehicle that

has two GPUs, which presently require much more resources than the algorithms used in this

thesis. With the system, as implemented, this is already possible but future work may free up

more resources.

 28

The annotations used were randomly chosen from several hours of recorded images and

classified into unmarked (paved and gravel unmarked), as well as marked (paved 1 way and 2

way marked) for both Lane Detection and Road Segmentation. Annotations were completed

through CVAT.AI and converted into the correct format needed for training for each LaneAtt

and MMSegmentation. About half of the annotated data was used to train the model, while the

rest of the annotations were used to validate the models and provide test metrics.

Annotation Road Type # Images

Lane Detection Paved, unmarked 401

Lane Detection Gravel, unmarked 290

Lane Detection Paved 1 way, marked 300

Lane Detection Paved 2 way, marked 240

Road Segmentation Paved, unmarked 401

Road Segmentation Gravel, unmarked 290

Road Segmentation Paved 1 way, marked 300

Road Segmentation Paved 2 way, marked 701

 Lane Total 1231

 Segmentation Total 1692

Table 1: Annotations

In total, annotation for lane detection resulted in 1231 individual images with

annotations. Annotations for road segmentation resulted in 1692 individual images with

 29

annotations. Several lane detection annotations were thrown out due to no markings or

discernable edges being present, which is why the number of lane detection annotations is lower

than the number of road segmentation annotations. Overall, the selection, annotation and format

transfer process took over 2 months to complete by myself. This presents a large bottleneck in

training models, as training data that is available publicly is generally not classified by road type

or environment in the way that was needed for this system.

Model TP FP FN Precision Recall F1

Unmarked 128 295 452 0.3026 0.2206 0.2552

Marked 77 153 178 0.3347 0.3019 0.3175

Combined 85 646 622 0.1162 0.1202 0.1182

Table 2: LaneAtt Training Metrics

Table 2 above shows the metrics provided by the training procedure for LaneAtt. The

models shown, (Unmarked, Marked, Combined) have been trained, validated and tested on the

annotations provided above, and no other outside data. With this, the Combined model performs

significantly worse than the Unmarked/Marked models by themselves. As expected, the

unmarked model performs slightly worse than the marked model, as it is not detecting perfect

lines every time but rather the edge of a road which is not always very straight, especially on

gravel roads. Overall, the Precision, Recall and F1 scores are not great for any of these models,

which is likely the result of a limited dataset.

 30

Model aAcc mIou mAcc Iou.road Iou.bkgr Acc.road Acc.bkgr

Unmarked 0.9941 0.9869 0.9931 0.9912 0.9826 0.9962 0.9900

Marked 0.9541 0.9056 0.9410 0.9306 0.8806 0.9967 0.8853

Combined 0.8910 0.7964 0.8791 0.8791 0.7585 0.9946 0.7635

Table 3: MMSeg PSPNet Training Metrics

Similar to the LaneAtt results, Table 3 shows the training metrics for PSPNet based on

the MMSegmentation training procedure. The models were trained with only two classes, being

road and background (or not-road) denoted by .road and .bkgr in the table. Once again we see

that the models that are split do perform better on their respective test annotations. In these

metrics we see that the unmarked model actually performs the best, as I believe these types of

roads have more distinct features or colors that may be easier to differentiate for the model. In

general we can say, the combined model performs less accurately than the separated models on

the marked/unmarked roads as shown by the training result metrics.

Below will be several images showing the result on other test data that was collected -

that neither of the models had been trained on prior. It is important to note that there are various

sections that look nothing like the training data used to train the models while others may look

similar to the training data. Overall, the segmentation combined model behaves similar to the

separated models in certain instances, for example when the road ahead looks similar to the

training data. In those cases, the separated models show a slightly higher accuracy, as can be

seen in Figure 9 and 10.

 31

Figure 9: Separated Model, marked

Figure 10: combined model

In Figure 10, the combined models output shows several patches of the road as background

which is not correct.

 32

The combined LaneAtt model also tends to show false positives, to the sides of the actual road

for gravel roads, while for marked roads showing the emergency lane as its own viable lane.

Examples are shown in Figures 11 and 12.

Figure 11: detected lane next to gravel road, combined model

 33

Figure 12: Emergency lane, combined model

Both approaches struggle with low light situations (under-exposure), for example if shade

is present on the road or the sun is not shining anymore. This is represented in Figure 13, where

no Lanes were detected in either approach.

Similarly, they also struggle with situations where the camera is overexposed, as the edge

of the road is not discernible from surrounding areas. This Could be an artifact of the annotated

data being recorded in similar light conditions, and a more variable dataset would benefit both

approaches, likely solving this issue. A different camera also may be less prone to

over/underexposure and post-processing of the images could enhance the results likewise.

Interestingly, segmentation seems to be much less prone to having detection issues with

overexposure than the lane detection.

 34

Figure 13: Overexposure, no detection, same for combined/separated models

One issue of the Lane Detection model is that it is sometimes uncertain about which environment

it is in at the time, resulting in no or low quality detections for prolonged periods of time as the

models are constantly switching. During these times, the combined model does perform better

but shows false positives.

The generally accepted understanding is that a larger dataset can lead to better

generalization, meaning a model will be able to perform better on unseen data as it is able to

learn more patterns. Accuracy is likely to improve as well with a larger dataset as it can learn

more details about different examples. Robustness will generally also improve along with lower

(better) variability between the predictions.

One caveat is that larger datasets need to retain high quality annotations and images. If a

dataset is heavily biased or has noisy data - the resulting model may not perform better than a

smaller dataset with higher quality data. Overall, we believe our approach would benefit from a

 35

larger dataset (~5000 Annotations) and still prove viable. The dataset should include images

from different days, light conditions and various other roads to provide greater training variety.

The hope of being able to train these models with a large dataset is that the concept of

generalization applies (as mentioned above) meaning that the model can infer where the road or

lane markings are located even though it has never seen anything like this road in the training

data. Although that is the hope in theory, in practice we have not seen this work. Even when

using large datasets such as CULane for Lane Detection, 133,235 images & annotations, and

Cityscapes for Segmentation, ~25,000 images & annotations, or other large datasets. Generally,

the models will work fairly well on the specific environment they have been trained on but on

our roads (Texas Highways or rural and gravel roads) these models lack accuracy. With the

proposed switching algorithm, even small datasets can produce minimally reasonable accuracy.

Looking at this work, with comparatively small datasets of image annotations for each lane

detection and road segmentation, divided roughly 50/50 between marked roads and unmarked

roads, the models are effective at detecting the type of roads/lane markings that they were trained

on but has little generalization, as unseen roads generally show poor detection results.

 36

Figure 14: Full system visualization

Finally, Figure 14 is the entire system view together as it runs with full visualization on

the vehicle. On the left side one can see the image output of the segmented road (top image) and

detected lanes (bottom image). The right side shows a top down view of the vehicle, the

colorized ground-segmented pointcloud overlaid with the costmap that shows the two detected

lane markings in gray along with the segmented road in white while everything around is marked

in black. Additionally, a text overlay in the upper left corner shows the current model in use for

each image detection algorithm.

 37

CONCLUSION

Summarizing the above presented system, given a small dataset we show an overall better

functioning system than a traditional approach of training one model with all the data. Based on

our analysis, the split model system performs at a higher accuracy in most cases with fewer false

positive detections than the combined model. The cost of running two models at a time is a

slightly higher resource utilization on both the CPU and GPU but with today’s hardware this is

generally not a constraint, as many other detection algorithms will require more resources than

our entire system combined. This system produces reasonably accurate results with minimal

annotation effort, and small resource requirements. In those instances, this system will

outperform standard approaches in most situations. Using a similar approach with extremely

large datasets could still prove that the system works but at that point a model may be close

enough to generalization that this system would be redundant. One of the major benefits we see

is that knowing what type of road you are on may also give hints about how the vehicle should

behave, such as appropriate speeds that may be lower than the actual speed limit, expected grip

levels and/or where within the road you should be traveling.

 38

FUTURE WORK

Besides just annotating more data, or improving data/annotation quality, data

augmentation should be implemented. Data augmentation is a process in which the original data

is slightly modified (flipped, rotated, noise added, changed contrasts, brightness etc.) in order to

provide a larger training variety.

Additionally, this system would likely benefit from using simpler model or backbone

architectures for the segmentation as well as the lane detection. While generally speaking a

simpler model/backbone may infer faster, it usually comes at the cost of losing some accuracy.

In contrast, given a small dataset, it may be beneficial to use a simpler model/backbone to

prevent overfitting - overfitting is the opposite of generalization, meaning the model "learns"

noise in the training data more than features that may actually define the object of interest.

Models that have more parameters, being higher complexity models or backbones, are prone to

overfitting with small datasets.

LaneAtt should be replaced as it has trouble detecting lanes accurately in low radius

curves due to the way it interpolates points (based on a starting point and an angle it will create

equidistant points that are generally of a more linear nature), this results in certain lanes to be

showing across the image even though this is not true. What we have seen is that these artifacts

are partially removed through fusion with the 3D Lidar points; regardless, it should still be

addressed.

Finally, rewriting the code to run faster/use less resources in general. Lane Detection can

run extremely fast, while Road Segmentation is inherently slower as it looks at every pixel and

classifies each pixel whereas lane detection (or image detection in general) only classifies small

 39

areas/patches of the image. There are several potential ways of optimizing runtime/resource

usage. The system is heavily dependent on pytorch, other similar libraries such as

tensorflow,tensorrt or ONNX (Open Neural Network Exchange) may reduce cpu utilization

while also reducing inference time. This would come at a slight trade off as for certain libraries

the model may need to be converted, which can result in modifications to the model and

performance may vary.

Fusing the detection results from Lane Detection and Road Segmentation is rather

simple, but especially the Road Segmentation takes a lot of time to compute due to a large

amount of pixels having to be matched with the lidar point cloud. The current implementation

uses Alpha Shape to compute the convex Hull of the road area (The outermost boundary of the

detected area, and any points within) which in itself requires too much time and cannot be sped

up easily. Using concave hulls, the resulting road area is more accurate but cannot be computed

in a reasonable amount of time.

 40

REFERENCES

[1] Tesla Autopilot Using HD Maps? - AutoPilot Review. AutoPilot Review. (2022). Retrieved

12 September 2022, from https://www.autopilotreview.com/tesla-autopilot-hd-maps/.

[2] Tabelini, L. (2020). lucastabelini - Overview. GitHub. Retrieved 12 September 2022, from

https://github.com/lucastabelini.

[3] Tabelini, L., Berriel, R., Paixao, T., Badue, C., De Souza, A., & Olivera-Santos, T.

(2021). Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection.

Openaccess.thecvf.com. Retrieved 8 September 2022, from

https://openaccess.thecvf.com/content/CVPR2021/papers/Tabelini_Keep_Your_Eyes_on_the_La

ne_Real-Time_Attention-Guided_Lane_Detection_CVPR_2021_paper.pdf.

[4] Zermas, D., Izzat, I., & Papanikolopoulos, N. (2017). Fast segmentation of 3D point clouds:

A paradigm on LiDAR data for autonomous vehicle applications. Ieeexplore.ieee.org. Retrieved

12 September 2022, from https://ieeexplore.ieee.org/document/7989591.

[5] Yan, Y., Duckett, T., & Bellotto, N. (2017). Online learning for human classification in 3D

LiDAR-based tracking. Ieeexplore.ieee.org. Retrieved 12 September 2022, from

https://ieeexplore.ieee.org/document/8202247.

[6] GitHub - open-mmlab/mmsegmentation: OpenMMLab Semantic Segmentation Toolbox and

Benchmark. GitHub. (2020). Retrieved 12 September 2022, from https://github.com/open-

mmlab/mmsegmentation.

[7] Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid Scene Parsing Network.

Arxiv.org. Retrieved 12 September 2022, from https://arxiv.org/pdf/1612.01105.pdf.

[8] Ort, T., Paull, L., & Rus, D. (2018). Autonomous Vehicle Navigation in Rural Environments

without Detailed Prior Maps. Toyota.csail.mit.edu. Retrieved 12 September 2022, from

https://toyota.csail.mit.edu/sites/default/files/documents/papers/ICRA2018_AutonomousVehicle

NavigationRuralEnvironment.pdf.

[9] Ort, T., Jatavallabhula, K., Banerjee, R., Gottipati, S., Bhatt, D., & Gilitschenski, I. et al.

(2019). MapLite: Autonomous Intersection Navigation Without a Detailed Prior Map.

researchgate.net. Retrieved 12 September 2022, from

https://www.researchgate.net/publication/338060625_MapLite_Autonomous_Intersection_Navig

ation_Without_a_Detailed_Prior_Map.

[10] Guezel, M. (2013). Autonomous Vehicle Navigation Using Vision and Mapless Strategies: A

Survey. journsals.sagepub.com. Retrieved 12 September 2022, from

https://journals.sagepub.com/doi/full/10.1155/2013/234747.

[11] Jeong, J., Yoon, T., & Park, J. (2018). Towards a Meaningful 3D Map Using a 3D Lidar

and a Camera. ncbi.nlm.nih.gov. Retrieved 12 September 2022, from

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111277/.

 41

[12] Wu, Z., Qiu, K., Yuan, T., & Chen, H. (2021). A method to keep autonomous vehicles

steadily drive based on lane detection. journals.sagepub.com. Retrieved 12 September 2022,

from https://journals.sagepub.com/doi/full/10.1177/17298814211002974.

[13] GitHub - AutoLidarPerception/segmenters_lib: The LiDAR segmenters library, for

segmentation-based detection. GitHub. (2020). Retrieved 12 September 2022, from

https://github.com/AutoLidarPerception/segmenters_lib.

[14] Unsupervised Llamas Lane Marker Dataset. Unsupervised-llamas.com. (2019).

Retrieved 12 September 2022, from https://unsupervised-llamas.com/llamas/index.

[15] Pan, X., Shi, J., Luo, P., Wang, X., & Tang, X. (2018). Spatial As Deep: Spatial CNN for

Traffic Scene Understanding - CULane Dataset. Xingangpan.github.io. Retrieved 12 September

2022, from https://xingangpan.github.io/projects/CULane.html.

[16] TuSimple/tusimple-benchmark. GitHub. (2017). Retrieved 12 September 2022, from

https://github.com/TuSimple/tusimple-benchmark/wiki.

[17] Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets Robotics: The KITTI

Dataset. Cvlibs.net. Retrieved 12 September 2022, from https://www.cvlibs.net/datasets/kitti/.

[18] A Case Study: Edge Detection Techniques Using Hough Transform and Canny Edge

Algorithm. (n.d.). Docslib. Retrieved September 12, 2022, from

https://docslib.org/doc/6340679/a-case-study-edge-detection-techniques-using-hough-transform-

and-canny-edge-algorithm

[19] Redmon, J. (2018).YOLOv3: An Incremental Improvement. arXiv.org. Retrieved September

12, 2022, from https://arxiv.org/abs/1804.02767

[20] Noury, C., Teulière, C., & Dhome, M. (2020). Light-field camera calibration from raw

images. hal.uca.fr. Retrieved September 12, 2022, from https://hal.uca.fr/hal-

01657735/document

[21] Marti, E., Perez, J., de Miguel, M., & Garcia, F. (2019). A Review of Sensor Technologies

for Perception in Automated Driving. dsp.tecnalia.com. Retrieved September 12, 2022, from

http://dsp.tecnalia.com/bitstream/handle/11556/778/08846569.pdf

[22] Sekachev, M., Manovic, N. (2023). Cvat. Retrieved 12 June 2023, from

https://www.cvat.ai/,

 42

APPENDIX

Test Route #1, Farm to Market Roads 1362 and 2000. This 22-miles stretch of two-lane road

offers a range of medium to high-quality pavement and marking. There are over 25 connections

to local roads through at-grade intersections.

 43

Test Route #2, Farm to Market Road 908 and County Road 316. This 15.2-miles stretch of road

offers high-quality pavement and marking (on Farm to Market Road 908) and low-quality

pavement with no marking (on County Road 316). There are 31 connections to local roads

through at grade intersections, including a two-way stop sign controlled intersection.

 44

Test Route #3, US Highway 190 and Farm to Market Roads 2038 and 244. This 24-miles stretch

of road offers high-quality pavement and marking on a divided highway (on US Highway 190),

both high-quality pavement and marking (on Farm to Market Road 2038), low-quality pavement

with no marking (on Farm to Market Road 2038), and unpaved gravel road (on Farm to Market

Road 244). There are over 60 connections to local roads through at grade intersections, including

multiple stop sign controlled intersections.

