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ABSTRACT

Improving the quality of the last-mile service that comprises the movement of goods and peo-

ple has been a recurrent theme in recent research. This dissertation aims to develop optimization

models for addressing the emerging challenges encountered by three different last-mile service

systems in the domains of inventory-delivery management, transportation and logistics, and emer-

gency medical services, respectively.

The first chapter focuses on the domain of inventory-delivery management by investigating a

two-echelon, single-product fulfillment system, in which the expected system-wide demand de-

pends on the product’s price, the committed delivery time, and the number of local distribution

centers in the system. The proposed model maximizes the expected profit while accounting for the

total expected revenue, product holding costs, and fixed facility costs.

The second chapter concentrates on the domain of transportation and logistics, in which a

fleet composition problem is studied. The proposed models consider using both internal truckload

capacity and external less-than-truckload shipments for fulfilling stochastic demand. The objective

is to minimize the total expected cost per period while determining the number of trucks to own

for each truck type given a set of truck classes.

The third chapter contributes to the field of emergency medical services by studying a routing

problem in the aftermath of a disaster, wherein the proposed models aim to determine the optimal

routing strategy while maximizing the total expected number of survivors. A single ambulance bus

is used to transport a given number of casualties to a medical center, accounting for time-dependent

survival probabilities of the casualties.

The models and solution approaches developed in this dissertation provide managerial insights

and can serve as a starting point when making decisions on supply chain design, facility locating,

asset procurement, and fleet management and operations.
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1. OPTIMIZATION MODELS FOR INVENTORY PLACEMENT IN A TWO-ECHELON

DISTRIBUTION SYSTEM WITH FULFILLMENT-TIME-DEPENDENT DEMAND *

1.1 Introduction

In recent years, technological advances and changing consumer preferences have led to sub-

stantial innovation in supply chain operations capabilities, as well as changes in the structure of

many supply chains. Consumers have become conditioned to expect fast and reliable (and in some

cases, free) delivery to their homes, which not only challenges last-mile delivery services, but

places enormous pressure on inventory and production operations throughout the supply chain.

This rapid shift has forced companies to invest in their logistics networks to strengthen their ful-

fillment capabilities and provide seamless, responsive, and reliable services. In order to fully

take advantage of systems that provide last-mile delivery services, firms must carefully determine

both price levels and inventory placement strategies, which combine with delivery and fulfillment

costs to drive both customer responsiveness and profitability. Manufacturing and distribution firms

should also ensure that the design and structure of their distribution systems provides the best fit

with their operations capabilities and constraints. The modeling and solution approaches presented

in this chapter provide an analytical framework for addressing this fit between distribution system

structure and operations capabilities.

Inventory placement strategies, in particular, are vital in determining both the structure of the

supply chain and its ability to quickly respond to customer requests. Staging inventory close to

customers, for example, requires a network of local distribution centers (LDCs) and enables fast

customer response times. This leads to an increase in both facility and inventory costs, while pro-

viding added value to consumers, which may enable suppliers to command higher prices. As a

result, determining the best combination of product price and customer response time capability is

a highly complex problem that is inextricably bound to the design and structure of the distribution

*Reprinted with permission from “Optimising inventory placement in a two-echelon distribution system with
fulfillment-time-dependent demand” by Yue Wang, Joseph Geunes, and Xiaofeng Nie, 2022. International Journal of
Production Research, 60:1, 48-72, Copyright [2022] by Taylor & Francis Group.

1



network. This chapter seeks to shed some light on the key decision drivers and structural properties

of optimal solutions in such settings using a stylized distribution network model that simultane-

ously determines product pricing, inventory placement, and delivery response time decisions.

We consider a two-echelon fulfillment system in which a single upstream fulfillment center

(FC) echelon serves multiple LDCs at a downstream echelon, which in turn provide last mile

delivery to customers. Adding a new LDC to the system may, for example, effectively improve

average customer delivery response time while also reaching new customers. This may, in turn,

stimulate new demand, leading to higher revenue, while at the same time leading to increased

system costs. The distribution system model we propose characterizes customer demand as a

function of the number of distribution center locations (and the implied customer delivery response

times) and product price, in addition to determining stock allocation levels across both echelons

that either ensure meeting the prescribed delivery times with a very high probability, or utilize

expediting to ensure that all demand is fulfilled within a prescribed amount of time. This model

uses an expected profit objective, which accounts for revenue that depends on product pricing

and delivery response time decisions, as well as inventory holding costs, fixed location costs, and

variable delivery costs.

This chapter provides several contributions to the literature, including: (i) a proposed gen-

eral demand growth model that characterizes total system demand as a function of the number of

LDCs, and can capture a number of ways in which demand may respond to shorter delivery times

in addition to price; (ii) the derivation of key structural equations that determine the boundaries

between distinctly different distribution system structures and safety stock placement strategies;

(iii) analysis and characterization of key system parameters that drive system performance and

optimal distribution system structure; and (iv) a set of modeling and analytical tools that facilitate

visualization of the firm’s placement on a map of optimal safety stock placement strategies and

corresponding distribution system structures. While we limit our analysis to systems with a single

product due to space constraints, the analysis, modeling paradigm, and visualization tools can be

extended in practice to multi-product systems.
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The rest of this chapter is structured as follows. Section 1.2 reviews related literature in the

area of multi-echelon distribution systems with guaranteed response times and safety stock con-

siderations. In Section 1.3, we begin by describing a two-echelon system within a single market or

region, followed by a definition of the market’s expected demand function and a demand growth

model that is dependent on the number of LDCs. We then elaborate on the approach for setting

base-stock levels, and the implied safety stock and holding cost. At the end of Section 1.3, we

provide a model formulation. Section 1.4 provides methods to determine optimal price and guar-

anteed service time values. We conduct numerical experiments and summarize our findings in

Section 1.5. Parametric analyses are provided in Section 1.6. In Section 1.7, we explore a gener-

alization of our single-market model to account for multiple, non-identical markets. Section 1.8

presents some conclusions and potential extensions for future research.

1.2 Literature review

Our research is rooted in studies on inventory optimization in multi-echelon/stage systems with

guaranteed service times. The guaranteed service model was first introduced by Simpson [1], who

models a sequence of production operations as a serial chain, wherein each stage fills the order

placed by its downstream stage within a specified time while minimizing overall inventory cost.

This paper proves that the optimal inventory cost occurs when each stage holds either zero stock or

a full stock level that can meet the downstream demand up to a certain level, which holds under both

uncorrelated and correlated demand. Since this publication, extensive research has considered this

problem class under various modeling assumptions and system structures. Inderfurth [2] extends

these results to general divergent systems with consideration of final-stage demand correlation that

affects the size and distribution of safety stock. Graves and Willems [3] develop a strategic safety

stock model (which we will refer to as the GW model) for general networks that can be modeled as

a spanning tree, with the assumption of bounded demand and a 100% service level (i.e., all demand

is met within a prescribed guaranteed service time). They later extend this model to nonstationary

demand (see [4]) by applying a constant service time policy, which leads to a near-optimal solution

that is beneficial in practice. Neale and Willems [5] also emphasize the need for nonstationary
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solutions, based on which the GW model is extended for practical implementation. Funaki [6]

develops a guaranteed-service model for due-date-based demand using a so-called make-to-plan

scheme, in which the actual inventory level at each node is derived based on the production and

demand quantities at a specified time point using a ‘backward explosion’ procedure. This model is

applicable to either stationary or nonstationary demand.

A variety of extensions of the guaranteed service model for multi-echelon inventory systems

have been explored with different assumptions on the service level definition and supply process

cost structure and constraints. Inderfurth and Minner [7] present a further extension of the ap-

proach used by Simpson [1] that considers two different types of service measures related to the

occurrence, size, and duration of stockouts, and derive properties of optimal stock policies for se-

rial, divergent, and convergent systems, respectively. The model developed by Sitompul et al. [8]

assumes that a processing capacity exists at each stage, and defines a ‘correction factor’ represent-

ing a linking relationship between excess capacity and demand uncertainty in order to measure the

variation in the safety stock level. This approach is tested numerically using Monte Carlo sim-

ulation. Graves and Schoenmeyr [9] extend the classical guaranteed-service safety stock model

under production capacity constraints for both single-stage and multi-stage supply chains using

a modified constant base-stock policy. Chen and Li [10] develop a guaranteed-service model for

serial systems with fixed order costs and operating flexibility costs; assuming continuous- instead

of periodic-review, they determine optimal parameters for an (R,Q) (reorder point, order quantity)

policy at each stage. We refer the reader to Eruguz et al. [11] for a comprehensive survey of cat-

egorized extensions of guaranteed-service models for safety stock optimization in multi-echelon

systems.

Another extensive collection of studies on multi-echelon inventory models integrates safety

stock decisions within a broader set of supply chain design decisions. These studies argue that

holding cost should be an integral factor in determining an optimal number of stock locations,

since the number of locations has substantial impacts on inventory levels and demand allocation

decisions (Ballou [12] ). Shen, Coullard, and Daskin [13] formulate a location-inventory model
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as a mixed integer nonlinear program to determine safety stock levels and facility locations in a

single-supplier, multi-retailer system, where a (sub)set of retailers may also function as distribution

centers. This model is reformulated as a set covering model and solved using a column generation

algorithm. Graves and Willems [14] incorporate the core of the GW model within a supply chain

configuration problem that determines optimal options for satisfying functional requirements at

each stage in the supply chain. This model minimizes the overall configuration cost comprised of

safety stock cost, pipeline stock cost, and delivery cost, and can be solved by dynamic program-

ming when the network has a spanning-tree structure. A similar approach is used by Funaki [6],

who combines the safety stock placement model with supply chain design decisions, proposing

a stepwise procedure, wherein a threshold function is introduced to improve search efficiency by

limiting the number of location combinations. Schuster Puga, Minner, and Tancrez [15] later for-

mulate an integrated facility location and inventory planning model with guaranteed service times

as a conic, quadratic, mixed-integer program with two different delivery strategies, where binary

variables determine which strategy is chosen and whether or not each candidate facility is opened.

These previous models typically take a cost minimization approach for a given set of customer de-

mand distributions. You and Grossmann [16] consider both total facility and inventory costs within

a bi-objective location and inventory planning problem with guaranteed service times, using the

two objectives of total cost and customer lead times in order to address the tradeoff between total

cost and responsiveness. In contrast, our approach focuses on characterizing optimal system profit

using a demand growth model that depends on the number of LDCs in the system under various

assumptions on the relationship between the number of LDCs and total demand. This analysis then

permits gaining some insight on how safety stock and supply chain structural decisions evolve over

time as the distribution system and its corresponding total demand grow.

To solve these guaranteed-service models, dynamic programming (see e.g., [2, 3, 17]) and

heuristic algorithms (see e.g., [18]) are commonly used. Other solution approaches, such as Ben-

ders’ decomposition (see e.g., [19] and mixed integer programming techniques (see e.g., [20]), are

also used for systems containing special structures. Although a significant number of methods have
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been developed to solve guaranteed-service problems, few existing works have analytically char-

acterized model solutions. Most recently, Hua and Willems [21] employ the original GW model

within a two-stage serial line supply chain and characterize optimal safety stock policies in terms

of per unit holding costs and leadtimes. Their model minimizes total holding cost by considering

the percentage of total unit cost (i.e., cost allocation) and percentage of total leadtime (i.e., lead-

time allocation) allocated to one of the stages; the decision variable, the net replenishment time

allocation, is then simply restricted to a value between zero and the maximum value of the total

supply chain leadtime. The optimal safety stock is consequently determined by varying cost and

leadtime allocation.

Our work is motivated by the idea of analytically characterizing the tradeoff between revenue

and total cost in last-mile delivery systems, using the GW model as a base operations cost model

within a two-echelon inventory-distribution system consisting of a single FC and multiple identical

LDCs (where the number of LDCs plays a vital role in enabling fast customer response times). Our

results provide quantitative threshold values at which a transition occurs between different safety

stock placement strategies, and corresponding supply chain structural design decisions. As we will

see, these threshold values can be determined on the basis of pairwise comparisons of key problem

variables and parameters.

The operations cost model we apply uses a similar approach to the original GW model, assum-

ing bounded demand and 100% service levels to determine appropriate base-stock levels. We note,

however, that a structurally identical model is obtained by assuming that the supplier always fulfills

all of the LDC’s demand within a promised lead time using, for example, delivery expediting from

its external supplier when insufficient stock exists (see, e.g., [22]; note that in this model, the LDC

incurs a shortage cost per unit backlogged, while the FC incurs a cost per unit expedited). Thus,

our model applies under either of these conventions. We assume the expected value of demand per

period in a single market depends on both the product price and the committed delivery time from

the LDC to customers. Instead of minimizing overall cost as in the majority of existing studies,

we optimize safety stock placement using an objective of maximizing the expected system profit,
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while determining the optimal price, the optimal committed service time from the FC to LDCs,

and the optimal service time from each LDC to its corresponding market (end customers), respec-

tively. Parametrically varying the number of LDCs in the system facilitates both determining an

optimal number of LDCs for a given set of revenue, cost, and demand parameters, and considering

the impact of demand and logistics system growth on optimal safety stock placement strategies.

1.3 Problem statement and formulation

We first consider a two-echelon fulfillment system consisting of a single regional FC that serves

N independent and identical downstream LDCs in a given market or region with a single product

(Section 1.7 later considers the impact of multiple, non-identical markets). Both echelons use a

periodic-review inventory policy, ordering up to some base-stock level after observing demand

in each period. The physical leadtime for replenishment orders placed by the FC to an external

supplier equals TF , which may include production and transportation time. Shipments from the

FC to an LDC require a physical leadtime of TL, while deliveries from an LDC to its customers

require a physical leadtime of TC . We use the term physical leadtime to refer to the time required

for production and/or transportation between stages, assuming that physical leadtimes between

stages are determined by operational constraints.

Each LDC serves a subset of the market with periodic stochastic demand, where the mean

demand per period in the market depends on the product’s price, denoted by p, and a committed

delivery time, denoted by ℓ, to customers. For any given p and ℓ, demand in a market is station-

ary, and periodic market demands are independent and identically distributed (IID). In addition to

setting a committed delivery time to end customers, the FC also sets an internal committed supply

time, denoted by s, for orders placed by any LDC within the market to the FC. The FC guarantees

that any order placed by the LDCs will arrive within the quoted committed supply time s. Figure

1.1 illustrates the structure of the system we consider.

Observe that if no safety stock is held at the FC and LDCs, the committed delivery time ℓ

cannot be smaller than s + TC , while s must be at least as large as the sum of the two physical

leadtimes, TF+TL. Similarly, if safety stock is held only at the FC, ℓ cannot be smaller than s+TC ,
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Figure 1.1: Two-echelon system structure (single market).

although s may take any value greater than or equal to TL. Holding safety stock at the LDCs and

not at the FC permits choosing a committed delivery time as small as TC , while s must take a value

at least TF + TL. The objective is to maximize total expected system profit by determining the

committed supply time, s, between the FC and any LDC, and the committed delivery time, ℓ, to

customers, as well as the product’s price, p, and the number of LDCs, N .

1.3.1 Demand

A primary goal in studying this problem is to understand how strategic stock placement deci-

sions are affected by demand growth and the system’s ability to quickly satisfy demands, the latter

of which depends in large part on the proximity of customers to LDCs, and therefore depends on

the number of LDCs in the system, N . Studying these effects requires a model that characterizes

the relationship between system demand and the number of LDCs serving these demands. We

therefore propose a demand model that can accommodate various assumptions on the interaction

between total system demand and the number of LDCs serving this demand. At one extreme,

this demand model can account for strict demand growth, e.g., the addition of a new LDC may

cover a geographic region that was not previously covered by existing LDCs, thus introducing new
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demand to the system. At the other extreme, the addition of a new LDC within a previously cov-

ered geographic region may not introduce any new demand to the system, although a subset of the

customers previously covered by existing LDCs may now be served by the new LDC (assuming,

e.g., each customer is served by its closest LDC). Our demand model also accounts for scenarios

between these extremes, where the introduction of a new LDC may result in new demands and the

new LDC may also cover customers previously served by existing LDCs.

1.3.1.1 Demand in a market with a single LDC

We begin by defining a single-LDC market (a market only served by a single LDC) demand

model in which the expected market demand in a period is determined by the product’s net price, p,*

and the committed delivery time, ℓ. We assume that this market contains n independent customers

uniformly distributed over a service region of area A, where each customer has an associated

probability of ordering the product that is dependent on the price and committed delivery time,

P (p, ℓ), in any period. The resulting market demand thus follows a binomial distribution with

expected total demand per period of µ(p, ℓ) = nP (p, ℓ) and variance σ2(p, ℓ) = nP (p, ℓ)(1 −

P (p, ℓ)). We further assume that the expected demand per period (and therefore the product of n

and P (p, ℓ)) depends on p and ℓ according to the function µ(p, ℓ) = a − bpuℓv, where 0 < a ≤ n

is the maximum possible value of the mean periodic demand in the single market, b > 0 is a

sensitivity coefficient of the price-delivery time interaction term, and u and v are positive values

representing the elasticities of price and committed delivery time, respectively. As discussed in

depth by Huang, Leng, and Parlar [23], many different specifications of the functional relationship

between price, lead time, and demand are possible, where demand is decreasing in both price and

delivery lead time. We opted to utilize one such functional form that is both reasonably general and

leads to analytical tractability, which is a generalization of the power model suggested by Chen,

Ray, and Song [24].

*We assume that expected demand can be expressed as a function of the difference between the product’s price
and any variable processing and delivery costs, which we define as the product’s net price.
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Note that P (p, ℓ) = a−bpuℓv

n
is a fraction between 0 and 1. For certain ranges of the value

P (p, ℓ), the quantity Q(p, ℓ) = P (p, ℓ)(1 − P (p, ℓ)) is relatively stable. For example, when

0.4 ≤ P (p, ℓ) ≤ 0.6, Q(p, ℓ) varies between 0.24 and 0.25, and for 0.3 ≤ P (p, ℓ) ≤ 0.7, Q(p, ℓ)

varies between 0.21 and 0.25. Thus, price and committed lead time do not substantially influence

the value of the variance for a range of probability values centered at 0.5. Observe that when

P (p, ℓ) = 0.5, this variance achieves its maximum value of σ̄2 = 0.25n. Because the value of

this probability does not substantially affect standard deviation within a nontrivial range of values,

and for analytical tractability reasons, our model uses a fixed value of variance equal to the upper

bound on σ2(p, ℓ), that is, σ̄2 (under a normal approximation to a system with bounded demand

and a 100% service level, using this upper bound on variance leads to greater accuracy of the

approximation of safety stock holding costs as well).

1.3.1.2 Demand growth model

We next consider a market containing N LDCs, and define a nondecreasing demand growth

multiplier function of N that takes a value between 1 and N , denoted as J(N), with 1 ≤ J(N) ≤

N , to model market demand growth as the number of LDCs in the market increases from 1 to

N . The function J(N) scales the demand distribution to account for the possibility of demand (or

market share) growth within a market as LDCs are added and the firm gains additional presence

and visibility within the market. If µ(p, ℓ) is the base expected demand per period in the market

when a single LDC exists in the market, then we assume that the total expected market demand per

period with N LDCs equals J(N)µ(p, ℓ), with each LDC serving a set of customers with expected

periodic demand of J(N)
N

µ(p, ℓ). This permits modeling a wide range of demand growth scenarios

in a market as LDCs are added to the system. At one extreme, when J(N) = 1, the addition of

LDCs leads to no demand growth, and a situation in which each of the N LDCs serves 1
N

of the

base demand. At the other extreme, when J(N) = N , the addition of each new LDC to the market

increases expected demand per period by the base demand level of µ(p, ℓ), for a total expected

periodic market demand of Nµ(p, ℓ), with each LDC serving an expected demand per period of

µ(p, ℓ). Values of J(N) between 1 and N then permit modeling demand growth levels between
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these extremes.

Figure 1.2 illustrates various scenarios as the number of LDCs increases from 1 to N , which

depend on the market growth assumptions and the corresponding definition of J(N). Observe that

the extreme case of J(N) = 1 corresponds to a scenario in which all N LDCs are allocated an

identical fraction (that is, 1
N

) of a fixed market of area A (corresponding to the case in which no

new demand results from the addition of LDCs to a fixed market size), while J(N) = N implies

that each LDC serves a market of size A (corresponding to the strict market growth case with no

market overlap).

Letting D(p, ℓ,N) denote the mean of the total market demand per period when the num-

ber of LDCs serving the market equals N , we characterize this mean value as D(p, ℓ,N) =

J(N)µ(p, ℓ) = J(N) (a− bpuℓv). The corresponding variance of the system demand per pe-

riod then becomes J(N)σ̄2. Because this total system demand corresponds to the periodic demand

seen by the FC, letting µF (p, ℓ,N) and σF (N), respectively, denote the mean and standard de-

viation of the periodic demand seen by the FC, we have µF (p, ℓ,N) = J(N) (a− bpuℓv) and

σF (N) =
√

J(N)σ̄.

The resulting demand seen by an LDC in any period follows a binomial distribution with pa-

rameters J(N)n
N

and P (p, ℓ), and thus has expected value J(N)nP (p,ℓ)
N

= J(N)µ(p,ℓ)
N

and variance

J(N)σ̄2

N
. Under these assumptions, we observe that the expected value and standard deviation

of periodic demand at a single LDC are characterized by µL(p, ℓ,N) = J(N)
N

(a− bpuℓv) and

σL(N) =
√

J(N)
N

σ̄, respectively.

More generally, for 1 ≤ J(N) ≤ N , we might consider a non-decreasing functional form

J(N) = Nγ , where 0 ≤ γ ≤ 1. A larger value of γ indicates a slower growth rate of system

demand as new LDCs are added to the system. An alternative way to model a non-decreasing

function that takes a value between 1 and N is by including an exponential term, i.e., J(N) =

1+f(N)(1−e1−N), where f(N) is a function of N . To ensure the value of J(N) is between 1 and

N , we define fmax(N) = (N − 1)/(1− e1−N) and choose f(N) such that 0 ≤ f(N) ≤ fmax(N).
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Figure 1.2: Potential distribution system and market structure changes as the number of LDCs
grows from 1 to N .

1.3.2 Base-stock levels and holding costs

As noted at the beginning of this section, the FC and the LDC use a periodic review base-stock

policy. Our model assumes that in a given period t, after observing demand, the LDC initiates

demand satisfaction for all demands that occurred in period t − (ℓ − TC), ensuring that these

demands are satisfied within ℓ periods of their occurrence (in period t + TC). Similarly, the FC

ships out all orders that were placed by LDCs s − TL periods prior to period t. Clearly, the value

of s should be at least TL, as this is the physical lead time of a shipment from the FC to the LDC,

and need not be greater than TF +TL, the time required for a shipment to be sent to the FC from its

external supplier (who has unlimited capacity) and then to the LDC. Similarly, ℓ should be at least

as great as the physical lead time to customers, TC , and need not be greater than s + TC , the time

required to receive an order from the FC and send it to the customer. Ensuring that in period t the

FC always ships all demand that occurred in period t− (s−TL) while the LDC initiates fulfillment

of all orders in period t − (ℓ − TC) can be achieved through one of two modeling approaches

proposed in the literature.

The first of these approaches assumes that any difference between the amount due to be shipped

from the FC or LDC and the on-hand stock at the corresponding location in any period can be

immediately expedited to the location at a unit shortage cost. This is the approach used in the

two-echelon distribution model proposed by Barnes- Schuster, Bassok, and Anupindi [22]. This
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approach requires explicitly defining a per-unit cost associated with expediting at each stage, and

directly addresses the tradeoff between holding and shortage costs in setting the base-stock levels

at the FC and LDCs.

An alternative approach, which produces a structurally identical mathematical model under a

normally distributed demand assumption, is the use of the guaranteed service model approach as

an approximation method when demand may be unbounded. The guaranteed service approach of

Graves and Willems [3] assumes bounded demand in each period, and that an LDC is able to guar-

antee meeting all of its customers’ demands within ℓ periods. The authors recognize that this 100%

service approach is not exact under a normal demand assumption, and is unable to directly account

for the common inventory pooling effects due to temporal aggregation of orders. Thus, they sug-

gest using a demand bound that exceeds expected demand by some k > 0 standard deviations in

the normal distribution case, and suggest combining standard deviations of independent demand

streams in order to derive approximate bounds that account for inventory pooling effects. The

value of the safety factor k determines the probability that actual demand may exceed the approxi-

mate bound (this probability is, of course, strictly decreasing in k, implying that the approximation

strictly improves in k).

To determine the required base-stock levels at each stage, we use a similar approach developed

in the GW model [3]. Letting BF and BL denote the base-stock levels at the FC and at a single

LDC, respectively, the GW model sets BL = (s+ TC − ℓ)µL(p, ℓ,N) + kLσL(N)
√
s+ TC − ℓ

and BF = (TF + TL − s)µF (p, ℓ,N) + kFσF (N)
√

(TF + TL − s), where kF and kL correspond

to safety factors that determine the implied demand bounds at the FC and LDC, respectively (ap-

plying the modeling approach and interpretation of [22] leads to structurally identical base-stock

levels, although we require redefining the values of the constants kF and kL in order to reflect their

dependence on the optimal tradeoff between holding and shortage costs).

The safety stock level at a single LDC will then be equal to SS1(s, ℓ,N) = BL − (s +

TC − ℓ)µL(p, ℓ,N) = kLσL(N)
√
s+ TC − ℓ. The total safety stock held at N identical LDCs

is thus equal to SSL(s, ℓ,N) = NSS1(s, ℓ,N) = NkLσL(N)
√
s+ TC − ℓ, while the safety
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stock at the FC will be approximately equal to SSF (s,N) = BF − (TF + TL − s)µF (p, ℓ,N) =

kFσF (N)
√
TF + TL − s. Given a unit holding cost per period at the FC equal to hF and at the LDC

equal to hL, the total system holding cost is expressed as HC(s, ℓ,N) = hFkF σ̄
√

J(N) (TF + TL − s)+

hLkLσ̄
√
J(N)N(TC + s− ℓ).

1.3.3 Model formulation

The expected total system revenue can be expressed as the product of the product’s price, p,

and the total expected system demand, that is,

R(p, ℓ,N) = pD(p, ℓ,N) = J(N)
(
ap− bpu+1ℓv

)
. (1.1)

Our profit-maximizing model seeks the value of committed supply time from the FC to any

LDC, s, the committed delivery time to customers, ℓ, as well as the product’s price, p, and the

number of LDCs, N .

The objective is to maximize the expected total system profit per period, denoted by Π(p, s, ℓ, N),

which equals total net revenue minus the sum of total system costs, which include safety stock

holding costs and fixed facility costs. Let K denote the fixed cost per period associated with

operating an LDC. The resulting model is formulated as follows:

[P] max Π(p, s, ℓ, N) = J(N)
(
ap− bpu+1ℓv

)
−KN − hFkF σ̄

√
J(N) (TF + TL − s)

− hLkLσ̄
√

J(N)N(TC + s− ℓ) (1.2)

s.t. TL ≤ s ≤ TF + TL, (1.3)

TC ≤ ℓ ≤ s+ TC , (1.4)

1 ≤ N ≤ NUB, (1.5)

s, ℓ, p ≥ 0, N ∈ Z+. (1.6)

The objective function (1.2) maximizes the expected total system profit per period. Constraint

(1.3) requires the FC’s committed service time to take a value at least the physical leadtime re-
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quired to replenish an LDC (TL), but no greater than the maximum physical leadtime of TF + TL.

Constraint (1.4) similarly requires the committed delivery time to take a value greater than or equal

to the physical leadtime of TC , but no larger than the FC’s committed service time to an LDC plus

the physical leadtime to customers. Constraint (1.5) limits the total number of LDCs in the system

and requires at least one operational LDC. This upper bound may arise due to, for example, a limit

on capital or geographical limits on the total number of markets.

1.4 Solution approach

This section characterizes the structure of optimal solutions and defines parameter-based re-

gions within which each among a set of candidate safety stock strategies serves as an optimal

strategy. We characterize threshold values at which the optimal safety stock placement strategy

switches from one form to another. Section 1.4.4 considers a model extension in which the physi-

cal leadtime to customers depends on the number of system LDCs.

1.4.1 Optimal price

In the objective function of problem [P], the price decision variable p only appears in the

revenue term (the first term). Observe that the second-order derivative of the objective function

with respect to p is given by

∂2Π(p, s, ℓ, N)

∂p2
= −J(N)bu(u+ 1)pu−1ℓv. (1.7)

Because we assume that 1 ≤ J(N) ≤ N and both b and u are positive, for any given positive ℓ,

the right-hand side of Equation (1.7) is negative, implying that the objective function is concave

in price. To obtain an optimal value of price, we set the first-order derivative of the objective

function in p to zero, that is, J(N) (a− b(u+ 1)puℓv) = 0, which gives an optimal price of the

form p∗(ℓ) = ρℓ−v/u, where ρ = (a/(bu+ b))1/u.
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1.4.2 Derivation of candidate optimal solutions

We can therefore substitute p∗(ℓ) into the objective function (1.2) and obtain a function that

only depends on the committed supply time s, the committed delivery time ℓ, and the number of

LDCs N , which takes the form

Π(s, ℓ,N) =J(N)βℓ−
v
u −KN − hFkF σ̄

√
J(N) (TF + TL − s)

− hLkLσ̄
√

J(N)N(TC + s− ℓ), (1.8)

where β = aρ − bρu+1. It is straightforward to show that for any given value of N , the Hessian

matrix of (1.8) is positive definite in the variables s and ℓ (see Appendix A.1), which implies

that Π(s, ℓ,N) is convex in s and ℓ. Note that in the (s, ℓ) space, problem [P] has a closed,

convex feasible region with four extreme points at (TL, TL + TC), (TL, TC), (TF + TL, TC), and

(TF +TL, TF +TL+TC). Accordingly, for any given N , an optimal solution for problem [P] occurs

at one of these extreme points. Table 1.1 displays the functional form of each candidate optimal

solution in the s and ℓ variables, as well as the corresponding implied safety stock placement

strategy.

Table 1.1: Extreme point solutions in the (s, ℓ) space and corresponding safety stock placement
strategy

Extreme point (s, ℓ) Objective function Safety stock placement strategy
XF = (TL, TL + TC) ΠF (N) = J(N)β(TL + TC)

−v/u − hFkF σ̄
√

J(N)TF −KN F (at the FC only)
XFL = (TL, TC) ΠFL(N) = J(N)βT

−v/u
C − hFkF σ̄

√
J(N)TF − hLkLσ̄

√
J(N)NTL −KN FL (at both the FC and the LDCs)

XL = (TF + TL, TC) ΠL(N) = J(N)βT
−v/u
C − hLkLσ̄

√
J(N)N(TF + TL)−KN L (at the LDCs only)

XO = (TF + TL, TF + TL + TC) ΠO(N) = J(N)β(TF + TL + TC)
−v/u −KN O (make-to-order (MTO), zero safety stock)

The extreme point solution denoted by XF corresponds to a policy of holding safety stock at

the FC but not at the LDCs, while using a committed supply time of TL and a committed delivery

time of TL + TC . We refer to this solution as strategy F . Solution XFL holds safety stock at both

the FC and LDCs and quotes a committed supply time to LDCs of TL and a committed delivery
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time of TC to the customers, which corresponds to strategy FL. Solution XL also uses a committed

delivery time of TC but applies a committed supply time of TF + TL, while no safety stock is held

at the FC, resulting in strategy L. The policy implied by extreme point XO corresponds to strategy

O, where each echelon places orders in response to demand, with no safety stock held either at

the FC or any of the LDCs. One of the extreme points XF , XFL, XL, and XO, and, therefore,

one of the strategies in the strategy set S = {F, FL, L,O}, provides an optimal solution in the s

and ℓ variables for any given value of N , with the optimal strategy determined by the associated

parameter values that determine the objective function value at each point.

The ability to determine the optimal number of LDCs, N , strongly depends on the form of the

market growth function J(N). In the extreme cases in which J(N) = 1 and J(N) = N we can

show that the expected profit at each extreme point solution in Table 1.1 is convex in N . In the

former case we can also show that expected profit is strictly decreasing in N at every extreme point

solution (and one LDC is, therefore, optimal),† while in the latter case, an optimal solution arises

at one of the extreme solutions N = 1 or N = NUB (in this case, we can show that if a profitable

solution exists, then at each extreme point solution, some threshold value of N = NT exists such

that expected profit is strictly increasing in N for N > NT ; thus, if NUB is sufficiently large,

N = NUB at optimality). Analytically characterizing the optimal value of N may be difficult

or impossible under more general functional forms of J(N). For example, when J(N) = Nγ

as defined in Section 1.3.1.2 with 0 < γ < 1, J(N) is strictly concave in N . In this case,

both
√

J(N) and
√
NJ(N) are also strictly concave, and problem [P] maximizes a difference of

concave functions in N , and thus falls in the class of NP-Hard optimization problems in general

(see, e.g., [25]). Because the problem is easily solved for any given value of N , and because the

upper bound NUB is likely to be a manageable value (e.g., less than 1,000), we can efficiently solve

the problem by enumerating candidate integer values of N .

†Note that the optimality of a single LDC when J(N) = 1 occurs because of the assumption that the physical
customer delivery time, TC , is independent of N ; the same does not hold in general for the case in which J(N) = 1
and TC is decreasing in N , which we consider in greater detail in Section 1.4.4.
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1.4.3 Optimality regions and threshold values

The objective function value at each extreme point in Table 1.1, and therefore, the structure of

an optimal solution, depends on the number of LDCs, N . Both the number of LDCs, N , and the

physical leadtime for delivery to customers, TC , (which may, in turn, depend on N ) play a vital role

in determining an optimal safety stock placement strategy. We are, therefore, interested in charac-

terizing how these two factors interact to determine the best safety stock placement strategy. To

streamline our analysis, given a set of problem parameters, we create a two-dimensional mapping

of TC and N values to optimal extreme point solutions that permits visualizing and characterizing

the way in which these values affect the optimal stock placement strategy.

To define the optimality regions for each of the stock placement strategies, we perform pairwise

comparisons between the four objective function values in Table 1.1, assuming that TC has a fixed

value independent of N (Section 1.4.4 later considers a generalization in which TC may depend on

N ). These pairwise comparisons lead to a series of inequalities that define threshold values of N

and TC such that the dominant strategy differs. This permits characterizing the subset of (positive)

values of (TC , N) corresponding to the optimality of each of the extreme point solutions in Table

1.1. We first perform comparisons for J(N) = N , in which case the optimality regions can be

analytically expressed in terms of N and TC . Appendix A.2 provides a detailed derivation and

the resulting inequalities. The resulting optimality regions are summarized in Table 1.2. Note that

RS corresponds to the region in which strategy S is optimal, while NS1,S2(TC) corresponds to a

threshold function such that for a given a value of TC , when N = NS1,S2(TC) we are indifferent

between strategies S1 and S2, i.e., ΠS1(N) = ΠS2(N) for strategies S1, S2 ∈ {F, FL, L,O}.

Similarly, TS1,S2(TC) is a function such that when TS1,S2(TC) = 0, ΠS1(N) = ΠS2(N) holds for

any value of N . The functional forms of NS1,S2(TC) and TS1,S2(TC) are provided in Appendix A.2

for all strategy pairs. For the given set of parameters in Table 1.3, we illustrate the threshold value

curves for N and TC , as well as the corresponding optimal strategy regions in Figure 1.3.

Figure 1.3(a) shows the threshold value curves for TC and N , where NO,F (TC), NO,FL(TC),

and NF,L(TC) are nonlinear functions of TC , while NFL,L is independent of TC . Observe that at
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Table 1.2: Optimality regions for each optimal solution candidate when J(N) = N

Objective value Stock placement strategy Optimality region

ΠF (N) F (at the FC only) RF =
{
(TC , N) : N ≥ max{NO,F (TC), NF,L(TC)}, TF,FL(TC) ≤ 0

}
ΠFL(N) FL (at both the FC and the LDCs) RFL =

{
(TC , N) : N ≥ max{NO,FL(TC), NFL,L}, TF,FL(TC) ≥ 0

}
ΠL(N) L (at the LDCs only) RL =

{
(TC , N) : N ≤ NFL,L, TF,L(TC) ≥ 0

}⋃{
(TC , N) : N ≤ min{NFL,F , NF,L(TC)}, TF,L(TC) < 0, TO,L(TC) ≥ 0

}
ΠO(N) O (MTO) RO =

{
(TC , N) : N ≤ min

{
NO,F (TC), NO,FL(TC)

}
, TO,L(TC) ≤ 0, TO,FL(TC) > 0

}⋃{
(TC , N) : N ≤ NO,F (TC), TO,FL(TC) ≤ 0

}

Table 1.3: Parameters used for visualizing threshold values and optimality regions

a b σ̄ hL hF kL kF TL TF u v
10,000 100 100 1.5 1 3 3 25 30 2 0.5

the value of TC such that TF,FL(TC) = 0, NO,F (TC) (the blue curve) intersects with NO,FL(TC)

(the orange curve), and NF,L(TC) (the green curve) intersects with NFL,L (the red horizontal line).

Similarly, at TC such that TO,L(TC) = 0, NO,F (TC) (the blue curve) intersects NF,L(TC) (the green

curve), and NO,FL(TC) (the orange curve) has the same value as NFL,L (the red horizontal line).

Figure 1.3(b) illustrates the optimality regions corresponding to each safety stock strategy, i.e.,

the regions formed by the resulting inequalities in the (TC , N) space such that each extreme point

solution is optimal, assuming J(N) = N . As the figure shows, when physical leadtimes are

relatively long (e.g., TC = 60), then if there are two LDCs, the optimal strategy does not hold any

safety stock in the system but uses a strict make-to-order policy throughout the system, using a

committed delivery time of TF +TL+TC . If the system is expanded to five or more LDCs with the

same customer physical leadtime of 60, then the optimal strategy transitions to holding safety stock

at the FC only, using a committed delivery time of TL + TC . Thus, when physical leadtimes are

relatively long (TC = 60) and with a small number of LDCs (N = 2), the safety stock holding cost

required to ensure a smaller committed delivery time outweighs the revenue increase associated

with faster delivery times. With more markets (N ≥ 5) and thus greater demand volume, it

becomes optimal to reduce the committed delivery time from TF +TL+TC to TL+TC and to hold

pooled safety stock for all markets at the FC, as the pooled safety stock cost at the FC is less than

the increased revenue resulting from shorter delivery times.

19



(a) Threshold values of N and TC . (b) Optimality regions for each safety stock strategy.

Figure 1.3: Threshold values and optimality regions when J(N) = N .

Similarly, when the physical leadtime to the customers requires a relatively short amount of

time, e.g., TC = 10, then as Figure 1.3(b) shows, for any number of LDCs greater than 2, the

optimal solution holds safety stock at both the FC and the LDCs, as the associated safety stock

cost is small relative to the demand potential associated with a fast committed delivery time (only

when N ≤ 2 do we hold stock at the LDC only; however, in a system with an FC and one LDC,

the FC is wholly unnecessary).

We can consider a similar analysis when the number of LDCs (N ) is fixed. For example,

observe that the system with 10 LDCs and a physical customer leadtime of 15 leads to an optimal

strategy that holds stock at both the FC and the LDCs, while the combination of 10 LDCs and

TC = 40 only holds stock at the FC. Because higher physical leadtimes increase the safety stock

costs associated with reducing committed delivery times, and physical leadtimes constrain the

ability to reduce committed delivery times, the revenue from increased demand due to shorter

delivery times is not offset by the associated safety stock holding costs at the LDCs. Observe

that if we increase TC to a sufficiently high value, then even with 10 LDCs we eventually reach

a threshold value that leads to no safety stock at the LDCs or the FC, i.e., a strict make-to-order

system.
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The visualization provided via Figure 1.3(b) can serve as a potentially powerful tool for lo-

gistics system managers. Given existing values of physical customer leadtime and the number of

existing LDCs, this figure can be used to define a path of the projected values of these parameters

over time, which can then be used to determine an appropriate future point at which to change

safety stock placement strategy and distribution system structure.

1.4.4 Model generalization

In practice, adding LDCs may reduce the physical leadtime to customers (TC) since a high

facility density reduces physical delivery distance. Therefore, we consider the implications of

allowing TC to depend on the number of LDCs, N . Let us define TC(N) = T0/N
θ, where T0

is an initial physical leadtime to customers before adding any new LDCs, and θ ≥ 0 permits

characterizing the rate of decrease in physical leadtime to customers as N increases. Substituting

T0

Nθ for TC in [P] leads to a more general model with a more complex form of the objective function

and a nonlinear form of Constraint (1.4). Observe that setting θ = 0 is equivalent to setting TC to

a fixed value independent of N as in the previous analysis.

The derivation of optimal price in Section 1.4.1 and the resulting solution, p∗(ℓ), continue to

hold under this generalized model, as do the convexity properties of model [P] for a fixed value of

N . As a result, we can apply a similar analysis of the optimal strategy regions, although closed-

form expressions for threshold function values of N are no longer available in general. Instead

we define the functions gS1,S2(T0, N) such that when gS1,S2(T0, N) = 0 we have ΠS1(T0, N) =

ΠS2(T0, N) for S1, S2 ∈ {F, FL, L,O}. Appendix A.3 provides the form for each gS1,S2(T0, N)

function, as well the resulting six inequalities that define the optimal strategy regions in the (T0, N)

space for each of the four safety stock strategies. Table 1.4 characterizes the resulting optimal

strategy regions.

When TC(N) = T0/N
θ and θ > 0, characterization of the behavior of ΠS(N) (S ∈ {F, FL, L,O})

as a function of N becomes substantially more difficult than for the case in which θ = 0 discussed

in Section 1.4.2, even under the simpler functional forms of J(N) = 1 and J(N) = N . In par-

ticular, we can no longer claim that ΠS(N) is convex in N when J(N) = 1 or when J(N) = N
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and θ > 1 (convexity in N continues to hold, however, when J(N) = N and 0 < θ ≤ 1). Thus,

for example, when J(N) = 1 (all LDCs split a market of a fixed size) and the physical delivery

time to customers depends on the number of LDCs, it is no longer necessarily optimal to serve the

market with a single LDC, as was the case when physical delivery time was independent of the

number of LDCs. In this case, therefore, an optimal solution will often locate more LDCs closer

to customers, on average, in order to stimulate demand via decreased customer delivery times.

Table 1.4: Optimality regions for TC(N) = T0/N
θ and any J(N)

Objective value Stock placement strategy Optimality region

ΠF (N) F (at the FC only) RF =
{
(T0, N) : gO,F (T0, N) ≥ 0, gF,FL(T0, N) ≤ 0, gF,L(T0, N) ≤ 0

}
ΠFL(N) FL (at both the FC and the LDCs) RFL =

{
(T0, N) : gO,FL(T0, N) ≥ 0, gF,FL(T0, N) ≥ 0, N ≥ NFL,L

}
ΠL(N) L (at the LDCs only) RL =

{
(T0, N) : gO,L(T0, N) ≥ 0, gF,L(T0, N) ≥ 0, N ≤ NFL,L

}
ΠO(N) O (MTO) RO =

{
(T0, N) : gO,F (T0, N) ≤ 0, gO,FL(T0, N) ≤ 0, gO,L(T0, N) ≤ 0

}

1.5 Numerical analysis

Thus far, we have shown that one of the four extreme point solutions leads to an optimal

solution, and have derived a series of inequalities that form the optimal strategy regions in the

(TC , N) space (when TC is fixed) for each of the four candidate optimal strategies (in addition to

analytical expressions for threshold values between these regions for certain J(N) functions). The

resulting optimal safety stock placement strategy is primarily affected by four factors: the number

of LDCs, N , the total system demand growth function, J(N), the internal committed supply time,

s, and the committed delivery time to customers, ℓ. In this section, we are interested in exploring

the properties of safety stock placement optimization by performing a numerical analysis based on

these factors. Since the optimal values of s and ℓ are expressed in terms of TC and TL, we can

therefore conduct our numerical tests by investigating the effects of N , TC , and TL under different

forms of the function J(N).
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1.5.1 Results for different system demand growth models

In Section 1.3.1.2, we introduced the function J(N) to describe system demand growth as

the number of LDCs, N , increases. Recall that J(N) = N leads to strict demand growth within

a market by covering new service areas not covered by existing LDCs, while J(N) = 1 indi-

cates that new LDCs do not introduce new demand but serve a subset of the existing customers

instead. In addition to these two extremes, we also consider J(N) = Nγ with 0 ≤ γ ≤ 1 and

J(N) = 1 + f(N)(1 − e1−N) as more general cases where adding a new LDC generates some

new demands but may also partially cover a subset of previously existing customers. In our nu-

merical analysis we let γ = 0.5 and f(N) = 1.5, assume a fixed value of TC , set TL = 25

and TF = 30, and use the cost and demand parameters in Table 1.3 to conduct numerical tests

with {(TC , N) : 1 ≤ TC ≤ 41, 1 ≤ N ≤ 11}. Figure 1.4 illustrates the optimality regions for each

safety stock placement strategy in the two-dimensional (TC , N) space for different functional

forms of J(N). In our discussion of the results, we refer to the four different safety stock placement

strategies as the MTO-strategy (no safety stock at either echelon), FL-strategy (holding safety stock

at both echelons), LDC-strategy (holding safety stock only at the LDC) and FC-strategy (holding

safety stock only at the FC).

Observe that for each of the forms of J(N) tested, the border between the FL-strategy (orange

region) and the LDC-strategy (turquoise region) corresponds to a horizontal line at N = 2.28,

which is independent of TC and the functional form for J(N). Proposition 1.5.1 analytically

proves this property.

Proposition 1.5.1. For any functional form of J(N), given a set of fixed parameter values, the

transition from the FL-strategy to the LDC-strategy occurs at a fixed value of N , which is indepen-

dent of TC and the form of J(N).

All proofs of propositions and corollaries appear in Appendix A.4. The proof of Proposition

1.5.1 indicates that given all other parameters as fixed, the transition between the FL-strategy and

the LDC-strategy only depends on the number of LDCs in the system and not on the market (total
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Figure 1.4: Optimality regions in the (TC , N) space with different J(N) functions.

demand) growth rate and the physical delivery time to the customers. Analytically, if we look at

the expressions for ΠFL(N) and ΠL(N) in Table 1.1, J(N) equally contributes to the growth in

revenue in both objective functions when TC is fixed; that is, the better stock strategy is solely

determined by the overall holding costs (since each strategy also has the same fixed cost, KN ).

The function J(N) serves as a scaling term (that is,
√

J(N)) in the holding cost for either policy,

and will therefore cancel out when we compare ΠFL(N) and ΠL(N). Hence, the value of N

determines which of these two strategies has a lower overall holding cost and a higher system

expected profit. The value NFL,L corresponds to the points at which ΠL(NFL,L) = ΠFL(NFL,L),

which can be visualized as a horizontal line in the (TC , N) coordinate system.

Figure 1.4 also shows that the border between the FC-strategy (blue region) and the MTO-

strategy (pink region) when J(N) = 1, and the border between the FC-strategy (blue region) and
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the FL-strategy (orange region) when J(N) = N , correspond to vertical lines independent of N .

This is formalized in Proposition 1.5.2.

Proposition 1.5.2. When TC is independent of N , the threshold value of TC at which the FC-

strategy transitions to the MTO-strategy when J(N) = 1, and to the FL-strategy when J(N) = N ,

depends only on the physical delivery time to customers, TC , and is independent of the number of

LDCs, N .

When J(N) = 1, the addition of a new LDC does not contribute to growth in total demand or

revenue. Consequently, the total demand seen by the FC remains constant, which has no impact

on FC holding cost. In this case, therefore, the value of TC becomes the decisive determinant of

the optimal values of demand and revenue. A larger TC causes a lower demand and revenue. Thus,

as we increase TC , the loss in demand and revenue will reach a threshold and a transition from the

FC-strategy to an MTO-strategy will happen, as the lower revenue no longer justifies the holding

cost incurred by the FC.

At the other extreme, with strict market growth (that is, J(N) = N ), for a system using an

FC-strategy, the resulting optimal committed delivery time is TL + TC , and holding cost is only

incurred at the FC. Under an FL-strategy, however, the resulting optimal committed delivery time

is TC , which implies a higher expected value of total demand (thus, higher expected revenue),

although the system now absorbs holding cost at each LDC in addition to the FC. Thus, for a

system with a small value of TC , adding stock to the LDCs can lead to total revenue that offsets the

holding cost incurred at each LDC, independent of the number of LDCs in the system, as Equation

(A.36) in Appendix A.4 indicates.

1.5.2 Optimal committed service times

The optimal values of the committed supply time, s, and the committed delivery time, ℓ, are

determined by the physical shipping time from FC to the LDCs, TL, and the physical delivery

time from LDCs to the customers, TC , respectively, as shown in the first column of Table 1.1. To

illustrate the effects of different physical leadtime values, we consider the optimal strategy for a
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system with a fixed number of LDCs and a range of physical leadtime values. In particular, we

allow both TL and TC to vary from 1 to 41 under different forms of the growth function J(N),

using the same parameters from Table 1.3. Figure 1.5 compares the resulting optimal strategy

regions in the (TC , TL) space when N = 2.

Figure 1.5: Optimality regions in the (TC , TL) space with different J(N) functions.

Under each form of J(N), if the system has a small value of TC (TC ≤ 10) and a moderate

value of TL (TL ≤ 20), the optimal strategy is to hold safety stock at both the FC and LDCs

(lower left orange region in Figure 1.5), where the FC commits a supply time of TL to each LDC

and each LDC guarantees its customers a delivery time of TC periods. This confirms the intuition

that shorter physical leadtimes result in smaller committed service times, which generate sufficient

demand (higher revenue) to offset the corresponding system holding cost, which is relatively low
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due to the shorter physical leadtimes.

Suppose we begin with such a solution (in the orange region in Figure 1.5) and increase the

value of TL while holding TC fixed. As we increase TL (e.g., TL > 20), we maintain an optimal

delivery time of TC periods to customers, but transition to using a longer internal supply time of

TF +TL periods to the LDCs, shifting the safety stock held at the FC to the LDCs (moving from the

orange region to the turquoise region). In contrast, if we begin at a point in the orange region and

hold TL at a moderate value while increasing TC (e.g., for TC > 25), at maximum expected profit,

the system is no longer able to commit a TC-period delivery time to customers, instead providing a

slower delivery service time equal to TL +TC periods; this results in a shift of all safety stock held

at the LDCs to the FC (from the orange region to the blue one). Intuitively, when TC is small but TL

is large, the LDCs can commit a fast delivery time to increase revenue at the expense of additional

safety stock that is shifted from the FC to the LDCs. On the other hand, if TL is relatively small but

TC is large, holding safety stock at the LDCs becomes too expensive and the optimal guaranteed

delivery time to the customers increases, attracting less demand (and lower revenue); this impact is

mitigated by staging safety stock at the FC, which permits offering a delivery time of TC + TL, as

opposed to the maximum possible value of TC+TL+TF that would apply under the MTO-strategy.

As the figure illustrates, when both TL and TC take large values (e.g., TL ≥ 30 and TC ≥ 30), the

resulting committed service time is maximal due to the high holding costs associated with both

echelons, leading to the relatively low expected revenue resulting from an MTO-strategy (upper

right pink regions).

Observe that as we progress through the subfigures in Figure 1.5, the area associated with the

optimality region for an MTO-strategy (pink region) decreases as the magnitude of J(N) increases

from J(N) = 1 towards J(N) = N . To provide an intuitive explanation for this trend, note that

in the J(N) = 1 extreme case, the total demand depends only on the optimal committed delivery

time, and the addition of an LDC does not generate any new demand, but serves a subset of the

existing market, and therefore, cannot create additional revenue to offset its holding cost and fixed

cost. When J(N) = 1, we therefore hit the threshold values for the MTO-strategy at the smallest
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possible value of the optimal committed service time, because no additional revenue is gained

to offset the corresponding costs. At the other extreme, when J(N) = N , we see the greatest

potential for additional revenue with the addition of an LDC because each LDC covers a new

independent market, which leads to maximal threshold values associated with the change to an

MTO-strategy.

1.5.3 Results when TC depends on N

Section 1.4.4 proposed a non-increasing functional form TC(N) = T0/N
θ to account for the

possibility that adding new LDCs may improve the delivery speed to customers, where T0 is an

initial physical delivery time to customers before adding any new LDCs, and θ is a non-negative

parameter that characterizes the relationship between the number of LDCs and the physical deliv-

ery time. To simulate the effects of adding LDCs on the change in the physical delivery time when

physical lead time depends on the number of LDCs, we illustrate the optimal strategy regions in

the (T0, N) space for various values of θ in Figure 1.6 (where T0 varies from 1 to 40 and N from 1

to 10, with J(N) = N , σ̄ = 200, and all other parameter values the same as those used in previous

tests).

Figure 1.6: Optimality regions in the (T0, N) space with different θ values.

The subfigures illustrate that as θ increases, the borders between the strategy regions become

‘stretched’ towards the lower right, and the areas of the FL- (orange) and LDC-strategy (turquoise)
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regions increase, while those associated with the FC-strategy (blue) and MTO-strategy (pink) de-

crease. Proposition 1.5.3 provides an analytical explanation for this trend.

Proposition 1.5.3. For any given value of N , as θ increases, the threshold value of T0 at which a

transition occurs between safety stock placement strategies increases.

Intuitively, adding new LDCs may decrease the average distance between a customer and its

nearest LDC, so that a faster committed delivery service can be offered, and the value of θ deter-

mines the degree of this decrease in potential service time. Given a value of initial physical delivery

time T0, a larger θ implies that the system can offer a faster delivery time as N increases, reducing

the threshold value of N at which a transition occurs between optimal strategies. As a result, given

a fixed T0, the borders between strategy regions move downward along the N -axis in Figure 1.6

(with the exception of the border between the FL- and LDC-strategy, which is independent of the

physical lead time to customers).

1.6 Parametric analysis

In the previous section, we focused on analyzing the three decision variables (s, ℓ, and N ), the

demand growth model, and the associated key parameters that primarily determine the structure

of an optimal solution. However, additional system parameters, such as the revenue function pa-

rameters, demand uncertainty, and relative holding cost values, are also crucial in determining the

structure of an optimal solution. In this section, we provide a deeper analysis of the market size,

demand uncertainty, and the unit holding cost parameters at the two echelons, and their impacts on

the optimal solution structure.

1.6.1 Impacts of market size and demand uncertainty

The scale and uncertainty associated with customer demands serve as two key factors in in-

ventory management. Our model uses a to denote maximum market demand per period, while σ̄

corresponds to the standard deviation of periodic demand. We next consider how these two key

parameters affect optimal inventory placement decisions. We tested the model under different com-

binations of small (a = 10, 000) and large (a = 20, 000) market sizes, as well as low (σ̄ = 100),
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medium (σ̄ = 200), and high (σ̄ = 300) values of demand uncertainty, assuming J(N) = N and

TC is independent of N . Unless otherwise stated, all other parameters take the same values used

in our previous numerical tests. Figure 1.7 illustrates the optimal strategy regions under different

market demand attribute values.

Figure 1.7: Optimal strategy regions in the (TC , N) space under different market size (a) and
demand uncertainty (σ̄) values.

To understand the trends shown in Figure 1.7, we begin by considering the subfigure on the bot-

tom left, which corresponds to a market with small size (a = 10, 000) and low demand uncertainty

(σ̄ = 100), in which the optimality region corresponding to the FL-strategy (orange region) occu-

pies the most area in the (TC , N) space. As the demand uncertainty increases (moving rightward

through the subfigures in the bottom row), the area associated with the MTO-strategy (pink region)

becomes larger, expanding from the lower right corner towards the upper left, implying a greater

likelihood of the optimality of an MTO-strategy as uncertainty (σ̄) increases. Next, consider the

trends within the columns from bottom to top, as the market size (a) increases. It is notable that

increasing a from 10,000 to 20,000 shifts the border between the orange and the blue regions to
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the right such that the area associated with the FL-strategy (orange) region is enlarged, while the

regions corresponding to the FC-strategy (blue) and the MTO-strategy (pink) become narrower

(and are eliminated at σ̄ = 100). This implies that for a fixed value of demand uncertainty, a larger

market size leads to a larger range of TC and N values such that the FL-strategy is optimal. Recall

that in Section 1.4.2, we defined β as a parameter associated with the total system revenue, where

β = aρ−bρu+1 = a(u+1)/ub−1/uu(u+1)−(1+u)/u. Therefore, increasing the value of a corresponds

to increasing the value of β and, therefore, to additional revenue. The standard deviation σ̄, on the

other hand, only affects the system’s holding costs. All else being equal, a larger standard deviation

leads to greater safety stock, and thus, higher holding cost. A small market size with high demand

uncertainty (as the bottom-right subfigure depicts) produces low revenue but requires high system

holding cost to ensure short delivery times, which leads to a preference for an MTO-strategy. With

a larger market size and smaller demand uncertainty (as shown in the subfigure on the top left), the

model prescribes holding safety stock at the LDCs only (when the number of LDCs is small) or

at both echelons (when the number of LDCs is large), which enables higher revenue and provides

the smallest possible committed delivery time (that is, ℓ = TC), while maintaining a low system

holding cost because of the relatively low value of σ̄.

1.6.2 Impact of unit holding costs

The holding cost per unit per period at the FC, hF , and at the LDCs, hL, are also key parameters

that affect optimal safety stock placement. Assuming hL ≥ hF (which typically holds in practice),

we test four different combinations of the values of hL and hF and consider their impacts on the

optimal solution structure using a demand growth function J(N) = N . The results are illustrated

in Figure 1.8. A comparison of subfigures in the left column reveals that when we increase the

value of hF , the border between the FL-strategy region and the LDC-strategy region increases in

N . We observe the same phenomenon when contrasting subfigures in the right column. This effect

is formally stated in Corollary 1.6.1.

Corollary 1.6.1. When TC is fixed, for any valid J(N) function, the threshold value of N at which

ΠFL(N) = ΠL(N) increases as the relative holding cost ratio hF/hL increases.
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Figure 1.8: Optimality regions in the (TC , N) space with different holding costs.

Corollary 1.6.1 implies that for a system with a small number of LDCs in which it is optimal

to hold stock at both the FC and the LDCs, when the ratio of the periodic unit holding cost at the

FC to that at an LDC increases, a shift of all stock to the LDCs may result at optimality. Another

interesting property is revealed by comparing the subfigures within the same row. For example,

by comparing subfigures in the top row, we see that when the value of hL increases, the border

between the FL-strategy region (orange) and the FC-strategy region (blue), and that between the

LDC-strategy region (turquoise) and the MTO-strategy region (pink) decrease in TC . This is shown

analytically in Proposition 1.6.2.

Proposition 1.6.2. When N is fixed, for any valid J(N) function, the threshold values of TC at

which ΠFL(N) = ΠF (N) and ΠL(N) = ΠO(N) decrease as hL increases.

Proposition 1.6.2 implies that as the holding cost the LDCs increases, a system that holds stock

at both echelons at optimality may transition to the FC-strategy if the system cannot offer a smaller

committed delivery time. Similarly, if a system holds stock at the LDCs only at optimality, if the

unit holding cost at LDCs increases, the system may require a transition to the MTO-strategy if it
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is not able to reduce the physical lead time to customers.

1.6.3 Impact of market growth rate and physical leadtime factor

Section 1.3.1.2 characterized a market growth function of the form J(N) = Nγ , where 0 ≤

γ ≤ 1. We also proposed a model in which the physical leadtime to customers may depend on the

number of LDCs in Section 1.4.4, using TC(N) = T0/N
θ, where T0 is a positive parameter and

θ ≥ 0. The parameters γ and θ determine the rate of demand growth and delivery time decrease that

are possible as N increases. Thus, we are interested in gaining some insight on how the optimal

solution structure will be affected by these parameters. In this section, we consider the parameter

values γ ∈
{
0, 0.5, 1

}
and θ ∈

{
0, 0.3, 0.5

}
, using the same values for all other parameters as in

the previous tests. Figure 1.9 illustrates the results for all combinations of θ and γ in the (T0, N)

space.

Figure 1.9: Optimality regions in the (T0, N) space under different γ − θ combinations.
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Figure 1.9 contains nine subfigures arranged in a 3× 3 matrix. Each row includes three subfig-

ures with the same value of γ but different values of θ, i.e., each row compares different physical

leadtime reduction rates with the same market growth model. Similarly, each column compares

three entries that have the same physical leadtime reduction rate, with different values of market

growth rate as N increases. Within each column of subfigures, as γ increases (moving from the

bottom figure to the top one), the orange-blue border and the blue-pink border are shifted toward

the lower right, and the areas corresponding to blue and pink regions decrease. This phenomenon

can be partially explained via Proposition 1.6.3.

Proposition 1.6.3. When TC(N) = T0/N
θ and θ is fixed, using a market growth function J(N) =

Nγ with 0 ≤ γ ≤ 1, for a given value of N , the threshold values of T0 at which ΠFL(N) = ΠF (N)

and ΠF (N) = ΠO(N) hold increase as γ increases.

When θ is fixed, given a value of T0, intuitively, if γ is larger, the total demand grows faster as

we add LDCs to the system, which increases holding cost at the same time. This accelerates the

change in expected profit with the addition of a new LDC, and, as a result, the transition between

optimal stock strategies may occur at a smaller number of LDCs, N . We find a similar trend when

comparing the subfigures within each row. With a fixed market growth model, as the value of θ

increases, the borders shift to the right and the orange region increases in size, while the blue and

pink regions are narrower. This trend has been explained in Section 1.5.3.

1.7 Model extension: Multiple, heterogeneous markets

This section generalizes the system to permit the FC to serve a set of heterogeneous markets.

Let M denote the number of heterogeneous markets, where Nm is the number of LDCs serving

market m for m = 1, ...,M . We assume that LDCs within a market are identical, providing the

same level of service and responsiveness to customers in the market, while the LDCs that serve

distinct markets are heterogeneous. Thus, all customers within a market have the same committed

delivery time, ℓm (although different markets may have different delivery times), while the price, p,

will be the same for all markets (this is not an unusual approach for companies that have web-based
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sales nationally).

Let sm and TL,m denote the committed internal supply time and the physical leadtime to each

LDC within market m, respectively, and let TC,m(Nm) denote the physical leadtime to customers

in market m when there are Nm LDCs in the market. All LDCs are supplied by a single FC with

inbound physical leadtime TF . Figure 1.10 illustrates the system with market heterogeneity.

Figure 1.10: System with market heterogeneity.

1.7.1 Model formulation with heterogeneous markets

Let nm denote the number of customers in market m when there is only one LDC serving

the market. Assuming that each customer in the market has probability Pm(p, ℓm) of ordering the

product, we have a mean per-period demand in market m (when it is only served by one LDC) equal

to µm(p, ℓm) = am − bmp
uℓvm = nmPm(p, ℓm), and a variance of σ2

m(p, ℓm) = nmPm(p, ℓm)(1 −

Pm(p, ℓm)). As discussed in Section 1.3.1.1, we use an upper bound on variance to approximate

safety stock and holding costs within each market, e.g., setting σ2
m(p, ℓm) as σ̄2

m, that is, 0.25nm,
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for m = 1, ...,M . Let Jm(Nm) denote the demand growth function for market m. When market

m contains Nm LDCs, the expected demand in the market equals Jm(Nm)µm(p, ℓm), while the

per-period expected demand and standard deviation seen by each LDC serving this market become

µL,m(p, ℓm, Nm) = Jm(Nm)
Nm

µm(p, ℓm) and σL,m(Nm) = σ̄m

√
Jm(Nm)

Nm
, respectively. The system

revenue is therefore written as

R(p, ℓ,N) = p
M∑

m=1

NmµL,m(p, ℓm, Nm) =
M∑

m=1

Jm(Nm)
(
amp− bmp

u+1ℓvm
)
, (1.9)

where ℓ = (ℓ1, ..., ℓM) and N = (N1, ..., NM). Within market m, the standard deviation of

demand during effective leadtime seen by each LDC is σL,m(Nm)
√
TC,m(Nm) + sm − ℓm, for

m = 1, ...,M . Thus, the total safety stock holding cost at all LDCs across all markets equals

HCL(s, ℓ,N) =
M∑

m=1

NmhL,mkL,mσL,m(Nm)
√
TC,m(Nm) + sm − ℓm

=
M∑

m=1

hL,mkL,mσ̄m

√
Jm(Nm)Nm (TC,m(Nm) + sm − ℓm), (1.10)

where s = (s1, ..., sM). Note that the standard deviation of effective lead-time demand seen by the

FC from the LDCs serving market m equals σL,m(Nm)
√

Nm(TF + TL,m − sm), which leads to a

pooled demand uncertainty across all markets seen by the FC equal to

σF (s,N) =

√√√√ M∑
m=1

Nmσ2
L,m(Nm)(TF + TL,m − sm) =

√√√√ M∑
m=1

σ̄2
mJm(Nm)(TF + TL,m − sm).

Letting TC,m(Nm) =
T0,m

Nθ
m

, where T0,m is the base physical delivery time to customers in market m

with a single LDC, the model formulation with multiple, heterogeneous markets can be written as
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follows:

[PG] max Π(p, s, ℓ,N) =
M∑

m=1

Jm(Nm)
(
amp− bmp

u+1ℓvm
)
−

M∑
m=1

NmKm

− hFkF

√√√√ M∑
m=1

σ̄2
mJm(Nm)(TF + TL,m − sm)

−
M∑

m=1

hL,mkL,mσ̄m

√
Jm(Nm)Nm

(
T0,m

N θ
m

+ sm − ℓm

)
s.t. TL,m ≤ sm ≤ TF + TL,m, ∀m = 1, ...,M,

T0,m

N θ
m

≤ ℓm ≤ sm +
T0,m

N θ
m

, ∀m = 1, ...,M,

sm, ℓm ≥ 0, ∀m = 1, ...,M,

1 ≤ Nm ≤ NUB,m, Nm ∈ Z+, ∀m = 1, ...,M,

p ≥ 0.

1.7.2 Solution approach and convexity analysis

The approach discussed in Section 1.4.1 to determine an optimal price is also applicable to

problem [PG]. By setting ∂Π(p,s,ℓ,N)
∂p

= 0, the optimal price with multiple heterogeneous markets

can be written as

p∗(ℓ,N) =

(
A(N)

(u+ 1)B(ℓ,N)

) 1
u

, (1.11)
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where A(N) =
∑M

m=1 Jm(Nm)am and B(ℓ,N) =
∑M

m=1 Jm(Nm)bmℓ
v
m. By replacing the price

variable in the objective function of [PG] with Equation (1.11), the objective function becomes

M∑
m=1

Jm(Nm)

(
am

(
A(N)

(u+ 1)B(ℓ,N)

) 1
u

− bm

(
A(N)

(u+ 1)B(ℓ,N)

)1+ 1
u

ℓvm

)

−
M∑

m=1

NmKm − hFkF

√√√√ M∑
m=1

σ̄2
mJm(Nm)(TF + TL,m − sm)

−
M∑

m=1

hL,mkL,mσ̄m

√
Jm(Nm)Nm

(
T0,m

N θ
m

+ sm − ℓm

)
. (1.12)

For a fixed N, i.e., given the number of LDCs in each market, we can show that the objective

function (1.12) is convex in (s, ℓ) when 0 < v ≤ 1, which leads to 4M candidate extreme points

(see Appendix A.5), implying that the number of extreme point solution candidates for a given N

increases exponentially as the number of markets, M , increases. To determine the optimal N, we

may apply the same approach used in Section 1.4.2, by enumerating all possible integer values of

Nm for each market.

However, if M is sufficiently large and/or the range of Nm for one or more markets is suf-

ficiently broad, enumerating all possible combinations of Nm values and solving for the optimal

extreme point solution by comparing all 4M resulting objective values will be impractical. Heuris-

tic algorithms will therefore be required to determine high-quality solutions in such cases, although

space and scope considerations require us to leave this as a topic for future research.

1.7.3 Numerical results

In the case of multiple, heterogeneous markets, it is no longer straightforward to analytically

derive simple threshold conditions characterizing transitions between optimal safety stock place-

ment strategies due to the dimensional complexity. Instead, we conducted an additional set of

numerical tests to illustrate how optimal safety stock strategies transition for multiple markets as

system parameters change. To simulate a heterogeneous system, we randomly generate parameters

associated with five heterogeneous markets. The parameters for the FC and each market are dis-
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played in Table 1.5. With five markets, the total number of solution candidates for optimal (s, ℓ)

values is 1,024, where each solution candidate consists of (sm, ℓm) for m = 1, ..., 5, and each pair

of (sm, ℓm) determines a safety stock strategy for the corresponding market m.

Table 1.5: Parameters used in numerical tests for the FC and each market

am bm σ̄m TL,m hL kL Jm(Nm) TF hF kF
FC - - - - - - - 30 2.202 4.5

m = 1 9,576 144 66.957 22 1.64 3 J1(N1) = 1 + 6.015(1− e1−N1) - - -
m = 2 3,731 237 37.450 19 1.91 3 J2(N2) =

√
N2 - - -

m = 3 10,043 137 59.410 25 2.98 3 J3(N3) = N3 - - -
m = 4 7,225 283 44.677 18 2.98 3 J4(N4) = 1 - - -
m = 5 7,438 234 55.518 22 2.50 3 J5(N5) = 1 + 8.003(1− e1−N5) - - -

To be consistent with our single-market computational tests, we considered various values of

the physical leadtime to the customers (TC,m) and the number of LDCs (Nm) in each market m

(note that we assume TC,m(Nm) = T0,m, i.e., we set θ = 0 for all m = 1, ...,M ). To do this, we

created 6 test instances that consider all combinations in which each Nm is restricted to the range

of [1,5) or [5, 10), while each TC,m must take a value within [1,15), [15, 20), or [20,30), for every

market in each instance. Table 1.6 displays the values of TC,m and Nm for each market, as well as

the optimal solutions for each m for all instances.

Table 1.6: Numerical test instances and optimal strategies for systems with 5 heterogeneous mar-
kets

Instance [Nm] [TC,m] Optimal [(sm, ℓm)] - Extreme point solution Optimal stock strategy
1 3, 3, 1, 2, 2 8, 7, 5, 1, 12 (52, 8), (49, 7), (55, 5), (48, 1), (52, 12) L, L, L, L, L
2 3, 3, 1, 2, 2 19, 15, 18, 16, 16 (52,71), (49, 15), (55, 73), (48, 64), (52, 68) O, L, O, O, O
3 3, 3, 1, 2, 2 27, 26, 24, 20, 26 (52,79), (49, 75), (55, 79), (48, 68), (52, 78) O, O, O, O, O
4 7, 7, 9, 6, 9 8, 7, 5, 1, 12 (22, 8), (19, 7), (25, 5), (18, 1), (22, 12) FL, FL, FL, FL, FL
5 7, 7, 9, 6, 9 19, 15, 18, 16, 16 (22, 41), (19, 15), (25, 43), (18, 34), (22, 16) F, FL, F, F, FL
6 7, 7, 9, 6, 9 27, 26, 24, 20, 26 (22, 49), (19, 45), (25, 49), (18, 38), (22, 48) F, F, F, F, F
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We can visualize the various safety stock strategies applied among the markets using a two-

dimensional map of TC,m and Nm values as shown in Figure 1.11. We can see that when all markets

Figure 1.11: Optimal strategy distribution for heterogeneous systems.

have fewer than five LDCs and the customer delivery time is less than 15 periods, each market only

holds safety stock at their respective LDCs (in the bottom-left corner of each four-color block, all

markets are located in the turquoise region). As the customer delivery time increases to between

15 and 20 periods (moving to the right in the horizontal direction), some markets switch to a make-

to-order stock strategy (e.g., markets 1, 3, 4, and 5 move to the pink MTO region, while market 2

continues to hold inventory at the LDCs). Eventually, all markets will use a make-to-order strategy

when the customer delivery time in each market is greater than 20 periods. Similarly, if we start

with small values of TC,m (1 to 14) and larger values of Nm (5 to 9), as displayed in the upper-

left four-color block figure, all markets hold safety stock at both echelons (locating in the orange

region). As the customer delivery times increase, while holding the Nm values fixed, markets will

begin to move safety stock out of the LDCs and to the FC only (markets 1, 3, and 4 move to the
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blue region, holding safety stock only at the FC, while markets 2 and 5 continue their strategy of

holding safety stock at both echelons), since the LDC holding costs are sufficiently high such that

they are not offset by the system revenue available at lower delivery times in all markets. When

the delivery time required by all markets is longer than 20 periods, the system will apply an FC-

only strategy for each of its markets (all markets move to the blue region). These shifts in stock

placement strategies among the markets display very similar trends to those illustrated in Section

1.4.3 for the single-market case.

1.8 Conclusions and future work

This chapter proposed a two-echelon, fulfillment-time-dependent delivery model that deter-

mines the product price, the internal supply time from the upstream stage to the downstream stage,

and the delivery time committed to customers. The model’s solution determines an optimal safety

stock placement strategy. This model can be used to determine the service time, network expan-

sion strategy, inventory placement, and pricing strategies for a single product under uncertain,

fulfillment-time-dependent demand, while accounting for potential market growth based on the

addition of new facilities. Our numerical results and parametric analysis illustrated tools for in-

ventory placement decisions based on the number of facilities and the delivery time committed to

customers.

This work provides some insights for real-world fulfillment systems in which demand depends

on the committed service time and the price, and the market size and inventory placement decisions

are impacted by the number of facilities and the scale of the system. Future work may consider

including truckload transportation costs to account for transportation capacity limits and shipping

cost structures. Future work may also consider a multiple-product network in which the leadtime

between the upstream hub and each downstream is product-dependent, as well as the application

of the modeling approach to networks with more complex structures.
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2. OPTIMIZATION MODELS FOR FLEET COMPOSITION WITH TRUCKLOAD AND

LESS-THAN-TRUCKLOAD SHIPPING OPTIONS

2.1 Introduction

In today’s dynamic economic environment, logistics businesses are confronted with the mount-

ing challenge of meeting ever-growing customer expectations. Customers now expect an elevated

level of service that encompasses timeliness, reliability, and cost-effectiveness. Companies must

strive to meet these heightened customer expectations while simultaneously dealing with rising

operating costs, increased competition, and wage pressures stemming from inflation.

Many firms rely on private fleets to provide customers with reliable and efficient shipping

services. By having a dedicated fleet of vehicles, they can have greater control over logistics

operations and enhance the security of the goods during transportation, thereby mitigating the risks

of delays and damages. However, due to the uncertainty of demand, it is challenging to maintain

an in-house fleet of a fixed size that can consistently meet fluctuating demand while also ensuring

high fleet utilization.

Forming a small fleet requires less initial capital investment and lower operating costs, but may

not possess sufficient internal capacity to effectively meet the shipping requirements, resulting in

hiring external carriers to complement existing capacities at a much higher shipping rate. On the

other hand, having a very large fleet may lead to certain vehicles being idle for extended periods,

resulting in a substantial opportunity cost and a waste of transportation resources. Therefore, com-

panies must make careful decisions when it comes to choosing between insourcing and outsourc-

ing, considering the trade-offs of acquiring and maintaining internal trucks with higher ownership

and operating costs, versus outsourcing to external carriers with higher shipping expenses.

In this chapter, we address the challenge of establishing a new truck fleet for fulfilling uncertain

demands using internal truckload (TL) capacity over a future time span, while taking into account

the usage of less-than-truckload (LTL) services provided by external carriers within each period.
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The fleet may consist of one or multiple truck types, and we must determine both the types of

trucks to acquire and the number of trucks of each type, aiming to minimize the total expected

costs in a period.

The major contributions of this work are as follows. (i) We consider stochastic demand for

the fleet composition problem and develop a solution approach that allows using a mixture of

internal fleet and external carriers even when the demand does not exceed the aggregate inter-

nal TL capacities. (ii) We analytically characterize optimal fleet sizing/composition strategies for

both homogeneous and heterogeneous fleets, and obtain closed-form solutions for certain demand

distributions. (iii) We propose a two-stage stochastic programming model to tackle the general

fleet composition problem given multiple truck types and develop a decomposition-based heuris-

tic algorithm for solving the proposed model. The performance of the algorithm is evaluated and

compared with the results of using the sample average approximation method through extensive

numerical experiments.

The remainder of this chapter is organized as follows. Section 2.2 provides a survey of the

relevant studies. Section 2.3 includes the solution approach and analytical results for a homoge-

neous fleet. Section 2.4 presents the solution approach for fleet composition with two truck types,

and includes the two-stage stochastic programming model for a heterogeneous fleet with multiple

truck types, followed by the sample average approximation method and the decomposition-based

heuristic. Computational experiments and sensitivity analysis results are included in Section 2.5.

Section 2.6 provides the conclusions and future research directions.

2.2 Literature review

Our work is grounded in the problem class known as fleet composition. Given a set of vehi-

cle types, the fleet composition problem is to determine the optimal number of vehicles of each

type for a heterogeneous fleet. Since it was first introduced by Kirby [26], the fleet composition

problem has been widely extended in terms of various model assumptions and problem settings.

Gould [27] proposes a linear programming model to determine the optimal fleet composition, and

solves a real-world case given a set of vehicle options and deterministic, seasonal demand. Etezadi
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and Beasley [28] develop a mixed-integer programming model for a single-depot distribution sys-

tem that serves multiple customers with known demand, using both hired vehicles and an owned

fleet of composite vehicle types in terms of capacity. Wu et al. [29] solve a fleet composition and

demand allocation problem with a linear programming model for truck-rental firms with known

demand, in which vehicles are heterogeneous in capacity and age, and a two-phase approach is de-

veloped. Loxton et al. [30] propose a model that minimizes the total expected cost of owning and

maintaining a fleet, when considering a discrete probability distribution for the number of vehicles

required for each vehicle type per period, which determines the number of vehicles to procure for

each type. They further develop an effective algorithm for the model based on dynamic program-

ming and golden-section search that solves large-scale problems within a very short time. Konur

and Geunes [31] present a mixed-integer-nonlinear programming model that integrates districting,

fleet composition, and inventory management for a multi-retailer distribution system, in which the

vehicle capacity can be shared within each district, assuming a known and constant demand rate

at each retailer. The model is solved by a column generation based heuristic. More recently, She-

hadeh et al. [32] study the fleet sizing and allocation problem for an on-demand last-mile service

system under demand uncertainty, in which the vehicle allocation decision, the routing plan, and

the customer assignment for each service region are determined. The authors propose a stochastic

programming model and a distributionally robust model to address known and unknown demand

distributions, respectively.

One vital research strand in relation to fleet composition is the Fleet Size and Mix Vehicle

Routing Problem (FSMVRP), in which the fleet composition decision is integrated into optimiza-

tion models for the vehicle routing problem. The most representative work of this problem type

is introduced by Golden et al. [33], which optimizes the FSMVRP for a heterogeneous fleet by

minimizing the total costs of acquisition and routing, based on a set of customers with known

locations and demand. The authors discuss several efficient heuristic algorithms and provide pro-

cedures for assessing the quality of the solutions. Dell’Amico et al. [34] study the Fleet Size and

Mix Vehicle Routing Problem with Time Windows (FSMVRPTW) based on known demands and
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develop an insertion-based constructive heuristic that outperforms previously published heuristic

results. Jabali et al. [35] present a strategic model for fleet composition and routing decisions

based on continuous approximation techniques, which determines the number of vehicles in dif-

ferent capacity levels and the optimal delivery routes when minimizing the total cost, considering

a given set of customers distributed in a circular service region at a constant density. Hiermann

et al. [36] solve the FSMVRPTW for a fleet of electric vehicles with restrictions on available

recharge stations, which is formulated as a mixed-integer programming model and is solved by a

branch-and-price algorithm as well as a hybrid heuristic. Alinaghian et al. [37] present a model

for a time-dependent FSMVRP with a cost-minimization objective that encompasses greenhouse

gas emissions, and develop an improved adaptive large neighborhood search algorithm that can ef-

fectively solve large-scale instances. The importance of combining fleet composition and routing

is also recognized in various industries [38].

Models developed for FSMVRP primarily focus on making decisions at the operational level,

specifically when having access to information regarding routing aspects (such as the features of

the service region, customer locations, and service time constraints), whereas our work aims to

determine the long-term fleet composition and develop a model that minimizes the total expected

cost under demand uncertainty at the strategic planning level, without requiring detailed routing

information.

The other stream of studies in which our work is rooted is the fleet composition problem with

both internal fleet and external carriers. The problem, defined by Ball et al. [39], is one of the

earliest studies that consider both shipping options, in which an internal truck fleet serves a subset

of the demand while the remainder is outsourced to an external carrier, given constant and known

demand at the beginning of each planning period. Klincewicz et al. [40] investigate the fleet plan-

ning problem by formulating it as a single-source capacitated facility location model that allocates

a limited number of internal trucks and a given set of outside carriers to each service sector, con-

sidering stochastic daily demand and service time constraints, in which outside carrier services

are requested when the demand exceeds the capabilities of the internal fleet. Hall and Racer [41]

45



develop methods that determine whether to serve a customer by internal vehicles or by an external

carrier as well as optimize shipment frequency based on a square-root route length approximation,

accounting for both transportation and inventory costs. Chu [42] presents a cost-minimization inte-

ger programming model for routing a heterogeneous fleet of trucks with known customer demand,

in which any demand in excess of the total capacity of owned trucks will be outsourced to an ex-

ternal LTL carrier. A three-phase heuristic algorithm is developed for solving the proposed model,

which can provide near-optimal solutions. Improved heuristic algorithms are developed based

on similar problem settings in [43] and [44]. Krajewska and Kopfer [45] extend the traditional

vehicle routing problem to an integrated transportation planning problem by considering several

subcontracting options while owning a private fleet, which is solved using a tabu search heuristic

algorithm with real-life data. In a similar context, Gahm et al. [46] address a vehicle routing prob-

lem with an internal fleet and multiple external carriers using a mixed-integer program, considering

volume discounts offered by the external carriers. Several heuristic approaches are developed to

provide effective solutions. Kaewpuang et al. [47] study a resource cooperation problem that al-

lows sharing of trucks among shippers who have their own fleets through a vehicle pool, in which

a third-party LTL carrier provides supplemental capacity if the number of trucks in the pool is

insufficient to fulfill the demand. The authors propose an integer linear programming model and a

stochastic programming model to tackle deterministic and random demand, respectively.

The majority of existing literature in relation to both internal fleet and external shipping options

either assumes deterministic demands or, when considering stochastic demands, that the external

carriers are used only for demand in excess of the aggregate capabilities of the internal trucks.

In contrast, and more consistent with practice, we permit a mixture of internal TL and external

LTL shipping in any period under demand uncertainty, even when total demand does not exceed

internal fleet capacity. This leads to a generally more complex class of fleet composition problems

that more accurately reflects expected costs in practice. Moreover, we provide closed-form results

for both homogeneous and heterogeneous fleets with certain demand distributions when accounting

for external shipping services, which is rarely seen in previous literature.
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2.3 Homogeneous fleet

We first consider the fleet composition optimization problem for a homogeneous fleet that

consists of a single truck type (later in Section 2.4 a heterogeneous fleet is studied). Assume

demand in a period is a random variable X , following a continuous distribution with PDF f(x) and

CDF F (x). Let n denote the size of the fleet (i.e., the number of trucks owned). We assume each

truck, with a capacity of W , can perform at most one shipment from the origin to the destination

in a single period. The maximum internal TL capacity is therefore equal to nW . In practice,

the freight charge quoted by a third-party carrier for an LTL shipment commonly depends on the

weight of the load, the distance between the origin and the destination, the type of goods, and other

additional fees, while the average cost of a TL shipment is relatively stable when using internal fleet

capacity. In our model, we use a fixed dispatching cost of A for internal trucks, which includes

the handling costs, the average fuel charges, and the driver’s salary, and allows a truck to carry

up to W units of weight per trip. As we are interested in investigating the average operational

behavior, we consider a per-period fixed ownership cost per truck, denoted by K. One may obtain

K by allocating the total costs of procuring and maintaining a truck over a planning horizon to

each period. We use a to denote the LTL freight rate (i.e., the cost of per unit shipped via LTL)

when using external shipping services, assuming aW > A. The objective is to minimize the total

expected cost when using the combination of internal fleet and external LTL services.

2.3.1 The break-even point

Our shipping policy allows the use of LTL service not only for the scenario when demand is

in excess of total internal TL capacity, but for cases in which the internal fleet is partially utilized.

Understanding the criteria and achieving the benefit of such policy requires addressing two es-

sential issues: (i) what are the conditions under which using LTL is more economical than using

internal TL capacity and (ii) what is the optimal fleet size that minimizes the total expected cost

when using a mixture of internal TL capacity and external LTL shipments.

We consider a fraction α of the truck capacity (0 < α < 1), and let Y = αW such that
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aY = A < aW . Apparently, when the size of the shipment equals W , dispatching a full internal

truck (at a cost of A) is more economical as it leads to a lower shipping cost than outsourcing to

external LTL carriers (at a cost of aW ); when the shipment size is less than W but equals Y , using

LTL is equivalent to shipping via internal TL in terms of the shipping cost, although the shipped

truck is partially loaded if one chooses using TL. For any amount less than Y , using an internal

truck is no longer beneficial since the cost of shipping via LTL is less than the flat rate of A. When

owning more than one truck, for any shipment size that is greater than W , we first dispatch W

units using a full internal truck, then repeat the same analysis for the remaining units, and so on.

Therefore, Y is the break-even point at which the cost of shipping using either option is equivalent.

In fact, this pattern of transitioning between two shipping options as the shipping quantity varies, as

illustrated in Figure 2.1, is analogous to carload discount defined for quantity discount schedules

(see e.g., [48, 49, 50]). The original carload discount schedule provides a pricing strategy for

carriers based on Y , while in our model we use Y to trigger the transition between sending internal

TL shipments and requesting external LTL shipments.

Figure 2.1: Discounted cost schedule for a homogeneous fleet.

48



2.3.2 The expected shipping quantities

We first characterize the expected number of TL shipments. Owning n trucks implies the

number of TL shipments dispatched in any period is at most n. Observe that if demand is between

Y and W + Y with n ≥ 1, we ship one truck that is loaded with up to W units and use LTL for

any remaining amount; if it is between W + Y and 2W + Y with n ≥ 2, we ship two trucks that

carry up to 2W units and outsource any leftovers to LTL carriers, and so on. Thus, the probability

that we ship k trucks for any positive integer k < n equals F (kW + Y ) − F ((k − 1)W + Y ),

while the probability that we ship all n internal trucks equals 1− F ((n− 1)W + Y ). As a result,

the expected number of TL shipments using internal fleet in a period is

ETL(n) =
n−1∑
k=1

k
(
F (kW + Y )− F

(
(k − 1)W + Y

))
+ n
(
1− F

(
(n− 1)W + Y

))
= n−

n−1∑
k=0

F (kW + Y ). (2.1)

Let x denote the observed demand in a period. If 0 < x − kW < Y and x < nW , it is

optimal to ship the remaining x − kW units via LTL after dispatching k full internal trucks. If

Y ≤ x− kW < W and x ≤ nW , the remaining amount x− kW reaches the break-even point Y

that allows dispatching an internal truck for the leftover amount at a lower shipping cost, although

the shipped truck is partially loaded, and zero units are shipped via LTL. Note that when x > nW ,

any excess amount x − nW must be shipped via LTL since all internal capacity is 100 percent

utilized. This leads to three demand intervals that trigger using LTL service for minimizing the

total expected cost. The corresponding units shipped via LTL are summarized in Table 2.1. The

Table 2.1: The demand intervals that trigger LTL shipments with k = 0, . . . , n− 1.

Demand intervals (kW, kW + Y ) [kW + Y, (k + 1)W ] (nW,∞)
LTL units shipped x− kW 0 x− nW
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expected quantity shipped via LTL then equals

ELTL(n) =
n−1∑
k=0

∫ kW+Y

kW

(x− kW )f(x)dx+

∫ ∞

nW

(x− nW )f(x)dx. (2.2)

Consequently, the cost-minimization model in terms of the fleet size is formulated as

Minimize
n∈Z+

g(n) = Kn+ AETL(n) + aELTL(n)

= Kn+ A

(
n−

n−1∑
k=0

F (kW + Y )

)

+ a

(
n−1∑
k=0

∫ kW+Y

kW

(x− kW )f(x)dx+

∫ ∞

nW

(x− nW )f(x)dx

)
. (2.3)

2.3.3 Convexity analysis and the optimal solution

Since the value of n in the above model is a nonnegative integer, the objective function g(n)

in (2.3) is therefore defined at discrete values of n. However, we can show that g(n) is discretely

convex in n using second differences (see e.g., [51]), where g(n) is discretely convex if and only if

these second differences are nonnegative.

Suppose demand follows a continuous distribution with PDF f(x) and CDF F (x). Let ℓ(kW ) =∫∞
kW

(x− kW )f(x)dx. With aY = A, we can rewrite the objective function in (2.3) as

g(n) = Kn+ a

(
n−1∑
k=0

(
ℓ(kW )− ℓ(kW + Y )

)
+ ℓ(nW )

)
. (2.4)

Let ∆n = g(n+1)− g(n) denote the first difference and ∆n+1−∆n denote the second difference.

For any general continuous distribution, using the simplified objective function (2.4), we can obtain

∆n = K + a
(
ℓ
(
(n+ 1)W

)
− ℓ(nW + Y )

)
, (2.5)
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and

∆n+1 −∆n = a

(
ℓ
(
(n+ 2)W

)
− ℓ
(
(n+ 1)W + Y

)
−
(
ℓ
(
(n+ 1)W

)
− ℓ(nW + Y )

))
. (2.6)

Consider the function ℓ(r) =
∫∞
r
(x − r)f(x)dx and note that ℓ′(r) = F (r) − 1 ≤ 0, while

ℓ′′(r) = f(r) > 0. Thus, ℓ(r) is a strictly convex and nonincreasing function of r. Let h(k) =

ℓ
(
kW

)
−ℓ
(
(k−1)W+Y

)
. Observe that h′(k) = W

(
F
(
kW

)
−1
)
−W

(
F ((k−1)W+Y )−1

)
=

W
(
F
(
kW

)
− F ((k − 1)W + Y )

)
> 0, h(k) is therefore strictly increasing in k, which implies

that

∆n+1 −∆n = a

(
h(n+ 2)− h(n+ 1)

)
> 0. (2.7)

This guarantees the discrete convexity of (2.4) in n ∈ Z+ for any continuous probability distribu-

tion.

It should be clear that for a one-dimensional discretely convex function g(z) defined on the

nonnegative integers z ∈ Z+, if z∗ is the smallest nonnegative integer z such that ∆z = g(z+1)−

g(z) ≥ 0, then z∗ is a global minimizer of g(z) on Z+. To see this, first note that by the definition of

z∗, g(z) is decreasing in z for 0 ≤ z ≤ z∗ (because g(z+1)−g(z) < 0 for 0 ≤ z ≤ z∗). For z ≥ z∗,

nonnegative second differences imply ∆z∗+k+1 ≥ ∆z∗+k for any integer k ≥ 0. When k = 0, this

implies ∆z∗+1 = g(z∗ + 2)− g(z∗ + 1) ≥ ∆z∗ ≥ 0, so that g(z∗ + 2) ≥ g(z∗ + 1), while ∆z∗ ≥ 0

is equivalent to g(z∗ + 1) ≥ g(z∗). By induction, we can show that g(z∗ + k + 1) ≥ g(z∗ + k)

holds for any k ≥ 0. Hence, g(z) is decreasing for z < z∗ and nondecreasing for z ≥ z∗, implying

that z∗ is a global minimizer.

Next, note that a one-dimensional discretely convex function g(z) defined for all z ∈ Z+ can

easily be extended to a convex function g̃(z) defined for all z ∈ R+. One such convex function

is created by constructing a piecewise-linear function by connecting each pair of adjacent points,

(z, g(z)) and (z + 1, g(z + 1)), with a line segment of slope g(z + 1) − g(z). Thus, for any z

between some nonnegative integer c and c+ 1, we have g̃(z) = g(c) + (z − c)(g(c+ 1)− g(c)) =
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(1− θz)g(c) + θzg(c+ 1), where θz = z − c and θz ∈ [0, 1]. Clearly, if z∗ minimizes g(z), z∗ also

minimizes g̃(z). Moreover, if z′ minimizes g̃(z) and z′ ∈ Z+, then z′ minimizes g(z); because

g̃(z) is piecewise linear and convex with breakpoints at consecutive integers, if z′ minimizes g̃(z)

and z′ /∈ Z+, then at least two alternative optimal solutions minimize g(z), i.e., ⌊z′⌋ and ⌈z′⌉. Note

that g̃(z) = g(z) for any z ∈ Z+, while the piecewise linearity of g̃(z) implies that an optimal

solution always exists at some z ∈ Z+. Thus, where convenient, we can express expected costs in

terms of the convex function g̃(z) defined for z ∈ R+ rather than the discretely convex function

g(z) defined for z ∈ Z+.

2.3.3.1 Optimal solution for uniform demand distribution

It is straightforward to show that when the demand is uniformly distributed on [l, D̄], where l

is the lower bound and D̄ is the upper bound, the expected number of TL shipments equals

EU
TL(n) =

n(D̄ − Y )

D̄ − l
− n(n− 1)W

2(D̄ − l)
, (2.8)

and the expected number of units shipped via LTL equals

EU
LTL(n) =

nY 2 + (D̄ − nW )2

2(D̄ − l)
. (2.9)

The resulting optimization model becomes

Minimize
n∈Z+

gU(n) = Kn+ An

(
D̄ − Y

D̄ − l
− (n− 1)W

2(D̄ − l)

)
+

a
(
nY 2 + (D̄ − nW )2

)
2(D̄ − l)

. (2.10)

Consider the continuous function g̃U(n) defined in n ∈ R+ for the underlying discrete function

gU(n) in n ∈ Z+. The second order derivative of g̃U(n) is g̃′′U(n) = aW (W−Y )

D̄−l
> 0 (because

Y < W ), implying g̃U(n) is strictly convex in n ∈ R+. Observe that g̃U(n) properly determines

the expected total cost at each integer point, i.e., g̃U(ñ) = gU(ñ) holds for any integer ñ, and the

discrete convexity of gU(n) thus naturally holds for all n ∈ Z+.

Because of strict convexity, at most one integer solution ñ exists such that gU(ñ) = gU(ñ+ 1),
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which implies for n ∈ R+, g̃U(n) > gU(ñ) for n < ñ and g̃U(n) > gU(ñ+1) for n > ñ+1, while

g̃U(n) < gU(ñ) for ñ < n < ñ+ 1. We can show that

ñ =
2D̄ − Y −W

2W
− K(D̄ − l)

aW (W − Y )
= n∗

U −
1

2
, (2.11)

where n∗
U = 2D̄−Y

2W
− K(D̄−l)

aW (W−Y )
is the stationary point as well as the minimizer of g̃U(n). If n∗

U − 1
2

has a integer value, i.e., ñ is integer, then ñ and ñ+1 serve as alternative optimal integer solutions.

Otherwise, exactly one integer value falls between ñ and ñ + 1, and this integer value equal to

⌈ñ⌉ = ⌊ñ+ 1⌋ is optimal.

2.3.3.2 Optimal solution for normal demand distribution

Suppose demand is normally distributed with mean µ and standard deviation σ. For the normal

case, recall that the standard normal loss function is L(z) =
∫∞
z
(u − z)ϕ(u)du. When X is

normally distributed, it is well known that
∫∞
kW

(x − kW )f(x)dx = σL(zkW ), where zkW =

kW−µ
σ

. According to Equations (2.1) and (2.2), we can write the expected number of TL and

LTL shipments for normally distributed demand as follows:

EN
TL(n) = n−

n−1∑
k=0

Φ(zkW+Y ), (2.12)

EN
LTL(n) =

n−1∑
k=0

(
σL(zkW )− σL(zkW+Y ) + Y Φ(zkW+Y )

)
− nY + σL(znW ), (2.13)

where Φ(z) is the standard normal cumulative distribution function. The resulting optimization

model becomes

Minimize
n∈Z+

gN(n) =Kn+ a

(
n−1∑
k=0

(
σL(zkW )− σL(zkW+Y ) + Y Φ(zkW+Y )

)
− nY + σL(znW )

)

+ A

(
n−

n−1∑
k=0

Φ(zkW+Y )

)
. (2.14)

53



According to Equation (2.4), the objective function in (2.14) is equivalent to

gN(n) = Kn+ a

(
n−1∑
k=0

(
σL(zkW )− σL(zkW+Y )

)
+ σL(znW )

)
. (2.15)

We can easily verify that the second difference of function (2.15) is positive and thus gN(n) is

discretely convex in n ∈ Z+ (see Appendix B.1). Due to the form of the normal distribution, it

is not possible to obtain a closed-form expression for the optimal n that minimizes the value of

gN(n). However, the maximum number of trucks a fleet may own is typically subject to some

limitation (e.g., budget, facility capacity, etc.), and using binary search among a limited number of

possible integer values can be quite efficient for determining the optimal fleet size.

2.3.4 Model adaptation to stochastic LTL rate

To be more consistent with practice, it is realistic to treat the LTL rate as a random variable.

Suppose the LTL rate is random and independent of the demand X , with PDF p(a) and mean value

µa. Assume a nonnegative lower bound aL on the LTL rate exists such that aLW ≥ A, and there is

some upper limit aU in the LTL market price. Based on Equation (2.4), with a stochastic LTL rate,

the objective function for a general demand distribution can be modified to

ga(n) = Kn+

∫ aU

aL

a
n−1∑
k=0

(
ℓ(kW )− ℓ

(
kW +

A

a

))
p(a)da+ µaℓ(nW ). (2.16)

We can show (in Appendix B.2) that discrete convexity in n ∈ Z+ still holds for (2.16). Thus, our

optimization model for a homogeneous fleet is amenable to incorporating a stochastic LTL rate,

while we leave further extensions dealing with stochastic LTL rates for future study.

2.4 Heterogeneous fleet

This section characterizes the fleet composition model for a heterogeneous fleet given T differ-

ent truck types that differ in capacity levels. For t = 1, ..., T , let nt denote the decision variables,

i.e., the number of type-t trucks to own. Let Wt and Kt denote the capacity level and the fixed own-

ership cost of type-t truck, respectively. We use a known LTL rate a, and the fixed dispatching cost
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for each truck type t equals At. As before, we assume aWt > At for all t. Obviously, a break-even

point Yt exists for each truck type such that aYt = At. However, the transition behavior between

using internal TL capacity and external LTL units is more complex than the case of the homoge-

neous fleet, especially when T > 2. In this section, we first analytically characterize the optimal

shipping policies and the expected shipping quantities for a fleet that only considers two truck

types, and then develop a general two-stage optimization model using stochastic programming for

the heterogeneous fleet when considering multiple truck types.

2.4.1 Fleet with two truck types

Consider two potential truck types, which have capacity levels W1 and W2, respectively, and

W1 = qW2, where q is a positive integer and q ≥ 2. We assume the fixed ownership costs of

the two truck types satisfy K2 < K1 < qK2, implying owning q small trucks is more expensive

than owning a big truck, although the truckload capacity provided by a big truck is replaceable

by q small trucks. Considering the economies of scale in transportation, we assume A1/W1 ≤

A2/W2 < a and A2 < A1, which indicates that even though dispatching a big truck costs more

than sending a small truck, the per-unit shipping cost becomes lower when shipping in larger

batches. It is also straightforward to show that A1 ≤ qA2. Similar to the homogeneous fleet case,

there exist break-even points Y1 (for type-1 trucks) and Y2 (for type-2 trucks) such that aY1 = A1

and aY2 = A2, assuming W2 < Y1. Observe that Y1/W1 ≤ Y2/W2. We aim to minimize the total

expected costs of owning and shipping by determining the number of trucks to own of each type,

denoted by n1 and n2, respectively. Letting n∗
2 denote the optimal value of n2, we show in Theorem

2.4.1 that the optimal value of n2 is no more than q. Proofs of all theorems and propositions can

be found in Appendix B.3.

Theorem 2.4.1. When W1 = qW2, K1 < qK2 and A1 ≤ qA2, at optimality, the maximum possible

number of type-2 trucks to own is q, i.e., n∗
2 ∈ {0, 1, ..., q} with q ∈ Z+ and q ≥ 2.
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2.4.1.1 Special case of W1 = 2W2

To investigate the optimal shipping policies and the effective discounted cost schedule, we

first consider the case when q = 2, where W1 = 2W2, K1 < 2K2, and A2 < A1 ≤ 2A2. By

Theorem 2.4.1, we know that the optimal number of type-2 trucks to own is either 0, 1 or 2. We

can thus characterize the solution approach by only considering three cases where n2 = 0, 1 and

2, respectively. We use the following notation for the expected number of TL shipments and the

expected number of LTL units (which are functions of n1) when owning i type-2 trucks, where

i ∈ {0, 1, 2}.

• E
(i)
TL1(n1): the expected number of type-1 TL shipments when owning i type-2 trucks,

• E
(i)
TL2(n1): the expected number of type-2 TL shipments when owning i type-2 trucks,

• E
(i)
LTL(n1): the expected number of units shipped via external LTL services when owning i

type-2 trucks.

If n2 = 0, the problem becomes equivalent to one with a homogeneous fleet with only type-1

trucks. The approach discussed in Section 2.3 can be applied to this case through which one can

characterize the following expected shipping quantities in terms of n1.

E
(0)
TL1(n1) =

n1−1∑
k=1

k
(
F
(
kW1 + Y1

)
− F

(
(k − 1)W1 + Y1

))
+ n1

(
1− F

(
(n1 − 1)W1 + Y1

))
= n1 −

n1−1∑
k=0

F (kW1 + Y1), (2.17)

E
(0)
LTL(n1) =

n1−1∑
k=0

∫ kW1+Y1

kW1

(x− kW1)f(x)dx+

∫ ∞

n1W1

(x− n1W1)f(x)dx. (2.18)

We then solve the following optimization model which retains discrete convexity in n1:

Minimize
n1∈Z+

g0(n1) = K1n1 + A1E
(0)
TL1(n1) + aE

(0)
LTL(n1). (2.19)

If n2 = 1, in a single period, when the amount of demand is between W2 and W1, one option
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is to dispatch a full type-2 (small) truck and then outsource any remaining units to an LTL carrier.

This leads to a total shipping cost equal to the sum of A2 and the cost of using LTL units. Alter-

natively, we can dispatch a type-1 (big) truck that provides sufficient capacity (up to W1 units) for

the same amount of demand at a shipping cost of A1. Because A2 < A1, it is possible that the

total shipping costs incurred in these two cases are equal when the LTL cost incurred in the first

case equals A1 − A2. This implies that, when considering two truck types, there exists another

break-even point, denoted by Y21, at which A2 + a(Y21 −W2) = A1 holds with W2 < Y21 < W1.

At the amount of Y21, dispatching a type-1 truck has an equivalent shipping cost to the combination

of shipping a type-2 truck and using LTL. With aY1 = A1 and aY2 = A2, it is straightforward to

show Y21 = Y1 +W2 − Y2, implying Y21 > Y1. Figure 2.2(a) illustrates the relationship between

Y1, Y2 and Y21.

(a) Break-even shipping points. (b) Discounted cost schedule.

Figure 2.2: Break-even points and discounted cost schedule for a heterogeneous fleet.

Let x be the observed demand in a period. If x lies within [0, Y2), shipping all units via LTL

at a rate of a per unit costs the least; if x ∈ [Y2,W2], dispatching a type-2 truck enables carrying

all units within this interval at a constant rate A2, which leads to the lowest shipping cost. If

x ∈ (W2, Y21), the most economical option is to dispatch a full type-2 truck while outsourcing any
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remaining units to an LTL carrier. For any x ∈ [Y21,W1], shipping all units using a type-1 truck at

a cost of A1 minimizes the shipping cost. Figure 2.2(b) illustrates this discounted cost schedule for

x ∈ [0,W1]. In fact, this behavior repeats cyclically for each demand interval [kW1, (k + 1)W1]

with k = 0, ..., n1 − 1. Table 2.2 summarizes the optimal shipping policies and the corresponding

demand intervals for x ∈ [0, n1W1]. When x > n1W1, we first ship all n1 type-1 trucks at capacity

Table 2.2: Optimal shipping policies for demand within [0, n1W1] for n2 = 1 or 2.

Demand intervals
for k = 0, 1, ..., n1 − 1

Optimal shipping policy

[kW1, kW1 + Y2] Ship k type-1 trucks at capacity and ship the remainder via LTL
[kW1 + Y2, kW1 +W2] Ship k type-1 trucks at capacity and use one type-2 truck for the remainder
(kW1 +W2, kW1 + Y21) Ship k type-1 and one type-2 trucks at capacity, and use LTL for the remainder
[kW1 + Y21, (k + 1)W1] Ship (k + 1) type-1 trucks

and have x− n1W1 units of leftover. Because we only have one type-2 truck, the optimal shipping

policy for the remainder will be based on Y2. If x− n1W1 < Y2, we outsource all remaining units

using LTL service. If Y2 ≤ x − n1W1 ≤ W2, dispatching a type-2 truck for the remainder is the

best option. If the leftover is greater than W2, the combination of a full type-2 truck plus LTL units

is optimal. Therefore, the expected shipping quantities when n2 = 1 can be characterized as

E
(1)
TL1(n1) =

n1−1∑
k=1

k
(
F
(
kW1 + Y21

)
− F

(
(k − 1)W1 + Y21

))
+ n1

(
1− F

(
(n1 − 1)W1 + Y21

))
= n1 −

n1−1∑
k=0

F (kW1 + Y21), (2.20)

E
(1)
TL2(n1) =

n1−1∑
k=0

(
F (kW1 + Y21)− F (kW1 + Y2)

)
+
(
1− F (n1W1 + Y2)

)
, (2.21)

E
(1)
LTL(n1) =

n1∑
k=0

∫ kW1+Y2

kW1

(x− kW1)f(x)dx+

n1−1∑
k=0

∫ kW1+Y21

kW1+W2

(x− kW1 −W2)f(x)dx

+

∫ ∞

n1W1+W2

(x− n1W1 −W2)f(x)dx, (2.22)
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and the optimization model becomes

Minimize
n1∈Z+

g1(n1) = K1n1 +K2 + A1E
(1)
TL1(n1) + A2E

(1)
TL2(n1) + aE

(1)
LTL(n1). (2.23)

If n2 = 2, for any x ≤ n1W1, the optimal shipping policies are the same as summarized in

Table 2.2. For any x > n1W1, we can break down the remaining amount x − n1W1 into five

intervals and characterize the corresponding optimal shipping policies for each interval based on

the discounted cost schedule in terms of Y2, which allows using an additional type-2 truck when

x > n1W1 +W2 + Y2. Table 2.3 summarizes and compares the optimal shipping policies for the

remaining amount x− n1W1 when n2 = 1 and n2 = 2.

Table 2.3: Optimal shipping policies for quantities in excess of n1W1.

Intervals for the number of
the remaining x− n1W1 units Optimal shipping policy

n2 = 1
[0, Y2) Use LTL only
[Y2,W2] Ship one type-2 truck
(W2,∞) Ship a full type-2 truck, and use LTL for the remainder

n2 = 2

[0, Y2) Use LTL only
[Y2,W2] Ship one type-2 truck

(W2,W2 + Y2) Ship a full type-2 truck, and use LTL for the remainder
[W2 + Y2, 2W2] Ship two type-2 trucks

(2W2,∞) Ship two full type-2 trucks, and use LTL for any leftovers

We next derive the expected shipping quantities for n2 = 2. The optimal shipping policies for

x ≤ n1W1 follow the same pattern for n2 = 1 and n2 = 2, thus the expected numbers of type-1 TL

shipments are equal in both cases, and we have E(2)
TL1(n1) = E

(1)
TL1(n1). According to the results in

Table 2.2 and Table 2.3, the expected number of type-2 TL shipments and the expected number of
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units shipped via LTL when n2 = 2 can be obtained as follows:

E
(2)
TL2(n1) =

n1−1∑
k=0

(
F (kW1 + Y21)− F (kW1 + Y2)

)
+
(
F (n1W1 +W2 + Y2)− F (n1W1 + Y2)

)
+ 2
(
1− F (n1W1 +W2 + Y2)

)
,

=

n1−1∑
k=0

(
F (kW1 + Y21)− F (kW1 + Y2)

)
− F (n1W1 +W2 + Y2)− F (n1W1 + Y2) + 2,

E
(2)
LTL(n1) =

n1∑
k=0

∫ kW1+Y2

kW1

(x− kW1)f(x)dx+

n1−1∑
k=0

∫ kW1+Y21

kW1+W2

(x− kW1 −W2)f(x)dx

+

∫ n1W1+W2+Y2

n1W1+W2

(x− n1W1 −W2)f(x)dx+

∫ ∞

n1W1+2W2

(x− n1W1 − 2W2)f(x)dx.

(2.24)

The resulting optimization model is

Minimize
n1∈Z+

g2(n1) = K1n1 + 2K2 + A1E
(2)
TL1(n1) + A2E

(2)
TL2(n1) + aE

(2)
LTL(n1). (2.25)

Observe that in the case of n2 = 2, only one of the type-2 trucks may be used for any x ≤ n1W1,

which is formalized in Proposition 2.4.2.

Proposition 2.4.2. If n2 = 2, then an optimal solution exists such that we do not dispatch both

type-2 trucks unless all type-1 trucks have been dispatched.

Consequently, one of the three functions g0(n1), g1(n1) and g2(n1) provides the minimum ob-

jective value and leads to the best n1, which permits easily determining the optimal value of n2 (at

0, 1 or 2). By pairwise comparison of these three functions, we can obtain a system of inequalities

that determines the expected shipping quantities, which can be used as threshold conditions for

determining the optimal number of type-1 trucks, as shown in Table 2.4.

In particular, for uniformly distributed demand, it is possible to obtain closed-form threshold

values for n1 at which the optimal solution transitions among the three discussed scenarios (when

n2 = 0, 1 or 2); for a normal demand distribution, searching among a finite set of integer values for
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Table 2.4: Comparison of g0(n1), g1(n1) and g2(n1).

Comparison Resulting inequality
g0(n1) ≤ g1(n1) a

(
E

(0)
LTL − E

(1)
LTL

)
≤ K2 − A1

(
E

(0)
TL1 − E

(1)
TL1

)
+ A2E

(1)
TL2

g0(n1) ≤ g2(n1) a
(
E

(0)
LTL − E

(2)
LTL

)
≤ 2K2 − A1

(
E

(0)
TL1 − E

(2)
TL1

)
+ A2E

(2)
TL2

g1(n1) ≤ g2(n1) a
(
E

(1)
LTL − E

(2)
LTL

)
≤ K2 + A2

(
E

(2)
TL2 − E

(1)
TL2

)

n1 can effectively locate the optimal solution. We include the equations for the expected shipping

quantities for both distributions in Appendix B.4.

2.4.1.2 Special case of W1 = qW2

We can use a similar approach to characterize the optimal shipping policies for W1 = qW2

with any positive integer value of q, where q ≥ 2, K1 < qK2, and A2 < A1 ≤ qA2. Letting

qL = ⌊A1/A2⌋, the break-even point Y21, in this case, satisfies qLA2+a(Y21−qLW2) = A1, which

is equivalent to Y21 = Y1 + qL(W2 − Y2). Figure 2.3 illustrats the discounted cost schedule for

2A2 < A′
1 < 3A2 and 3A2 < A′′

1 < 4A2 when q = 4.

Figure 2.3: Discounted cost schedule for W1 = 4W2.
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Proposition 2.4.3. If an optimal solution has n∗
2 = q̃ and qL ≤ q̃ ≤ q, the maximum possible num-

ber of type-2 trucks dispatched before dispatching all type-1 trucks is qL. None of the remaining

q̃ − qL type-2 trucks will be used unless all type-1 trucks have been dispatched.

According to Proposition 2.4.3, we can characterize the optimal shipping schedule, as summa-

rized in Table 2.5, for any x ≤ n1W1.

Table 2.5: Optimal shipping policies for demand within [0, n1W1] when W1 = qW2.

Demand intervals
for k = 0, 1, ..., n1 − 1

Optimal shipping policy

[kW1, kW1 + Y2) Ship k full type-1 trucks and use LTL for the remainder
[kW1 + iY2, kW1 + iW2] for i = 1, ..., qL Ship k full type-1 and i− 1 full type-2 trucks, and use an additional type-2 truck for any leftovers
(kW1 + qLW2, kW1 + Y21) Ship k full type-1 and qL full type-2 trucks, and use LTL for any leftovers
[kW1 + Y21, (k + 1)W1] Ship (k + 1) type-1 trucks

For any demand that is greater than n1W1, we first ship all n1 type-1 trucks at capacity, and

then use the following policies summarized in Table 2.6 for the remaining x− n1W1 units.

Table 2.6: Optimal shipping policies for the remaining amount x− n1W1 when W1 = qW2.

Intervals for the remaining units Optimal shipping policy
[iW2, iW2 + Y2) for i = 0, ..., n2 − 1 Ship i full type-2 trucks and then use LTL for the remainder
[iW2 + Y2, (i+ 1)W2] for i = 1, ..., n2 − 1 Ship i+ 1 type-2 trucks
(n2W2,∞) Ship all type-2 trucks at capacity, and use LTL for any leftovers

2.4.2 General model for a fleet with multiple truck types

When considering more than two truck types (i.e., T > 2), deriving the break-even points that

determine the transition between different shipping options becomes very complex, which makes

it hard to analytically characterize the optimal shipping policies using the same approach to the one

developed for T = 2. Instead, in this section, we create a two-stage stochastic programming model

to tackle a wider range of truck types. We solve the model using the sample average approximation

method and develop a decomposition-based heuristic that provides effective solutions.
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2.4.2.1 Two-stage stochastic programming formulation

We consider the fleet composition problem as a two-stage process: in the first stage, prior to

observing any demand, we must make a decision on the number of trucks to own given a set of

truck types; after observing the demand, in the second stage, we need to decide the number of

trucks to dispatch for each truck type, and the number of units to ship using LTL services, with

an objective of minimizing the total expected cost. Therefore, it is natural to formulate the fleet

composition problem as the following two-stage stochastic programming model:

[SP] Minimize
nt∈Z+

g(n) =
T∑
t=1

Ktnt + E[Q(n, X)], (2.26)

where n = [nt] are the first-stage decision variables representing the number of type-t trucks to

own for t = 1, ..., T , and Q(n, X) is the optimal objective value of the second-stage problem in

terms of the stochastic demand X , where

[SP-2] Q(n, X) = Minimize
T∑
t=1

Atmt + a

(
X −

T∑
t=1

yt

)
, (2.27)

Subject to: mt ≤ nt, ∀t = 1, . . . , T, (2.28)

yt ≤ mtWt, ∀t = 1, . . . , T, (2.29)
T∑
t=1

yt ≤ X, (2.30)

mt ∈ Z+, yt ∈ R+, ∀t = 1, . . . , T. (2.31)

In the second-stage model, mt and yt denote the actual number of trucks dispatched and the number

of units shipped using type-t trucks, respectively. The objective function (2.26) in the master (first-

stage) problem aims to minimize the total expected cost, including the total ownership cost and

the total expected shipping cost resulting from the second-stage problem. The objective function

(2.27) in the second-stage problem is to minimize the total expected shipping cost of using internal

TL shipments and external LTL units, with stochastic demand. Constraints (2.28) ensure that the
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number of trucks actually dispatched does not exceed the number of trucks owned for each truck

type. Constraints (2.29) guarantee the accumulated number of units shipped via internal trucks is

no more than the aggregated TL capacity for each truck type. Constraint (2.30) ensures the total

number of units shipped via all internal trucks does not exceed the total demand.

We use the Sample Average Approximation (SAA) method to approximate the expected value

function E[Q(n, X)] by its sample average 1
S

∑S
i=1Q(n, di), where {d1, d2, ..., dS} is a demand

sample of S scenarios generated according to a probability distribution F . The master problem

can therefore be approximately solved via the following deterministic equivalent model:

[DEP] Minimize gS(n) =
T∑
t=1

Ktnt +
1

S

S∑
i=1

(
T∑
t=1

Atm
i
t + a

(
di −

T∑
t=1

yit

))
(2.32)

Subject to: mi
t ≤ nt, ∀t = 1, . . . , T, i = 1, . . . , S, (2.33)

yst ≤ mi
tWt, ∀t = 1, . . . , T, i = 1, . . . , S, (2.34)

T∑
t=1

yit ≤ di, ∀i = 1, . . . , S, (2.35)

nt ∈ Z+, ∀t = 1, . . . , T, (2.36)

mi
t ∈ Z+, ∀t = 1, . . . , T, i = 1, . . . , S, (2.37)

yit ≥ 0, ∀t = 1, . . . , T, i = 1, . . . , S, (2.38)

in which mi
t is the number of type-t trucks dispatched in scenario i, and yit is the number of units

shipped using type-t trucks in scenario i, for t = 1, . . . , T and i = 1, . . . , S.

2.4.2.2 A decomposition-based algorithm

The formulation above for problem DEP is a mixed-integer programming (MIP) model and

is NP-hard (we show this in Appendix B.5). Classical algorithms for solving MIP models, like

branch-and-bound, can provide exact solutions, while the computing time may escalate exponen-

tially as the values of T and S increase. However, for a given solution n̂, problem DEP becomes

separable for each scenario i, and we can then solve S subproblems for Q(n̂, di) individually,
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each associated with mj
t and yit. As the value of T is usually chosen from a limited range of

integers, even though the subproblems are also MIP models, the size of each subproblem is rela-

tively small and can be solved to optimality relatively fast. Therefore, we propose the following

decomposition-based (DB) heuristic.

Algorithm 1: The DB algorithm for solving problem DEP
1 Initialization: Solve the linear relaxation of problem DEP based on a sample of size S,{

d1, . . . , dS
}

; obtain the relaxed (continuous) solution nRX = [nRX
t ] for t = 1, . . . , T .

2 Rounding: Round up each continuous variable nRX
t to the nearest integer nRD

t = ⌈nRX
t ⌉,

leading to the rounded solution nRD = [nRD
t ] for t = 1, . . . , T .

3 for i← 1 to S do
4 Solve the subproblem for each scenario i and obtain the resulting optimal objective

value Q(nRD, di) for i = 1, . . . , S.
5 end
6 Averaging: Compute the mean of the objective values over all subproblems:

q̄S(n
RD) = 1

S

∑S
i=1 Q(nRD, di);

Result: Obtain the objective value for master problem
gS(n

RD) =
∑T

t=1Ktn
RD
t + q̄S(n

RD).

To obtain a first-stage solution, in the Initilization phase, we first solve the linear relaxation

of problem DEP based on a sample of size S by setting nt,m
i
t ≥ 0, which can be solved within

a negligible time, leading to a set of continuous variable values nRX
t for each truck type t. We

next round each nRX
t to its nearest integer value nRD

t such that nRD
t ≥ nRX

t , which leads to an

integer solution nRD =
[
nRD
t

]
and will be used for solving the subproblems. For each scenario i,

we solve the subproblem to optimality and store the objective value Q(nRD, di). After solving all

subproblems, we compute the average of S objective values q̄S(nRD) = 1
S

∑S
i=1Q(nRD, di), and

then use this to obtain the objective value for the original DEP problem associated with nRD, which

equals
∑T

t=1Ktn
RD
t + q̄S(n

RD). Since the time required for solving both the linear relaxation of

problem DEP and each subproblem is small, this heuristic algorithm can provide a feasible integer

solution to problem DEP within a short computing time even when the sample size is large.
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2.5 Numerical experiments

In this section, we implement the SAA method by solving problem DEP based on a set of

randomly generated instances (in Sections 2.5.1) and empirically show that using SAA can obtain

high-quality solutions within acceptable computing time (in Section 2.5.2). We then execute the

proposed DB algorithm and test its computational performance in Section 2.5.3, comparing the

results with the SAA solutions. Finally, we perform sensitivity analysis to investigate the impacts

of different parameters on the fleet composition decision, which we discuss in Section 2.5.4. We

program and create random generators in the Python programming language to create data needed

for all computational experiments. All test instances are solved using the Gurobi 10.0.1 solver on

a PC with a 3.00 GHz Intel i5 Core and 8GB RAM.

2.5.1 Data generation

We randomly generate 50 independent instances that provide 50 distinct sets of parameters,

including the truck capacity levels (Wt), the fixed ownership costs (Kt), the TL dispatching costs

(At), and the LTL rate (a). We use five truck classes for the experiments according to the U.S. com-

mercial truck classifications based on the gross vehicle weight rating [52], which provides lower

and upper bounds on the values of Wt created for each truck class. To obtain the ownership cost

Kt for each truck type on a weekly basis, we generate a fixed cost of purchasing and maintaining a

brand new truck based on its market price and average annual maintenance cost, and then allocate

this to weekly expenses, assuming a 260-week (5-year) truck life cycle. Recall that Yt is the break-

even shipping point at which using a TL shipment is more economical than using LTL services,

and aYt = At. Letting Yt = αtWt with 0 < αt < 1, we therefore have At = aαtWt, through which

the values of At can be generated based on the generation of a, αt and Wt. Table 2.7 includes the

lower and upper bounds used when generating these parameters for each truck class.

The demand samples are generated as weekly observations. We use the normal distribution to

generate the samples used for implementing the SAA method and the DB algorithm in Sections

2.5.2 and 2.5.3, and for analyses through Sections 2.5.4.1 - 2.5.4.3. To compare the solutions when
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Table 2.7: Lower and upper bounds used for generating capacity and cost parameters.

Truck class Type index (t) Wt (lbs) 260Kt ($) a ($/lb) αt

Class 8 1 (33000, 40000] [300000, 350000]

[0.22, 0.42] [0.5, 0.8]
Class 7 2 (26000, 33000] [190000, 260000]
Class 6 3 (19500, 26000] [150000, 190000]
Class 5 4 (16000, 19500] [110000, 130000]
Class 4 5 (14000, 16000] [90000, 110000]

using different demand distributions, we generate extra samples based on uniform and gamma

distributions, respectively, which are used in Section 2.5.4.4.

2.5.2 SAA results and solution evaluation

We set a 0.1% Gurobi gap (which is the value of the MIPGap parameter in Gurobi for solving

MIP models) and a maximum time limit equal to 18000 seconds (5 hours) as alternative termination

conditions, whichever is reached first. Gurobi will terminate (for minimization problems) when

the gap between the primal (upper) and the dual (lower) objective bounds becomes less than 0.1%

of the incumbent objective value within 18000 seconds; the solver will stop after solving the model

for 18000 seconds otherwise.

We solve each instance using a sample of size 1000 with T = 3 (we use truck types 1, 2, and 3).

The outputs for each instance include decision variable values, the number of units shipped using

LTL services, the objective value at termination, the best-known lower bound on the objective

value provided by Gurobi, the Gurobi gap at termination, and the total runtime required by Gurobi

(including preprocessing time in addition to the actual computing time, which may lead to a total

time that is greater than the maximum time limit for some instances). As the number of scenarios

(the value of S) in each sample generated is large and leads to a massive number of second-stage

variables, we store these locally and only output the mean values of ms
t and yst computed over S

observations, that is, m̄t =
1
S

∑S
s=1 m

s
t and ȳt =

1
S

∑S
s=1 y

s
t .

Table 2.8 shows the outputs for Instances 9 and 17, in which solving Instance 9 reaches the

18000s time limit (although the gap is still over 0.1% at termination), while Instance 17 is solved
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in around 10 seconds with a Gurobi gap less than 0.1%. The SAA results for all instances with

S = 1000 and T = 3 are provided in Appendix B.6. In total, 38 among 50 instances are solved at

the target Gurobi gap (less than or equal to 0.1%) with an average runtime of 67.2 seconds. The

remaining 12 instances are solved when the maximum computing time limit (18000 seconds) is

reached, with an average Gurobi gap of 0.16% at termination, which is not significantly different

from the 0.1% target.

Table 2.8: SAA results for Instances 9 and 17 with S = 1000 and T = 3.

Instance Truck Class (t) Wt (lbs) a ($/lb) Kt ($) At ($) nt m̄s
t ȳst LTL units Obj.Val. Obj.LB. GRB gap (%) GRB time (s)

9
Class 8 (1) 34000

0.37
1237.17 6416 32 27.89 947997.86

27792.59 248981.52 248694.12 0.12 18028.98Class 7 (2) 26100 934.28 5022 1 0.59 15218.43
Class 6 (3) 23600 652.66 4977 7 2.36 55312.28

17
Class 8 (1) 39600

0.38
1169.39 7975 31 25.21 997951.73

25402.39 254527.92 254301.96 0.09 10.06Class 7 (2) 31000 878.70 6597 1 0.52 15922.90
Class 6 (3) 22000 663.58 5016 1 0.52 10985.24

To evaluate the quality of a given SAA solution n̂, we follow a statistical procedure referring

to Shapiro and Philpott [53]. Let g∗ denote the true optimal objective value of problem SP, and let

g(n̂) be the objective value associated with n̂. The corresponding optimality gap is obtained by

δ(n̂) = g(n̂)− g∗, (2.39)

which can be used to evaluate the quality of n̂. Since it is difficult to compute g(n̂) and g∗ exactly,

we instead estimate the value of δ(n̂) by constructing a bound that has at least (1− 2β) confidence

on it, with 0 < β < 0.5.

The value of g(n̂) can be estimated by

gS̄(n̂) =
T∑
t=1

Ktn̂t +
1

S̄

S̄∑
j=1

Q(n̂, dj), (2.40)

where {d1, ..., dS̄} is a demand sample with S̄ scenarios. Note that this sample of size S̄ is inde-

pendent of the sample used for obtaining n̂. The value of S̄ is chosen to be sufficiently large since
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solving each individual subproblem for Q(n̂, dj) in (2.40) is relatively fast with a given first-stage

solution n̂. Letting q̄S̄(n̂) =
1
S̄

∑S̄
j=1Q(n̂, dj), the variance of gS̄(n̂) is then estimated by

σ2
S̄(n̂) =

1

S̄(S̄ − 1)

S̄∑
j=1

(
Q(n̂, dj)− q̄S̄(n̂)

)2
. (2.41)

This leads to an approximate (1− β) confidence upper bound on g(n̂) that equals

BS̄(n̂) = gS̄(n̂) + zβσS̄(n̂), (2.42)

where zβ = Φ−1(1− β) and Φ(z) is the CDF of the standard normal distribution.

To estimate the true optimal value g∗, we solve problem DEP M times by using M indepen-

dently generated samples (based on the same probability distribution), each including L scenarios.

At termination, Gurobi provides each solved problem associated with sample j with the incumbent

objective value gjL as well as the best known lower bound on gjL, denoted by g̃jL. The average of

the M best known lower bounds equals

ḡL,M =
1

M

M∑
j=1

g̃jL, (2.43)

and the variance of ḡL,M can be estimated by

σ2
L,M =

1

M(M − 1)

M∑
j=1

(
g̃jL − ḡL,M

)2
. (2.44)

We then construct a lower bound on g∗ with at least (1− β) confidence that equals

BL,M = ḡL,M − tβ,M−1σL,M , (2.45)

where tβ,M−1 is the β-critical value of the t-distribution with M − 1 degrees of freedom.

Consequently, a probabilistic bound on δ(n̂) associated with n̂, with at least (1 − 2β) confi-
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dence, is obtained by

BS̄(n̂)−BL,M . (2.46)

Table 2.9 summarizes the evaluation results for the SAA solutions obtained in Appendix B.6

for Instances 10, 20, 30, 40, and 50, with S̄ = 3000, L = 1000, M = 20 and β = 0.025.

According to the results, the estimated optimality gaps for all five instances are within 2% of the

corresponding estimated upper bound values with at least 95% confidence, in which the estimated

gaps for Instances 10 and 20 are below 1% of their estimated upper bounds. This implies that the

SAA method leads to an effective solution for any of these instances, providing an interval with at

least a 95% confidence level for the true optimal value, in which the difference between the lower

and upper bounds is relatively small (less than 2%).

Table 2.9: Evaluation results for selected instances.

Instance BS̄(n̂) BL,M gap =
(
1− BL,M

BS̄(n̂)

)
× 100%

10 181126.81 179877.26 0.69
20 308286.95 305766.59 0.82
30 291090.81 286511.53 1.57
40 175124.14 171732.12 1.94
50 283355.06 280184.65 1.12

2.5.3 Performance of the DB algorithm

To implement the DB heuristic algorithm proposed in Section 2.4.2.2, we use Gurobi to solve

the relaxation of problem DEP and the corresponding subproblems for each instance. The samples

we use for the DB algorithm are identical to the samples used for obtaining the SAA solutions

listed in Appendix B.6, each including 1000 scenarios. All instances are solved using the DB

algorithm with T = 3. We compare the SAA results with the results obtained using the DB

algorithm in terms of decision variable values, objective values, and the required runtime. Table
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2.10 summarizes the results for six instances. The last two columns in the table compute the

differences between the objective values and between the runtime in percentages (based on the

SAA results), respectively, in which a negative percentage value indicates the DB algorithm leads

to a larger value of objective/runtime than those obtained by using SAA. An instance is starred if

its DB algorithm runtime is better than the corresponding SAA runtime.

Table 2.10: Comparison of the SAA and the DB results for selected instances.

Instance SAA n̂ SAA obj.val. SAA time (s) DB nRD DB obj.val. DB time (s)
(
1− DB obj.val.

SAA obj.val.

)
× 100%

(
1− DB time

SAA time

)
× 100%

* 25 [2, 44, 0] 254613.38 32.69 [0, 46, 0] 254895.54 21.08 -0.11 35.53
26 [0, 40, 3] 224691.81 4.92 [0, 43, 0] 225265.65 20.05 -0.26 -307.77

* 27 [25, 1, 14] 226044.06 18045.75 [27, 0, 14] 226288.31 22.16 -0.11 99.88
* 28 [33, 0, 1] 240940.82 46.01 [34, 0, 0] 241423.22 21.47 -0.20 53.32
* 29 [2, 41, 0] 235531.11 111.54 [0, 44, 0] 235803.60 21.09 -0.12 81.09
* 30 [25, 12, 0] 289372.50 54.89 [26, 12, 0] 289531.71 23.68 -0.06 56.85

Observe that in each instance, the resulting first-stage solution obtained by using the DB algo-

rithm (nRD) differs from the SAA solution (n̂) but not significantly, with a difference of up to three

vehicles per truck type. The objective values obtained by the DB algorithm, however, are slightly

higher than the SAA objectives in all instances, implying that the SAA method outperforms the

DB algorithm in terms of the optimal objective values. On the other hand, the DB algorithm can

solve each instance and provides a solution within 24 seconds, which substantially decreases the

runtime by 30% or more for most instances, compared with the time required when directly solv-

ing problem DEP in SAA. This improvement in runtime is particularly evident for those instances

that reach the maximum runtime limit (Instance 27, for example). Note that the DB algorithm does

not necessarily outperform the SAA method in terms of runtime for those instances that can be

quickly solved using SAA. For example, in Instance 26, the SAA method only takes 4.92 seconds,

while the DB algorithm requires about 20 seconds.

Table B.3 in Appendix B.7 includes the comparison results for all 50 instances, in which the

average runtime of the DB heuristic across 50 instances is 21.47 seconds, which is about 68%

lower than the average runtime of SAA method (67.2 seconds) for those instances that are solved
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within the maximum time limit. In particular, using the DB algorithm improves the runtime for 29

instances, among which 23 instances see a reduction of more than 50% in the runtime (including

instances that reach the maximum time limit), and 6 instances improve the runtime by at least 5%.

Moreover, the average difference between the objective values obtained by the DB algorithm and

those obtained by the SAA method across 50 instances is only 0.12%.

To investigate how the DB algorithm performs when increasing the value of T and the sample

size S, we select 20 instances and create multiple variants for each instance by changing the value

of T and increasing the sample size, while fixing all other parameters. We include comparison

results for these instance variants in Tables B.4 through B.8 in Appendix B.7. Table 2.11 sum-

marizes the resulting average runtimes and the average differences between objective values (in

percentages) for each group of instance variants.

Table 2.11: Performance comparison with different values of T and S.

T S Avg. SAA time (s) Avg. DB time (s) Avg.
(
1− DB obj.val.

SAA obj.val.

)
× 100%

3 1000 8.96 20.82 -0.13
3000 68.29 71.69 -0.12
5000 192.77 116.88 -0.14

4 1000 17.27 24.46 -0.12
3000 142.2 75.57 -0.11
5000 446.17 118.15 -0.14

Notably, for a fixed value of T , a larger sample size results in an increased runtime when using

either method, while the SAA runtime exhibits a more noticeable increase when the sample size

increases. For example, with T = 4, the DB algorithm requires an average runtime of 24.46

seconds for solving an instance with 1000 scenarios, while it requires nearly five times longer

(118.15 seconds) for an instance with a sample size of 5000. The increase in the average runtime

when employing the SAA method, however, becomes even more significant as the sample size

increases from 1000 to 5000, which results in an approximate 26-fold rise (from 17.27 to 446.17
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seconds). Furthermore, when keeping the sample size fixed (for example, when S = 5000), a

noticeable increase in the average runtime (from 192.77 to 446.17 seconds) occurs as the value

of T increases (from 3 to 4) when using the SAA method. Conversely, the runtime of the DB

algorithm experiences only a minimal increase (from 116.88 to 118.15 seconds) when increasing

the value of T from 3 to 4 with S = 5000. The average objective values achieved by the DB

algorithm are marginally higher than the SAA objective values, with an average difference of less

than 0.15% for each group. This indicates that when raising the values of T and S, using the

SAA method may lead to a significantly extended runtime, whereas the DB algorithm can provide

highly effective solutions that are nearly comparable to those obtained through the SAA method

but within a much shorter runtime.

2.5.4 Sensitivity analysis

In this section, we investigate the sensitivity of the fleet composition solutions to several factors,

including (i) the LTL freight rate (the value of a), (ii) the number of truck types (the value of T ), (iii)

the demand parameters (including the mean value and the standard deviation of the demand), and

(iv) the demand distribution. We use the following metrics to delineate the variations associated

with each factor in the solutions.

Fleet capacity level (FCL). The FCL is the average capacity level of a fleet, which depicts the

composition and flexibility of a fleet. A lower value of FCL indicates that a fleet has more small

trucks and thus higher shipping flexibility, which enables shipping more units in smaller batches

via internal TL capacity. Because each instance we have generated and solved corresponds to a

unique set of T truck types, in order to standardize the vehicle capacity for each truck type, we

first compute the average vehicle capacity overM test instances for each truck type, denoted by

ωt, such that

ωt =
1

M

M∑
i=1

W
(i)
t ,

where the index i is associated with Instance i. For a given instance solved with a solution [nt], the
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FCL is obtained by

FCL =

∑T
t=1 ωtnt∑T
t=1 nt

, (2.47)

where nt∑T
t=1 nt

is the percentage of type-t trucks within the fleet.

Fleet utilization. The fleet utilization, denoted by UF , is defined by the ratio of the total ex-

pected number of trucks actually shipped to the total number of trucks owned, which can be ob-

tained using the following equation:

UF =

∑T
t=1 m̄t∑T
t=1 nt

. (2.48)

Note that the truck utilization for a given truck type t equals m̄t/nt.

Internal capacity utilization. This is the overall capacity utilization of all trucks in the fleet,

which is the ratio of the total expected number of units shipped via TL shipments to the total TL

capacity owned. This is obtained by

UC =

∑T
t=1 ȳt∑T

t=1 ntWt

. (2.49)

LTL units percentage. This is the ratio of the expected number of units shipped via LTL services

to the total expected number of units shipped using both internal and external shipping options,

which is obtained by

LTL units % =

(
The expected LTL units

The expected LTL units +
∑T

t=1 ȳt

)
× 100%, (2.50)

where ȳt is the expected number of units shipped using type-t trucks.

Cost structure. The cost structure includes four metrics: the total expected cost (i.e., the ob-

jective value), and three percentages corresponding to each cost component (the total fixed cost,

the total dispatching cost, and the total cost of using LTL services) as a percentage of the total
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expected cost.

We use the 50 instances generated in Section 2.5.1 as base instances and their SAA solutions

solved in Section 2.5.2 as benchmarks, based on which we perform the sensitivity analyses by

varying the LTL rate in Section 2.5.4.1 and the number of truck types in Section 2.5.4.2. We

investigate the impact of demand parameters in Section 2.5.4.3, and analyze the solution sensitivity

to different demand distributions in Section 2.5.4.4.

2.5.4.1 Impact of LTL freight rate

Based on the 50 base instances, we create two groups of 50 instance variants by changing the

values of a (medium LTL rate). In group one we decrease the LTL rate in each base instance by

50 cents (a − 0.05, low LTL rate) and in group two we increase each base LTL rate by 50 cents

(a + 0.05, high LTL rate) while fixing all other parameters. We use the same normal demand

sample with S = 1000 for each instance index (associated with one base instance and two instance

variants). Each instance index corresponds to an independently generated sample. In total, 150

instances are solved (using Gurobi) for analyzing the impact of the LTL rate. We consider 3 truck

types (t = 1, 2, 3) for all instances. The resulting metrics for each instance when changing the LTL

rate are attached in Appendix B.8. Table 2.12 summarizes the average (over 50 instances) of each

metric for three LTL rate levels.

Table 2.12: The mean values of the metrics as the LTL rate varies.

Low LTL rate Medium LTL rate High LTL rate
Avg. FCL (lbs) 33631.71 33273.31 33086.00
Avg. UF (%) 84.08 79.49 76.83
Avg. UC (%) 84.51 80.24 77.76
Avg. LTL units (%) 5.88 3.12 2.14
Avg. fixed cost (%) 15.77 16.95 17.54
Avg. dispatching cost (%) 76.69 78.47 78.88
Avg. LTL cost ((%) 7.55 4.58 3.59
Avg. total cost ($) 237174.07 239412.39 240755.41
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We observe that as the LTL rate increases, there is a corresponding decrease in several metrics:

the average FCL, the average fleet utilization, the average internal capacity utilization, and the

average percentages of both the LTL units and the LTL cost. Conversely, the total expected costs

and the percentages of fixed and dispatching costs experience an increase.

When the LTL rate increases, a fleet tends to acquire more internal trucks, especially more small

trucks, to replace using external LTL services while maintaining the flexibility of shipping smaller

batches and minimizing the total expected cost in a period. This leads to a larger initial capital

investment and therefore a higher percentage of the fixed cost. At the same time, dispatching

more internal trucks leads to an increased percentage of the total dispatching cost and a reduced

percentage of LTL units, and thus a reduction in the percentage of LTL cost. The total expected

cost, however, still increases as it is dominated by the growth of the fixed and dispatching costs.

On the other hand, although an increased LTL rate encourages owning and using more inter-

nal trucks, it does not lead to either an increased fleet utilization or an increased overall internal

capacity utilization. This is because when acquiring more trucks to offset the rising cost of LTL

services, even though the average percentage of units shipped via TL shipments increases due to

fewer LTL shipments being used, the increase in the aggregate internal TL capacities overrides

the increase in the demand of using TL shipments, leading to a lower overall internal capacity

utilization. Similarly, the increase in the total number of trucks owned dominates the increase in

the expected number of trucks actually shipped, which results in a declined fleet utilization.

2.5.4.2 Impact of the number of truck types

In our numerical experiments, the truck types are indexed from 1 (the largest truck class) to 5

(the smallest truck class). Starting from type-1 truck, as the value of T increases by one, we add

a truck type that has a successively smaller capacity to the pool of the truck types. For example,

when T = 3, we solve the fleet composition problem based on three truck types including type-1,

type-2, and type-3 trucks; when T = 4, the truck options are type-1, type-2, type-3, and type-4. A

larger value of T implies more options for smaller truck sizes. For each base instance, we create

two instance variants by increasing the value of T from 3 to 4 and 5, respectively. We use the
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same normal demand sample of size 1000 for each base instance and its variants. We solve 50

instances for each value of T and thus 150 instances are solved in total. Table 2.13 computes the

mean values of the metrics across 50 instances for each value of T . Results for all instances are

included in Appendix B.9.

Table 2.13: The mean values of the metrics as T changes.

T = 3 T = 4 T = 5
Avg. FCL 33265.61 32764.77 32681.53
Avg. UF (%) 79.50 78.64 78.47
Avg. UC (%) 80.24 80.04 79.96
Avg. LTL units (%) 3.12 3.01 2.97
Avg. fixed cost (%) 16.95 16.93 16.95
Avg. dispatching cost (%) 78.47 78.64 78.68
Avg. LTL cost (%) 4.58 4.43 4.37
Avg. total cost ($) 239412.24 239340.66 239326.33

As the value of T increases, most metrics demonstrate a clear downward trend, including the

average FCL, the mean values of fleet utilization and internal capacity utilization, the percentages

associated with LTL, and the total expected cost. Despite the overall decline, the average percent-

age of the dispatching cost slightly grows, whereas the average percentage of the fixed cost remains

relatively stable.

These trends suggest that on average, when additional small truck options are available, a fleet

composition solution tends to add more small trucks, or, replace a certain number of big trucks

with an equivalent or a greater number of small trucks, which leads to a decrease in the average

FCL. However, in some instances, adding more small truck options does not affect the current fleet

composition solution and thus the number of trucks owned for each type does not change. This

implies that adding more smaller trucks does not necessarily improve the cost-effectiveness of the

fleet.

In addition, if a solution suggests considering more small truck types, the total number of trucks

owned increases, while the allocation of the demand tends to be more dispersed among different
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truck types and thus the portion assigned to each truck type is lower, leading to lower values of

average fleet and internal capacity utilization. The reliance on LTL services decreases when more

truck types are considered, leading to a decrease in the percentage of LTL cost that dominates the

reduction in the average total expected cost.

2.5.4.3 Impact of demand mean and standard deviation

To investigate the impact of the mean and standard deviation of demand, we create four sets of

normal demand samples of size 1000 based on four groups of mean values and standard deviations,

representing four different demand categories: low mean low uncertainty (L, L), low mean high

uncertainty (L, H), high mean low uncertainty (H, L), and high mean high uncertainty (H, H). Each

group includes 50 independently generated samples, and each sample corresponds to an instance

index. Table 2.14 summarizes the parameters used for each demand category.

Table 2.14: Four groups of demand parameters.

(L, L) (L, H) (H, L) (H, H)
Mean (×104) 105 105 125 125

Standard deviation (×104) 16.25 26.25 16.25 26.25

We solve each base instance with T = 5 using its associated sample in each demand category,

respectively. We solve 50 instances for each demand category and in total 200 problems are solved

for all demand categories. The results of metrics for each instance are included in Appendix B.10.

Table 2.15 compares the mean values of the metrics between four demand categories.

We first compare the results in group (L, L) and group (L, H). For a low-demand market, as

the demand uncertainty increases, the mean values of FCL, fleet utilization, and internal capacity

utilization decrease. This indicates that when demand uncertainty is high, more small trucks are

acquired in order to fulfill any unexpected shipping requirements that require high shipping flexi-

bility, while the randomness of the demand leads to a higher portion of idle internal capacities in a

period, which causes the reduction in the values of UF and UC , as well as the decreasing percent-
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Table 2.15: The mean values of the metrics with different demand parameters.

(L, L) (L, H) (H, L) (H, H)
Avg. FCL (lbs) 33076.68 32681.53 33175.00 32827.57
Avg. UF (%) 85.33 78.47 87.46 81.22
Avg. UC (%) 86.54 79.96 88.61 82.65
Avg. LTL units (%) 1.89 2.97 1.63 2.52
Avg. fixed cost (%) 16.26 16.95 16.03 16.64
Avg. dispatching cost (%) 80.90 78.68 81.50 79.62
Avg. LTL cost ((%) 2.84 4.37 2.47 3.73
Avg. total cost ($) 235350.75 239326.33 278723.41 282987.73

age of dispatching cost. At the same time, more LTL units are used for meeting excessive shipping

requirements as the demand uncertainty increases, leading to significant growth in the percentage

of LTL units. As the demand uncertainty increases, the total expected cost also demonstrates an

increase due to the growth in both the LTL cost and the fixed cost (incurred by the addition of small

trucks).

However, when comparing the results in group (L, L) and group (H, L), we observe opposite

trends in the variation of the metrics. By fixing the standard deviation, increasing the mean of the

demand leads to a clear upward trend in the mean values of the FCL, UF , and UC . This is because

when the demand is high but relatively stable, the shipping requirements in a period become more

predictable, which leads to a lower percentage of idle trucks during a period, and thus both the fleet

utilization and the internal capacity utilization are improved. Considering economies of scale, it is

more economical to acquire more big trucks to fulfill the growing demand, leading to an increased

FCL. On the other hand, a higher value of fleet utilization implies a growing number of trucks

shipped, which results in an increase in the dispatching cost that dominates the growth of the total

expected cost.

When increasing both the demand mean value and the standard deviation, the average total

expected cost demonstrates a noticeable increase, which is dominated by the growth of the fixed

cost and the LTL cost. The average FCL, as well as the fleet utilization and the internal capacity

utilization, undergo a reduction.
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2.5.4.4 Impact of demand distribution

To investigate the impact of the distribution of the demand, we create three groups of demand

samples based on normal, uniform, and gamma distributions, respectively. We use the mean value

and the standard deviation for the (L, H) category listed in Table 2.14 for each distribution. We

create 50 independent samples for each distribution, and use each sample to solve the correspond-

ing base instance. Appendix B.11 includes the results for all instances. We summarize the average

metrics for each distribution in Table 2.16.

Table 2.16: The mean values of the metrics with different demand distributions.

Normal Uniform Gamma
Avg. FCL (lbs) 32681.53 32486.13 32596.04
Avg. UF (%) 78.47 76.35 78.34
Avg. UC (%) 79.96 77.92 79.94
Avg. LTL units (%) 3.07 2.04 3.69
Avg. fixed cost (%) 16.95 17.51 16.78
Avg. dispatching cost (%) 78.68 79.60 78.01
Avg. LTL cost ((%) 4.37 2.90 5.21
Avg. total cost ($) 239326.33 239320.19 240517.66

Among the three demand distributions, the uniform distribution results in the lowest average

FCL, average fleet and internal capacity utilization, and the average percentage of LTL units. Al-

though the average percentages of fixed and dispatching costs in the uniform distribution group are

the highest, the corresponding total expected cost is lower than those associated with normal and

gamma distributions. Overall, the mean values of the metrics in the normal and gamma distribution

groups are relatively close, wherein the normal distribution group has higher values of the average

FCL, the average fleet utilization, the average internal capacity utilization, and the average cost

percentages associated with internal trucks. The gamma distribution group has the highest metric

values associated with LTL, and the highest average total expected cost.

When the demand is uniformly distributed, a lower average FCL implies that the truck types in
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a fleet are more diverse because they need to fulfill demand at each level with equal probabilities,

while trucks of each type can only be utilized with certain probabilities, leading to lower values

of fleet and capacity utilization. When the demand distribution has a ‘bell’ shape like normal or

gamma distribution, as the expected demand is centered around a fixed value, the demand can

be satisfied by the main truck types most of the time, leading to a less diverse fleet and higher

utilization. Overall, the fleet composition solutions based on the three demand distributions differ

in utilization and cost percentages, while the resulting total expected costs are relatively close.

2.6 Conclusions and future research directions

In this chapter, we explore the fleet composition problem with stochastic demand by accounting

for using both TL and LTL shipping options when allowing for LTL shipments even with internal

capacity being available. We propose a solution approach that offers analytical solutions for a

fleet with lower diversity, as well as a two-stage stochastic programming model to incorporate a

wider range of truck types. We solve the proposed model using the SAA method and develop a

decomposition-based algorithm that provides effective solutions within relatively fast computing

time. Our numerical results reveal that the fleet composition decisions are affected by the LTL

freight rate, the number of truck types, and the properties of demand.

Although we have briefly discussed the potential extension for a homogeneous fleet by adopting

a stochastic LTL rate, incorporating a stochastic and dynamic LTL rate in models for the hetero-

geneous fleet represents an interesting and challenging avenue for future work. In practice, a fleet

usually serves multiple customers located in different regions, and tackling the allocation of inter-

nal capacity to different destinations and determining shipping priorities will also contribute to the

current research.
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3. OPTIMIZATION MODELS FOR AMBULANCE BUS ROUTING IN DISASTER

SITUATIONS

3.1 Introduction

Natural disasters, such as earthquakes, hurricanes, and tornadoes, can have the potential to

wreak havoc and inflict catastrophic harm on human society. Along with loss of lives, a disaster

can also lead to huge economic losses that are hard to recover from. The year 2022 witnessed 387

recorded natural calamities that lead to the loss of 30,704 lives and nearly $223.8 billion in total

over the globe [54]. Effective and efficient rescue operations and relief activities in the immediate

aftermath of a disaster are critical to minimizing the post-disaster damages to communities and

harmful impacts on public health. Lack of coordination and timely response to the aftermath of a

disaster can push casualties into health risks which can cause further death.

The Emergency Medical Services (EMS) system plays a crucial role in ensuring successful

disaster management. One critical component of an EMS system in the aftermath of disasters is

making quick decisions on allocating and routing ambulances. The post-disaster environment is

extremely time-sensitive because the conditions of the casualties become worse as time passes.

In order to maximize the number of survivors, routing decisions must be made quickly to ensure

prompt responses. Typical optimization models formulated for ambulance routing problems at the

operational level require detailed input information, such as the exact locations of casualties, and

the distances between casualties and available ambulances, which may not be fully available when

a routing decision is needed. To guide decision making strategies, we incorporate tour length

approximations into routing models when the only available information is the total number of

casualties, which gives insight into the structure of optimal routing solutions.

Additionally, during large-scale disasters or massive-casualty incidents, traditional ambulances

may become overwhelmed due to high demand, and therefore alternative transportation resources

are deemed necessary, such as ambulance buses. An ambulance bus is specifically designed and
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equipped to accommodate a group of casualties within a single vehicle, which enables efficient

transportation for medical evacuation in mass casualty incidents. Ambulance buses have been

examined in various disaster management research projects (see e.g., [55, 56]) and have proven to

be effective in real-life emergency situations (see e.g., [57, 58]).

In this chapter, our main goal is to investigate using an ambulance bus instead of traditional

ambulances in the aftermath of a disaster by developing strategic optimization models that max-

imize the expected number of survivors, considering time-dependent survival probabilities of the

casualties. We aim to provide insights and identify basic principles that lead to effective routing

plans in a short response time without the need for precise location and distance information.

Our contributions are summarized as follows. First, we propose optimization models that maxi-

mize the total expected number of survivors, using an ambulance bus instead of a fleet of traditional

ambulances. Second, we incorporate tour length approximation in our models while considering

time-dependent survival probabilities, which reduces the need for detailed information on locations

and distances. Furthermore, we discuss both linear and nonlinear survival probability functions

and achieve analytical results that lead to effective routing solutions under linear survival proba-

bility functions. Finally, we propose two heuristic algorithms that solve the ambulance bus routing

problem with linear and nonlinear survival probability functions, respectively, with high-quality

solutions in a very short computing time.

The rest of this chapter is organized as follows. We review relevant literature in Section 3.2,

followed by a problem definition in Section 3.3. Section 3.4 proposes an optimization model with

a linear survival probability function and develops the golden ratio heuristic algorithm. Section

3.5 characterizes the optimization model under more general forms of survival probability func-

tions and develops a heuristic algorithm based on dynamic programming. We conduct numerical

experiments and evaluate the performance of the two proposed heuristic algorithms in Section 3.6.

We further perform sensitivity analysis in Section 3.6.3 to the behavior of the solutions in terms of

vehicle capacity and the survival probability function.
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3.2 Literature review

Transportation prioritization, casualty assignment to hospitals/vehicles, and vehicle routing are

critical decisions in disaster responses [59]. Existing studies devoted to supporting these decisions

for ambulances in the EMS fall in three streams: locating, dispatching, and routing [60, 61]. Our

work is primarily related to ambulance dispatching (i.e., determining the assignments of ambu-

lances) and routing (i.e., determining the visit sequence of ambulances) problems. We focus on

research that addresses allocating casualties to ambulances and combine the discussions on both

of these streams.

Gong and Batta [62] propose a deterministic model that determines the allocation and realloca-

tion of ambulances to clusters of casualties while minimizing the completion time for all clusters.

Talarico et al. [63] study an ambulance routing problem for disaster response given a fleet of am-

bulances, in which patients are prioritized based on severity of injuries. Two optimization models

are proposed to obtain routing plans with the objective of minimizing the latest service completion

time, and a metaheuristic is developed that solves large-scale instances in short computing time.

Repoussis et al. [64] formulate a mixed-integer programming model that combines ambulance

dispatching, patient-to-hospital assignment, and treatment ordering while minimizing the overall

response time and the total flow time required to treat all patients. Based on an ant colony system

algorithm, Mouhcine et al. [65] propose a distributed strategy that generates the optimal path dy-

namically for multiple ambulances according to different environmental factors while minimizing

the travel time. Yoon and Albert [66] present a Markov decision process model that dynamically

assigns two ambulance types to emergency calls while allowing more than one ambulance type to

be sent to the same call. The objective is to maximize the expected total reward (including the

utilities of serving calls and the coverage of patients) over a given time horizon.

The majority of the aforementioned papers use a minimization objective in terms of time, such

as minimizing travel time, completion time, or response time. Although time is typically used to

assess the effectiveness of an EMS, other measurements should be considered to ensure capturing

the ultimate goal of the EMS, which is to save lives. In this respect, models aiming to maximize the
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expected number of survivors considering time-dependent survival probabilities are increasingly

investigated in EMS resource allocation problems. Sacco et al. [67] develop a linear program-

ming model that maximizes the expected number of survivors while considering the timing and

availability of medical resources in the aftermath of a mass-casualty incident, in which the survival

probabilities of the victims are predicted based on a set of vital signs and victim deterioration is es-

timated using the Delphi technique. Erkut et al. [68] incorporate a survival function into maximum

covering models that allocate ambulance resources to emergency service stations while maximiz-

ing the expected number of survivors. Knight et al. [69] present an extension of the model in [68]

by considering multiple patient classes, wherein patients in different classes have different survival

functions. Mills et al. [70] construct a fluid model for the mass-casualty triage problem when ac-

counting for time-dependent survival probabilities given a number of ambulances, with the objec-

tive of maximizing the expected number of survivors. Bandara et al. [71] propose a priority-based

heuristic dispatching policy that attempts to increase the survival probability of patients. Their

numerical results show that implementing the proposed dispatching policy can effectively improve

patient survivability, the average response time, and the percentage of calls for higher priority calls.

Sung and Lee [72] propose a mixed-integer programming model that determines the allocation of

ambulances to a given number of victims while maximizing the number of expected survivals, in

which victims are classified into two groups and have time-sensitive survival probabilities. Mills

et al. [73] develop a Markov decision process and two heuristic policies to simultaneously allocate

ambulances to casualty locations and select hospitals for transportation, given limited emergency

vehicles and treatment capacity at the hospitals. The objective in their model is to maximize the

expected total discounted reward, which can be represented by maximizing the expected number

of survivors.

The survival-maximizing models developed in the aforementioned papers commonly allocate a

fixed number of ambulances to a given set of casualties, assuming each vehicle serves one casualty

at a time and the travel time (or the distribution of the travel times) only depends on the distance

between the casualty’s location and the destination. However, when using a single ambulance bus
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to pick up a group of casualties in sequence, the travel time required during a trip also relies on

the number of casualties on that trip. Consequently, the number of trips and the overall completion

time when all trips are finished depend on the number of casualties assigned to each trip. Therefore,

when incorporating time-dependent survival rates in the application of a single ambulance bus, we

must balance the number of trips and the size of each trip in order to maximize the expected

survivals.

To estimate the travel time of transporting a given number of casualties using an ambulance

bus, we refer to the tour length approximation models in literature for routing problems (see e.g.,

[74, 75, 76, 77, 78]). If the total number of casualties exceeds the capacity of the ambulance bus,

the casualties must be split into multiple routes and each route should follow the shortest traveling-

salesman problem (TSP) tour to maximize the casualties’ survival probabilities. Beardwood et al.

[74] have shown that for a set of n points distributed in a bounded area of size A, the optimal TSP

tour length asymptotically converges to γ
√
nA, where γ is a constant. We assume that the travel

time is proportional to the approximated tour length and thus use this tour length approximation to

represent the estimated time required for each route.

3.3 Problem description

We consider the aftermath of a disaster in a compact area of size A, where there are N casualties

geographically dispersed and a rescue team runs a single ambulance bus with a capacity C to pick

up each casualty in sequence. One or more routes are needed to evacuate all casualties, and each

route is a route starting from a medical center (i.e., each route originates from the medical center

and returns while transporting a group of casualties). The team must make a quick decision on the

number of routes needed and the size of each route before detailed location information becomes

available for advanced routing schedules. Let S(t) be the probability of survival for a casualty if

she arrives at the medical center and receives treatment at time t, where S(t) is a nonincreasing

function of t. Our objective is to maximize the total expected number of survivors.

As time passes, the conditions of casualties become worse. The sooner the casualties are

sent back to the medical center, the higher their chance of survival. Because the ambulance bus
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has limited capacity, running multiple routes is required if a single route cannot accommodate all

casualties. If a small number of casualties is included on each route, the travel time needed for each

route is small, so the casualties who are included on the first few routes can be transported to the

medical center sooner, while casualties on the last few routes may arrive late because of the need

to run a large number of routes. In contrast, if the team picks up more casualties on each route, it

takes longer for the first few routes to travel back to the medical center, whereas the casualties on

the last few routes can arrive relatively earlier as the team runs fewer routes. Therefore, the team

must consider the trade-off between the number of casualties to include on each route and the total

number of routes, determining whether to use the ‘smaller route sizes, more routes’ strategy or the

‘larger route sizes, fewer routes’ strategy.

Letting ni denote the number of casualties to include on route i for i = 1, ..., N such that∑N
i=1 ni = N , we assume without loss of generality the rescue team runs the routes in index order.

Note that the team can run at most N routes with ni = 1 for i = 1, . . . , N , and at least one route

with n1 = N and ni = 0 for i = 2, . . . , N . We assume the casualties are uniformly dispersed in

the disaster region with an area of A. Let A(ni) denote the area of the subregion covered by route

i when transporting ni casualties. If the rescue team travels across the entire region for each route,

we have A(ni) = A; if the area A is divided equally into k (k ≤ N ) non-overlapping subregions,

we have A(ni) = A/k for all i = 1, ..., k. In both cases, A(ni) is fixed and identical for all routes.

We assume that the team cannot assign any priority to the casualties and needs to pick them up

following the order the requests are received, and we use A(ni) = A for all routes.

Assuming the completion time of a route is proportional to the tour length of the route, we use

the approximated tour length γ
√

Anj to represent the estimated time required by route j for nj

casualties, where γ is a constant. Letting β = γ
√
A and assuming the first route starts from time

0, the time at the completion of the ith route equals

ti = β
i∑

j=1

√
nj. (3.1)

87



We will use this time approximation for characterizing our models in the following sections.

We assume the survival probability function of each casualty is identical. Based on the route

completion time in Equation (3.1), the expected number of survivors on route i that includes ni ca-

sualties equals niS(ti) = niS
(
β
∑i

j=1

√
nj

)
. To maximize the total expected number of survivors

over all routes, we solve the following model:

[P] Maximize
∑N

i=1 niS
(
β
∑i

j=1

√
nj

)
(3.2)

Subject to:
∑N

i=1 ni = N, (3.3)

ni ≤ C, i = 1, . . . , N, (3.4)

ni ∈ Z+, i = 1, . . . , N. (3.5)

The objective function (3.2) maximizes the total expected number of survivors. Constraint (3.3)

ensures all casualties are visited. Constraints (3.4) ensure the number of casualties included on

each route is subject to the vehicle capacity. The difficulty of solving this model depends in large

part on the form of the survival probability function S(·).

3.4 Stylized model with linear survival probability function

In this section, we consider a linear survival probability function S(t) = a− bt with 0 < a ≤ 1

and b > 0, where a/b ≥ βN such that each casualty has nonnegative survival probability when

arriving at the medical center. With S(t) = a − bt, the objective function (3.2) in problem P

becomes

aN − bβ

N∑
i=1

ni

(
i∑

j=1

√
nj

)
. (3.6)
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Because the values of a, b and β are constant, given N , the optimal solution can be obtained by

solving the following equivalent problem:

[EP] Minimize
∑N

i=1 ni

(∑i
j=1

√
nj

)
(3.7)

Subject to:
∑N

i=1 ni = N, (3.8)

ni ≤ C, i = 1, . . . , N, (3.9)

ni ∈ Z+, i = 1, . . . , N. (3.10)

We can show that an optimal solution for problem EP must have successively nonincreasing

decision variable values, that is, ni ≥ nj for i < j. This is formalized in Proposition 3.4.1. We

include the proofs for all propositions in Appendix C.1.

Proposition 3.4.1. The route sizes in an optimal solution are successively nonincreasing. That is,

ni ≥ nj holds in an optimal solution, where i, j ∈ {1, . . . , N} and i < j.

3.4.1 KKT solutions for uncapacitated routes

To gain some insight into this problem, we initially ignore the vehicle capacity by assuming

N ≤ C and consider the following uncapacited problem:

[EP-U] Minimize
∑N

i=1 ni

(∑i
j=1

√
nj

)
(3.11)

Subject to:
∑N

i=1 ni = N, (3.12)

ni ∈ Z+, i = 1, . . . , N. (3.13)

In the above model, one extreme case is when n1 = N and n2 = n3... = nN = 0, where the

objective value equals N
√
N ; at the other extreme, if ni = 1 for all i, the objective value equals

N(N + 1)/2. Because (N + 1)/2 >
√
N holds for any N ≥ 2, including all casualties in a single

route always provides a better solution than transporting one casualty at a time using N individual

routes. We can show that in the uncapacitated case, at most N − 1 routes are needed in an optimal

solution. This is proven in Proposition 3.4.2.
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Proposition 3.4.2. Given N casualties, if 1 < N ≤ C, an optimal solution has at most N − 1

routes.

To solve problem EP-U, we first consider its relaxation problem:

Minimize
∑N

i=1 ni

(∑i
j=1

√
nj

)
(3.14)

Subject to:
∑N

i=1 ni = N, (3.15)

−ni ≤ 0, i = 1, . . . , N. (3.16)

Letting α denote the dual variable associated with the equality constraint and λi denote the dual

variable associated with the ith nonnegative constraint, the necessary KKT conditions can be writ-

ten as

3
√
ni

2
+
∑i−1

j=1

√
nj +

∑N
j=i+1 nj

2
√
ni
− α− λi = 0, i = 1, . . . , N, (3.17)∑N

i=1 ni = N, (3.18)

λini = 0, i = 1, . . . , N, (3.19)

ni ≥ 0, i = 1, . . . , N, (3.20)

λi ≥ 0, i = 1, . . . , N. (3.21)

Observe that ni > 0 implies λi = 0; thus, for any i such that ni > 0, we have

3
√
ni

2
+
∑i−1

j=1

√
nj +

∑N
j=i+1 nj

2
√
ni

= α. (3.22)

The solution n1 = N , ni = 0, i = 2, ..., N is a KKT point with α = 3
√
N/2, while the solution

ni = 1 for i = 1, . . . , N is not a KKT point because in this case condition (3.17) requires 2+N =

2 +N − 1.
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As a result, if ni > 0 and nℓ > 0, we must have

3
√
ni

2
+
∑i−1

j=1

√
nj +

∑N
j=i+1 nj

2
√
ni

=
3
√
nℓ

2
+
∑ℓ−1

j=1

√
nj +

∑N
j=ℓ+1 nj

2
√
nℓ

. (3.23)

If an optimal solution contains k routes (k < N ) in which ni > 0 for i = 1, . . . , k and nj = 0

for j = k + 1, . . . , N , the term
∑N

j=k+1 nj

2
√
nk

then becomes zero; then the above implies

3
√
nk

2
+
√
nk−1 =

3
√
nk−1

2
+ nk

2
√
nk−1

,

or

nk−1 − 3
√
nk
√
nk−1 + nk = 0.

If we fix nk and solve the above quadratic equation for
√
nk−1, we obtain

√
nk−1 =

√
nk

(
3±

√
5

2

)
.

According to Proposition 3.4.1, an optimal solution must satisfy nk−1 ≥ nk, so we only need to

consider
√
nk−1 =

√
nk

(
3+

√
5

2

)
. Letting φ = 1+

√
5

2
, which is the golden ratio, we can then write

3+
√
5

2
= 1+φ, implying

√
nk−1 = (1+φ)

√
nk, or,

√
nk = (2−φ)√nk−1, noting that 1

1+φ
= 2−φ.

We first consider an optimal solution with two routes (k = 2) with n1 + n2 = N . Based on the

above discussion, an optimal solution must satisfy
√
n2 = (2 − φ)

√
n1, implying n1 = N

1+(2−φ)2
.

We therefore can conclude that for a two-route optimal solution, n∗
1 > n∗

2 must hold, with

n∗
1 =

N

1 + (2− φ)2
≈ 0.8727N,

n∗
2 =

(2− φ)2N

1 + (2− φ)2
≈ 0.1273N.

More generally, for an optimal solution with k routes and 2 < k < N , according to (3.23), we
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can write

3
√
nk−1

2
+
√
nk−2 +

nk

2
√
nk−1

=
3
√
nk−2

2
+ nk−1+nk

2
√
nk−2

. (3.24)

We know that an optimal KKT point must satisfy
√
nk = (2− φ)

√
nk−1, and the above becomes

√
nk−2

2
+ (1+(2−φ)2)nk−1

2
√
nk−2

=
(3+(2−φ)2)

√
nk−1

2
, (3.25)

which is equivalent to

nk−2 − (3 + (2− φ)2)
√
nk−1
√
nk−2 + (1 + (2− φ)2)nk−1 = 0. (3.26)

By Proposition 3.4.1, the above quadratic equation is solved at

√
nk−2 =

√
nk−1

(
3 + (2− φ)2 +

√
(3 + (2− φ)2)2 − 4(1 + (2− φ)2)

2

)
. (3.27)

Letting mk−1 = (1 + φ)2 and 1
mk−1

= (2− φ)2, the above can be written as

nk−2 = mk−2nk−1,

where

mk−2 =

3 + 1
mk−1

+

√(
3 + 1

mk−1

)2
− 4

(
1 + 1

mk−1

)
2


2

.

We can apply a similar approach to nk−2 and nk−3, and obtain

nk−3 = mk−3nk−2,

92



where

mk−3 =

3 + 1
mk−1

+ 1
mk−1mk−2

+

√(
3 + 1

mk−1
+ 1

mk−1mk−2

)2
− 4

(
1 + 1

mk−1
+ 1

mk−1mk−2

)
2


2

.(3.28)

In fact, a continuing pattern exists in which nk−ℓ = mk−ℓnk−ℓ+1 for ℓ = 2, . . . , k − 1, where

mk−1 = ρk−1 = (1 + φ)2 and

mk−ℓ =
1

4

3 +
ℓ−1∑
i=1

1

ρk−i

+

√√√√(3 + ℓ−1∑
i=1

1

ρk−i

)2

− 4

(
1 +

ℓ−1∑
i=1

1

ρk−i

)
2

, (3.29)

with

ρk−ℓ =
ℓ∏

i=1

mk−i.

Consequently, for an optimal solution with k routes, we can characterize mi for i = 1, . . . , k−1,

where nk−1 = mk−1nk, nk−2 = mk−2nk−1, . . . , n1 = m1n2. This implies that nj = nk

∏k−j
i=1 mk−i =

ρjnk. Then we can write
k∑

j=1

nj = nk

(
1 +

k−1∑
j=1

ρj

)
,

which implies

nk =
N

1 +
∑k−1

j=1 ρj
,

as well as

nj = N
ρj

1 +
∑k−1

i=1 ρi
, j = 1, . . . , k − 1.

Note that with mk−1 = ρk−1 = (1 + φ)2, the coefficient ρj

1+
∑k−1

i=1 ρi
on the right-hand side of

the above equation only depends on the value of k. In particular, the coefficient r1 = ρ1
1+

∑k−1
i=1 ρi

associated with n1 represents the percentage (among N casualties) to include on the first route.

Table 3.1 lists the value of this percentage when the value of k varies. We observe that r1 tends to

converge to approximately 86.6% for k ≥ 5.
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Table 3.1: The value of r1 as k changes.

k r1 k r1
2 0.872678 7 0.866025
3 0.866352 8 0.866025
4 0.866041 9 0.866025
5 0.866026 10 0.866025
6 0.866025 11 0.866025

3.4.2 KKT solutions for capacitated routes

We next characterize the KKT solutions for capacitated routes with N > C. We consider the

following relaxation of problem EP:

[EPR] Minimize
∑N

i=1 ni

(∑i
j=1

√
nj

)
(3.30)

Subject to:
∑N

i=1 ni = N, (3.31)

ni ≤ C, i = 1, . . . , N, (3.32)

−ni ≤ 0, i = 1, . . . , N. (3.33)

As before, we use α to denote the KKT multiplier associated with the equality constraint, and use

λi to denote the KKT multiplier associated with the ith nonnegative constraint. Letting πi denote

the multiplier associated with the ith capacity constraint, the necessary KKT conditions can be
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written as

3
√
ni

2
+
∑i−1

j=1

√
nj +

∑N
j=i+1 nj

2
√
ni
− α + πi − λi = 0, i = 1, . . . , N, (3.34)∑N

i=1 ni = N, (3.35)

ni ≤ C, i = 1, . . . , N, (3.36)

πi(C − ni) = 0, i = 1, . . . , N, (3.37)

λini = 0, i = 1, . . . , N, (3.38)

ni ≥ 0, i = 1, . . . , N, (3.39)

λi ≥ 0, i = 1, . . . , N. (3.40)

Observe that ni > 0 implies λi = 0, while ni < C implies πi = 0. Therefore, for any i such

that 0 < ni < C, we also obtain Equation (3.22). As a result, for any pair of ni and nℓ such that

0 < ni < C and 0 < nℓ < C, Equation (3.23) must hold; if ni = C and 0 < nℓ < C, as πi ≥ 0, a

KKT solution must satisfy

3
√
ni

2
+
∑i−1

j=1

√
nj +

∑N
j=i+1 nj

2
√
ni
≤ 3

√
nℓ

2
+
∑ℓ−1

j=1

√
nj +

∑N
j=ℓ+1 nj

2
√
nℓ

. (3.41)

Consider an optimal solution that contains two routes, which can only occur if N ≤ 2C. If

N = 2C, n1 = n2 is the only feasible solution; we therefore consider cases with C < N < 2C. If

C ≥ N
1+(2−φ)2

, i.e., N ≤ (1 + (2− φ)2)C, based on the discussion for two routes in Section 3.4.1,

this is equivalent to the uncapacitated case, and thus n1 = N
1+(2−φ)2

≤ C and n2 = N − n1 =

(2−φ)2N
1+(2−φ)2

< C provides a KKT solution. Otherwise, if (1 + (2 − φ)2)C < N < 2C, consider the

solution with n1 = C and n2 = N − C, which satisfies Equation (3.41) if and only if

3
√
C

2
+

N − C

2
√
C
≤ 3
√
N − C

2
+
√
C, (3.42)
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which holds if and only if

N2 − 9NC + 9C2 ≤ 0. (3.43)

Note that the left-hand side of the above inequality is decreasing in N for 0 ≤ N ≤ 4.5C. Observe

that at N = 2C, the left-hand side equals −5C2, while at N = (1+ (2−φ)2)C, the left-hand side

equals zero, Thus, the above inequality holds for any N such that (1 + (2 − φ)2)C < N < 2C,

implying the solution (n1, n2) = (C,N−C) is a KKT solution. The solution (n1, n2) = (N−C,C)

requires

3
√
C

2
+
√
N − C ≤ 3

√
N − C

2
+

C

2
√
N − C

(3.44)

in order to be a KKT solution, which is equivalent to

N2 − 9NC + 9C2 ≥ 0 (3.45)

and cannot hold for (1+ (2−φ)2)C < N < 2C. Thus (n1, n2) = (N −C,C) is not a KKT point.

More generally, consider a solution containing K + 1 routes, where K = ⌊N/C⌋ and N ≤

(K + 1)C such that the first K routes are filled to capacity, i.e., ni = C for i = 1, . . . , K and

nK+1 = N −KC. Consider any two successive routes i and i+ 1, with i+ 1 ≤ K + 1. The KKT

conditions require

3
√
C

2
+

i−1∑
j=1

√
nj +

∑N
j=i+1

√
nj

2
√
C

+ πi =
3
√
C

2
+

i∑
j=1

√
nj +

∑N
j=i+2 nj

2
√
C

+ πi+1,

which is equivalent to

πi − πi+1 =

√
C

2
.
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For the last two routes K and K + 1, the KKT conditions require

3
√
C

2
+

N −KC

2
√
C

+ πK =
3
√
N −KC

2
+
√
C,

which is satisfied if and only if

N −KC − 3
√
C
√
N −KC + C ≤ 0.

Letting h =
√
N −KC, we can write the above to

h2 − 3
√
Ch+ C ≤ 0. (3.46)

We can show that condition (3.46) holds if and only if
√
C
(

3−
√
5

2

)
≤ h ≤

√
C
(

3+
√
5

2

)
, which is

equivalent to (2 − φ)2C ≤ N −KC ≤ (1 + φ)2C because N −KC ≤ C < (1 + φ)2C. Thus,

a solution with K full routes and one addition route containing N −KC casualties can be a KKT

point if (2− φ)2C ≤ N −KC ≤ C.

If N − KC < (2 − φ)2C, however, we have N − (K − 1)C < (1 + (2 − φ)2)C, where

1
1+(2−φ)2

≈ 0.8727, implying approximately 87% of the remaining casualties after running K − 1

full routes is capacity feasible. Thus, the solution with K − 1 full routes and two additional routes

containing approximately 87% and 13% of the remaining casualties provides a KKT solution. We

refer to this as the ‘87% rule’ in further discussion (while the 87% rule applies to the problem’s

relaxation, we will use this term loosely in referring to integer solution in which a route contains

approximately 87% of the remaining casualties).

3.4.3 The GR heuristic algorithm

The KKT solutions characterized in the previous section can only solve the relaxation of prob-

lem EP. Because of the intractability of problem EP due to integer decision variables and the

nonconvexity of the objective function, when the value of N is sufficiently large, using classi-

cal methods (such as branch-and-bound and cutting planes) to solve problem EP can be extremely
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costly. Fortunately, we can leverage the relaxation solution results to develop the following Golden

Ration (GR) heuristic algorithm that provides effective solutions to problem EP.

Algorithm 2: The GR algorithm
1 Initialization: Given N casualties and the vehicle capacity C, calculate the number of full

routes K = ⌊N/C⌋;
2 if K = 0 then
3 R = N ;
4 else
5 if N − CK ≥ (2− φ)2C then
6 Run K full routes, including C casualties on each route;
7 R = N −KC;
8 else
9 Run K − 1 full routes, including C casualties on each route;

10 R = N − (K − 1)C;
11 end
12 end
13 Rounding: Rφ = ⌊ 1

1+(2−φ)2
R⌋;

14 Completion: Pick up Rφ casualties on the next route, then include the remaining R−Rφ

on the last route.

Given the total number of casualties N and the vehicle capacity C, at the Initialization stage,

we first compute the maximum number of full routes, which equals K = ⌊N/C⌋. We next compute

the value of N−CK and compare it with the threshold value (2−φ)2C. If N−CK ≥ (2−φ)2C,

we run K full routes and leave the remaining value R = N −KC for the next step; if N −CK <

(2 − φ)2C, we run K − 1 full routes and the remainder becomes R = N − (K − 1)C. In

the Rounding stage, we split the remainder R obtained in the previous step into two additional

routes based on the 87% rule discussed in the previous section, and obtain the rounded value

Rφ = ⌊ 1
(2−φ)2

R⌋ (≈ ⌊0.87R⌋). Finally, in the Completion stage, we first include Rφ casualties in

one of the additional routes, and then assign the remaining R−Rφ to the other.
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3.5 Dynamic programming model with general survival probability function

For a general survival probability function S(t) which may have a complex nonlinear form,

analysis of the problem’s relaxation through characterization of the KKT conditions becomes pro-

hibitively difficult. Instead, we use dynamic programming (DP) to enable incorporating a nonlinear

S(t) function. We follow the same problem description and use the tour length approximation tech-

nique discussed in Section 3.3. Suppose there are x casualties waiting for the rescue team and the

current time is τ . If the team runs a single route, they can carry up to C casualties and return to

the medical center at time τ + β
√

min{x,C}, and the total expected number of survivors for this

route equals

min{x,C}S(τ + β
√

min{x,C}).

If they run k routes (k > 1), they must first determine the number of casualties to include on the

first route, denoted by yk, and re-optimize the routing plan for the remaining x − yk casualties

using k − 1 routes. The completion time for yk casualties equals τ + β
√
yk. We consider each

route as a stage, at which we need to take the action to transport yk casualties on the current route,

based on the current time τ and the number of the remaining casualties x. Let Vk(x, τ) be the

optimal total expected number of survivors if there are k routes to run at time τ with x casualties

remaining. Given the vehicle capacity of C, we can formulate the problem using the following

recursive formulation:

Vk(x, τ) =


min{x,C}S(τ + β

√
min{x,C}) if k = 1,

max0<yk≤min {x,C}
{
yS(τ + β

√
yk) + Vk−1(x− yk, τ + β

√
yk)
}

if k = 2, . . . , x.

(3.47)

Given the total number of casualties N and a pre-determined value of k, the maximum expected

number of survivors by running k routes from time τ is obtained by Vk(N, τ), with a resulting

solution [yk, yk−1, . . . , y2, y1], wherein yk is the number of casualties included on the first route

and y1 = N −
∑k

j=2 yj is the number of casualties covered by the last route. Note that the above

formulation only provides the optimal decision for a given k, it does not optimize the value of k,
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however. The global optimal solution is determined by max {Vk(N, τ), k = 1, . . . , N}. Search

techniques can be effective to solve for the optimal k when N lies within a reasonable range of

integers.

We specifically consider a nonlinear survival probability function in the form of S(t) = a−btc,

where 0 < a < 1, b, c > 0, and a/b ≥ (β
∑k

i=1

√
yi)

c. Using the tour length approximation

discussed in Section 3.3, the completion time of the first route becomes τ + β
√
yk, which is the

start time of the next route. The completion time when all casualties are transported to the medical

center equals τ + β
∑k

j=1

√
yj . We can write the DP formulation as

Vk(x, τ) =


min{x,C}

(
a− b

(
τ + β

√
min{x,C}

)c) if k = 1,

max0≤yk≤x

{
yk
(
a− b(τ + β

√
yk)

c
)
+ (x− yk)

(
a− b(τ + β

√
yk + β

√
x− yk)

c
)}

if k = 2, . . . , x.

(3.48)

We next characterize the solution for the special case when c = 1, and discuss the solution approach

for c ̸= 1.

3.5.1 Alternative solution approach for linear survival probability function

If c = 1, the survival probability function becomes linear. For any x ≤ C, if we run two routes

starting from time τ , we have

V2(x, τ) = max
0≤y2≤x

{
y2
(
a− b(τ + β

√
y2)
)
+ (x− y2)

(
a− b(τ + β

√
y2 + β

√
x− y2)

)}
= max

0≤y2≤x

{
x(a− bτ)− bxβ

√
y2 − bβ

√
(x− y2)3

}
. (3.49)

Consider the relaxed version of the above. Letting z2(y2) = x(a−bτ)−bxβ√y2−bβ
√
(x− y2)3,

we can obtain the first-order derivative of z2(y2) by fixing the value of x, which equals

∂z2(y2)

∂y2
= − bβx

2
√
y2

+
3bβ
√
(x− y2)

2
. (3.50)
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Letting the above equal zero, we have

9y22 − 9xy2 + x2 = 0. (3.51)

For a fixed value x̃, this univariate function of y2 has two real roots at (3 −
√
5)x̃/6 and (3 +

√
5)x̃/6. This implies that z2(y2) is nonincreasing in y2 within the interval [0, (3−

√
5)x̃/6], then

becomes nondecreasing within the interval
[
(3−

√
5)x̃/6, (3 +

√
5)x̃/6

]
, after which it turns to

nonincreasing again in [(3 +
√
5)x̃/6, x̃]. Therefore, y∗2 =

(
(3 +

√
5)x̃/6

)
is a local maximum.

Comparing z2(y
∗
2) with the extreme point value z2(0), we can show that z2(0) < z2(y

∗
2), implying

that y∗2 is the global maximum solution for y2 ∈ [0, x̃]. Thus, for any x ≤ C we have

V2(x, τ) = z
(
(3 +

√
5)x/6

)
= x(a− bτ)− θ2bβ

√
x3, (3.52)

where θ2 =
√

3+
√
5

6
+

√(
3−

√
5

6

)3
.

Similarly, when using three routes for the remaining x casualties starting from time τ , we have

V3(x, τ) = max
0≤y3≤x

{y3S(τ + β
√
y3) + V2(x− y3, τ + β

√
y3)}

= max
0≤y3≤x

{
x(a− bτ)− bxβ

√
y3 − θ2bβ

√
(x− y3)3

}
. (3.53)

Letting z3(y3) = x(a − bτ) − bxβ
√
y3 − θ2bβ

√
(x− y3)3 and setting ∂z3(y3)

∂y3
= 0, we can show

that y∗3 =

(
1
2
+

√
9θ22−4

6θ2

)
x provides the global maximum solution for z3(y3). Using the same

approach for V4(x, τ) , we can obtain the optimal solution at y∗4 =

(
1
2
+

√
9θ23−4

6θ3

)
x, where θ3 =√

1
2
+

√
9θ22−4

6θ2
+ θ2

√(
1
2
−
√

9θ22−4

6θ2

)3

.

More generally, for an optimal solution for x remaining casualties with k routes, we can show
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that

y∗k =

1

2
+

√
9θ2k−1 − 4

6θk−1

x, (3.54)

which leads to

Vk(x, τ) = x(a− bτ)− θkbβ
√
x3, (3.55)

for k = 2, 3, ..., where θk =

√
1
2
+

√
9θ2k−1−4

6θk−1
+ θk−1

√(
1
2
−
√

9θ2k−1−4

6θk−1

)3

and θ1 = 1.

Let us use qk to denote the coefficient of x on the right-hand side of Equation (3.54), i.e.,

qk = 1
2
+

√
9θ2k−1−4

6θk−1
. The value of qk indicates the percentage out of the remaining x casualties to

include on the first route when there are k routes to run, which is equivalent to r1 that is defined

in Section 3.4.2. Table 3.2 shows the value of qk when changing the value of k, which exhibits the

same pattern of convergence as that demonstrated in Table 3.1.

Table 3.2: The value of qk as k changes.

k qk k qk
2 0.872678 7 0.866025
3 0.866352 8 0.866025
4 0.866041 9 0.866025
5 0.866026 10 0.866025
6 0.866025 11 0.866025

Therefore, for uncapacitated routes with a linear survival probability function, the DP formula-

tion provides an optimal solution for the relaxed problem that is consistent with the KKT solution

characterized in Section 3.4.1, in which all casualties are assigned to two routes and the first route

always includes approximately 86.6% of the remaining casualties. To obtain a solution with integer

decision variables, a straightforward heuristic is to round yk to the nearest integer, and then con-
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sider the remaining number as the input for the next route until there are zero casualties remaining.

3.5.2 The DPB heuristic algorithm

If the exponent c ̸= 1 in the survival probability function S(t) = a − btc, it becomes more

complex to obtain closed-form solutions with larger values of k due to the intractability of the

terms associated with the power c. For any x ≤ C with k = 2, however, we can obtain the optimal

objective value by solving

V2(x, τ) = max
0≤y2≤x

{
y2 (a− b(τ + β

√
y2)

c)+(x−y2)
(
a− b(τ + β

√
y2 + β

√
x− y2)

c
)}

(3.56)

for y2 within [0, x]. This can be solved relatively fast because the value of x is limited by the

vehicle capacity C, and the possible values of C are in a small range of integers. For x ≤ C, with

the proposed nonlinear survival probability function, we can show that running two routes always

leads to a better objective value than performing a single route. This is formalized in Proposition

3.5.1.

Proposition 3.5.1. V2(x, τ) ≥ V1(x, τ) holds for any x ≤ C.

According to Proposition 3.5.1, for any number of remaining casualties that is greater than C,

we can first run as many full routes as possible, and then assign the remaining casualties (which

is capacity feasible) to two additional routes. Given the value of N , we propose the following

dynamic programming based (DPB) heuristic algorithm in Algorithm 3, assuming we perform the

first route starting at time τ0.

Given N and C, we first compute the maximum number of full routes, which equals K =

⌊N/C⌋. If K = 0, this implies N < C and we can use two routes for all casualties N and solve

for the optimal objective by searching the integer values for the number of the casualties on the

first route in [1, N ].

If K > 0, one possible scenario is that the remainder satisfies 0 < N −KC < C, implying the

optimal strategy is to first run K full routes, and then use two additional routes for the remaining

N − KC casualties with a starting time of τ = τ0 + Kβ
√
C. The other possible scenario is
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Algorithm 3: The DPB algorithm
1 Initialization: Given N casualties and the vehicle capacity C, calculate the number of full

routes K = ⌊N/C⌋;
2 if K = 0 then
3 τ = τ0;
4 Searching: Obtain V2(x, τ) by searching integer values for y∗2 in [1, N ];
5 Completion: The optimal solution is [y∗2, N − y∗2];
6 else
7 if N − CK > 0 then
8 Run K full routes, including C casualties on each route;
9 τ = τ0 +Kβ

√
C and x = N −KC;

10 else
11 Run K − 1 full routes, including C casualties on each route;
12 τ = τ0 + (K − 1)β

√
C and x = N − (K − 1)C;

13 end
14 Searching: Obtain V2(x, τ) by searching searching integer values for y∗2 in [1, x];
15 Completion: The optimal solution is [yk, yk−1 . . . , y3, y

∗
2, x− y∗2] where

yk = yk−1 . . . = y3 = C.
16 end

that N is a multiple of C and N − KC = 0, in which case we first run K − 1 full routes, and

then perform two additional routes for the remaining N − (K − 1)C casualties starting from time

τ = τ0 + (K − 1)β
√
C.

3.6 Numerical experiments

In this section, we solve the original problem P using the BARON solver for both linear and

nonlinear survival probability functions and compare the solutions with the results obtained by the

GR algorithm (for linear survival probability) and by the DPB algorithm (for nonlinear survival

probability), respectively. The maximum time limit in BARON is set to 18000 seconds (5 hours).

All tested problems are solved on a Windows 11 PC with an AMD Ryzen 7 5800X 8-Core pro-

cessor and 16 GB memory. At the end of this section, we investigate the solution sensitivity to the

vehicle capacity C and the survival reduction parameter c, respectively.
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3.6.1 Performance of the GR algorithm

We use a linear survival probability function in the form of S(t) = 1 − 0.005t, and test each

integer value of N in the range of [10, 200] with a vehicle capacity of 22. All problems that are

solved within the time limit have an optimality gap that is less than or equal to 0.001% of the

incumbent optimal objective at termination. Note that the time limit parameter set in BARON

does not include the pre-processing time, therefore, problems that reach the time limit may have

a total runtime of more than 18000 seconds. We implement the GR algorithm on each problem

and compare the results with the BARON solutions. Table 3.3 includes a subset of the results for

C = 22. The objective values and the runtimes are rounded to two decimal places. The table only

includes nonzero decision variables in the third column, while all other variables not displayed are

equal to zero.

Table 3.3: BARON solutions and the GR algorithm results with C = 22.

C = 22
N # of routes (k) ni, i = 1, . . . , k Obj.Val. BARON gap (%) BARON runtime (s) GR runtime (s)
10 2 [9, 1] 9.85

<0.001

0.31

<0.01

20 2 [17, 3] 19.56 0.39
40 3 [22, 16, 2] 38.69 1.79
80 5 [22, 22, 22, 12, 2] 75.66 11.97
100 6 [22, 22, 22, 22, 10, 2] 93.51 27.14
150 8 [22, 22, 22, 22, 22, 22, 16, 2] 136.26 102.21
200 10 [22, 22, 22, 22, 22, 22, 22, 22, 21, 3] 176.35 4.99 19820.43

According to our experiment results, the GR algorithm provides exactly the same solutions

as those obtained using BARON for all problems, while significantly improving the runtime, es-

pecially for large values of N . When N = 200, BARON reaches the maximum time limit and

provides a solution with a 4.99% optimality gap at termination, while using the GR algorithm

obtains the same solution within a negligible time.

Observe that when N = 10, although a single route can accommodate all casualties, the optimal

solution suggests using two routes by allocating 9 casualties to the first route and leaving the

remaining casualty to the second route. This is consistent with our discussion on the 87% rule.
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3.6.2 Performance of the DPB algorithm

To test the performance of the DPB algorithm with a nonlinear survival probability function,

we use a function in the form of S(t) = 1−0.01
√
t and β = 1, assuming the first route is performed

from time 0. We test each integer value of N in the range of [10, 100] with different values of C in

[16, 18, 20, 22], using both BARON and the DPB heuristic algorithm. We solve 91 instances for

each capacity level and 364 instances in total. Two subsets of solutions for C = 20 and C = 22

are shown in Table 3.4, in which the problems are starred if the DPB solution is different from

the BARON solution. The objective values are rounded to four decimal places and the runtime is

rounded to two decimal places.

Table 3.4: BARON solutions and the DPB algorithm results with C = 20 and C = 22.

C=20
N DPB solution DPB obj.val. DPB runtime (s) BARON solution BARON obj.val. BARON runtime (s) BARON gap (%)
15 [13, 2] 14.7083

<0.001

[13, 2] 14.7083 0.35

<0.001

* 20 [17, 3] 19.5822 [16, 3, 1] 19.5822 0.69
25 [20, 4, 1] 24.4480 [20, 4, 1] 24.4480 0.44
30 [20, 9, 1] 29.3019 [20, 9, 1] 29.3019 1.54
35 [20, 13, 2] 34.1460 [20, 13, 2] 34.1460 2.68
40 [20, 17, 3] 38.9822 [20, 17, 3] 38.9822 2.12
45 [20, 20, 4, 1] 43.8120 [20, 20, 4, 1] 43.8120 4.00
50 [20, 20, 9, 1] 48.6319 [20, 20, 9, 1] 48.6319 7.67
55 [20, 20, 13, 2] 53.4436 [20, 20, 13, 2] 53.4436 8.76
60 [20, 20, 17, 3] 58.2490 [20, 20, 17, 3] 58.2490 4.98

C=22
N DPB solution DPB obj.val. DPB runtime (s) BARON solution BARON obj.val. BARON runtime (s) BARON gap (%)
15 [13, 2] 14.7083

<0.001

[13, 2] 14.7083 0.36

<0.001

* 20 [17, 3] 19.5822 [16, 3, 1] 19.5822 0.69
* 25 [22, 3] 24.4475 [21, 3, 1] 24.4480 1.02

30 [22, 7, 1] 29.3051 [22, 7, 1] 29.3051 2.00
35 [22, 11, 2] 34.1509 [22, 11, 2] 34.1509 2.14
40 [22, 15, 3] 38.9883 [22, 15, 3] 38.9883 2.33

* 45 [22, 22, 1] 43.8175 [22, 19, 3, 1] 43.8191 5.18
50 [22, 22, 5, 1] 48.6438 [22, 22, 5, 1] 48.6438 10.36
55 [22, 22, 9, 2] 53.4588 [22, 22, 9, 2] 53.4588 11.82
60 [22, 22, 14, 2] 58.2663 [22, 22, 14, 2] 58.2663 16.72

Our experimental results show that 49 out of 364 test instances have a DPB solution that is

different from the BARON solution. However, the difference between the two resulting objective

values is negligible. For example, in Table 3.4, when N = 20 with either capacity level, the

DPB algorithm leads to a solution that suggests using two routes by including 17 casualties on the
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first route and assigning the remaining 3 to the second route, with an objective value of 19.5822.

The BARON solution with the same values of N and C, however, provides a three-route solution

that suggests including 16, 3, and 1 casualties on each route, respectively, while the resulting

objective also approximately equals 19.5822. When C = 22 and N = 25, the DPB algorithm

provides a two-route solution with an allocation of 22:3, whereas the BARON solution indicates

using three routes by including 20, 4, and 1 casualties on each route, respectively, while improving

the objective value by only 0.05%. We have a similar conclusion for the results with N = 45

and C = 22, in which the BARON solution suggests using four routes instead of the three-route

solution obtained using the DPB algorithm, whereas the BARON objective is only 0.16% less than

the DPB objective.

3.6.3 Sensitivity analysis

This section investigates how the optimal solution changes as the vehicle capacity C and the

survivability reduction parameter c vary. We first analyze the impact of vehicle capacity by chang-

ing the value of C for problems with a linear survival probability function when fixing all other

parameters. We then investigate the impacts of the survivability reduction rate c for problems with

a nonlinear survival probability function when other parameters are fixed.

3.6.3.1 Impact of vehicle capacity

Using the linear survival probability function S(t) = 1− 0.005t, we compare the BARON so-

lutions for N ∈ [10, 100] by changing the vehicle capacity in [16, 18, 20, 22]. Table 3.5 summarizes

a subset of results for each capacity level.

Observe that when N = 10, the solutions for all capacity levels are equal, in which n1 =

9, n2 = 1 and ni = 0 for i = 3, . . . , 10, which is independent of the test capacity levels. This

is because N = 10 is capacity feasible for all test capacity levels and thus the optimal strategy

is to use two routes for all casualties following the 87% rule, resulting in a solution that includes

9 casualties on the first route and leaving the remaining one for the second. As the value of N

increases, a smaller vehicle tends to perform more routes than a larger vehicle. For example, when
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Table 3.5: Solutions and objective values at different capacity levels.

C = 16
N # of routes (k) ni for i = 1, . . . , k Obj.val.
10 2 [9, 1] 9.85
16 2 [14, 2] 15.69
20 3 [16, 3, 1] 19.56
32 3 [16, 14, 2] 31.05
40 4 [16, 16, 7, 1] 38.61
80 6 [16, 16, 16, 16, 14, 2] 75.21

100 8 [16, 16, 16, 16, 16, 16, 3, 1] 92.76
C = 18

N # of routes (k) ni for i = 1, . . . , k Obj.val.
10 2 [9, 1] 9.85
18 2 [16, 2] 17.63
20 2 [17, 3] 19.56
36 3 [18, 16, 2] 34.86
40 4 [18, 18, 3, 1] 38.65
80 6 [18, 18, 18, 18, 7, 1] 75.39

100 7 [18, 18, 18, 18, 18, 9, 1] 93.06
C = 20

N # of routes (k) ni for i = 1, . . . , k Obj.val.
10 2 [9, 1] 9.85
20 2 [17, 3] 19.56
40 3 [20, 17, 3] 38.67
50 4 [20, 20, 9, 1] 48.06
60 4 [20, 20, 17, 3] 57.33
80 5 [20, 20, 20, 17, 3] 75.54

100 6 [20, 20, 20, 20, 17, 3] 93.30
C = 22

N # of routes (k) ni for i = 1, . . . , k Obj.val.
10 2 [9, 1] 9.85
20 2 [17, 3] 19.56
22 2 [19, 3] 21.49
40 3 [22, 16, 2] 38.69
44 3 [22, 19, 3] 42.46
80 5 [22, 22, 22, 12, 2] 75.66

100 6 [22, 22, 22, 22, 10, 2] 93.51

N = 20, a vehicle with a capacity of 16 has to run 3 routes with an allocation of 16:3:1, while

vehicles with larger capacity levels only require two routes by including one more casualty on the

first route. When N = 100, only 6 routes are required if the vehicle capacity is 20 or 22, while an

additional route is needed by a vehicle with a capacity of 18 and two more routes are required for a

vehicle with a capacity of 16. Note that when the value of N is a multiple of C, the optimal solution

always suggests running ⌊N/C⌋ − 1 full routes and then allocating the remaining casualties using

two additional routes, following the 87% rule.

Given a fixed value of N , a larger vehicle leads to a higher objective value than that of using a
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smaller vehicle, even when they perform the same number of routes. For example, when N = 100,

a capacity of 20 leads to a six-route solution with an expected number of 93.3 survivors, while

increasing the capacity to 22 leads to an expected number of 93.51 survivors when also running

6 routes. For ease of comparison, we normalize all objective values by dividing by the objective

value resulting at C = 16. Figure 3.1 illustrates the normalized objective values in N at different

vehicle capacity levels.

Figure 3.1: Normalized objective values as vehicle capacity varies.

As the figure illustrates, when N ≤ 18, the four curves overlap, implying changing the vehicle

capacity does not affect the optimal solution. This is because for any N value in this range, all

casualties can be allocated to two routes following the 87% rule, and each route is capacity feasible

for either vehicle capacity C. When 18 < N ≤ 24, at least one curve does not overlap the others

because, for N in this range, the maximum number of casualties that can be transported on each

route is restricted by the vehicle capacity, which leads to different solutions for some of the N

values when using different values of C. For N > 24, the optimal solutions no longer overlap

among the four capacity levels. In this interval, the optimal solution requires at least one route to be

filled to capacity, and therefore different vehicle capacities will lead to different numbers of routes
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and thus distinct solutions. Notably, for a given N , a larger value of C leads to a higher objective

value, that is, using an ambulance bus with a larger capacity increases the overall expected number

of survivors. This improvement becomes more pronounced for larger values of N .

Figure 3.2: The number of routes needed as vehicle capacity varies.

In addition, the average number of routes required tends to be smaller when using a larger

ambulance bus, which is demonstrated in Figure 3.2. The number of routes for each capacity level

shows a step-wise growth trend. The more ‘steps’ in a curve, the larger the number of routes

needed for certain intervals of N . When C = 16, the need to add another route occurs when the

total number of casualties increases by 16. However, at C = 18, adding 20 casualties requires

one additional route to maximize the total expected number of survivors. The frequency of adding

routes is lower for C = 20 and C = 22, which occurs when the total number of casualties increases

by 23-25.

Figure 3.3 compares the total completion time when all routes are finished. It is obvious that as

the number of casualties increases, using a larger vehicle can transport all casualties to the medical

center at an earlier time. It is also noticeable that each curve demonstrates an upward trend with

some small ‘jumps’ as N increases. These are caused by the increase in the number of routes.
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Figure 3.3: Total completion time for all routes with different vehicle capacity levels.

Every time a route is added, the total completion time experiences a sharp increase and then keeps

increasing at a relatively stable rate until the next sharp rise.

All results imply that when the number of casualties is large, the best strategy is to use as large

an ambulance bus as possible and perform fewer routes to maximize the total expected number of

survivors.

3.6.3.2 Impact of survivability reduction rate

For a nonlinear survival probability function of the form S(t) = a−btc, the value of c primarily

determines the reduction rate of a casualty’s survival probability as time passes. To see the impact

of varying c, we solve problem P using BARON with a = 1 and b = 0.01 for N ∈ [10, 90] while

changing the value of c among [0.2, 0.5, 1, 1.5], using a vehicle with a capacity of 22. Table 3.6

includes the solutions for a subset of instances at each value of c.

As the table indicates, for a given N , the increase in the survivability reduction rate leads to a

smaller expected number of survivors. Observe that as the value of c increases, a solution tends to

include more casualties on the first route. This pattern is more obvious for smaller values of N .

For example, when N = 20, solutions associated with c = 0.2 and c = 0.5 suggest including 16

casualties on the first route while splitting the remaining casualties into two additional routes with
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Table 3.6: Solutions and objective values with different survivability reduction rates.

c = 0.2 c = 0.5 c = 1 c = 1.5
N Solution Obj.val. Solution Obj.val. Solution Obj.val. Solution Obj.val.
10 [8, 2] 9.87 [8, 2] 9.82 [9, 1] 9.69 [9, 1] 9.45
11 [9, 2] 10.86 [9, 2] 10.80 [10, 1] 10.64 [10, 1] 10.35
12 [10, 2] 11.85 [10, 2] 11.78 [10, 2] 11.59 [11, 1] 11.25
13 [11, 2] 12.83 [11, 2] 12.76 [11, 2] 12.54 [12, 1] 12.13
14 [11, 2, 1] 13.82 [12, 2] 13.73 [12, 2] 13.49 [13, 1] 13.01
15 [12, 2, 1] 14.80 [13, 2] 14.71 [13, 2] 14.43 [13, 2] 13.89
16 [13, 2, 1] 15.79 [13, 3] 15.68 [14, 2] 15.37 [14, 2] 14.75
17 [13, 3, 1] 16.78 [14, 3] 16.66 [15, 2] 16.31 [15, 2] 15.61
18 [14, 3, 1] 17.76 [15, 3] 17.63 [16, 2] 17.25 [16, 2] 16.47
19 [15, 3, 1] 18.75 [16, 3] 18.61 [17, 2] 18.19 [17, 2] 17.32
20 [16, 3, 1] 19.73 [16, 3, 1] 19.58 [17, 3] 19.12 [18, 2] 18.16
21 [17, 3, 1] 20.72 [17, 3, 1] 20.56 [18, 3] 20.06 [19, 2] 18.99
22 [17, 4, 1] 21.70 [18, 3, 1] 21.53 [19, 3] 20.99 [20, 2] 19.82
23 [18, 4, 1] 22.69 [19, 3, 1] 22.50 [20, 3] 21.92 [21, 2] 20.65
24 [19, 4, 1] 23.67 [20, 3, 1] 23.48 [21, 3] 22.85 [21, 3] 21.46
25 [20, 4, 1] 24.66 [21, 3, 1] 24.45 [22, 3] 23.78 [22, 3] 22.28
26 [21, 4, 1] 25.64 [21, 4, 1] 25.42 [22, 3, 1] 24.70 [22, 3, 1] 23.07
27 [22, 4, 1] 26.63 [22, 4, 1] 26.39 [22, 4, 1] 25.62 [22, 4, 1] 23.86
28 [22, 5, 1] 27.61 [22, 5, 1] 27.36 [22, 5, 1] 26.54 [22, 5, 1] 24.63
29 [22, 6, 1] 28.60 [22, 6, 1] 28.33 [22, 6, 1] 27.46 [22, 6, 1] 25.39
30 [22, 7, 1] 29.58 [22, 7, 1] 29.31 [22, 7, 1] 28.37 [22, 7, 1] 26.13

a ratio of 3:1. However, when the value of c increases to 1, the solution only contains two routes

and assigns 17 casualties to the first route. The first route will include one more casualty if the

value of c increases to 1.5. This is because when the reduction rate is large, the conditions of the

casualties worsen very fast, and a solution tends to include as many as possible casualties on the

first route to shorten the completion time (i.e., the time when the casualties arrive at the medical

center for treatment).

For a larger value of N , however, all four reduction rates lead to the same solution. For ex-

ample, when N = 30, the solution suggests filling the first route to capacity and splitting the

remaining number into two routes with a ratio of 7:1. When N becomes larger, the best strategy is

to first run as many as possible full routes, which implies the remaining number will be capacity

feasible and thus it is possible to implement the 87% rule. In this case, the solution will not be

affected by the value of c.

Figure 3.4 illustrates the objective function values when changing N from 10 to 90 at different
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Figure 3.4: Objective values with different survivability reduction rates as N increases.

values of c. Notably, when fixing the value of N , a larger survivability reduction rate leads to a

lower objective value. For any given N , the blue curve (when c = 0.2) leads to the largest total

expected number of survivors, while the red curve (associated with c = 1.5) leads to the lowest

objective value. When N is relatively small (in the range of [10, 30], for example), the differences

between the four curves are relatively small; when N > 30, the differences between the curves

become more significant, in which the red curve (c = 1.5) opens up a substantial gap below the

other three curves, while the green curve slightly diverges from the blue and the orange ones. The

curves associated with c = 0.2 (blue) and c = 0.5 (orange) are very close. This is because when

the value of c is large, the conditions of the casualties worsen faster as time passes. As the value

of N rises, it requires more time to transport all casualties so that casualties who have waited for a

longer time will have lower survival probabilities when arriving at the medical center, which leads

to a reduced value of the expected number of survivors.

Figure 3.5 illustrates the number of routes needed for all routes as the value of c varies. Observe

that the green curve associated with c = 1 is overlapped by the red curve corresponding to c = 1.5,

implying the number of routes for each instance with these reduction rates is equal. For an interval

of smaller values of N , a smaller value of c tends to require more routes. For example, when N
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Figure 3.5: The number of routes needed with different survivability reduction rates.

is between 10 to 20, most instances with c = 0.2 need 3 routes, while the solutions for instances

with larger values of c suggest 2 routes. This is caused by the increase in the number of casualties

included on the first route as the value of c increases, as we have explained when discussing the

observations in Table 3.6. Conversely, when N is between 70 and 80, most solutions, regardless

of the value of c, suggest running 5 routes. This is because, for a large value of N , the solutions

tend to have the same number of full routes plus two additional routes, which we discussed in

interpreting the results in Table 3.6.

Figure 3.6 illustrates the total completion time for all routes when the value of c varies. We

observe that the total completion time is considerably impacted by the total number of routes

performed. The four curves come closer together at an N value that leads to the same number of

routes in each solution. The curves completely overlap when solutions for all four values of c are

the same. For example, when N = 30, the solution associated with each value of c includes one

full route and two additional routes with a ratio of 7:1, and thus the resulting completion times for

all routes are equal in each case.

114



Figure 3.6: The total completion time for all routes with different survivability reduction rates.

3.7 Conclusions and future work

In this chapter, we investigate the routing problem in the aftermath of a disaster using a single

ambulance bus, in which the survival probabilities of the casualties decline as time passes. We de-

velop models that maximize the total expected number of survivors while determining the number

of routes and the route sizes, accounting for both linear and nonlinear survival probability func-

tions. For models with linear survival probability functions, we propose a solution approach that

provides closed-form solutions. We also develop two heuristic algorithms for solving the mod-

els with linear and nonlinear survival probability functions. Our numerical results show that the

heuristics provide effective solutions that are comparable to solutions provided by a commercial

solver, while significantly improving the computing time. Our sensitivity analysis results imply

that the vehicle capacity and the survival reduction parameters have considerable impacts on the

optimal solutions. The approaches developed in this work can enhance the decision-making pro-

cess, ultimately leading to more effective emergency responses.

We acknowledge that the proposed models are quite stylized and leave many other important

issues outside the scope of this study. For example, transportation priorities based on the con-

ditions of the casualties could be a critical factor to consider. Our discussion is limited to two
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specific forms of survival probability functions, whereas more practical survival functions should

be investigated and incorporated into the models, such as log-logistic and log-normal functions

used in past literature on disaster response. In real-life applications involving ambulance buses, it

is possible to provide treatment to the casualties within the vehicle during transportation. There-

fore, incorporating the in-transit treatment into the survival probability functions can be a practical

extension.
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4. SUMMARY AND CONCLUSIONS

In this dissertation, we investigate and develop optimization models for three different last-mile

service systems in the domains of inventory-delivery management, transportation and logistics, and

emergency medical services (EMS), respectively.

In the inventory-delivery system, we study a two-echelon, single-product fulfillment system

where a regional fulfillment center (FC) replenishes multiple identical and independent local dis-

tribution center (LDC) orders within an internal committed resupply leadtime, and LDCs serve

end customers within a committed demand fulfillment time, or committed delivery time. Expected

system-wide demand depends on the product’s price, the committed delivery time, and the number

of LDCs in the system. Our proposed model determines the values of product price, committed

resupply time, and committed delivery time that maximize expected system-wide profit per period,

while accounting for product holding costs and fixed facility costs. We characterize key proper-

ties of optimal solutions that permit an efficient solution for a fixed number of identical LDCs, and

consider the impacts of several proposed demand growth models as the number of LDCs increases.

The results of a computational study provide interesting managerial insights on how operational

constraints and the scale of the distribution system influence strategic stock placement and distri-

bution system structure.

Within the domain of transportation and logistics, we study a fleet composition problem with

stochastic demand, which must be fulfilled via a combination of internal truckload (TL) capacity

and external less-than-truckload (LTL) shipments. Internal capacity costs include a fixed own-

ership cost per truck and a fixed dispatch cost per truck, while LTL costs are incurred per unit

shipped. We characterize the expected total cost per period as a function of internal fleet size

for both homogeneous and heterogeneous fleets. We propose a solution approach that provides

optimal shipping policies with analytical solutions for homogeneous and certain types of hetero-

geneous fleets. For a fleet with a wider range of truck types, we create a two-stage stochastic pro-

gramming model that minimizes the total expected cost when determining the number of trucks
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of each type to acquire. We further develop a decomposition-based algorithm that can effectively

solve the proposed model, which provides solutions that are as good as the solutions obtained using

a commercial solver, while significantly improving the computation time. Our numerical results

reveal that the optimal fleet composition strategy is significantly affected by the LTL freight rate,

the number of truck types, and the properties of the demand.

In addition to researching the movement of goods, in the domain of EMS, we investigate

a multi-trip single-vehicle routing problem in the aftermath of a disaster where geographically-

dispersed casualties require transportation to a medical center using a single ambulance bus. We

consider time-dependent survival probabilities of the casualties, i.e., as patients wait longer, their

survival probabilities decrease. We develop models that maximize the total expected number of

survivors based on tour length approximations. For problems with a linear survival probability

function, we characterize analytical results using KKT conditions and propose a heuristic approach

that effectively solves the model within a negligible computing time. We also present a dynamic

programming model that accommodates general forms of survival probability functions, and de-

velop a heuristic algorithm that provides high-quality solutions. Our sensitivity analyses show

that both the vehicle capacity level and the reduction rate in the survival probability function have

considerable impacts on the optimal routing decisions.
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APPENDIX A

CHAPTER ONE APPENDIX

A.1 Proof of the convexity of Π(s, ℓ,N) for a given N

The objective function after substituting p∗(ℓ) is

Π(s, ℓ,N) = J(N)βℓ−
v
u −KN − hFkF σ̄

√
J(N) (TF + TL − s)

−hLkLσ̄
√

J(N)N (TC + s− ℓ).

We first derive the first-order derivatives for s and ℓ, respectively:

∂Π(s, ℓ,N)

∂s
=

1

2
hFkF σ̄

√
J(N)

TF + TL − s
− 1

2
hLkLσ̄

√
J(N)N

TC + s− ℓ
,

∂Π(s, ℓ,N)

∂ℓ
= −v

u
J(N)βℓ−

v
u
−1 +

1

2
hLkLσ̄

√
J(N)N

TC + s− ℓ
.

Next, we derive the second-order derivatives:

∂2Π(s, ℓ,N)

∂s2
=

hFkF σ̄
√

J(N)

4 (TF + TL − s)
3
2

+
hLkLσ̄

√
J(N)N

4 (TC + s− ℓ)
3
2

≡ H1, (A.1)

∂2Π(s, ℓ,N)

∂s∂ℓ
= −

hLkLσ̄
√

J(N)N

4 (TC + s− ℓ)
3
2

≡ H2, (A.2)

∂2Π(s, ℓ,N)

∂ℓ∂s
= −

hLkLσ̄
√

J(N)N

4 (TC + s− ℓ)
3
2

≡ H3, (A.3)

∂2Π(s, ℓ,N)

∂ℓ2
=

v

u

(v
u
+ 1
)
J(N)βℓ−

v
u
−2 +

hLkLσ̄
√
J(N)N

4 (TC + s− ℓ)
3
2

≡ H4. (A.4)

The Hessian matrix
[
H1 H2
H3 H4

]
is symmetric since H2 = H3. Note that H1 > 0 and by the determi-

nant test, H1H4−H2H3 > 0. So, the Hessian matrix is positive definite, and Π(s, ℓ,N) is convex

in (s, ℓ) for a given N .
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A.2 Pairwise comparisons and optimality regions, J(N) = N

A.2.1 Optimality region for ΠO(N)

First, we suppose the optimal strategy is not holding any safety stock in the system, i.e., ΠO(N)

has the maximum value among the four candidate optimal solutions. We have

ΠO(N) ≥ ΠF (N) : N ≤ (hFkF σ̄)
2TF

β2
[
(TL + TC)

− v
u − (TF + TL + TC)

− v
u

]2 ≡ NO,F (TC); (A.5)

ΠO(N) ≥ ΠFL(N) : N ≤ (hFkF σ̄)
2TF[

β
(
T
− v

u
C − (TF + TL + TC)

− v
u

)
− hLkLσ̄

√
TL

]2 ≡ NO,FL(TC) (A.6)

andβ
(
T
− v

u
C − (TF + TL + TC)

− v
u

)
− hLkLσ̄

√
TL ≡ TO,FL(TC) > 0, (A.7)

or TO,FL(TC) ≤ 0; (A.8)

ΠO(N) ≥ ΠL(N) : β
(
T
− v

u
C − (TF + TL + TC)

− v
u

)
− hLkLσ̄

√
TF + TL ≡ TO,L(TC) ≤ 0. (A.9)

Because TO,FL(TC) > TO,L(TC), the optimality region for ΠO(N), denoted by RO, is

RO = R1
O

⋃
R2

O, (A.10)

where R1
O =

{
(TC , N) : N ≤ min

{
NO,F (TC), NO,FL(TC)

}
, TO,L(TC) ≤ 0, TO,FL(TC) > 0

}
, (A.11)

R2
O =

{
(TC , N) : N ≤ NO,F (TC), TO,FL(TC) ≤ 0

}
. (A.12)

A.2.2 Optimality region for ΠF (N)

We next suppose that holding safety stock at the FC only is the optimal strategy, which implies

ΠF (N) is the maximum objective function value among the four optimal solution candidates. We

compare ΠF (N) with ΠFL(N) and ΠL(N), respectively. We have

ΠF (N) ≥ ΠFL(N) :β
(
T
− v

u
C − (TL + TC)

− v
u

)
− hLkLσ̄

√
TL ≡ TF,FL(TC) ≤ 0, (A.13)

ΠF (N) ≥ ΠL(N) :N ≥ (hFkF σ̄)
2TF[

hLkLσ̄
√
TF + TL − β

(
T
− v

u
C − (TL + TC)

− v
u

)]2 ≡ NF,L(TC) (A.14)

and β
(
T
− v

u
C − (TL + TC)

− v
u

)
− hLkLσ̄

√
TF + TL ≡ TF,L(TC) < 0. (A.15)
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Additionally, we can simply take the opposite direction of Inequality (A.5) to obtain the threshold

value of N for ΠF (N) ≥ ΠO(N), that is,

N ≥ NO,F (TC). (A.16)

TF,FL(TC) ≤ 0 dominates TF,L(TC) < 0 since TF,FL(TC) ≥ TF,L(TC) (we assume that TF and TL

are positive values). We can therefore write the optimality region for ΠF (N) as

RF =
{
(TC , N) : N ≥ max{NO,F (TC), NF,L(TC)}, TF,FL(TC) ≤ 0

}
. (A.17)

A.2.3 Optimality region for ΠFL(N)

We take the opposite direction of Inequality (A.6) while restricting TC to satisfy (A.7), and

take the opposite direction of Inequality (A.13), to obtain the threshold values of N and TC for the

scenarios where ΠFL(N) ≥ ΠO(N) and ΠFL(N) ≥ ΠF (N). We have

ΠFL(N) ≥ ΠO(N) : N ≥ NO,FL(TC) (A.18)

and β
(
T
− v

u
C − (TF + TL + TC)

− v
u

)
− hLkLσ̄

√
TL ≡ TO,FL(TC) > 0, (A.19)

ΠFL(N) ≥ ΠF (N) : β
(
T
− v

u
C − (TL + TC)

− v
u

)
− hLkLσ̄

√
TL ≡ TF,FL(TC) ≥ 0. (A.20)

We now suppose ΠFL(N) ≥ ΠL(N) and compare the two objective function values. We have

ΠFL(N) ≥ ΠL(N) : N ≥
(
hFkF
hLkL

)2
TF(√

TF + TL −
√
TL

)2 ≡ NFL,L. (A.21)

It is straightforward to see that given TC , TF,FL(TC) < TO,FL(TC). So, TF,FL(TC) ≥ 0 dominates

TO,FL(TC) > 0. Moreover, NFL,L is a constant which does not depend on TC . According to (A.19)

to (A.21), the optimality region for ΠFL(N) is given by

RFL =
{
(TC , N) : N ≥ max{NO,FL(TC), NFL,L}, TF,FL(TC) ≥ 0

}
. (A.22)

130



A.2.4 Optimality region for ΠL(N)

To obtain the threshold values of N and TC for scenarios where ΠL(N) ≥ ΠO(N) and

ΠL(N) ≥ ΠFL(N), we can directly take the opposite directions of Inequalities (A.9) and (A.21),

respectively. We have

ΠL(N) ≥ ΠO(N) : TO,L(TC) ≥ 0, (A.23)

ΠL(N) ≥ ΠFL(N) : N ≤ NFL,L. (A.24)

For ΠL(N) ≥ ΠF (N), however, we can either take the opposite direction of Inequality (A.14)

while satisfying (A.15), or solely take the opposite direction of Inequality (A.15). Thus, we have

ΠL(N) ≥ ΠF (N) : TF,L(TC) ≥ 0, or N ≤ NF,L(TC) and TF,L(TC) < 0. (A.25)

Note that given TC , TO,L(TC) > TF,L(TC) implies TF,L(TC) ≥ 0 dominates TO,L(TC) ≥ 0. In

accordance with (A.23), (A.24), and (A.25), the optimality region for ΠL(N) in (TC , N) is formed

by

RL = R1
L

⋃
R2

L, (A.26)

where R1
L =

{
(TC , N) : N ≤ NFL,L, TF,L(TC) ≥ 0

}
, (A.27)

R2
L =

{
(TC , N) : N ≤ min{NFL,F , NF,L(TC)}, TF,L(TC) < 0, TO,L(TC) ≥ 0

}
. (A.28)
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A.3 Pairwise comparisons and optimality regions when TC(N) = T0/N
θ and any J(N)

ΠO(N) ≥ ΠF (N) :
√

J(N)− hFkF σ̄
√
TF

β
(
(TL + T0

Nθ )
− v

u − (TF + TL + T0

Nθ )
− v

u

) ≡ gO,F (T0, N) ≤ 0.

(A.29)

ΠO(N) ≥ ΠFL(N) :
√
J(N)− hLkLσ̄

√
NTL + hFkF σ̄

√
TF

β
(
( T0

Nθ )
− v

u − (TF + TL + T0

Nθ )
− v

u

) ≡ gO,FL(T0, N) ≤ 0. (A.30)

ΠO(N) ≥ ΠL(N) :

√
J(N)

N
− hLkLσ̄

√
TF + TL

β
(
( T0

Nθ )
− v

u − (TF + TL + T0

Nθ )
− v

u

) ≡ gO,L(T0, N) ≤ 0. (A.31)

ΠF (N) ≥ ΠFL(N) :

√
J(N)

N
− hLkLσ̄

√
TL

β
(
( T0

Nθ )
− v

u − (TL + T0

Nθ )
− v

u

) ≡ gF,FL(T0, N) ≤ 0. (A.32)

ΠF (N) ≥ ΠL(N) :
√
J(N)−

hLkLσ̄
√

N(TF + TL)− hFkF σ̄
√
TF

β
(
( T0

Nθ )
− v

u − (TL + T0

Nθ )
− v

u

) ≡ gF,L(T0, N) ≤ 0. (A.33)

ΠFL(N) ≥ ΠL(N) : N ≥
(
hFkF
hLkL

)2 TF

(
√
TF + TL −

√
TL)2

≡ NFL,L. (A.34)

A.4 Proofs of propositions and corollaries

Proof of Proposition 1.5.1. To prove this proposition, we simply set ΠL(N) = ΠFL(N) by sub-

stituting the results in Table 1.1. The solution, denoted by NFL,L, is

NFL,L = (hFkF )
2TF/

(
hLkL(

√
TF + TL −

√
TL)
)2

,

which is independent of TC and J(N). Therefore, when all other parameters are fixed, NFL,L is

also fixed. ■

Proof of Proposition 1.5.2. To prove the former, let J(N) = 1 and set ΠF (N) = ΠO(N); using

the results in Table 1.1, we obtain

β
(
(TL + TC)

− v
u − (TF + TL + TC)

− v
u

)
= hFkF σ̄

√
TF . (A.35)

132



For fixed parameter values, Equation (A.35) is satisfied at a fixed value of TC that is independent

of N . Similarly, to prove the latter, we set ΠF (N) = ΠFL(N) and J(N) = N . The resulting

equation is

β
(
T

− v
u

C − (TL + TC)
− v

u

)
= hLkLσ̄

√
TL. (A.36)

Equation (A.36) is also satisfied at a fixed value of TC that is independent of N when all other

parameters are fixed. ■

Proof of Proposition 1.5.3. We first fix N such that N = N̂ . Let TC(N̂) denote the threshold

value at which we transition between safety stock placement strategies (our previous methods can

be used to determine TC(N̂) for any given N̂ ). Next, note that TC(N̂) = T0/N̂
θ, where the left-

hand side of this equation corresponds to a fixed threshold value. As θ increases, the denominator

of the right-hand side of the equation increases, while maintaining equality requires increasing

T0, which leads to the rightward movement of the borders along T0 in Figure 1.6. Additionally,

recall from Proposition 1.5.1 that the transition between the FL-strategy and the LDC-strategy is

independent of TC ; thus, this transition threshold value remains independent of T0. ■

Proof of Corollary 1.6.1. We show in Proposition 1.5.1 that the border between the optimality

regions for the FL- and LDC-strategies occurs at NFL,L = (hF kF )2TF

(hLkL(
√
TF+TL−

√
TL))

2 . Fixing all other

parameters, when hF/hL increases, the threshold value of NFL,L increases accordingly. ■

Proof of Proposition 1.6.2. When ΠF (N) = ΠFL(N) holds, we can obtain the resulting equa-

tion:

√
J(N)

N
=

hLkLσ̄
√
TL

β
(
T

− v
u

C − (TL + TC)
− v

u

) . (A.37)

At a given value of N such that J(N) is fixed, the left-hand side of the above equation is fixed.

When the value of hL increases, in order to maintain equality, the denominator of the right-hand
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side must increase, which requires reducing the value of TC (given fixed values of all other param-

eters) since the denominator is decreasing in TC . Similarly, ΠO(N) = ΠL(N) implies

√
J(N)

N
=

hLkLσ̄
√
TF + TL

β
(
T

− v
u

C − (TF + TL + TC)
− v

u

) , (A.38)

which also requires reducing TC in order to maintain equality if the value of hL increases. ■

Proof of Proposition 1.6.3. To show this result, we can use the same approach used in the proof

of Proposition 1.6.2. At ΠFL(N) = ΠF (N), the equation representing the border is

√
Nγ−1 =

hLkLσ̄
√
TL

β
(
( T0

Nθ )
− v

u − (TL + T0

Nθ )
− v

u

) . (A.39)

The left-hand side of the above equation increases as γ increases. To maintain equality with all

other parameters fixed, the value of T0 must increase (as the denominator is decreasing in T0).

Similarly, the equation representing the border by setting ΠF (N) = ΠO(N) is

√
Nγ =

hFkF σ̄
√
TF

β
(
(TL + T0

Nθ )
− v

u − (TF + TL + T0

Nθ )
− v

u

) . (A.40)

As the value of γ grows, the left-hand side increases, which forces T0 to take a larger value to

maintain equality. ■

A.5 Proof of the convexity of Π(s, ℓ,N) in (s, ℓ) for a given N

Proof. Since we now aim on proving the convexity of the objective function in (s, ℓ), we can

rewrite function (1.12), by replacing N with a given vector, N̂ = (N̂1, ..., N̂M), as

Π(s, ℓ, N̂) = R(ℓ, N̂)−
M∑

m=1

N̂mKm −HCF (s, N̂)−HCL(s, ℓ, N̂), (A.41)

where R(ℓ, N̂), HCF (s, N̂), and HCL(s, ℓ, N̂) correspond to the system expected revenue, the

total holding cost at the FC, and the total holding cost at the LDCs in the system, respectively.
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Therefore, it suffices to show that function (A.41) is a nonnegative weighted sum of convex func-

tions.

Convexity of R(ℓ, N̂). By replacing N by N̂, we denote A(N̂) =
∑M

m=1 Jm(N̂m)am and

B(ℓ, N̂) =
∑M

m=1 Jm(N̂m)bmℓ
v
m. Therefore, we have

R(ℓ, N̂) =
M∑

m=1

Jm(N̂m)

am

(
A(N̂)

(u+ 1)B(ℓ, N̂)

) 1
u

− bm

(
A(N̂)

(u+ 1)B(ℓ, N̂)

)1+ 1
u

ℓvm


=

(
A(N̂)

(u+ 1)B(ℓ, N̂)

) 1
u

A(N̂)−

(
A(N̂)

(u+ 1)B(ℓ, N̂)

)1+ 1
u

B(ℓ, N̂)

=

(
A(N̂)

u+ 1

)1+ 1
u

 u+ 1(
B(ℓ, N̂)

) 1
u

− 1(
B(ℓ, N̂)

) 1
u


=

(
A(N̂)

u+ 1

)1+ 1
u

u
(
B(ℓ, N̂)

)− 1
u
. (A.42)

Given N̂, the value of A(N̂) is fixed. Thus, the convexity of (A.42) is dependent on that of(
B(ℓ, N̂)

)− 1
u

. It is straightforward that ℓvm is concave in ℓm if 0 < v ≤ 1. So, B(ℓ, N̂) is concave

in ℓ. Let h(y) = y−
1
u (u > 0) with domain R+. Since h is convex and its extended-value extension

is nonincreasing, by composition [79], R(ℓ, N̂) =
(

A(N̂)
u+1

)1+ 1
u
uh(B(ℓ, N̂)) is convex in ℓ for

0 < v ≤ 1.

Concavity of HCF (s, N̂) and HCL(s, ℓ, N̂). Let gF (s, N̂) =
∑M

m=1 σ̄
2
mJm(N̂m)(TF +TL,m−

sm), which is a linear function of s. Hence, it is also a concave function. Since the square root

function with domain R+ is concave and its extended-value extension is nondecreasing, by com-

position, HCF (s, N̂) = hFkF

√
gF (s, N̂) is concave in s. Similarly, let gL,m(sm, ℓm, N̂m) =√

Jm(N̂m)N̂m

(
T0,m

N̂θ
m

+ sm − ℓm

)
, for m = 1, ...,M . For each m, by composition, gL,m(sm, ℓm, N̂m)

is concave in (sm, ℓm). Hence, HCL(s, ℓ, N̂) =
∑M

m=1 hL,mkL,mσ̄mgL,m(sm, ℓm, N̂m) is concave

in (s, ℓ). ■
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APPENDIX B

CHAPTER TWO APPENDIX

B.1 Discrete convexity for homogeneous fleet with normal demand

The first difference of function (2.15) in n equals

∆n = gN(n+ 1)− gN(n) = K + aσ
(
L(z(n+1)W )− L(znW+Y )

)
,

and the second difference is written as

∆n+1 −∆n = aσ
(
L(z(n+2)W )− L(z(n+1)W+Y )−

(
L(z(n+1)W )− L(znW+Y )

) )
.

The first order derivative of the normal loss function L(z) =
∫∞
z
(u− z)ϕ(u)du equals

L′(z) = ϕ′(z) + zϕ(z)− (1− Φ(z)) .

Note that ϕ′(z) = −zϕ(z), and we have

L′(z) = − (1− Φ(z)) = Φ(z)− 1 < 0, (B.1)

which implies that L(z) is strictly decreasing, and L′′(z) = ϕ(z) > 0, implying L(z) is strictly

convex.

Now consider the quantity

L(z(n+2)W )− L(z(n+1)W+Y )−
(
L(z(n+1)W )− L(znW+Y )

)
and note that L(z(k+1)W ) − L(zkW+Y ) < 0 for any k. Let h(k) = L(z(k+1)W ) − L(zkW+Y ) =
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L
(

(k+1)W−µ
σ

)
− L

(
kW+Y−µ

σ

)
, according to Equation (B.1), we have

dh(k)

dk
=

W

σ

(
Φ(z(k+1)W )− Φ(zkW+Y )

)
> 0.

Thus, h(k) is strictly increasing in k. This implies that ∆n+1 −∆n = aσ
(
h(n + 1)− h(n)

)
> 0,

i.e., the second difference is positive. Therefore, gN(n) is discretely convex in n.

B.2 Discrete convexity of ga(n) for homogeneous fleet

The first difference of function (2.16) in n is

∆a
n = ga(n+ 1)− ga(n) = K −

∫ aU

aL

aℓ

(
nW +

A

a

)
p(a)da+ µaℓ((n+ 1)W ),

and the second difference equals

∆a
n+1 −∆a

n = µaℓ((n+ 2)W )−
∫ aU

aL

aℓ

(
(n+ 1)W +

A

a

)
p(a)da

−
(
µaℓ((n+ 1)W )−

∫ aU

aL

aℓ

(
nW +

A

a

)
p(a)da

)
.

Let us define h̃a(k) = µaℓ((k + 1)W ) −
∫ aU
aL

aℓ
(
kW + A

a

)
p(a)da; we then have ∆n+1 − ∆n =

h̃a(n+ 1)− h̃a(n). Note that

dh̃a(k)

dk
= µaWℓ′((k + 1)W )−W

∫ aU

aL

aℓ′
(
kW +

A

a

)
p(a)da

= µaW (F ((k + 1)W )− 1)−W

∫ aU

aL

a

(
F

(
kW +

A

a

)
− 1

)
p(a)da

= µaWF ((k + 1)W )−W

∫ aU

aL

aF

(
kW +

A

a

)
p(a)da

= W

∫ aU

aL

a

(
F ((k + 1)W )− F

(
kW +

A

a

))
p(a)da

≥ 0,
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where the last inequality holds because A
a
≤ A

aL
≤ W such that F ((k + 1)W ) ≥ F

(
kW + A

a

)
.

This implies that h̃a(k) is nondecreasing in k, and that ∆a
n+1 −∆a

n ≥ 0. Thus, ga(n) is discretely

convex in n.

B.3 Proofs of theorems and propositions

Proof of Theorem 2.4.1. Given a demand observation x̃, we can solve the following capacity al-

location problem formulated as a mixed integer programming (MIP) model:

Minimize g(n1, n2, y1, y2) = (K1 + A1)n1 + (K2 + A2)n2 + a(x̃− y1 − y2) (B.2)

s.t. 0 ≤ y1 ≤ W1n1, (B.3)

0 ≤ y2 ≤ W2n2, (B.4)

y1 + y2 ≤ x̃, (B.5)

n1, n2,∈ Z+, (B.6)

y1, y2 ≥ 0, (B.7)

where the auxiliary variables y1 and y2 denote the number of units shipped via internal TL capacity

using type-1 and type-2 trucks, respectively. Constraints (B.3) and (B.4) ensure the number of units

shipped via TL shipments using each truck type does not exceed the aggregate internal capacity

provided by that truck type. Constraint (B.5) ensures the total number of units shipped using

internal trucks does not exceed the demand.

Suppose an optimal solution (n∗
1, n

∗
2, y

∗
1, y

∗
2) in which n∗

2 ≥ q + 1 exists, and the corresponding

optimal objective equals g∗ = (K1 + A1)n
∗
1 + (K2 + A2)n

∗
2 + a(x̃ − y∗1 − y∗2). As W1 = qW2

and A1 ≤ qA2, any amount shipped via q type-2 (small) trucks can be instead shipped using

only one type-1 (big) truck at an equal or lower shipping cost, which leads to a new solution

(n′
1, n

′
2, y

′
1, y

′
2), where n′

1 = n∗
1 + 1 and n′

2 = n∗
2 − q. Note that replacing trucks does not affect

the total amount shipped via TLs, implying that y′1 + y′2 = y∗1 + y∗2 . The resulting objective value

equals g′ = (K1 + A1)n
′
1 + (K2 + A1)n

′
2 + a(x̃ − y′1 − y′2) = g∗ + K1 − qK2 + A1 − qA2.
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Because K1 < qK2, it is straightforward to show that g′ < g∗, implying g′ is a better objective

value than g∗ for the observed demand x̃. We can further reduce the objective value by replacing

q type-2 trucks with one type-1 truck until the number of remaining type-2 trucks is less than or

equal to q. Therefore, n∗
2 ≥ q+1 cannot be optimal, and an optimal solution for any given demand

observation must have n∗
2 ≤ q.

In fact, noting that the expected cost with stochastic demand is a weighted combination of

costs weighted by probabilities associated with the corresponding demand observations, the above

discussion is applicable to any demand observation and its associated MIP model. Because n∗
2 ≤ q

is optimal for all possible demand observations, it must therefore also hold for any solution that

minimizes the expected cost. ■

Proof of Proposition 2.4.2. Suppose an optimal solution exists for a demand observation x̃ <

n∗
1W1 in which two type-2 trucks are owned and both of them are dispatched without using all

type-1 trucks. Let k∗
1 denote the number of actual shipments via type-1 and k∗

1 < n∗
1. The optimal

objective then equals g∗ = n∗
1K

∗
1 + k∗

1A1 + 2K2 + 2A2 + a(x̃− y∗1 − y∗2). We can apply the same

capacity replacement operation in the proof of Theorem 2.4.1 by substituting two type-2 trucks

with one type-1 truck, which leads to a new objective value g′ = n∗
1K

∗
1 + (k∗

1 + 1)A1 + 2K2 +

a(x̃−y′1), where y′1 = y∗1 +y∗2 (because the total number of units shipped via TLs does not change,

and no type 2 truck is dispatched after capacity replacement). As A1 ≤ 2A2, it is straightforward to

show that g′ ≤ g∗, implying either g∗ is an alternative optimal solution, or there is a contradiction.

Therefore, for any demand x̃ < n∗
1W1, an optimal solution exists in which we do not dispatch both

type-2 trucks before all type-1 trucks have been dispatched. ■

Proof of Proposition 2.4.3. Because qL = ⌊A1/A2⌋, it is straightforward to show qLA2 ≤ A1 <

(qL + 1)A2, implying qLY2 ≤ Y1 < (qL + 1)Y2. Given Y21 = Y1 + qL(W2 − Y2), we can show

that qLW2 ≤ Y21 < (qL+1)W2. Thus, triggering the dispatch of an additional type-1 truck always

occurs after shipping qL type-2 trucks as long as there is at least one type-1 truck available. Once

all type-1 trucks are dispatched (prior to this, qL type-2 trucks have already been dispatched), we no
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longer need to consider Y21. The minimum shipping cost is further determined by only considering

the remaining q̃ − qL type-2 trucks and the corresponding break-even point Y2. ■

B.4 The expected shipping quantities for uniform and normal demand distributions

B.4.1 Uniform distribution

For a uniformly distributed demand variable in [l, D̄] with PDF f(x) = 1/(D̄ − l) and CDF

F (x) = (x− l)/(D̄ − l), we can obtain the following expected shipping quantities:

E
(0)
TL1(n1) = n1

(
D̄ − Y1

D̄ − l
− W1(n1 − 1)

2(D̄ − l)

)
, (B.8)

E
(1)
TL1(n1) = n1

(
D̄ − Y21

D̄ − l
− W1(n1 − 1)

2(D̄ − l)

)
, (B.9)

E
(2)
TL1(n1) = E

(1)
TL1(n1), (B.10)

E
(1)
TL2(n1) =

D̄ − n1(W1 + Y2 − Y21)− Y2

D̄ − l
, (B.11)

E
(2)
TL2(n1) =

2D̄ − n1(2W1 − Y21 + Y2)−W2 − 2Y2

D̄ − l
, (B.12)

E
(0)
LTL(n1) =

n1Y
2
1 + (D̄ − n1W1)

2

2(D̄ − l)
, (B.13)

E
(1)
LTL(n1) =

(n1 + 1)Y 2
2 + n1(Y21 −W2)

2 + (D̄ − n1W1 −W2)
2

2(D̄ − l)
, (B.14)

E
(2)
LTL(n1) =

(n1 + 2)Y 2
2 + n1(Y21 −W2)

2 + (D̄ − n1W1 − 2W2)
2

2(D̄ − l)
. (B.15)

According to Table 2.4, we can obtain the threshold values of n1 by performing pairwise compari-

son as follows:

g0(n1) ≤ g1(n1) ⇐⇒ n1 ≥
(W2 − Y2)(2D̄ −W2 − Y2)− 2K2(D̄ − l)/a

2(W2 − Y2)(W1 − Y1 + Y2)
≡ N01, (B.16)

g0(n1) ≤ g2(n1) ⇐⇒ n1 ≥
(W2 − Y2)(2D̄ − 2W2 − Y2)− 2K2(D̄ − l)/a

(W2 − Y2)(2W1 − Y1 + Y2)
≡ N02, (B.17)

g1(n1) ≤ g2(n1) ⇐⇒ n1 ≥
(W2 − Y2)(2D̄ − 3W2 − Y2)− 2K2(D̄ − l)/a

2W1(W2 − Y2)
≡ N12. (B.18)
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If n∗
1 ≥ max{N01, N02}, not owning type-2 trucks is optimal. If N01 ≥ N12 holds and n∗

1 ∈

[N12, N01], owning one type-2 truck leads to an optimal solution. If n∗
1 ≤ min{N02, N12}, owning

two type-2 trucks is optimal.

B.4.2 Normal distribution

For normally distributed demand with mean µ and standard deviation σ, we can obtain the

expected shipping quantities as follows:

E
(0)
TL1(n1) = n1 −

n1−1∑
k=0

Φ(kW1 + Y1), (B.19)

E
(1)
TL1(n1) = n1 −

n1−1∑
k=0

Φ(kW1 + Y21), (B.20)

E
(2)
TL1(n1) = E

(1)
TL1(n1), (B.21)

E
(1)
TL2(n1) =

n1−1∑
k=0

(
Φ(kW1 + Y21)− Φ(kW1 + Y2)

)
+
(
1− Φ(n1W1 + Y2)

)
, (B.22)

E
(2)
TL2(n1) =

n1−1∑
k=0

(
Φ(kW1 + Y21)− Φ(kW1 + Y2)

)
− Φ(n1W1 +W2 + Y2)− Φ(n1W1 + Y2) + 2,

(B.23)

E
(0)
LTL(n1) =

n1−1∑
k=0

(
σL(zkW1)− σL(zkW1+Y1)− Y1

(
1− Φ(zkW1+Y1)

))
+ σL(zn1W1), (B.24)

E
(1)
LTL(n1) =

n1∑
k=0

(
σL(zkW1)− σL(zkW1+Y2)− Y2

(
1− Φ(zkW1+Y2)

))
+ σL(zn1W1+W2)

+

n1−1∑
k=0

(
σL(zkW1+W2)− σL(zkW1+Y21) + (W2 − Y21)

(
1− Φ(zkW1+Y21)

))
,

(B.25)

E
(2)
LTL(n1) =

n1∑
k=0

(
σL(zkW1)− σL(zkW1+Y2)− Y2

(
1− Φ(zkW1+Y2)

))
+ σL(zn1W1+W2)

+

n1−1∑
k=0

(
σL(zkW1+W2)− σL(zkW1+Y21) + (W2 − Y21)

(
1− Φ(zkW1+Y21)

))
− σL(zn1W1+W2+Y2)− Y2

(
1− Φ(zn1W1+W2+Y2)

)
+ σL(zn1W1+2W2). (B.26)
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B.5 Proof of NP-hardness of problem DEP

Let us consider the extreme case when a = ∞ and Kt = 0 for t = 1, . . . , T , which forces all

units to be shipped via internal TL capacity. In this case, constraints (2.33) are no longer necessary

due to zero fixed ownership costs. Thus, the resulting model for each i is equivalent to

Maximize
T∑
t=1

vtm
i
t (B.27)

Subject to: ftm
i
t ≤ hi, t = 1, . . . , T, (B.28)

mi
t ∈ Z+, t = 1, . . . , T, (B.29)

where vt = −At, ft = −Wt for t = 1, . . . , T and hi = −di. This model is an integer knapsack

problem and is thus NP-hard, and the DEP model is consequently NP-hard.

B.6 SAA results for all instances with S = 1000 and T = 3

Table B.1 includes the SAA results for Instances 1 to 25. Results for Instances 25 to 50 are

displayed in Table B.2. Instances that reach the maximum time limit are starred.

B.7 SAA solutions and the DB algorithm results

Table B.3 compares the SAA results with the results obtained by using the DB algorithm for all

instances, in which instances that have improved runtime when using the DB heuristic are starred.

Tables B.4 through B.8 include the comparison results for the variants of the selected 20 instances

with different values of T and S.

B.8 Sensitivity analysis results for different LTL rates

Tables B.9 and B.10 summarize the metrics for all instances with different LTL rates.

B.9 Sensitivity analysis results for different numbers of truck types

Tables B.11 and B.12 summarize the metrics for all instances with different numbers of truck

types.
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B.10 Sensitivity analysis results for different demand parameters

Tables B.13 and B.14 summarize the results for all instances with different demand mean values

and standard deviations.

B.11 Sensitivity analysis results for different demand distributions

Tables B.15 and B.16 include the metrics for all instances when changing the demand distribu-

tions.
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Table B.1: SAA solutions for Instances 1 to 25 with S = 1000 and T = 3.

Instance Truck Class (t) Wt (lbs) a ($/lb) ($) Kt ($) At ($) nt m̄s
t ȳst LTL units Obj.Val. Obj.LB. GRB gap (%) GRB time (s)

1 Class 8 (1) 35600 0.31 1232.14 5849 32 26.91 957644.61 38969.50 219611.31 219460.03 0.07 9.95
Class 7 (2) 28600 862.99 5054 3 1.61 45476.69
Class 6 (3) 24000 643.40 4687 0 0.00 0.00

2 Class 8 (1) 37600 0.32 1305.06 7099 2 1.32 49481.60 37108.39 241260.39 241021.49 0.10 789.33
Class 7 (2) 30700 838.75 5894 38 31.48 965458.52
Class 6 (3) 24700 727.54 5217 0 0.00 0.00

3 Class 8 (1) 39700 0.39 1225.17 8361 26 22.50 893212.05 25738.05 268889.38 268620.50 0.10 811.34
Class 7 (2) 32700 939.21 7014 8 4.47 145415.39
Class 6 (3) 20600 684.92 4579 0 0.00 0.00

* 4 Class 8 (1) 33300 0.25 1273.44 4662 27 24.92 829467.96 57199.50 198683.05 198436.74 0.12 18000.15
Class 7 (2) 30300 998.37 4469 9 5.56 168275.49
Class 6 (3) 23500 653.28 3936 0 0.00 0.00

* 5 Class 8 (1) 34000 0.29 1180.66 5817 20 18.97 644702.61 38554.01 228355.43 227889.52 0.20 18003.90
Class 7 (2) 29900 796.46 5376 19 12.67 378437.65
Class 6 (3) 21000 687.35 3898 0 0.00 0.00

* 6 Class 8 (1) 36000 0.24 1243.81 4320 20 18.98 682910.18 42976.73 170019.04 169758.17 0.15 18001.16
Class 7 (2) 27300 774.77 3473 18 11.20 305101.12
Class 6 (3) 19500 681.19 2574 0 0.00 0.00

7 Class 8 (1) 33400 0.35 1270.82 5962 0 0.00 0.00 25266.40 230334.67 230151.07 0.08 52.23
Class 7 (2) 31700 863.98 5769 40 31.43 995283.51
Class 6 (3) 22000 595.48 4389 2 1.01 22071.80

8 Class 8 (1) 39600 0.38 1251.67 7674 32 25.44 1006455.74 22991.87 251774.80 251579.54 0.08 16.39
Class 7 (2) 28400 857.16 5936 2 1.02 28600.87
Class 6 (3) 24800 655.34 6031 0 0.00 0.00

* 9 Class 8 (1) 34000 0.37 1237.17 6416 32 27.89 947997.86 27792.59 248981.52 248694.12 0.12 18028.98
Class 7 (2) 26100 934.28 5022 1 0.59 15218.43
Class 6 (3) 23600 652.66 4977 7 2.36 55312.28

10 Class 8 (1) 37000 0.23 1294.47 4681 31 26.57 980824.61 65650.48 179616.39 179461.84 0.09 0.54
Class 7 (2) 32400 887.22 5067 0 0.00 0.00
Class 6 (3) 21600 712.49 3378 0 0.00 0.00

11 Class 8 (1) 35400 0.34 1322.22 6499 32 27.64 977692.72 36648.62 247775.15 247585.03 0.08 15.34
Class 7 (2) 31900 925.31 6616 0 0.00 0.00
Class 6 (3) 24800 623.96 5396 5 1.90 46699.18

12 Class 8 (1) 37600 0.25 1168.53 5264 30 25.36 953320.11 47115.87 188483.94 188307.97 0.09 33.85
Class 7 (2) 26400 858.21 3696 1 0.62 16313.12
Class 6 (3) 21100 649.43 3007 2 1.23 25742.47

13 Class 8 (1) 34900 0.36 1227.94 6282 33 27.69 965946.08 26091.82 237167.37 236964.90 0.09 10.74
Class 7 (2) 28300 831.12 5603 4 1.25 35298.33
Class 6 (3) 20400 677.45 4113 1 0.56 11016.67

14 Class 8 (1) 37100 0.31 1204.92 5750 33 26.78 992097.15 34641.63 207812.61 207708.82 0.05 10.57
Class 7 (2) 27100 833.20 4789 1 0.52 13578.48
Class 6 (3) 20600 655.88 4151 0 0.00 0.00

15 Class 8 (1) 36600 0.36 1290.59 6983 25 22.70 830658.75 27689.23 250140.20 249894.31 0.10 23.26
Class 7 (2) 29100 959.73 5657 10 5.80 168498.45
Class 6 (3) 26000 736.78 5522 3 0.86 22368.41

16 Class 8 (1) 37300 0.32 1184.07 6565 34 27.51 1023238.02 37903.29 233010.28 232851.77 0.07 0.64
Class 7 (2) 29100 976.77 6518 0 0.00 0.00
Class 6 (3) 23100 681.60 5322 0 0.00 0.00

17 Class 8 (1) 39600 0.38 1169.39 7975 31 25.21 997951.73 25402.39 254527.92 254301.96 0.09 10.06
Class 7 (2) 31000 878.70 6597 1 0.52 15922.90
Class 6 (3) 22000 663.58 5016 1 0.52 10985.24

18 Class 8 (1) 33600 0.41 1277.28 7852 35 29.54 991572.17 34308.00 300175.38 300062.14 0.04 9.60
Class 7 (2) 31600 802.45 8681 2 0.50 15819.71
Class 6 (3) 20600 734.60 5743 1 0.49 9699.68

19 Class 8 (1) 38600 0.38 1316.68 7921 0 0.00 0.00 22135.39 256423.62 256212.56 0.08 38.72
Class 7 (2) 30900 818.43 6341 41 32.25 996003.42
Class 6 (3) 25500 659.52 5523 3 1.45 36628.92

20 Class 8 (1) 38600 0.41 1187.35 9654 32 25.78 994482.83 26764.32 307374.23 307124.27 0.08 3.74
Class 7 (2) 26300 850.56 6685 2 1.17 30473.44
Class 6 (3) 22900 738.01 6572 0 0.00 0.00

* 21 Class 8 (1) 34300 0.40 1236.12 7272 8 6.61 226427.68 22328.07 271845.04 270984.55 0.32 18008.08
Class 7 (2) 31300 871.28 6886 33 25.59 800612.49
Class 6 (3) 20200 606.64 4848 0 0.00 0.00

22 Class 8 (1) 36100 0.27 1283.12 5166 0 0.00 0.00 36206.82 192179.59 192131.12 0.03 43.34
Class 7 (2) 31000 876.84 4436 40 32.57 1009043.65
Class 6 (3) 25300 698.33 4099 1 0.53 12424.40

* 23 Class 8 (1) 39900 0.41 1249.60 9488 3 1.969 78175.076 22615.32 291552.68 291170.66 0.13 18013.99
Class 7 (2) 32400 799.17 7838 37 29.38 951521.15
Class 6 (3) 23100 713.87 6535 0 0 0

24 Class 8 (1) 39000 0.39 1243.50 8061 30 25.30 986239.84 21202.83 266643.81 266451.85 0.07 46.59
Class 7 (2) 28300 765.79 6291 6 1.99 55744.79
Class 6 (3) 22900 653.12 5805 0 0.00 0.00

25 Class 8 (1) 33700 0.39 1249.92 6703 2 1.31 43690.91 22064.95 254613.38 254396.57 0.09 32.69
Class 7 (2) 28000 906.32 5569 44 34.99 978715.43
Class 6 (3) 21000 723.77 4914 0 0.00 0.00
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Table B.2: SAA solutions for Instances 26 to 50 with S = 1000 and T = 3.

Instance Truck Class (t) Wt (lbs) a ($/lb) Kt ($) At ($) nt m̄s
t ȳst LTL units Obj.Val. Obj.LB. GRB gap (%) GRB time (s)

26 Class 8 (1) 33700 0.35 1328.16 6015 0 0.00 0.00 18533.67 224691.81 224477.48 0.10 4.92
Class 7 (2) 32000 785.08 5712 40 31.13 995775.53
Class 6 (3) 23700 623.53 4396 3 1.62 37981.84

* 27 Class 8 (1) 34900 0.29 1324.66 5870 25 23.63 824647.20 39827.62 226044.06 225799.06 0.11 18045.75
Class 7 (2) 27600 993.68 4722 1 0.72 19849.40
Class 6 (3) 21900 606.96 4001 14 7.44 162656.12

28 Class 8 (1) 38900 0.38 1194.71 7391 33 25.62 995187.56 24563.02 240940.82 240804.93 0.06 46.01
Class 7 (2) 27400 999.44 5727 0 0.00 0.00
Class 6 (3) 19500 710.76 4150 1 0.51 9252.23

29 Class 8 (1) 36600 0.36 1221.17 6720 2 1.15 42090.00 23475.81 235531.11 235304.25 0.10 111.54
Class 7 (2) 30400 853.58 5581 41 32.60 988999.59
Class 6 (3) 24500 733.65 4851 0 0.00 0.00

30 Class 8 (1) 38000 0.41 1277.53 8725 25 22.71 862756.36 22217.45 289372.50 289083.17 0.10 54.89
Class 7 (2) 30300 781.07 7330 12 5.57 168097.69
Class 6 (3) 20000 623.89 5494 0 0.00 0.00

31 Class 8 (1) 33700 0.34 1292.97 6531 0 0.00 0.00 32900.08 243162.73 242919.59 0.10 5.85
Class 7 (2) 32600 920.76 6318 36 29.60 964355.79
Class 6 (3) 25700 741.03 5155 3 1.86 47446.40

32 Class 8 (1) 34300 0.38 1318.97 6517 1 0.58 19992.84 26138.76 247026.45 246791.37 0.10 102.61
Class 7 (2) 26100 880.29 4959 48 38.26 996817.86
Class 6 (3) 21000 722.25 4309 0 0.00 0.00

* 33 Class 8 (1) 37300 0.37 1299.38 8557 2 1.37 50942.09 37537.58 286786.59 286450.78 0.12 18000.12
Class 7 (2) 26100 840.78 6084 0 0.00 0.00
Class 6 (3) 22700 705.79 5291 51 42.07 954630.93

34 Class 8 (1) 35400 0.23 1330.84 4641 27 24.64 872035.41 63641.42 185686.83 185538.63 0.08 10.96
Class 7 (2) 29100 899.57 4150 6 3.02 87894.11
Class 6 (3) 23600 686.68 3528 1 0.61 14020.30

35 Class 8 (1) 33900 0.33 1275.62 5817 0 0.00 0.00 25991.48 219318.52 219118.55 0.09 3.55
Class 7 (2) 30700 818.07 5369 42 32.85 1005564.96
Class 6 (3) 20200 622.28 4333 0 0.00 0.00

36 Class 8 (1) 38600 0.39 1215.41 8280 32 26.00 1003172.94 27879.51 272455.06 272214.99 0.09 14.50
Class 7 (2) 28400 965.94 6424 1 0.51 14379.63
Class 6 (3) 21600 613.98 5223 1 0.48 10309.99

* 37 Class 8 (1) 39400 0.33 1283.81 7151 22.00 20.22 796380.27 30659.84 237560.49 237170.30 0.16 18000.27
Class 7 (2) 32100 826.91 6144 13.00 7.14 228656.83
Class 6 (3) 25200 701.28 5572 0.00 0.00 0.00

38 Class 8 (1) 36600 0.30 1227.90 5490 33 27.21 994989.28 37064.35 204269.02 204137.73 0.06 9.92
Class 7 (2) 26100 787.00 4463 1 0.55 13318.49
Class 6 (3) 19600 747.19 3528 0 0.00 0.00

39 Class 8 (1) 39100 0.41 1173.41 8176 33 26.11 1018915.89 24589.89 265535.54 265397.47 0.05 42.72
Class 7 (2) 27900 868.17 6635 0 0.00 0.00
Class 6 (3) 21000 655.08 5080 1 0.52 10861.57

40 Class 8 (1) 36000 0.23 1184.72 4388 29 25.76 926764.63 53529.16 171428.26 171274.54 0.09 16.14
Class 7 (2) 27600 820.68 3555 4 2.37 65237.79
Class 6 (3) 23200 629.10 3202 0 0.00 0.00

41 Class 8 (1) 39900 0.29 1287.88 6711 1 0.67 26593.61 34624.92 214897.47 214721.28 0.08 43.31
Class 7 (2) 31300 750.59 5355 39 31.71 991306.52
Class 6 (3) 24000 646.35 4733 0 0.00 0.00

42 Class 8 (1) 39100 0.32 1332.87 6882 31 25.48 995146.23 40989.27 233021.47 232953.01 0.03 12.37
Class 7 (2) 31900 911.01 6431 0 0.00 0.00
Class 6 (3) 23500 683.51 4963 1 0.52 11632.02

* 43 Class 8 (1) 34300 0.35 1244.12 6363 3 2.13 72914.32 31947.96 244980.43 244556.82 0.17 18000.11
Class 7 (2) 28000 802.31 5390 42 33.92 949163.80
Class 6 (3) 25200 642.03 5645 0 0.00 0.00

44 Class 8 (1) 38300 0.23 1320.39 4669 24 22.41 858039.33 45010.00 175511.65 175336.71 0.10 23.39
Class 7 (2) 31400 839.11 4189 9 4.56 142946.07
Class 6 (3) 20000 600.66 2714 1 0.58 11349.37

45 Class 8 (1) 40000 0.38 1285.91 7752 24 21.80 871291.40 27971.13 247553.72 247339.78 0.09 52.10
Class 7 (2) 26900 801.68 5315 12 5.16 138276.44
Class 6 (3) 24500 727.21 5121 0 0.00 0.00

46 Class 8 (1) 35600 0.32 1175.27 5924 34 27.77 988346.68 31374.31 220507.30 220373.96 0.06 10.28
Class 7 (2) 27300 853.01 4892 1 0.51 13729.19
Class 6 (3) 19600 605.41 3826 1 0.53 10109.28

* 47 Class 8 (1) 37900 0.38 1211.27 8497 2 1.37 51594.88 32865.32 276844.97 276431.99 0.15 18000.15
Class 7 (2) 29300 807.50 6680 40 32.64 955840.16
Class 6 (3) 20000 617.13 4712 0 0.00 0.00

48 Class 8 (1) 34700 0.39 1326.22 6902 32 27.47 952757.85 26883.00 261676.96 261464.56 0.08 26.59
Class 7 (2) 27600 854.79 6028 6 1.83 50417.43
Class 6 (3) 19500 603.95 4411 1 0.54 10317.92

* 49 Class 8 (1) 37300 0.42 1258.12 7833 26 23.05 859259.11 21313.02 269013.53 268707.55 0.11 18000.11
Class 7 (2) 29700 853.97 6486 12 5.63 166919.32
Class 6 (3) 20200 594.77 4581 0 0.00 0.00

50 Class 8 (1) 38900 0.39 1301.82 8647 28 23.94 930850.51 29265.87 279543.29 279288.05 0.09 3.06
Class 7 (2) 31100 854.59 7399 6 2.65 81677.41
Class 6 (3) 21400 738.83 6343 0 0.00 0.00
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Table B.3: SAA and DB results for Instances 1-50 with T = 3 and S = 1000.

Instance SAA n̂ SAA obj.val. SAA time (s) DB nRD DB obj.val. DB time (s)
(
1− DB obj.val.

SAA obj.val.

)
× 100%

(
1− DB time

SAA time

)
× 100%

1 [32, 3, 0] 219611.31 9.95 [32, 3, 0] 219611.32 21.91 0.00 -120.19
* 2 [2, 38, 0] 241260.39 789.33 [0, 41, 0] 241409.87 19.37 -0.06 97.55
* 3 [26, 8, 0] 268889.38 811.34 [27, 8, 0] 269010.37 24.74 -0.04 96.95
* 4 [27, 9, 0] 198683.05 18000.15 [28, 9, 0] 198861.05 22.85 -0.09 99.87
* 5 [20, 19, 0] 228355.43 18003.90 [21, 19, 0] 228466.50 21.82 -0.05 99.88
* 6 [20, 18, 0] 170019.04 18001.16 [21, 17, 0] 170035.98 20.40 -0.01 99.89
* 7 [0, 40, 2] 230334.67 52.23 [0, 42, 0] 230760.12 21.39 -0.18 59.05

8 [32, 2, 0] 251774.80 16.39 [33, 0, 0] 252305.08 21.38 -0.21 -30.45
* 9 [32, 1, 7] 248981.52 18028.98 [33, 0, 8] 249209.48 22.19 -0.09 99.88

10 [31, 0, 0] 179616.39 0.54 [32, 0, 0] 179689.61 18.03 -0.04 -3208.82
11 [32, 0, 5] 247775.15 15.34 [33, 0, 5] 247824.58 21.87 -0.02 -42.55

* 12 [30, 1, 2] 188483.94 33.85 [32, 0, 0] 189065.22 20.43 -0.31 39.66
13 [33, 4, 1] 237167.37 10.74 [34, 5, 0] 237490.71 20.91 -0.14 -94.71
14 [33, 1, 0] 207812.61 10.57 [34, 0, 0] 207991.27 19.41 -0.09 -83.61
15 [25, 10, 3] 250140.20 23.26 [27, 9, 3] 250375.88 24.24 -0.09 -4.21
16 [34, 0, 0] 233010.28 0.64 [35, 0, 0] 233132.95 20.93 -0.05 -3169.57
17 [31, 1, 1] 254527.92 10.06 [33, 0, 0] 255278.64 21.51 -0.29 -113.80
18 [35, 2, 1] 300175.38 9.60 [36, 4, 0] 300602.14 21.93 -0.14 -128.37

* 19 [0, 41, 3] 256423.62 38.72 [0, 44, 0] 256894.64 20.68 -0.18 46.58
20 [32, 2, 0] 307374.23 3.74 [34, 0, 0] 308307.03 21.15 -0.30 -464.92

* 21 [8, 33, 0] 271845.04 18008.08 [0, 42, 0] 272218.64 21.34 -0.14 99.88
* 22 [0, 40, 1] 192179.59 43.34 [0, 41, 0] 192181.16 20.91 0.00 51.76
* 23 [3, 37, 0] 291552.68 18013.99 [0, 41, 0] 292020.33 20.70 -0.16 99.89
* 24 [30, 6, 0] 266643.81 46.59 [31, 6, 0] 266830.58 22.67 -0.07 51.33
* 25 [2, 44, 0] 254613.38 32.69 [0, 46, 0] 254895.54 21.08 -0.11 35.53

26 [0, 40, 3] 224691.81 4.92 [0, 43, 0] 225265.65 20.05 -0.26 -307.77
* 27 [25, 1, 14] 226044.06 18045.75 [27, 0, 14] 226288.31 22.16 -0.11 99.88
* 28 [33, 0, 1] 240940.82 46.01 [34, 0, 0] 241423.22 21.47 -0.20 53.32
* 29 [2, 41, 0] 235531.11 111.54 [0, 44, 0] 235803.60 21.09 -0.12 81.09
* 30 [25, 12, 0] 289372.50 54.89 [26, 12, 0] 289531.71 23.68 -0.06 56.85

31 [0, 36, 3] 243162.73 5.85 [0, 39, 0] 243553.97 21.47 -0.16 -267.04
* 32 [1, 48, 0] 247026.45 102.61 [0, 50, 0] 247338.04 21.37 -0.13 79.18
* 33 [2, 0, 51] 286786.59 18000.12 [0, 0, 55] 287160.73 21.19 -0.13 99.88

34 [27, 6, 1] 185686.83 10.96 [28, 7, 0] 185866.66 20.01 -0.10 -82.59
35 [0, 42, 0] 219318.52 3.55 [0, 42, 0] 219318.52 19.42 0.00 -446.52
36 [32, 1, 1] 272455.06 14.50 [34, 0, 0] 273091.85 21.37 -0.23 -47.41

* 37 [22, 13, 0] 237560.49 18000.27 [24, 12, 0] 237642.43 22.85 -0.03 99.87
38 [33, 1, 0] 204269.02 9.92 [35, 0, 0] 204659.92 20.77 -0.19 -109.30

* 39 [33, 0, 1] 265535.54 42.72 [34, 0, 0] 266083.82 21.93 -0.21 48.65
40 [29, 4, 0] 171428.26 16.14 [30, 4, 0] 171442.73 21.34 -0.01 -32.15

* 41 [1, 39, 0] 214897.47 43.31 [0, 41, 0] 215012.56 20.64 -0.05 52.35
42 [31, 0, 1] 233021.47 12.37 [32, 0, 0] 233282.65 20.74 -0.11 -67.73

* 43 [3, 42, 0] 244980.43 18000.11 [0, 47, 0] 245442.35 21.47 -0.19 99.88
* 44 [24, 9, 1] 175511.65 23.39 [25, 10, 0] 175751.47 22.20 -0.14 5.10
* 45 [24, 12, 0] 247553.72 52.10 [25, 12, 0] 247691.17 24.07 -0.06 53.80

46 [34, 1, 1] 220507.30 10.28 [36, 0, 0] 221003.95 20.14 -0.23 -95.96
* 47 [2, 40, 0] 276844.97 18000.15 [0, 44, 0] 277453.54 21.48 -0.22 99.88
* 48 [32, 6, 1] 261676.96 26.59 [33, 7, 0] 262049.14 22.94 -0.14 13.71
* 49 [26, 12, 0] 269013.53 18000.11 [27, 12, 0] 269143.45 23.57 -0.05 99.87

50 [28, 6, 0] 279543.29 3.06 [29, 6, 0] 279554.21 22.14 0.00 -623.05
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Table B.4: SAA and DB results for selected instances with T = 4 and S = 1000.

Instance SAA n̂ SAA obj.val. SAA time (s) DB nRD DB obj.val. DB time (s)
(
1− DB obj.val.

SAA obj.val.

)
× 100%

(
1− DB time

SAA time

)
× 100%

1 [31, 1, 0, 7] 219282.40 15.17 [32, 0, 0, 8] 219478.93 23.71 -0.09 -56.32
8 [32, 2, 0, 0] 251774.80 17.75 [33, 0, 0, 0] 252305.08 21.85 -0.21 -23.11

10 [31, 0, 0, 1] 179526.51 1.10 [32, 0, 0, 0] 179689.61 21.99 -0.09 -1896.46
11 [32, 0, 1, 6] 247515.04 22.10 [33, 0, 0, 7] 247661.37 21.94 -0.06 0.71
13 [33, 4, 0, 1] 237145.98 19.80 [34, 5, 0, 0] 237490.71 25.43 -0.15 -28.41
14 [33, 1, 0, 1] 207760.19 25.08 [34, 0, 0, 0] 207991.27 20.99 -0.11 16.31
16 [34, 0, 0, 0] 233010.28 0.74 [35, 0, 0, 0] 233132.95 20.73 -0.05 -2713.90
17 [31, 1, 1, 0] 254519.43 15.47 [33, 0, 0, 0] 255278.64 23.65 -0.30 -52.89
18 [35, 3, 1, 0] 300177.35 18.37 [36, 4, 0, 0] 300602.14 26.18 -0.14 -42.50
20 [32, 1, 0, 1] 307404.90 18.01 [34, 0, 0, 0] 308307.03 24.61 -0.29 -36.63
26 [0, 41, 1, 1] 224659.47 19.97 [0, 43, 0, 0] 225265.65 25.33 -0.27 -26.81
31 [0, 33, 0, 11] 242646.71 54.75 [0, 33, 0, 12] 242681.67 27.63 -0.01 49.54
34 [27, 3, 0, 6] 185546.44 15.35 [28, 3, 0, 6] 185603.96 26.42 -0.03 -72.16
35 [0, 42, 0, 0] 219318.52 3.68 [0, 42, 0, 0] 219318.52 24.26 0.00 -558.35
36 [32, 1, 0, 1] 272470.91 23.31 [34, 0, 0, 1] 272677.32 26.12 -0.08 -12.05
38 [33, 1, 0, 1] 204170.28 14.85 [35, 0, 0, 0] 204659.92 24.60 -0.24 -65.71
40 [29, 5, 0, 0] 171423.08 18.11 [30, 4, 0, 0] 171442.73 25.96 -0.01 -43.41
42 [30, 1, 0, 1] 232915.18 16.79 [32, 0, 0, 1] 233018.43 25.05 -0.04 -49.20
46 [34, 1, 0, 1] 220402.40 21.33 [36, 0, 0, 1] 220713.51 25.64 -0.14 -20.24
50 [28, 6, 0, 0] 279526.78 3.73 [29, 6, 0, 0] 279554.21 27.20 -0.01 -628.68

Avg. 17.27 24.46 -0.12 -313.01

Table B.5: SAA and DB results for selected instances with T = 3 and S = 3000.

Instance SAA n̂ SAA obj.val. SAA time (s) DB nRD DB obj.val. DB time (s)
(
1− DB obj.val.

SAA obj.val.

)
× 100%

(
1− DB time

SAA time

)
× 100%

1 [32, 4, 0] 221898.62 59.27 [33, 4, 0] 222065.36 77.52 -0.08 -30.79
8 [32, 2, 0] 251916.64 115.02 [33, 0, 0] 252478.86 69.93 -0.22 39.20

10 [31, 0, 1] 181881.69 5.68 [32, 0, 0] 181885.15 63.59 0.00 -1019.48
11 [32, 0, 5] 246175.70 67.35 [33, 0, 5] 246263.50 70.82 -0.04 -5.15
13 [33, 4, 1] 239898.51 77.59 [34, 5, 0] 240143.50 76.77 -0.10 1.05
14 [33, 1, 0] 209637.14 86.59 [35, 0, 0] 209982.73 71.07 -0.16 17.92
16 [34, 0, 0] 230213.13 12.77 [34, 0, 0] 230213.13 69.27 0.00 -442.60
17 [31, 3, 0] 254916.50 80.00 [33, 0, 0] 255553.77 68.17 -0.25 14.80
18 [35, 3, 1] 301568.00 80.40 [36, 4, 0] 301910.99 77.25 -0.11 3.93
20 [31, 2, 0] 303982.12 52.89 [33, 0, 0] 304730.54 71.10 -0.25 -34.43
26 [0, 40, 2] 224003.18 51.66 [0, 42, 0] 224520.35 73.62 -0.23 -42.52
31 [0, 37, 3] 244632.36 52.63 [0, 40, 0] 245110.50 68.93 -0.20 -30.98
34 [28, 4, 1] 186947.97 55.14 [29, 6, 0] 187213.23 72.09 -0.14 -30.74
35 [0, 42, 0] 223644.94 114.11 [0, 43, 0] 223693.73 70.81 -0.02 37.95
36 [33, 0, 1] 271718.63 74.61 [34, 0, 0] 272266.78 69.33 -0.20 7.07
38 [33, 1, 0] 206986.14 86.22 [35, 0, 0] 207281.21 70.41 -0.14 18.34
40 [29, 5, 0] 172370.15 95.05 [30, 5, 0] 172442.32 76.43 -0.04 19.59
42 [31, 0, 1] 235071.21 83.55 [32, 0, 0] 235288.15 69.73 -0.09 16.53
46 [34, 2, 0] 223094.81 78.47 [36, 0, 0] 223482.00 69.85 -0.17 10.99
50 [29, 5, 0] 281368.25 36.84 [29, 6, 0] 281439.01 77.08 -0.03 -109.24

Avg. 68.29 71.69 -0.12 -77.93
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Table B.6: SAA and DB results for selected instances with T = 4 and S = 3000.

Instance SAA n̂ SAA obj.val. SAA time (s) DB nRD DB obj.val. DB time (s)
(
1− DB obj.val.

SAA obj.val.

)
× 100%

(
1− DB time

SAA time

)
× 100%

1 [31, 1, 0, 7] 221561.73 248.13 [32, 0, 0, 8] 221727.00 66.37 -0.07 73.25
8 [32, 2, 0, 0] 251916.64 128.34 [33, 0, 0, 0] 252478.86 71.27 -0.22 44.47

10 [31, 0, 0, 1] 181762.88 5.07 [32, 0, 0, 0] 181885.15 74.53 -0.07 -1369.44
11 [32, 0, 1, 6] 245938.33 129.22 [33, 0, 0, 7] 246097.23 82.69 -0.06 36.01
13 [33, 4, 1, 0] 239895.09 146.22 [34, 5, 0, 0] 240143.50 80.44 -0.10 44.99
14 [33, 1, 0, 1] 209591.59 242.41 [35, 0, 0, 0] 209982.73 74.76 -0.19 69.16
16 [33, 0, 0, 0] 230160.52 21.87 [34, 0, 0, 0] 230213.13 69.66 -0.02 -218.50
17 [31, 2, 0, 0] 254944.20 168.80 [33, 0, 0, 0] 255553.77 73.33 -0.24 56.56
18 [35, 3, 0, 1] 301533.46 163.34 [36, 4, 0, 0] 301910.99 78.68 -0.13 51.83
20 [32, 2, 0, 0] 303969.70 143.98 [33, 0, 0, 0] 304730.54 73.19 -0.25 49.17
26 [0, 40, 2, 0] 223988.40 214.26 [0, 42, 0, 0] 224520.35 81.18 -0.24 62.11
31 [0, 33, 0, 12] 244137.11 151.37 [0, 34, 0, 12] 244240.64 84.60 -0.04 44.11
34 [27, 4, 0, 4] 186825.79 146.50 [29, 3, 0, 5] 187008.07 83.22 -0.10 43.20
35 [0, 42, 0, 1] 223603.34 163.75 [ 0, 43, 0, 0] 223693.73 77.80 -0.04 52.49
36 [32, 1, 0, 2] 271647.45 143.27 [34, 0, 0, 1] 271831.70 69.04 -0.07 51.81
38 [33, 1, 0, 1] 206870.06 142.94 [35, 0, 0, 0] 207281.21 75.39 -0.20 47.26
40 [30, 4, 0, 0] 172374.94 135.66 [30, 5, 0, 0] 172442.32 77.61 -0.04 42.79
42 [31, 1, 0, 1] 234957.08 128.32 [32, 0, 0, 1] 235007.87 71.23 -0.02 44.49
46 [34, 1, 0, 1] 222957.23 173.12 [36, 0, 0, 1] 223182.33 68.24 -0.10 60.58
50 [28, 6, 0, 0] 281380.50 47.46 [29, 6, 0, 0] 281439.01 78.23 -0.02 -64.85

Avg. 142.20 75.57 -0.11 -38.93

Table B.7: SAA and DB results for selected instances with T = 3 and S = 5000.

Instance SAA n̂ SAA obj.val. SAA time (s) DB nRD DB obj.val. DB time (s)
(
1− DB obj.val.

SAA obj.val.

)
× 100%

(
1− DB time

SAA time

)
× 100%

1 [32, 4, 0] 220429.73 175.71 [33, 4, 0] 220634.19 119.46 -0.09 32.02
8 [31, 2, 0] 249045.32 195.60 [33, 0, 0] 249668.70 113.83 -0.25 41.81

10 [31, 0, 0] 179582.61 51.11 [32, 0, 0] 179677.59 108.69 -0.05 -112.65
11 [32, 0, 5] 245106.79 202.23 [33, 0, 5] 245227.13 121.95 -0.05 39.70
13 [33, 4, 1] 238570.45 390.04 [34, 5, 0] 238890.68 114.82 -0.13 70.56
14 [33, 1, 0] 209722.84 229.30 [35, 0, 0] 210019.76 106.61 -0.14 53.51
16 [34, 0, 0] 231803.80 50.49 [34, 0, 0] 231803.80 115.39 0.00 -128.55
17 [31, 3, 0] 253783.21 181.65 [34, 0, 0] 254590.12 113.97 -0.32 37.26
18 [35, 2, 1] 298365.04 194.98 [36, 4, 0] 298858.16 125.44 -0.17 35.66
20 [32, 2, 0] 305674.56 186.02 [34, 0, 0] 306601.47 118.30 -0.30 36.41
26 [0, 40, 2] 222873.20 146.74 [0, 42, 0] 223381.31 118.60 -0.23 19.18
31 [0, 37, 3] 244162.06 119.12 [0, 39, 0] 244580.44 115.55 -0.17 3.00
34 [28, 5, 1] 186633.35 160.52 [29, 6, 0] 186894.43 120.55 -0.14 24.90
35 [0, 42, 0] 224399.14 299.82 [0, 43, 0] 224449.42 116.79 -0.02 61.05
36 [33, 0, 1] 271509.78 281.19 [34, 0, 0] 272095.22 117.03 -0.22 58.38
38 [33, 1, 0] 204839.48 236.30 [35, 0, 0] 205199.09 113.08 -0.18 52.15
40 [30, 4, 0] 172570.37 226.15 [31, 4, 0] 172667.28 122.72 -0.06 45.73
42 [31, 0, 1] 235026.85 212.33 [32, 0, 0] 235257.47 112.27 -0.10 47.13
46 [33, 3, 0] 221053.98 227.66 [36, 0, 0] 221501.71 116.78 -0.20 48.71
50 [29, 5, 0] 281810.25 88.49 [29, 6, 0] 281843.42 125.71 -0.01 -42.06

Avg. 192.77 116.88 -0.14 21.19
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Table B.8: SAA and DB results for selected instances with T = 4 and S = 5000.

Instance SAA n̂ SAA obj.val. SAA time (s) DB nRD DB obj.val. DB time (s)
(
1− DB obj.val.

SAA obj.val.

)
× 100%

(
1− DB time

SAA time

)
× 100%

1 [31, 1, 0, 7] 220074.38 275.26 [32, 0, 0, 8] 220272.31 127.54 -0.09 53.66
8 [31, 2, 0, 0] 249044.44 331.25 [33, 0, 0, 0] 249668.70 114.56 -0.25 65.42

10 [31, 0, 0, 1] 179505.29 110.85 [32, 0, 0, 0] 179677.59 113.95 -0.10 -2.80
11 [32, 0, 1, 6] 244865.08 491.37 [33, 0, 0, 8] 245168.38 131.21 -0.12 73.30
13 [33, 4, 1, 0] 238570.46 335.07 [34, 5, 0, 0] 238890.68 134.02 -0.13 60.00
14 [33, 1, 0, 1] 209665.81 496.95 [35, 0, 0, 0] 210019.76 116.54 -0.17 76.55
16 [33, 0, 0, 0] 231799.78 117.23 [34, 0, 0, 0] 231803.80 114.58 0.00 2.27
17 [31, 3, 0, 0] 253777.28 441.70 [34, 0, 0, 0] 254590.12 121.08 -0.32 72.59
18 [35, 2, 1, 0] 298359.54 366.43 [36, 4, 0, 0] 298858.16 129.19 -0.17 64.74
20 [32, 2, 0, 0] 305665.79 525.73 [34, 0, 0, 0] 306601.47 115.54 -0.31 78.02
26 [0, 40, 1, 1] 222831.41 872.03 [0, 42, 0, 0] 223381.31 108.49 -0.25 87.56
31 [0, 33, 0, 12] 243689.53 656.14 [0, 34, 0, 12] 243809.15 123.63 -0.05 81.16
34 [27, 4, 0, 4] 186491.33 449.82 [29, 3, 0, 6] 186802.38 120.96 -0.17 73.11
35 [0, 42, 0, 1] 224354.26 551.71 [0, 43, 0, 0] 224449.42 107.17 -0.04 80.57
36 [32, 1, 0, 2] 271406.17 705.11 [34, 0, 0, 1] 271660.07 115.41 -0.09 83.63
38 [33, 1, 0, 1] 204743.17 596.67 [35, 0, 0, 0] 205199.09 106.79 -0.22 82.10
40 [30, 4, 0, 0] 172570.21 357.21 [31, 4, 0, 0] 172667.28 117.72 -0.06 67.04
42 [31, 1, 0, 1] 234923.04 394.25 [32, 0, 0, 1] 234980.15 111.22 -0.02 71.79
46 [34, 1, 0, 1] 220903.41 678.60 [36, 0, 0, 1] 221203.49 113.16 -0.14 83.32
50 [29, 5, 0, 0] 281817.40 170.05 [29, 6, 0, 0] 281843.42 120.21 -0.01 29.31

Avg. 446.17 118.15 -0.14 64.17

Table B.9: Results for FCL, UF , UC , and LTL units with different LTL rates.

FCL (lbs) UF (%) UC (%) LTL units (%)
Instance Low LTL rate Medium LTL rate High LTL rate Low LTL rate Medium LTL rate High LTL rate Low LTL rate Medium LTL rate High LTL rate Low LTL rate Medium LTL rate High LTL rate

1 36255.33 36071.94 35710.97 84.62 81.47 78.48 84.79 81.89 79.24 5.45 3.74 2.54
2 29394.00 29759.20 29741.81 86.45 82.00 79.04 86.38 81.73 78.81 6.52 3.53 2.41
3 34927.33 34979.41 35028.51 81.05 79.33 77.37 82.14 80.28 78.35 3.19 2.42 1.85
4 36194.28 34872.00 34275.23 93.17 84.66 80.29 93.29 85.15 81.42 13.79 5.42 3.44
5 33690.47 33139.64 33135.07 87.83 81.11 78.14 88.51 81.98 79.04 8.03 3.63 2.35
6 34187.25 33238.21 33228.60 86.80 79.42 76.09 88.33 81.56 78.57 9.02 4.17 2.89
7 29212.67 29057.24 29065.07 81.33 77.24 75.85 81.48 77.54 76.09 4.08 2.42 1.95
8 36469.75 36268.35 36280.63 81.04 77.82 76.04 81.21 78.18 76.33 3.55 2.17 1.64
9 34557.89 33999.60 34065.41 81.73 77.08 75.61 83.52 79.62 78.01 4.29 2.66 2.10

10 36698.00 36698.00 36275.18 93.84 85.72 81.19 93.79 85.51 81.35 15.43 6.27 3.50
11 36262.36 34755.30 33822.80 85.68 79.84 75.34 85.90 81.51 78.00 6.11 3.45 2.17
12 36184.57 35605.39 34701.33 89.66 82.46 78.43 89.84 83.18 79.70 10.07 4.52 2.88
13 36078.57 35550.84 35060.40 82.32 77.63 74.76 82.73 78.76 76.42 4.29 2.51 1.73
14 36698.00 36483.18 36280.63 85.10 80.30 78.90 84.93 80.36 79.19 5.94 3.33 2.70
15 34764.59 33640.95 33350.72 83.32 77.27 75.78 84.57 79.56 78.33 5.01 2.64 2.22
16 36698.00 36698.00 36298.67 84.02 80.92 77.91 83.90 80.68 78.06 5.51 3.57 2.29
17 36020.50 36041.03 36060.35 81.41 79.54 77.64 81.94 80.03 78.07 3.16 2.42 1.87
18 36698.00 35935.26 35608.20 84.60 80.33 77.24 84.48 80.73 77.75 5.38 3.26 2.19
19 29049.02 28911.82 28779.04 80.70 76.58 73.95 80.89 76.87 74.31 3.61 2.10 1.39
20 36241.50 36268.35 36280.63 82.98 79.26 77.46 83.16 79.59 77.79 4.20 2.54 1.91
21 30517.69 30641.02 30959.14 81.83 78.73 76.95 81.82 78.56 76.96 3.37 2.17 1.62
22 29394.00 29221.51 29229.53 86.04 80.72 77.97 85.92 80.73 77.91 6.60 3.42 2.26
23 29768.56 29941.80 29928.44 80.05 78.37 76.86 79.88 78.10 76.56 2.92 2.15 1.72
24 36034.00 35480.67 35316.16 80.76 75.81 74.52 81.69 77.77 76.53 3.52 1.99 1.53
25 29560.00 29711.57 29704.81 81.77 78.91 77.63 81.58 78.68 77.35 3.28 2.11 1.70
26 29040.40 28900.60 28911.82 80.43 76.16 74.74 80.57 76.51 75.06 3.22 1.76 1.35
27 33100.59 31483.80 31014.47 86.58 79.48 75.22 89.09 83.46 79.96 8.12 3.80 2.30
28 36248.75 36275.18 36287.26 80.46 76.85 75.09 80.65 77.07 75.26 3.89 2.39 1.85
29 29572.15 29733.72 29726.00 81.35 78.48 76.98 81.16 78.14 76.70 3.55 2.23 1.83
30 34611.14 34329.14 33888.77 79.54 76.42 73.80 81.33 78.48 76.00 3.20 2.11 1.39
31 29001.11 28850.00 28876.54 84.95 80.67 77.40 85.13 80.90 77.73 5.37 3.15 2.12
32 29549.40 29543.06 29398.55 81.66 79.27 76.87 81.45 79.00 76.79 3.52 2.51 1.77
33 23220.50 23427.85 22844.76 86.05 81.25 79.85 86.09 81.60 79.47 6.27 3.46 2.67
34 36698.00 34986.24 34532.81 95.52 83.14 78.96 95.51 84.40 80.56 21.07 6.13 3.71
35 29394.00 29394.00 29233.27 82.37 78.22 75.56 82.22 77.99 75.67 4.47 2.52 1.69
36 36248.75 36060.35 36287.26 82.78 79.40 77.44 83.08 79.98 77.63 4.08 2.64 1.93
37 34872.00 33985.09 33736.92 82.18 78.17 74.98 83.50 79.83 76.84 4.80 2.90 1.88
38 36469.75 36483.18 36095.78 84.86 81.65 78.61 85.04 81.72 79.13 5.46 3.55 2.37
39 36262.36 36275.18 36287.26 80.11 78.31 76.49 80.36 78.53 76.67 3.02 2.33 1.81
40 36698.00 35812.67 34742.76 91.74 85.25 78.79 91.66 85.93 80.88 10.92 5.12 2.60
41 29394.00 29576.60 29567.90 85.35 80.95 78.08 85.28 80.75 77.82 6.00 3.29 2.20
42 36698.00 36248.75 36060.35 86.00 81.23 77.74 85.87 81.48 78.20 6.86 3.91 2.52
43 29915.71 29880.93 30015.62 83.98 80.11 77.15 83.83 79.92 77.01 4.87 3.03 2.03
44 36136.15 34341.76 33940.59 91.86 81.03 76.41 92.19 82.86 78.60 13.06 4.26 2.22
45 34549.76 34263.33 34007.05 77.94 74.90 71.77 81.25 78.70 76.12 3.72 2.70 1.95
46 36476.67 36095.78 36112.05 84.39 80.04 78.32 84.50 80.50 78.80 5.41 3.01 2.38
47 29955.85 29741.81 29726.00 84.64 80.96 78.18 84.51 80.74 77.92 4.98 3.16 2.17
48 35690.00 35205.69 34922.20 81.07 76.52 73.59 82.10 78.23 75.68 4.23 2.58 1.76
49 34669.11 34391.47 34450.62 78.63 75.49 73.70 80.18 77.38 75.64 3.00 2.03 1.55
50 35556.75 35409.06 35445.89 81.47 78.18 76.38 82.50 79.36 77.57 4.44 2.81 2.12

Avg. 33631.71 33273.31 33086.00 84.08 79.49 76.83 84.51 80.24 77.76 5.88 3.12 2.14
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Table B.10: Cost structures for all instances with different LTL rates.

Total expected cost (%) Fixed cost ($) Dispatching cost (%) LTL cost (%)
Instances Low LTL rate Medium LTL rate High LTL rate Low LTL rate Medium LTL rate High LTL rate Low LTL rate Medium LTL rate High LTL rate Low LTL rate Medium LTL rate High LTL rate

1 217285.26 219611.31 221106.89 18.37 19.13 19.78 74.71 75.37 75.96 6.92 5.50 4.26
2 238689.98 241260.39 242667.10 13.00 14.29 14.90 78.99 80.79 81.28 8.01 4.92 3.82
3 267413.26 268889.38 269994.72 14.26 14.64 15.03 81.39 81.63 81.78 4.35 3.73 3.19
4 194006.33 198683.05 201036.27 18.75 21.83 22.86 64.79 70.97 71.85 16.46 7.20 5.30
5 225312.14 228355.43 229921.80 15.43 16.97 17.71 75.05 78.14 78.65 9.52 4.90 3.64
6 166785.60 170019.04 171817.30 20.77 22.83 23.77 68.07 71.10 71.27 11.16 6.07 4.96
7 228651.95 230334.67 231441.04 14.62 15.52 15.82 79.71 80.64 80.68 5.67 3.84 3.50
8 250327.35 251774.80 252906.75 15.84 16.59 17.01 79.14 79.94 80.06 5.02 3.47 2.93
9 247249.39 248981.52 250249.78 17.21 18.11 18.51 76.88 77.76 77.83 5.91 4.13 3.66

10 174387.43 179616.39 181899.12 18.56 22.34 23.88 62.97 69.25 70.64 18.47 8.41 5.48
11 245416.65 247775.15 249207.80 17.49 18.34 18.98 74.62 76.64 77.47 7.88 5.03 3.55
12 184909.41 188483.94 190428.19 17.41 19.74 20.73 70.53 74.01 74.63 12.06 6.25 4.64
13 235455.69 237167.37 238324.96 17.85 18.77 19.21 76.18 77.27 77.71 5.97 3.96 3.07
14 205556.08 207812.61 209258.71 18.17 19.53 19.80 73.80 75.30 75.40 8.03 5.17 4.80
15 248188.72 250140.20 251401.50 16.48 17.62 17.82 76.79 78.40 78.40 6.73 3.99 3.77
16 230512.81 233010.28 234499.85 16.44 17.28 17.96 76.57 77.52 78.25 6.99 5.21 3.78
17 253068.20 254527.92 255636.82 14.47 14.85 15.24 81.17 81.36 81.47 4.36 3.79 3.29
18 298041.34 300175.38 301455.37 15.00 15.67 16.14 78.01 79.64 80.39 6.99 4.69 3.47
19 254949.36 256423.62 257440.25 13.04 13.86 14.38 81.96 82.86 83.19 5.00 3.28 2.43
20 305681.21 307374.23 308535.05 12.21 12.91 13.25 82.50 83.52 83.78 5.29 3.57 2.97
21 270412.90 271840.00 272818.33 13.38 14.08 14.62 81.98 82.56 82.59 4.64 3.36 2.79
22 189530.98 192179.59 193637.62 17.12 18.61 19.38 74.51 76.30 76.72 8.37 5.09 3.90
23 290211.61 291552.68 292525.66 11.05 11.43 11.66 85.10 85.39 85.51 3.85 3.18 2.83
24 265183.13 266643.81 267587.90 14.93 15.71 15.94 80.19 81.19 81.40 4.88 3.10 2.66
25 253183.04 254613.38 255684.30 15.89 16.64 16.93 79.45 79.98 80.02 4.66 3.38 3.05
26 223467.47 224691.81 225520.31 13.91 14.81 15.10 81.48 82.30 82.39 4.61 2.89 2.50
27 223100.17 226044.06 227706.88 17.47 18.85 19.66 72.96 76.04 76.80 9.58 5.11 3.54
28 239379.12 240940.82 242140.31 15.77 16.66 17.07 78.62 79.47 79.56 5.61 3.87 3.37
29 233994.07 235531.11 236548.12 15.11 15.90 16.19 79.87 80.52 80.49 5.02 3.59 3.32
30 287967.65 289372.50 290360.30 13.80 14.28 14.59 81.94 82.58 83.11 4.26 3.15 2.29
31 241130.50 243162.73 244413.94 13.60 14.55 15.22 79.50 80.85 81.28 6.90 4.60 3.49
32 245392.89 247026.45 248093.29 17.04 17.64 18.21 77.98 78.34 78.61 4.99 4.02 3.18
33 284362.78 286799.61 288292.64 12.54 13.62 13.88 79.88 81.72 82.09 7.58 4.66 4.03
34 179355.55 185686.83 188096.24 17.07 22.63 23.77 56.85 69.49 70.64 26.09 7.88 5.59
35 217565.34 219318.52 220436.45 14.66 15.67 16.24 79.27 80.42 80.77 6.06 3.91 2.99
36 270798.59 272455.06 273731.28 14.14 14.85 15.32 80.37 81.15 81.43 5.49 3.99 3.25
37 235593.74 237560.49 238792.75 15.89 16.41 17.02 77.97 79.33 79.84 6.15 4.26 3.13
38 201999.48 204269.02 205734.53 19.23 20.22 21.04 73.55 74.33 74.79 7.21 5.44 4.17
39 264122.55 265535.54 266639.59 14.46 14.83 15.21 81.16 81.37 81.51 4.37 3.80 3.28
40 167771.64 171428.26 173207.27 19.77 21.96 23.50 67.18 70.86 72.22 13.05 7.18 4.28
41 212476.26 214897.47 216272.93 13.07 14.22 14.82 79.59 81.11 81.58 7.34 4.67 3.60
42 230302.68 233021.47 234665.23 16.78 18.03 18.86 74.53 76.35 77.04 8.69 5.63 4.10
43 243079.50 244980.43 246246.34 14.41 15.28 16.03 79.13 80.16 80.53 6.46 4.56 3.44
44 171639.11 175511.65 177126.04 19.44 22.70 23.91 64.61 71.40 72.44 15.95 5.90 3.64
45 245904.89 247553.72 248826.99 15.81 16.35 16.91 78.95 79.35 79.62 5.24 4.29 3.47
46 218449.63 220507.30 221905.43 17.61 18.78 19.19 75.24 76.66 76.69 7.15 4.55 4.12
47 275001.21 276844.97 278060.98 11.89 12.54 13.07 81.78 82.95 83.47 6.33 4.51 3.46
48 259872.05 261676.96 262848.90 17.55 18.41 18.98 76.59 77.58 77.99 5.86 4.01 3.03
49 267761.75 269013.53 269957.24 15.41 15.97 16.38 80.20 80.70 80.80 4.39 3.33 2.82
50 277804.88 279543.29 280663.52 14.19 14.87 15.28 80.05 81.04 81.28 5.76 4.08 3.44

Avg. 237174.07 239412.39 240755.41 15.77 16.95 17.54 76.69 78.47 78.88 7.55 4.58 3.59
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Table B.11: Results for FCL, UF , UC , and LTL units with different values of T .

FCL (lbs) UF (%) UC (%) LTL units (%)
Instance T = 3 T = 4 T = 5 T = 3 T = 4 T = 5 T = 3 T = 4 T = 5 T = 3 T = 4 T = 5

1 36071.94 33122.72 33122.72 81.47 75.92 75.92 81.89 79.87 79.87 3.74 2.81 2.81
2 29759.20 29759.20 29759.20 82.00 81.91 81.91 81.73 81.70 81.70 3.53 3.56 3.56
3 34979.41 33501.89 33501.89 79.33 76.24 76.25 80.28 79.48 79.49 2.42 2.16 2.15
4 34872.00 33173.37 33588.27 84.66 82.40 83.79 85.15 84.67 85.55 5.42 4.96 5.51
5 33139.64 33139.64 33139.64 81.11 81.11 81.11 81.98 81.98 81.98 3.63 3.63 3.63
6 33238.21 33238.21 33238.21 79.42 79.42 79.42 81.56 81.56 81.56 4.17 4.17 4.17
7 29057.24 29057.24 28950.10 77.24 77.24 77.35 77.54 77.54 77.82 2.42 2.42 2.47
8 36268.35 36268.35 36268.35 77.82 77.82 77.82 78.18 78.18 78.18 2.17 2.17 2.17
9 33999.60 33999.60 33999.60 77.08 77.08 77.08 79.62 79.62 79.62 2.66 2.66 2.66

10 36698.00 36108.13 36108.13 85.72 84.50 84.49 85.51 84.80 84.80 6.27 5.54 5.55
11 34755.30 33425.38 33425.38 79.84 77.04 77.03 81.51 80.67 80.66 3.45 3.10 3.10
12 35605.39 36020.50 34583.88 82.46 83.73 82.02 83.18 84.15 83.23 4.52 5.11 4.52
13 35550.84 35432.42 35432.42 77.63 77.68 77.71 78.76 78.96 78.97 2.51 2.56 2.55
14 36483.18 35950.00 35869.03 80.30 78.84 78.96 80.36 79.61 79.78 3.33 2.88 2.93
15 33640.95 33640.95 33640.95 77.27 77.25 77.28 79.56 79.55 79.56 2.64 2.64 2.64
16 36698.00 36698.00 36698.00 80.92 80.92 80.92 80.68 80.68 80.68 3.57 3.57 3.57
17 36041.03 36041.03 36041.03 79.54 79.58 79.58 80.03 80.04 80.04 2.42 2.41 2.41
18 35935.26 35767.54 35767.54 80.33 78.74 78.74 80.73 79.22 79.22 3.26 2.69 2.69
19 28911.82 28970.27 28970.27 76.58 76.66 76.64 76.87 77.01 77.00 2.10 2.11 2.12
20 36268.35 35928.00 36268.35 79.26 79.32 79.23 79.59 79.94 79.58 2.54 2.67 2.55
21 30819.17 30819.17 31175.46 78.53 78.53 78.18 78.56 78.56 78.28 2.13 2.13 2.03
22 29221.51 29111.76 29111.76 80.72 80.94 80.94 80.73 81.12 81.12 3.42 3.49 3.49
23 29941.80 29941.80 29941.80 78.37 78.37 78.37 78.10 78.10 78.10 2.15 2.15 2.15
24 35480.67 35480.67 35480.67 75.81 75.81 75.81 77.77 77.77 77.77 1.99 1.99 1.99
25 29711.57 29301.22 29301.22 78.91 79.33 79.36 78.68 79.54 79.55 2.11 2.38 2.37
26 28900.60 28960.42 28960.42 76.16 76.03 76.03 76.51 76.38 76.38 1.76 1.71 1.71
27 31483.80 29014.55 28262.00 79.48 76.18 75.29 83.46 82.90 82.96 3.80 3.48 3.49
28 36275.18 35587.65 35504.29 76.85 76.87 76.99 77.07 78.08 78.32 2.39 2.71 2.74
29 29733.72 29131.00 29066.59 78.48 77.70 77.78 78.14 77.85 77.97 2.23 2.20 2.22
30 34329.14 34329.14 34329.14 76.42 76.42 76.42 78.48 78.48 78.48 2.11 2.11 2.11
31 28850.00 26501.00 26501.00 80.67 75.48 75.48 80.90 79.52 79.52 3.15 2.63 2.63
32 29543.06 29398.73 29692.12 79.27 79.35 78.98 79.00 79.27 78.66 2.51 2.56 2.31
33 22864.49 23531.23 20732.97 81.96 80.23 76.96 81.60 81.11 80.01 3.60 3.29 2.91
34 34986.24 32943.33 32534.65 83.14 81.03 79.75 84.40 84.34 83.53 6.13 5.99 5.38
35 29394.00 29394.00 29394.00 78.22 78.22 78.22 77.99 77.99 77.99 2.52 2.52 2.52
36 36060.35 35928.00 36060.35 79.40 79.31 79.45 79.98 80.08 79.99 2.64 2.71 2.62
37 33985.09 33985.09 34402.46 78.17 78.17 77.52 79.83 79.83 79.15 2.90 2.90 2.63
38 36483.18 35950.00 35950.00 81.65 80.15 80.15 81.72 80.98 80.98 3.55 3.13 3.13
39 36275.18 35747.94 35747.94 78.31 76.60 76.60 78.53 77.76 77.76 2.33 2.07 2.07
40 35812.67 35623.88 35623.88 85.25 83.66 83.66 85.93 84.63 84.63 5.12 4.33 4.33
41 29576.60 29111.76 29111.76 80.95 80.09 80.09 80.75 80.36 80.36 3.29 3.11 3.11
42 36248.75 35879.88 35468.12 81.23 81.47 79.82 81.48 82.09 81.12 3.91 4.11 3.60
43 29880.93 29880.93 29880.93 80.11 80.11 80.11 79.92 79.92 79.92 3.03 3.03 3.03
44 34341.76 34341.76 34341.76 81.03 81.02 81.06 82.86 82.84 82.86 4.26 4.27 4.25
45 34263.33 34263.33 34263.33 74.90 74.90 74.89 78.70 78.70 78.70 2.70 2.70 2.70
46 36095.78 35970.78 35970.78 80.04 80.10 80.10 80.50 80.57 80.57 3.01 3.02 3.02
47 29741.81 29741.81 29741.81 80.96 80.96 80.96 80.74 80.74 80.74 3.16 3.16 3.16
48 35205.69 35205.69 35018.41 76.52 76.53 76.65 78.23 78.23 78.57 2.58 2.58 2.70
49 34391.47 28510.26 28510.26 75.49 66.85 66.85 77.38 75.89 75.89 2.03 1.65 1.65
50 35409.06 35409.06 35623.88 78.18 78.15 77.93 79.36 79.36 78.98 2.81 2.82 2.69

Avg. 33265.61 32764.77 32681.53 79.50 78.64 78.47 80.24 80.04 79.96 3.12 3.01 2.97
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Table B.12: Cost structures for all instances with different values of T .

Total expected cost ($) Fixed cost (%) Dispatching cost (%) LTL cost (%)
Instances T = 3 T = 4 T = 5 T = 3 T = 4 T = 5 T = 3 T = 4 T = 5 T = 3 T = 4 T = 5

1 219611.31 219282.40 219281.59 19.13 19.21 19.21 75.37 76.65 76.65 5.50 4.14 4.14
2 241260.39 241240.75 241240.75 14.29 14.29 14.29 80.79 80.74 80.74 4.92 4.97 4.97
3 268889.38 268862.93 268853.13 14.64 14.70 14.70 81.63 81.97 81.98 3.73 3.33 3.32
4 198683.05 198515.13 198507.67 21.83 21.65 21.41 70.97 71.76 71.27 7.20 6.59 7.32
5 228355.43 228355.43 228355.43 16.97 16.97 16.97 78.14 78.14 78.14 4.90 4.90 4.90
6 170019.04 170019.04 170019.04 22.83 22.83 22.83 71.10 71.10 71.10 6.07 6.07 6.07
7 230334.67 230334.67 230377.56 15.52 15.52 15.45 80.64 80.64 80.65 3.84 3.84 3.91
8 251774.80 251774.80 251774.80 16.59 16.59 16.59 79.94 79.94 79.94 3.47 3.47 3.47
9 248981.52 248981.52 248981.52 18.11 18.11 18.11 77.76 77.76 77.76 4.13 4.13 4.13

10 179616.39 179526.51 179531.86 22.34 22.62 22.62 69.25 69.95 69.94 8.41 7.43 7.44
11 247775.15 247515.04 247518.54 18.34 18.40 18.40 76.64 77.09 77.08 5.03 4.51 4.52
12 188483.94 188511.92 188526.78 19.74 19.40 19.70 74.01 73.54 74.06 6.25 7.06 6.24
13 237167.37 237145.98 237136.58 18.77 18.69 18.69 77.27 77.27 77.28 3.96 4.04 4.03
14 207812.61 207760.19 207704.29 19.53 19.77 19.74 75.30 75.75 75.71 5.17 4.48 4.55
15 250140.20 250141.94 250118.11 17.62 17.62 17.62 78.40 78.39 78.40 3.99 3.99 3.98
16 233010.28 233010.28 233010.28 17.28 17.28 17.28 77.52 77.52 77.52 5.21 5.21 5.21
17 254527.92 254519.43 254512.90 14.85 14.85 14.85 81.36 81.38 81.37 3.79 3.78 3.78
18 300175.38 300177.35 300176.69 15.67 15.94 15.94 79.64 80.19 80.19 4.69 3.87 3.87
19 256423.62 256343.75 256347.76 13.86 13.85 13.85 82.86 82.85 82.84 3.28 3.30 3.31
20 307374.23 307404.90 307365.03 12.91 12.79 12.92 83.52 83.47 83.50 3.57 3.74 3.58
21 271845.04 271845.04 271868.12 14.21 14.21 14.48 82.50 82.50 82.39 3.29 3.29 3.13
22 192179.59 192016.94 192016.94 18.61 18.52 18.52 76.30 76.30 76.30 5.09 5.19 5.19
23 291552.68 291552.68 291552.68 11.43 11.43 11.43 85.39 85.39 85.39 3.18 3.18 3.18
24 266643.81 266643.81 266643.81 15.71 15.71 15.71 81.19 81.19 81.19 3.10 3.10 3.10
25 254613.38 254523.50 254510.86 16.64 16.33 16.33 79.98 79.85 79.88 3.38 3.82 3.79
26 224691.81 224659.47 224646.59 14.81 14.80 14.80 82.30 82.39 82.39 2.89 2.81 2.80
27 226044.06 225767.69 225699.97 18.85 18.79 18.65 76.04 76.54 76.65 5.11 4.68 4.70
28 240940.82 240924.55 240885.16 16.66 16.24 16.21 79.47 79.36 79.34 3.87 4.39 4.45
29 235531.11 235438.63 235328.76 15.90 15.79 15.74 80.52 80.66 80.68 3.59 3.54 3.58
30 289372.50 289372.50 289372.50 14.28 14.28 14.28 82.58 82.58 82.58 3.15 3.15 3.15
31 243162.73 242646.71 242646.71 14.55 14.50 14.50 80.85 81.66 81.66 4.60 3.84 3.84
32 247026.45 247021.52 247013.83 17.64 17.58 17.82 78.34 78.31 78.47 4.02 4.11 3.71
33 286786.59 286761.46 286443.10 13.46 13.69 13.26 81.70 81.88 82.82 4.84 4.43 3.92
34 185686.83 185546.44 185558.50 22.63 22.38 22.64 69.49 69.92 70.44 7.88 7.70 6.92
35 219318.52 219318.52 219318.52 15.67 15.67 15.67 80.42 80.42 80.42 3.91 3.91 3.91
36 272455.06 272470.91 272438.09 14.85 14.80 14.86 81.15 81.11 81.19 3.99 4.09 3.96
37 237560.49 237560.49 237536.92 16.41 16.41 16.80 79.33 79.33 79.34 4.26 4.26 3.86
38 204269.02 204170.28 204170.28 20.22 20.44 20.44 74.33 74.75 74.75 5.44 4.81 4.81
39 265535.54 265500.87 265501.50 14.83 14.99 14.99 81.37 81.64 81.64 3.80 3.37 3.37
40 171428.26 171423.08 171423.08 21.96 22.44 22.44 70.86 71.49 71.49 7.18 6.07 6.07
41 214897.47 214935.62 214935.62 14.22 14.18 14.18 81.11 81.40 81.40 4.67 4.42 4.42
42 233021.47 232915.18 232896.20 18.03 17.75 18.09 76.35 76.34 76.73 5.63 5.91 5.18
43 244980.43 244980.43 244980.43 15.28 15.28 15.28 80.16 80.16 80.16 4.56 4.56 4.56
44 175511.65 175510.68 175499.03 22.70 22.70 22.70 71.40 71.38 71.41 5.90 5.92 5.89
45 247553.72 247553.72 247558.89 16.35 16.35 16.35 79.35 79.35 79.35 4.29 4.29 4.30
46 220507.30 220402.40 220402.40 18.78 18.74 18.74 76.66 76.69 76.69 4.55 4.57 4.57
47 276844.97 276844.97 276844.97 12.54 12.54 12.54 82.95 82.95 82.95 4.51 4.51 4.51
48 261676.96 261676.49 261675.42 18.41 18.41 18.23 77.58 77.59 77.58 4.01 4.00 4.19
49 269013.53 268097.46 268097.46 15.97 15.67 15.67 80.70 81.62 81.62 3.33 2.71 2.71
50 279543.29 279526.78 279509.92 14.87 14.87 15.04 81.04 81.03 81.06 4.08 4.09 3.91

Avg. 239412.24 239340.66 239326.33 16.95 16.93 16.95 78.47 78.64 78.68 4.58 4.43 4.37
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Table B.13: Results for FCL, UF , UC and LTL units with different demand parameters.

FCL (lbs) UF (%) UC (%) LTL units (%)
Instance (L, L) (L, H) (H, L) (H, H) (L, L) (L, H) (H, L) (H, H) (L, L) (L, H) (H, L) (H, H) (L, L) (L, H) (H, L) (H, H)

1 33873.44 33122.72 33827.52 32846.09 82.88 75.92 84.82 77.55 86.28 79.87 88.35 82.07 1.86 2.81 1.62 2.43
2 29778.42 29759.20 29726.00 29704.81 87.34 81.91 89.97 83.70 87.08 81.70 89.72 83.43 2.00 3.56 1.96 2.62
3 34004.67 33501.89 34246.74 33713.51 81.95 76.25 84.18 77.88 84.63 79.49 87.22 81.08 1.25 2.15 1.16 1.93
4 34784.63 33588.27 35064.63 33654.00 89.33 83.79 90.90 84.96 90.53 85.55 91.97 86.98 3.30 5.51 2.77 4.08
5 33654.67 33139.64 34089.43 33127.16 87.72 81.11 89.25 83.71 88.35 81.98 89.87 84.49 2.56 3.63 2.07 3.18
6 34402.46 33238.21 34872.00 33710.00 86.15 79.42 88.73 82.45 87.95 81.56 90.25 84.56 2.13 4.17 2.02 2.97
7 29031.33 28950.10 29236.84 29246.67 84.86 77.35 87.23 81.33 85.35 77.82 87.36 81.40 1.37 2.47 1.22 1.93
8 36226.77 36268.35 36292.22 36505.79 85.14 77.82 87.34 81.59 85.63 78.18 87.78 81.68 1.52 2.17 1.30 2.14
9 34557.89 33999.60 34921.72 33844.47 84.12 77.08 86.01 79.13 86.24 79.62 87.90 82.00 1.71 2.66 1.31 2.16

10 36089.10 36108.13 36173.67 36187.84 89.84 84.49 92.06 87.96 90.26 84.80 92.40 88.26 3.04 5.55 2.94 4.70
11 34669.31 33425.38 34505.80 33442.27 84.43 77.03 86.21 78.61 86.76 80.66 88.84 82.37 1.93 3.10 1.69 2.37
12 35350.25 34583.88 34806.42 35592.15 88.03 82.02 89.87 84.96 89.01 83.23 90.99 85.64 2.63 4.52 2.36 3.51
13 35486.28 35432.42 35812.93 35466.98 84.27 77.71 87.66 80.10 85.59 78.97 88.65 81.49 1.42 2.55 1.52 1.88
14 35818.79 35869.03 35934.47 35972.65 85.01 78.96 87.86 82.32 86.06 79.78 88.78 83.07 1.81 2.93 1.75 2.84
15 34979.41 33640.95 35211.64 34330.74 85.73 77.28 88.07 80.64 87.01 79.56 89.29 82.66 2.11 2.64 1.91 2.63
16 36698.00 36698.00 36698.00 36698.00 87.93 80.92 90.32 84.38 87.68 80.68 90.12 84.17 2.61 3.57 2.49 3.43
17 35998.65 36041.03 36095.78 36127.47 85.00 79.58 87.20 81.65 85.64 80.04 87.79 82.13 1.56 2.41 1.34 2.24
18 35689.17 35767.54 35833.29 36039.27 86.16 78.74 88.03 82.93 86.85 79.22 88.66 83.34 1.83 2.69 1.52 2.54
19 28927.90 28970.27 28988.70 29021.12 84.44 76.64 87.32 79.87 84.89 77.00 87.77 80.24 1.40 2.12 1.35 1.76
20 35879.88 36268.35 35990.43 35839.44 84.45 79.23 87.16 81.75 85.38 79.58 87.85 82.72 1.46 2.55 1.28 2.36
21 30931.68 31175.46 30367.87 29698.33 85.21 78.18 86.74 81.18 85.12 78.28 86.56 81.01 1.52 2.03 1.12 2.08
22 29089.47 29111.76 29136.84 29147.79 87.69 80.94 88.67 83.75 87.96 81.12 88.90 83.94 2.51 3.49 1.80 3.18
23 29986.22 29941.80 29903.58 29870.35 84.85 78.37 87.30 80.86 84.46 78.10 86.94 80.61 1.34 2.15 1.19 1.87
24 35785.00 35480.67 35908.38 35602.40 83.33 75.81 86.07 78.77 84.80 77.77 87.25 80.60 1.58 1.99 1.35 2.08
25 29297.00 29301.22 29310.31 29316.40 84.77 79.36 87.08 80.52 84.95 79.55 87.25 80.62 1.50 2.37 1.31 1.98
26 28843.28 28960.42 28916.71 28955.67 84.22 76.03 87.01 79.67 84.97 76.38 87.54 80.09 1.32 1.71 1.16 1.53
27 30428.25 28262.00 31184.43 29034.04 82.00 75.29 83.66 76.48 88.48 82.96 89.82 84.35 2.38 3.49 1.87 2.93
28 36108.13 35504.29 36187.84 35683.35 84.14 76.99 86.63 79.89 84.58 78.32 87.03 81.09 1.35 2.74 1.19 1.95
29 29042.63 29066.59 29242.89 29111.53 83.80 77.78 86.70 79.69 84.10 77.97 86.93 79.88 1.29 2.22 1.18 1.77
30 34764.59 34329.14 35199.74 34785.05 82.81 76.42 85.34 79.02 84.59 78.48 86.87 80.94 1.23 2.11 1.05 1.78
31 27368.90 26501.00 27178.09 26278.46 83.29 75.48 84.73 77.47 85.94 79.52 87.94 81.93 1.66 2.63 1.39 2.24
32 29399.04 29692.12 29531.81 29522.14 86.04 78.98 88.88 82.16 85.95 78.66 88.54 81.89 1.43 2.31 1.40 1.94
33 21255.24 20732.97 21405.25 21046.52 84.81 76.96 86.65 80.43 87.04 80.01 88.69 83.08 1.82 2.91 1.46 2.35
34 34388.00 32534.65 34445.20 33929.14 87.96 79.75 89.15 84.33 90.16 83.53 91.51 87.12 3.42 5.38 2.84 4.64
35 29394.00 29394.00 29142.43 29157.84 85.79 78.22 87.28 81.06 85.55 77.99 87.57 81.26 1.87 2.52 1.47 2.24
36 36020.50 36060.35 36112.05 35795.85 85.26 79.45 87.63 80.87 85.94 79.99 88.28 81.87 1.65 2.62 1.49 2.24
37 35284.32 34402.46 35480.67 34637.90 86.07 77.52 88.17 81.74 87.11 79.15 89.13 83.25 1.92 2.63 1.66 2.50
38 35904.67 35950.00 36009.05 36043.50 86.48 80.15 89.24 83.94 87.51 80.98 90.16 84.69 2.22 3.13 2.18 3.33
39 35879.88 35747.94 35722.70 35795.85 84.07 76.60 86.65 79.85 85.20 77.76 87.96 80.88 1.50 2.07 1.41 1.93
40 36241.50 35623.88 36121.37 35967.60 89.98 83.66 91.01 85.86 90.30 84.63 91.44 86.52 3.28 4.33 2.54 3.87
41 29089.47 29111.76 29136.84 29152.92 87.21 80.09 88.10 82.02 87.57 80.36 88.44 82.29 2.14 3.11 1.48 2.23
42 35388.77 35468.12 35970.78 36187.84 86.18 79.82 88.20 84.19 87.78 81.12 88.90 84.56 2.14 3.60 1.58 3.09
43 29915.71 29880.93 29841.18 29815.38 86.30 80.11 88.48 82.44 86.00 79.92 88.21 82.24 1.65 3.03 1.44 2.31
44 34879.25 34341.76 35003.41 34831.13 86.81 81.06 89.10 83.94 88.42 82.86 90.63 85.59 2.52 4.25 2.34 3.69
45 34927.33 34263.33 35160.32 34437.24 82.54 74.89 84.83 78.00 85.63 78.70 87.66 81.78 1.45 2.70 1.22 1.98
46 35928.00 35970.78 36026.72 36074.67 86.06 80.10 88.99 82.14 86.66 80.57 89.64 82.58 1.88 3.02 1.98 2.46
47 30330.41 29741.81 29704.81 29832.24 86.63 80.96 88.07 81.52 86.23 80.74 87.74 81.16 1.76 3.16 1.39 2.02
48 35690.00 35018.41 35660.10 35566.98 84.71 76.65 86.61 80.59 85.94 78.57 87.88 81.95 1.58 2.70 1.30 2.09
49 30380.70 28510.26 31502.09 29081.02 76.42 66.85 78.99 69.83 84.18 75.89 86.09 78.91 1.15 1.65 0.90 1.32
50 35991.16 35623.88 35908.38 35948.87 86.40 77.93 86.69 81.32 86.92 78.98 87.51 82.07 2.13 2.69 1.43 2.46

Avg. 33076.68 32681.53 33175.00 32827.57 85.33 78.47 87.46 81.22 86.54 79.96 88.61 82.65 1.89 2.97 1.63 2.52
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Table B.14: Cost structures for all instances with different demand parameters.

Total expected cost ($) Fixed cost (%) Dispatching cost (%) LTL cost (%)
Instance (L, L) (L, H) (H, L) (H, H) (L, L) (L, H) (H, L) (H, H) (L, L) (L, H) (H, L) (H, H) (L, L) (L, H) (H, L) (H, H)

1 216610.90 219281.59 256426.13 260824.18 18.47 19.21 18.18 18.84 78.74 76.65 79.37 77.55 2.79 4.14 2.45 3.61
2 236844.50 241240.75 280705.69 284235.22 13.85 14.29 13.48 14.20 83.32 80.74 83.74 82.12 2.83 4.97 2.78 3.68
3 260206.63 268853.13 308470.89 312205.92 14.18 14.70 13.88 14.53 83.87 81.98 84.29 82.48 1.96 3.32 1.83 2.99
4 194283.97 198507.67 229928.39 234059.33 21.55 21.41 21.53 21.62 73.98 71.27 74.69 72.91 4.47 7.32 3.78 5.47
5 223298.47 228355.43 264457.10 268513.54 16.45 16.97 16.57 16.64 80.04 78.14 80.58 79.05 3.50 4.90 2.84 4.31
6 168088.10 170019.04 198995.22 202318.51 22.83 22.83 22.64 22.88 73.99 71.10 74.32 72.74 3.18 6.07 3.03 4.38
7 227784.44 230377.56 269710.42 274153.60 14.56 15.45 14.32 15.03 83.23 80.65 83.70 81.88 2.21 3.91 1.98 3.09
8 244770.22 251774.80 289848.69 294324.50 15.53 16.59 15.27 16.03 82.00 79.94 82.60 80.53 2.47 3.47 2.12 3.44
9 245371.34 248981.52 290413.99 295481.32 17.34 18.11 17.24 17.82 79.94 77.76 80.67 78.79 2.72 4.13 2.09 3.39

10 176061.70 179531.86 208350.65 211959.98 22.33 22.62 21.97 22.21 73.50 69.94 73.97 71.40 4.17 7.44 4.06 6.39
11 239188.96 247518.54 283376.18 287342.26 17.94 18.40 17.63 18.30 79.20 77.08 79.85 78.22 2.86 4.52 2.52 3.48
12 186789.97 188526.78 221013.09 225165.50 19.19 19.70 18.92 19.55 77.10 74.06 77.73 75.55 3.72 6.24 3.36 4.90
13 236217.10 237136.58 279310.81 285117.24 17.86 18.69 17.40 18.42 79.85 77.28 80.13 78.59 2.29 4.03 2.46 2.99
14 204120.20 207704.29 241612.61 245553.38 18.91 19.74 18.47 19.15 78.23 75.71 78.74 76.40 2.86 4.55 2.79 4.45
15 246506.00 250118.11 291739.34 297027.45 16.73 17.62 16.42 17.20 80.03 78.40 80.63 78.80 3.24 3.98 2.95 4.00
16 224339.96 233010.28 265980.51 269072.13 16.36 17.28 16.03 16.72 79.77 77.52 80.25 78.23 3.87 5.21 3.72 5.05
17 249525.60 254512.90 295717.13 299464.78 14.21 14.85 13.97 14.57 83.31 81.37 83.89 81.90 2.48 3.78 2.14 3.53
18 294374.83 300176.69 348701.96 353667.63 14.99 15.94 14.86 15.47 82.33 80.19 82.91 80.85 2.67 3.87 2.23 3.68
19 250372.79 256347.76 296701.71 300583.08 12.87 13.85 12.52 13.45 84.90 82.84 85.32 83.77 2.22 3.31 2.16 2.78
20 300697.15 307365.03 356796.21 359716.34 12.28 12.92 12.01 12.48 85.65 83.50 86.16 84.18 2.07 3.58 1.82 3.33
21 267980.17 271868.12 317550.28 321777.24 13.44 14.48 13.04 13.22 84.17 82.39 85.21 83.55 2.38 3.13 1.76 3.23
22 187138.71 192016.94 221401.38 225432.88 17.59 18.52 17.64 18.10 78.60 76.30 79.62 77.12 3.81 5.19 2.74 4.77
23 286056.84 291552.68 339367.11 342525.52 10.81 11.43 10.52 11.13 87.18 85.39 87.69 86.09 2.01 3.18 1.78 2.78
24 256431.53 266643.81 304158.07 307212.11 14.77 15.71 14.50 15.26 82.74 81.19 83.37 81.49 2.49 3.10 2.14 3.25
25 253534.06 254510.86 299793.26 305939.39 15.68 16.33 15.38 16.25 81.89 79.88 82.47 80.57 2.43 3.79 2.15 3.18
26 220728.90 224646.59 261300.63 265550.63 13.60 14.80 13.29 14.26 84.19 82.39 84.76 83.21 2.21 2.80 1.94 2.52
27 223664.89 225699.97 264945.56 269207.05 18.52 18.65 18.60 18.78 78.23 76.65 78.83 77.26 3.24 4.70 2.57 3.96
28 240488.04 240885.16 284610.54 289324.65 15.59 16.21 15.27 15.97 82.17 79.34 82.74 80.83 2.24 4.45 1.99 3.20
29 230036.31 235328.76 272307.48 276677.73 14.99 15.74 14.68 15.55 82.90 80.68 83.37 81.58 2.11 3.58 1.95 2.87
30 283585.34 289372.50 336217.10 340096.96 13.74 14.28 13.64 14.17 84.40 82.58 84.76 83.16 1.86 3.15 1.60 2.67
31 240925.39 242646.71 285323.57 289754.98 13.88 14.50 13.64 14.18 83.66 81.66 84.28 82.51 2.46 3.84 2.08 3.31
32 243377.14 247013.83 288226.02 292992.18 16.75 17.82 16.34 17.28 80.90 78.47 81.35 79.58 2.35 3.71 2.31 3.14
33 285311.43 286443.10 338144.83 342770.83 12.66 13.26 12.56 13.03 84.85 82.82 85.43 83.78 2.49 3.92 2.01 3.18
34 185200.81 185558.50 218932.86 223666.97 22.36 22.64 22.37 22.51 73.14 70.44 73.87 71.44 4.50 6.92 3.76 6.04
35 217990.16 219318.52 258289.00 261575.98 14.64 15.67 14.44 15.20 82.41 80.42 83.23 81.29 2.96 3.91 2.33 3.51
36 268190.96 272438.09 317378.76 322911.49 14.18 14.86 13.90 14.61 83.29 81.19 83.80 82.00 2.53 3.96 2.30 3.40
37 231107.05 237536.92 273919.11 277358.16 16.03 16.80 15.87 16.24 81.09 79.34 81.63 80.06 2.87 3.86 2.49 3.70
38 201580.04 204170.28 238313.27 243261.31 19.49 20.44 19.06 19.68 77.03 74.75 77.51 75.16 3.48 4.81 3.43 5.16
39 260777.39 265501.50 308589.04 313782.48 13.99 14.99 13.65 14.55 83.52 81.64 84.00 82.29 2.49 3.37 2.35 3.16
40 170478.57 171423.08 201423.61 206064.35 21.81 22.44 21.81 22.29 73.50 71.49 74.54 72.24 4.68 6.07 3.65 5.47
41 211298.10 214935.62 250343.52 253843.66 13.36 14.18 13.38 14.08 83.55 81.40 84.48 82.72 3.09 4.42 2.15 3.20
42 227851.92 232896.20 269912.93 273791.97 17.32 18.09 17.29 17.69 79.53 76.73 80.38 77.81 3.15 5.18 2.33 4.50
43 238511.80 244980.43 282731.76 286225.28 14.68 15.28 14.37 15.04 82.79 80.16 83.40 81.45 2.53 4.56 2.22 3.51
44 171835.65 175499.03 203123.19 207480.75 22.49 22.70 22.19 22.62 73.94 71.41 74.48 72.22 3.57 5.89 3.33 5.16
45 246657.26 247558.89 291847.22 297271.70 15.63 16.35 15.42 16.05 82.01 79.35 82.59 80.77 2.35 4.30 1.99 3.18
46 216728.02 220402.40 256632.66 260710.93 17.97 18.74 17.47 18.55 79.13 76.69 79.45 77.70 2.90 4.57 3.08 3.75
47 273158.18 276844.97 324239.79 326791.22 12.27 12.54 11.95 12.73 85.19 82.95 86.02 84.37 2.54 4.51 2.03 2.90
48 260428.85 261675.42 307902.73 314467.70 17.51 18.23 17.24 18.00 79.98 77.58 80.68 78.73 2.51 4.19 2.08 3.27
49 263819.24 268097.46 312543.61 317019.14 14.80 15.67 14.78 15.37 83.28 81.62 83.71 82.45 1.92 2.71 1.51 2.18
50 277211.76 279509.92 328444.70 333115.28 14.07 15.04 14.12 14.70 82.79 81.06 83.75 81.69 3.14 3.91 2.13 3.61

Avg. 235350.75 239326.33 278723.41 282987.73 16.26 16.95 16.03 16.64 80.90 78.68 81.50 79.62 2.84 4.37 2.47 3.73
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Table B.15: Results for FCL, UF , UC , and LTL units with different demand distributions.

FCL (lbs) UF (%) UC (%) LTL units (%)
Instance Normal Uniform Gamma Normal Uniform Gamma Normal Uniform Gamma Normal Uniform Gamma

1 33122.72 32479.24 32268.30 75.92 73.08 75.23 79.87 77.52 80.04 2.89 1.82 3.71
2 29759.20 29741.81 29759.20 81.91 79.10 81.32 81.70 78.93 81.12 3.69 2.41 4.46
3 33501.89 33506.22 32774.67 76.25 73.71 74.52 79.49 76.32 78.64 2.20 1.30 2.80
4 33588.27 32701.90 33275.51 83.79 79.63 82.24 85.55 81.91 84.60 5.83 4.71 6.07
5 33139.64 32863.40 33430.42 81.11 78.21 82.59 81.98 79.25 83.47 3.77 2.99 5.01
6 33238.21 33228.60 33622.63 79.42 78.62 80.14 81.56 80.97 82.42 4.35 2.87 4.73
7 28950.10 29229.53 29225.62 77.35 76.87 77.88 77.82 76.92 77.97 2.53 1.24 3.21
8 36268.35 36280.63 36255.33 77.82 76.26 78.20 78.18 76.56 78.57 2.22 1.25 3.56
9 33999.60 33443.52 33426.88 77.08 74.44 75.64 79.62 77.34 78.83 2.73 1.59 2.94

10 36108.13 36126.00 36089.10 84.49 82.06 86.93 84.80 82.31 87.29 5.88 4.93 7.51
11 33425.38 33507.20 32313.61 77.03 76.13 73.85 80.66 79.58 78.73 3.20 2.02 3.71
12 34583.88 34644.29 34955.45 82.02 81.11 83.68 83.23 82.15 84.68 4.73 3.99 5.20
13 35432.42 34947.90 35392.97 77.71 74.63 77.05 78.97 76.38 78.39 2.62 1.63 2.93
14 35869.03 35892.06 35869.03 78.96 78.07 78.63 79.78 78.82 79.46 3.02 2.34 3.60
15 33640.95 33900.67 34138.00 77.28 76.00 78.71 79.56 78.17 80.59 2.71 1.78 3.80
16 36698.00 36698.00 36698.00 80.92 79.19 81.91 80.68 78.97 81.70 3.70 3.17 4.82
17 36041.03 36078.57 36078.57 79.58 76.92 76.51 80.04 77.35 76.94 2.47 1.33 2.54
18 35767.54 35973.40 35743.05 78.74 77.68 79.34 79.22 78.03 79.81 2.77 1.95 3.93
19 28970.27 28979.69 28950.10 76.64 75.79 77.81 77.00 76.09 78.20 2.16 1.09 2.54
20 36268.35 35970.78 35713.18 79.23 76.93 78.44 79.58 77.42 79.45 2.62 1.45 4.04
21 31175.46 30922.74 30641.02 78.18 75.21 77.96 78.28 75.36 77.94 2.07 1.19 2.87
22 29111.76 29118.48 29111.76 80.94 79.09 80.64 81.12 79.22 80.84 3.61 2.49 3.83
23 29941.80 29750.29 29941.80 78.37 76.69 77.64 78.10 76.50 77.36 2.20 1.37 2.56
24 35480.67 35513.57 35838.71 75.81 73.62 78.07 77.77 75.37 79.31 2.03 1.18 2.82
25 29301.22 29306.90 29303.19 79.36 76.08 78.04 79.55 76.21 78.13 2.43 1.16 2.39
26 28960.42 28905.86 28894.51 76.03 75.47 76.16 76.38 75.84 76.54 1.74 0.90 2.60
27 28262.00 26321.06 27506.30 75.29 70.66 73.03 82.96 79.43 81.60 3.62 2.52 3.86
28 35504.29 36158.69 36142.82 76.99 76.06 77.88 78.32 76.30 78.15 2.82 1.47 2.89
29 29066.59 28767.65 28916.04 77.78 75.41 75.66 77.97 76.26 76.49 2.27 1.21 2.64
30 34329.14 33514.21 34329.14 76.42 72.89 74.57 78.48 75.29 76.77 2.16 1.37 2.86
31 26501.00 25947.02 26123.65 75.48 72.23 74.36 79.52 76.70 79.09 2.70 1.60 3.03
32 29692.12 29537.22 29692.12 78.98 76.87 79.57 78.66 76.65 79.19 2.37 1.60 2.96
33 20732.97 20575.81 20518.56 76.96 75.13 76.63 80.01 78.31 80.05 2.99 1.98 3.41
34 32534.65 32452.00 33375.37 79.75 78.88 82.45 83.53 82.73 85.57 5.69 5.22 6.97
35 29394.00 29131.00 29118.48 78.22 77.30 78.99 77.99 77.50 79.23 2.58 1.49 2.42
36 36060.35 35171.28 36060.35 79.45 75.64 78.35 79.99 77.45 78.92 2.69 1.72 3.40
37 34402.46 33539.51 33985.09 77.52 75.84 77.58 79.15 77.71 79.40 2.70 1.65 3.15
38 35950.00 35990.43 35950.00 80.15 77.36 80.51 80.98 78.06 81.32 3.23 1.91 4.14
39 35747.94 35774.33 35666.97 76.60 74.12 75.89 77.76 75.23 76.99 2.11 1.12 2.63
40 35623.88 35284.22 35623.88 83.66 79.71 83.44 84.63 81.06 84.42 4.52 3.78 5.83
41 29111.76 29567.90 29111.76 80.09 78.52 79.55 80.36 78.31 79.82 3.21 1.94 3.82
42 35468.12 35928.00 35879.88 79.82 78.08 81.08 81.12 78.61 81.72 3.73 2.35 4.60
43 29880.93 29860.21 29880.93 80.11 77.67 79.92 79.92 77.53 79.74 3.13 1.69 3.37
44 34341.76 33991.71 34270.36 81.06 79.17 81.31 82.86 81.20 83.22 4.44 3.62 5.33
45 34263.33 33814.84 34060.44 74.89 73.51 75.81 78.70 77.53 79.84 2.78 1.58 3.08
46 35970.78 35990.43 35970.78 80.10 78.33 80.32 80.57 78.75 80.82 3.11 2.46 3.60
47 29741.81 29399.04 29399.27 80.96 76.80 79.13 80.74 76.86 79.18 3.26 1.60 3.57
48 35018.41 34922.20 35205.69 76.65 74.21 77.12 78.57 76.12 78.84 2.78 1.43 3.51
49 28510.26 27301.84 27894.33 66.85 65.50 66.51 75.89 74.77 75.97 1.68 0.56 1.90
50 35623.88 35654.57 35409.06 77.93 77.14 78.22 78.98 78.04 79.52 2.76 1.93 3.46

Avg. 32681.53 32486.13 32596.04 78.47 76.35 78.34 79.96 77.92 79.94 3.07 2.04 3.69
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Table B.16: Cost structures for all instances with different demand distributions.

Total expected cost ($) Fixed cost (%) Dispatching cost (%) LTL cost (%)
Instance Normal Uniform Gamma Normal Uniform Gamma Normal Uniform Gamma Normal Uniform Gamma

1 219281.59 223152.99 222797.34 19.21 19.82 18.74 76.65 77.56 76.00 4.14 2.62 5.26
2 241240.75 241565.60 242229.42 14.29 14.97 14.24 80.74 81.74 79.83 4.97 3.29 5.93
3 268853.13 263950.84 263051.15 14.70 15.40 14.62 81.98 82.62 81.19 3.32 1.98 4.19
4 198507.67 196072.18 195342.37 21.41 22.15 21.49 71.27 71.91 70.93 7.32 5.94 7.58
5 228355.43 224135.01 230718.81 16.97 17.47 16.61 78.14 78.62 76.96 4.90 3.91 6.42
6 170019.04 174166.18 174763.40 22.83 23.45 22.75 71.10 72.47 70.68 6.07 4.08 6.57
7 230377.56 231378.56 235609.59 15.45 15.94 15.29 80.65 82.10 79.80 3.91 1.96 4.92
8 251774.80 251023.46 250463.37 16.59 17.14 16.18 79.94 80.88 78.37 3.47 1.98 5.45
9 248981.52 247839.32 249720.88 18.11 18.72 18.12 77.76 78.84 77.46 4.13 2.44 4.43

10 179531.86 178899.26 181480.22 22.62 23.42 21.66 69.94 70.30 68.96 7.44 6.28 9.38
11 247518.54 247490.46 249644.68 18.40 18.94 18.31 77.08 78.16 76.50 4.52 2.90 5.18
12 188526.78 190526.00 188950.88 19.70 20.10 19.31 74.06 74.60 73.85 6.24 5.30 6.84
13 237136.58 236216.39 242749.69 18.69 19.30 18.68 77.28 78.17 76.85 4.03 2.53 4.47
14 207704.29 209584.87 208869.06 19.74 20.14 19.63 75.71 76.31 75.00 4.55 3.55 5.37
15 250118.11 250709.38 252287.92 17.62 18.18 17.27 78.40 79.17 77.23 3.98 2.65 5.51
16 233010.28 227167.63 232033.37 17.28 17.72 16.84 77.52 77.81 76.48 5.21 4.47 6.68
17 254512.90 257905.24 261570.69 14.85 15.56 15.34 81.37 82.39 80.80 3.78 2.05 3.85
18 300176.69 301233.96 299044.78 15.94 16.47 15.57 80.19 80.79 79.02 3.87 2.75 5.41
19 256347.76 255377.21 249265.26 13.85 14.22 13.59 82.84 84.08 82.54 3.31 1.70 3.87
20 307365.03 311458.87 308189.68 12.92 13.38 12.64 83.50 84.61 81.94 3.58 2.01 5.41
21 271868.12 271312.27 272209.30 14.48 15.02 14.06 82.39 83.17 81.65 3.13 1.81 4.29
22 192016.94 189888.89 192036.66 18.52 19.18 18.51 76.30 77.20 76.01 5.19 3.62 5.47
23 291552.68 288039.31 290615.67 11.43 11.69 11.46 85.39 86.31 84.85 3.18 2.00 3.69
24 266643.81 263881.39 262820.36 15.71 16.35 15.36 81.19 81.84 80.39 3.10 1.81 4.25
25 254510.86 256554.96 256164.55 16.33 17.26 16.58 79.88 80.90 79.69 3.79 1.84 3.72
26 224646.59 224887.74 227552.05 14.80 15.10 14.57 82.39 83.44 81.29 2.80 1.47 4.14
27 225699.97 226628.65 226834.86 18.65 19.06 18.69 76.65 77.65 76.33 4.70 3.30 4.98
28 240885.16 242069.87 245273.95 16.21 16.97 16.26 79.34 80.67 79.18 4.45 2.36 4.56
29 235328.76 234959.97 236773.20 15.74 16.27 15.94 80.68 81.79 79.93 3.58 1.93 4.13
30 289372.50 283866.90 286750.09 14.28 14.58 14.41 82.58 83.41 81.47 3.15 2.02 4.12
31 242646.71 241697.20 249653.81 14.50 15.10 14.44 81.66 82.60 81.27 3.84 2.30 4.29
32 247013.83 246945.14 250703.93 17.82 18.36 17.56 78.47 79.11 77.84 3.71 2.53 4.61
33 286443.10 289140.00 289877.44 13.26 13.64 13.12 82.82 83.74 82.45 3.92 2.62 4.43
34 185558.50 187640.75 185876.95 22.64 22.87 22.08 70.44 70.76 69.52 6.92 6.37 8.40
35 219318.52 222786.61 219680.68 15.67 16.01 15.49 80.42 81.70 80.84 3.91 2.29 3.68
36 272438.09 270219.88 272112.68 14.86 15.37 14.87 81.19 82.06 80.19 3.96 2.56 4.94
37 237536.92 237874.66 236947.20 16.80 16.90 16.46 79.34 80.72 79.06 3.86 2.38 4.48
38 204170.28 205844.94 207637.33 20.44 21.47 20.10 74.75 75.66 73.82 4.81 2.87 6.08
39 265501.50 261580.04 265141.07 14.99 15.66 15.00 81.64 82.53 80.85 3.37 1.81 4.15
40 171423.08 172358.18 174071.63 22.44 23.37 22.09 71.49 71.56 70.23 6.07 5.07 7.68
41 214935.62 215353.53 215472.47 14.18 14.89 14.15 81.40 82.40 80.65 4.42 2.71 5.20
42 232896.20 232829.15 233064.99 18.09 18.90 17.74 76.73 77.79 75.95 5.18 3.31 6.31
43 244980.43 244005.22 245391.83 15.28 16.00 15.25 80.16 81.50 79.85 4.56 2.51 4.90
44 175499.03 174230.75 172561.44 22.70 23.07 22.32 71.41 72.09 70.67 5.89 4.83 7.00
45 247558.89 247564.65 249154.55 16.35 16.80 16.05 79.35 80.71 79.19 4.30 2.48 4.76
46 220402.40 220374.42 222552.01 18.74 19.28 18.56 76.69 77.09 76.18 4.57 3.63 5.26
47 276844.97 279839.56 282323.82 12.54 13.35 12.66 82.95 84.39 82.43 4.51 2.26 4.91
48 261675.42 262016.38 266776.83 18.23 19.04 18.06 77.58 78.77 76.70 4.19 2.20 5.25
49 268097.46 269965.88 268894.58 15.67 15.88 15.47 81.62 83.20 81.48 2.71 0.92 3.06
50 279509.92 281799.05 282174.56 15.04 15.38 14.74 81.06 81.87 80.41 3.91 2.76 4.86

Avg. 239326.33 239320.19 240517.66 16.95 17.51 16.78 78.68 79.60 78.01 4.37 2.90 5.21
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APPENDIX C

CHAPTER THREE APPENDIX

C.1 Proofs of propositions

Proof of Proposition 3.4.1. Let g(ni, nj) be the term that contains two successive variables ni and

nj in the objective function (3.7) for a solution [n1, . . . , ni, nj . . . , nk], in which ni ≥ nj > 0,

where i < j. Consider another solution [n1, . . . , n
′
i, n

′
j . . . , nk] with n′

i = nj and n′
j = ni such that

n′
j ≥ n′

i > 0 , which has the term g(n′
i, n

′
j) associated with n′

i and n′
j . We then have

g(n′
i, n

′
j)− g(ni, nj) = n′

i

(
i−1∑
ℓ=1

√
nℓ +

√
n′
i

)
+ n′

j

(
i−1∑
ℓ=1

√
nℓ +

√
n′
i +
√

n′
j

)

− ni

i∑
ℓ=1

√
nℓ − nj

(
i∑

ℓ=1

√
nℓ +

√
nj

)

= (n′
i − ni)

i−1∑
ℓ=1

√
nℓ + n′

i

√
n′
i − ni

√
ni

+ (n′
j − nj)

i−1∑
ℓ=1

√
nℓ + n′

j

(√
n′
i +
√

n′
j

)
− nj

(√
ni +

√
nj

)
= nj
√
nj − ni

√
ni + ni

(√
nj +

√
ni

)
− nj

(√
ni +

√
nj

)
= ni
√
nj − nj

√
ni

=
(√

ni −
√
nj

)√
ninj. (C.1)

The right-hand side of Equation (C.1) is a nonnegative value as ni ≥ nj , implying the new solution

with n′
i ≤ n′

j never improves the objective value. This argument can be applied to any pair of

variables for i = 1, . . . , N − 1 and j > i. Thus, a solution with n1 ≥ . . . ≥ nN will lead to a

minimum objective value. ■

Proof of Proposition 3.4.2. When 1 < N ≤ C, the maximum possible number of routes to run

equals N with n1 = . . . = nN = 1 and an objective value of (N + 1)/2, which can always be
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improved by another solution in which n′
1 = 2, n′

2 = . . . = n′
N−1 = 1 and n′

N = 0 with an

objective value of N
√
2 + (N − 2)(N − 1)/2 (it is straightforward to show that N

√
2 + (N −

2)(N − 1)/2 ≤ (N + 1)/2 holds for any N ≥ 2). The latter is optimal for N = 2, but can be

further improved for N ≥ 3. However, n1 = . . . = nN = 1 will never lead to an optimal solution

in either case. Thus, the maximum possible number of routes in an optimal solution is no more

than N − 1. ■

Proof of Proposition 3.5.1. Let y∗2 be the optimal value of y2 associated with V2(x, τ). We have

V2(x, τ)− V1(x, τ) = y∗2

(
a− b(τ + β

√
y∗2)

c
)
+ (x− y∗2)

(
a− b(τ + β

√
y∗2 + β

√
x− y∗2)

c
)

− x
(
a− b(τ + β

√
x)c
)

= by∗2

(
τ + β

√
y∗2 + β

√
x− y∗2

)c
− by∗2

(
τ + β

√
y∗2

)c
+ bx

(
τ + β

√
x
)c − bx

(
τ + β

√
y∗2 + β

√
x− y∗2

)c
≥ by∗2

(
τ + β

√
y∗2 + β

√
x− y∗2

)c
− by∗2

(
τ + β

√
y∗2

)c
+ bx

(
τ + β

√
x
)c − bx

(
τ + β

√
y∗2 + x− y∗2

)c
= by∗2

(
τ + β

√
y∗2 + β

√
x− y∗2

)c
− by∗2

(
τ + β

√
y∗2

)c
. (C.2)

Because y∗2 ≤ x, the right-hand side of the last equation is nonnegative, and therefore V2(x, τ) ≥

V1(x, τ). ■
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