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ABSTRACT

In order to function safely and autonomously, modern robotic systems need to understand

other agents’ mental states, including their beliefs and desires about the shared environment. This

ability, known as Theory of Mind (TOM), is crucial for self-driving vehicles, as the exchange of

beliefs through instantaneous maneuvers gives rise to nuanced social behavior in human driving

and the lack of such exchange can lead to traffic conflicts and crashes. For social scientists and

engineers, mental states serve as a compact representation of agent behavior, which can be used

to understand human cognition, devise interventions on human cognitive limitations, and build

autonomous agents to assimilate human behavior. However, the TOM ability in both humans and

machines is not well-understood, with an important question being the unbounded possibility of

agent beliefs leading to degenerate inference. In this dissertation, I study the possibility and advan-

tages of TOM in the context of modeling human driving behavior. By proposing a set of algorithms

to make inference about human drivers’ mental states, I elicit the implicit assumptions in human’s

TOM ability. I show that human TOM likely involves a delicate balance between being realist

about the environment and the unbounded imagination in a Bayesian fashion. These observations

were engineered into the proposed algorithms, resulting in substantial improvements in interpret-

ing abnormal human behavior, inspecting model failures, and robustifying control policies.
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1. INTRODUCTION

With the increasing popularity and capability of machine learning (ML) models in consumer-

facing and industrial applications, there is a growing demand for ML models and systems to be

transparent, reliable, and aligned with human values. Despite already excelling at a variety of

tasks, including image recognition [1, 2], machine translation [3], video game playing [4], among

others, machine learning models are known to exhibit a handful of undesirable behavior, such as

exploiting designed objectives and learning spurious correlations, resulting in biased decisions [5].

One way to improve current machine learning systems is to develop models that learn and behave

like humans [6]. It is believed that humans learn and behave by building models of the world

with intuitions of physics and psychology [7], giving rise to complex but generalizable and robust

behavior.

One field with a particular interest in human-like models is automated and autonomous driving,

not only because automated vehicles (AV) have to interact with human drivers, but also that human-

like models and driving behavior are likely able to solve current challenges in AVs. Aside from the

difficulty of building reliable perception systems, modern AVs are known to misbehave in traffic

situations which require nuanced social behavior [8], such as behavior that communicate driver

internal state (e.g., state of attention or aggressiveness) and intent (e.g., intent to overtake). The

lack of such communicating behavior can lead to inefficient traffic in the best case, and in the worst

case crashes as a result of other drivers’ confusion [9].

The ability to understand other drivers’ state and intent is known as theory of mind (TOM), an

ability possessed by humans as early as 4 years old [10]. Computational models of TOM formulate

such understanding as making inferences about agents who make rational decisions – decisions

that realize their intent or desire – with respect to their beliefs about the world [11]. These models

attempt to extract agent belief and desire from sensory data into compact representations (such as

parameter vectors) for pattern analysis or predictions of future behavior, as well as learning signals

for controlling similar autonomous systems.
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Given that human beliefs and the process of forming them are potentially biased or misaligned

with the actual environment, which leads to nuanced behavior that can be understood as naivete,

illusion, or heuristics [11, 12, 13], belief inference is an important aspect of human TOM. However,

most existing TOM frameworks solely focus on desire inference and assume humans always have

accurate beliefs [14]. This dissertation aims to bridge this gap and understand the benefits of belief

inference for both acquiring representations of agents and controlling autonomous systems.

1.1 Thesis Structure And Contributions

This dissertation studies belief inference in human TOM. By proposing and analyzing a set of

TOM inference algorithms, I show the benefits of performing belief inference on two fronts:

• Inference: belief inference enables extracting novel insights of human driving behavior from

observational data.

• Control: belief inference enables engineering transparent and robust control policies.

The dissertation document is organized as follow:

Part I: Background. This part provides relevant background for the thesis and identifies

challenges faced by existing approaches to agent development.

• Chapter 2 reviews models of rational decision-making under uncertainty with a focus on

overcoming the interference between learning to perceive and learning to control in uncer-

tain environments via joint perception-control modeling. I identify active inference as a

promising joint modeling framework, provide a throughout review, and discuss challenges

faced by existing active inference formulations.

• Chapter 3 reviews Bayesian Theory of Mind as a framework for understanding agent behav-

ior through their beliefs and desires. I provide an in-depth discussion on the identifiability of

BTOM’s and demonstrate the impossibility of recovering agent belief and desire under the

naive BTOM formulation. I then suggest an approach to alleviate the un-identifiability by

formulating informed priors.
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Part II: Methods. In this part, I use three studies to illustrate the advantages of BTOM and

active inference for inference and control.

• Chapter 4 attempts to understand the advantages of active inference and BTOM in explain-

ing human driving behavior. I propose a framework for inferring latent human beliefs and

goals and interpreting the inferred parameters using dimensionality reduction techniques.

Applying the framework to human emergency responses to automated vehicle failure re-

veals novel connections between trust and situation awareness and subjective beliefs. This

chapter is reproduced from [15].

• Chapter 5 attempts to understand the advantages of active inference and BTOM in terms

of control performance and interpretability. I benchmark the active inference model against

standard rule-based and black-box driver behavior models using a public highway car-following

dataset. The results show that the active inference model not only outperforms rule-based

and black-box models due to higher flexibility and more inductive biases, it also enables

model introspection and editing due to its interpretable input-output mechanism. This chap-

ter is reproduced from [16].

• Chapter 6 investigates the performance advantage of control policies obtained by BTOM

from data following the observations in Chapter 5. I analyze the objective function optimized

by the BTOM algorithm and show that under a family of accuracy-promoting prior, BTOM

corresponds to a robust inference problem. The family of priors are equivalent to the priors

suggested in Chapter 2. Using these insights, I propose two scalable BTOM algorithms and

show that they outperform state-of-the-art learning from demonstration algorithms without

ad hoc engineering efforts. This chapter is reproduced from [17].

Part III: Conclusions. In this part, I conclude the thesis and discuss future directions.
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2. ACTIVE INFERENCE: A JOINT MODEL OF PERCEPTION AND ACTION

2.1 Introduction

This chapter introduces active inference as a model of human perception and action. Active

inference [18] is a recently proposed framework for modeling human behavior with growing pop-

ularity in neuroscience, philosophy, machine learning, economics, among other fields [19, 20, 21].

Derived from the Free Energy Principle (FEP) [22], active inference aims to provide a unified

view of perception, action, and learning. Many prior models of human behavior have adopted a

decoupled view, casting perception and action as separate and independent modules [23, 24]. In

contrast, active inference proposes to understand the role of perception and action under a single

imperative to minimize free energy, an information theoretic notion of surprise [22]. The benefit

of this unification is a more nuanced understanding of the coupling roles of perception and action

and potentially better explanation of human behavior.

Throughout this dissertation, I use the definition of perception as adjusting an agent’s internal

states in response to sensory signals via an embodied model, which is usually equated to making

inference about the cause of signals, following Helmholtz’s notion of unconscious inference [25].

I will use Partially Observable Markov Decision Process (POMDP) [26] as a minimal and yet ex-

pressive perception-action loop. POMDP has been extensively studied in the context of stochastic

optimal control with well-established solution methods. A central problem in POMDP is the han-

dling of epistemic uncertainty by trading off exploration and exploitation. Exploration refers to

resolving uncertainty and learning about the unknown environment, while exploitation refers to

committing to a course of rewarding actions at the cost of potentially greater loss due to ignorance.

Active inference aims to provide an optimal handling of exploration and exploitation by decom-

posing its objective and the resulting behavior into two recognizable parts. This is in contrast to

traditional POMDP solution methods, which implicitly handle the exploration-exploitation trade

off [27]. While a few prior studies have tried to connect active inference with traditional POMDP
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solution methods [28, 29] and understand how its exploratory behavior arise [30, 31] and is char-

acteristic of active inference [32], the motivation and pragmatic benefit of the active inference

formulation is far from clear [33].

Thus, the goal of this chapter is to synthesize the literature on active inference in POMDPs. I

start by introducing POMDP and traditional approaches to behaving in either known or unknown

POMDP environments. I then provide a concrete formulation of active inference based on existing

literature and connect it to traditional POMDP approaches. I end with a discussion of the motiva-

tion for active inference and the open question of an unifying objective for autonomous agents.

2.2 Partially Observable Markov Decision Process

POMDP is a model of dynamic decision making under uncertainty that provides a minimally

accurate depiction of a perception-action loop [26]. It assumes an agent has a model of the envi-

ronment characterized by a set of states s ∈ S, actions a ∈ A, and observations o ∈ O, all of

which may be discrete or continuous. Upon receiving an action from the agent, the environment

transitions to the next state according to probability distribution P (st+1|st, at), where t indexes

discrete time steps. The agent cannot directly perceive the environment state but register an ob-

servation signal emitted from the environment according to P (ot|st). This interactive process is

called a controlled hidden Markov process (CHMP) with a schematic shown in Fig. 2.1. When

the observation space is defined on the same set of symbols as the state space and provides precise

information about the underlying state, i.e., P (ot|st) = δ(ot − st) where δ denotes the dirac delta

function, such that there is no uncertainty about the state, this special instance of POMDP is called

the Fully Observable Markov Decision Process, or Markov Decision Process (MDP).

POMDP usually assumes the agent has a true model of the environment and receives a reward

R(s, a) when taking action a in state s [34]. Agent behavior is governed by a policy π(a), defined

as a probability distribution over action a ∈ A, with the goal of maximizing the sum of future
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Figure 2.1: Bayesian network of a controlled hidden Markov process. Observable variables are
colored in gray and hidden variables are transparent.

rewards for a planning horizon H <∞, expected under future environment transitions:

max
π

EP,π

[
t+H∑
τ=t

R(sτ , aτ )

]
(2.1)

where the τ denotes the time steps along the planning horizon rather than the agent’s lifetime t in

the environment. The solution to this problem is called the optimal policy denoted with π∗ and the

process through which the agent arrives at the optimal policy is called planning.

While the agent may choose from any class of policies, the optimal policy for a POMDP has

to depend on the entire agent-environment interaction history ht = {o1:t, a1:t−1} in order to fully

characterize the unknown state. Perception is used when the agent characterizes the history with

its belief, defined as a probability distribution of the current environment state, i.e., b(s) = P (s|h).

The belief is a well-known sufficient statistic for characterizing history, making predictions, and

generating optimal control [34]. This leads to a well-known class of exact solution method intro-

duced in the next section.

2.2.1 Exact POMDP Solution Principle

The objective in (2.1) is not directly solvable since the environment state is unknown. A pop-

ular surrogate objective weights the reward by an estimate of the environment state: R(h, a) ,∑
s P (s|h)R(s, a), where P (s|h) is the posterior belief about the unknown state inferred from the

CHMP model upon observing the history. Let us denote hat = {ht, at}, the surrogate objective,
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along with the expanded expectation, is written as:

max
π

EP (ot+1:t+H |hat:t+H−1)
π(at:t+H |ht:t+H)

[
t+H∑
τ=t

R(hτ , aτ )

]
(2.2)

Denoting (2.2) with V (ht|π) and using the Markov property of the transition of histories, the

objective can be decomposed as:

V (ht|π) = EP (ot+1|ht,at)
π(at|ht)

[
R(ht, at) + EP (ot+2:t+H |hat+1:t+H−1)

π(at+1:t+H |ht+1:t+H)

[
t+H∑
τ=t+1

R(hτ , aτ )

]]

= EP (ot+1|ht,at)
π(at|ht)

[R(ht, at) + V (ht+1|π)]

(2.3)

This equation is referred to as the value or reward-to-go function under policy π [35]. The first

term captures the immediate reward and the second term is the expected value in subsequent time

steps following the same policy.

The optimal value function V ∗(ht|π), alternatively written as V (ht), satisfies:

V (ht) = max
π

EP (ot+1|ht,at)
π(at|ht)

[R(ht, at) + V (ht+1)] (2.4)

This decomposition, known as the Bellman optimality equation [35], suggests an efficient recursive

computation of the optimal value function through a backward dynamic programming algorithm

called value iteration, where the base case corresponds to the final time step of the planning horizon

with expected value equals to the expected immediate reward.

A major challenge of solving a POMDP is representing the entire history of observations and

actions required in the computation of (2.4). However, the entire history can be compactly rep-

resented by the posterior belief distribution, since it yields the same predictive distribution of the
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next observation as explicitly storing the entire history:

P (ot+1|ht, at) =
∑
st

P (st|ht)
∑
st+1

P (st+1|st, at)P (ot+1|st+1)

, P (ot+1|bt, at)

(2.5)

where bt , b(st|ht) , P (st|ht) denotes the posterior belief distribution, which can be computed

recursively using the Bayes rule as:

b(st+1|ht+1 = {ht, ot+1, at}) =
P (ot+1|st+1)

∑
st
P (st+1|st, at)b(st|ht)∑

st+1
P (ot+1|st+1)

∑
st
P (st+1|st, at)b(st|ht)

(2.6)

Thus, the solution to the optimization problem in (2.2) can be found in the space of belief-action

policies π(a|b) and values instead of those conditioned on histories:

V (bt) = max
π

EP (ot+1|bt,at)
π(at|bt)

[R(bt, at) + V (bt+1)] (2.7)

where bt+1 is the belief the agent would have updated to had it received observation ot+1 counter-

factually given current belief bt and action at.

It is often useful to define the (optimal) value function of taking an action at now and following

the optimal policy π in subsequent time steps, because doing so gives the desirability of different

actions immediately:

Q(bt, at) = R(bt, at) + EP (ot+1|bt,at) [V (bt+1)] (2.8)

This is known as the action-value or Q function [36]. This representation of the value function

provides a simple method for finding the optimal policy and selecting actions:

π∗(at|bt) = P
(
at = arg max

a
Q(bt, a)

)
(2.9)

The formulation presented in this section is usually referred to as the belief MDP, since the
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agent is planning with respect to the expected transitions in the belief space [26]. The benefit of the

belief MDP is a compact representation of histories, which is easy to store and in principle admits

dynamic programming solutions. However, in practice, solving the belief MDP is difficult because

of the complexity of representing continuous belief states and belief-value functions, evaluating

predictive distributions, and performing counterfactual belief updates.

2.2.2 Value Function Approximation

The purpose of value function approximation in POMDPs is to simplify its representation and

computation to achieve a desired level of accuracy compared to the exact value function. This

section reviews two types of common approximation methods: 1) a linear approximation which

does not change the value function update method defined in (2.7), and 2) a heuristic approximation

which further simplifies the defined update method.

2.2.2.1 Linear Value Function Approximation

In the discrete state setting, the value function can be approximated with a set of vectors Γ =

{α ∈ R|S|} such that the value function can be computed as [34]:

V (b) = max
α∈Γ

∑
s∈S

b(s)α(s) (2.10)

where α(s) denotes the sth element of the α vector.

Using this approximation, the optimal value function can be computed by performing dynamic

programming in the α vector space [37]:

V (b) = max
a∈A

[∑
s∈S

b(s)R(s, a) +
∑
o′∈O

P (o′|b, a) max
α′∈Γ

∑
s′∈S

b(s′)α′(s′)

]
(2.11)

with the α vectors updated as:

α(s) = R(s, a∗) +
∑
o′∈O

P (o′|s, a∗) max
α′∈Γ

∑
s′∈S

b(s′)α′(s′) (2.12)
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a∗ refers to the action achieving the maximum in (2.11). The updated α vectors are added to the

candidate set after each iteration.

While this method is faithful to the value function update rule defined in (2.7) and is considered

the true value function in the ideal setting, it suffers from the difficulty of identifying the set

of candidate α vectors and the growth of the candidate set [38, 39], which requires additional

strategies to identify and prune [40, 41, 37].

2.2.2.2 Heuristic Value Function Approximation

A lingering challenge of the linear approximation method in (2.11) lies in evaluating the coun-

terfactual observations and computing the subsequent beliefs, especially when the state and ob-

servation space is large. One way to overcome this challenge is to replace the counterfactual

observations with counterfactual states [42]:

V (b) = max
a∈A

∑
s∈S

b(s)

[
R(s, a) +

∑
s′∈S

P (s′|s, a) max
α′∈Γ

α′(s′)

]
(2.13)

with the α vector updated as:

α(s) = R(s, a∗) +
∑
s′∈S

P (s′|s, a∗) max
α′∈Γ

α′(s′) (2.14)

We can thus interpret the α vectors as the value function of a fully observable MDP with the same

transition distribution and reward function as the belief MDP. We can also interpret the approxi-

mation as the assumption that the environment will become fully observable in the next time step.

This method is known as the QMDP approximation [42], because the approximate Q function

of the belief MDP can be written in terms of the Q function of the underlying MDP denoted as

QMDP(s, a):

Q(b, a) =
∑
s∈S

b(s)QMDP(s, a) (2.15)

Given the simplicity of computing the value function in the fully observable discrete state
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setting, the QMDP method can be scaled to much larger state space than linear function approxi-

mation. However, it provides a less precise approximation of the true value function. As shown in

[39], it is an upper bound of the linear approximation:

VLinear(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) +
∑
o′∈O

P (o′|b, a) max
α′∈Γ

∑
s′∈S

b(s′)α′(s′)

]

= max
a∈A

∑
s∈S

b(s)

[
R(s, a) +

∑
o′∈O

max
a′∈Γ

∑
s′∈S

P (o′|s′)
∑
s∈S

P (s′|s, a)b(s)α′(s′)

]

≤ max
a∈A

∑
s∈S

b(s)

[
R(s, a) + max

a′∈Γ

∑
s′∈S

∑
s∈S

P (s′|s, a)b(s)α′(s′)

]

≤ max
a∈A

∑
s∈S

b(s)

[
R(s, a) +

∑
s′∈S

P (s′|s, a) max
a′∈Γ

α′(s′)

]

= VQMDP(b)

(2.16)

where the first inequality is due to removing the multiplier P (o′|s′) and the second inequality is

due to maxα E[α] ≤ E[maxα α]. In other words, the overestimation of the value function in QMDP

is due to not accounting for the value reduction introduced by counterfactual observations. This is

known as the value-of-information [43], or rather the cost of information.

2.3 Reinforcement Learning

So far we have considered cases where the agent has an accurate model of the environment

which can be used for planning. However, this is often not the case for novice agents or agents in

changing environments. In the more realistic setting, agents need to interact with the environment

in order to build an adequate model of the environment, or directly search for a value maximizing

policy. This interactive learning paradigm is called reinforcement learning (RL), with the explicit

modeling-building approach called model-based reinforcement learning (MBRL) and the alterna-

tive approach called model-free reinforcement learning (MFRL).
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2.3.1 Model-Free Reinforcement Learning

The goal of MFRL is to directly find the optimal policy without explicitly learning a model of

the environment. The most straightforward method is to estimate the expected value after taking

action a following a history h and take actions corresponding to the highest estimated value after

seeing the same history the next time around.

The main concern with MFRL is to efficiently estimate the value function associated with a

policy. LetD = {(hτ , oτ :τ+H , aτ :τ+H , rτ :τ+H)}t−Hτ=1 denote a dataset of interaction history the agent

has experienced while executing policy π in its lifetime and Qθ(ht, at|π) a function parameterizing

the agent’s estimate of the expected value associated with π with parameters θ, the agent may

improve its estimate by minimizing the follow squared error:

min
θ

Eht,at∼D
(
Qθ(ht, at|π)− Q̂(ht, at|π)

)2

(2.17)

where Q̂ is an empirical estimate of the value function associated with π constructed from samples

in the dataset according to:

Q̂(ht, at|π) = E(ot:t+H ,at:t+H)∼D

[
t+H∑
τ=t

R(hτ , aτ )

]
(2.18)

However, a much more efficient way to estimate the expected value is to make use of one’s

existing estimates:

Q̂(ht, at|π) = R(ht, at) + E(ot+1,at+1)∼D [Qθ(ht+1, at+1)] (2.19)

Alternatively, one may directly estimate the value of the optimal policy Q̂(ht, at) leveraging

the Bellman optimality equation:

Q̂(ht, at) = R(ht, at) + max
a∈A

Eot+1∼D [Qθ(ht+1, a)] (2.20)
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When estimates of (2.19) or (2.20) are used, the squared error in (2.17) is called the Bellman

residual. Bellman residual minimization underlies the majority of state-of-the-art reinforcement

learning methods, including the well-known Go-playing agent Alpha-Go [44]. It can be viewed

as a type of approximate planning where the expected values and thus the associated policy are

estimated by samples from a given environment.

2.3.2 Model-Based Reinforcement Learning

In MBRL, the agent builds an explicit model of the environment to facilitate planning. Given

that a model can be introspected and simulated for alternative purposes, such as planning for a

different set of rewards, model building is believed to be a central mechanism for human learning

and adaptive behavior [7, 45, 6].

In the POMDP setting, the agent typically builds a model Pφ(o′|h, a) with parameters φ to

predict the next observation o′ based on the interaction history h and action a. Given past interac-

tion experience contained in dataset D, the agent can estimate, or learn, the model parameters by

maximizing the log likelihood of the all observations in the dataset:

max
φ

t∑
τ=1

logPφ(oτ+1|hτ , aτ ) (2.21)

Instead of planning using samples drawn from past experience as in MFRL, model-based

agents plan using samples drawn from their own model. The value estimates for model-based

agents can be written as:

Q̂(ht, at) = R(ht, at) + Eot+1∼Pφ(·|ht,at)

[
max
a∈A

Qθ(ht+1, a)

]
(2.22)

Thus, during the agent’s lifetime, it interleaves collecting experience in the environment, updating

the model estimate θ, and planning for the optimal policy. This process is described in Algorithm

1.
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Algorithm 1 Model-based reinforcement learning

Require: Environment, model Pφ(o′|h, a), value estimate Qθ(h, a), policy πθ(h, a)
while t ≤ T do

Interact with the environment
Estimate model using (2.21)
Estimate value using (2.22)
Obtain optimal policy πθ(a|h) from value estimates Qθ(h, a)

end while

2.3.3 Objective Mismatch in MBRL

A central problem in MBRL is the objective mismatch between model estimation and planning

in the sense that estimating a model using (2.21) does not directly contribute to planning better

policies [46]. Often, such a mismatch leads to sub-optimal convergence due to a sub-optimal

policy planned using an inaccurate model of the environment [47]. As Kearns & Singh showed in

the well-known simulation lemma [48], the expected value a MBRL agent can obtain is bounded

by the difference between its estimated model and the true model of the environment.

Although in principle, the difference between the estimated and the true model approaches zero

with an expressive model and infinite data, leading to the ideal case of achieving the optimal value

implied by the simulation lemma, in reality, this is infeasible. Disregarding the infinite lifetime

requirement of infinite data, in practice, all models currently available for real-world MBRL do not

satisfy the expressivity requirement and suffer from compounding error in long-horizon predictions

[47, 46, 49]. It is also well established that humans do not build exact models of the environment –

instead, human planning is largely based on intuition [6]. To this end, there is an increasing interest

in the RL community to develop unifying objectives for joint model learning and policy planning

beyond independent objective or optimization of model and policy [50, 51, 52, 53].

2.3.4 Reinforcement Learning as Probabilistic Inference

A well-known dilemma in RL is the trade off between exploiting current knowledge for maxi-

mizing reward and accumulating more knowledge about the environment via exploration. It usually

makes sense to explore early in an agent’s lifetime and switch to the exploit mode once sufficient
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knowledge has been gathered. Thus, it is useful for the agent to know how to handle epistemic

uncertainty – the uncertainty due to not knowing enough about the environment – either in the

hidden state or unknown parameters.

A principled approach for handling epistemic uncertainty is via Bayesian inference. Given

the objective mismatch in MBRL (Section 2.3.3), it is of interest whether Bayesian inference can

benefit both model estimation and planning [54, 55]. The main challenge is formulating the joint

model estimation-planning process as a probabilistic model with both observed and unobserved

quantities such that the unobserved can be inferred using the Bayes rule. This section reviews RL

as inference in both model-free and model-based settings.

2.3.4.1 Planning as Probabilistic Inference

Planning or control-as-inference [56, 57, 58, 59] is a planning method which reverses the usual

question of what is the policy I should adopt in order to optimize expected value into given that I

behave optimally, what might be the policy I have taken? It defines the optimality when selecting

action a following a history h using a variable O with conditional probability:

P (O|h, a) = expR(h, a) (2.23)

It further assumes the agent has a model of the environment P (o′|h, a) and an a priori policy

π(a). The joint distribution of a sequence of observations, actions, and the associated optimality

variables for a horizon H can be written as:

P (ot:t+H , at:t+H ,Ot:t+H |ht−1)

=
t+H∏
τ=t

P (O|hτ , aτ )P (oτ |hτ−1, aτ−1)π(aτ )

=
t+H∏
τ=t

expR(hτ , aτ )P (oτ |hτ−1, aτ−1)π(aτ )

(2.24)

with a Bayesian network illustration shown in Fig. 2.2.

By treating the optimality variables as observed and future observations and actions as hidden,
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ht−1 ht ht+1 ht+2

at−1 at at+1 at+2

Ot−1 Ot Ot+1 Ot+2

Figure 2.2: Planning-as-inference Bayesian network. Observed variables are colored in gray. Fu-
ture optimality variables O are assumed to be observed while future histories and actions are
assumed to be unobserved.

planning-as-inference corresponds to finding a posterior policy:

π(at|ht,Ot:t+H) =
P (Ot:t+H |ht, at)π(at)

P (Ot:t+H |ht)
(2.25)

Using an approximate Bayesian inference technique (i.e., variational inference) to be intro-

duced in Section 2.4.1, it can be shown that the posterior policy has the form:

π(at|ht,Ot:t+H) =
expQ(ht, at)∑
ã expQ(ht, ã)

(2.26)

where

Q(ht, at) = max
π̃

EP,π̃

[
t+H∑
τ=t

R(hτ , aτ ) + log π(aτ )− log π̃(aτ |hτ )

∣∣∣∣∣ht, at
]

= R(ht, at) + log π(at) + EP (ot+1|ht,at) [V (ht+1)]

V (ht) = log
∑
ã

expQ(ht, ã)

(2.27)

While resembling the value functions defined in Section 2.2.1, the Q, V , and π defined here

have three major differences. First, instead of maximizing purely the expected cumulative rewards,

the agent also maximizes the expected log likelihood of taking actions under the prior policy and
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minimizes the expected log likelihood (negative entropy) of taking actions under the current pol-

icy. Thus, this method is also called maximum-entropy RL [60]. Second, instead of taking the

maximum of the Q function, the value function defined here takes a soft maximum using the log-

sum-exp function. Lastly, the policy randomizes over actions with probability proportional to the

exponential of the Q values. These modifications encourage the agent to act as randomly as pos-

sible while conforming to decisions with maximum expected value and prior probabilities. In this

way, the agent is less prone to sub-optimal convergence from committing to a single course of

actions.

2.3.4.2 Joint Model Learning and Planning as Probabilistic Inference

The joint model learning and planning as inference framework falls under the Bayesian rein-

forcement learning paradigm, which treats both model learning and planning as Bayesian infer-

ence [61]. Instead of inferring a point estimate of the environment parameters θ as done in (2.21),

Bayesian RL infers a full posterior distribution over the environment parameters from the dataset

at every time step using the Bayes rule:

P (θ|D) =
P (D|θ)P (θ)

P (D)
(2.28)

Given the posterior distribution, the agent can predict and simulate future observations using the

posterior predictive distribution:

P (o′|h, a) =

∫
θ

P (o′|h, a; θ)P (θ|D) (2.29)

where the average (integral) over the posterior distribution better calibrates prediction uncertainty.

Planning in Bayesian RL is done by including the unknown parameters as a part of the hidden

state space such that the hidden state dynamics factorize as:

P (o′, θ′|h, a; θ) = P (o′|h, a; θ′)δ(θ′ − θ) (2.30)
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where the hidden parameters do not change over time. The agent can treat the new hidden dynamics

as a special POMDP and find a policy using a method introduced in Section 2.2.1 and 2.2.2.

Including unknown parameters as a part of the POMDP is known as Bayes-Adaptive POMDP

[62, 63], with the corresponding Bayesian network shown in Fig. 2.3.

ht−1 ht ht+1 ht+2

at−1 at at+1 at+2

θt−1 θt θt+1 θt+2

Figure 2.3: Bayes-Adaptive POMDP Bayesian network. Observed variables are colored in gray
and unobserved variables are transparent. Transition of unknown parameters is P (θ′|θ) = δ(θ′−θ).

Although performing exact Bayesian inference and POMDP planning is extremely difficult,

approximate Bayesian inference and planning has led to significant improvements in practice. In

[49], the authors showed that representing uncertainty over the environment parameters using a

Bayesian neural network can alleviate sub-optimal convergence. In [64], the authors showed that

approximate Bayes-Adaptive POMDP agents exhibit highly intelligent exploration strategies.

2.4 Active Inference

Active inference is a framework for modeling perception and action derived from the Free

Energy Principle [18]. The FEP states that behavior of living systems can be understood as min-

imizing surprisal or maximizing model evidence, defined as the negative log marginal likelihood

of the signals they observe, − logP (o), under an embodied model of the environment [22]. Given

this premise, the role of perception is to make inference about the hidden causes of observed sig-

nals, the role of learning is to build models of the hidden causal structure and parameters in the

environment, and the role of action is to intervene on the environment such that future signals
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are better predicted by the model. In this sense, active inference is a class of model-based rein-

forcement learning method. In contrast to the MBRL approach presented earlier, active inference

makes a specific assumption that all parts of the perception-action process optimize a notion of

free energy designed to overcome the intractability of calculating the log marginal likelihood. The

attempt to unify perception and action gives active inference a special epistemic status compared

to the traditional notion of MBRL.

The goal of this section is to review active inference. I start by introducing variational infer-

ence, the core inference and optimization method used by active inference, and then introduce the

standard formulation of active inference based on [18] and [65]. I then connect active inference to

traditional POMDPs and present a novel justification for the value-encoding choice made in active

inference and its implications for scaling active inference. I end with a review of the neuroscience

motivations for active inference and discuss potential advantages and concerns.

2.4.1 Variational Inference

Variational inference is a method proposed to overcome the intractability of performing exact

Bayesian inference [66]. Consider performing posterior inference in a minimal probabilistic model

P (o) =
∑

s P (o|s)P (s) with latent variable s. Upon observing a sensory signal o, the exact

inference over hidden cause s is given by the Bayes rule:

P (s|o) =
P (o|s)P (s)∑
s P (o|s)P (s)

(2.31)

However, when the hypothesis space of hidden causes s is large, computing the sum in the denom-

inator becomes intractable.

Variational inference is an alternative to the direct computation of the Bayes rule via the op-

timization of an approximate posterior distribution Q(s) which minimizes the Kullback-Leibler
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(KL) divergence to the true posterior distribution P (s|o).

min
Q(s)

DKL [Q(s)||P (s|o)]

= EQ(s)[logQ(s)− logP (s|o)]

= EQ(s)[logQ(s)− logP (s, o) + logP (o)]

= EQ(s)[logQ(s)− logP (s, o)] + logP (o)

(2.32)

The last line shows that the optimization can be performed without computing the intractable

logP (o) since it does not depend on Q(s). The remaining terms are called variational free energy

(VFE), or free energy, denoted with F :

F(o,Q) = EQ(s)[logQ(s)− logP (s, o)]

= − logP (o) +DKL [Q(s)||P (s|o)] ≥ − logP (o)

(2.33)

where the second line shows that it is an upper bound of the negative log marginal likelihood

− logP (o). Thus, in statistics, free energy is also referred to as the (negative) evidence lower

bound (ELBO). When Q(s) is parameterized by a distribution class which contains P (s|o), upon

optimizing (2.32) to 0, free energy equals the negative log marginal likelihood.

2.4.2 The Perception-Action Loop in Active Inference

The standard active inference formulations in the literature consider agents with a finite life-

time T [18, 65]. The agent represents the complete hidden state and action sequence s1:T , a1:T−1

up to the final time and observations up to the current time t using a model with the following

factorization [65]:

P (o1:t, s1:T , π) =
t∏

τ=1

P (oτ |sτ )
T∏

τ ′=1

P (sτ ′ |sτ ′−1, π)P (π) (2.34)

where π = a1:T−1 denotes the complete action sequence and P (s0|s0−1, π) = P (s0).

Using Q(s1:T , π) = Q(s1:T |π)Q(π), where Q(s1:T |π) corresponds to the agent’s estimate of
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past and future states and Q(π) corresponds to the policy to be enacted, the free energy function

can be written as:

F(o1:t, Q) = EQ [logQ(s1:T , π)− logP (o1:t, s1:T , π)]

= DKL [Q(π)||P (π)] + EQ[logQ(s1:T |π)− logP (o1:t, s1:T |π)]

, DKL [Q(π)||P (π)] + EQ(π) [F(o1:t, Q|π)]

(2.35)

where F(o1:t, Q|π) denotes action conditioned free energy. At every time step t, the agent first

obtains an updated Q(s1:T |π) by minimizing (2.35) while fixing Q(π) from the previous time step,

and then updates Q(π) by minimizing the same function while fixing Q(s1:T |π).

2.4.2.1 Perception in Active Inference

To illustrate how free energy minimization affects the agent’s state estimates, we use a simple

factorization of Q(s1:T |π) =
∏T

t=1Q(st|π), known as the mean-field factorization [66]. This

makes the action conditioned free energy equal to:

F(o1:t, Q|π) = EQ

[
T∑
τ=1

logQ(sτ |π)−
t∑

τ=1

logP (oτ |sτ )−
T∑
τ=1

logP (sτ |sτ−1, π)

]
(2.36)

Taking the derivative of F(o1:t, Q|π) with respect to each Q(sτ |π) and set to zero, we can show

that the optimal state estimates satisfy (see Appendix A.1 for derivation):

logQ∗(sτ |π) ∝ I[τ ≤ t] logP (oτ |sτ ) + EQ∗(sτ−1|π)[logP (sτ |sτ−1, π)]

+ EQ∗(sτ+1|π)[logP (sτ+1|sτ , π)]

(2.37)

where I[·] is the indicator function.

This equation shows that the optimal state estimates have the form:

Q∗(sτ |π) ∝


exp

(
EQ∗(sτ−1|π)[logP (oτ , sτ |sτ−1, π)] + c

)
, τ ≤ t

exp
(
EQ∗(sτ−1|π)[logP (sτ |sτ−1, π)] + c

)
, τ > t

(2.38)
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where c is a term accounting for future states. In other words, optimal estimates of past states

approximate exact Bayesian posterior distributions and optimal estimates of future states approxi-

mate exact Bayesian posterior predictive distributions.

2.4.2.2 Action in Active Inference

Given that state estimation via free energy minimization merely approximates exact Bayesian

inference, active inference needs to encode value in its model in order to generate purposeful

behavior. It does so by equipping the agent with a special prior over action sequences [67]:

P (π) ∝ exp(−G(π|Q∗)) (2.39)

where G(Q, π) is called the expected free energy (EFE) defined as [67]:

G(π|Q∗) , EQ∗(ot+1:T ,st+1:T |π)

[
logQ∗(st+1:T |π)− log P̃ (ot+1:T , st+1:T |π)

]
(2.40)

whereQ∗(ot+1:T , st+1:T |π) = P (ot+1:T |st+1:T )Q∗(st+1:T |π) is the joint predictive distribution. The

term P̃ defines a desired distribution over the hidden states and observations where the dependence

on action sequences is usually ignored. For example, for a reward-driven agent with reward func-

tion R(s), P̃ can be defined as [29]:

P̃ (ot+1:T , st+1:T |π) =
T∏

τ=t+1

P (oτ |sτ )
expR(sτ )∑
s′τ

expR(s′τ )
(2.41)

In this way, we can interpret G(π|Q∗) as carrying the expected cumulative reward.

Given the definition of the EFE prior, the optimal action posterior minimizing F(o1:t, Q) is:

Q∗(π) ∝ exp (−G(π|Q∗)−F(o1:t, Q
∗|π)) (2.42)
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2.4.2.3 Properties of the Expected Free Energy

Under the mean-field factorization and desired distribution P̃ defined according to (2.41), the

EFE can be written as [65]:

G(π|Q∗) =
T∑

τ=t+1

Gτ (π|Q∗)

Gτ (π|Q∗) = EQ∗(oτ ,sτ |π)

[
logQ∗(sτ |π)− log P̃ (oτ , sτ )

]
= DKL

[
Q∗(sτ |π)||P̃ (sτ )

]
︸ ︷︷ ︸

Risk

+EQ∗(sτ |π)H
[
P̃ (oτ |sτ )

]
︸ ︷︷ ︸

Ambiguity

= EQ∗(oτ |π)

[
− log P̃ (oτ )

]
+ EQ∗(oτ |π)DKL

[
Q∗(sτ |oτ , π)||P̃ (sτ |oτ )

]
− EQ∗(oτ |π)DKL [Q∗(sτ |oτ , π)||Q∗(sτ |π)]

≥ EQ∗(oτ |π)

[
− log P̃ (oτ )

]
︸ ︷︷ ︸

Expected value

−EQ∗(oτ |π)DKL [Q∗(sτ |oτ , π)||Q∗(sτ |π)]︸ ︷︷ ︸
Expected information gain

(2.43)

whereH [·] denotes Shannon entropy. The second line shows that the EFE can be decomposed into

a KL divergence between the predictive and desired distribution — a measure of risk — and an

expected observation entropy — a measure of uncertainty. The last line shows that the EFE is an

upper bound on the negative expected desired distribution likelihood — a measure of value — and

the negative expected KL divergence between a posterior and a prior — a measure of information

gain.

The decomposition above is viewed as a central characteristic of active inference, equipping the

agent with an ability to handle epistemic uncertainty of hidden states [67, 18, 30]. The ambiguity

and information gain terms promote visiting states that lead to uncertainty reduction, or increase

in belief precision. In practice, active inference agents show greater propensity for exploration and

faster adaptation in changing environments [68, 19, 69].

Despite having an attractive interpretation as optimal handeling of exploration and exploitation,

the EFE objective is often questioned for its origin, motivation, and consistency with the FEP. This

is usually supported by a reductio ad absurdum argument that an agent whose goal is to minimize

23



free energy must be endowed with a prior belief as such [67]. This argument is met by a handful

of objections, attempts for better unification with the FEP, and proposals of alternative objectives,

e.g., [70, 31, 71, 72]. I give a novel justification for EFE in the next section (2.4.3) and a brief

overview of other debates and proposals in section 2.4.5.

2.4.3 Connecting Expected Free Energy and Expected Value

This section aims to establish a connection between active inference and the expected value

framework in traditional POMDP solution methods using a novel derivation of the EFE function.

The connection is presented in the following proposition.

Proposition 1. Active inference optimizes hidden state information gain and the following reward

function:

R(bt, at) = EP (ot+1|bt,at)

[
log P̃ (ot+1|bt, at)

]
(2.44)

The derivation starts with the premise of the FEP that agent behavior is governed by the drive

to maximize the expected future model evidence, i.e., the expected log marginal likelihood, given

history ht defined as:

L(ht) = EP (ot+1:t+H |hat:t+H−1)
π(at:t+H−1|ht:t+H−1)

[
log P̃ (ot+1:t+H |hat:t+H−1)

]
(2.45)

where t denotes the current lifetime. Here, P and P̃ are two models defined on the same space.

P is a predictive model of the environment dynamics and P̃ is an evaluative model scoring the

desirability of a trajectory ot+1:t+H . Both models contain latent variables s with a single time slice

defined according to the POMDP structure:

P (ot+1|ht, at) ,
∑
st+1

P (ot+1|st+1)P (st+1|ht, at) (2.46)

It is immediate that (2.45) is a special case of the POMDP objective defined in (2.2) with a

24



reward function defined as the log marginal likelihood of a trajectory under the evaluative model.

For any given ot+1, we can show that the model evidence is equal to:

log P̃ (ot+1|ht, at)

= EP̃ (st+1|ht,at,ot+1)

[
log P̃ (ot+1, st+1|ht, at)− log P̃ (st+1|ht, at, ot+1)

]
= EP̃ (st+1|ht,at,ot+1)

[
log P̃ (ot+1|st+1) + log P̃ (st+1|ht, at)− log P̃ (st+1|ht, at, ot+1)

]
= −DKL

[
P̃ (st+1|ht, at, ot+1)||P̃ (st+1|ht, at)

]
+ EP̃ (st+1|ht,at,ot+1)

[
log P̃ (ot+1|st+1)

]
(2.47)

We will now assume the agent is in equilibrium with the environment such that its predicted

trajectory matches the desired trajectory, i.e., P = P̃ . This allows us to mix the two distributions,

arriving at the following form of expected model evidence:

EP (ot+1|ht,at)

[
log P̃ (ot+1|ht, at)

]
= −EP (ot+1|ht,at)DKL

[
P (st+1|ht, at, ot+1)||P̃ (st+1|ht, at)

]
− EP (st+1|ht,at)H

[
P̃ (ot+1|st+1)

]
(2.48)

where we have used the relationship P (s|o, ·)P (o|·) = P (o|s)P (s|·) to rewrite the second term as

an expected entropy.

Lastly, we will add an expected information gain term to the expected model evidence defined

as:

I(ot+1, st+1|ht, at) , EP (ot+1|ht,at)DKL [P (st+1|ht, at, ot+1)||P (st+1)]

= EP (ot+1,st+1|ht,at) [logP (st+1|ht, at, ot+1)− logP (st+1|ht, at)]
(2.49)
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The result is equivalent to the single-step EFE:

EP (ot+1|ht,at)

[
log P̃ (ot+1|ht, at)

]
+ I(ot+1, st+1|ht, at)

= −DKL

[
P (st+1|ht, at)||P̃ (st+1|ht, at)

]
− EP (st+1|ht,at)H

[
P̃ (ot+1|st+1)

]
= −G(ht, at)

(2.50)

This derivation helped clarifying two important assumptions in active inference:

1. The agent is in equilibrium with the environment such that variables between the predictive

and evaluative distributions can be mixed.

2. The agent maximizes expected information gain in addition to expected model evidence.

One interpretation of the equilibrium assumption is an optimistic prior belief of behaving optimally

in the future. This creates a connection to control-as-inference (see Section 2.3.4.1). To what ex-

tent the agent can achieve equilibrium likely depends on the actual environment and is currently

an unresolved question [73, 74, 75]. Separately, the addition of expected information gain seems

to undermine the principled motivation for maximizing expected model evidence. Indeed, ex-

pected model evidence already admits a risk-ambiguity decomposition as shown in (2.48). Given

the entropy maximizing property of reverse KL divergence [76], expected model evidence also

encourages exploratory behavior by covering a larger state space. The introduction of expected

information gain is likely related to conflating the semantics of variational distributions. This has

been discussed in [77] and studies including [78, 79] have cited the disappearance of exploratory

behavior when specific model class or inference methods are used.

Viewing the EFE as a reward function and viewing the EFE prior as a prior over optimal actions

has both theoretical and practical benefits. It provides a justification for the heuristic motivation of

the EFE prior in (2.39) based on a principled motivation for maximizing expected model evidence

— the central claim of the FEP. This allows active inference to adopt optimization methods devel-

oped by the planning and reinforcement learning communities (see Section 2.2 and 2.3) and scale

to complex environments. For a comparison of the active inference objective developed in this
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section, labeled as exact active inference, and the variational active inference objectives presented

in Section 2.4.2, see Table 2.1.

Table 2.1: Perception and action update rules in variational and exact active inference

Perception
Variational Q∗(sτ |π) ∝ exp

(
EQ∗(sτ−1|π) [logP (oτ , sτ |sτ−1, π)] + c

)
Exact b(sτ |aτ−1) ∝ exp (logP (oτ , sτ |bτ−1, aτ−1))

Action
Variational G(π|Q∗) = EQ∗

[∑t+H
τ=t+1 logQ∗(sτ )− log P̃ (oτ , sτ )

]
Exact G(bt, at) = EP

[∑t+H
τ=t+1 log

∑
sτ
P̃ (oτ , sτ )

]

2.4.4 Scaling Active Inference

Scalability is a central challenge in active inference. Given that the agent represents the com-

plete sequence of states and actions, extension to settings with extended lifetime is difficult. To this

end, the majority of active inference implementations have adopted two modifications: 1) perform

state estimation of the most recent state without retrospective estimation, and 2) represent policies

instead of the complete action sequence [69, 80, 81].

Under this modification, the agent generative model is factorized as:

P (o1:t, s1:t, a1:t) =
t∏

τ=1

P (oτ |sτ )P (sτ |sτ−1, aτ−1)P (aτ |sτ ) (2.51)

where P (aτ |sτ ) = 1,∀τ ≤ t− 1. Using the same free energy minimization method for perception

as in Section 2.4.2.1, we can show that the optimal variational distributions correspond to Bayesian

beliefs without additional effect from representing future states.

The action prior is defined as:

P (at|st) ∝ exp (−G(st, at)) (2.52)
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where:

G(s, a) , EP (o′,s′|s,a)

[
logP (s′|s, a)− log P̃ (o′, s′)

]
+ logP (a|s) + max

P (a′|s′)
EP (s′,a′|s,a) [G(s′, a′)]

(2.53)

It is easy to see that the action posterior Q∗(at) equals the prior.

(2.53) can be seen as a QMDP approximation of the POMDP formulation of active inference

introduced in Section 2.4.3. However, different from QMDP agents, observation entropy is now

included in the reward function. An agent optimizing this reward will seek states with low ob-

servation entropy, and thus likely maintain high belief precision throughout its lifetime, which

makes QMDP’s full future observability assumption valid. However, whether the agent will actu-

ally maintain high belief precision in the future depends on the property of the actual POMDP and

the agent’s environment model. To equip agents with better handling of uncertainty, more recent

versions of active inference define the EFE prior in terms of current and future beliefs rather than

states [82], which becomes equivalent to the formulation in Section 2.4.3.

2.4.5 Neuroscience Motivation and Agent Objective Design

In active inference, subsuming actions into the prior is motivated by its predictive processing

root. Traditionally, human motor behavior is modeled with decoupled perception and control sys-

tems similar to the MBRL architecture [23]. The communication between perception and control

requires the controller to send control commands via an efference copy to the perception system

in order to enable accurate state estimation. However, contemporary motor neuroscience suggests

that humans do not represent self-generated actions in the form of motor commands and efference

copies, as it would be otherwise difficult to explain phenomena such as sensory attenuation and the

complex interaction between self-tickling and attention [83, 84, 85]. Instead, humans predict the

consequences of desired actions and have the prediction error resolved by reflex, in turn arriving at

the desired state. As such, Friston and colleagues argue that value is not the cause of movements

but rather the consequence and has advocated for optimal control without cost function [83, 86].
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In the Bayesian framework, prediction can be understood as the formation of expectation me-

diated by the prior distribution and prediction error is reduced by updating the prior to the posterior

for passive Bayesian reasoners [87, 88]. This is however undesirable for active agents since their

goals cannot be realized through only state estimation. Active inference’s resolution is to equip

the agent with a strong and biased prior such that it cannot be overridden by state estimation. In

particular, it does so by equipping agents with beliefs about state transitions controlled by an opti-

mal policy in earlier implementations, e.g., [83, 89], and in the version presented in this chapter, it

equips the agent with higher prior probabilities on optimal state-action trajectories.

Such a unification is controversial among cognitive scientists and philosophers with both sup-

porters [90, 91, 92, 93, 94, 95, 24] and objectors [71, 96, 97, 33, 98, 70]. Drawn by the efference

copy argument, the majority of supporters are motivated by the embodied cognition principle that

perception should serve actions rather than being a mirror of the environment [24]. Baltieri and

Buckley showed that by not representing actions, active inference excels in control tasks when

unknown external forces are applied, whereas the decoupled system fails due to inaccurate state

estimation resulting from the mis-specified model [99]. Objectors are concerned with the trivi-

ality of the unification. Gottwald and Braun [70] illustrated the inconsistency between the joint

optimization framework claimed by active inference supporters and the actual formulations and

implementations since 2010.

Alternatively, the community has tried to propose agent objectives that are potentially more

consistent with the FEP. In [72], Parr and Friston proposed to remove the EFE action prior with a

reward factor added to the generative model such that free energy minimization can be done with-

out decoupling perception and action. As argued by Gottwald and Braun [70], this modification

makes the active inference formulation virtually equivalent to control-as-inference. Millidge et al.

[31] proposed to replace EFE with a planning objective called the Free Energy of Expected Future

(FEEF), defined as the KL divergence between the predicted and desired joint state-observation

distributions. Hafner et al. [100] proposed minimizing the joint latent-observable distribution as a

general principle for actions and perception.
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Despite the extensive effort towards either rationalizing active inference or proposing alterna-

tive objectives, currently there is no consensus on how perception and action should be jointly

optimized in autonomous agents.

2.5 Summary

In this chapter, I reviewed POMDP as a minimal perception-action loop and traditional ap-

proaches to autonomous agent design, including both learning and planning, revealing a need for

the unification of perception and action. I then provided an extensive review of active inference

as a candidate framework for unified perception and action. The review contained the most up-

to-date active inference formulations, its neuroscience motivations, and current debates regarding

the validity and novelty of this framework. To connect active inference with traditional agent de-

sign frameworks, I presented a novel derivation of the expected free energy — a central quantity

governing active inference agent’s goal-directed and information-seeking behavior — based on the

FEP, thus justifying its design choice. This novel connection and the discussions in section 2.4.5

show that while active inference represents one attempt to unify perception and action, the objec-

tive mismatch problem is still far from being resolved. Equipped with this insight, the rest of the

dissertation aims to understand the coupling between perception and action in human agents, in

turn shedding lights on novel objective design for synthetic agents.
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3. BEHAVIOR UNDERSTANDING AS THEORY OF MIND INFERENCE

3.1 Introduction

The last chapter reviewed models of autonomous agents and revealed a need for understanding

the coupled roles of perception and action in developing and generating agent behavior. This

chapter introduces Theory of Mind (TOM) inference as a framework for behavior understanding

in autonomous agents. Usually set with an agent observing another agent, referred to as the target,

TOM formulates the agent’s perceptual process as interpreting the beliefs and desires of the target,

where the beliefs and desires are related by an axiom of rationality [101]. Desire inference have

been studied extensively in control, robotics, machine learning, economics, among other areas,

under the titles of inverse optimal control, inverse reinforcement learning, structural estimation,

etc. [102, 103, 104], where the goal of the observer is to infer the desired state of the world

pursued by the target. However, belief inference is as fundamental as desire inference: children

as young as 4 years old show understanding of false beliefs [10]. The combination of belief and

desire enriches the set of behavior expressible by an agent [11].

While simultaneous belief-desire inference is attractive by providing better characterization of

target behavior, it creates a difficult inference problem because the attribution of belief and desire

to a set of observed behavior is typically not unique — there exists alternative belief-desire pairs

that explain the observed behavior equally well. For example, when a mouse does not take a certain

turn in a maze, it is not clear whether it beliefs the turn is blocked or it desires an alternative route.

While a Bayesian approach to the TOM problem can potentially address the non-uniqueness prob-

lem by encoding the uncertainty in the posterior distribution [105], a posterior that is too uncertain

prohibits the observer from making precise decisions. The main cause of the non-uniqueness prob-

lem in TOM, I propose, is a lack of structure in the inference problem. Typically, no assumption

is made about the target’s belief or desire, i.e., the target is allowed to take on any belief or desire,

and no specification is made about the relationship between the observer, the target, and the envi-
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ronment. As pointed out by Jara-Ettinger [14], human TOM inference is far from uninformative

and highly structured, e.g., they do not use uniform prior or make inference about things that are

apparently true. I propose to address the non-uniqueness of TOM inference by equipping the ob-

server with a structured prior on the likely configurations of target belief and desire. Importantly,

the prior should be based on and consistent with the data observed rather than hard coded by a

human designer.

In what follows, I start by formalizing the TOM inference problem in a Bayesian framework,

clarifying the relationship between the target, the environment, and the observer. I then review

existing approaches to desire and belief inference. Following the review, I discuss the uniqueness

problem, relating it to generative vs. discriminative modeling approaches in machine learning.

Lastly, I propose a method to learn structured priors from empirical data leveraging the idea that

target agents are developed by learning about the shared environment.

3.2 Bayesian Theory of Mind

In the Bayesian Theory of Mind (BTOM) inference setting [105], we have an observer agent

watching a target agent interacting with an environment. The target agent and the environment

exchange information via observable signals o ∈ O generated by the environment and actions

a ∈ A responded by the agent for a finite number of time steps T < ∞. As a result, the observer

receives a finite sequence of observation-action pairs: τ = {o1:T , a1:T}. The target agent has a

configuration, defined by a set of parameters θ, which gives rise to its beliefs and desires at different

time steps. In other words, knowing the target agent’s parameters θ allows the observer to uniquely

infer its beliefs and desires at any time step given the interaction history ht = {o1:t, a1:t−1}. None

of the above requires the target parameters θ to be equal to the environment parameters φ. In

the most general case, both the target and the environment generate signals based on the entire

interaction history:

ot ∼ P (ot|ht−1, at−1;φ), at ∼ P (at|ht; θ) (3.1)
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Alternatively, the observer may assume the environment is a POMDP and the target holds the same

belief. An illustration of this process for a POMDP environment is shown in Fig. 3.1.

ot−1 at−1 ot at ot+1

bt−1 bt bt+1

st−1 st st+1

φ

θ

Environment

Agent

Figure 3.1: Bayesian network of BTOM. Observable nodes by both agents are colored in gray and
unobservable nodes are transparent. Environment parameters φ generate environment states and
observations. Agent parameters θ generate agent beliefs and actions.

As a Bayesian agent, the observer has a prior belief over the target agent’s parameters P (θ).

BTOM corresponds to finding the posterior belief over the target agent’s parameters upon observ-

ing the interaction sequence:

P (θ|o1:T , a1:T ) =
P (o1:T , a1:T |θ)P (θ)∫
θ
P (o1:T , a1:T |θ)P (θ)

=
P (o1:T |h1:T−1, a1:T−1;φ)P (a1:T |h1:T ; θ)P (θ)∫
θ
P (o1:T |h1:T−1, a1:T−1;φ)P (a1:T |h1:T ; θ)P (θ)

=
P (a1:T |h1:T ; θ)P (θ)∫
θ
P (a1:T |h1:T ; θ)P (θ)

=

∏T
t=1 P (at|ht; θ)P (θ)∫

θ

∏T
t=1 P (at|ht; θ)P (θ)

(3.2)

The second line reduces to the third line since the observations are not generated by the target

parameters θ. The last line shows that each action taken by the target agent is causally conditioned
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on the current history, i.e., there is no dependency between the target’s current and future actions

or observations that can influence the observer’s belief about θ [106, 107].

We are often interested in a point estimate of the target parameters that is most representative

of its behavior. A well motivated choice for the point estimate is the parameters with the highest

posterior probability known as the Maximum A Posterior (MAP) estimate:

θMAP = arg max
θ
P (θ|o1:T , a1:T )

= arg max
θ

T∏
t=1

P (at|ht; θ)P (θ)

= arg max
θ

T∑
t=1

logP (at|ht; θ) + logP (θ)

(3.3)

As we will see later, both the likelihood P (at|ht; θ) and the prior P (θ) play important but differ-

ent roles: the likelihood relates observed actions to target parameters that likely generated target

behavior and the prior screens off target parameters believed to be unlikely a priori. When no

assumption is made about the target agent, i.e., a uniform prior is used, the MAP estimate is equiv-

alent to the maximum likelihood estimate (MLE).

3.2.1 BTOM of POMDP Agents

This section instantiates BTOM of a target agent with a POMDP model of the environment.

This amounts to specifying the structure of the likelihood function in (3.2) according to the variable

dependencies implied by the POMDP structure shown in Fig. 3.1. A POMDP agent has beliefs

about the environment configuration b(φt) and beliefs about the environment state b(st) at every

time step. The agent also has desire over the state of the environment and actions to pursue de-

fined by the reward function R(st, at). We denote the total target configuration with θ = {θ1, θ2}

corresponding to the parameters of target belief and desire. Here, we make a simplifying assump-

tion that the target’s belief about the environment configuration is a point estimate which does not

change over the course of interaction with the environment: b(φt) = δ(φt−φ̃). This is a reasonable

assumption when the duration of interaction is short. We emphasize that the point belief φ̃ is not
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necessarily equal to the true environment parameters φ.

The action likelihood of a POMDP agent is:

P (a1:T |h1:T ; θ) =
T∏
t=1

π(at|bt; θ)δ (bt − b(st|ht; θ1)) (3.4)

where π is governed by an axiom of rationality, e.g., one of the planning algorithms introduced in

Chapter 2.

MLE BTOM inference corresponds to finding θ that maximizes (3.4). This requires inverting

the target’s planning process, i.e., the process of finding the policy π. This is a challenging problem

since the planning process itself is challenging especially when the dynamics is complex. The next

section reviews existing TOM algorithms.

3.3 Review of TOM Inference Algorithms and Applications

Prior work on TOM inference can be straightforwardly categorized into desire inference and

belief or joint belief-desire inference. Desire inference has been studied extensively in fields such

as computer science, economics, and psychology under the titles of inverse reinforcement learning,

inverse optimal control, inverse decision theory, structural estimation, etc., [102, 103, 14, 104]. In

inverse reinforcement learning and inverse optimal control, there is also an emphasis on reverse en-

gineering a policy for task-solving, which interacts with the requirement of inference accuracy but

has more nuanced practical implications. In contrast, belief inference has received little attention.

In both categories, the majority of studies assume agent beliefs about the environment are given

and fixed, or its beliefs are perfect copies of the true environment, with a few notable exceptions

[108, 109, 105]. I will thus start by reviewing the most relevant work in inverse reinforcement

learning and then review belief inference with a focus on the diversity of approaches and the iden-

tifiability or uniqueness of belief inference. I end with a review of the practical use cases of TOM

inference.
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3.3.1 Desire Inference with Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) is a particular method for inverse optimal control or in-

verse decision theory, where the planning process is performed approximately by reinforcement

learning. The goal of IRL is to recover the reward function optimized by the target agent. IRL typ-

ically assumes the target agent has a fixed belief about the environment that exactly mirrors the true

environment [110]. This belief can be represented by a set of matrices in a discrete environment,

a set of equations in a continuous environment, or a simulator for a highly complex environment.

Although not strictly required, IRL typically assumes the environment is fully observable, i.e., the

environment is treated as an MDP.

Earlier works in IRL are concerned with the degeneracy of the inference problem, where the

observed behavior can be explained equally well by a large set of reward functions [102]. This

is mainly due to the non-smooth nature of MDPs, where there always exists a deterministic op-

timal policy [111]. Thus, two reward functions can give rise to the same optimal policy as long

as they do not alter the ordering of optimal actions in each state. Notable proposals for address-

ing the uniqueness problem include the maximum margin formulation, which finds a reward that

maximally distinguishes the optimal from the sub-optimal policies [112]. Another challenge is the

modeling of noisy behavior, where the observed agent chooses multiple different actions in the

same state with different frequencies. The dominant approach is to assume agents choose actions

with probability proportional to the exponential of the cumulative rewards. This can be motivated

by a noisy reward model [104] or a Bayesian approach [113].

The majority of recent works have settled on the Maximum Causal Entropy (MCE) IRL frame-

work, which simultaneously addresses degeneracy and noisy actions [114]. Although initially

motivated by the principle of maximizing the (causal) entropy of a predictive model, i.e., the pol-

icy, which matches observed agent behavior while being as parsimonious as possible, MCE-IRL

can be equally viewed as inferring the reward function of a planning-as-inference agent which

simultaneously maximizes reward and policy entropy (see Section 2.3.4.1, [115]). The policy of

such an agent is always smooth in the reward functions, and the mapping from policy back to re-
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ward is unique up to a constant [116]. Recent works have extended MCE-IRL to high dimensional

environments with applications in robotics and autonomous driving [117, 118, 119].

3.3.2 Belief Inference Frameworks

This section reviews belief inference and joint belief-desire inference algorithms with a focus

on the following two aspects: 1) assumptions on the subjectivity of beliefs, and 2) the specific

inference algorithm. There are extensions of IRL which perform belief-desire inference in a de-

coupled fashion [120, 121, 122]. They estimate the environment parameters in the first stage and

fix the estimated parameters while inferring agent reward in the second stage. These methods are

not considered belief inference in the BTOM context, since these beliefs are not scored by the

likelihood function in the BTOM definition in (3.2). In other words, they represent the observer’s

belief about the environment but not the target’s belief.

Among the BTOM approaches, most belief or joint inference methods assume the target agent

models the environment as an MDP [123, 124, 125, 126, 109, 127] or POMDP [108, 128, 129, 105,

130]. [125] and [109] assume the reward function is given and only estimate the agent’s model

of the environment, while the rest of the works mentioned perform simultaneous estimation of

belief and desire. Most works make explicit assumptions about the environment model family as

either discrete [124, 125, 108, 105] or linear-Gaussian [109, 129, 128], with an exception proposed

by Gangwani et al. [130], where agent beliefs are parameterized by a neural network. In the

context of inferring human’s biased beliefs about the environment, Reddy et al. [109] and Shah

et al. [131] raised an important question that without further constraints on the environment model

parameters, i.e., beyond the fact that it is parameterized by a specific model class, the model is

empirically observed to be unidentifiable, i.e., different solutions explain the target agent equally

well. They both proposed to regularize the belief model to make accurate predictions on observed

data. Other works such as [127, 126, 105] propose to capture parameter unidentifiability with

Bayesian approaches.

These works have also presented a variety of approaches in addressing the challenging inverse

planning problem, although all of them used the common constraint that agent policies should
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respect the Bellman equation. Bacon et al. [123] and Reddy et al. [109] proposed to directly solve

the constrained optimization problem using either the Lagrangian dual descent-ascent algorithm

or the penalty method. Herman et al. [124], Golub et al. [125], and Wu et al. [108] proposed to

directly differentiate the Bellman equation. Their derivations show that the belief gradient can be

expressed as the gradient of the expected value, implying potential cause for non-identifiability.

The method of Wu et al. [108] is complicated by the fact that the target agent is assumed to have

a POMDP model. The authors propose to discretize the belief space and infer the target belief

about the environment state at different time steps using a message-passing algorithm. Baker

et al. [105] avoided direct optimization with Markov Chain Monte Carlo sampling. Kwon et al.

[128] used meta reinforcement learning to train an agent on all configurations of the environment

and subsequently used this agent to generate the beliefs and action probabilities required by the

message-passing algorithm similar to Wu et al. [108]. Gangwani et al. [130] performed density

matching on beliefs using the adversarial imitation learning algorithm [132].

The reviewed studies show that, unlike desire inference, there is currently no consensus on the

best algorithmic framework for belief inference. The joint belief-desire inference setting is further

complicated by the fact that desire inference has to be based on an intermediate belief inference

result, while the update direction for target beliefs also depends on the inferred target desire. Such

a coupling implies potential non-identifiability, which is often not cited in the literature. A likely

reason for the lack of reference to non-identifiability is that the majority of work operates in small

environments with an extensive amount of prior knowledge injected to constrain the hypothesis

space of target beliefs. However, these restrictions are not desirable for the application of TOM

inference in general environments. Thus, there is substantial value in clarifying TOM identifiability

and requirements on the type of environments and target behavior.

3.3.3 The Usefulness of TOM Inference

The purpose of TOM inference is to provide better characterization of agent beliefs and desire

than assuming agent beliefs coincide with the true environment or an estimate thereof in decou-

pled approaches. There are two main use cases of TOM inference. The first case uses TOM as
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a research tool for understanding human cognitive behavior in psychology experiments [11, 133]

and mapping inferred mental states to neural correlates or other behavioral markers [134, 135].

Equipped with this knowledge, a robot can provide assistance to humans, or other target agents,

by augmenting their perception or control. For example, Reddy et al. [109] inferred human par-

ticipants’ beliefs about the environment dynamics in a rocket-landing game assuming their desire

equals to the actual game reward. The inferred beliefs show that humans perceive the game to

be slower than the actual game speed. By augmenting participant actions towards actions leading

to the intended states at the lower believed speed, they achieved a significant increase in the task

completion rate.

The second and less explored use case is in learning a model of the environment without inter-

action by extracting knowledge from the target agent [136]. This is most useful when the observer

has limited access to an environment due to excessive risk and has to estimate a model of the

environment from historical data and then plan a policy from the estimated environment model,

i.e., model-based offline IRL. A maximum likelihood estimate of the environment parameters will

make inaccurate predictions in states that do not exist in the dataset, e.g., uniform prediction in the

tabular model representation, and thus plan a suboptimal policy. In contrast, joint inference allows

target agent decisions to inform the estimation of environment parameters. In this way, the envi-

ronment model becomes task-aware and avoids issues associated with the model-policy objective

mismatch in MBRL discussed in Section 2.3.3.

3.4 The Uniqueness of BTOM Inference

The non-unique nature of BTOM is intuitive: agent behavior can be motivated by either de-

sire or beliefs about what is possible or impossible in the environment. However, it is far less

clear to what extent it depends on the environment, behavior observed, or assumptions and priors

on the agent’s configuration. The next two sections study BTOM identifiability assuming MDP

and POMDP environment models. I show that belief and joint inference in both settings are not

identifiable as a result of under-determined systems.
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3.4.1 (Un)idenfifiability of MDP Models

We start by studying the identifiability of desire, belief, and joint inference problems assum-

ing the target agent models the environment as a fully observable MDP. We make no additional

assumption other than the target agent being an optimal planner with respect to (w.r.t.) its model

of the environment. For the desire or belief inference case, we assume the target belief (i.e., the

environment model) or desire (i.e., the reward function) is known. For the joint inference case, we

assume both are unknown. We will show that only desire inference is identifiable while the other

two cases are in general unidentifiable. In the joint inference case, we can find complementary

desires to compensate for changes in beliefs without changing subsequent behavior. In the belief

inference case, I show that the unidentifiability is due to an under-determined system. In each case,

I state the result first and then provide the analysis.

Proposition 2. (MDP joint inference) Joint belief-desire inference in the MDP setting is in general

unidentifiable.

We start by considering the joint belief-desire inference setting. The target agent behavior is

generated from a policy π(at|st) planned in an MDP with subjective transition model P̃ (st+1|st, at)

and reward function R(st, at). To simplify the analysis, we assume the policy is parameterized by

aQ function which is given or can be estimated accurately from target behavior (e.g., using Energy

Based Models [137, 138, 139]). The Q and value function associated with the policy satisfy the

Bellman equation written in matrix form as:

Q = R + PV (3.5)

Let us introduce a pair of alternative reward functionR′(st, at) and transition model P̃ ′(st+1|st, at)

while fixing the Q and value function so that the optimal policy stays the same. The difference
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between the old and new reward functions can be written as:

∆R = R′ − R

= (Q−Q)− (P′V− PV)

= −∆PV

(3.6)

This shows that for an arbitrary adjustment in the subjective transition probabilities, we can always

find a corresponding adjustment in the reward function that keeps the value function and thus the

policy unchanged. The adjustment in reward is the negative change in expected value.

Proposition 3. (MDP desire inference) Desire inference in the MDP setting is identifiable.

The above joint inference analysis also shows that for a fixed transition model (i.e., ∆P = 0

where 0 is a zero matrix), the reward function is uniquely determined (i.e., ∆R = 0) if the value

functions associated with the policy are given. Thus, target desire can be identified from observed

behavior following the possibility of identifying Q functions [137].

Proposition 4. (MDP belief inference) Belief inference in the MDP setting is in general unidenti-

fiable.

To study the identifiability of belief inference, we fix the target reward function by setting

∆R = 0. The identifiability problem is translated into finding a different transition model P′ such

that:

∆PV = 0 (3.7)

∆P can be expressed as:

∆P = 0V† + Z(I− VV†)

= Z(I− VV†)
(3.8)
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where Z ∈ R|S||A|×|S| is an arbitrary matrix of the same size as ∆P and V† = VT/||V||2 [140].

This can be rewritten as a set of systems of linear equations, one for each source state and action:

(I−VV†)TZ[i] = ∆P[i] (3.9)

where X[i] is the ith row of the matrix X with i ∈ Z|S||A|. The system of equations has a solution

Z[i]∗ iff (I−VV†)T is invertible, which requires that the nonzero eigenvalue of VV†: V†V 6= −1.

This is true since all elements of V†V are positive.

The result of this analysis is that for a given transition-reward pair, we can usually choose an

arbitrary matrix Z and obtain a new transition matrix P′ (subject to the constraint that P′ is a

stochastic matrix) as:

P′ = P + Z(I− VV†) (3.10)

which leaves the value function and the policy unchanged. Thus, even in the case where the target

agent’s environment model is fully observable and the desire is specified, belief inference is still

unidentifiable. This supports the empirical observations made in [109, 131] and challenges other

belief and joint belief-desire inference methods in MDPs [124].

3.4.2 (Un)identifiability of POMDP Models

Analyzing the identifiability when the agent environment model is partially observable is more

challenging than when the agent environment model is fully observable. This is because the model

parameters affect not only policy planning but also the agent’s belief about the environment at each

time step. We will approach the analysis using a notion of observational equivalence.

Specifically, we will consider the problem of whether there exists more than one set of agent

parameters θ such that an observer cannot distinguish the data generated from different sets of

paramters. We formally define observational equivalence as fixing the marginal distribution of a
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finite observation sequence for different parameters:

P (o1:T , a1:T ) =
∑

s1:T ,b1:T

T∏
t=1

P (ot|st)P (st|st−1, at−1)P (bt|bt−1, at−1, ot)P (at|bt) (3.11)

where we have omitted the dependence of the belief transition and policy on agent parameters θ

for notational clarity.

To achieve observational equivalence, it is sufficient to consider a single time slice shown in

Fig. 3.2 with marginal distribution:

P (ot, at, ot+1) =
∑
st,st+1

P (st)P (ot|st)P (st+1|st, at)P (ot+1|st+1)

δ(bt − b(st|bt−1, at−1, ot))P (at|bt)δ(bt+1 − b(st+1|bt, at, ot+1))

(3.12)

Since the environment state transition and observation do not depend on agent parameters θ, we

only require alternative sets of parameters θ to yield the same distribution of action at (i.e., pol-

icy equivalence) and the posterior belief distributions bt and bt+1 (i.e., belief equivalence) for the

current time slice. The posterior belief distribution ensures that the prior belief distribution for the

next time slice is fixed.

ot at ot+1

bt bt+1bt−1

st st+1

Figure 3.2: A slice of POMDP’s dynamic Bayesian network. Observable variables are colored in
gray nodes and hidden variables are transparent. For the analysis of observational equivalence, our
goal is to find different parameters θ such that the variables in red remain fixed.

We will study the QMDP policy class (see Section 2.2.2.2) for which the Q function can be
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expressed mostly as a linear function of agent parameters. We will denote the QMDP Q function

as:

Q(ot, at) =
∑
st

b(st|ot)Q(st, at)

=
∑
st

b(st|ot)

[
R(st, at) +

∑
st+1

P (st+1|st, at)V (st+1)

] (3.13)

with b(st|ot) defined as

b(st|ot) =
P (ot|st)

∑
st−1

P (st|st−1, at−1)b(st−1)∑
st
P (ot|st)

∑
st−1

P (st|st−1, at−1)b(st−1)
(3.14)

where b(st−1) is assumed to be known and fixed.

Proposition 5. (Policy equivalence) There exists more than one policy-equivalent belief-reward

pairs for a given QMDP value function.

Let us denote the matrix form of b(st|ot) with B, where each row corresponds to the posterior

belief distribution upon observing ot. We can write the QMDP Q function in matrix form as:

Q = BR + BPV (3.15)

We will introduce an alternative set of parameters {B′,R′,P′} and fix the value functions. The

change in reward function as a result of changes in the environment parameters can be found as

follow:

B′R′ = BR + (BP−B′P′)V

R′ = B′
+

[BR + (BP−B′P′)V]

(3.16)

Where B′+ denotes B′’s Moore-Penrose pseudo inverse. This equation is an analog of the MDP

case (3.6), which shows that for a perturbed set of environment parameters, we can always find a

reward function that keeps the Q function and thus the policy unchanged. Thus, if belief equiva-
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lence can be achieved, which will be discussed next, we will not be able to tell apart agents with

different parameters purely based on observed behavior.

Proposition 6. (Belief equivalence) There exists more than one set of belief-equivalent environ-

ment model parameters.

In order for observational equivalence to fully hold, We also need to ensure that alternative sets

of parameters do not change the belief distributions at adjacent time steps. Specifically, we require

the sequence {bt, bt+1|bt−1, ot, at, ot+1; θ} to be invariant upon changing θ.

We will first show that for a single time step, the invariance relationship generally holds with

different parameters. Let us denote the observation-belief matrix with b̃t parameterized by θ such

that:

b̃(st|ot) =
P (ot|st; θ11)

∑
st−1

P (st|st−1, at−1; θ12)b(st−1)∑
st
P (ot|st; θ11)

∑
st−1

P (st|st−1, at−1; θ12)b(st−1)
(3.17)

where θ11 and θ12 denote the observation and transition distribution parameters, respectively. We

will analyze the gradient of these parameters when the KL divergence between b and b̃ is mini-

mized. We can write the KL divergence as:

DKL

(
b||b̃
)

= Eb(st)
[
log b(st)− log b̃(st)

]
= −Eb(st)

[
log b̃(st)

]
+ c

= −Eb(st)

[
log

P (ot|st; θ11)
∑

st−1
P (st|st−1, at−1; θ12)b(st−1)∑

st
P (ot|st; θ11)

∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

]
+ c

(3.18)

We assume there exists parameters θ11 and θ12 such that the KL divergence is zero.
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The gradient of the KL divergence w.r.t. the parameters are (see Appendix A.2 for derivation):

∇θ11DKL = −Eb(st)
[
∇θ11P (ot|st; θ11)

P (ot|st; θ11)

]
+

1

Z

∑
st

∑
st−1

P (st|st−1, at−1; θ12)b(st−1)∇θ11P (ot|st; θ11)

∇θ12DKL = −Eb(st)

[∑
st−1

b(st−1)∇θ12P (st|st−1, at−1; θ12)∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

]

+
1

Z

∑
st

∑
st−1

P (ot|st; θ11)b(st−1)∇θ12P (st|st−1, at−1; θ12)

(3.19)

whereZ is the normalizer in the belief update equation. When the KL divergence is at its minimum,

we have:

0 = ∇θ11DKL +∇θ12DKL

= −Eb(st)

[
∇θ11P (ot|st; θ11)

P (ot|st; θ11)
+

∑
st−1

b(st−1)∇θ12P (st|st−1, at−1; θ12)∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

]

+
1

Z
Eb(st−1)

[∑
st

P (st|st−1, at−1; θ12)∇θ11P (ot|st; θ11)

+
∑
st

P (ot|st; θ11)∇θ12P (st|st−1, at−1; θ12)

]
(3.20)

The equality can generally be achieved without requiring the gradients w.r.t. the observation and

transition distributions parameters to be all zeros. This shows that, we can hold bt fixed with

different (and potentially infinite) sets of parameters θ. The same analysis can be straightforwardly

extended when we also require bt+1 to be fixed. This would require computing the gradient of

b(st+1) w.r.t. θ and adding the resulting terms to (3.19).

While one may ask whether the set of belief-equivalent parameters will reduce and eventually

shrink to a single element if we increase the number of time steps for which we require the belief

sequence to be invariant? I will challenge this view using the observation from the classification

literature that a discriminative classifier can be parameterized by a potentially infinite set of genera-

tive models generating the same predictions [141]. Under this view, our argument for the extension
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of the belief unidentifiability result to the multi-step setting can be justified by treating the entire

belief sequence as a single classifier prediction. In this context, a classifier can make the correct

classification for the wrong reason, i.e., using the wrong generative model.

Combining this result with the policy equivalence relationship in (3.16), we can conclude that

joint belief-desire inference with partially observable models is unidentifiable since there exists

alternative model parameters that render the belief trajectory the same, and the value function and

policy can be held fixed by modifying the reward function using expected changes in the value

function (weighted by the beliefs). By similarity to the fully observable case, the unidentifiability

result also holds in general in the belief inference case where the reward function is provided.

The analysis of both fully and partially observed MDPs show that the full BTOM inference is

unidentifiable as a result of an under-determined system, which leads to the same likelihood for

an infinite set of parameter configurations. A natural way to overcome this degeneracy under the

Bayesian framework is to impose an informative prior on the parameters. I propose a method to

learn such a prior from data in the next section.

3.5 Reconciling Subjective and Objective Models Using Informed Priors

In this section, I seek to alleviate the unidentifiability of BTOM by revisiting its definition in

(3.2). (3.2) posits that while making inference about the target agent, the observer assumes agent

parameters θ to be independent of the environment parameters φ. However, is the independence

assumption reasonable? For example, if the target agent was trained in a similar environment,

its parameters likely correlate with the current environment. Similar questions have been raised

in the context of semi-supervised learning, where learning data-dependent joint priors (a form of

empirical Bayes estimation [142]) were proposed to break the independence assumption and make

use of unlabeled data [143, 144, 145, 146]. I briefly review these prior-engineering approaches

below and propose a method to relate the objective and subjective environment models.
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3.5.1 Bayesian Prior Engineering in Semi-Supervised Learning

In supervised learning, we observe a datasetD = {(xi, yi)}ni=1 of observations xi and labels yi.

The goal is to predict the unknown labels of new observations. The dataset is typically modeled as

samples from the following joint distribution:

P (x, y|θ, φ) = P (y|x; θ)P (x|φ) (3.21)

where P (y|x; θ) is the classifier we wish to obtain. The parameters are assumed to be independent

P (θ, φ) = P (θ)P (φ).

Given this model structure, the posterior over the classifier parameters is:

P (θ|D) =

∏n
i=1 P (yi|xi; θ)P (θ)∫

θ

∏n
i=1 P (yi|xi; θ)P (θ)

(3.22)

which is dependent on the data distribution P (x) but independent of the model distribution P (x|φ).

In semi-supervised learning, we are provided with an additional unlabeled dataset D̃ = {x̃j}mj=1.

If we use the model defined above and assume the unlabeled dataset is generated from the same

distribution, then the unlabeled dataset does not provide any information about the classifier pa-

rameters θ. The independence assumption was first questioned by Seeger [143]. In supervised

learning, the labels y are usually attributes of the observations x — it is unlikely that θ and φ are

independent. Thus, the majority of approaches reviewed here propose to model the joint distribu-

tion P (θ, φ).

The most straightforward method is to assume θ and φ are mirror image of each other: P (θ, φ) =

δ(θ − φ)P (φ), if P (y|x; θ = φ) is modeled as the posterior of a generative model P (x|φ):

P (y|x;φ) =
P (x|y;φ)P (y|φ)∑
y′ P (x|y;φ)P (y|φ)

(3.23)
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The unlabeled dataset is incorporated in the posterior as:

P (φ|D, D̃) =

∏n
i=1 P (yi|xi;φ)P (xi;φ)

∏m
j=1 P (x̃j|φ)P (φ)∫

φ

∏n
i=1 P (yi|xi;φ)P (xi;φ)

∏m
j=1 P (x̃j|φ)P (φ)

(3.24)

where P (x̃|φ) =
∑

ỹ P (x̃, ỹ|φ) is the marginal likelihood of the unlabeled data point.

However, the mirror-image assumption might be too restrictive or even disadvantageous in

cases where the generative model P (x|φ) is misspecified (e.g., the naive Bayes model) or cannot

be estimated accurately from a small dataset [147]. To relax the mirror-image assumption, Bishop

and Lasserre [146] proposed a joint prior which is proportional to the l2 distance between the two

sets of parameters:

P (θ, φ) ∝ P (θ)P (φ)
1

σ
exp

(
1

2σ2
||θ − φ||2

)
(3.25)

where a hyperparameter σ controls the strength of the prior belief of parameter similarity.

Still, the above method requires generative modeling of the data distribution P (x|φ), which

can be difficult and excessive for the downstream classification task. We often wish to directly

learn the classifier P (y|x) while still making use of the unlabeled dataset D̃. Grandvalet and

Bengio proposed to encode in the prior the assumption that the unlabeled data points tend to have

unambiguous labels, motivated by the observation that "the (asymptotic) information content of

unlabeled examples decreases as classes overlap" [144, 148]. They proposed to encode this prior

as the exponential of the negative entropy of the classifier on unlabeled examples:

P (θ, φ) ∝ exp (−λH(ỹ|x̃)) (3.26)

whereH(ỹ|x̃) = −Ex̃∼P (·|φ),ỹ∼P (·|x̃;θ)[P (ỹ|x̃; θ)] and λ is a hyper parameter controlling the strength

of the prior belief of unlabeled class entropy. The expectation over P (x̃|φ) may be alternatively

estimated from the unlabeled dataset D̃ and thus avoid generative modeling.

While the above methods were proposed for semi-supervised learning, the important insight
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is that the joint prior is more realistic and can be formulated in a dataset-dependent fashion. I

introduce a joint prior for the BTOM problem in the next section.

3.5.2 Joint Priors For Environment and Agent Inference

I have shown that the assumption of agent parameters θ being independent of the environment

parameters φ is conceptually inadequate and can lead to degenerate solutions. A reasonable solu-

tion is to require the agent parameters θ to be similar to the environment parameters φ. We can

formulate this assumption using the KL divergence between the subjective and objective environ-

ment models. We consider choices of reverse and forward KL divergence below.

Reverse KL divergence prior. Using the reverse KL divergence, the prior can be formulated

as:

P (θ, φ) ∝ P (θ)P (φ) exp (λR(θ1, φ))

R(θ1, φ) = −
T∑
t=1

DKL [P (ot|ht−1, at−1; θ1)||P (ot|ht−1, at−1;φ)]
(3.27)

where λ is a hyperparameter controlling the strength of such belief. Given the mode-seeking

and zero-avoiding property of the reverse KL divergence [76], this prior has the interpretation of

constraining the subjective model to generate transitions where the probability under the objective

model is non-zero, resonating with the proposal in [109]. The BTOM Bayesian network with joint

environment-agent prior is shown in Fig. 3.3 with an additional edge between φ and θ compared

to Fig. 3.1.

Using this prior, the joint agent-environment BTOM problem can be written as:

P (θ, φ|o1:T , a1:T ) =
P (o1:T |h1:T−1, aT−1;φ)P (a1:T |h1:T ; θ)P (θ, φ)∫
θ,φ
P (o1:T |h1:T−1, aT−1;φ)P (a1:T |h1:T ; θ)P (θ, φ)

=
P (o1:T |h1:T−1, aT−1;φ)P (a1:T |h1:T ; θ)P (θ)P (φ) exp (λR(θ1, φ))∫
θ,φ
P (o1:T |h1:T−1, aT−1;φ)P (a1:T |h1:T ; θ)P (θ)P (φ) exp (λR(θ1, φ))

(3.28)
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Figure 3.3: Bayesian network of joint environment-agent BTOM. In contrast with Fig. 3.1, an
additional edge between φ and θ encodes the joint environment-agent dependency.

with the joint MAP estimate equal to:

{θ, φ}MAP = arg max
θ,φ

T∑
t=1

{
logP (at|ht; θ) + logP (ot|ht−1, at−1;φ)

− λDKL [P (ot|ht−1, at−1; θ1)||P (ot|ht−1, at−1;φ)]

}
+ logP (θ) + logP (φ)

= arg max
θ,φ

T∑
t=1

{
logP (at|ht; θ) + logP (ot|ht−1, at−1;φ)

}
+ logP (θ) + logP (φ)

+ λ

T∑
t=1

{
EP (ot|ht−1,at−1;θ1) [logP (ot|ht−1, at−1;φ)] +H[P (ot|ht−1, at−1; θ1)]

}
(3.29)

The last line shows that this prior favors θ with high objective likelihood and high entropy. At

the same time, the objective model is encouraged to have high likelihood under samples from the

subjective model. This requires the observer to maintain two copies of the environment model,

which may be beneficial when the observer is itself an autonomous agent with its own separate
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goals such that an accurate model of the environment is needed. However, this may be excessive

if the observer is a passive reasoner, e.g., when we are interested in only target parameters in a

psychology experiment.

Forward KL divergence prior. Using the forward KL divergence, we have in the prior:

R(θ1, φ) = −
T∑
t=1

DKL [P (ot|ht−1, at−1;φ)||P (ot|ht−1, at−1; θ1)] (3.30)

The joint MAP estimate can be written as:

{θ, φ}MAP = arg max
θ,φ

T∑
t=1

{
logP (at|ht; θ) + logP (ot|ht−1, at−1;φ)

}
+ logP (θ) + logP (φ)

+ λ
T∑
t=1

{
EP (ot|ht−1,at−1;φ) [logP (ot|ht−1, at−1; θ1)] +H[P (ot|ht−1, at−1;φ)]

}
(3.31)

Under the assumption that the φ is faithful to the actual environment such that the log likelihood

of the subjective model expected under the objective model is equal to that expected under the

actual environment, we can write the MAP estimate of θ as:

θMAP = arg max
θ

T∑
t=1

{
logP (at|ht; θ) + λ logP (ot|ht−1, at−1; θ1)

}
+ logP (θ) (3.32)

This is equivalent to having a prior:

P (θ) ∝ P (θ) exp (λ logP (o1:T |h1:T−1, aT−1; θ)) (3.33)

which removes the requirement of having two copies of the environment model.

It is important to distinguish (3.32) from the two-stage decoupled inference framework re-

viewed in Section 3.3.2, where an environment model P (o1:T |h1:T−1, a1:T−1; θ1 = φ) is first esti-

mated and subsequently held fixed while making inference about agent desire θ2. In this method,

the environment parameters θ1 depend on agent actions only via causal conditioning (i.e., Pearl’s
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do-calculus [106]) and are thus not affected by agent decisions. In contrast, in (3.32) the environ-

ment parameters θ1 depend on both agent decisions and the actual environment observations such

that agent decision can inform its estimation.

3.6 Summary

In this chapter, I introduced Theory of Mind inference as a framework for behavior under-

standing, continuing the quest for understanding the coupled roles of perception and action in

autonomous agents. I then reviewed relevant literature in desire, belief, and joint TOM infer-

ence and applications, illustrating the use cases and advantages of TOM over alternative human

understanding frameworks. Although empirically observed in the literature, the unidentifiability

of TOM was largely unexplored. I provided an analysis of TOM identifiability with MDP and

POMDP models and showed that they suffer from being under-determined systems, leading to de-

generacy in the likelihood function. To overcome this degeneracy, I proposed a family of informed,

joint agent-environment priors which can be estimated from data. These priors are more consistent

with human TOM inference than uninformative priors [14] and unify the heuristic regularization

approaches in current belief inference algorithms [109]. Subsequent sections illustrate insights

about human driving behavior made possible by the proposed priors.
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4. MODELING DRIVER RESPONSES TO AUTOMATION FAILURES WITH ACTIVE

INFERENCE*

4.1 Summary

The goal of this chapter is to investigate how active inference and Bayesian theory of mind

can be applied to model actual human behavior. Specifically, I study how active inference can

be used to understand driver emergency braking decision process during a simulated laboratory

driving task with automated driver assistance system. A central challenge in this task is in under-

standing the source of heterogeneity in driver behavior. A model that does not take into account

heterogeneity will generate poor predictions of driver behavior. Using a combined active inference-

BTOM-expectation maximization approach, I show that the heterogeneity in driver behavior can

be understood as varied beliefs about the road condition and driver assistance system to automati-

cally recover from crash risk. This provides a general methodology for understanding naturalistic

human behavior.

4.2 Introduction

Automated vehicle (AV) technologies promise to substantially reduce the 1.35 million annual

worldwide roadway fatalities [149], yet preliminary deployments of AVs have had mixed results.

While there is evidence that AVs improve safety–measured by crashes per mile [150, 151]–there

is corresponding counterevidence in the form of fatal crashes [152] and difficulties during inter-

actions with other vehicles [8, 9]. These crashes have a diverse set of causes, but most involve

a mismatch between driver expectations and automation capabilities [153]. The effects of these

mismatches are most insidious after automation failures where drivers need to re-engage with the

driving task and avoid a crash [154]. Reducing such crashes requires developing AVs that are de-

signed within human capabilities and expectations. Integrating models of human perception and

*©2023 IEEE. Reprinted, with permission, from Wei, R., McDonald, A. D., Garcia, A., & Alambeigi, H. (2022).
Modeling driver responses to automation failures with active inference. IEEE Transactions on Intelligent Transporta-
tion Systems, 23(10), 18064-18075.
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action in the design process will facilitate such designs [155].

Driver process models (DPMs) are a promising method to integrate human perception and

action with the design process. DPMs are a class of models that can specify momentary control

actions given prior input from the driver, system, and surrounding driving environment [156].

DPMs can be used to simulate driver behavior and driver-system interactions in counterfactual

situations. The outcomes of these simulations can, in turn, be used to assess safety outcomes

and calibrate system parameters within driver limits [157, 158]. Given that the role of DPMs is

to emulate driver behavior, it is critical that the predicted model behavior and decision processes

align with actual observed driving behavior and decision processes. In the context of interactions

with AVs, models need to emulate driver perception of the environment and beliefs about their

responsibilities (i.e., their expectations) [154].

Prior models of driver behavior following AV failures have mostly used visual looming of

obstacles in the forward roadway to model drivers’ perception of the environment [159]. Visual

looming is derived from the optical angle of an object in the forward view subtended on the driver’s

retina, and is defined by the ratio of the change in optical angle and the optical angle itself. It is

well established in the literature that visual looming is the central source of perceptual evidence that

drivers use to initiate braking behavior in rear-end braking emergencies [160, 154, 161, 162]. Prior

modeling efforts have focused on predicting driver braking reaction time (BRT) and behavior from

accumulated visual looming evidence over time [163, 164, 165]. Recent work has extended these

findings to show that after prolonged use of automation, driver braking behavior is more accurately

predicted by accumulated errors in expected and observed visual looming [166, 167]. Beyond

the evidence accumulation framework, Pekkanen et al. [168] developed a model that integrates

perceived visual looming, with driver state estimation, environmental parameters, and actions.

While these models have shown considerable promise for emulating human braking behavior, they

are limited in the sophistication of their representation of cognitive states and in their applicability

to scenarios involving multiple decisions (e.g., car following). These limitation are especially

relevant for AVs given that internal states such as trust [169, 170, 153] and situation awareness
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[171, 172, 173] substantially affect driver responses to automation failures.

One method of addressing this gap is to extend models of human perception and action that are

grounded in cognitive theory and neurological behavior to the driving domain (e.g., [174]). The

most prominent of these approaches is active inference [22]. The central tenets of active inference

are: 1) human decision-makers embody an internal model of the environment which they use

to minimize an information theoretic measure of surprise called free energy and 2) all relevant

parameters of the model (including perception, action, and others) are optimized in a Bayesian

fashion.

The ideas of active inference have been proposed as a general theory of driver behavior [175],

but they have not been extended to quantitatively model driving behavior. The goal of this article

is to report on the development of a novel model of driver behavior that integrates active inference

and visual looming. We accomplish this goal through proposing and parameterizing an active

inference model of driver braking reactions in rear-end braking scenarios, then by demonstrating

how the model parameters can be mapped to known psychological constructs, and illustrating

counterfactual predictions made possible by the model.

4.3 Active Inference in a Partially Observable Markovian Environment

Active inference has been used to model human decision-making under uncertainty in partially

observable environments. This partial observability follows from the observation that the brain

does not have direct access to the true environmental state but must infer it from noisy sensory

signals [18]. In this section, we provide a brief overview of active inference as a model of hu-

man decision-making and introduce relevant constructs including states, actions, preferences, free

energy, variational inference, and Partially Observable Markov Decision Processes (POMDP).

4.3.1 Active Inference: The Observable States Case

Given a finite set of observable states S , individual preferences are modeled by a probability

distribution P (s) ∈ (0, 1) with
∑

s∈S P (s) = 1, such that high probabilities correspond to states

with high expected visitation. Preferences can be modeled by means of rewards r(s) so that the
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relative log-likelihood of state s over s′ is proportional to the difference of rewards:

log
P (s)

P (s′)
∝ r(s)− r(s′) (4.1)

In a static decision-making environment, the agent (i.e., driver) is assumed to have a (po-

tentially inadequate) internal model for the consequences of its actions in the form of a predictive

distributionQ(s|a) over states conditioned upon decision (or action) a ∈ A. The Kullback–Leibler

divergence (also called relative entropy) between distributions Q(s|a) and P (s) is defined as:

G(a) = DKL(Q(s|a)‖P (s)) :=
∑

s∈S
Q(s|a) log

Q(s|a)

P (s)

This measure is often referred to as the expected free energy (EFE) [29]. It measures the difference

between preferred states likelihood and predicted states likelihood and can be re-written as:

DKL(Q(s|a)‖P (s)) = Es∼Q( ·|a)[− logP (s)]−H(Q( ·| a))

where the first term is expected “surprise” (i.e., disagreement between the desired vs. predicted

states under action a) and the second term H(Q( ·| a)) is the entropy of the predictive distribution

Q(s|a). Let π denote a probability distribution over A. In active inference, meaningful behavior

is modeled by the relative log-likelihood of selecting action a over a′ as follows:

log
π(a)

π(a′)
∝ −γ(G(a)− G(a′))

with γ > 0 a precision parameter controlling the concentration of the action distribution π.

In a dynamic setting, we can denote by s1:T = (s1, s2, . . . , sT ) a sequence of observable states

with st ∈ S, t ∈ {1, . . . , T}. Also, we can denote by a1:T = (a1, a2, . . . , aT ) a sequence of actions

at ∈ A, t ∈ {1, . . . , T}. With a Markovian predictive distribution Q(st+1| st, at) we can extend
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the definitions above (with s1 given) as follows:

Q(s1:T | a1:T ) =
T∏
t=1

Q(st+1| st, at) (4.2)

P (s1:T ) =
T∏
t=1

P (st) (4.3)

The EFE can be extended as follows:

G(a1:T ) = DKL(Q(s1:T |a1:T )‖P (s1:T )) (4.4)

As before, meaningful behavior is cast as the log-likelihood, log π(a1:T | s1), of selecting action

a proportional to −G(a1:T ), i.e.,

π(a1:T | s1) ∝ exp(−γG(a1:T )) (4.5)

4.3.2 Variational Inference

In the case wherein the state is not observable but the agent is able to record an observation o ∈

O with joint distribution P (o, s) = P (o|s)P (s), s ∈ S where P (s) is the a priori distribution and

P (o|s) is the observation probability. The a posteriori distribution is

P (s|o) =
P (o|s)P (s)∑
s∈S P (o|s)P (s)

In active inference modeling, the computation of the a posteriori distribution is generally assumed

to be intractable. Variational inference is an alternative approach where an approximation to the

a posteriori distribution is obtained by solving the following optimization problem [66]:

Q∗(s|o) = arg min
Q(·)∈Q

∑
s∈S

Q(s|o) log(
Q(s|o)
P (s|o)

) (4.6)
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where Q is a class of conditional probability distributions parameterized by “free variational”

parameters.

4.3.3 Application to POMDP

At a given time t, the agent interacts with the environment by performing an action at ∈ A

with effects a transition from the current state st to the next state st+1 with the dynamics governed

by a probability distribution P (st+1|st, at). The state st ∈ S is not directly observable; yet the

agent registers an observable signal ot ∈ O generated through probability P (ot|st), which is used

to infer the underlying state using variational inference, i.e., (4.6). Fig. 4.1 illustrates this process.

As before, active inference models the agent’s decision-making by minimizing EFE. Since the

environment is partially observable, the agent evaluates EFE expected under the future sequences

of observations P (o1:T |s1:T ) as follows: [68]:

G(a1:T ) = EP (o1:T |s1:T )[DKL(Q(s1:T |a1:T )|P (o1:T , s1:T ))]

= DKL(Q(s1:T |a1:T )‖P (s1:T ))

+ EQ(s1:T |a1:T )[H(P (o1:T |s1:T ))]

(4.7)

where the first term in the second line is the same as (4.4) and the second term is the entropy

of observations expected under the predictive distribution Q(s1:T |a1:T ). Action selection again

follows (4.5).

4.4 Active Inference Braking Model

In this section, we illustrate how the active inference framework presented in the previous

section can be applied to model a driver’s emergency braking behavior. We achieve this by for-

mulating the mental model of the driver, specifying its action selection mechanism, and grounding

the observation process in visual looming observations.
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4.4.1 Active Inference Braking Model Formulation

Following the active inference framework, we assume the driver consistently updates beliefs

about the state of the environment and the actions to pursue in order to maintain consistency with

the expected state distribution P (s), up to a planning horizon H unknown to the researchers. We

focus on the driver’s decision-making process for the braking reaction event, which begins at the

moment the lead vehicle begins to decelerate. Thus, the driver only considers two actions: waiting

(0) and braking (1).

We assume the driver mentally represents the environment with K > 1 states, each associ-

ated with a visual looming observation distribution P (o|s). This follows from the observation that

drivers’ braking decision-making is guided by visual looming [162]. The states can thus be inter-

preted as either more or less urgent based on their associated looming expectations being higher

or lower. The impact of the braking and waiting actions on the states as perceived by the driver is

described by the driver’s internal model of state transitions in the environment P (st+1|st, at). The

driver uses the state transition model for two purposes: 1) to form beliefs about the state of the envi-

ronment (i.e., whether a crash is imminent) through sequences of past visual looming observations

as in (4.6), and 2) to mentally simulate and predict sequences of future states should a sequence

of actions be taken as in (4.2). The parameters of the observation and state transition distributions

(illustrated by the squares in Fig. 4.1) are internal to the driver and unknown to the researchers.

However, the relationships between these parameters and the actions taken by the driver, which are

observable to the researchers, are described by the expected free energy functional.

Consistent with [29], we calculate the driver’s mental simulation of state sequences when im-

plementing different actions and the resulting EFE using dynamic programming. Assuming at any

given time t, the driver believes they will choose actions that minimize the EFE exponentially more

likely, the EFE (4.7) of choosing action at while the inferred state estimate is st can be computed
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using the following recursive equations [29]:

G(st, at) = DKL(Q(st+1|st, at)‖P (st+1))

+ EQ(st+1|st,at)[H(P (ot+1|st+1))]

+ EQ(st+1,at+1|st,at)[G(st+1, at+1)]

(4.8)

The last term, corresponding to the expectation of the EFE at the subsequent time step, is zero at

the last time step t = H . This assumption reduces searching among all action sequences to only

searching among the most likely action sequences (i.e., that achieve lower EFE), by pruning away

action sequences that are unlikely (i.e., high EFE) a priori.

D s1 B s2 B s3

A A A

o1 o2 o3

a1 a2

πG

C
γ β

H

Figure 4.1: Factor graph illustration of an active inference agent in a POMDP environment. The
circles represent random variables and squares represent parameters internal to the agent. Ob-
servable variables in the environment are colored in gray. The figure shows three time steps of
interactions with the environment through observations o and actions a, which the agent uses to
form beliefs about the environment Q(s1:T |a1:T ) and actions to pursue π(a1:T ).
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Following [67], we assume the driver also updates belief about precision γ at each time step

in addition to states and actions. It can be shown that if we equip the driver with a gamma prior

over precision with shape parameter α (usually set to 1) and adjustable rate parameter β, the rate

parameter update is proportional to the difference between the prior and posterior evaluations of the

EFE [67]: ∆βt = −(πt−πt−1)Gt (for detailed derivation see Section B.2). Thus, precision reflects

the driver’s sensitivity to the accuracy of their own evaluation of EFE. We include this parameter

because prior studies have shown that active inference models with a dynamic precision inference

mechanism better resemble human choice behavior compared to models without precision [176,

177]. In addition, the research has shown that observed changes in precision estimate correlate

with neurological activities (e.g., dopamine)[176].

4.4.2 Mapping Model Components to Constructs

A distinct advantage of this active inference braking model is that the internal model compo-

nents align with known psychological constructs that are relevant to driving behavior and tran-

sitions of control. The expected state distribution encodes the driver’s prior expectations of the

long-term future states, where high probability corresponds to what the driver thinks is likely to

happen when the driver-environment system is in a steady-state. The driver in turn adapts their

behavior to maintain consistency with the expected steady states (e.g., maintaining task-difficulty

homeostasis)[178]. The mean of the observation model conditioned on each state P (o|s) encodes

the looming value the driver expects to see under that state. The variances of the observation

model relate to attention mechanisms [179]. Specifically, overt attention corresponds to having

an observation model with low variance. This leads to a higher divergence between the observa-

tion distribution conditioned on different states, resulting in a higher rate of perceptual evidence

accumulation and a higher ability to distinguish among alternative states [180, 181]. The state

transition model encodes the driver’s understanding of the environment dynamics and prediction

of the immediate next state based on the current state. To predict over multiple time steps, the driver

cascades single-time step predictions from the state transition model. Finally, the precision param-

eter γ is related to the flexibility and automaticity of action selection [175]. This follows from the
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mechanism by which precision modulates action selection: high precision increases the probability

of selecting actions evaluated to have low EFE even though the evaluation may be inaccurate due

to few observations or an inadequate model, while low precision discourages this behavior and en-

courages sampling more observations before making a decision. Thus, drivers with high precision

behave more autonomously and are less affected by sensory observations, while drivers with low

precision behave with more variance.

4.5 Methods

We analyzed the active inference braking model by fitting it to driving data from a driving

simulation study and analyzing the fitted parameters. Following the model parameterization pro-

cess, we used a factor analysis to identify factors that concisely explain variation in the model

parameters and further evaluated the model’s ability to make counterfactual predictions on unseen

scenarios. This section provides details of these procedures.

4.5.1 Dataset

The dataset used for parameter estimation was obtained from a driving simulator study of driver

responses to automation failures while driving in a platoon [182]. The study was approved by the

Texas A&M Institutional Review Board (IRB number: IRB2018-1362D) and complied with the

American Psychological Association’s code of ethics. The study had a 2x2x2 factorial design,

where the presence of an alert (alerted vs. silent) was varied between subjects, and the takeover

scenario (unexpected braking vs. obstacle reveal) and scenario criticality (critical vs. non-critical)

were within subjects. After practice sessions to familiarize participants with the simulator and

its automation capabilities, participants completed four experiment drives corresponding to each

pairing of post-failure driving environment and scenario criticality. The order of the drives was

counterbalanced across participants. For the purpose of the current analysis, only the unexpected

braking scenario was included as initial observations suggested that this scenario mostly produced

braking responses, whereas drivers typically responded with steering in the obstacle reveal condi-

tion.
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In each experiment drive, the participant drove on a highway with a speed limit of 105kph

(65mph) and they were instructed to keep their hands on the steering wheel. The drive started with

the participant’s vehicle on the side of the road near a highway entrance ramp where participants

were instructed to enter the highway behind a lead vehicle and engage the vehicle’s automation.

The participants then drove for approximately 10 minutes with the automation engaged, although

they were permitted to disengage the automation at any point by pressing the brake pedal or a

button on the center console. At approximately 3 minutes into the drive, the lead vehicle braked

and the participant’s vehicle responded with equivalent braking. After approximately 7 minutes,

the lead vehicle braked a second time, the participant’s vehicle failed to respond and the automa-

tion disengaged. The lead vehicle deceleration rates in the critical and non-critical scenarios were

5m/s2 and 2m/s2, respectively. In the alerted condition, this disengagement coincided with an

auditory and visual alert and in the silent condition the participant received no indication of au-

tomation disengagement.

Sixty-four participants (32 males, 32 females, mean age 41.44 years (SD = 15.14)) completed

the study, generating 256 drives. Each drive contained 10Hz position, velocity, acceleration, and

brake pedal position data. The remainder of this analysis focuses on the 128 drives from the

unexpected braking scenarios, specifically the second braking event in which the automation failed

to respond. Analysis of the other responses is reserved for future work. In addition to the removal

of the obstacle reveal scenario, 20 drives in the braking condition where drivers steered without

braking were also excluded. The final dataset included in this analysis consists of 108 drives with

51 drives in the critical scenarios and 57 drives in the non-critical scenarios. Of these drives, 3

resulted in crashes—2 from the silent failure and critical condition and 1 from the alerted and

critical condition. A Bayesian regression analysis of braking reaction times found that there were

substantial differences between the critical and non-critical conditions in braking response time

(mean increase of 0.76s in the non-critical condition compared to the critical condition), however,

there was not a substantial difference between the silent and alerted conditions (mean increase of

0.16s in the silent failure condition). This finding was attributed primarily to the fact that drivers
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were instructed to keep their hands on the wheel and did not engage in secondary tasks while the

automation was engaged [182]. In addition, no substantial effects of driver demographics (i.e.,

age and gender) or condition order were observed. Additional details on the study, including

descriptive statistics, can be found in [182, 183].

4.5.2 Data Pre-processing

Given that the focus of the current analysis is on driver responses to automation failures, we

subset the data from each drive to include only the second braking event (at 7 minutes into the

drive) and specifically the time period from the initial braking of the lead vehicle until the observed

braking reaction time of each drive–brake pedal depression of 1% or greater. We calculated the

looming value at each time step following the method in [162]. For each drive, the sequence of

actions implemented by the driver is a sequence of zeros, corresponding to wait, except for the

last action being 1, corresponding to brake, at the observed BRT. We added 2 additional time steps

(0.2 seconds) after the observed BRT with braking actions to each sequence in order to avoid the

model overfitting to a single braking action. Thus, for each drive, the processed dataset consists of

a sequence of continuous looming values and a sequence of binary actions.

4.5.3 Parameter Estimation

Since our dataset is constrained in size, we adopted a Bayesian approach and estimated dis-

tributions over the drivers’ (i.e., the participants’) internal parameters under the active inference

model. This approach allows us to quantify uncertainty over the estimated parameters and avoid

parameter overfitting.

We parameterized the models with the complete set of active inference parameters for a fixed

number of environment statesK described in Sec. 4.4.1. These parameters include the looming ob-

servation distributions P (o|s) with parameters A = {Ai}Ki=1, state transition dynamics P (s′|s, a)

with parameters B = {Ba
ij}, i, j ∈ {1, ..., K}, a ∈ {1, ..., |A|}, expected state distribution P (s)

with parameters C = {Ci}Ki=1, initial state belief P (s0) with parameters D = {Di}Ki=1, initial

precision rate β, and planning horizon H . Since looming values are non-negative, we modeled
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the looming observation distributions using log-normal distributions with location and scale pa-

rameters: Ai = {µi, σi}. We parameterized our belief over the drivers’ planning horizons using

a Poisson distribution with rate τ . We found using the number of states K = 2 was sufficient to

recover observed braking behavior. This resulted in 12 effective parameters, i.e., K−1 parameters

for each probability vector. The relationships between these parameters and other variables in the

driver-environment system are shown in Fig. 4.1.

The model parameter estimation was conducted with the Empirical Bayes method [142], a

hierarchical Bayesian model which uses the empirical dataset to generate an informed prior dis-

tribution over the parameters and in turn constrain the parameter space. We estimated a separate

posterior distribution for each drive in order to understand the behavioral variations in the dataset.

Grouping all model parameters into a single vector θ = {A,B,C,D, β, τ}, the suitability of the

parameters for an individual drive is determined by the likelihood of action sequence a1:T taken by

the driver given the observed looming sequence o1:T of the respective drive and the parameters θ:

P (a1:T |o1:T , θ) =
T∏
t=1

P (at|o1:t, θ)

=
T∏
t=1

P (at|Q(st), θ)P (Q(st)|Q(st−1), ot, at−1)

(4.9)

where P (at|Q(st), θ) ∝ exp(−γG(st, at)). We approximated the calculation of G(st, at) in (4.8)

using the QMDP method [42].

We performed the Empirical Bayes estimation using a Variational Expectation Maximization

algorithm [66]. The objective of the algorithm is to maximize the log-marginal likelihood:

L(a1:T |o1:T ) = log

∫
P (θ)

T∏
t=1

P (at|o1:t, θ)dθ (4.10)

where P (θ) is the Empirical Bayes prior over the parameters. We overcame the intractable integral

using a variational posterior distirbution Q(θ) for each drive, which gives rise to the following

66



lower bound on the log-marginal likelihood (derived in Appendix Sec. B):

L = EQ(θ)[
T∑
t=1

logP (at|o1:t, θ)]−DKL[Q(θ)||P (θ)] (4.11)

We used a multivariate normal distribution with full covariance matrix for the prior distribution in

order to capture the relationships between the (log-transformed if applicable) model parameters.

This is equivalent to using normal distributions for µ, log-normal distributions for σ, β, and τ ,

and logistic-normal distributions for B, C, and D. We used multivariate normal distributions with

diagonal covariance for the variational posteriors Q(θ) to simplify optimization.

Since our dataset is constrained in the diversity of observations, i.e., all looming sequences

increased monotonically as a result of the deterministic braking scenarios, maximizing the action

likelihood alone as in (4.10) can lead to unrealistic solutions. Hence, we further constrained the

model with an observation likelihood regularizer:

L(o1:T ) =
T∑
t=1

log
∑
st

Q(st)P (ot|st) (4.12)

in order to avoid unrealistic parameters with low observation likelihood and avoid overfitting to

driver action sequences. We added the observation regularizer to the action likelihood objective

with an adjustable penalty coefficient of 0.2.

The involvement of latent variables (i.e., the active inference model parameters θ) in the esti-

mation procedure is prone to local optima. Thus, we performed the optimization algorithm with

multiple random initialization of parameters. Among these random initializations, we selected the

parameters which achieved the highest log-likelihood and the lowest Kolmogorov–Smirnov (KS)

distance between the predictive and empirical BRT distributions in the prior and posterior predic-

tive checking processes described in Sec. 4.5.5. We provide further details of our optimization

procedure in the Appendix B.

67



4.5.4 Model Parameter Analysis

Following model parameter estimation, we performed a factor analysis to further understand

the relationships between model parameters and the resulting behavior, and mapped correlations

between parameter changes and BRT to psychological constructs relevant to transitions of control

(e.g., trust). We employed the approach described in [184], which assumes that each observed data

instance is generated by first drawing a latent vector z from a normal distribution N (z|0, I) with

zero means and identity covariance matrix I , and then sampling the observed data x from a linearly

transformed normal distribution N (x|Wz + µ,Σ) with diagonal covariance matrix Σ. The factor

analysis procedure consists of recovering the parameters W , µ, and Σ, and interpreting the latent

factors based on the recovered parameters. In the current context, we expect the latent variable z

to encode intrinsic properties of the drivers, which we can elicit by interpreting the loading matrix

W .

We fit the factor model to the braking model parameters estimated using the procedure de-

scribed in Sec. 4.5.3, where the parameters estimated for each drive correspond to a data instance.

To improve the quality of the recovered factors, we applied log-transformation to all non-negative

parameters and standardized all parameters [184]. The optimal number of factors was identified

through an iterative comparison of factor models including between 1 and 10 factors. The mod-

els were evaluated with data log-likelihood and Bayesian Information Criteria (BIC). The optimal

number of factors was selected as the point of maximum curvature identified by the Kneedle algo-

rithm [185].

4.5.5 Model Validation

We validated the Empirical Bayes model and the factor model by drawing samples of active

inference parameters from the models and simulating agents with the sampled parameters in ran-

domly generated novel scenarios. We first generated scenarios similar to the experiment by fitting

a t-distribution to the initial speeds of participant vehicles and a half-normal distribution to the

initial distances to the lead vehicle, drawing samples from each distribution, and calculating the
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resulting looming sequences assuming the participant never braked and the lead vehicle followed

the experiment scenarios, including the critical and non-critical scenarios. We used these scenarios

to perform prior and posterior predictive checking by simulating active inference agents with pa-

rameter sets drawn from the prior and posterior distributions. We recorded the simulated BRTs as

the time since the beginning of the simulation and the first braking action executed by each active

inference agent.

4.5.6 Counterfactual Simulation

We examined the fitted model’s generalization capability by performing a counterfactual simu-

lation of a rear-end emergency scenario where the ego vehicle responded with braking after a fixed

time delay. This scenario emulates a case where a secondary safety system, e.g., automated emer-

gency braking (AEB), activates after an automation failure. In this case, the time delay between

activation of the secondary safety system may be an important design variable. The counterfactual

simulation had the same initial parameters as the experiment. At the start of the scenario, the lead

vehicle was 30m (i.e., the average distance from the experiment) ahead of the ego vehicle and both

vehicles were traveling at 105kph (65mph). After the first time step, the lead vehicle initiated

a deceleration of 2m/s2 and the ego vehicle continued at 105kph (65mph). The initial time-to-

collision was 5s. After a variable time delay, the AEB system in the ego vehicle responded with a

deceleration of 5m/s2. Five AEB time delays were considered: 0.5, 1.5, 2.5, 3.5, and 4.5 seconds.

At each time delay, we sampled 3,000 sets of parameters from the factor model and simulated the

active inference agents for 5s with these parameters on the looming values generated by the coun-

terfactual scenarios to identify the predicted agent’s time-to-decision (TTD). Each agent executed

one drive in each delay scenario.
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4.6 Results and Discussion

4.6.1 Model Fitting and Validation

4.6.1.1 Model Validation

The average expected log-likelihood of driver action sequences was −0.4, or equivalently 0.98

per time step (0.1 second). Fig. 4.2 shows the prior and posterior predictive distributions of BRT

compared with the empirical distribution. The KS distances between the prior predictive and the

empirical distribution and the posterior predictive and the empirical distribution were 0.284 and

0.162, respectively. The close alignment between the cumulative densities shows that the fitted

model captured the observed behavior well in all drives and a uni-modal prior distribution was

appropriate.

Figure 4.2: Prior (left) and posterior (right) cumulative predictive distributions of braking reac-
tion times compared with the empirical braking reaction times. The KS distances between the
prior/posterior distribution and the empirical distribution are shown in the legends.

4.6.1.2 Fitted Parameters

Prior to subsequent analysis, we compared the fitted parameters across participant age and

gender groups and found no significant differences. Fig. 4.3 shows violin plots of the posterior

distributions of driver parameters aggregated over all drives in each scenario. Each chart in the
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figure corresponds to an active inference parameter, and the widths of the violins correspond to

the density of the distributions. The majority of the distributions were uni-modal, except param-

eters Aµ0, Aµ1, Aσ0, and Aσ1 for the non-critical scenarios were multi-modal. Most parameters

were observably skewed, shown by the asymmetric shapes of the violins. These two properties

of the posterior distributions suggest variations between the posterior distributions across differ-

ent drives. The modes of the posterior distributions of parameters Aµ0 and Aµ1 for all scenarios,

corresponding to the modes of the looming observation distributions for states 0 and 1, were 0.1

and 0.02, respectively. Thus, states 0 and 1 were associated with high and low expected looming

observations, corresponding to the urgent and non-urgent state, respectively. The modes of the

posterior distributions for parameters Aσ0 and Aσ1 for all scenarios, corresponding to the looming

observation distributions Aσ for the urgent and non-urgent states, were 0.02 and 0.08. This shows

that the drivers had more precise looming expectations for the urgent state than the non-urgent

state.

The posteriors of all state recurrence rate parameters B were distributed between 0.8 and 1,

with B0
00 distributed most densely between 0.96 and 0.99, B0

11 between 0.925 and 0.975, B1
00

between 0.8 and 0.9, and B1
11 between 0.8 and 1. The high values of all state recurrence rates show

that the drivers expected both states to independently reoccur with high probability, effectively

considering the environment to be close to static such that it is either urgent or non-urgent but

does not transition between the two. This is consistent with the experiment scenario, where the

lead vehicle maintained a constant deceleration rate for 5 seconds and caused looming values to

increase monotonically. The lowered state recurrence rates when taking the braking action show

that the drivers expected to influence the environment state through braking.

The posteriors of the initial belief parameter D0 were most densely distributed between 0 and

0.4. This shows that the drivers recognized the scenario was not urgent before the lead vehicle ini-

tiated braking. The expected state distribution parameter C0 was most densely distributed between

0.6 and 0.9. The posterior of planning horizon τ was most densely distributed between 2 and 4 sec-

onds and the posterior of precision γ was most densely distributed between 5 and 10. This shows
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Figure 4.3: Posterior distributions of active inference parameters aggregated over all drives. Each
chart corresponds to an active inference parameter. Each violin in a chart corresponds to an exper-
iment scenario, with shorthand C = Critical, N = Non-critical, A = Alerted, S = Silent. The grey
violins represent the density of the posterior samples, where wider regions correspond to higher
densities. Parameters with subscripts 0 and 1 are associated with the urgent and non-urgent states,
respectively. Parameters with superscripts 0 and 1 are associated with the waiting and braking
actions.

that while the drivers planned their actions for multiple time steps, the braking decision process

overall was still relatively reactive.

4.6.1.3 Between-Trial Comparison

Fig. 4.3 suggests there were noticeable parameter differences between the critical and non-

critical scenarios but not between different alert conditions. Specifically, the differences were seen

in the A, B, C, and τ parameter distributions, corresponding to the drivers’ looming observation,

state transition, expected state distribution, and planning horizon parameters. These variations
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were expected as the drivers showed different behavior likely due to the difference in their beliefs

about the environment. However, there were no noticeable differences in the initial belief and

precision parameters across different experiment conditions. Post-hoc analysis indicated that the

variations were likely not due to overfitting to driver actions or observations, as both conditions

achieved similar average action and observation likelihood. Thus, the variations in parameters

were most likely due to differences in the duration of the decision-making process. We further

explored this insight in subsequent sections by extrapolating the parameter variations with a factor

analysis and observing the resulting behavioral variations in simulations.

4.6.2 Model Analysis

In the model fitting and validation step, we found there were noticeable differences between

the posterior parameter distributions of different drives. Thus, we used the maximum a posteriori

(MAP) parameters to represent the posterior distributions of each drive and performed all subse-

quent analysis on the MAP parameters.

4.6.2.1 Factor Analysis

Fig. 4.4 shows the log-likelihood and BIC results for the iterative factor analysis. Higher

log-likelihood values and lower BIC values indicate a better model fit. Each point in the chart

represents an iteration of the analysis between 1 and 10 factors. Based on these results, 4 factors

were identified as the optimal value by the Kneedle algorithm as it achieves the highest curvature

of the BIC curve.

The factor loading matrix (top) and the explained variance (bottom) for the 4-factor model are

shown in Fig. 4.5. The top heatmap in the figure shows the loading on each parameter associated

with each factor, and the bottom heatmap shows the fraction of variance explained in each param-

eter by the four factors combined. The cells of the heatmap are color-coded with red indicating a

positive relationship and blue indicating a negative relationship between the parameter values and

the factor. The opacity of the cells reflects the amount of loading on each factor in the top plot and

the amount of variance explained in the bottom plot with darker cells representing higher loading
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Figure 4.4: The log-likelihood and BIC values by the number of factors. Four (4) factors were
selected as the optimal number of factors.

and more variance explained, respectively. Specifically, factors 1-3 were primarily loaded on B1
00,

D0 and C0, respectively, with loading values of 0.88,−0.98, and−0.84. Thus, factors 1-3 captured

simple variations in individual parameters corresponding to the drivers’ belief of state transition

when braking in the urgent state, initial belief, and expected state distribution. In contrast, factor 4

has high loading values on parameters Aµ0, Aµ1, Aσ1, B0
00 B

0
11, B1

11, and τ . Thus, factor 4 captured

more complex relationships between a separate set of parameters from factor 1-3, corresponding to

the drivers’ expectations of observed looming values, belief of state transitions when not braking,

belief of state transition when braking in the non-urgent state, and the planning horizon.

The fraction of variance explained for the majority of the parameters were close to 1, except

that Aσ1, τ , and γ had explained variances of 0.36, 0.69, and 0.01, respectively. This shows that

the factor model captured the variance in the drivers’ expectations of states and observations well.

The very low variance explained by γ shows that precision had no obvious correlation with other

parameters and the drivers’ braking behavior.

The mapping from parameter variations to behavioral variations can be visualized by plotting
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Figure 4.5: Factor analysis results. Row 1-4 shows the factor loading matrix. Row 5 shows
variance explained by the factor model. Each column corresponds to an active inference model
parameter. Parameters with subscripts 0 and 1 are associated with the urgent and non-urgent states,
respectively. Parameters with superscripts 0 and 1 are associated with the waiting and braking
actions. The value in each cell corresponds to the estimated factor model parameter value.

the recovered factor values for each drive against the observed BRTs. This relationship, along with

the factor distributions across these drives, is shown in Fig. 4.6. The distributions of all factors were

uni-modal and centered at 0 with empirical ranges of 5, and factor 4 was more densely distributed

on the left of 0. There were no obvious relationships between the values of factor 1-3 and the

empirical BRTs, whereas the value of factor 4 was positively correlated with BRTs. This suggests

that the factor model has captured variations in driver behavior in addition to driver parameters.

Fig. 4.7 further highlights the relationship between the factors and BRT. The figure shows the

pairwise influence between factor 4 and factors 1-3 on BRT (plotted with a color scale). Lower

predicted BRT values are shown in purple while higher predicted BRT values are yellow. Each

plot shows BRT for a uniform random sample of 3,000 active inference parameters sets across the

latent factor space. Each point in the plots represents one sampled parameter set. This sampling
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Figure 4.6: Distributions of the factors across the dataset (top) and the relationship between factors
and observed BRT (bottom).

method was used to make the relationships between factors clearer compared to the sparse sample

of drivers from the experiment. The figure shows that independent of factors 1-3, lower values

of factor 4 led to shorter BRT and higher values of factor 4 led to longer BRT. However, the plot

also highlights that factors 1 and 3 interact with factor 4, given that the ratio of purple to yellow

points in the bottom left (factor 1) and bottom right (factor 3) changes over the values of factor 1

and factor 3, respectively. Specifically, higher values of factor 1 and 3 are associated with shorter

BRT. The figure also suggests that of all the factors, factor 2 had the least influence on BRT in the

observed data.

4.6.2.2 Factor Interpretation

The factor analysis results show that the estimated parameters of the drivers can be summarized

with 4 orthogonal factors. Given the close mapping between the active inference parameters and

psychological constructs (Sec. 4.4.2), we can expect the factors to represent semantics of behavior
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Figure 4.7: Visualization of interactions between factors and predicted BRT. The points represent
3,000 simulated parameter sets uniformly sampled from the factor model. Each point is color-
coded by its predicted BRT in a non-critical scenario, with yellow representing high BRT and
purple representing low BRT.

as variations in and interactions between the individual parameters. We consider a loading value

greater than 0.5 to be substantial and representative of the factors and we focus on the interpreta-

tions of these values.

The sparsity of loading values on factor 1-3 suggests that these factors represent simple se-

mantics. Specifically, with a single high loading value of 0.88 on B1
00, factor 1 represents drivers’

expected recurrence of the urgent state when braking. With a loading value of −0.98 on D0, factor

2 represents drivers’ initial belief. With a loading value of−0.84 on C0, factor 3 represents drivers’

expected state distribution. These factors correspond well with the variations in BRT shown in Fig.

4.7, where higher values of factors 1 and 3 were associated with shorter BRT while factor 2 had

no observable influence on BRT. This is because higher value of B1
00 in factor 1 and lower value of

C0 in factor 3 lead to the drivers’ belief of lower divergence between the preferred and predicted

future states (4.8) when taking the braking action. On the other hand, prior belief does not have an

obvious effect on BRT because the looming observation distributions of the urgent and non-urgent
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states are different enough that drivers can accurately estimate the state after a few observations.

In contrast with factor 1-3, factor 4 represents more complex semantics as it has a higher

number of large loading values compared with factor 1-3, with high positive loading values onAµ0,

Aµ1,B0
11,B1

11, and τ , and high negative loading values onAσ0 andB0
00. Drivers with positive values

of factor 4 are associated with increased expected looming observation values, increased expected

recurrence of the non-urgent state while taking both actions, and longer planning horizon. They are

also associated with decreased looming observation variance for the urgent state, corresponding to

more precise looming expectations, and decreased expected recurrence of the urgent state while

not braking. This depicts a driver who expects the non-urgent state to occur more often and urgent

state to disappear more often, behaves less reactively, and expects to see higher looming in both

states. As such, factor 4 corresponds well with the concept of “Trust", defined as “the attitude

that an agent will help achieve an individual’s goals in a situation characterized by uncertainty

and vulnerability" [186], as the altered expectations of state transitions and observations can be

attributed to the driver’s belief in the automation’s ability to intervene in a near crash scenario. On

the other hand, factor 4 can also be related to the concept of “Situation Awareness", defined as “the

perception of the elements in the environment [...], the comprehension of their meaning and the

projection of their status in the near future" [187], as variations in the expected looming observation

and state transition parameters can be interpreted as inaccurate perception and prediction of the

environment. Both interpretations correspond well with the observation in Fig. 4.6 and Fig. 4.7

where drivers with high values of factor 4 are associated with slower braking. However, it is

important to note that while we connect the modeled factors with human factors concepts, we do

not claim that the factors indeed represent any particular concept but merely treat them as latent

factors of variations in observed behavior.

4.6.3 Counterfactual Simulation

The results of the counterfactual simulations, described in Sec. 4.5.6, are illustrated in Fig. 4.8.

Each violin plot in the figure shows the TTD distribution of the 3,000 simulated parameter sets

sampled from the factor model. In each scenario, simulated TTDs were most densely distributed
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Figure 4.8: Predicted time-to-decisions of 3,000 simulated parameter sets with parameters uni-
formly sampled from the factor model. Each violin plot shows the TTD distribution of the 3,000
drivers in the corresponding automated emergency braking activation delay scenario with wider
regions correspond to higher densities.

at either 0.1 seconds, or 4.9 seconds. However, in high AEB delay scenarios, there were higher

densities in the violin plots between 0.5 and 4 seconds. Thus, the figure shows three types of

behavior: 1) drivers who braked before the AEB activated (maroon points), 2) drivers who did

not respond (i.e, relied on the automation to brake; grey points), and 3) drivers who observed the

situation for a period of time before eventually taking over and braking (blue points). While it is

difficult to directly compare these results to other studies, it is notable that this pattern of behavior

aligns with prior observations of the distribution of driver responses to AV failures [153].

Fig. 4.9 shows the interaction between factor 1, 3, 4, and TTD in the counterfactual scenarios.

Each column in Fig. 4.9 corresponds to an AEB delay. The top row shows the interaction between

factor 1 and factor 4 , and the bottom row shows the interaction between factor 3 and factor 4. The

color of each point represents the predicted TTD of the respective simulated active inference agent

parameters, with purple corresponding to immediate braking decision, and yellow corresponding

to later braking decision. In all columns, there was a boundary separating the purple region (i.e.,
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fast responding drivers) from the rest (i.e., slow responding drivers). This boundary had a positive

slope in both rows. This shows that a group of drivers with low values of factor 4 and high values

of factor 1 and factor 3 always braked immediately. In the high AEB delay (more than 2.5 seconds)

scenarios, the yellow region near the boundary was replaced by blue. This shows that more drivers

near the center of the latent factor space started to brake, and this corresponds to the increasing

density in the middle sections of the violin plots in Fig. 4.8.

Figure 4.9: Results of the counterfactual simulation. Each column corresponds to an automated
emergency braking activation delay. Each point in a subplot corresponds to one of the 3,000
simulated parameter sets uniformly sampled from the factor model. The points are color-coded
by predicted time-to-decisions of the simulated parameter sets. Purple corresponds to drivers who
braked immediately, and yellow corresponds to drivers who either braked late or did not brake at
all. The top and bottom rows show the interaction of factor 1 and factor 3 with factor 4.

Furthermore, as the AEB delay increased, the behavior of drivers at the boundary (i.e., the
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region where the purple and yellow meet) for factor 1 and 2 changed in a similar fashion. In both

factors, as AEB delay increased from 2.5 to 4.5 seconds, the boundary proceeded upward with

similar positive slopes, corresponding to decreased TTDs as factor 1 and 3 vary from negative

to positive. This suggests the braking reaction pattern found in a fixed scenario in Fig. 4.7 was

invariant under changing scenarios. The similarity between factor 1 and 3 further shows that, while

the active inference parameters were different for drivers with different values of factor 1 and 3, the

behaviors they generated were similar. This was expected as the state transitions and the expected

state distribution play similar roles in the expected free energy functional; changing one while

fixing the other should not cause substantial change to the resulting behavior.

4.6.4 General Discussion

In this article, we developed a novel active inference model of driver braking reaction and

applied this model to driver braking behavior data following an automation failure. The model not

only reproduced the observed behavior of the participants, but also captured their internal decision-

making mechanics. A factor analysis showed that the variations in the estimated models can be

summarized with a small number of factors and varying these factors led to meaningful change in

driver behavior. We further tested the model using counterfactual simulations where the vehicle

automation responded to a rear-end braking emergency with different delays and showed that the

model can produce expected behavior in new settings.

The counterfactual simulations suggest that factor 4, which can be interpreted as either trust

or situation awareness, is the most important factor in determining driver braking response times.

This finding is important given that both trust and situational awareness are known to affect driver

responses to AV failures [173]. Victor et al. [153] found that several drivers with their hands on the

wheel and eyes on the forward roadway still crashed into obstacles in the forward roadway. Fur-

ther analysis suggested that these crashes could be attributed to high trust measured by perceived

capability of the vehicle’s automation. This result is consistent with the trust factor identified in

the current model. The model suggests that drivers tend to consider high looming as benign when

trusting the automation.
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The most closely related to our model is the looming evidence accumulation models proposed

by Markkula and colleagues [162, 159, 165, 188, 166]. In the looming evidence accumulation

models, drivers respond when the accumulated looming evidence, which is the time-integral of

noisy looming signals, has exceeded a predefined threshold. Bitzer et al. [180] showed that this

evidence accumulation process is equivalent to the active inference belief updating scheme in (4.6)

with an identity state transition matrix corresponding to a static rather than a dynamic environment.

Action selection in the looming evidence accumulation model follows a threshold policy, where

a driver brakes once the belief over the urgent state has exceeded the threshold. This threshold

is usually fixed by the modeler when implementing the evidence accumulation model. In our

model, the policy threshold is jointly defined by the expected state distribution and the uncertainty

encoded in the observation and state transition models, as both are involved in the evaluation of

the expected free energy of actions. Thus, our proposed model is a generalization of the evidence

accumulation model that allows the state transition and the policy threshold to be estimated from

data when manual specification is difficult. Our results show that these generalizations enabled

the active inference model to capture more complex cognitive states and dynamics than evidence

accumulation models and show how those states and dynamics impact driver reaction times.

Our model also extends previous attempts to implement predictive processing models of driver

behavior. In [167], the authors incorporated the idea of predictive processing by positing that

drivers react to accumulated looming prediction error rather than looming itself, and looming pre-

diction error is calculated as the difference between the observed looming signal and that predicted

with a perfect dynamics model of the vehicle automation. In contrast, our model uses a sim-

pler dynamics model represented by two abstract states. Our model also complements the work

of Pekkanen et al. [168] who proposed to model attention as driven by the level of uncertainty

over vehicle control states (defined by the expected standard deviation of vehicle acceleration) ex-

ceeding a threshold. Although we did not specifically model online adjustment of attention, the

variances of observation distributions in our model implicitly captured the influence of attention in

the observation variance parameters in factor 4 and subsequently BRTs as shown in the sensitivity
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analysis and counterfactual simulations.

Despite our promising findings, this work is limited in the following aspects. First, the model

was developed with driving simulator data rather than real-world driving data. While there is an

established precedent for relative validity of driving simulation results [189], absolute validity can-

not be guaranteed. Second, the dataset used to estimate the model parameters was constrained in

size and diversity. The repeated scenarios of the experiment may also have influenced the fitted

parameters due to learning effects. Although the fitted model has shown expected behavior in

counterfactual simulations, it is unlikely to generalize beyond emergency braking scenarios with-

out training on a larger and more diverse set of data. Finally, while there are associations between

the factors we identified in the factor analysis and psychological states, we did not explicitly test

these connections. Future work should address these issues by fitting the model to a larger natu-

ralistic dataset, and use experiments to further evaluate the connections between the latent factors,

model parameters, and psychological constructs.

4.7 Conclusion

In this work, we developed a new model of driver behavior that leveraged the active inference

framework to predict driver braking responses and cognitive dynamics during automation failures

and we performed a factor analysis to relate trends in the model parameters to observed behavior.

Our analysis and simulations provide novel insight on the behavioral patterns associated with these

factors and driver behavior during transition of control. The model offers advantages compared to

previous models as it directly measures cognitive dynamics and is more readily scalable to complex

driving behaviors (e.g., car following) while maintaining interpretability. Future work should focus

on these extensions and validating the findings here with a larger naturalistic driving dataset.
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5. SCALING ACTIVE INFERENCE DRIVER MODEL: ADVANTAGES AND

APPLICATIONS IN CAR FOLLOWING*

5.1 Summary

The goal of this chapter is to investigate how active inference can be scaled to model human

control behavior in more realistic driving scenarios and the advantages of active inference as a

modeling paradigm compared to established rule-based and black-box driver behavior models.

Specifically, I benchmark active inference against two standard rule-based and data-driven driver

models in a highway car following task. Active inference shows competitive performance with

the added benefit of superior interpretability provided its modular structure. Crucially, the inter-

pretability enables straightforward inspection and correction of model failures caused by limited

data. These results establish active inference as an intermediate driver modeling framework which

can incorporate the relative strength of purely rule-based and purely data-driven approaches.

5.2 Introduction

The rapid development of automated and connected vehicle technologies has created a corre-

sponding demand for models of driver behavior that can be used to calibrate design parameters

[190, 191], evaluate technologies [192, 157], and refine real-time decision making [193]. To be

effective in these tasks, driver models must be flexible, generalizable, and interpretable. Model

flexibility is the ability of the model to mimic nuanced social behavior of human drivers [8]. Gen-

eralizability is the ability of the model to extend to new environments with minimal modeler inter-

vention. Interpretability refers to both a clear connection between model mechanics and predicted

behavior and a grounding in human psychology [194]. These elements facilitate model inspection

and diagnostics which are essential for interpretable models [195]. Car following is an important

driving sub-task as it represents a large portion of current driving time and crashes involving auto-

*Reprinted, with permission, from Wei, R., McDonald, A. D., Garcia, A., Markkula, G., Engstrom, J., &
O’Kelly, M. (2023). An active inference model of car following: Advantages and applications. arXiv preprint
arXiv:2303.15201. Copyright 2023 by the author(s).
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mated vehicles [196, 197]. Moreover, it requires a complex expression of social behaviors through

physical vehicle positioning [8], e.g., speeding up to prevent a vehicle from merging. Therefore,

it is important to develop flexible, generalizable, and interpretable car following models for auto-

mated vehicles and future transportation systems.

Existing car following models can be partitioned into rule-based models and data-driven mod-

els [161, 154]. Rule-based models generate acceleration behavior based on a function specified

by the modeler. Typically, this function is grounded in known observations or driver behavior

theory [161]. For example, the Intelligent Driver Model (IDM) predicts driver acceleration based

on deviations from a desired speed and distance headway [198]. While rule-based models have a

clear connection between model mechanics and predicted behavior, they are limited in their flexi-

bility and generalizability. Because the rules in rule-based models are designed to replicate driving

behavior in specific contexts and depict driver characteristics with small parameter sets, they are

limited in the behavioral repertoire and in generalizing to scenarios outside of those governed by

rules beyond their initial rule set. For example, research has shown that rule-based models de-

signed for car following do not generalize to emergency scenarios and crashes [199]. Despite

these limitations, rule-based models are still widely used for automated vehicle analyses [200] and

thus offer a valid benchmark for new models.

In contrast to rule-based models, data-driven models learn a function mapping observations or

features to acceleration behaviors using an algorithm. Recent works have used neural networks

[201], hybrid neural network algorithms with physics constraints [202], reinforcement learning

[203], and adversarial imitation learning [204] to model car following behavior. These approaches

have shown considerable flexibility in replicating human behavior, however, data-driven models

still struggle to reproduce well-known traffic phenomena such as stop-and-go oscillation and their

generalizability is constrained by the chosen machine learning technique [201, 205]. Furthermore,

the complexity of existing data-driven models prohibits interpretability both in the connection be-

tween input and output and in their grounding in human psychology. Despite these shortcomings,

data-driven models are more generalizable to complex scenarios which are difficult for manual
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model specification. One important class of data-driven models is Behavior Cloning (BC) known

for their simplicity and general effectiveness [206, 207, 208]. Neural network-based BC models

have been widely adopted for developing and evaluating automated vehicle algorithms and are a

common benchmark for evaluating novel data-driven models [209, 210].

The relative strengths of rule-based and data-driven approaches suggest that there is a role for

model structure (to aid in interpretability) — especially structure grounded in psychological theory

[194] — and learning from data (to aid in flexibility) in car following model development. The

incorporation of these two concepts requires a shift to contemporary theories of human cognition.

One relevant theory is active inference [22, 18] — a framework developed from Bayesian principles

of cognition [211, 101]. The central ideas of active inference are that 1) humans have internal

probabilistic generative models of the environment and that 2) humans leverage their model of the

environment to make inferences about action courses that reduce surprise in terms of both distance

from their desired states of the environment and uncertainty [22, 18]. Importantly, these principles

have been translated into a quantitative framework for modeling human behavior and cognition

[18, 135]. The quantitative framework includes an explicit representation of agent belief dynamics

to facilitate agent decision making and action selection in response to observed perceptual signals.

Due to this structure, the model is fundamentally interpretable (i.e., actions can be traced back

to beliefs and observations at a given time). On the other hand, the increased complexity and

probabilistic nature of the model compared to rule-based frameworks also increase its flexibility

and potentially its generalizability. Recently, the active inference framework has been extended

to driving to depict driving behavior during emergency scenarios with some success [15, 212],

however, the application to broader scenarios has been limited.

Our goal in this article is to introduce the Active Inference Driving Agent (AIDA), evaluate its

flexibility and generalizability relative to rule-based and data-driven benchmarks, and illustrate the

interpretability of the model and the resulting insights it provides into car following behavior.
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5.3 Materials and Methods

In this section, we introduce a formulation of the benchmarks — IDM and Behavior Cloning

— then describe our AIDA formulation. We then describe the dataset used for model fitting and

the model comparison approach. To simplify notation, we adopt a unifying view of car following

models as longitudinal driving control policies which map input signals observed by drivers to a

control signal, i.e., the instantaneous longitudinal acceleration. We denote the driver observations

(or features in machine learning terminology) at discrete time step t by ot and the control signal by

at. Using this nomenclature, the most generic class of driver control policies can be described as a

probabilistic mapping from the entire history of inputs and controls, denoted by ht = {o1:t, a1:t−1}

to the next control signal, i.e., π(at|ht). However, the control policy may only depend on the most

recent observation as π(at|ot). The definition of the control policy is the most significant element

that differentiates the IDM, Behavior Cloning, and AIDA. These differences are illustrated in the

computation graphs in Fig. 5.1 and further described in the subsequent sections.

IDM rule 2o

d̃

IDM rule 1 a

(a) IDM

Bayes’ ruleo

b

minG a

(b) AIDA

NNh a

(c) BC

Figure 5.1: Computation graphs for (a) IDM, (b) AIDA, and (c) neural network BC models. o =
instantaneous observation, a = control action, h = complete interaction history, d̃ = desired
distance headway, b = instantaneous belief, G = expected free energy, NN = neural network.
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5.3.1 Intelligent Driver Model

The IDM [213] implements a control policy based on drivers’ instantaneous observation of

their own vehicle’s speed v, relative speed to the lead vehicle ∆v, and distance headway to the

lead vehicle d, i.e., π(at|ot = {vt,∆vt, dt}). At each time step, the IDM computes a longitudinal

acceleration to regulate the driver’s vehicle towards a desired speed ṽ and desired distance headway

d̃ using the following control rule:

at = amax

1−
(vt
ṽ

)4

−

(
d̃

dt

)2
 (5.1)

where the desired distance headway is defined as:

d̃ = d0 + vtτ −
vt∆vt

2
√
amaxb

(5.2)

The IDM has the following parameters: amax the maximum acceleration rate which can be

implemented by the driver, d0 the minimum allowable distance headway, τ the desired headway

time, and b the maximum deceleration rate. While these parameters can be set manually by human

designers, they usually depend on the road condition and vary with individual driver characteris-

tics, e.g., the desired velocity and minimum distance headway. Thus, various methods have been

proposed to calibrate model parameters from traffic data [214, 215].

A significant limitation of the IDM is that it cannot express certain types of behavior as a result

of the control rule defined in (5.1) and (5.2). For example, it cannot express behavior due to uncer-

tainty about the lead vehicle behavior and surrounding traffic and is limited to modeling behavior

in non-conflict scenarios [199]. Incorporation of such behavior requires significant intervention

from the model designers in adapting the control rule, e.g, modifying (5.1) and (5.2) to depend on

additional inputs or “memory" mechanisms [198].
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5.3.2 Behavior Cloning

BC refers to methods that train neural networks to learn policies from datasets of human car

following behavior. The dataset, denoted with D, is usually organized in the form of observation-

action trajectories, i.e., D = {o(i)
1:T , a

(i)
1:T}Ni=1, where N is the total number of trajectories and T

is the length of each trajectory. The neural network parameterized policies depend on either the

entire history ht or the most recent observation ot. Let us denote the policy parameters with θ, BC

trains policies to maximize the expected log likelihood of the dataset trajectories:

max
θ
L(θ) = Eo1:t,a1:t∼D

[
T∑
t=1

log πθ(at|ht)

]
(5.3)

BC is simple to implement and more computationally efficient than comparative data-driven ma-

chine learning methods like reinforcement learning and online imitation learning. BC also does

not require a high fidelity traffic simulation environment for training, which is necessary for rein-

forcement learning and online imitation learning. In contrast to rule-based policies, BC policies

are more flexible and can express a much larger class of behaviors.

However, BC as a representative offline learning method has known disadvantages of being

sensitive to the quantity and quality of training data and input features. The covariate-shift be-

tween the training dataset and the testing environment and neural network models’ difficulty of

extrapolating learned mechanisms to unseen inputs often cause BC models to overfit to the train-

ing dataset while producing poor control behavior during closed-loop testing (defined in section

5.3.8.2) [216, 205]. Furthermore, several studies have found that BC can be highly sensitive to

input features [204, 217, 201]. Specifically, when a driver’s previous control actions are used as in-

put features to the trained policy, it is likely that the policy merely repeats those controls actions in

closed-loop testing. This has been interpreted as a form of learning spurious correlations or causal

confusion in machine learning, since driver controls at adjacent time steps are usually so similar

that predicting previous controls can quickly minimize training error [217]. Because BC does not

impose any structure on the policy, examining the failure modes of BC models is as challenging as
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examining any other black-box neural network models.

Despite these shortcomings, BC, or variations of it, is a widely studied approach in developing

automated vehicle algorithms and building simulated agents and environments for training them

[210, 209]. It can produce high quality simulated behavior in practice when the training dataset

is large and diverse, appropriate features are selected, and the neural network model is large and

expressive enough [207, 201, 208] and thus it represents a valid data-driven modeling benchmark.

5.3.3 Active Inference Driving Agent

An active inference agent is defined by its internal generative model, which we implemented

as a Partially Observable Markov Decision Process (POMDP). A POMDP describes a dynamic

process in which the state of the environment st ∈ S evolves with driver actions, at ∈ A, according

to a probability distribution, P (st+1|st, at), and generates observation signal, ot+1 ∈ O, according

to, P (ot+1|st+1). In this work, we assume the observation signals are multivariate continuous

variables and the states are discrete to represent probabilistic categorizations of the observation

space (i.e., categorical perception [218]). At every time step, the active inference agent first makes

inference about the hidden state of the environment upon receiving observations using Bayes’ rule:

bt(st) =
P (ot|st)P (st|bt−1, at−1)∑
st
P (ot|st)P (st|bt−1, at−1)

(5.4)

where bt(st) = P (st|ht) denotes the agent’s belief about the environment state given the observation-

action history ht and P (st|bt−1, at−1) =
∑

st−1
P (st|st−1, at−1)b(st−1) is the prior predictive dis-

tribution based on the previous belief.

The active inference agent then selects control actions to minimize a criterion known as the

(cumulative) expected free energy (EFE) [82]:

G∗(bt) = min
π

E

[
t+H∑
t

EFE(bt, at) + log π(at|bt)

]
(5.5)
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where H ≤ ∞ is a finite planning horizon. The EFE is defined as:

EFE(bt, at) , E[DKL

(
bt+1||P̃

)
] + E[H(ot+1)] (5.6)

where P̃ := P̃ (st+1) defines the agent’s preferred state distribution,DKL(·||·) denotes the Kullback-

Leibler divergence — measuring the discrepancy between the current belief and the preferred

state distribution — and H(·) denotes Shannon entropy — measuring uncertainty about observa-

tions. These terms represent goal-seeking and information-seeking (epistemic) behavior respec-

tively [32]. The first expectation in the EFE is taken with respect to:

P (ot+1|bt, at) =
∑
st+1

P (ot+1|st+1)P (st+1|bt, at) (5.7)

and the second expectation in the EFE is taken with respect to P (st+1|bt, at).

Let G∗(bt, at) be defined as:

G∗(bt, at) := EFE(bt, at) + log π(at|bt) +

∫
P (ot+1|bt, at)G∗(bt+1)dot+1 (5.8)

Then the optimal policy has a closed-form expression [60]:

π(at|bt) =
e−G

∗(bt,at)∑
ã∈A e

−G∗(bt,ã)
(5.9)

Active inference has two important differences from the traditional notion of POMDP in op-

erations research and reinforcement learning. First, both the generative model and the control

objective are internal to the agent, meaning they can differ in substantial ways from the true envi-

ronment generative model or a canonical notion of desired behavior, e.g., a "good driver" should

always be centered in the lane. This has important implications as many human driving behaviors

can be explained as inference in subjective or sub-optimal models [219]. Second, active inference

makes an explicit distinction between pragmatic and epistemic behavior in its policy objective
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Figure 5.2: Top down view of the roadway explored in this analysis. We trained the models to
emulate the behavior of the blue cars (traveling west) and evaluated the models’ ability to predict
behavior of the blue and orange cars (traveling east). Grey cars in the merging lanes were excluded.

according to the first and second terms in (5.6). This distinction supports adaptive behavior in

unknown and uncertain environments [32, 175], e.g., traffic environments.

5.3.4 Dataset

We performed our analysis of the IDM, BC, and AIDA using the INTERACTION dataset

[220], a publicly available driving dataset recorded using drones on fixed road segments in the

USA, Germany, and China. The dataset provides a lanelet2 format map [221] and a set of time-

indexed trajectories of the positions, velocities, and headings of each vehicle in the scene in the

map’s coordinate system at a sampling frequency of 10 Hz, and the vehicle’s length and width for

each road segment. The dataset contains a variety of traffic behaviors, including car following,

free-flow traffic, and merges.

Due to our emphasis on car following behavior, we selected a subset of the data to include car

following data from a two-way, seven-lane highway segment in China with a total distance of 175

m. We focused on vehicles in the middle two west-bound lanes shown in Fig. 5.2. We further fil-

tered the remaining vehicles according to two criteria: 1) there was a lead vehicle with a maximum

distance headway of 60 m, and 2) the ego vehicle was not performing a merge or lane change.

We identified merging and lane change behavior using an automated logistic regression-based ap-

proach and validated the classifications with a manual review of a subset of trajectories. We also

removed all trajectories with length shorter than 5 seconds, leaving a total of 1,254 trajectories

with an average length of 14 seconds.
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5.3.4.1 Feature Computation

The input features to the IDM are defined in (5.1) and (5.2). For BC and the AIDA, we used

d and ∆v but excluded v to prevent learning spurious correlations to ego speed or acceleration

from past time steps reported in prior studies [217, 207, 201]. Furthermore, we included an ad-

ditional feature τ−1 in BC and AIDA defined as the rate of change of the visual angle of the lead

vehicle from the ego driver’s seat position divided by the angle itself. τ−1 can be considered as a

perceptual-control analog of inverse time-to-collision, a feature commonly used in driver model-

ing [204, 166, 164], with the difference of incorporating the width of the lead vehicle into feature

computation and using quantities that can actually be observed by the driver. This is consistent

with recent findings on the impact of optical expansion of the lead vehicle’s image on driver lon-

gitudinal control behavior [162]. Furthermore, the inclusion of this feature puts the information

contained in the inputs to BC and the AIDA on a similar level to the IDM, as the IDM implicitly

accounts for time-to-collision in its desired distance headway computation in (5.2).

We computed all features in the Frenet frame (i.e., lane-centric coordinates [222]), by first

transforming vehicle positions, velocities, and headings using the current lane center line as the

reference path and then computing the features from the transformed positions and velocities. We

obtained the drivers’ instantaneous longitudinal control inputs (i.e., accelerations) from the dataset

by differentiating the Frenet frame longitudinal velocities. For BC and the AIDA, we discretized

the continuous control inputs into discrete actions using a Gaussian mixture model of 15 Gaussian

components with mean and variance parameters chosen using the Bayesian Information Criteria

[184].

5.3.5 Model Implementation

In this section, we describe our approach for parameterizing the IDM, BC, and the AIDA.

IDM. Following [223], we parameterized the IDM by treating the IDM policy as a conditional

Gaussian distribution: π(at|ot = {vt,∆vt, dt}) = N (at|µt, σ2) with mean action µt and variance

σ2. The mean action µt is computed from the IDM rule defined in (5.1) and (5.2) by making the de-
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sired speed ṽ, minimum distance headway d0, desired headway time τ , maximum acceleration rate

amax and maximum deceleration rate b adjustable parameters. The action variance σ2 is assumed

to be independent of the input features and also estimated from data.

BC. We implemented the BC model with two types of neural network policies: standard Multi-

Layer Perceptron (MLP) networks and recurrent neural networks (RNN) following [204]. The

MLP network takes as input the observation vector (normalized by training set statistics) and out-

puts a probability distribution over the discrete control actions. The RNN addresses the possibility

that driver behavior may be influenced by the full observation history rather than just the most

recent observation. For the RNN, we combined a Gated Recurrent Unit (GRU) network [224] with

a MLP network, where the GRU network compresses the observation history into a fixed length

vector, which is then transformed into the action distribution by the MLP network.

AIDA. We modeled the discrete state transition probabilities P (st+1|st, at) and the desired

state distribution P̃ (st) of the AIDA using categorical distributions parameterized by their logits.

We parameterized the observation distributions P (ot|st) using Normalizing Flow, a flexible class

of neural network-based density estimator [225, 226]. This provides the AIDA with adequate flex-

ibility in modeling complex and nonlinear observation sequences and associating observed actions

with agent beliefs. Normalizing Flow uses invertible neural networks to transform simple distribu-

tions, e.g., Gaussian distributions, into complex and correlated distributions while maintaining the

tractability of likelihood evaluation and sampling. In this work, we used a single, shared Inverse

Autoregressive Flow [227] to transform a set of conditional Gaussians with mean vector µ(st)

and covariance matrix Σ(st). We modeled a distribution over the agent’s planning horizon using

a Poisson rate parameter and used the QMDP method [42, 228] as a closed-form approximation

of the cumulative expected free energy in (5.8). We approximately computed the entropy of the

state-conditioned observation distributions required in the EFE calculation using the entropy of the

Normalizing Flow base distributions. In subsequent sections, we refer to the transition and obser-

vation parameters with θ1, the desired state distribution and planning horizon parameters with θ2,

and the combined parameters with θ = {θ1, θ2}.
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We provide additional implementation details in Appendix C. Our software implementation is

publicly available at [229].

5.3.6 Parameter Estimation

We estimated the parameters of the IDM, BC, and AIDA by maximizing the expected log

likelihood of driver control inputs from the dataset under the corresponding control policy, i.e.,

(5.3). This procedure for the AIDA differs slightly from the IDM and BC by requiring a nested

step. Between each parameter update in the nested procedure, we first computed the sequence of

beliefs given the observation-action history using (5.4) and the optimal belief-action policy using

(5.9). We then evaluated the log likelihood as a function of the computed beliefs:

max
θ

Eo1:T ,a1:T∼D

[
T−1∑
t=1

log πθ(at|bt,θ1)

]
s.t. πθ(at|bt) =

e−G
∗
t,θ(bt,at)∑

ãt∈A e
−G∗t,θ(bt,ãt)

(5.10)

While (5.10) allows us to learn task-relevant beliefs in active inference agents as it depends on

both θ1 and θ2, the parameters are fundamentally unidentifiable since there are potentially infinite

sets of θ with the same likelihood [109, 230, 141]. This is because, for example, the estimation

algorithm cannot differentiate between drivers who desire a small distance headway and drivers

who believe the distance headway will increase to desired levels in subsequent time steps. A

possible consequence of this is learning an environment model that deviates significantly from the

reality, which leads to a large number of crashes or inactions as a result of the agent not being able

to recognize the actual environment state [231].

In order to constrain the hypothesis space and avoid configurations of θ that are incompati-

ble with real-world constraints, we designed a data-driven prior distribution P (θ) encoding likely

configurations of θ. Specifically, the prior is defined as P (θ) = P (θ1)P (θ2|θ1), where:

P (θ1) ∝ exp

(
λEo1:T ,a1:T∼D

[
T∑
t=1

logPθ1(ot|ht−1, at−1)

])
(5.11)

with hyperparameter λ controlling how much the prior distribution prefers model accuracy, mea-
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sured by expected log likelihood of observations. We let P (θ2|θ1) be a uniform distribution. In our

experiments, we only compute the Maximum A posteriori (MAP) estimate of the Bayesian model

by converting the prior into the following loss function added to the objective in (5.10):

L(θ1) = λEo1:T ,a1:T∼D

[
T∑
t=1

logPθ1(ot|ht−1, at−1)

]
(5.12)

To prevent learning unreasonably large observation variance as a result of the observation entropy

term in (5.6), another symptom previously reported in [231], we applied a penalty on the l2 norm

of the observation covariance parameters.

Using these prior loss functions, the AIDA MAP estimate can be written as:

θMAP = arg max
θ

T∑
t=1

Eo1:T ,a1:T∼D [log πθ(at|bt,θ1) + λ1 logPθ1(ot|ht−1, at−1)] + λ2

∑
s

||Σθ1(s)||2

(5.13)

5.3.7 Model Selection

We trained each model with 15 random seeds controlling model parameter initialization and

dataset mini-batch iteration orders. To select the hyperparameters for the AIDA, we first set λ2 =

0.1 since it’s sufficient to mitigate overly large covariances. We then trained the model for λ1 =

[0.2, 1, 4] and selected λ1 = 1 as it best trades off environment model accuracy and agent behavior

predictive performance (with criteria described in the next section).

5.3.8 Model Evaluation and Comparison

We evaluated and compared our models’ ability to generate behavior similar to the human

drivers in the dataset using both open-loop offline predictions and closed-loop online simulations.

In both cases, we evaluated the models on two different held-out testing datasets. The first dataset

includes vehicles from the same lanes as the training dataset. This dataset tests whether the models

can generalize to unseen vehicles in the same traffic condition. We obtained this dataset by divid-

ing all selected trajectories in the westbound lanes using a 7-3 train-test ratio. The second dataset
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includes vehicles from the top two eastbound lanes in Fig. 5.2. This dataset tests whether the mod-

els can generalize to unseen vehicles in novel traffic conditions, since the traffic in the eastbound

lanes have on average higher speed and less density. We refer to these two datasets as same-lane

and new-lane, respectively. We randomly selected 100 trajectories with a minimum length of 10

seconds from the same-lane dataset and 75 trajectories with a minimum length of 5 seconds from

the new-lane dataset for testing.

5.3.8.1 Offline Evaluation

The goal of the offline evaluation was to assess each model’s ability to predict a driver’s next

action based on the observation-action history recorded in the held-out testing dataset. This task

evaluates the models’ ability to be used as a short-horizon predictor of other vehicles’ behavior

in an on-board trajectory planner [232]. We measured a model’s predictive accuracy using Mean

Absolute Error (MAE) of the predicted control inputs (unit=m/s2) on the held-out testing datasets.

For the IDM, we calculated the predicted control inputs by sampling from the Gaussian policy. For

BC and the AIDA, we first sampled a discrete action from the action distribution predicted by the

models and then sampled from the corresponding Gaussian component in the Gaussian mixture

model used to perform action discretization.

5.3.8.2 Online Evaluation

Rather than predicting instantaneous actions, the goal of the online evaluation was to assess the

models’ ability to generate trajectories similar to human drivers such that they can be used as sim-

ulated agents in automated vehicle training and testing environments [209]. This is fundamentally

different from offline predictions because the models need to choose actions based on observation-

action history generated by its own actions rather than those stored in the fixed, offline dataset.

This can introduce significant covariate shift [205] sometimes resulting in situations outside of the

model’s training data, which can lead to poor action selection.

We built a single-agent simulator where the ego vehicle’s longitudinal acceleration is controlled

by the trained models and its lateral acceleration is controlled by a feedback controller for lane-
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centering. The lead vehicle simply plays back the trajectory recorded in the dataset. Other vehicles

do not have any effect on the ego vehicle, given our observation space does not contain other

vehicle related features.

Following [210], We measured the similarity between the generated trajectories and the true

trajectories using the following metrics:

1. Average deviation error (ADE; unit=m): deviation of the Frenet Frame longitudinal position

from the dataset averaged over all time steps in the trajectory.

2. Lead vehicle collision rate (LVCR; unit=%): percentage of testing trajectories containing

collision events with the lead vehicle. A collision is defined as an overlap between the ego

and lead vehicles’ bounding boxes.

5.3.8.3 Statistical Evaluation

Following the recommendations in [233, 234] for evaluating learned control policies, we repre-

sented the central tendency of a model’s offline prediction and online control performance using the

interquartile mean (IQM) of the offline MAEs and online ADEs. Note however for collision rate,

we compute the regular mean instead of IQM to account for the collision rate lower bound of 0. The

IQMs are computed by 1) ranking all tested trajectories by their respective performance metrics

and 2) computing the mean of the performance metrics ranked in the middle 50%. To compare the

central performance difference between the AIDA and baseline models, we performed two-sided

Welch’s t-tests with 5 percent rejection level on the MAE-IQM and ADE-IQM values computed

from different random seeds with the assumption that the performance distributions between two

models may have different variances [233, 234].

5.4 Results and Discussion

5.4.1 Offline Performance Comparison

Fig. 5.3 shows the offline evaluation results for each model with the model type on the x-axis

and the IQMs of acceleration prediction MAEs averaged across the testing dataset on the y-axis.
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The color of the points in the figure represents the testing condition and each point corresponds to

a random seed’s result. The points are randomly distributed around each x-axis label for clarity.

Dispersion on the y-axis indicates sensitivity in the model to initial training conditions. The plot

illustrates that the AIDA had the lowest MAE-IQM in the same-lane tests, followed by BC-RNN,

BC-MLP, and IDM. The corresponding pairwise Welch’s t-test results in Table 5.1 show that these

differences are significant. In the new-lane tests, both the AIDA and neural network BC models

significantly outperformed IDM. The AIDA performance has higher variance than BC models,

however the difference in the central tendency was not significant. These results show that in the

current car following setting, the AIDA and BC generalized better to the new-lane scenario than

the IDM, mostly likely due to the IDM rules being unable to adapt to different traffic speed and

density than the training dataset. The stronger predictive performance in the AIDA and BC-RNN

in the same-lane data can be attributed to the fact that driver acceleration actions depend on the full

history of past observations rather than just the most recent observation, which can be modeled by

the recurrent structure of the AIDA and BC-RNN. The figure also shows that for the same-lane

tests, the AIDA had more variance across the random seeds compared to other models, suggesting

that it is the most sensitive to local optima in the training process.

Table 5.1: Two-sided Welch’s t-test results of offline MAE-IQM against baseline models. Asterisks
indicate statistical significance with α = 0.05.

Baseline Comparison t(df=14) p-value
IDM same-lane t=37.58 p<0.001*
BC-MLP same-lane t=32.38 p<0.001*
BC-RNN same-lane t=17.31 p<0.001*
IDM new-lane t=33.21 p<0.001*
BC-MLP new-lane t=0.35 p=0.73
BC-RNN new-lane t=-0.12 p=0.90
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Figure 5.3: Offline evaluation MAE-IQM. Each point corresponds to a random seed used to ini-
tialize model training and its color corresponds to the testing condition of either same-lane or
new-lane.

5.4.2 Online Performance Comparison

Fig. 5.4 shows the IQM of each model’s ADEs from data set trajectories in the online evalua-

tions using the same format as the offline evaluation results. In the same-lane testing condition, all

models had ADE-IQM values between 1.8 m and 2.8 m, which is less than the length of a standard

sedan (≈ 4.8 m; [235]). Among all models, BC-MLP achieved the lowest ADE values for both

the same-lane and new-lane conditions, followed by the AIDA, IDM, and BC-RNN. Furthermore,

both the AIDA and BC models achieved lower ADE-IQM in the new lane settings compared to

the same-lane setting, however the IDM achieved higher ADE-IQM in the new-lane setting. The

Welch’s t-test results in Table 5.2 show that AIDA’s online test performances are significantly dif-

ferent from all baseline models in both the same-lane and new-lane settings (P ≤ 0.01). These

findings confirm that the AIDA and BC models generalized better to the new-lane setting than the

IDM and suggest that the AIDA’s average online trajectory-matching ability is significantly better

than IDM and BC-RNN, although BC-MLP is significantly better than the AIDA.

Fig. 5.5 shows the lead vehicle collision rates for each random seed and model using the same

format as Fig. 5.4. The figure illustrates that in the same-lane condition, the random seeds for
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Figure 5.4: Online evaluation ADE-IQM. Each point corresponds to a random seed used to ini-
tialize model training and its color corresponds to the testing condition of either same-lane or
new-lane.

Table 5.2: Two-sided Welch’s t-test results of online ADE-IQM against baseline models. Asterisks
indicate statistical significance with α = 0.05.

Baseline Comparison t(df=14) p-value
IDM same-lane t=3.05 p<0.01*
BC-MLP same-lane t=-5.46 p<0.001*
BC-RNN same-lane t=8.73 p<0.001*
IDM new-lane t=58.18 p<0.001*
BC-MLP new-lane t=-3.77 p<0.001*
BC-RNN new-lane t = 6.87 p<0.001*

BC-MLP, BC-RNN, and the AIDA had more collisions than the IDM (0% collision rate across

all seeds). In particular, BC-RNN and the AIDA had substantial differences across random seeds

compared to the other models. However, the minimum collision rates for BC-MLP, BC-RNN, and

the AIDA were consistent (less than or equal to 1%). In the new-lane condition, the collision rate

was 0% for all four models. The higher collision rates in the same-lane data are likely due to

the traffic density and complexity, which were higher in the same-lane condition compared to the

new-lane condition.
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Figure 5.5: Lead vehicle collision rate in online evaluation. Each point corresponds to a random
seed used to initialize model training and its color corresponds to the testing condition of either
same-lane or new-lane.

5.4.3 AIDA Interpretability Analysis

The previous sections suggest that the AIDA can capture driver car following behavior signifi-

cantly better than the IDM and comparably to data-driven BC models. However, the findings have

yet addressed the interpretability of the AIDA. While there is no established metric for model inter-

pretability, Räukur et. al. [195] recommend assessments based on the easiness of comprehending

the connection between model input and output and tracing model predictive errors to internal

model dynamics. Given that the AIDA’s decisions are emitted from a two-step process, i.e., (1)

forming beliefs about the environment and (2) selecting control actions that minimize free energy,

the model’s success at the car following task depends on the two sub-processes both independently

and jointly. We examined the AIDA’s learned input-output mechanism by visualizing its indepen-

dent components (i.e., the observation, transition, and preference distributions) and verified them

against expectations guided by driving theory [178, 175, 236]. We then examined the joint belief-

action process by replaying the AIDA beliefs and diagnosing its predictions of recorded human

drivers in the offline setting and its own decisions in the online setting.
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5.4.3.1 Independent Component Interpretability

Initial insights into the model input and output connections can be gained by visualizing the

AIDA components, specifically its policy (Fig. 5.6b), observation distribution (shown in Fig. 5.6c),

and preference distribution (Fig. 5.6d). These figures show 200 random samples from each state of

the AIDA’s state-conditioned observation distribution, P (o|s), plotted on each pair of observation

modalities. Color is used to highlight relevant quantities of interest. We further used samples drawn

from the INTERACTION dataset, plotted in Fig. 5.6a and colored by the recorded accelerations,

to facilitate interpreting the AIDA samples.

(a) (b) (c) (d)

Figure 5.6: Visualizations of the dataset and AIDA model components. In panel (a), we plotted
observations sampled from the dataset. In panels (b), (c), and (d) we sampled 200 points from
the AIDA’s state conditioned observation distributions and plotted the sampled points for each pair
of observation feature combinations. The points in each panel are colored by: (a) accelerations
from the dataset, (b) the AIDA’s predicted accelerations upon observing the sampled signals from
a uniform prior belief, (c) state assignments (d) log probabilities of the preference distribution.
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Fig. 5.6b illustrates the observation samples by the model’s chosen control actions. The top

chart shows the samples using distance headway (d; x-axis) by relative velocity to the lead vehicle

(∆v; y-axis), the middle chart shows distance headway by τ−1, and the bottom chart shows relative

velocity by τ−1. The shape of the sampled points matches the contour of the empirical dataset (Fig.

5.6a), particularly in the middle and bottom visualizations, which suggests that the model’s learned

observation model aligns with the recorded observations in the dataset. Darker green and red colors

correspond to larger acceleration and deceleration magnitudes, respectively, and light yellow color

corresponds to near zero control inputs. The color gradient at different regions in Fig. 5.6b is

consistent with that of the empirical dataset shown in Fig. 5.6a. This shows that the model learned

a similar observation to action mapping as the empirical dataset. The mapping can be interpreted

as the tendency to choose negative accelerations when the relative speed and τ−1 are negative and

the distance headway is small, and positive accelerations in the opposite case. Furthermore, the

sensitivity of the red and green color gradients with respect to distance headway shows that the

model tends to accelerate whenever there is positive relative velocity, regardless of the distance

headway. However, it tends to input smaller deceleration at large distance headway for the same

level of relative speed.

Fig. 5.6c shows the observation samples colored by their associated discrete states. The jux-

taposition of color clusters in the top panel shows that the AIDA learned to categorize observa-

tions by relative speed and distance headway and its categorization for relative speed is more fine-

grained at small distance headways and spans a larger range of values. The middle and bottom

panels show that its categorization of relative speed is highly correlated with τ−1 as the ordering

of colors along the y-axis is approximately the same as in the top panel. The middle and bottom

panels show that the AIDA’s categorization of high τ1 magnitude states (blue and cyan clusters)

have a larger span than that of low τ−1 magnitude states. These patterns further establish that the

AIDA has learned a representation of the environment consistent with the dataset. At the same

time, it can be interpreted as a form of satisficing in that the model represents low urgency large

distance headway states with less granularity [237].
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Fig. 5.6d shows the observation samples by the log of its preference probability, P̃ (o) =∑
s P̃ (s)P (o|s), where higher preference probability (i.e., desirability) corresponds to brighter

colors (e.g., yellow) and lower desirability corresponds to darker colors (e.g., purple). The figure

shows that the highest preference probability corresponds to observations of zero τ−1, zero relative

velocity, and a distance headway of 18 m (see the center region of the middle chart, and the yellow

circle at the left-center of the top chart). This aligns with the task-difficulty homeostasis hypothesis

that drivers prefer states in which the crash risk is manageable [178] and not increasing. It is

also consistent with the observed driver behavior in Fig. 5.6a where drivers tend to maintain low

accelerations (light yellow points) within the same regions.

Overall, these results show a clear mapping between the AIDA’s perceptual (Fig. 5.6c) and

control (Fig. 5.6d and 5.6b) behavior that is both consistent with the observed data and straight-

forwardly illustrated using samples from the fitted model distributions. This mapping facilitates

predictions of the AIDA’s reaction to observations without querying the model, which is an impor-

tant dimension of interpretability in real world model verification [195].

5.4.3.2 Joint Model Interpretability

While the previous analysis illustrates the interpretability of individual model components, the

interaction between components introduces additional challenges for overall model interpretabil-

ity. To address this, we analyzed two same-lane scenarios where the AIDA made sub-optimal

decisions in the model testing phase — one from the offline evaluations where the AIDA’s pre-

dictions had the largest MAE and one from the online evaluations where the AIDA generated a

rear-end collision with the lead vehicle. We first visualized the AIDA’s beliefs (computed by (5.4))

and policies (computed by (5.9)) as the model generated actions and then used those visualizations

to demonstrate how the transparent input-output mechanism in the AIDA can be used to mitigate

the sub-optimal decisions.

The chosen offline evaluation trajectory is visualized in Fig. 5.7. The left column charts show

the data of the three observation features over time. The right column charts show the time-varying

ground truth action probabilities over time (top), action probabilities predicted by the AIDA over
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time (middle), and environment state probabilities P (s|h) inferred by the AIDA over time (bot-

tom). In the right-middle and right-bottom charts, the action and belief state indices are sorted by

the mean acceleration and τ−1 value of each state to facilitate alignment with the left and top-right

charts. We labeled the actions by the corresponding means but not the belief states because they

represent multi-dimensional observation categorizations (see Fig. 5.6c). The bottom-right chart

shows that the inferred belief patterns closely followed the observed relative speed and τ−1 in the

left-middle and left-bottom charts with high precision, i.e., close to probability of 1. The pre-

dicted action probabilities in the right-middle chart followed the trend of the ground truth actions,

however, they exhibited substantially higher uncertainty at most time steps and multi-modality at

t = 1 s and t = 12 s, where one of the predicted modes coincided with the true actions. Given the

inferred beliefs were precise, uncertain and multi-model actions were likely caused by inter-driver

variability in the dataset, where drivers experienced similar belief states but selected different ac-

tions. Alternatively, this uncertainty may be caused by drivers having highly different beliefs after

experiencing similar observations, where a simple policy would be sufficient to predict their ac-

tions. In either case, the error in AIDA predictions can be attributed to inconsistency between the

belief trajectories and action predictions.

The chosen online evaluation trajectory which resulted in a rear-end collision with the lead

vehicle is shown in Fig. 5.8 plotted using the same format as Fig. 5.7. The duration of the crash

event is highlighted by the red square in the bottom-left chart, where the sign of τ−1 values instantly

inverted when overlapping bounding boxes between the ego and lead vehicle first occurred and

eventually ended. The AIDA initially made the correct and precise decision of braking, however,

its predictions for high magnitude actions became substantially less precise prior to the collision

(t > 1 s; see right middle chart). This led to the model failing to stop fully before colliding with the

lead vehicle. The belief pattern shows that the AIDA tracked the initial decreasing values of relative

speed and τ−1 but did not further respond to increasing magnitude of τ−1 3 seconds prior to the

crash (starting at t = 1.6 s). These findings show that the model exhibited the correct behavior of

being "shocked" by out-of-sample near-crash observations, however, the learned categorical belief
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Figure 5.7: Visualizations of a same-lane offline evaluation trajectory where the AIDA had the
highest prediction MAE. The charts in the left column show distance headway, relative speed, and
τ−1 signals observed by the model over time. The binary heat maps in the right column show
the ground truth action probabilities (top), action probabilities predicted by the AIDA (middle),
and the corresponding belief states (bottom) over time (x-axis), where darker colors correspond to
higher probabilities. The belief state and action indices are sorted by the mean τ−1 and acceleration
value of each state, respectively.

representation was not able to extrapolate beyond the data from the crash-free INTERACTION

dataset.

The analysis of the near-crash AIDA beliefs suggests that editing the AIDA’s learned envi-

ronment dynamics model (i.e., the transition and observation distributions) to properly recognize

near-crash observation signals can likely avoid the current crash. To demonstrate the utility of be-

ing able to make precise model-editing decisions based on the interpretability analysis, we tested

a modification of the AIDA by replacing its learned dynamics model with a physics-based dy-

namics model assuming constant lead vehicle velocity in the model predictions. Although the

physics-based dynamics model does not capture the stochasticity in the lead vehicle behavior, it is

sufficient for mitigating the current crash given its ability to accurately predict near-crash observa-

tions. We evaluated this new model in the same online testing scenarios as the AIDA, where the
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Figure 5.8: Visualizations of a same-lane online evaluation trajectory where the AIDA generated
a rear-end collision with the lead vehicle. This figure shares the same format as Fig. 5.7. The red
square in the bottom-left chart represents the duration of the rear-end crash event where the vehicle
controlled by the AIDA had an overlapping bounding box with the lead vehicle.

control actions were generated from a model-predictive controller (MPC [238]) using the AIDA’s

preference distribution as the reward function (for detailed implementation seed Appendix C.3).

The AIDA-MPC mitigated all crashes when deployed in the same scenarios as the AIDA as our

analysis predicted. However, it generated substantially more high-ADE trajectories than the AIDA,

most likely due to the lack of representation of lead vehicle stochasticity.

The analyses in this section show that the decision making structure in the AIDA enables

modelers to reason about the training dataset’s effect on the learned model behavior. To the best

of our knowledge, this analysis is not possible with neural network BC models using existing

interpretability tools. We also showed how this understanding can be used to edit parts of the

model to achieve desired safety criteria.

5.5 General Discussion

In this article, we introduced and evaluated a novel active inference model of driver car follow-

ing behavior (AIDA). The proposed AIDA significantly outperformed the IDM and neural network
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BC models in offline predictions in the same-lane condition and outperformed the IDM while per-

forming similarly to BC models in the new-lane condition. Additionally, the AIDA achieved sig-

nificantly lower average deviation error than the IDM and BC-RNN in the online control settings.

However, the results showed that the AIDA was sensitive to initial training conditions, which re-

sulted in higher rates of lead vehicle collisions in the same-lane condition compared to the IDM

and BC-MLP. While BC had comparable or better performance than the AIDA in action prediction

and control, the AIDA is substantially more interpretable than BC models. In contrast to approx-

imate explanatory methods for BC neural networks, we showed that the AIDA’s decision making

process can be directly accessed by sampling and visualizing the AIDA distributions. Further, we

illustrated how the AIDA’s joint belief and action trajectories could be used to understand model

errors and correct them. This level of understanding and diagnostic analysis is central to real world

model inspection and verification which are essential components of interpretability [239, 195].

These results partially confirm our hypothesis that balancing the relative strengths of rule-

based and data-driven models, specifically using the active inference framework, results in better

predictions of driver behavior and more nuanced understanding of driver cognitive dynamics dur-

ing car following. In contrast to fixed rule-based models like the IDM, the AIDA can incorporate

additional "rules" in its state and policy priors while maintaining the flexibility provided by its

probabilistic representation. In contrast to purely data-driven models, learning in the AIDA is con-

strained by its probability distributions and structure. This balance preserves interpretability but

still allows the model to be flexible to new data. Our findings here suggest that this flexibilty comes

at a cost of sensitivity to local optima in the training process as evidenced by the collision rates

across random seeds in online evaluations. Further, our findings suggest that the AIDA, like other

data-driven approaches, may be limited by the scope of the data used in training (e.g., the crash

limitation illustrated in Fig. 5.8).

Our findings here extend prior applications of active inference theory in driving and driver

models and illustrate the value of rule-based modeling. Engström and colleagues [175] presented

active inference as a general theory of driving behavior with qualitative illustrations, highlighting
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the need to separate pragmatic (risk) and epistemic (uncertainty) behavior and relaxing the require-

ment of a strictly accurate environment model among human drivers. Portions of this theory have

been enacted in other driver models including [168, 15, 202]. The model in [202] includes the

concept of balancing rule-based and data-driven models, but the focus is primarily on physical

concepts rather than psychological concepts in the AIDA. The model presented by Pekkanen et al.

[168] includes an attention mechanism driven by the uncertainty of desired actions. The desired

actions were computed using the IDM and action uncertainty was obtained by propagating state

uncertainty computed from a Bayesian filter. The most notable difference between Pekkanen et

al.’s model and the AIDA is that their model assumes an accurate environment model and uses the

IDM to generate behavior. Our results show that an integrated perception-action system is impor-

tant to the AIDA’s trajectory-matching performance. However, we did not investigate epistemic

behavior in the model due to the simplicity of the car following task. The AIDA posed here also

extends our prior work [15] to model fine-grained longitudinal control, validate that model against

established benchmarks, and provide a more detailed interpretability analysis.

In addition to the contributions to driver modeling, this work extends research on human per-

ception and control modeling. Our simultaneous estimation of human preference, understanding

of environment dynamics (i.e., transition probabilities), and perceptual uncertainties (i.e., obser-

vation probabilities), and use of data from a complex driving environment differentiate this work

from [124, 109, 105]. Our findings here suggest that the AIDA can be extended to complex en-

vironments successfully, although it is sensitive to training data and model parameterization. Our

use of a data-driven prior distribution, i.e.,(5.11), to prevent estimating transition and observation

parameters that are highly inconsistent with actual traffic dynamics and reduce unidentifiability is

also novel and differentiates this work from [228] and [240]. Our visualizations of model prefer-

ence and beliefs in Fig. 5.6d and Fig. 5.7-5.8 show that the proposed data-driven prior leads to

preference and dynamics estimation consistent with the observed data and driver behavior theories.

Our work is limited by the following aspects. First, we have assumed three driver observation

modalities: distance headway, relative speed, and τ−1 with respect to the lead vehicle. However,
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human drivers are known to monitor other surrounding vehicles while driving [8] and to have

broader visual sampling [241]. Second, our parameterization of discrete states has limited the

expressivity of the model and prevented inductive biases such as the smoothness of physical dy-

namics from being encoded. The limited dataset coverage, e.g., the lack of crashes, prevented the

learned dynamics from generalizing to some out-of-distribution scenarios. The combination of

model and data insufficiency led to the difficulty of recognizing near-crash states and resulted in

substantially more lead vehicle crashes than BC-MLP and the IDM. Third, since the INTERAC-

TION dataset was collected on highways, there likely exists considerable heterogeneous driving

behavior. This is shown in the uncertain and multi-modal predictions in Fig. 5.7 as the model

had to explain drivers who took different actions upon observing similar signals. While we an-

ticipate incorporating additional observations and higher state space dimension and application to

alternative driving scenarios to be easy under the current model formulation, doing so would im-

pose additional requirements on dataset quality and diversity. We thus recommend future work

to consider general methods for incorporating domain knowledge in more expressive generative

models to combat dataset limitations and modeling heterogeneity in naturalistic driver behavior.

The results here suggest that these extensions may alleviate many of the current model limitations.

5.6 Conclusions

We proposed a novel active inference model of driver behavior (AIDA). Using car following

data, we showed that the AIDA significantly outperformed the rule-based IDM on all metrics and

performed comparably with the data-driven neural network benchmarks. Using an interpretability

analysis, we showed that the structure of the AIDA provides superior transparency of its input-

output mechanics than the neural network models. Future work should focus on training with

data from more diverse driving environments and examining model extensions that can capture

heterogeneity across drivers.
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6. UNDERSTANDING THE ROBUSTNESS OF BAYESIAN THEORY OF MIND*

6.1 Summary

The goal of this chapter is to develop a theoretical understanding of the observation from the

previous chapter that the active inference model estimated using theory of mind inference sub-

stantially outperformed an RNN-based behavior cloning model, although both models belong to

the recurrent model class and have similar representation capacity. Specifically, we aim to under-

stand the performance advantage of control policies obtained from theory of mind inference. As

previously discussed, the main difference between TOM and regular learning from demonstration

techniques is that TOM performs belief inference, i.e., it tries to infer the demonstrator’s inter-

nal dynamics model of the environment, simultaneously with reward inference. We show in this

chapter that if we believe the agent has an accurate model of the environment, encoded using a

family of priors parameterized by the log likelihood of dataset transitions (in fact the same prior

introduced in Chapter 3), then TOM is transformed into a class of robust inference problem where

it tries to find the worst-case dynamics outside the training data and the learner is be encouraged

to stay close to the data distribution. Unlike existing offline RL and IRL methods which keep the

learner policy close to the data distribution using ad hoc uncertainty-based penalties, this is nat-

urally achieved under the TOM framework. We propose a set of algorithms following the TOM

principle and show that they outperform state-of-the-art offline IRL methods on high-dimensional

continuous control tasks.

6.2 Introduction

Inverse reinforcement learning (IRL) is the problem of extracting the reward function and pol-

icy of a value-maximizing agent from its behavior [102, 110]. IRL is an important tool in domains

where manually specifying reward functions or policies is difficult, such as in autonomous driv-

*Reprinted, with permission, from Wei, R., Zeng, S., Li, C., Garcia, A., McDonald, A., & Hong, M. (2023, June).
Robust Inverse Reinforcement Learning Through Bayesian Theory of Mind. In First Workshop on Theory of Mind in
Communicating Agents. Copyright 2023 by the author(s).
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ing [119], or when the extracted reward function can reveal novel insight about a target population,

such as in biology and economics [242, 104]. Furthermore, IRL has been argued as a central mech-

anism of human theory of mind [14] and one of the main approaches for building value-aligned

artificial intelligence [243]. However, wider application of IRL faces two interrelated algorithmic

challenges: 1) having access to the target deployment environment or an accurate simulator thereof

and 2) robustness of the learned policy and reward function due to the covariate shift between the

training and deployment environments [216, 205, 244].

To tackle the first challenge, recent IRL research has focused on the offline setting, where only

a fixed dataset is provided as opposed to the target environment or an accurate simulator [245, 246,

247, 121, 122]. Model-free approaches to offline IRL attempt to directly estimate expert reward

and policy without building an explicit model of the environment dynamics [245, 246, 247]. In

contrast, model-based offline IRL approaches estimate a dynamics model from the offline dataset

[122, 121, 248, 249]. Both model-free and model-based offline IRL suffer from covariate shift due

to error in either the policy or the dynamics model. However, model-based approaches, which will

be our focus, hold more promise due to the ability to generate synthetic data and leverage model

generalization.

A notable class of these model-based offline IRL methods estimate the dynamics and reward

in a two-stage, decoupled fashion [121, 122, 248, 249]. In the first stage, a dynamics model

is estimated from the fixed dataset. Then, parameters of the dynamics model are fixed while

training the reward and policy in the second stage. To overcome covariate shift in the estimated

dynamics, recent methods design density estimation-based “pessimistic" penalties to prevent the

learner policy from entering uncertainty regions in the state-action space (i.e., space not covered in

the demonstration dataset) [250, 249, 248].

In this paper, we instead approach IRL from the Bayesian Theory of Mind perspective [105],

where we simultaneously estimate the expert’s reward function and their internal model of the en-

vironment dynamics. The core idea of BTOM is that expert decisions convey their beliefs about

the environment [105] and thus should affect the update direction of the dynamics model as op-
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posed to it being fixed. BTOM has mostly been used to understand human biases encoded in the

internal dynamics in simple and highly constrained domains [251, 109, 124, 108, 136, 129, 126].

In contrast to these works, we study how BTOM naturally enables learning high-performance and

robust policies given a limited dataset.

We first propose a class of priors parameterizing how accurate we believe the expert’s model

of the environment is. We then show that if the expert is believed a priori to have a highly accurate

model, robustness emerges naturally from BTOM’s simultaneous estimation approach by planning

against the worst-case dynamics outside the offline data distribution. We further analyze how

varying the prior affects the performance of the learner agent and pair our analysis with a set of

algorithms which extend prior simultaneous estimation approaches [124, 108] to high-dimensional

continuous-control settings. We show that the proposed algorithms outperform state-of-the-art

(SOTA) offline IRL methods without the need for designing pessimistic penalties.

In summary, our contributions are the following:

• We show that BTOM under appropriate formulation of the prior is robust to inaccuracies in

the estimated dynamics model.

• We propose a set of practical algorithms for simultaneous estimation of reward and dynamics

in high-dimensional environments.

• We perform extensive experiments in the MuJoCo environment to confirm our analysis and

show that the proposed algorithms outperform pessimistic approaches.

6.3 Preliminaries

6.3.1 Markov Decision Process

We consider modeling agent behavior using infinite-horizon entropy-regularized Markov deci-

sion processes (MDP; [252]) defined by tuple (S,A, µ, P, γ, R) with state space S, action space

A, initial state distribution µ(s0) ∈ ∆(S), transition probability distribution P (s′|s, a) ∈ ∆(S),

discount factor γ ∈ (0, 1), and reward function R(s, a) ∈ R. We denote the discounted occupancy
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measure as ρπP (s, a) = Eµ,P,π [
∑∞

t=0 γ
tP (st = s, at = a)] and the marginal state-action distribu-

tion as dπP (s, a) = (1− γ)ρπP (s, a). We further denote the discounted occupancy measure starting

from a specific state-action pair (s, a) with ρπP (s̃, ã|s, a). The agent selects actions from an optimal

policy π(a|s) ∈ ∆(A) that achieves the maximum expected discounted cumulative rewards and

policy entropyH(π(a|s)) = −
∑

ã π(ã|s) log π(ã|s) in the MDP:

max
π

J(π) = Eµ,P,π

[
∞∑
t=0

γt (R(st, at) +H(π(at|st)))

]
(6.1)

The optimal policy satisfies the following conditions (i.e., Boltzmann rationality; [60]):

π(a|s) ∝ exp (Q(s, a))

Q(s, a) = R(s, a) + γEP (s′|s,a) [V (s′)]

V (s) = log
∑
a′

exp (Q(s, a′))

(6.2)

6.3.2 Inverse Reinforcement Learning

The majority of contemporary IRL approaches have converged on the Maximum Causal En-

tropy (MCE) IRL framework, which aims to find a reward functionRθ(s.a) with parameters θ such

that the entropy-regularized learner policy π̂ has matching state-action feature with the unknown

expert policy π [114].

A related formulation casts IRL as maximum discounted likelihood (ML) estimation [253, 254,

117], subject to the constraint that the policy is entropy-regularized. Given a dataset of N expert

trajectories each of length T : D = {τi}Ni=1, τ = (s1:T , a1:T ) sampled from the expert policy in envi-

ronment P with occupancy measure ρD := ρπP , ML-IRL aims to solve the following optimization
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problem:

max
θ

E(st,at)∼D

[
∞∑
t=0

γt log π̂θ(at|st)

]

s.t. π̂θ(a|s) = arg max
π̂∈Π

Eρπ̂P [Rθ(s, a) +H(π̂(·|s)]

(6.3)

where the policy is implicitly parameterized by the reward parameters θ.

It can be shown that MCE-IRL and ML-IRL are equivalent under linear reward parameteriza-

tion [253, 254], however (6.3) permits non-linear reward parameterization through the following

surrogate optimization problem:

max
θ

EρD [Rθ(s, a)]− Eρπ̂P [Rθ(s, a)]

s.t. π̂θ(a|s) = arg max
π̂∈Π

Eρπ̂P [Rθ(s, a) +H(π̂(·|s)]
(6.4)

(6.4) can be efficiently solved via alternating training of the learner policy and the reward

function, similar to Generative Adversarial Network (GAN)-based algorithms [255, 132, 256, 257,

258, 118]. However, these methods all require access to the ground truth environment dynamics

or a high quality simulator in order to compute or sample from the learner occupancy measure ρπP .

6.3.3 Offline Model-Based IRL & RL

Existing offline model-based IRL algorithms such as [121, 122] adapt (6.4) using a two-step

process. First, an estimate P̂ of the environment dynamics is obtained from the offline dataset,

e.g., using maximum likelihood estimation. Then, P̂ is fixed and used in place of P to compute

ρπ
P̂

while optimizing (6.4). However, this simple replacement incurs a gap between (6.4) and

(6.3) which scales with the dynamics model error and the estimated value [249]. This puts a high

demand on the accuracy of the estimated dynamics.

A related challenge is to prevent the policy from exploiting inaccuracies in the estimated dy-

namics, which can lead to erroneously high estimated value. This has been extensively studied

in both online and offline model-based RL literature [259, 49, 47, 260]. The majority of recent
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offline model-based RL methods combat model-exploitation via a notion of “pessimism", which

penalizes the learner policy from visiting states where the model is likely to be incorrect [259].

These pessimistic penalties are often designed based on quantifying uncertainty about transition

dynamics through the estimated model [261, 262]. Drawing on these advances, recent offline IRL

methods also incorporate pessimistic penalties into their RL subroutine [249, 248, 250]. However,

it should be noted that designing pessimistic penalties involves nontrivial decisions to ensure that

they can accurately capture out-of-distribution samples [263].

An orthogonal approach to avoid model-exploitation is to perform policy training against the

worst-case dynamics in out-of-distribution states [264], similar to robust MDP [265, 266]. Rigter

et al. [267] implemented this idea in the RAMBO algorithm and showed that it is competitive with

pessimistic penalty-based approaches while requiring significantly less tuning. We will show that

robust MDP corresponds to a sub-problem of IRL under the BTOM formulation.

6.4 Bayesian Theory of Mind

We consider IRL under the Bayesian Theory of Mind framework, where the observed expert

decisions are the results of an unknown reward function Rθ1(s, a) and their internal model of the

environment dynamics P̂θ2(s
′|s, a). We denote the concatenated parameters with θ = {θ1, θ2} and

condition the policy on θ as π̂(a|s; θ) to emphasize that the expert configuration is determined by

both the reward and dynamics parameters. We make no additional assumption about the expert

other than that their policy is Boltzmann rational (6.2) with respect to their internal reward and dy-

namics. This means that their internal dynamics can potentially deviate from the true environment

dynamics.

Upon observing a finite set of expert demonstrations D, BTOM aims to compute the posterior

distribution P(θ|D) given a choice of a prior distribution P(θ):

P(θ|D) ∝ P(D|θ)P(θ)

=
N∏
i=1

T∏
t=1

π̂(ai,t|si,t; θ)P(θ)
(6.5)
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where we have omitted the true environment transition probabilities
∏N

i=1

∏T
t=1 P (si,t+1|si,t, ai,t)

from the likelihood because they do not depend on θ.

We consider a class of prior distributions of the form:

P(θ) ∝ exp

(
λ

N∑
i=1

T∑
t=1

log P̂θ2(si,t+1|si,t, ai,t)

)
(6.6)

where the prior precision hyperparameter λ represents how accurate we believe is the expert’s

model of the environment.

Let L(θ) := 1
NT

logP(θ|D) be the log-posterior (normalized by the data size). It can be easily

verified that

L(θ) = E(s,a,s′)∼D

[
log π̂(a|s; θ) + λ log P̂θ2(s

′|s, a)
]

In this paper, we consider finding a Maximum A Posteriori (MAP) estimate of the BTOM

model by solving the following bi-level optimization problem:

max
θ

L(θ)

s.t. π̂(a|s; θ) = arg max
π̂∈Π

Eρπ̂P [Rθ(s, a) +H(π̂(·|s))]
(6.7)

Note that this formulation differs from (6.3) and the decoupled approaches because it includes

log likelihood of the dynamics in the objective (weighted by λ).

It should be noted that obtaining the full posterior distribution (or an approximation) is feasible

using popular approximate inference methods (e.g., stochastic variational inference or Langevin

dynamics; [268, 269]) and does not significantly alter the proposed estimation principles and algo-

rithms.

6.4.1 Naive Solution

We start by presenting a naive solution to (6.7) which can be seen as an extension of the tabular

simultaneous reward-dynamics estimation algorithms proposed by Herman et al. [124] and Wu
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et al. [108] to the high-dimensional setting.

Solving (6.7) requires: 1) computing the optimal policy with respect to θ, and 2) comput-

ing the gradient ∇θ log π̂(a|s; θ) which requires inverting the policy optimization process itself.

Both operations can be done exactly in the tabular setting as in prior works but are intractable in

high-dimensional settings. We propose to overcome the intractability using sample-based approx-

imation.

In this section, we focus on approximating the gradient of the policy∇θ log π̂(a|s; θ), which is

less obvious. We can show that the ∇θ log π̂(a|s; θ) has the following form (see Appendix D.1 for

all proofs and derivations):

∇θ log π̂(a|s; θ) = ∇θQθ(s, a)−∇θVθ(s)

= ∇θQθ(s, a)− Eã∼π̂(·|s;θ)[∇θQθ(s, ã)]

(6.8)

where ∇θQθ(s, a) = [∇θ1Qθ(s, a),∇θ2Qθ(s, a)] is the concatenation of reward and dynamics

gradients defined as:

∇θ1Qθ(s, a) = Eρπ̂
P̂

(s̃,ã|s,a) [∇θ1Rθ1(s̃, ã)] (6.9)

∇θ2Qθ(s, a) = Eρπ̂
P̂

(s̃,ã|s,a)

[
γ
∑
s′

Vθ(s
′)∇θ2P̂θ2(s

′|s̃, ã)

]
(6.10)

Given (6.9) and (6.10) are tractable to compute using sample-based approximation of expecta-

tions, we construct the following surrogate objective L̃(θ) with the same gradient as the original

MAP estimation problem (6.7):

L̃(θ) = E(s,a)∼D[Eθ(s, a)]− Es∼D,a∼π̂[Eθ(s, a)] + λE(s,a,s′)∼D[log P̂θ2(s
′|s, a)] (6.11)

119



where

Eθ(s, a) = Eρπ̂
P̂

(s̃,ã|s,a) [Rθ(s̃, ã) + γEVθ(s̃, ã)] (6.12)

EVθ(s, a) =
∑
s′

P̂θ2(s
′|s, a)Vθ(s

′) (6.13)

Optimizing (6.11) is now the same as optimizing (6.7) but tractable.

An interesting consequence of maximizing the first two terms of (6.11) alone (excluding the

prior) is that we both increase the reward and modify the internal dynamics to generate states with

higher expected value (EV ) upon taking expert actions then following the learner policy π̂, and we

do the opposite when taking learner actions. Intuitively, reward and dynamics play complementary

roles in determining the value of actions and thus should be regularized [270, 109, 131]. Otherwise,

one cannot disentangle the effect of truly high reward and falsely optimistic dynamics. Our prior

(6.6) alleviates this unidentifiability to some extent.

6.4.2 A Robust BTOM Model

We now present our main observation that the IRL learner exhibits robust performance as a

natural consequence of the BTOM formulation under the dynamics accuracy prior (6.6).

We start by analyzing a discounted, full-trajectory version of the BTOM likelihood (6.7). Note

that discounting does not change the optimal solution to (6.7) under expressive reward and dy-

namics model class; nor does it require infinite data because we can truncate the summation at

T = int
(

1
1−γ

)
and obtain nearly the same estimator as with infinite sequence length. We restate a
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decomposition of the discounted likelihood in [249] as follows:

EP (τ)

[
∞∑
t=0

γt log π̂θ(at|st)

]

= EP (τ)

[
∞∑
t=0

γt (Qθ(st, at)− Vθ(st))

]

= EρπP

[
Rθ1(st, at) + γEs′∼P̂ [Vθ(s

′)]

]
− EρπP

[
Vθ(st)

]
= EρπP

[
Rθ1(st, at)

]
− Eµ

[
Vθ(s0)

]
︸ ︷︷ ︸

`(θ)

+ γEρπP

[
Es′∼P̂ (·|st,at)Vθ(s

′)− Es′′∼P (·|st,at)Vθ(s
′′)

]
︸ ︷︷ ︸

T1

(6.14)

where T1 corresponds to the value difference under the real and estimated dynamics. We can show

that T1 is negligible if the estimated dynamics is accurate under the expert data distribution:

Lemma 1. Let ε = E(s,a)∼P (τ)DKL(P (·|s, a)||P̂ (·|s, a)) be the dynamics estimation error and

Rmax = maxs,a |Rθ(s, a)|+ log |A| be an upper bound on reward and policy entropy, it holds that

|T1| ≤ γRmax

(1− γ)2

√
2ε (6.15)

Thus, if E(s,a)∼P (τ)DKL(P (·|s, a)||P̂ (·|s, a)) ≤ ε holds for sufficiently small ε, for example by

setting a large λ, T1 can be dropped from (6.14) and the discounted likelihood reduces to `(θ).

`(θ) highlights the reason why the proposed BTOM approach can be robust to a limited dataset.

It poses the offline IRL problem as maximizing the cumulative reward of expert trajectories in the

real environment, and minimizing the cumulative reward generated by the learner in the estimated

dynamics with respect to both reward and dynamics. In other words, it aims to find performance-

matching reward and policy under the worst-case, pessimistic dynamics, which is trained adver-

sarially outside the data distribution. This connects BTOM to the robust MDP approach to offline

model-based RL [264, 267].
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Algorithm 2 Deep Bayesian Theory of Mind (BTOM)

Require: Dataset D = {τ}, dynamics model P̂θ2(s
′|s, a), reward model Rθ1(s, a), hyperparame-

ters λ1, λ2

1: for k = 1 : K do
2: Run MBPO to update learner policy π̂(a|s; θ) and value function Qθ(s, a) in dy-

namics P̂
3: Sample real trajectory τreal starting from (s, a) ∼ D and following P̂ and π̂
4: Sample fake trajectory τfake starting from s ∼ D, afake ∼ π̂(·|s; θ) and following P̂

and π̂
5: Evaluate (6.16) and take a gradient step
6: Evaluate (6.17) and take a few gradient steps.
7: end for

6.4.3 Proposed Algorithms

Using the insights from the previous sections, we propose two scalable Deep Bayesian Theory

of Mind algorithms to find the MAP solution to (6.7). The first algorithm (BTOM; 2) applies the

naive solution with surrogate objective (6.11), while the second algorithm (RTOM; 3) exploits the

observation in section 6.4.2 to derive a more efficient algorithm for high λ via surrogate objective

`(θ).

The estimation problem (6.7) has an inherently nested structure where, for each update of

parameters θ (the outer problem), we have to solve for the optimal policy π̂(a|s; θ) (the inner

problem). Following recent ML-IRL approaches [254, 249], we perform the nested optimization

using two-timescale stochastic approximation [271, 272], where the inner problem is solved via

stochastic gradient updates on a faster time scale than the outer problem. For both algorithms, we

solve the inner problem using Model-Based Policy Optimization (MBPO; [47]) which uses Soft

Actor-Critic (SAC; [60]) in a dynamics model ensemble.

BTOM. For the BTOM outer problem, we estimate the expectations in (6.11) and (6.12) via

sampling and perform coordinate-ascent optimization. Specifically, for each update step, we first

sample a mini-batch of state-action pairs (s, a) ∼ D and a mini-batch of (fake) actions afake ∼

π̂(·|s; θ) and simulate both (s, a) and (s, afake) forward in the estimated dynamics P̂ to get the

real and fake trajectories τreal, τfake. We then optimize the reward function first by taking a single
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Algorithm 3 Robust Theory of Mind (RTOM)

Require: Dataset D = {τ}, dynamics model P̂θ2(s
′|s, a), reward model Rθ1(s, a), hyperparame-

ters λ1, λ2

1: for k = 1 : K do
2: Run MBPO to update learner policy π̂(a|s; θ) and value function Qθ(s, a) in dy-

namics P̂
3: Sample fake trajectory τfake starting from s ∼ D and following P̂ and π̂
4: Evaluate (6.19) and take a gradient step
5: Evaluate (6.20) and take a few gradient steps
6: end for

gradient step to optimize the following objective function:

max
θ1

E(s,a)∼D,ρπ̂
P̂

(s̃,ã|s,a) [Rθ1(s̃, ã)]− Es∼D,afake∼π̂,ρπ̂
P̂

(s̃,ã|s,afake)
[Rθ1(s̃, ã)] (6.16)

Lastly, we optimize the dynamics model by taking a few gradient steps (a hyperparameter) to

optimize the following objective function using on-policy rollouts branched from mini-batches of

expert state-actions as in RAMBO [267]:

max
θ2

λ1E(s,a)∼D,ρπ̂
P̂

(s̃,ã|s,a) [EVθ2(s̃, ã)]− λ1Es∼D,afake∼π̂,ρπ̂
P̂

(s̃,ã|s,afake)
[EVθ2(s̃, ã)]

+ λ2E(s,a,s′)∼D

[
log P̂θ2(s

′|s, a)
] (6.17)

We estimate the dynamics gradient using the REINFORCE method with baseline:

∇θ2EVθ(s, a) =
∑
s′

Vθ(s
′)∇θ2P̂θ2(s

′|s, a)

= Es′∼P̂ (·|s,a)

[
(Vθ(s

′)− b(s, a))∇θ2 log P̂θ2(s
′|s, a)

] (6.18)

Following Rigter et al. [267], we set the baseline to b(s, a) = Qθ(s, a) − Rθ1(s, a) to reduce

gradient variance and further normalize Vθ(s′)− b(s, a) across the mini-batch to stabilize training.

In the continuous-control setting, the value function can be estimated as Vθ(s) = Ea∼π̂θ [Qθ(s, a)−

log π̂(a|s; θ)] with a single sample.
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RTOM. We adapt the BTOM algorithm slightly for the RTOM outer problem, where we only

simulate a single trajectory for each state in the mini-batch and update the reward using the fol-

lowing objective:

max
θ1

EρD [Rθ1(s, a)]− Eρπ̂
P̂

[Rθ1(s, a)] (6.19)

We then update the dynamics by dropping the first term in (6.17):

max
θ2

− λ1Es∼D,afake∼π̂,ρπ̂
P̂

(s̃,ã|s,afake)
[EVθ2(s̃, ã)] + λ2E(s,a,s′)∼D

[
log P̂θ2(s

′|s, a)
]

(6.20)

We provide additional details about the proposed algorithms in Appendix D.2.

6.4.4 Performance Guarantees

In this section, we study how policy and dynamics estimation error affect learner performance

in the real environment. Vemula et al. [273] provided the following result relating expert-learner

performance gap in the real and estimated environment in the context of model-based RL:

Lemma 2. (Performance difference via advantage in model; Lemma 4.1 in [273]) Let dπP denote

the marginal state-action distribution following policy π in environment P . The following rela-

tionship holds:

E(s,a)∼dπP [log π̂P̂ (a|s)] = Es∼dπP
[
Ea∼πQπ̂

P̂
(s, a)− V π̂

P̂
(s)
]

(6.21)

= (1− γ)Es∼µ
[
V π
P (s)− V π̂

P (s)
]︸ ︷︷ ︸

Performance difference in real environment

(6.22)

+ γE(s,a)∼dπ̂P

[
Es′∼PV π̂

P̂
(s′)− Es′′∼P̂V

π̂
P̂

(s′′)
]︸ ︷︷ ︸

Model (dis)advantage under learner distribution

(6.23)

+ γE(s,a)∼dπP

[
Es′∼P̂V

π̂
P̂

(s′)− Es′′∼PV π̂
P̂

(s′′)
]︸ ︷︷ ︸

Model advantage under expert distribution

(6.24)

Intuitively, maximizing the policy likelihood (6.21) w.r.t. P̂ (including the reward) increases
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the performance gap (6.22) between the expert and the learner, increases model advantage under

the expert data distribution, and decreases model advantage under the (unknown) learner data

distribution. The performance gap is then to be closed by the learner during the inner optimization

problem.

Using this result, we arrive at the follow performance bound:

Theorem 3. Let εP̂ = E(s,a)∼dπPDKL[P (·|s, a)||P̂ (·|s, a)] be the dynamics estimation error and

επ̂ = −E(s,a)∼dπP [log π̂P̂ (a|s)] be the policy estimation error. Assuming bounded expert-learner

marginal state-action density ratio
∥∥∥dπ̂P (s,a)

dπP (s,a)

∥∥∥
∞
≤ C, we have the following (absolute) performance

bound for the IRL agent:

|JP (π̂)− JP (π)| ≤ 1

1− γ
επ̂ +

γ(C + 1)Rmax

(1− γ)2

√
2εP̂ (6.25)

This bound highlights the connection between IRL and behavior cloning and the Bayesian

nature of IRL: by incorporating the dynamics and Bellman-optimality as regularizations, we can

achieve better generalizations than behavior cloning. We believe a tighter bound can be obtained

by further analyzing the density ratio C given that the BTOM policy will act conservatively as a

result of planning against worst-case dynamics. We leave this to future work.

6.5 Experiments

We aim to answer the following questions with our experiments:

1. How does the dynamics accuracy prior affect BTOM agent behavior?

2. How well does BTOM and RTOM perform compared to SOTA offline IRL algorithms?

We investigate Q1 using a Gridworld environment. We investigate Q2 using the standard D4RL

dataset on MuJoCo continuous control benchmarks.

6.5.1 Gridworld Example

We use a 5x5 gridworld environment to understand the behavior of the BTOM algorithm. The

environment has deterministic transitions conditioned on the following set of actions: up, down,
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left, right, and stay. Any actions pointing in the direction of the boundary when the agent is

already in a boundary cell will keep the agent in the same cell. The expert agent, who knows the

true transition dynamics and plans using a discount factor of γ = 0.7, starts in the lower left corner

and receives a reward when reaching the upper right corner. We represent the reward function as

the log probability of the target state: log P̃ (s), where the upper right corner has a target probability

of 1.

Using 100 expert trajectories of length 50, we trained 3 BTOM agents with transition likelihood

penalty λ of 0.001, 0.5, and 10, respectively. As a comparison, we also trained a decoupled agent

whose dynamics model is fixed after an initial maximum likelihood pretraining step and its reward

is estimated using the same gradient update rule as BTOM in (6.9).

Given that the environment is simple and both the policy, reward, and dynamics models are

well-specified, all agents recover the ground-truth policy in state-actions pairs visited by the expert.

The ground truth and estimated target state probabilities are shown in the first row of Fig. 6.1. All

agents correctly estimated that the upper right corner has the highest reward, although not with the

same precision as the ground truth sparse reward. BTOM agents with λ = 0.5 and λ = 10 are able

to assign high reward only to states close to the true goal state, where as the BTOM agent with

λ = 0.001 and the decoupled agent assigned high rewards to state much further away from the true

goal state.

Table 6.1: MuJoCo benchmark performance using 10 expert trajectories from the D4RL dataset.
Each row reports the mean and standard deviation of performance over 5 random seeds.

Environment Dataset BTOM (ours) RTOM (ours) ML-IRL Expert
HalfCheetah Medium 8813.35± 997.49 8085.18± 597.86 7706.43± 159.39 12156.16± 88.01
HalfCheetah Medium-replay 7508.65± 190.75 6961.28± 130.61 9383.34± 358.67 12156.16± 88.01
HalfCheetah Medium-expert 11519.98± 149.69 11289.09± 258.70 11276.09± 551.94 12156.16± 88.01

Hopper Medium 2243.15± 922.75 3306.59± 473.60 2461.45± 705.70 3512.64± 17.10
Hopper Medium-replay 3520.69± 29.50 3307.11± 471.38 2889.73± 542.65 3512.64± 17.10
Hopper Medium-expert 3209.91± 731.66 3550.25± 28.85 3350.79± 264.96 3512.64± 17.10

Walker2D Medium 4307.99± 855.55 4035.21± 247.23 4195.36± 352.86 5365.62± 55.79
Walker2D Medium-replay 3960.70± 1521.52 3880.54± 713.29 4092.58± 308.71 5365.62± 55.79
Walker2D Medium-expert 4862.66± 100.37 4941.10± 38.99 4363.54± 729.60 5365.62± 55.79
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Figure 6.1: Gridworld experiment results. (Row 1) Ground truth and estimated target state dis-
tributions (softmax of reward) for agents using decoupled estimation and BTOM agents with
λ = [0.001, 0.5, 10]. BTOM agents with higher λ obtain more accurate reward estimates. (Row 2)
Sample paths generated by the ground truth agent, decoupled, and BTOM agents. BTOM agents
with higher λ generate fewer illegal (diagonal) transitions. Illegal transitions generated by BTOM
agents have a strong tendency to point towards the goal state.

We visualize the estimated dynamics models by sampling 100 imagined rollouts using the esti-

mated policies in the second row of Fig. 6.1. This figure shows that the BTOM(λ = 0.001) and the

decoupled agent would take significantly more illegal transitions (i.e., diagonal transitions) than

BTOM agents with higher λ. Comparing among BTOM agents, we see that increasing λ decreases

the number of illegal transitions. In contrast to the decoupled agent whose illegal transitions are

rather random, the illegal transitions generated by BTOM agents with lower λ have a strong ten-

dency to point towards the goal state. This corroborates with our analysis that BTOM optimizes

model advantage under the expert distribution.

6.5.2 MuJoCo Benchmarks

In this section, we compare the performance of BTOM and RTOM with SOTA offline IRL

algorithms in the MuJoCo continuous control environments [274] using the D4RL dataset [275].

We use ML-IRL [249], an offline model-based IRL algorithm based on MOPO [261], as our com-

parison.
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We use the following MuJoCo environments: HalfCheetah, Hopper, and Walker2D. For each

environment, D4RL offers 4 types of datasets: medium, medium-replay, medium-expert, and ex-

pert. Following prior IRL evaluation protocols, our agents maintain two datasets: 1) a transition

dataset is used to train the dynamics model and the actor-critic networks and 2) an expert dataset

is used to train the reward function. The transition dataset is selected from one of the first three

types of D4RL datasets and is not sub-sampled. The expert dataset contains 10 randomly sampled

D4RL expert trajectories. For both BTOM and RTOM, we set the model objective weighting terms

to λ1 = 0.01, λ2 = 1 to encourage an accurate model under the data distribution. For each envi-

ronment and transition dataset, we train our algorithms for a fixed number of epochs and repeat

this process for 5 random seeds. After the final epoch, we evaluate the agent for 10 episodes in

the MuJoCo environments. We provide additional implementation and hyperparameter details in

Appendix D.2.

Table 6.1 reports the mean and standard deviation of the evaluation performance across differ-

ent seeds for each setting. For ML-IRL, we list the results reported in the original publication. Our

algorithms outperform the benchmark in almost all settings. On the medium-expert dataset, which

has the best coverage of expert trajectories, our algorithms perform near optimally and overall have

smaller variance than ML-IRL.

Between the two proposed algorithms, BTOM and RTOM perform comparably on the medium-

expert datasets. However, BTOM outperforms RTOM on the medium and medium-replay datasets

in the Halfcheetah and Walker2D environments. Training the dynamics model on these datasets

corresponds to violating the dynamics accuracy assumption for optimizing only `(θ) in (6.14)

as T1 would be large in this case. For BTOM, this is not a problem because the dynamics log

likelihood only serves as a prior and the surrogate objective (6.11) is not affected. However, for

RTOM, relaxing the dynamics accuracy assumption causes `(θ) to deviate from the true objective.

Finally, we remark that BTOM has less stable training dynamics than RTOM where its eval-

uation performance may alternate between periods of near optimal performance and periods of

medium performance (thus the larger variance in Table 6.1). While stability is a known issue for
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training energy-based models using contrastive divergence objectives (i.e., objective (6.11); [276]),

we believe the current issue is related to BTOM’s two-sample path method having weaker and nois-

ier learning signal. Another source of instability is likely introduced by simultaneously training

the dynamics model, which may be improved in future work by adding Lipschitz regularizations

[277].

6.6 Related Work and Discussions

Bayesian IRL. Ramachandran and Amir [113] first proposed a Bayesian formulation of IRL

to solve the reward ambiguity problem. A MAP inference approach was proposed in [278] and a

variational inference approach was proposed in [245]. Their formulations consider non-entropy-

regularized policies and the dynamics model is fixed during reward inference. In contrast, simul-

taneous estimation of reward and dynamics can potentially infer the demonstrator’s biased beliefs

about the environment, which is desirable for psychology and human-robot interaction studies

[105, 108, 109]. Despite the attractiveness, simultaneous estimation is challenging because of the

need to invert the agent’s planning process, especially in continuous domains. Reddy et al. [109]

avoids this by representing agent discrete choice policies using neural network-parameterized Q

functions and regularizing the Bellman error to be small over the entire state-action space. This

method however cannot be straightforwardly adapted to the continuous action case. Kwon et al.

[128] avoids this by first training a task-conditioned policy on a distribution of environments with

known parameters using meta reinforcement learning and then use the meta-trained policy to guide

inference. This precludes the method from being used in general settings with unknown task dis-

tributions. To our knowledge, our proposed algorithms are the first to address simultaneous esti-

mation in general environments.

Decision-aware model learning. Decision-aware model learning aims to solve the objective

mismatch problem in model-based RL [46]. Many proposed methods in this class use value-

targeted regression similar to our model loss in (6.17) [53, 279]. Our analysis and that of Vemula

et al. [273] suggest that value-targeted model objectives may be related to robust objectives. Fur-

thermore, since the set of value-equivalent models only shrink for an increasingly larger set of
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policy and values [53], using value-aware model objectives alone may not be optimal and addi-

tional prediction-based regularizations may be needed.

Theory of Mind. Theory of Mind inference is known to be unidentifiable in general. Many re-

searchers believe that reliable inference in human theory of mind relies on highly structured priors

and normative assumptions [14, 270, 280]. We took a small step in understanding the relation-

ship between a type of structured prior, i.e., the dynamics accuracy prior (6.6), and the inference

outcome. Different from prior works which also use accuracy-based regularizations but assume

known ground truth dynamics [109, 131], our prior is more general and flexible since it is esti-

mated partially from data. While our goal in this work has been to understand BTOM inference

of expert demonstrators, an interesting future direction is to identify appropriate priors to reliably

infer reward and internal dynamics from sub-optimal and biased human demonstrators.

Our observation of the robustness of BTOM also has interesting cognitive science implica-

tions. It suggests that inference of (Boltzmann) rational agents naturally gives rise to a form of

“pessimism in the face of uncertainty", which provides a testable hypothesis of Boltzmann ratio-

nality as a model of human theory of mind. Furthermore, this knowledge can potentially be applied

in machine teaching and multi-agent coordination settings to design more efficient and human-like

communicative actions [281, 282, 283].

6.7 Conclusion

We showed that inverse reinforcement learning under the Bayesian Theory of Mind framework

gives rise to robust policies. This yielded a set of novel offline model-based IRL algorithms achiev-

ing SOTA performance in the MuJoCo continuous control benchmarks without ad hoc pessimistic

penalty design.
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7. CONCLUSIONS

This dissertation serves as an attempt to understand the role of beliefs and cognitive dynamics

in human decision making. The main idea pursued is that belief-understanding is as important as

desire-understanding, if not more. In particular, I focused on the Theory of Mind framework to

infer unobservable cognitive dynamics from observable human behavior. TOM inference requires

a rationalist model of decision making which makes proper use of beliefs to realize desire in

uncertain environments. While there is no consensus on how to optimally leverage beliefs for

actions in an efficient and human-like way, at least not in the current state of reinforcement learning

and optimal control, active inference can serve as a promising framework for thinking about the

enactive role of beliefs.

In Chapter 2, I provided a throughout review of active inference and contrasted it with estab-

lished alternative decision-making paradigms, namely, reinforcement learning and optimal control.

As much as active inference attempts to unify belief and desire, its plagued by the hardness of for-

ward design of agent objectives. I thus focused instead on reverse-engineering agent objectives via

TOM. Chapter 3 highlighted an important shortcoming in existing computational models of TOM

– the degeneracy of joint belief-desire inference. While this degeneracy has been acknowledged

before [280], it’s implications and mitigation strategies have rarely been studied in the literature.

My observations highlight that realistic TOM requires complex priors that are grounded in the

actual environment and tasks as opposed to an arbitrary large hypothesis space.

Using these insights, I conducted a series of experiments to illustrate that joint belief-desire

inference has the benefit of allowing us to:

1. Rationalize seemingly sub-optimal human behavior in abnormal scenarios

2. Inspect and correct model failures and obtain robust control policies without ad-hoc design

or experimentation

Specifically, in Chapter 4, I proposed an active inference-factor analysis framework to under-
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stand variations in human behavior as differences in their mental models (i.e., beliefs) of the envi-

ronment. Applying this framework to the analysis of driver responses to automated vehicle failures,

I showed that variations in driver emergency braking reactions can be understood as different lev-

els of trust and situation awareness, which are encoded as the principal components of the factor

model. This framework can potentially complement the currently dominant hypothesis-driven ap-

proach to the study of human trust and situation awareness in human-automation interaction. The

advantage provided by the proposed framework is the ability to elicit human cognitive behavior

without intrusive or subjective measurements in realistic environments.

In Chapter 5, I investigated the advantages of belief modeling by comparing an active inference

model scaled up using artificial neural networks to established rule-based and black-box neural

network driver models in a car-following task. I showed that active inference outperforms neural

network models which are known to suffer from covariate shift in the limited data setting, and

it generalizes better than rule-based models thanks to its flexible structure. More importantly, the

modularity of the active inference model affords a natural interpretability mechanism via visualiza-

tions of model beliefs, which helps designers fully comprehend how model outputs are produced

from inputs. This enables designers to efficiently inspect and correct model failures, which in the

present case are caused by limited training data. Being able to quickly comprehend model behav-

ior and make precise editing decisions without extensive queries or experimentation contributes to

more transparent and reliable models demanded by modern ML systems [195].

In Chapter 6, I investigated the root of belief modeling’s superior performance as observed

in Chapter 5. The analysis showed that the superiority is primarily due to a better handling of

uncertainty in the low data regions of the state space through a robust formulation. The robust for-

mulation is a natural consequence of belief modeling under a special family of accuracy-promoting

priors. Importantly, this means that learning high-performance control policies from expert demon-

strations needs no ad-hoc modifications, such as designing pessimistic penalties. The performance

advantage was clearly demonstrated through a benchmark comparison against state of the art of-

fline inverse reinforcement learning algorithms on high-dimensional continuous control tasks. Fur-
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thermore, the analysis in this chapter highlighted the Bayesian nature of TOM: by incorporating

sequential decision making structure as a prior on the hypothesis class of demonstrator policies,

we can achieve a smaller performance gap and better generalization than supervised learning.

Overall, these results have demonstrated the central role of belief modeling in understand-

ing human behavior and its advantages in engineering transparent, reliable, and capable artificial

agents.

7.1 Future Directions

Inverse reinforcement learning. The field of reinforcement learning and optimal control has

progressed significantly in the past few years (two years to be more precise) with the proposal of

incorporating novel model architectures (such as Transformers and diffusion models; [284, 285])

and ideas to circumvent the cumbersome dynamic programming problem (e.g., using RL-via-

supervised-learning; [286]). In contrast, inverse reinforcement learning, and the related field of

imitation learning, has been rather stagnant, where most of the recent ideas are minor modifica-

tions of maximum entropy IRL and related adversarial IRL frameworks [115, 132, 118]. Part of

the reason is that IRL is has mostly been treated as a sub-field of RL where the only differentiator

is the reward learning loop on top of regular RL. This thesis aims to advocate for a broader view

of IRL, namely by framing it as a more general problem of Bayesian inference.

A central challenge of IRL is to solve a difficult planning problem in the inner loop and then

invert the planning process in the outer loop. Most IRL approaches, including the ones presented in

this thesis, follow this recipe and solve the RL problem using dynamic programming or temporal

difference learning. Under this paradigm, the most straightforward way to enhance current IRL

methods is to use more efficient planning methods for the problem of interest (e.g., [287]), or more

efficient ways to invert the planning problem (e.g., using implicit differentiation [50] or other ways

to bypass the bi-level optimization problem [288]). However, the true power lies in not framing IRL

as inverse planning. The discussions in Chapter 3 and 6 highlighted the benefits of framing IRL

as an inference problem and taking advantage of flexible priors. Following this idea, one way to

overcome the inverse planning problem is to formulate rationality as priors or constraints. This has

133



already been explored by Reddy et al. [109], Chan and van der Schaar [245], and Piot et al. [289],

but has not been applied to large-scale problems. Furthermore, specifying rationality as priors

allows us to model other types of rationality or sub-optimality [290], where ignorance or mis-

specification of rationality can significantly reduce inference accuracy [291]. How to design these

priors such that the inferred reward is not degenerate and transferable is an interesting problem.

Theory of mind. Practical theory of mind inference requires two ingredients: accuracy and ef-

ficiency. While I have extensively studied the inaccuracy/unidentifiability of naive TOM (Chapter

3) and proposed a set of solutions to overcome its deficiencies from a performance-driven perspec-

tive, they do not directly address how to reliably obtain biased beliefs, which is of higher interest

in real applications. As explained by Armstrong and Mindermann [230], eliciting biased beliefs

requires highly complex priors. Rabinowitz et al. [292] used meta-learning to automatically con-

struct the prior from synthetic data. However, the adopted meta-learning approach requires expert

design of the meta-training data and lacks interpretability.

To equip actual ML systems with TOM abilities, the inference algorithms also need to be fast

just as much as they need to be accurate. The algorithms proposed in this dissertation do not satisfy

this criteria, since each algorithm takes a few hours to run. Hadfield-Menell et al. [293] proposed

to reduce inference time by distilling the desired behavior of a TOM agent in a neural network via

reinforcement learning. While their approach eschewed the possibility of explicit reasoning about

belief and desire, which is crucial to interpretability, their work suggested a promising direction of

using learned/amortized optimization to speed up time-consuming inference, much like variational

inference and meta-learning [294].

There is thus exciting work to be done in combining Bayesian inference and meta-learning for

both building and eliciting the knowledge of trained agents and speeding up test-time inference,

especially given the close connection between the two paradigms [295, 296]. For examples, the

experiments by Rabinowitz et al. [292] have already implied that TOM most likely emerge with

well-structured variety of environments and tasks and agents with different levels of rationalities.

Mikulik et al. [297] presented an approach to elicit the beliefs of meta-trained agents by fitting
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surrogate models. There is also an increasing amount of work in online variational inference and

learning [298]. Carefully combining these insights will likely lead to more progress on transparent,

reliable, and value-aligned agents.
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APPENDIX A

APPENDIX FOR CHAPTERS 2 AND 3

A.1 Active Inference Optimal Perception Derivation (section 2.4.2.1)

We find the optimal variational posterior Q(s1:T |π) by taking the gradient of the free energy

functional F(o1:t, Q|π) and setting it to zero. The gradient for a specific element of vector Q(sτ |π)

for τ ≤ t is:

∇Q(sτ |π)F(o1:τ , Q) = ∇Q(sτ |π)EQ(sτ |π)[logQ(sτ |π)]−∇Q(sτ |π)EQ(sτ |π)[logP (oτ |sτ )]

−∇Q(sτ |π)EQ(sτ−1|π)Q(sτ |π)[logP (sτ |sτ−1, π)]

−∇Q(sτ |π)EQ(sτ |π)Q(sτ+1|π)[logP (sτ+1|sτ , π)]

= logQ(sτ |π) + 1− logP (oτ |sτ )

− EQ(sτ−1|π)[logP (sτ |sτ−1, π)]− EQ(sτ+1|π)[logP (sτ+1|sτ , π)]

(A.1)

For τ > t, we have not made any observations, so the logP (oτ |sτ ) term does not exist. We

represent this using an indicator function.

Setting the gradient to zero when Q(sτ |π) for all τ ∈ 1, ..., T have been optimized, we have:

logQ(sτ |π) = I[τ ≤ t] logP (oτ |sτ ) + EQ∗(sτ−1|π)[logP (sτ |sτ−1, π)]

+ EQ∗(sτ+1|π)[logP (sτ+1|sτ , π)]− 1

(A.2)
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A.2 Belief Equivalence KL Divergence Gradient Derivation (3.19)

∇θ11DKL = −Eb(st)

[
∇θ11 logP (ot|st; θ11)

∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

]
︸ ︷︷ ︸

T1

+ Eb(st)

[
∇θ11 log

∑
st

P (ot|st; θ11)
∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

]
︸ ︷︷ ︸

T2

(A.3)

T1 =
∇θ11P (ot|st; θ11)

∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

P (ot|st; θ11)
∑

st−1
P (st|st−1, at−1; θ12)b(st−1)

=
∇θ11P (ot|st; θ11)

P (ot|st; θ11)

T2 =
1

Z
∇θ11

∑
st

P (ot|st; θ11)
∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

=
1

Z

∑
st

∑
st−1

P (st|st−1, at−1; θ12)b(st−1)∇θ11P (ot|st; θ11)

(A.4)

Plugging back T1 and T2, we have:

∇θ11DKL = −Eb(st)
[
∇θ11P (ot|st; θ11)

P (ot|st; θ11)

]
+

1

Z

∑
st

∑
st−1

P (st|st−1, at−1; θ12)b(st−1)∇θ11P (ot|st; θ11)
(A.5)

Similarly, we define T1 and T2 for the KL divergence gradient w.r.t. the transition parameters:

∇θ12DKL = −Eb(st)

[
∇θ12 logP (ot|st; θ11)

∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

]
︸ ︷︷ ︸

T1

+ Eb(st)

[
∇θ12 log

∑
st

P (ot|st; θ11)
∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

]
︸ ︷︷ ︸

T2

(A.6)
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T1 =
∇θ12P (ot|st; θ11)

∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

P (ot|st; θ11)
∑

st−1
P (st|st−1, at−1; θ12)b(st−1)

=

∑
st−1

b(st−1)∇θ12P (st|st−1, at−1; θ12)∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

T2 =
1

Z
∇θ12

∑
st

P (ot|st; θ11)
∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

=
1

Z

∑
st

∑
st−1

P (ot|st; θ11)b(st−1)∇θ12P (st|st−1, at−1; θ12)

(A.7)

Plugging back T1 and T2, we have:

∇θ12DKL = −Eb(st)

[∑
st−1

b(st−1)∇θ12P (st|st−1, at−1; θ12)∑
st−1

P (st|st−1, at−1; θ12)b(st−1)

]

+
1

Z

∑
st

∑
st−1

P (ot|st; θ11)b(st−1)∇θ12P (st|st−1, at−1; θ12)

(A.8)
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APPENDIX B

APPENDIX FOR CHAPTER 4

B.1 Evidence Lower Bound Derivation

The log-marginal likelihood lower bound, also called the evidence lower bound (ELBO) [66],

follows from standard derivation of latent variable models. Introducing a variational distribution

Q(θ), we lower bound the log-marginal likelihood using Jensen’s inequality:

L(a1:T |o1:T ) = log

∫
P (θ)

T∏
t=1

P (at|o1:t, θ)dθ

= log

∫
Q(θ)

P (θ)

Q(θ)

T∏
t=1

P (at|o1:t, θ)dθ

≥ EQ(θ)[log
P (θ)

Q(θ)

T∏
t=1

P (at|o1:t, θ)]

= EQ(θ)[
T∑
t=1

logP (at|o1:t, θ)]−DKL[Q(θ)||P (θ)]

(B.1)

ELBO optimization is difficult due to the presence of local optima. Prior works suggest using

KL-annealing to find good initialization [299]. We initialized and prior with a standard normal

distribution and used the same randomly initialized posterior parameters for all drives. We opti-

mized the prior and the posterior simultaneously for 10, 000 iterations using the Adam optimizer

[300] with learning rate 0.01. We used KL-annealing in the first 5, 000 iterations by adding a coef-

ficient to the negative KL divergence term and increasing it linearly from 0 to 1. Our optimization

procedure was implemented in PyTorch [301].
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B.2 Precision Update Derivation

The addition of the precision parameter γ leads to the following factorization of the generative

and inference models [18]:

P (o1:t, s1:T , π, γ) = P (o1:t|s1:t)P (s1:T |π)P (π|γ)P (γ)

Q(s1:T , π, γ) =
T∏
t=1

Q(st|π)Q(π)Q(γ)
(B.2)

The action prior depends on γ via:

P (π|γ) ∝ exp (−γG(π|Q∗)) (B.3)

The perception-action loop is augmented with an additional step. Between every time step, the

agent first computes the optimal state estimate by minimizing F(o1:t, Q|π). It then updates the

precision estimate using Q(π) from the last time step with the current state estimates. Finally, it

computes the updated policy with the new precision estimate before generating an action.

To obtain the new precision estimate, we differentiate the free energy function and set it to

zero. The approximate posterior over γ has the form:

Q(γ) ∝ exp
(
logP (γ) + EQ(π) [logP (π|γ)]

)
= exp

(
logP (γ)− EQ(π) [γG(π|Q∗)] + EP (π|γ) [γG(π|Q∗)]

) (B.4)

Modeling the prior distribution over γ as a Gamma distribution P (γ) = Γ(α, β) with a fixed α, the

prior expected precision is α
β

. Using the Gamma conjugate posterior property, we can show that

the expected precision is:

γ′ =
α

β + EQ(π) [G(π|Q∗)]− EP (π) [G(π|Q∗)]
(B.5)

where P (π) is the EFE prior from the last time step. This result is intuitive as an increase in
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expected free energy compared to the prior decreases the precision parameters. This decreases

the concentration of the action probability and leads to a reduced commitment to the previously

pursued course of actions.
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APPENDIX C

APPENDIX FOR CHAPTER 5

C.1 BC Implementation

For BC-MLP, we used a two-layer MLP network with ReLU activation and 40 hidden units

in each layer. For BC-RNN, we used a two-layer MLP network on top of a single-layer GRU

network with ReLU activation and 30 hidden units in each layer. The GRU layer only takes in past

observations but not past actions. We found that a larger number of hidden units in the BC-RNN

model leads to significant overfitting. Both BC-MLP and BC-RNN receive 3 input observations

and output probability distributions over 15 discrete actions.

C.2 AIDA Implementation

The AIDA implementation follows the value-iteration network and QMDP network [240, 228]

to enable end-to-end training in Pytorch [301]. We used a state dimension of 20, action dimension

of 15, and a maximum planning horizon of 30 steps (3 seconds). The Normalizing Flow network

consisted of a Gaussian mixture base distribution and a two-layer MLP network with ReLU acti-

vation and 30 hidden units in each layer. For each mini-batch of observation-action sequences, we

first computed the log likelihood of the observations at all time steps and used (5.4) to compute the

belief sequences. We then computed the cumulative EFE in (5.8) and the resulting optimal policy

in (5.9) for each inferred belief using the QMDP approximation method [42]. We evaluated dataset

action likelihood using a weighted average of optimal policies over different horizons:

π(a|b) =
∑
H

π(a|b,H)P (H) (C.1)

where P (H) is a truncated Poisson distribution up to the maximum planning horizon.

The QMDP method assumes the belief-action value can be approximated as a weighted-average
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of the state-action value:

G∗(bt, at) =
∑
st

bt(st)G∗(st, at) (C.2)

where

G∗(st, at) = EFE(st, at) + log π(at|bt) +
∑
st+1

P (st+1|st, at)G∗(st+1) (C.3)

EFE(st, at) = DKL(P (st+1|st, at)||P̃ (st+1)) + EP (st+1|st,at)[H(P (ot+1|st+1))] (C.4)

and ∀s ∈ S,G∗(st+H+1) = 0.

The combination of QMDP approximation and computing the observation entropy in (C.4)

using the Gaussian base distributions reduced the model’s ability to evaluate state uncertainty.

However, given the low state uncertainty shown in Figure 5.7 and Figure 5.8 (i.e., the nearly

deterministic belief states in the lower right charts), these approximations do not significantly

impact the current results while providing the benefit of computational tractability.

Another difference between our implementation and the common active inference presentation

is that we performed exact Bayesian state inference (i.e., (5.4)) instead of approximate variational

inference (e.g., in [18]). This does not impact the current results since both methods arrive at the

same solution in the discrete state setting.

C.3 AIDA-MPC Implementation

In the AIDA-MPC model, we replaced the learned discrete environment dynamics model with

a physics-based dynamics model with deterministic state transition and observation functions. The

physical-based model had the same three observation modalities: d,∆v, τ−1. We defined the state

space as {d,∆v}. Assuming constant lead vehicle acceleration, the state transition function is the
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following linear function:

 d′

∆v′

 =

1 −δt

0 1


 d

∆v

+

 0

−δt

 a (C.5)

The state to observation mapping for d and ∆v are identity functions. The observation τ−1 is

computed as τ−1 ≈ ∆v/d.

Given this dynamics model, we used the Cross-Entropy Method (CEM [238]) model predictive

controller to generate actions treating the AIDA log preference probability over observation as the

reward function, i.e., R(o) = log
∑

s P (o|s)P̃ (s). At each time step, the CEM controller is initial-

ized with a Gaussian distribution over finite horizon action sequences. It then iteratively refines the

distribution by samplingN action sequences from the distribution, simulating the action sequences

forward using the dynamics model, refitting the Gaussian distribution to the top K samples. Fi-

nally, it selects the first step of the mean action sequence of the final Gaussian distribution as the

action output. We used a CEM planning horizon of 6 time steps (0.6 seconds), sampled N = 50

action sequences, selected the top K = 5 sequences, and refined the distribution for 20 iterations.

C.4 Parameter Counts

The number of parameters in each model is listed in Table C.1.

Table C.1: Parameter count of all models.

IDM BC-MLP BC-RNN AIDA
Count 6 4125 6465 7670

C.5 AIDA vs. AIDA-MPC

Figure C.1a and C.1b show AIDA and AIDA-MPC’s lead vehicle collision rate and ADE for

each tested trajectory, respectively, where each point corresponds to the result of a trajectory. The
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shadows in Figure C.1b represent the density of each model’s ADEs, where wider shadow repre-

sents higher density.

(a) (b)

Figure C.1: Online same-lane evaluation results of AIDA and AIDA-MPC. Each point represents
a trajectory in the test set. The AIDA-MPC replaces the AIDA’s dynamics model with a physics-
based dynamics model and plans by treating the AIDA’s preference distribution as a reward func-
tion using model-predictive control. (a) Lead vehicle collision rate of each trajectory. (b) ADE of
each trajectory. Wider shadows represent higher density of the ADE values.
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APPENDIX D

APPENDIX FOR CHAPTER 6

D.1 Proofs for section 6.4

D.1.1 Proofs for Section 6.4.1

Derivation of BTOM Gradients (section 6.4.1). Recall the definition of the optimal entropy-

regularized policy and value functions:

π̂(a|s; θ) =
exp(Qθ(s, a))∑
ã exp(Qθ(s, ã))

Qθ(s, a) = Rθ1(s, a) + γEP̂θ2 (·|s,a)[Vθ(s
′)]

Vθ(s) = log
∑
ã

exp(Qθ(s, ã))

(D.1)

The gradient of the policy log likelihood in terms of the Q function gradient is obtained as follow:

∇θ log π̂(a|s; θ) = ∇θQθ(s, a)−∇θVθ(s)

= ∇θQθ(s, a)− 1

Zθ
∇θ

∑
ã

exp(Qθ(s, ã))

= ∇θQθ(s, a)− 1

Zθ

∑
ã

exp(∇θQθ(s, ã))

= ∇θQθ(s, a)− Eã∼π̂(·|s;θ)[∇θQθ(s, ã)]

(D.2)

where Zθ =
∑

a′ exp(Qθ(s, a
′)) is the normalizer.

Recall ρπ̂
P̂

(s̃, ã|s, a) is the discounted state-action occupancy measure starting from pair (s, a).

We define for any function f(s, a):

Eρπ̂
P̂

(s̃,ã|s,a)[f(s, a)] = Eτ∼(P̂ ,π̂)

[
∞∑
t=0

γtf(s, a)

∣∣∣∣s0 = s, a0 = a

]
(D.3)

We now derive Q function gradients with respect to the reward parameters θ1 and dynamics
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parameters θ2, respectively.

∇θ1Qθ(s, a) = ∇θ1Rθ1(s, a) + γEs′∼P̂θ2 (·|s,a)[∇θ1Vθ(s
′)]

= ∇θ1Rθ1(s, a) + γEs′∼P̂θ2 (·|s,a),a′∼π̂(·|s′;θ)[∇θ1Qθ(s
′, a′)]

= ∇θ1Rθ1(s, a) + γEs′∼P̂θ2 (·|s,a),a′∼π̂(·|s′;θ)

[
∇θ1Rθ1(s

′, a′) + γEs′′∼P̂θ2 (·|s′,a′),a′′∼π̂(·|s′′;θ)[∇θ1Qθ(s
′′, a′′)]

]
= ∇θ1Rθ1(s, a) + Eτ∼(P̂ ,π̂)

[
∞∑
h=1

γh∇θ1Rθ1(sh, ah)

∣∣∣∣s0 = s, a0 = a

]

= Eρπ̂
P̂

(s̃,ã|s,a) [∇θ1Rθ1(s̃, ã)]

(D.4)

In line two we used the result that ∇φVφ(s) for both φ = θ1 and φ = θ2 corresponds to the second

term in (D.2) .

∇θ2Qθ(s, a) = ∇θ2Rθ1(s, a) +∇θ2γEs′∼P̂θ2 (·|s,a)[Vθ(s
′)]

= γ
∑
s̃

Vθ(s̃)∇θ2P̂θ2(s̃|s, a) + γEs′∼P̂θ2 (·|s,a),a′∼π̂(·|s′;θ)[∇θ2Qθ(s
′, a′)]

= γ
∑
s̃

Vθ(s̃)∇θ2P̂θ2(s̃|s, a) + γEs′∼P̂θ2 (·|s,a),a′∼π̂(·|s′;θ)

[
γ
∑
s̃

Vθ(s̃)∇θ2P̂θ2(s̃|s′, a′) + γEs′′∼P̂θ2 (·|s′,a′),a′′∼π̂(·|s′′;θ)[∇θ2Qθ(s
′′, a′′)]

]

= γ
∑
s̃

Vθ(s̃)∇θ2P̂θ2(s̃|s, a) + Eτ∼(P̂ ,π̂)

[
∞∑
h=1

γh+1
∑
s̃

Vθ(s̃)∇θ2P̂θ2(s̃|sh, ah)
∣∣∣∣s0 = s, a0 = a

]

= Eρπ̂
P̂

(s̃,ã|s,a)

[
γ
∑
s′

Vθ(s
′)∇θ2P̂θ2(s

′|s̃, ã)

]
(D.5)

We make a quick remark on the identifiability of simultaneous estimation.

Remark 4. Simultaneous reward-dynamics estimation of the form (6.5) without specific assump-

tions on the prior P (θ) is in general unidentifiable.
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Proof. Let R ∈ R|S||A| and P ∈ R|S||A|×|S|+ ,
∑

s′ P
a
ss′ = 1, Q ∈ R|S||A| and V ∈ R|S| be a set

of Bellman-consistent reward, dynamics, and value functions in matrix form. Let P′ 6= P be an

alternative dynamics model. We can always find an alternative reward R′ = R + ∆R, where:

∆R = (Q−Q)− γ(P′V −PV)

= −γ∆PV

(D.6)

without changing the value functions and optimal entropy-regularized policy.

Remark 4 implies that existing simultaneous estimation approaches which do not use explicit

or implicit regularizations, such as the SERD algorithm by [124], cannot in general accurately

estimate expert reward. Paired with theorem 3, it shows that these algorithms cannot in general

achieve good performance.
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D.1.2 Proofs for Section 6.4.2

Derivation of discounted likelihood (6.14).

EP (τ)

[
∞∑
t=0

γt log π̂θ(at|st)

]

= EP (τ)

[
∞∑
t=0

γt (Qθ(st, at)− Vθ(st))

]

= EP (τ)

[
∞∑
t=0

γt
(
Rθ1(st, at) + γEs′∼P̂θ2 (·|st,at)[Vθ(s

′)]
)]
− EP (τ)

[
∞∑
t=0

γtVθ(st)

]

= EP (τ)

[
∞∑
t=0

γtRθ1(st, at)

]
− Eµ

[
Vθ(s0)

]

+ EP (τ)

[
∞∑
t=0

γt+1Es′∼P̂θ(·|st,at)[Vθ(s
′)]

]
− EP (τ)

[
∞∑
t=1

γtVθ(st)

]

= EP (τ)

[
∞∑
t=0

γtRθ1(st, at)

]
− Eµ

[
Vθ(s0)

]

+ EP (τ)

[
∞∑
t=0

γt+1Es′∼P̂θ(·|st,at)[Vθ(s
′)]

]
− EP (τ)

[
∞∑
t=0

γt+1Es′∼P (·|st,at)[Vθ(s
′)]

]

= EρπP

[
Rθ1(st, at)

]
− Eµ

[
Vθ(s0)

]
︸ ︷︷ ︸

`(θ)

+ γEρπP

[
Es′∼P̂θ(·|st,at)Vθ(s

′)− Es′′∼P (·|st,at)Vθ(s
′′)

]
︸ ︷︷ ︸

T1

(D.7)

The following lemma shows that T1 is negligible if the estimated dynamics is accurate under

the expert distribution, which is available from the offline dataset.

Lemma 5. (Restate of lemma 1) Let ε = E(s,a)∼P (τ)DKL(P (·|s, a)||P̂ (·|s, a)) be the dynamics

estimation error and Rmax = maxs,a |Rθ(s, a)|+ log |A| be an upper bound on reward and policy

entropy, it holds that

|T1| ≤ γRmax

(1− γ)2

√
2ε (D.8)
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Proof.

|T1| =

∣∣∣∣∣
∞∑
t=0

γt+1E(st,at)∼P (τ)

[∑
s′

Vθ(s
′)
(
P̂ (s′|st, at)− P (s′|st, at)

)]∣∣∣∣∣
(1)

≤
∞∑
t=0

γt+1E(st,at)∼P (τ)

[∑
s′

|Vθ(s′)|
∣∣∣P̂ (s′|st, at)− P (s′|st, at)

∣∣∣]
(2)

≤
∞∑
t=0

γt+1‖Vθ(·)‖∞E(st,at)∼P (τ)

[∥∥∥P̂ (·|st, at)− P (·|st, at)
∥∥∥

1

]
(3)

≤
∞∑
t=0

γt+1‖Vθ(·)‖∞
√

2E(st,at)∼P (τ)DKL(P ||P̂ )

=
γ

1− γ
‖Vθ(·)‖∞

√
2ε

where (1) follows from Jensen’s inequality, (2) follows from Holder’s inequality, and (3) follows

from Pinsker’s inequality.

Finally, givenH(π(a|s)) = −
∑

a π(a|s) log π(a|s) ≤ −
∑

a π(a|s) log 1
|A| = log |A|, we have

‖Vθ(·)‖∞ ≤ E [
∑∞

t=0 γ
t (maxs,a |Rθ(s, a)|+ log |A|)] = Rmax

1−γ .

D.1.3 Proofs for Section 6.4.4

Theorem 3 uses the results from [273] (restated in lemma 2), which decomposes the real en-

vironment performance gap between the expert and the learner into their policy and model advan-

tages in the estimated dynamics.

Theorem 6. (Restate of theorem 3) Let επ̂ = −E(s,a)∼dπP [log π̂P̂ (a|s)] be the policy estimation

error and εP̂ = E(s,a)∼dπPDKL[P (·|s, a)||P̂ (·|s, a)] be the dynamics estimation error. Assuming

bounded expert-learner marginal state-action density ratio
∥∥∥dπ̂P (s,a)

dπP (s,a)

∥∥∥
∞
≤ C, we have the following

(absolute) performance bound for the IRL agent:

|JP (π̂)− JP (π)| ≤ 1

1− γ
επ̂ +

γ(C + 1)Rmax

(1− γ)2

√
2εP̂ (D.9)
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Proof.

|JP (π̂)− JP (π)|

≤ 1

1− γ
επ̂

+
γ

1− γ
E(s,a)∼dπP

[∣∣∣∣dπ̂P (s, a)

dπP (s, a)

(
Es′∼PV π̂

P̂
(s′)− Es′′∼P̂V

π̂
P̂

(s′′)
)∣∣∣∣]

+
γ

1− γ
E(s,a)∼dπP

[∣∣Es′∼P̂V π̂
P̂

(s′)− Es′′∼PV π̂
P̂

(s′′)
∣∣]

≤ 1

1− γ
επ̂

+
γ

1− γ

∥∥∥∥dπ̂P (·, ·)
dπP (·, ·)

∥∥∥∥
∞

∥∥V π̂
P̂

(·)
∥∥
∞ E(s,a)∼dπP

[∥∥∥P̂ (·|s, a)− P (·|s, a)
∥∥∥

1

]
+

γ

1− γ
∥∥V π̂

P̂
(·)
∥∥
∞ E(s,a)∼dπP

[∥∥∥P̂ (·|s, a)− P (·|s, a)
∥∥∥

1

]
=

1

1− γ
επ̂ +

γ(C + 1)Rmax

(1− γ)2

√
2εP̂

(D.10)

where the last line uses results from lemma 1.

D.2 Implementation Details

Our implementation builds on top of the official RAMBO implementation1 [267].

D.2.1 MuJoCo Benchmarks

For the MuJoCo benchmarks described in section 6.5.2, we follow standard practices in model-

based RL.

D.2.1.1 Dynamics Pre-training

We use an ensemble of K = 7 neural networks where each network outputs the mean and

covariance parameters of a Gaussian distribution over the difference between the next state and the

current state δ = s′ − s:

P̂
(k)
θ2

(δ|s, a) = N (δ|µ(k)
θ2

(s, a),Σ
(k)
θ2

(s, a)) (D.11)

1https://github.com/marc-rigter/rambo
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Each network is a 4-layer feedforward network with 200 hidden units and Sigmoid linear unit

(SiLU) activation function. For the initial pre-training step, we maximize the likelihood of dataset

transitions using a batch size of 256 and early stop when all models stop improving for more

than 1 percent. We then select the 5 best models in terms of mean-squared-error on a 10 % holdout

validation set. During model rollouts, we randomly pick one of the 5 best models (elites) to sample

the next state.

Table D.1: Shared hyperparameters across different environments

Hyparameter BTOM RTOM

SA
C

+
M

B
PO

critic learning rate 3e-4 3e-4
actor learning rate 3e-4 3e-4
discount factor (γ) 0.99 0.99

soft target update parameter (τ ) 5e-3 5e-3
target entropy -dim(A) -dim(A)

minimum temperature (α) 0.1 0.001
batch size 256 256
real ratio 0.5 0.5

model retain epochs 5 5
training epochs 500 300
steps per epoch 1000 1000

D
yn

am
ic

s

# model networks 7 7
# elites 5 5

adv. rollout batch size 1000 256
adv. rollout steps 10 10
adv. update steps 50 50

adv. loss weighting (λ1) 0.01 0.01
supervised. loss weighting (λ2) 1 1

learning rate 1e-4 1e-4
adv. update steps 50 50

R
ew

ar
d

max reward 10 10
rollout batch size 1000 64

rollout steps 40 100
l2 penalty 1e-3 1e-3

learning rate 1e-4 1e-4
update steps 1 1
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Table D.2: Environment-specific hyperparameters

Environment Hyperparameter BTOM
model rollout batch size 10000

Hopper model rollout steps 40
model rollout frequency 250
model rollout batch size 50000

HalfCheetah model rollout steps 5
model rollout frequency 250
model rollout batch size 10000

Walker2d model rollout steps 40
model rollout frequency 250

D.2.1.2 Policy Training

Our policy training process follows MBPO [47] which uses SAC with automatic temperature

tuning [302]. Shared hyperparameters across different environments are listed in Table D.1 and

environment-specific hyperparameters are listed in Table D.2. For the actor and critic, we use

feedforward neural networks with 2 hidden layers of 256 units and ReLU activation. We train the

actor and critic networks using a combination of real and simulated samples. We use a real ratio

of 0.5, which is standard practice in model-based RL and IRL. We found that BTOM requires a

higher minimum temperature to stablize training, which is set to α = 0.1.

We found that different MuJoCo environments require different model rollout hyperparame-

ters, similar to what’s reported in [263]. Specifically, Hopper and Walker2d only work with signif-

icantly larger rollout steps. We decrease their rollout batch size to reduce computational overhead.

HalfCheetah on the other hand works better with smaller rollout steps and larger rollout batch

size. In contrast to Lu et al. (2021), we did not use different rollout hyperparameters for different

datasets.

D.2.1.3 Reward and Dynamics Training

We use 10 random trajectories from the D4RL MuJoCo expert dataset after removing all expert

trajectories that resulted in terminal states.
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We use the same network architecture as the actor-critic to parameterize the reward function.

We further clip the reward function to a maximum range of ±10 and apply l2 regularization on all

weights and biases with a penalty of 0.001.

As described in the main text, we update the reward function by simulating sample trajectories

and taking a single gradient step. For RTOM, we randomly sample expert trajectory segments of

length “rollout steps" and use the first step as the start of our simulated sample paths.

We update the dynamics using on-policy rollouts branched from the dataset state-actions. We

use the same batch size for reward and dynamics rollouts, which is 1000 for BTOM and 256 for

RTOM. Because only the first step in BTOM sample paths comes from the dataset, it requires a

larger batch size to iterate more data samples. We also train BTOM for more epochs than RTOM.

To compute the dynamics log likelihood in the REINFORCE gradient in (6.18), we treat the

ensemble as a uniform mixture and compute the likelihood as:

P̂θ2(δ|s, a) =
1

K

K∑
k=1

P̂
(k)
θ2

(δ|s, a) (D.12)

We set the dynamics adversarial loss weighting to λ1 = 0.01 for both BTOM and RTOM.

We found this to work better than what’s in the official RAMBO implementation, which is λ1 =

0.0768. Note that the RAMBO author reported λ1 = 3e-4 in their paper but forget to average

their REINFORCE loss over the mini-batch of size 256 in their implementation, which is instead

treated as a sum by default by TensorFlow. We empirically found that small λ1 leads to severe

model exploitation.
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