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ABSTRACT

Embedded systems are ubiquitous, and more systems are continuing to be deployed through

the recent development of the Internet of Things. Embedded systems are specialized computer

systems that are designed to perform specific tasks, typically with a dedicated function or limited

application domain. They are engineered to be small, efficient, and low-powered, and can be found

in a wide range of devices and applications, including cars, medical equipment, home appliances,

and industrial machines. Embedded systems play a critical role in many of the devices and systems

that we rely on every day, and their importance is only expected to grow as the world becomes more

connected and reliant on technology.

Security has often been a secondary consideration in the design and implementation of em-

bedded systems, with a focus on functionality and performance taking priority. However, this has

changed in recent years as the risks associated with insecure embedded systems have become more

apparent. One of the main challenges is that many embedded systems have limited resources, such

as memory and processing power, which can make it difficult to implement strong security mea-

sures. Additionally, these systems may have a long lifespan and may not receive security updates,

which can leave them vulnerable to attacks. A newer concern is that many embedded systems are

designed to be connected to the internet, the Internet of Things, or other networks, which can in-

crease their attack surface. Attackers can exploit vulnerabilities in these systems to gain access to

sensitive data or disrupt their operation. Hence, securing these systems is becoming increasingly

important. The aim of this dissertation is to increase the security of software in embedded systems.

We propose the use of existing hardware primitives commonly found on modern CPUs in

embedded systems, specifically hardware performance counters and watchdog timers to enhance

the security of embedded system software. The first method is to train a model that can detect

anomalous execution of software. The second method we propose in this work is a way to have

the embedded software continuously authenticate to ensure proper execution. The final piece of
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the work is to enhance a traditional watchdog timer with hardware performance counters to make

it more robust against malicious modifications.
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1. INTRODUCTION

1.1 Embedded System Software Security Lags Behind

It has often been quipped that the ‘S’ in IoT stands for security.

With the Internet of Things (IoT) boom billions of internet enabled embedded systems are

being deployed yearly. Over the past 10 years, the number of IoT devices deployed worldwide

has grown exponentially. While data for all IoT devices is not available, we can examine the trend

from 2011 to 2021 based on available statistics. In 2011, the number of connected IoT devices was

estimated to be around 1.84 billion, according to IoT Analytics [1]. By 2015, this number had risen

to 15.41 billion [2], and by 2020, it reached 30.73 billion [3]. Looking ahead, projections suggest

that the growth in IoT deployment will continue over the next decade. According to Statista, the

number of connected IoT devices is expected to reach 75.44 billion by 2025 and 125 billion by

2030 [3]. This growth is being driven by the increasing adoption of IoT devices across various

industries and the widespread use of smart homes and smart cities. As the technology continues

to evolve and become more sophisticated, it is likely that we will see even greater numbers of

IoT devices being deployed in the future. However, software security for these systems has only

recently been designated as a core issue [4, 5, 6].

The Miria botnet [7, 8] and Satori [9] and Masuta [10] botnets have shown the severity that

embedded system software insecurity poses. The Mirai botnet first emerged in 2016 and quickly

gained notoriety for its size and power. It was responsible for several large-scale DDoS attacks,

including the one that targeted DNS provider Dyn in October 2016, which caused major disruptions

to a number of popular websites, including Twitter, Netflix, and PayPal. The Mirai botnet works by

scanning the internet for vulnerable IoT devices that are protected by weak or default passwords.

Once it finds a device, it infects it with malware and adds it to the botnet. The botnet can then

be used to launch DDoS attacks on targeted websites or networks. Since its emergence, the Mirai

botnet has evolved and spawned several variants, including the Satori and Masuta botnets. These
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variants use similar techniques to infect IoT devices and create botnets for the purpose of launching

DDoS attacks.

Security is a broad field that covers many aspects in digital systems. Commonly, there are

three main pillars of security in digital systems. The three pillars are confidentiality, integrity, and

assurance (CIA triad).

The CIA triad is a widely recognized model used to describe the fundamental principles of

information security [11, 12, 13]. The acronym CIA stands for confidentiality, integrity, and avail-

ability, which are considered the three core pillars of information security.

Confidentiality: Confidentiality refers to the protection of sensitive information from unautho-

rized access or disclosure. It ensures that only authorized individuals or systems have access to

sensitive data and that the data is not exposed to unauthorized users or systems.

Integrity: Integrity refers to the protection of the accuracy, completeness, and reliability of

data. It ensures that data remains accurate and unaltered and that any changes made to data are

authorized and legitimate.

Availability: Availability refers to the accessibility of data and resources to authorized users. It

ensures that authorized users can access the data they need when they need it and that the system

is available to them without interruption.

The CIA triad provides a framework for designing, implementing, and evaluating information

security measures in organizations to ensure that information is protected against unauthorized

access, manipulation, or destruction. The core of the work in this dissertation focuses on maintain-

ing the integrity of embedded software. If a higher assurance of integrity can be established, the

other two pillars are also elevated as if there is confidence that the embedded software is executing

as expected then there can also be higher confidence that confidentiality has not been breached.

Availability also increases with the higher confidence in the integrity of the embedded software

since there is more confidence that the software is running as designed.

The internet at large has trended increasingly hostile since it obtained wide-scale adoption.

This new class of embedded systems, IoT devices, pose a unique and novel security challenges. In
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some ways it has echos of the security crisis of the early Internet in the 1990s. However, many of

these embedded devices are not directly exposed to the Internet and are deployed behind a firewall

or NATtted network.

IoT devices are often resource constrained which increases the challenge for adding in security

after the initial main design. Making security a core design component often time increases to

total time to market [14]. Time to market is often a critical factor in IoT systems. Being the first

established vendor in the market can increase the initial inertia for the products [15].

Due to the heavy constraints of embedded system in terms of limited hardware capabilities and

rapid time-to-market constraints many of the established security practices for servers, desktops,

and mobile devices can not be effectively deployed [16, 17]. It would either increase the total cost

of the end device in a very cost sensitive market, increase the development time to an unacceptably

long time for a quick to market product area, or it is simply not suitable for these more constrained

environments.

The challenges for securing embedded systems has driven a broad set of research both aca-

demically and industrially. Beyond the hardware and marketing constraints, a major challenge

also lies in the sheer diversity of embedded systems and IoT devices [18]. Embedded systems are

be incredibly diverse, as they are used in a wide range of industries and applications [19]. Some

examples of embedded systems include: Consumer electronics: Embedded systems are found in

everyday devices such as smartphones, smart home devices, and home appliances [20]. Automo-

tive industry: Embedded systems are used extensively in modern cars for everything from engine

management to safety systems [21, 22]. Industrial control systems: Embedded systems are used

to control machinery and processes in factories and industrial settings. Aerospace and defense:

Embedded systems are used in aircraft, spacecraft, and military equipment for navigation, com-

munication, and control. Medical devices: Embedded systems are used in a variety of medical

devices, including pacemakers, insulin pumps, and blood glucose monitors. Internet of Things

(IoT): Embedded systems are at the heart of IoT devices, enabling them to connect to the internet

and communicate with other devices [23, 24]. Robotics: Embedded systems are used extensively
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in robotics for control, sensing, and actuation. Given this diversity, embedded systems vary widely

in their size, complexity, functionality, and performance requirements. They may be designed for

different operating conditions, power sources, and environmental factors, which can all impact

their design and performance. Therefore, the design of an embedded system is typically tailored

to the specific requirements of the application it is intended for.

However, many of the proposed solutions in research would require almost a starting over from

the ground up to build these systems with security in mind from the start.

1.2 Basics Of Embedded Systems And IoT

Embedded systems are computer systems that are designed to perform a specific task, of-

ten with very specific requirements. They are typically small, low-power devices that are inte-

grated into larger systems or products. Examples of embedded systems include everything from

the micro-controller in your microwave oven to the sensors and controllers in a modern car.

Embedded systems and Internet of Things (IoT) devices are two related concepts that involve

small, specialized computer systems that are designed to perform specific tasks.

Embedded systems: An embedded system is a computer system that is designed to perform a

specific function within a larger system. These systems are often integrated into other devices such

as automobiles, medical equipment, and home appliances. Embedded systems are typically small,

low-power devices with limited computing resources.

The key components of embedded systems include the following.

Hardware: Embedded systems are built using hardware components such as micro-controllers,

sensors, actuators, memory devices, and other peripherals.

Software: Embedded systems are programmed using software that is designed to run on the

hardware components. This software is often written in low-level languages such as C or assembly

language.

Real-time operations: Embedded systems are designed to respond quickly to external events or

inputs, often in real-time. This requires the system to be optimized for speed and efficiency.

Power consumption: Embedded systems are often battery-powered or have limited power
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sources, so they need to be designed to be energy-efficient.

Connectivity: Embedded systems may need to communicate with other systems or devices, so

they often include connectivity options such as Wi-Fi, Bluetooth, or Ethernet.

Security: Embedded systems may need to protect sensitive data or control critical systems, so

security features such as encryption and authentication may be necessary.

Testing and verification: Embedded systems must be thoroughly tested and verified to ensure

they meet their specifications and perform as expected. This often requires specialized testing

equipment and techniques.

Internet of Things (IoT) devices: IoT devices are a type of embedded system that are designed

to connect to the internet and communicate with other devices. These devices are typically sensors,

actuators, or other small devices that are integrated into larger systems. IoT devices often have

wireless connectivity and can be controlled remotely.

Sensors and actuators: Sensors are devices that detect changes in their environment and provide

data to other devices. Actuators are devices that perform actions in response to data received

from other devices. Both sensors and actuators are commonly used in embedded systems and IoT

devices.

Micro-controllers: Micro-controllers are small computer chips that are designed specifically

for use in embedded systems. They typically have limited processing power and memory but are

optimized for low power consumption.

Programming languages: The programming languages used for embedded systems and IoT

devices are typically lower-level languages such as C and assembly language. These languages

allow developers to write code that directly controls the hardware of the device.

Connectivity: IoT devices are designed to be connected to the internet, which allows them

to communicate with other devices and exchange data. Common connectivity protocols for IoT

devices include Wi-Fi, Bluetooth, and cellular networks.

Security: Because IoT devices are connected to the internet, they can be vulnerable to security

threats such as hacking and data breaches. It is important to design IoT devices with security in
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mind, including strong authentication and encryption protocols.

1.3 Research Focus

The work presented in this dissertation aims to be addressable to the here and now of the

embedded software security crisis without requiring a massive rearchitecting of established design,

programming, and engineering principles. However, it also aims to be amenable to any future

developments in the software security space that will happen. The main goal set out to be achieved

within this work is to characterize what the “normal” or “known good” intrinsic characteristics of

embedded software under execution is during runtime. Ideally, this must be done in a way that fits

all the usual constraints for embedded software. As such it must have low to no overheads as to not

increase the requirements for the base software or overall power requirements for the device, and

it must also not significantly increase development time. This is accomplished by looking at the

properties that are intrinsic to the embedded software that is being executed by way of hardware

performance counters.

1.4 Contributions

The contributions of this dissertation are as follows:

1. This research investigates using the signals of HPCs to enable on device anomaly detection

for embedded system software. The approach used is to stream the HPC data signals to a

predictor. The predictor is trained on previous known good executions of the software and it

takes a small snapshot of HPC data and makes a prediction for the next value of the counters

to come. If the prediction performance falls outside of a certain threshold then it concludes

the software is not operating as expected and issues a corrective action.

2. This research propose the use of a continuous authentication technique for the embedded

software to pass. It uses frequency analysis on slices of the time series signals generated by

the HPCs. The frequency response is encoded into a finite state machine on known good

runs of the software. When deployed the same encoding scheme of the frequency response

happens, but this time it is checked against the previously defined state machine. If too
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many invalid transitions in the state machine occur then the software fails the authentication

checks and is considered to be compromised from the original intention.

3. This research enhances an ordinary watchdog timer, which are commonly used in embedded

applications, with HPC data. This provides a multi-factor security approach. Not only does

the software have to routinely “pet” the watchdog timer, but it must also have a matching

HPC response. If either the timer expires, or the HPCs does not match then the software

fails the check and corrective action is taken.

1.5 Organization

The dissertation is organized as follows. Chapter 2 gives a design for securing embedded

software using hardware performance counters with anomaly detection. Chapter 3 approaches

the problem with a continuous authentication scheme based on hardware performance counters.

Chapter 4 proposing enhancing a watchdog timer with hardware performance counters to increase

robustness and security of embedded software. Finally, Chapter 5 concludes the dissertation as

well as giving some avenues for future work.
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2. HARDWARE PERFORMANCE COUNTERS FOR EMBEDDED SOFTWARE

ANOMALY DETECTION1

A recent trend in software security has utilized hardware performance counters as a security

mechanism for integrity checks as well as malware detection. In this work we have developed

two methods to check and validate the runtime integrity of a program to protect against malicious

intrusions. The two methods developed utilize Hidden Markov Models and Long Short Term

Memory neural networks trained on traces of a program’s performance counter data which allows

for classification, offline anomaly detection, and online anomaly detection. In our benchmark of

embedded software the HMMs achieved a classification accuracy of 100%, while offline anomaly

detection achieved an average 98% accuracy with only 1% false positives, and online detection

with a heuristic achieved 95% with only 0.38% false positives. On the same embedded software

benchmark LSTMs neural networks achieved an offline anomaly detection rate of 100% with no

false positives, and an online anomaly accuracy was 98% on average with no false positives.

2.1 Introduction

Software security vulnerabilities are a widespread unsolved problem. Software security vul-

nerabilities range from simple configuration issues to serious fundamental design flaws. Each day

potentially vulnerable devices are deployed which may contain serious security vulnerabilities that

could allow for an unauthorized user to access sensitive information. Part of this trend is a result of

The Internet of Things (IoT) and the demand for smart devices. IoT devices are typically resource

constrained and designed to have a quick time to market at low cost. This results in devices that

may have little to no consideration for security concerns [26]. As a result of resource constraints

these devices usually have to write all the world facing software in a low level, potentially danger-

ous, language such as C [4, 6, 5]. The use of an unsafe low level language exposes another entire

1Reprinted with permission from [25]. © 2018 IEEE. Reprinted, with permission, from Karl Ott, Rabi Mahap-
atra, Hardware Performance Counters for Embedded Software Anomaly Detection, 16th Intl Conf on Dependable,
Autonomic and Secure Computing, August 2018.
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class of vulnerabilities, most notably memory safety violations. Violations in memory safety can

allow for an adversary to gain control over a piece of software. Traditionally memory safety vio-

lations are achieved by means of a buffer overflow. At a high level buffer overflows allow users to

write past the end of a buffer dedicated for an operation. The result of a buffer overflow can lead

to corruption of data, crashing programs, or unauthorized arbitrary code execution [27]. Arbitrary

code execution is a violation in the vulnerable program’s integrity which allows for the execution

of malicious code.

Security vulnerabilities can lead to but are not limited to: data leaks, automated remote code

execution, and denial of service attacks. Ideally vulnerabilities would be removed entirely, but due

to real world constraints they must be minimized through mitigation techniques. Mitigation tech-

niques aim to raise the bar for an adversary to successfully exploit a security vulnerability. Many

mitigation techniques have been deployed or proposed in the literature ranging from fundamental

changes in the software stack, to simple changes at an operating system level that are seamless

in nature. Techniques that require fundamental changes are typically more thorough, complete,

and have a much lower associated performance overhead. These deep-level changes are slower to

penetrate commercial products due to changes in the base level software stack [28, 29].

Therefore, rapid changes in the resource constrained, quick to market segments, such as em-

bedded or IoT devices, require a lightweight, non breaking mitigation technique to be introduced.

As such, we propose a security mechanism which has minimal hardware requirements, low perfor-

mance overhead, raises the bar for adversaries to successfully exploit, and is layerable with other

vulnerability mitigations. Specifically, the methods proposed are layerable with other security mit-

igations, to offer defense in depth, such as but not limited to: address space layout randomization,

W xor X memory permissions, stack canaries, and control flow integrity. The methods are also

readily layerable with static integrity checking solutions provided in the Trusted Platform Module

[30].

In this work we are proposing two models that recognize and enforce a program’s expected

execution trajectory which is obtained from hardware performance counters. Given an accurate
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model of the program’s expected trajectory, differences between the expected model output and

calculated model output signify a fault in the software which may be malicious. The proposed

method is particularly suited for embedded systems which often have a well defined set of func-

tionality they must provide according to the system’s specifications. The method is also flexible in

implementation. The proposed models are then compared against each other, as well as a method

similar to one that has previously been proposed in the literature [31].

The contributions of this paper are two new novel techniques using HMMs and LSTMs, which

have varying costs, that can be used to help mitigate against a certain classes of software vulnera-

bilities and defects. Further contributions are that these techniques are implemented in a black box

fashion requiring no source or binary level changes to the software it is protecting. Additionally,

while demonstrated in software here the implementation for these techniques is flexible and could

be moved to a lower hardware level implementation. A hardware implementation would lower the

associated overheads across the board. Moreover, online versions of the HMM and LSTM tech-

niques achieve a high accuracy with an average of 95% accuracy with only 0.38% false positives

and 98% accuracy and 0 false positives, respectively.

The paper is structured with Section 2.2 detailing the background information of hardware

performance counters, Hidden Markov Models, anomaly detection, and related work. Section 2.3

describes the setup used to carry out the experiment. Section 2.4 reports the results obtained from

the HMMs from the experiment and Section 2.5 reports the results for the LSTMs. Section 2.6

discusses the findings reported and compares against other techniques. Finally, Section 2.7 is the

conclusion and additionally outlines potential future work.

2.2 Background

2.2.1 Hardware Performance Counters

Hardware performance counters have been widely available on microprocessors since the early

1990s. Traditionally, performance counters were few and those that existed were limited to what

events they would count [32]. However, in modern microprocessors there are upwards of 8 counters
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per core, depending on the processor, which in turn each count hundreds of different events. Events

range from instruction mixture, such as: number of loads, number of stores, number of branch

instructions; to microarchitectural events such as the hit count of the cache at each level, number of

successfully predicted branches, etc. Since these counters are implemented in hardware they offer

a low overhead method to empirically measure a program’s performance characteristics [33, 32].

In addition it can be shown that one natural output of hardware performance counters is a time

series representation of a program’s performance characteristics. This time series representation

can then be compared against future executions of the program to identify malicious attacks or

program contamination.

The time series hardware performance counters form is the basis that this work is founded on.

Since counter values are cheap to measure, accurate, and repeatable we can use them to build a

model to describe what values we expect to see over time.

2.2.2 Anomaly Detection

Anomaly detection, also known as outlier detection, is the identification of: items, events or

observations which do not conform to an expected pattern or other items in a dataset. The impor-

tance of anomaly detection is due to the fact that anomalies in data translate to significant (and

often critical) actionable information in a wide variety of application domains. Anomaly detection

differs from misuse detection in that only “good” or “expected” behavior is defined. That is, there

is no “bad” or “unexpected” behavior to compare against, unexpected behavior is only detected if

it falls outside the expected behavior. Whereas misuse detection only succeeds when the observed

behavior matches that which is known to be “bad” behavior [34]. Alternatively, anomaly detection

can be viewed as a classification problem in which there is only one class, “good” or “expected”.

Our methods presented in this work make use of the fact that we only know what the “good” or

“expected” performance counter behavior is for each program and any deviations or outliers from

the expected values are flagged as anomalous.
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2.2.3 Hidden Markov Models

Hidden Markov Models (HMM) are defined by a model λ, where λ is defined to be the set

of matrices A, B, and π. The matrix A represents the probabilities of a state transition. The B

matrix is known as the observation probabilities, or emission probabilities. The columns repre-

sent the observation seen and the rows represents the hidden states. Lastly, π is the starting state

probabilities. The “hidden” portion in the HMM is the state, which is to say that the state is not

directly observable but can be reasoned from the observations. From the Markovian Assumption,

the values of the future state depend only on the current state. That means the state at an arbitrary

point in time contains all that is needed to be known in order to predict the future of the process.

These properties make HMMs well suited for application in time series analysis.

Traditionally there are three fundamental problems with HMMs. The problems are:

1. Given a model λ calculate the probability of the observation sequence O.

2. Given the model λ calculate the most probable state sequence of an observation sequence.

3. Lastly given a set of observation sequences calculate a model λ that best fits the given ob-

servation sequences.

The first problem is also known as the filtering problem and can be efficiently solved by the

Forward-Backward algorithm. The second problem to calculate the most probable state path is

solved via the Viterbi algorithm. The third problem is commonly referred to as training an HMM

which is typically accomplished with Baum-Welch algorithm. Additional information regarding

HMMs and the algorithms to operate on them can be found in [35].

In this work we make use of trained HMMs’ ability to calculate a probability of a given obser-

vation sequence. The calculated probabilities in the training set are then used to create a normal

distribution on which we base our anomaly detection. That is, if the output probability of the HMM

is an outlier on the constructed normal distributions gets flagged as anomalous.
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2.2.4 Long Short Term Memory Neural Networks

Long Short Term Memory (LSTM) neural networks are a kind of Recurrent Neural Network

(RNN) that enables the neural network to be capable of learning long term dependencies that may

be present in the input. As a result LSTMs are effective and scalable for problems relating to

sequential data [36]. As mentioned previously hardware performance counter samples naturally

form a time series, which is a form of sequential data, which LSTM neural networks naturally

excel in dealing with.

We use trained LSTM neural networks in this work to implement a form of anomaly detection.

Specifically, we train the LSTMs on a windows of history of hardware performance values and

have the LSTM network make a prediction of what the next value following end of the window is.

If this predicted value falls outside of a threshold of what the actual measured value is, then it is

flagged as anomalous.

2.2.5 Threat Model

The threat model allows for an attacker to exploit vulnerabilities that enable arbitrary code ex-

ecution, such as a traditional stack overflow that hijacks the program’s control flow into attacker

controlled memory. Since the proposed method is flexible in implementation the requirements for

the boundary an adversary can penetrate are also flexible. If the detection mechanism is imple-

mented in kernel space then the only requirement is an adversary cannot gain unfettered kernel

space access. If the detection mechanism is implemented in hardware then this requirement is

removed, however other changes might be required.

2.2.6 Related Work

There has been some previous work that investigated the use of hardware performance counters

for security purposes. Demme et al. used hardware performance counters to detect known malware

on the Android platform and rootkits on a Linux host via standard classification algorithms [37].

Wang et al. used hardware performance counters to detect a kernel modifying rootkit in virtualized

systems [38]. Ozsoy et al. modified a basic x86 compatible processor to enable malware detection
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on chip with a hardware subsystem [39]. Hardware performance counters have been used to create

a “golden signature” of linear relations which the system firmware is periodically checked against

to see if it has been modified [40]. In [41] performance counters are used in a power transform

and one class SVM to build an unsupervised anomaly detection scheme to try and detect return

oriented programming (ROP) exploits at different stages of execution. CFIMon is a method uti-

lizing performance counters as part of a system to enforce control flow integrity (CFI) by way of

static analysis to build a table of all known good branch and jump target addresses and comparing

against run time target addresses [42]. [31] used performance counters to verify integrity of device

firmware by modifying and manually inserting code detours to check against a “golden signature”

database.

Unlike the previous work our work does not rely on a golden signature to check against, mod-

ifying of source or binary code. Additionally, our work does not suffer from cross contamination

noise in the samples due to sampling hardware performance counters in a system wide mode, and

is readily layerable with existing mitigation techniques. For golden signature methods to work

effectively the program must be extensively profiled to create a signature which can verify the pro-

gram for any given valid input. This is additionally problematic when a program contains loops

which iterate a number of times that can only be determined at runtime or contain an unprofiled

early exit condition. If golden signatures techniques do not account for such cases programs with

these constructs will be incorrectly identified as malicious.

2.3 Experimental Setup

2.3.1 Hardware/Software Configuration

The method for collecting performance counter data is the built in subsystem in the Linux

kernel called perf_events. The subsystem allows for a different configurations for collection. For

our setup we use an available frontend that allows for the collection of performance counter data

without modifying or recompiling the code. The perf_events interface also has other advantages

in that it will automatically save and restore the performance counter values when the monitored
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program is scheduled out. The results of this is that we can get accurate traces of the values of the

performance counters over time since other program’s values will not be falsely attributed to the

monitored one. The method used to collect performance counter samples was to read the values

every N amount of retired instructions. In this experiment we set the value of N to 262144 retired

instructions. This value was chosen as it did not create substantial overhead for the monitored

process (less than 5%) and still provided accurate sample values as seen in Figure 2.1. The figure

shows the increase in relative overhead to an unmonitored process as well as the amount of samples

collected with an increasing sampling rate.

The data collection was carried out on the 4.10-32 Linux kernel, on a Intel Core i7-6600U

processor. This particular processor has 4 configurable counters with 3 fixed functionality coun-

ters per core. We profiled the benchmark programs from the CoremarkPro suite from EEBMC

[43], these are industry standard benchmarks for embedded systems. Additionally, the kernel’s

frequency scaling governor was adjusted so as to not have the processor’s frequency scale down

when there is a light system load running. The benchmark programs were compiled statically with

musl [44], a minimal C library. These measures are done in an effort to reduce noise, help in-

crease repeatability between program runs, and more accurately simulate an embedded software

environment.

2.3.2 Choice Of Event Type

Weaver et al. show that the current implementation of performance counters are inherently

noisy [33]. Moreover, many of the performance events can capture data of shared resources such

as: caches, branch predictors, memory prefetchers, etc. These performance events are susceptible

to interference from other programs that run alongside the monitored program. Furthermore, it

is trivial to demonstrate that performance counters that track shared hardware resources, such as

caching performance, are unreliable outside of a controlled environment. Figure 2.2 shows the

average repeated runs of the same program with the same inputs and different levels of background

interference.

There are hundreds of performance events available but only a small subset of them can be cap-
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Figure 2.1: The average overhead and number of samples collected at different sampling rates of
retired instructions. Around 217 the number of samples collected becomes unstable as it does not
increase as the sampling rate increases.

16



tured at once. To overcome these challenges the performance counters selected in this experiment

are ones that tend to be more reliable and repeatable as demonstrated in [33]. Specifically, the four

events used in this experiment were:

1. Retired branches

2. Retired conditional branches

3. Retired loads

4. Retired stores

Other events might contain more discriminating information, such as floating point operations,

however there is no guarantee that a program will use floating point instructions which limits the

usefulness of tracking such an event. It should be noted that after 262144 retired instructions the 4

dimensional data point collected will only report counts for the events listed above.

2.3.3 Hidden Markov Model Design

After the data was collected it was further discretized to reduce the number of observation

symbols for the HMM. The method to reduce the number of observation symbols was to divide

the range of each event into 14 equally sized bins and 2 larger bins on each side of the equally

spaced bins. The edge bins are extended to go from 0 to the first bin edge and the last bin edge

to 262144. The edge bins are defined this way so that there is always an observation symbol for

every possible value. These 16 quantized observations were then used as the observations in the

HMM. We used a 2 hidden state system for the state transition matrix in the HMM. The Markov

model is then trained using the Baum-Welch algorithm on the quantized observations using known

good runs of the benchmark programs. The state transition matrix, A, was initialized to be roughly

1
2

for each transition and the emission matrix, B, was initialized to be roughly 1
16

for each element.

Each of the benchmark programs used had their own trained Markov model for each event that was

recorded.
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Figure 2.2: The average number of level 1 instruction cache misses over time for the same program
with the same inputs with different levels of background interference between multiple runs.
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HMMs allow for powerful inference of an observation sequence which we can use the models

to classify an unknown observation sequence to the most likely corresponding program. Addi-

tionally, the trained models can be used for anomaly detection. There are multiple methods for

anomaly detection with HMMs, in this work we examine the following methods:

1. Using the forward algorithm to determine the probability of the current observation sequence

and then flagging it as anomalous if it fails to change for a number of observation points in

an online manner.

2. Calculating the likelihood of a given observation sequence corresponding to a known pro-

gram and flagging it as anomalous doesn’t pass a defined threshold.

Figure 2.3 shows the high level architecture and data flow for the proposed system.

2.3.4 LSTM Neural Network Design

The LSTM network’s training set is the same training data set that was used for the HMM.

Each application’s run in the dataset is windowed and used as an input to the network and the

target output value is the value immediately following the window. Once trained the LSTM’s

output is used as an expected value and is compared against the actual measured value, and if the

value falls outside of a defined threshold it is flagged as anomalous. See Figure 2.4 for a high level

diagram of the setup for the LSTM neural network.

The specific setup is to train a 4 layer LSTM network on each of the performance counters

that are being monitored. The first 2 layers of the LSTM are LSTM cells of 50 and 100 nodes,

respectively. The third layer is a fully connected dense layer of 100 nodes, and the last layer is a

single fully connected node. The raw performance counter values are mapped down into a space

range of -1 to 1 and used as input to the LSTM network. The output of the network is a value in

the -1 to 1 range, which is then mapped back into full performance counter range. With this setup

the highest value in the data set is 1 and the lowest value is -1, with intermediate values falling

in between. The result is that each program has four different LSTM networks that are making a

prediction for the next value to follow.
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We use two different methods for online and offline anomaly detection:

1. If one of the 4 LSTM network mispredicts at a rate outside of a defined threshold the program

is flagged as anomalous.

2. The total count of mispredictions is stored and if it passes a defined threshold the program

is flagged as anomalous.

2.3.5 Validation Data Set

The validation set of data was constructed using the unused portion of the training set, known

good runs that were included in the training set, and runs of the program that were modified at

runtime to produce a modified version of that program. The types of modifications to the programs

are done to test different conditions. Specifically, the modifications include:

1. Replacing the monitored program with another randomly selected program in the benchmark

at a random starting place roughly between the first and last quarter of expected execution,

referred to as Mixed.

2. Replacing the monitored program with constrained randomly generated instructions at a

starting point between the first and last quarter intervals, referred to as Random. The in-

structions are constrained in order to prevent infinite loops and segmentation faults from

occurring.

3. Identical to the first method but the output of the monitor program’s run is truncated to be

the same length as the original sequence length, which is referred to as Limited. The output

run is truncated in order to test the performance

2.4 HMM Results

In this section three different methods utilizing HMMs are evaluated. Specifically we look at

using HMMs for classification as well as a two different techniques for anomaly detection.
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2.4.1 Classification

Once the HMMs have been trained for each event for their respective program they can read-

ily be used to classify an unknown observation sequence. In this case the unknown observation

sequence is run through the binning step for each program’s specific performance event and the

probability of the newly quantized unknown observation sequence can be calculated. For example,

let O = {o1, o2, o3, o4} be a set of unknown observation sequences belonging to a specific program

where on is an sequence corresponding to one of the performance events being tracked. Each on

is quantized using each program’s bin set for each event. Using the defined HMM for each event

of a known program a probability is calculated for the newly quantized observation sequence. The

model for each event that produces the highest probability for the unknown sequence defines which

class the sequence belongs to. In the case where a sequence contains multiple classes a decision is

made by selecting the mode class if possible. If a mode selection is not possible then the class that

corresponds to the highest probability is selected. Figure 2.5 shows the classification process for

an unknown observation sequence.

To further test the classification scheme a set of HMMs was trained for each program using a

holdout validation method. The holdout method set aside 25% of the dataset to use as a testing set,

while the remaining 75% was used as the training set. Using the procedure previously outlined the

successful classification rate on the testing set was 100%.

2.4.2 Offline Anomaly Detection

The HMMs can be utilized to also support anomaly detection. This case is similar to classi-

fication but differs because the sequence is known to belong to a particular program. Since the

sequence is already known to belong to a specific program we can use the HMM to calculate a

probability and determine a threshold for anomalous behavior. This method is referred to as offline

detection because it is assuming that the program will have executed to completion. However, if

a program’s control flow is hijacked and it starts to run arbitrary code there is no guarantee that

execution will halt. Offline detection can be accomplished by using a training set to estimate a
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distribution of probabilities of normal behavior and outliers to the constructed distribution can be

classified as anomalous.

The offline method was used to construct a distribution based on the probabilities of known

good samples from the data set and classify outliers as anomalous achieved the following results.

By calculating the mean and standard deviation and experimentally determining the bounds based

on the standard deviation which offers a high accuracy rate we were able to achieve an average 98%

successful anomaly detection rate with only 1.0% false positives on our validation benchmarks

described earlier.

2.4.3 Online Anomaly Detection

Online anomaly detection aims to overcome the shortcomings of the offline variant by de-

tecting anomalies closer to when they have occurred, ideally as soon as they occur at runtime.

The implementation we have chosen is to use the difference in the probabilities of the first T and

T − 1 observations. This approach is particularly appealing because it does not add any additional

computational overhead in calculating a sequence’s probability, only extra space is required. The

approach is used to build a heuristic which counts how many consecutive repeated probabilities

have occurred during known good runs, L a tunable parameter. This approach has an additional

benefit that if the probability transitions fall within L, but the anomalous execution path runs for

longer it has a greater chance of being detected. With this tunable heuristic in place observation

sequences can be tested against and checked if anomalous.

The results for online anomaly detection on the same validation benchmark for each program

is shown in Figure 2.6. Averaging these results in 2.6 we get a 95.3% successful detection rate

with 0.38% false positives.

2.5 LSTM Results

2.5.1 LSTM Classification

The current structure of the LSTM is not well suited for a traditional classification task. An

alternative approach would be to train a neural network to do multiclass classification instead of
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prediction. This task is beyond the scope of this paper.

2.5.2 Offline Anomaly Detection

Offline detection can be accomplished this setup of LSTM neural networks in a similar fashion

to HMMs. The difference is instead of deciding based on the probability output from the HMMs we

look at the rate of mispredictions from the LSTM to determine if it should be flagged as anomalous.

If the number of mispredictions fall above a defined threshold the entire run can be flagged as

anomalous.

The offline detection with LSTMs on our validation benchmark achieved 100% accuracy with

0 false positives.

2.5.3 Online Anomaly Detection

Online Figure 2.7 shows the results for online detection utilizing LSTM neural networks. The

methodology for detecting anomalous runs is to define a threshold for an allowable number of

mispredicted values. Once the threshold is passed the program is flagged as anomalous. The

results shown in Figure 2.7 demonstrate that LSTMs are suitable for applications with performance

counter data.
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Figure 2.4: The architecture and dataflow for online anomaly detection using LSTMs. Each pro-
tected program would have its own LSTMs for each event monitored, in the case of this experiment
4. The LSTMs are given an input window starting at Nt−winlen to Nt which is used to predict the
value at Nt+1. Here t denotes the current time and winlen refers to the length of the window.
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Figure 2.6: The results from using HMMs to detect anomalies. The results for each program shown
here are using the best parameters for the L and how many standard deviations away from the mean.
They were specifically selected in order to maximize detection and minimize false positives. Each
bar corresponds to one of the previously defined validation sets, going from left to right: Mixed,
Random, Limited, and false positive rates respectively.
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LSTM Performance
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Figure 2.7: The detection performance of the LSTM neural networks. In this experiment if one of
the four LSTMs mispredicted an amount of times over a previously defined threshold the program
is flagged as anomalous. Again, the bars going from left to right represent the: Mixed, Random,
Limited, and false positive rates respectively.
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Type Len cjpeg core linear loops nnet radix2 sha zip

Std Dev 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Mixed

1 97 97 97 87 93 93 93 90 100 100 100 100 100 100 80 70 100 97 97 97 100 97 90 70 83 83 83 83 100 100 100 100

2 97 97 97 77 90 90 90 90 100 100 100 100 100 100 83 70 100 97 97 97 100 97 93 87 83 83 83 83 100 100 100 100

3 97 97 97 80 90 90 90 90 100 100 100 100 100 100 83 70 100 97 97 97 100 90 87 83 83 83 83 83 100 100 100 100

4 97 97 97 87 90 90 90 90 100 100 100 100 97 97 80 60 100 97 97 97 100 93 80 73 83 83 83 83 100 100 100 100

5 97 97 97 93 90 90 90 90 97 97 97 97 97 97 80 60 100 97 87 77 100 97 80 70 83 83 83 83 100 100 100 100

6 77 77 77 77 90 90 90 90 97 97 97 97 97 97 80 60 100 97 87 77 97 93 77 67 83 83 83 83 100 100 100 100

7 77 77 77 77 90 90 90 90 97 97 97 97 97 97 80 60 100 97 87 77 97 93 80 67 83 83 83 83 100 100 100 100

8 77 77 77 77 90 90 90 90 97 97 97 97 97 97 80 60 100 97 87 77 97 93 80 67 83 83 83 83 87 87 87 87

Random

1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 87 53 97 97 97 97 100 100 100 100

2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90 90 90 90 100 100 100 100

3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 77 83 83 83 83 100 100 100 100

4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 93 67 77 77 77 77 100 100 100 100

5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 87 47 67 67 67 67 100 100 100 100

6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 77 43 63 63 63 63 100 100 100 100

7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 93 73 40 50 50 50 50 100 100 100 100

8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90 70 40 40 40 40 40 100 100 100 100

Limited

1 87 77 77 70 90 90 90 90 100 97 97 97 97 90 67 57 100 93 93 93 87 83 57 30 83 83 83 83 100 100 100 100

2 87 77 77 67 90 90 90 90 100 97 97 97 97 93 70 57 97 93 93 93 87 83 63 57 83 83 83 83 100 100 100 100

3 87 77 77 67 90 90 90 90 100 97 97 97 97 93 70 53 97 93 93 93 87 87 73 67 83 83 83 83 100 100 97 97

4 87 77 77 77 90 90 90 90 100 97 97 97 93 90 73 50 97 93 93 93 83 83 63 57 83 83 83 83 100 100 100 100

5 87 80 77 77 90 90 90 90 97 97 97 97 93 90 73 50 97 93 83 73 83 83 67 57 83 83 83 83 100 100 100 100

6 77 77 77 77 90 90 90 90 97 97 97 97 93 90 73 50 97 93 83 73 83 83 70 57 83 83 83 83 100 100 100 100

7 77 77 77 77 90 90 90 90 97 97 97 97 93 90 73 53 97 93 83 73 83 83 70 57 83 83 83 83 100 100 100 100

8 77 77 77 77 90 90 90 90 97 97 97 97 93 90 73 53 97 93 83 73 80 63 53 43 83 83 83 83 87 87 87 87

False Positives

1 37 0 0 0 10 10 0 0 63 7 0 0 33 0 0 0 60 7 3 0 43 0 0 0 0 0 0 0 50 0 0 0

2 40 0 0 0 0 0 0 0 37 0 0 0 37 0 0 0 47 10 3 3 40 0 0 0 0 0 0 0 50 0 0 0

3 40 0 0 0 0 0 0 0 40 0 0 0 37 0 0 0 53 3 0 0 40 0 0 0 0 0 0 0 50 0 0 0

4 40 0 0 0 0 0 0 0 43 3 0 0 37 0 0 0 50 17 0 0 40 0 0 0 0 0 0 0 50 0 0 0

5 47 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 43 3 0 0 40 0 0 0 0 0 0 0 50 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 43 3 0 0 40 0 0 0 0 0 0 0 47 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 43 3 0 0 40 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 43 3 0 0 40 0 0 0 0 0 0 0 0 0 0 0

Table 2.1: Anomaly Detection Results reported in %. The performance of online anomaly detection for each monitored program using
different lengths (column Len) and standard deviations for detection bounds (row Std Dev) for each type of anomolous dataset: mixed,
random, and limited. The false positive percentage is also shown.
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2.6 Discussion

Figures 2.6 and 2.7 show the complete detection and false positive performance for all the

programs in the data set. It is shown that the HMM and LSTM detection method performs well

when presented with constrained random data.

The HMM classifier performed well which allows for unidentified observation sequences to be

classified to a particular program, then that program’s anomaly detector mechanism can be utilized

to ensure proper execution.

A further investigation on some of the failed detections reveal that the randomly selected pro-

gram was the same program as the one currently running. In essence this results in the program

basically restarting. This is still anomalous behavior that is not detected. In both cases LSTMs and

HMMs fail to identify it as anomalous behavior. However, in other cases when a different program

starts to run in place of the intended monitored program it has a high chance of being detected on

average, 97% and 99% for HMMs and LSTMs respectively.

2.6.1 Comparison

We compare our approaches against each other and another technique. The other technique is

a “golden signature” database approach that is similar to what has been proposed in the literature

[31]. It has been modified to remove the explicit need to modify the program at the binary level to

add in explicit checkpoints. Instead we use the sampling rate of 262144 retired instructions as an

implicit checkpoint. The trade off is that this increases the size of the database needed to validate

the program, but no knowledge is needed to be known about it beforehand to determine where the

explicit checkpoints should be inserted.

2.6.1.1 Database Of Expected Values

Specifically, a database is built from the same training data set the HMM and LSTM used, a

75%/25% split for training and testing. The database stores a range of performance counters over

time to verify that expected value matches the actual measured value. If the measured value does

not fall within the previously recorded value that was stored in the database the program is flagged
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Program DB(MB) HMM(Bytes) LSTM(KB)
cjpeg 6.6

212 68

core 10.8
linear 11.8
loops 7.1
nnet 9.6
radix2 4.9
sha 13.5
zip 10.0

Table 2.2: The amount of required storage for each of the techniques.

as modified.

The approach is straightforward and simple to implement and trades computation for storage.

The amount of required storage depends on the complexity and length of the program. Simple

calculations can be done to determine an estimate for required amount of storage for a database

approach. For example: consider a program that samples four performance counters ever 262144

instructions. Sampling at this granularity requires at least 3 bytes to fully store the value. However,

more storage is needed to express the range of acceptable expected values. The value to represent

the range depends heavily on the noise that is inherent to performance counters, for this example

we assume that it can be expressed in 1 byte. The result is that at each sample requires 16 bytes of

space to store all four counter values and range. For example, an application in our benchmark has

an average of 5 hundred thousand samples which would result in 8 megabytes of storage for this

single application.

Table 2.2 shows the amount of storage required to implement the “golden signature” database,

HMMs, and LSTMs, for each program in the benchmark. Since the same hyper parameters and

topology were used across all the programs the storage required for the HMMs and LSTMs is the

same across all programs.

2.6.2 HMM vs LSTM

On average the LSTMs outperform HMMs in terms of anomalous detection accuracy. Part of

this is due to the Markovian assumption that HMMs have. The assumption means that HMMs do
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not account any history in the calculations. The assumption directly contrasts with LSTMs which

require to have a window of history, in this experiment 32 values, in order to make an accurate

prediction for what the next value is.

Comparing the accuracy results of HMMs against LSTMs it is clear that LSTMs outperform

HMMs. However, it comes at a cost of higher storage requirements as well as computational com-

plexity. Table 2.2 shows that the LSTM neural network requires about 320 times more storage for

each program. Additionally, LSTMs computational cost is higher when compared against HMMs.

On average evaluating one window of history to make a prediction for one performance counter

takes 4 milliseconds on a GPU and double that on a CPU. On the other hand, the HMM only takes

on average 13 microseconds per sampled performance counter data point. Using these numbers it

can be seen that, on average, the LSTM takes approximately 300 times longer to compute than an

HMM.

2.6.3 Implementations

As previously stated the proposed detection scheme using HMMs and LSTMs allow for flexible

implementations for anomaly detection. A software implementation in kernel space isolates the

detection process from unprivileged programs. This has the advantage that the only assumption that

needs to be made is that the kernel is not compromised. An alternative hardware implementation

removes that last assumption. A hardware implementation would only need a non configurable set

of performance counters which would stream data to a hardware based HMM or LSTM anomaly

detector that can be trained in an offline manner. A hardware implementation would also allow for

finer grained sampling, which in turn increases the difficulty for an adversary to evade detection

[41].

2.7 Conclusion And Future Work

2.7.1 Conclusion

HMMs and LSTMs are shown to be an effective low overhead methods for analysis of hardware

performance counter data in anomaly detection applications. For online anomaly detection they
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achieve a correct detection rate of 95% and 98% on average, respectively. They also have the

benefit that the approach allows for flexible implementations and low false positive rates, 0.38% for

HMMs and 0% for LSTMs. The methods achieve these results by utilizing the inherent repeatable

performance characteristics of programs to detect anomalies during execution. The techniques

described here can complement any static time integrity methods, such as those provided by a

Trusted Platform Module or similar. Additionally, the approaches are also easily layerable with

existing mitigation techniques such as: stack canaries, address space layout randomization, W xor

X memory permissions, and control flow integrity techniques.

2.7.2 Future Work

Immediate future work would involve collecting data from real world programs with security

vulnerabilities and exploit them. Additional investigations could be done to see if there exists a

better set of performance events, per program, that yield higher discriminatory information be-

tween programs while remaining deterministic and repeatable between runs. An investigation to

see if the Viterbi path could also potentially be used in the anomaly detection process. Another

aspect that could be investigated is the frequency domain of the performance counter data.
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3. CONTINUOUS AUTHENTICATION OF EMBEDDED SOFTWARE1

This work explores the use of frequency information of hardware performance counter data to

enable continuous authentication (CA) in embedded software. Current approaches for CA are not

targeted for use with embedded software. In order to be more suitable for embedded scenarios the

proposed method uses short time Fourier transforms on streams of hardware performance counters.

The frequency information is used to build an encoding to a state transition. These transitions are

used to build a corresponding state machine which recognizes and authenticates the protected

program continuously at run time. The method achieves an average successful authentication true

positive rate of 97% with a 1.5% false positive rate.

3.1 Introduction

More internet connected embedded systems are developed and deployed each day. Part of this

networked enabled trend is due to the recent boom relating to the Internet of Things (IoT). Despite

the boom, the security on these systems is lacking or disregarded as a design parameter [4, 6, 5].

The lack of consideration for security in these systems leads them to be compromised by a wide

array of existing known, and unknown security vulnerabilities. The problem is further compounded

due to the constraints on resources that embedded systems have. The resource constraints hamper

the effectiveness or ease of implementation of the modern ubiquitous mitigation techniques to

be deployed, such as: address space layout randomization, memory permissions, control flow

integrity, etc. [46]. These mitigation techniques are not a perfect solution to solve all issues related

to software security and they do not aim to be. However, they do increase the difficulty for an

malicious actor to accomplish successful exploitation.

An unrelated and different approach for helping ensure correct execution is known as integrity

checking. Integrity checking can happen statically, before runtime, or dynamically, at runtime. The

1Reprinted with permission from [45]. © 2019 IEEE. Reprinted, with permission, from Karl Ott and Rabi Mahap-
atra, Continuous Authentication of Embedded Software, 18th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications, August 2019.
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dynamic version of integrity checking either: has an external measure to check against to see if

it differs from what is expected, or leverages the software to perform introspection and determine

if the integrity has been compromised. These techniques differ from continuous authentication

techniques as they deal with ensuring the software has not been modified. One example of such an

integrity check is to check an attribute about the program, such as a hash value on the basic blocks

the program is composed of. That is, if the hash values of the basic blocks are different from what is

expected then the program has been modified. This technique has some overlap and some contrast

with continuous authentication (CA). In the context of CA the goal is to continuously monitor and

pass an authentication check throughout runtime. For example, a new trend within the wearable

IoT field is exploring using bio-metric signals, such as electrocardiograms (EKG), as a method to

continuously authenticate the wearer of the sensors [47]. These signals are unique from person to

person, are not easily leaked or recordable in a format that can be used to falsely authenticate as

someone else, and are low cost to capture and process.

The notion of continuous authentication is closely related to dynamic integrity checking for

software. Dynamic integrity checking for software are run time methods to validate that the soft-

ware has not been modified. Typically the dynamic integrity checks do not operate in a black box

fashion. The integrity checks are incorporated within the program’s source code or they are added

later through binary analysis and modification [48]. Since our proposed method operates without

any prior knowledge of the program and instead analyzes intrinsic hardware performance counter

(HPC) signals we categorize it as a method for continuous authentication.

However, none of the previously proposed CA, and only a few dynamic integrity check tech-

niques, specifically target embedded software. Additionally, previous techniques do not have suf-

ficiently low overheads, do not operate in a black box fashion, require detailed information about

the software, or are inflexible in implementation (hardware or software level). The method we

propose is well suited for embedded software, has a low runtime execution cost, operates as a bolt

on monitor which treats the monitored software as a black box, and is flexible in implementation.

In this paper, we propose the use of HPCs as a basis to implement a method for continuous
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authentication to be checked and enforced at runtime. Our proposed method uses a short time

Fourier transform (STFT) that is applied on a window of the HPC signal. The STFT computes

the frequency of the signals in the window while retaining temporal information. The frequency

output window from the STFT is encoded to a space bounded state transition. The encoding results

in a sequence of state transitions over time which we use to construct a spaced bounded state

machine is then built which accepts, recognizes, and continuously authenticates the monitored

program. This raises the bar for a malicious actor to compromise or take over vulnerable software

as well as providing assurance that the program is operating as expected as it is continuously being

authenticated. Additionally, we show the cost to implement such a method in hardware via high

level synthesis.

On our datasets the proposed method achieved an true positive rate of 97% for successful

authentication on EEBMC Coremark Pro benchmark suite. Additionally, the proposed method

had a low false positive rate of only 1.5%.

The paper is structured with Section 3.2 covering background information and relevant related

work. Section 3.3 covers the specific methodology used in our approach. Section 3.4 explains

the specific details in our experimental setup. Section 3.5 evaluates and reports the results of the

proposed method within the confines of our experimental setup. Section 3.6 discusses the results

obtained from the experiment. Lastly, Section 3.7 gives the conclusion for the work.

3.2 Background

3.2.1 Hardware Performance Counters

HPCs were originally intended for performance tuning and provide an easy, accurate, and low

overhead way to gather information such as caching performance, branch prediction performance,

number of memory accesses, etc. On modern CPUs there are hundreds to thousands of different

events that can be captured by HPCs. Figure 3.1 shows different HPC profile windows for one

event across the benchmark program. However, the number of counters physically available on a

CPU is less than 8 per core, for most CPUs. In the context of security or other non-performance
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related analysis the configuration of these counter events is critical.

The data the HPCs provide is vital for the proposed technique for continuous authentication.

The HPC data provides the base inherent signal which the short time Fourier transforms operates

on and which is used to construct the state machines that provide the authentication.

3.2.2 Short Time Fourier Transforms

Short time Fourier transforms (STFTs) are utilized to calculate how the frequency of the HPCs

signal change over time. Specifically, STFTs address the problem of maintaining temporal infor-

mation (typically lost in standard Fourier transforms) by only taking the Fourier transform over a

smaller interval of the signal. The result is that there is less resolution in the output of the frequency

domain in order to preserve temporal information. Figure 3.2 shows the STFT output of the raw

values that are shown in Figure 3.1. Temporal resolution is required for our proposed CA method

to operate.

We utilize STFTs for extracting the frequency information from a window of the programs

normal execution. The frequency information makes up the basis of the proposed continuous

authentication method. That is, we are using the calculated frequency information to authenticate

our program. Figure 3.1 shows an example of what the raw time series looks like for one of the

programs in the benchmark set, while 3.2 shows the output of the Fourier transform on the same

raw time series signal.

3.2.3 Continuous Authentication

Continuous authentication schemes have typically been used to analyze bio-metric data. These

schemes are typically grouped into two distinct categories, either physiological or behavioral. The

physiological bio-metric traits tend to be more static in nature. These traits typically include bio-

metric data relating to fingerprints, facial features, or with the recent trend in wearable devices,

EKG signals. Those grouped into the behavioral bio-metric category tend to be features of human

behavior that are observed or measured and vary from person to person. Behavioral bio-metrics

tend to deal with typing, talking, or other learned activities that have subtle differences between
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Figure 3.1: A small time slice of HPC time series collected in the data set. Each point along the X
axis corresponds to 218 retired instructions for one of the selected HPC values. The Y axis is the
value that was recorded at sampling time.
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Figure 3.2: The STFT output from a 512 slice of data points similar to that which is shown in Figure
3.1. The spikes in the graph here correspond to frequencies that the raw time series contains.
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data sets. Some of the early behavioral features utilized keystroke dynamics to continuously au-

thenticate the current user keystrokes match the authenticated user. [49].

Similar to the bio-metric signals historically utilized for continuous authentication, we make

use of a program’s HPCs signals, which could be thought of as a “physiological” signal inherent to

programs, to enable continuous authentication during runtime. Like most of the other continuous

authentication methods proposed in the literature our proposed method is intended to act as a

second level or factor of authentication. The proposed scheme is not intended to replace first factor

authentication methods such as digital signatures that can be checked before runtime, but instead

offers higher assurance that the program does not change at runtime.

3.2.4 Threat Model

The threat model for the proposed method varies depending on the level of implementation.

If the implementation is a pure hardware scheme then only the silicon itself needs to be trusted.

However, if implemented in software the underlying operating system, or any other components

that run in the same privileged space, as well as the hardware must be trusted.

In this method we allow for any code injection or code reuse attacks that aim to ultimately take

over the process. Note, this threat model does not include cases where an attacker changes a single

or similarly small amount of instructions as this change is unlikely to be reflected in the corre-

sponding frequency information that is calculated from the STFT. The proposed method is readily

layerable with existing mitigations like address space randomization, control flow integrity, mem-

ory permissions, etc. However, many embedded systems are unable to support these techniques

effectively due to tight resource constraints [46]. Our method aims to help raise the bar against

successful exploitation especially in light of the lack of embedded system support for other miti-

gation techniques. The main rationale being that an adversary who wanted to run arbitrary code

would need to forge their code to pass the CA checks.
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3.2.5 Related Work

New mitigation techniques are developed and proposed routinely. The techniques typically

focus on the mitigation of certain classes of threats. For example, memory permissions eliminate

the impact of a simpler class of stack based buffer overflow vulnerabilities by specifying that the

stack cannot be treated as executable code. Recently, hardware performance counters (HPCs)

have been proposed for uses in software security. The uses of HPCs in a software security context

include but are not limited to: malware detection [37, 39], rootkit detection [38], integrity checking

[40, 31], anomaly detection [41, 25], and specific exploitation technique detection (such as return

oriented programming attacks). In this paper we focus only on the recent works that investigate

and propose the use of HPCs for to integrity checking. One of the earliest works to explore the use

of re-purposing HPCs was done by a system called CFIMon [42]. CFIMon was specifically built

to try and enforce a program’s control flow integrity (CFI). It used static analysis on the programs

binary to build a table of all known good branch and jump target addresses. The address table was

compared against the addresses generated at runtime and stored in the last branch register. Wang et

al. used hardware performance counters to detect a kernel modifying rootkit in virtualized systems

[38]. Their proposed system was called NumChecker and operated by obtaining a database of

HPC values for known good runs of system calls. Once the database was built the VM hypervisor

measures the system calls the guest VM makes and compares the HPC values against those stored

in the known good database.

Additionally, HPCs have been used for integrity checking by creating a golden signature of

linear relations which the system firmware is periodically checked against to see if it has been

modified [40]. A method called ConFirm [31] was developed for integrity checking in firmware

for embedded systems. The ConFirm used performance counters to verify integrity of device

firmware by modifying and manually inserting code detours to check against a golden signature

database. Recently, Das et al. [50] have done a study of HPCs and their use in security applications.

The outcome of the study is that HPCs must be used cautiously and carefully in security contexts

otherwise they run the risk of being unreliable and untrustworthy. Using this as a guideline we

40



ensure that our approach falls within the recommendations.

of threats. For example, memory permissions eliminate the impact of a simpler class of stack

based buffer overflow vulnerabilities by specifying that the stack cannot be treated as executable

code. There has been previous work that investigated the use of HPCs for security applications,

however in this paper only focus on works that are more related to integrity checking using HPCs.

techniques focus on mitigation certain classes of threats. For example, memory permissions

significantly reduce the impact of a simpler class of stack based buffer overflow vulnerabilities by

specifying that the stack cannot be treated as executable code. More recently, hardware perfor-

mance counters (HPCs) have been proposed for uses in security. The uses of HPCs in a software

security context have ranged from malware detection [37, 39], rootkit detection [38], integrity

checking [40, 31], anomaly detection [41], and specific exploitation technique detection (such as

return oriented programming attacks).

3.3 Methodology

There are 5 large challenges and design choices to be made for implementing a system which

offers continuous authentication via HPCs. Things that must be considered are: the type of events

chosen, how to deal with the small amount of noise present in the HPCs, how frequently the HPCs

are sampled, methods for making a continuous authentication check, and how often to run an

authentication check. As previously stated the proposed technique is flexible in implementation,

therefore we consider two different implementations. The first is done within a software based

approach, while the second is implemented as a hardware prototype.

3.3.1 Event Choice

The recent hardware security vulnerabilities Spectre [51] and Meltdown [52] show that shared

hardware on CPUs, such as branch predictors, cache performance, TLBs, etc, is susceptible to ex-

ternal, potentially malicious, interference. The same is true for HPCs which track events of shared

resources, and thus makes them unsuitable for security purposes in their current implementation.

To overcome the problem of event choice we turn to the literature [32, 33] to determine which
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Event Name Description
Retired Loads The number of retired load instructions since the last sample.
Retired Stores The number of retired store instructions since the last sample.
Retired Branches Number of retired branches (conditional and unconditional).
Retired Conditional Branches Number of conditional branches since the last sample.

Table 3.1: The chosen set of events to monitor based on a survey from the literature.

Sample # Event Run 1 Run 2 Run 3 Run 4

1

Branches 52775 52775 52777 52776
CBranches 47467 47467 47469 47467
Loads 43174 43172 43171 43173
Stores 13158 13158 13158 13158

2

Branches 54452 54448 54438 54452
CBranches 48942 48938 48928 48942
Loads 48525 48524 48522 48525
Stores 14258 14258 14258 14258

Table 3.2: The HPC values of the same program with the same input at the same sample points
between repeated runs. Some of the events shown here appear to be deterministic while others
show some slight noise.

event types are appropriate. As a result, we pick events that show good determinism, repeatabil-

ity, and do not suffer from external interference or influence between different runs and different

programs. We specifically use the events shown in Table 3.1.

3.3.2 HPCs Noise

The current implementation of HPCs, while fast and accurate, have some inherent noise due

to modern CPU optimizations such as pipelining and out of order execution. The noise manifests

itself in different ways: typically instruction skid and miscounts due to the previously mentioned

CPU optimizations. Table 3.2 shows how the HPCs give different values between consecutive runs

at the same sample points.
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3.3.3 Sampling Frequency

To get an idea of how much overhead is incurred from software sampling the HPCs via the

perf_events interface we measure the total execution time of the benchmark programs and take the

average execution time while running without sampling, and then repeat the process with sampling.

Figure 3.3 shows the overhead at different sampling rates. Ideally the sampling rate would be as

high as possible if the overhead amount is still acceptable. However, the rate is a tunable parameter

which allows the amount of overhead incurred to be adjusted.

Algorithm 1 Proposed continuous authentication method
1: cont← true
2: repeat
3: data_window ← HPC_values
4: data_window ← data_window ∗Hanning_window
5: fft_output← STFT (data_window)
6: state_trans← ToBits(fft_output ≥ threshold)
7: state_trans← CRC(state_trans)
8: if state_trans in statemachine_nextstates then
9: statemachine_nextstates← state_trans

10: else
11: cont← false
12: end if
13: until cont = false or END_STATE

3.3.4 Proposed Continuous Authentication Method

The literature shows a number of methods that have been developed for continuous authen-

tication. However, these are typically implemented with heavy weight classifiers, such as neural

networks, which are not suitable for use on embedded system software due to computational con-

straints. Therefore, we propose a new method which has low resource and computational complex-

ity requirements. Algorithm 1 shows a high level algorithmic implementation for the CA check.

The method used for building the state machine before deployment is explained below.
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Figure 3.3: The overhead incurred and total number of samples captured at different sampling
frequencies. From the line it can be seen there is a trend that the overhead increases as the sampling
frequency increases until around 217. At this point the overhead starts to act erratic. To verify that
the perf_events interface isn’t working properly we also check the number of samples that are
being recorded. It is clear that despite the increase in the sampling frequency the total number of
samples does not increase.
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In our specific experiment we use a window of 512 data points with a 50% overlap between.

Each window is run through a Hanning window function to help reduce the amount of spectral

leakage incurred from the STFT. The newly windowed values are then passed into the STFTs.

The output of the transform is 257 data points of which the first one holds the average value of

the signal processed by the STFT, which leaves 256 data points containing frequency information.

From here a threshold value is determined by scaling the mean of the output frequencies of the

transform across all windows for each program. The scaling factor is determined on a per program

basis. The threshold is used to further reduce the 256 complex floating point frequency values to

a single bit for each, which represents whether the corresponding frequency bin’s value was above

the previously computed threshold or not. The 256 bits are further reduced to 8 bits by way of the

CRC-8 function.The 8 bit value is stored and represents that window’s state transition value. The

process is repeated for each subsequent window, which results in an 8 bit value that changes over

time as new windows are processed. The last window is zero padded if it is not 512 sample points

in length. A state machine is constructed that uses these 8 bit values as transitions paths. This

makes authentication relatively simple, as invalid transitions that are calculated from this process

are rejected. As long as the transitions through the state machine remain valid the software is

considered authenticated.

The 256 value is hashed down to 8 bits in order to bound the size of the state machine. By

hashing to an 8 bit value that puts an upper bound of 256 different state transitions. The rationale

for using CRC-8 as a hash function is that it is computationally cheap but also maintains a decent

level of transition fidelity. Additionally, due to the 8 bit size constraint of the state machine using

anything more computationally expensive, such as SHA-256, is wasteful as the output will not

have any of the strong cryptographic properties that the full 256 bits would.

However, due to the inherent noise in the HPC signals some valid program runs may fail

to authenticate due to a non-matching 8 bit value from the CRC-8 function. To overcome this

we introduce the notion of a ϵ transition, which is closely related to ϵ transitions from formal

automata theory, specifically non deterministic finite state machines (NDFA). The specifics of
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implementing ϵ transitions is to have a non-valid transition path move to a special state which

contains all previously defined transition paths back to the valid state machine. With the notion of

an ϵ transition we can allow for a defined amount of invalid transitions to occur before we consider

the program as failing to authenticate. This approach has an inherent trade off that if too many ϵ

transitions are allowed then the state machine may falsely authenticate an invalid program. Figure

3.4 shows a high level diagram of the data flow and processing required to implement the proposed

method. Figure 3.5 shows a small portion of one of the state machines generated and used to

authenticate. Note that each state has an incoming and outgoing connection to the ϵ transition

state.

It should be noted that the parameters that are per program are: the HPC sampling rate, the

HPC window size, the window function (e.g. Hanning), the threshold values, the hash function

(e.g. CRC-8), and the number of ϵ transitions allowed. The output results in a corresponding state

machine that is used later to authenticate the program. All other functions and parameters, such as

the STFTs, are the same across the entire data set.

3.3.5 Authentication Intervals

Once the CA method is defined the last thing to consider is how often to authenticate using the

proposed method.Specifically, the amount of overlap between windows can be tuned to determine

how often authentication occurs. The rate at which authentication occurs can be increased if the

amount of overlap is increased and can be decreased if the amount of overlap is decreased. The

only limit on the authentication interval is that it must occur at a constant rate otherwise it will

incur the cost of extra storage to track when authentication checks should occur.

3.4 Experimental Setup

We consider two different implementations. The first we evaluate the proposed method in

a software context. This has all the associated sampling overheads as shown in Figure 3.3, but

requires less integration and fewer changes. The second is a hardware prototype to estimate the

associated cost in terms of space and speed. The level of integration varies depending on the
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complexity of the embedded system.

3.4.1 Benchmark Software

Since the focus of the methodology is on embedded software we use a benchmark that is

specifically made for embedded systems. Specifically we use the EEBMC Coremark Pro bench-

mark. The EEBMC Coremark Pro benchmark is an industry standard benchmark primarily for

performance analysis of embedded systems.

The proposed method is constructed and evaluated on normal successful runs to test the success

rate. Additionally, the proposed method is evaluated on abnormal runs, that should not successfully

authenticate, to measure the rate at which the method erroneously authenticates.

3.4.2 Software Implementation

For the software implementation we use a low power Intel CPU. Specifically, we use a Intel

i7 6600U, which is a dual core CPU with hyper threads and has 7 HPCs per core. Four of the

counters are flexible and can be set to track many of the events. The remaining three counters

are fixed function. The fixed function counters are set to count retired instructions, count unhalted

clock cycles on the core, and reference count of unhalted clock cycles. We specifically use the fixed

function counter for retired instructions to generate an interrupt on overflow after it has counted

262144, or 218 retired instructions. The flexible counters are set to count the events listed in Section

3.3.1. Each time the retired instruction counter interrupts we take a sample of the current count of

the flexible counters. The sample results in a 4 dimensional vector for each sample point.

The samples are gathered on Linux kernel version 4.10-32 using the perf_events interface.

Perf_events provides an easy to use interface, at low overheads, to access HPCs with varying

granularity. In this experiment we set the samples to be collected on a thread level basis. On a per

thread level granularity the HPCs are saved and restored each time the thread is scheduled out of

execution. The result is that other concurrently executing threads and processes do not effect or

influence the data values sampled through perf_events. These sampled data points naturally create

a time series which will be used as the basis which the authentication.
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Figure 3.4: The data flow and computations required of the proposed continuous authentication
method. The method is 2 phase in that they are constructed in an offline manner. They are then
deployed and are used to continuously authenticate the software that was used in the offline phase.
The HPC signals are streamed and windowed to be forwarded to the STFT. The window size is
set at 512 data points which is then passed to the STFT to extract frequency information. With the
newly extracted frequency information is quantized to a signal 256 bit value. The hash function,
CRC-8 in this case, is used to further reduce the size of the 256 bit frequency information to a
single 8 bit value. With these single 8 bit values a state machine is constructed and is used as the
basis for continuously authenticating.
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Figure 3.5: A partial example of a constructed state machine, with ϵ transitions, used to contin-
uously authenticate the monitored software. The overall operation is similar to a traditional state
machine, however the ϵ state records how many times it has been visited. If the defined threshold is
passed on the number of transition to the ϵ state, then the software fails to authenticate. Otherwise,
the software will continue to traverse the state machine until reaching the final accepting state.

49



We set aside 15% of each program’s dataset to be used as a validation set for the proposed

method and the remaining 85% is used as a construction set that is used to build the state machines

for each program.

3.4.3 Hardware Implementation Of CA Module

The hardware implementation we a Xilinx Zynq 7000 SoC XC7Z020. The Zynq platform has

a dual core ARM A9 CPU with a Xilinx FPGA attached via AXI interfaces. A prototype hardware

block is developed with Vivado HLS to estimate the resource utilization required to help provide a

hardware level component to support continuous authentication of software. For the most part the

process for authentication is the same as the software version. The main differences are in the ways

to sample the HPCs that are a result from tighter hardware level integration that is possible due to

the tight coupling between the CPU and FPGA. Otherwise, the rest of the process of calculating

frequencies of the windows via STFTs, quantization down to 256 bits, a type of hash function to

further reduce to 8 bits (CRC-8 in this case), and traversing the constructed state machine remain

the same.

The hardware design is configured to forward the HPCs overflow interrupt to the FPGA. Once

the FPGA receives the interrupt it sends an AXI request to read the values of the HPCs, which

it then stores in a buffer until it has a full window. Once a window buffer reaches capacity it is

passed through the STFT block. The frequency output from the STFT block is passed through

to compare against the previously computed threshold value to reduce the frequency output to a

single 256 bit number. The CRC-8 operates on the 256 bit number to further reduce it down to a

single 8 bit value. The 8 bit value represents the state transition that is to be taken on the previously

computed state machines. If there is no valid transition available from the current state an interrupt

is generated and sent to the CPU to halt execution.

The hardware block is designed in such a way that it has multiple buffers for receiving the HPC

data. This is done so the CPU does not have to wait for the hardware block to finish the computa-

tion, as the hardware sampler can continue to store the samples in a different buffer. Additionally,

the hardware design allows for context switches of programs. This is accomplished by saving and
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Program # True Pos (%) False Pos Avg # States
cjpeg 70 0.0 12
core 99 0.0 12
linear 84 2.3 10
loops 79 0.0 97
nnet 84 0.0 14
radix2 92 0.0 9
sha 83 0.0 11
zip 80 0.0 20

Table 3.3: The numbers reported are using the proposed method without the ϵ transitions.

restoring the current place in the state machine when a context switch is detected. Furthermore, the

hardware design is constructed in such a way that the verifying state machine is able to be fetched

from BRAM for the corresponding program that is scheduled in.

3.5 Results

The results presented for the software implementation show the successful rate of authentica-

tion for a normal executions of the protected software. The results for the hardware implementation

focus on the implementation cost of space, power, and speed.

3.5.1 Software

Some experiments were carried out in order to evaluate the true positive rate and effectiveness

of the proposed method for continuous authentication. Specifically, we randomly select 15% of the

data set to be used as the testing set, which is used to evaluate the true positive rate of successful

authentications. The processes is repeated 30 times. Each time a new 15% of the data set is held

out and is used as the testing set. Additionally, another data set is used to measure how well the

proposed method will reject HPC profiles that are from different programs and those that were

collected from a normal execution of the monitored program that was modified at runtime to run

other code. The average of the 30 repeated runs is reported.

Table 3.3 shows the rates at which the proposed method correctly authenticated each program

in the testing set before allowing for ϵ transitions. With this fixed type of approach the average
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Program # True Pos (%) False Pos Avg # States # ϵ
cjpeg 100 0.0 12 1
core 100 0.0 6 3
linear 92 0.0 20 5
loops 92 3.3 97 1
nnet 100 4.6 13 1
radix2 100 0.0 9 2
sha 100 0.0 11 1
zip 94 4.3 20 1

Table 3.4: The results for allowing the use of ϵ transitions while constructing the state machines.

true positive rate across all programs is only 83%. When we allow for more flexibility, for instance

by allowing for ϵ transitions, higher rate of true positive rate can be achieved as shown in Table

3.4. By allowing for ϵ transitions the successful authentication true positive rate is improved to an

average of 97% with only 1.5% false positives. We choose the number of allowable ϵ transitions

by finding which values allow for the highest amount of true positives and the lowest amount of

false positives.

With our proof of concept software implementation each authentication attempt takes on aver-

age about 85 microseconds, most of which is due to the STFT calculation. Using a window size

of 512 values and 4 bytes per sample value, we estimate that 2 kilobytes of storage is required to

buffer the required data frame for each HPC. The storage requirements for the state machine vary

per program, however since there is an upper bound of 28 states the storage cost is low. However,

a worst case size requirement where every state is connected to every other state, using one hot

encoding, requires 32 bytes per state for a total size requirement of 8 kilobytes.

3.5.2 Hardware

We implement the proposed method into a hardware block using Vivado HLS. The synthesized

result allows for a clock period of 2.9 nanoseconds for the particular hardware target. It also

consumed 6 out of 280 BRAM blocks, or 1% utilization. Additionally, it utilized 24 out of the

220, or about 5% available DSP blocks. Lastly, it needed 19862 out of 106400, or about 9%, and
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16346 of 53200, about 15%, for FF and LUT respectively. Lastly, the resulting hardware module

needs 8 clock cycles to run the STFT on the HPC window, convert the result to a state transition,

and verify the transition in the state machine. The proof of concept hardware block requires 24

nanoseconds per HPC window to decide to authenticate or reject the software.

3.6 Discussion

3.6.1 Software

The initial performance without allowing for ϵ transitions is not very good. The reason behind

this is due to the inherent noise in the HPCs. By allowing for at least one ϵ transition the true

positive dramatically rises. Further tuning each individual program’s parameters a rate of correct

authentications of 97% across all benchmark programs can be achieved.

It should be noted that we believe if the HPCs can provide deterministic measurements then

the use of ϵ transitions would not be needed. Furthermore, the proposed method is flexible in

nature, meaning that if the use of the CRC-8 function was not an ideal fit any other function which

deterministically maps data from a larger space to a smaller space could be used in its place.

3.6.2 Hardware

For the hardware implementation to be efficiently utilized and integrated there would need to be

some interaction from the base software. This interaction can take place in the kernel, which there-

fore does not require any changes to userspace programs. There is the potential for less interaction

needed with the software if certain modifications are made to exposed the needed information at

the hardware level, such as which process is running. Ideally, the proposed technique could operate

independently from the CPU and simply observe the behavior of the software via HPCs.

3.7 Conclusion

We have devised a new novel technique that allows for continuous authentication of embedded

software at runtime, in both software and hardware. The proposed technique utilizes the intrinsic

properties of the monitored software as reported from the HPCs. When monitored over time the

HPCs signal can be constructed as a time series. From this time series we extract the frequency
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information by using Fourier transforms on windows of the time series. The frequency information

is encoded to a single 8 bit value. Once encoded, the 8 bit value is used as a state transition

value. Using the series of state transition values a state machine is constructed. The embedded

software is authenticated by checking if valid transitions are made in the state machine at runtime.

If invalid transitions are made the continuous authentication has failed, and the program is rejected.

Additionally, no source or binary level changes are needed to apply this technique to the monitored

software since it operates on the HPC data streams.

When evaluated, the proposed technique achieved an true positive rate, correctly authenticat-

ing the correct software, of 97% on our benchmarks and a 1.5% false positive rate, incorrectly

authenticating invalid software.
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4. HARDWARE PERFORMANCE COUNTER ENHANCED WATCHDOG FOR

EMBEDDED SOFTWARE SECURITY1

This work proposes a novel use of long-short term memory autoencoders coupled with a hard-

ware watchdog timer to the enhance robustness and security of embedded software. With more

and more embedded systems being rapidly deployed due to the Internet of Things boom security

for embedded systems is becoming a crucial factor. The proposed technique in this paper aims to

create a mechanism that can be trained in an unsupervised fashion and detect anomalous execution

of embedded software. This is done through the use of long-short term memory autoencoders and

a hardware watchdog timer. The proposed technique is evaluated in two scenarios: the first is for

detecting generic arbitrary code execution. It can accomplish this with an average accuracy of

91%. The second scenario detecting when there is a malfunction and the program starts executing

instructions randomly. It can detect this with an average of accuracy of 88%.

4.1 Introduction

The continuing boom of Internet of Things (IoT) devices has cemented the popularity and

longevity of embedded systems. With more and more internet enabled embedded systems de-

ployed each day a possible danger grows as shown with the relatively recent Miria botnet attacks

[54]. However, the Miria botnet was largely due to misconfiguration of the devices instead of

a more complicated attacks. Regardless, the botnet showcases a danger that the widespread de-

ployment of IoT devices can unleash. IoT devices are being deployed in more security and safety

critical applications, yet the security of the devices tends to be disregarded as an important design

parameter [55, 26, 4, 6, 5].

The past two decades has been a vibrant time for security research and application in more

traditional computing environments such as desktops and mobile devices. However, the best stan-

1Republished with permission from [53]. © 2023. Reprinted, with permission, from Karl Ott and Rabi Mahapatra,
Hardware Performance Counter Enhanced Watchdog for Embedded Software Security, 24th International Symposium
on Quality Electronic Design (ISQED), April 2023.
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dards and practices are not always suitable for embedded devices as even mobile devices typically

have orders of magnitude more computing capability when compared to an embedded system. His-

torically, embedded systems were not connected to the larger internet so the necessity for security

primitives was much lower. As these systems were not connected to the internet they could not be

attacked broadly and at low cost like traditional computing devices were. This picture is rapidly

changing as the surge of IoT devices hits the market.

Other outcomes from the IoT boom have resulted in a renewed research interest and solutions

aimed to address the security challenges posed by these resource limited internet enabled embed-

ded systems. Many of the proposed solutions require large changes to the entire development

stack such as using formal methods [56], different programming ecosystems or languages [57], or

additional security hardware [58]. These approaches have differing impacts on the design and de-

ployment of embedded systems. For example, using formal verification could drastically increase

the security of embedded systems, however it may also drastically increase the development time

and thus the time to market of the system. Additionally, our proposed system can be used in con-

junction with formal methods to provide more assurance at runtime that the embedded software is

running as expected. Additional security hardware would increase the cost as more components or

IP cores are being brought into the design.

A more recent trend has been utilizing previously unused existing resources to provide addi-

tional security primitives. The most notable instance of this is re-purposing hardware performance

counters (HPCs) for security purposes. The benefit is that these techniques can be easily deployed

if the system already has support for HPCs. Additionally, many of these systems already contain

a watchdog timer which may not be properly utilized which adds more risk to the systems [59]. A

watchdog timer provides a cheap method for timeouts. If the watchdog is not reset before the timer

ends then corrective action is taken, which typically involves resetting the software to a known

good state. The result is a watchdog timer can provide marginal security benefits. However, a

watchdog timer alone is not a security primitive as a sufficiently advanced attack could issue the

commands to reset the timer and thus avoid the restorative action.
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The technique proposed in this paper is to augment a traditional watchdog timer based ap-

proach with a LSTM autoencoder based on HPC information to make it more suitable as a security

primitive. The main goal is to provide additional barriers that an adversary or software malfunc-

tion would have to overcome to allow for unintended execution of the software in an embedded

system. Additionally, the technique is evaluated on a standard set of compiled embedded system

benchmark programs. With this done the proposed method does not require any modification of

the source code for the program, and the program can be treated in a black box fashion.

The proposed technique utilizes fine grained HPC data along with a watchdog timer. The fine

grained nature of the HPC data provides information about which section of code was executed.

The data collected from the HPC information is used to build a model based on LSTM autoen-

coders that is checked during the runtime of the program to ensure that it matches what is expected.

The watchdog timer is deployed to provide a timeout feature. When the watchdog timer is reset,

the current data in the HPCs buffer is sent to the LSTM model to be verified. If the HPC data does

not match as to what is expected then it can be assumed the program is not executing correctly.

Additionally, if the watchdog timer fails to get reset, and times out, then it can be assumed that

the software is not executing as expected. This fusion of HPC data and a watchdog timer aims to

provide a novel and lightweight mechanism to ensure the correct execution of embedded software

against adversaries.

The paper is organized as follows. Section 4.2 explains the relevant required background infor-

mation. Section 4.3 introduces our proposed technique and details how the experiment to evaluate

the technique was setup. The results are presented in section 4.4. The results are presented in sec-

tion 4.4. A discussion relating to the results and experiment is in section 4.5. Lastly, the conclusion

is in section 4.6.
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4.2 Background

4.2.1 Hardware Performance Counters

HPCs are implemented as a set of configurable counters. As the name states they are imple-

mented in hardware. The number and type of events that can be tracked vary depending on the

specific processor. Since these are implemented in hardware they offer a low overhead way to get

performance insights into the software running on top. The events that can be monitored can vary

from memory accesses, such as loads and stores, to caching performance, like number of level 1

data cache hits, to branch prediction performance, for example the number of correct predictions,

and so and so on.

However, current implementations and interfaces to HPCs are easy to use incorrectly which

will result in subtly incorrect results. This is doubly important when trying to use HPCs in the

context of trying to provide additional security. A recent paper from Das et. al. [50] highlights the

challenges of trying to work with HPCs in a security context. The approach used in this work is

not susceptible to the issues described in [50].

4.2.2 Watchdog Timer

Watchdog timers are commonly used in embedded systems. They can offer a cheap and simple

way to enhance reliability. The simplest implementation is a timer that must be periodically reset

by the software before it times out, otherwise a corrective action will be taken. Corrective actions

aim to put the software back into a known safe state. Commonly in embedded systems this might

simply be to reset the software in order to return to a known safe state.

The benefit watchdog timers offer is a simple way to robustly protect against accidental or

random modification of software. However, watchdog timers do not offer much protection against

active malicious modification of software. If an adversary has knowledge that a watchdog timer is

in place then it is not too difficult to incorporate the required instruction or code to reset the timer

before a time out occurs. Additionally, using watchdog timers correctly and effectively can be a

difficult task. One of the difficulties is partition code tasks into proper blocks that fall within the
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defined timeout, or timeout window. The technique proposed in this work also aims to simplify

the usage of watchdog timers.

4.2.3 Threat Model

Trying to evaluate the effectiveness of proposed security solutions ranges from difficult to

impossible unless the scope is precisely defined. A threat model is what provides that definition

of scope. The threat model we consider in this work aims to be as broad as possible. The threat

model will also vary on the implementation level for our proposed method. If it is implemented in

software the threat model will be different if the method is implemented in hardware. Specifically,

the software implementation will only require that any code running at a higher privilege level can

be trusted and will not be modified. A hardware implementation would not have this restriction.

In a practical sense this means that the technique described here will need the kernel to be trusted.

The threat model also requires that the HPCs are not writable or modifiable. In an ideal case

the HPCs would be completely deterministic. Which means that given the same code and the

same input for the code the same HPC values are collected on repeated independent runs of the

software. However, in the current real implementations of HPCs they are not fully deterministic.

The sources of nondeterminism have been investigated and discussed previously in the literature

[50, 32, 33]. Our proposed method tries to deal with the noisy and nondeterministic nature of the

current implementations of HPCs.

The defined threat model allows for a wide range of attacks that we aim to protect against.

Specifically, we aim to protect against attacks that try to take over control of an already running

process.

4.2.4 Related Work

In the past decade along with the IoT boom there has been a boom in research trying to utilize

HPCs for software security purposes.

Many of the previous works relate to using HPCs for malware detection. One of the earliest

works by Demme et al. [37] investigates using HPCs for malware detection in Android systems,
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and rootkit detection in Linux systems. Demme et al. used a classification based approached, that

is known malware was profiled to collect HPC traces and various classifiers were trained on the

traces to detect malware. In [41] Tang et al. use an unsupervised one-class SVM for malware

detection. [38] user HPCs for rootkit detection by comparing HPC traces of Linux kernel system

calls against a “golden signature”.

Other approaches try to use HPCs as a way to implement existing mitigation techniques with a

hardware backed implementation such as control flow integrity (CFI) [60]. CFIMon uses HPCs as

part of a system to enable CFI. It makes uses of a table of valid address created from static analysis.

It then uses HPCs at runtime to check branch targets against the table of known good jump targets

[42].

HPCs use in anomaly detection and integrity checking for detecting changes in software has

also been proposed in [40, 31, 25]. Malone et al. [40] use a system of linear relations based on

HPCs to try and verify the integrity of software at runtime. A “golden signature” database is used

by Wang et al. in [31] as a way to verify program integrity. Alternative approaches for ensuring

integrity has been done by way of continuous authentication [45].

More recently, there has been some newer works which highlight some of the dangers and

pitfalls in current implementations of HPCs. A study by Das et al. [50] investigate many recent

papers that propose the use HPCs in a security context. The paper also summarizes some of the

pitfalls of HPCs, such as non determinism [32, 33]. Using these recommendations, as well as our

own investigation we ensure our use of HPCs picks counter events that are deterministic or have a

high level of determinism.

Our proposed work is most similar to [31] in the end goal. We aim to create a system that can

be used to ensure software deployed in embedded systems is operating normally and as expected.

However, we address aim to address some of the shortcomings that are present in previous works.

4.3 Experimental Setup

To validate the proposed method we build a software prototype simulator on top of Linux. The

simulator runs the natively compiled software on the CPU and makes use of the provided hardware
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features, specifically the CPU’s hardware performance counters.

4.3.1 HPC Event Choice

Previous works in this space [25] demonstrate how HPCs of shared events such as caching

performance can be influenced from any programming running on the system. Other recent hard-

ware vulnerabilities such as Spectre [51] and Meltdown [52] also show that shared resources can

be influenced by other software running on the system. This makes any HPC event that can be

externally influenced a poor choice for security applications.

Modern CPUs have hundreds of events that can be tracked. Additionally, they also allow for

several events to be tracked simultaneously. As a result there are millions of possible combinations

of events that can be tracked. This makes a brute force enumeration of all possible combina-

tions intractable. Instead, we use the knowledge that HPC events of shared resources are not a

good choice. Additionally, we use the literature [32, 50, 33, 25, 45] to inform our HPC selection.

We pick events a set of events that demonstrate a high level of determinism and give repeatable

numbers between different runs of a program. The chosen events, to our knowledge, can not be

influence or interfered with externally.

In this work we have chosen the five following events. The first event is retired instructions.

This event provides a count of how many instructions have been retired after completing execution.

The second and third events are retired loads and stores, respectively. These HPC events provide

information for how many memory operations in the form of loads and stores have been executed.

The fourth and fifth events relate to control flow. Specifically, these events are retired branches

and retired conditional branches. In this case, retired conditional branches is a subset of retired

branches. These HPC events correspond to control flow events in code, e.g. if statements, looping

constructs, and function calls. More succinctly we make use of the following events: retired

instructions, retired loads, retired stores, retired branches, retired conditional branches.
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4.3.2 Static Binary Rewriting

We deploy DynInst [61] in order to get static binary rewriting functionality. This allows us to

change an already compiled program to support the proposed HPC and watchdog timer method. A

small library is written which serves to hold the code that will be written into the compiled program

in order to facilitate extracting HPC information in specific locations of the program. The library

makes use of the native Linux system call perf_event_open to setup and read the performance

counters.

Using perf_event_open is advantageous as it provides a nice interface, that if configured cor-

rectly will handle many of the difficulties that can arise from trying to collect HPC information,

easily. Using this interfaces HPCs can be configured to only run and monitor when the specific

task to be monitored are scheduled to run, in Linux this means either a process or a thread. That

means when the monitored task is scheduled out of execution the HPC values will not be perturbed

by non monitored tasks that are scheduled to run before or after the monitored tasks. This gives

isolation to the HPC values that are collected.

4.3.3 Fine Grained HPCs

Previously mentioned was the notion fine grained HPC information that is extracted from a

target program. Under Linux HPCs can operate in 3 different modes. The first mode is a simple

counting mode. In the counting mode the counters are enabled before the start of the program.

They are then disabled and read at the end of the program. This operation has very low runtime

overheads but offers virtually no granularity of where the HPC events occurred during the pro-

gram’s execution. The second way HPCs can operate in is a sampling mode. In the sampling mode

the counters are configured to either be sampled at specific time intervals (typically some number

of times per second) or to sample when an overflow interrupt on an event is triggered (typically

after some configured number of instructions have been retired). This mode has a higher runtime

overhead as there is more machinery in place as the overflow interrupts and reading of HPCs must

be handled. Additionally, it is possible to have the Linux kernel also extract more contextual in-
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formation (register states, etc). This contextual information allows for a the ability to determine

where the extracted HPCs events occurred during the execution of the program. The last mode

manual use of the HPCs.

This is done by modifying the source code of the program with explicit calls to setup, start,

stop, and read the counters at specific points in the program. This mode allows for the highest

granularity of HPC information, as it has been explicitly annotated in the source code. However,

it has the obvious drawback that the source code must be modified in order to support this mode.

If the source code is not easily available or modifiable then enabling this finer granularity of HPC

collect will be difficult.

To overcome the downsides of the explicit HPC mode we develop a tool, referred to as fgperf

in this text, which can statically rewrite compiled programs to automatically insert the reading of

HPCs at specific locations. By doing this we can have fine grained HPC information without any

source code modifications at low runtime overhead costs since the modification is done statically

to the program stored on disk before execution. Figure 4.1 shows the shape of a time series trace

for HPC event for one of the programs in the benchmark corpus.

4.3.4 Inserting Instrumentation Points

Now with fgperf in place a method is required to automatically determine where in the flow

of the program the instrumentation points should be inserted. Previous work in the literature [31]

did not address this point, which would mean that the location for the instrumentation points must

be manually determined. This requires a working knowledge of the layout of the program, which

might be difficult to come by if the source code is not available.

In this work we automatically insert instrumentation points at each prologue and epilogues in

each function. Figure 4.2 shows how the instrumentation points are inserted into the program.

However, a small amount of post processing must be done in order to properly attribute the HPC

values to the correct calling function. This is done to avoid incorrectly accounting the HPC to the

wrong function. With this scheme in place the accounting can be done with a simple state machine

for determining the action and a stack for storage. The state machine allows for HPC values to be
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processed in a streaming manner, while only requiring a limited amount of storage and processing

capability.

The specific purpose of the state machine is to properly account HPC sample values to the

correct function. As previously stated, when a function is entered the process is to take a sample

of the HPC values and store them on a stack. When a function is exiting the HPCs are sampled

again and the new current value is subtracted from the all the values on the stack. In effect this

gives the functionality we need to account for individual functions HPC output, but not any of

the subfunctions that they may call. With this approach the outcome is that every function can be

considered in total isolation, regardless if it is a standalone function call, or part of a long call chain

of functions.

4.3.5 Evaluating HPCs And Watchdog Timer Parameters

With fgperf and a method to automatically determine HPC collection placement points in place

the last needed pieces are component to act as a watchdog timer (WDT) and a component to

evaluate if the HPC values that are collected are within acceptable ranges. In this work we refer

to this module as the checker. The checker does as the name implies, it takes the signals from

the WDT and the LSTM autoencoder and checks to make sure they are within a tolerable bounds.

Figure 4.3 shows the high level overview of the proposed system.

We deploy a fairly standard configuration for a WDT. That is, the watchdog must be “pet” at

a specified frequency or it will raise the alarm. Specifically, the WDT has been set to expect to

get a HPC reading within a defined set of time ranges. If the WDT does not get “pet” within the

boundary of the set of the previously determined time ranges then the program is considered to be

operating out of the normally specified behavior, and is therefore considered anomalous.

To evaluate to see if the HPC values are within in acceptable range we make use of and long-

short-term memory (LSTM) autoencoder. Autoencoders are a type of neural network. Auto en-

coders are different from other forms of neural networks as they are generally not used to predict

or classify, but instead their goal is to reconstruct the input with minimal loss. They are typically

used in applications where the inputs have some noisy characteristics, and ideally, the output will
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have most of the noise removed leaving only the signal or in applications to reduce the dimen-

sionality of the data. Autoencoders operate in an unsupervised manner. In our proposed system

the LSTM autoencoder acts similar to an intrusion detection system. Our system will calculate

the reconstruction error of the LSTM autoencoder and use that as a signal to try and determine If

the software is behaving as expected. Figure 4.4 hows the high level architecture for the proposed

LSTM autoencoder topology.

4.3.6 Testing Corpus

We use a common benchmark for embedded systems, EEBMC [43], in order to evaluate the

characteristics of the proposed system. The benchmark programs are adapted in order to test the

effectiveness of the proposed system.

The EEBMC benchmark programs are adapted to allow for the current address space and thread

of execution to be taken over. The transfer of the thread of execution to a different stream of

instructions would ideally be detected under the proposed enhanced watchdog system. This test

corpus represents an arbitrary code execution attack. The mechanism for how it is accomplished

(buffer overflow, return oriented programming, etc.) is not the focus of this work and can be viewed

as an implementation detail for the ultimate goal of arbitrary code execution.

The other modification to the testing benchmark corpus is to determine if the proposed system

can detect random malfunctions. This differs from the previous modification in that the thread of

execution will run through an unmodified address space and start executing a stream of pseudo

random instructions. The instructions executed are setup so they will not cause a segmentation

fault, or any other issue that could cause premature or abnormal termination of the programs.

4.4 Experimental Results

4.4.1 Specific Parameters

In section 4.3 we lay out the broad setup for the experiment. However, there are many specific

parameters that can be adjusted in the proposed method. For this specific experiment we use an

LSTM autoencoder. The topology of the autoencoder varies depending on the program. This is
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done as an optimization technique. If the autoencoder model performs the same with fewer nodes

then that topology is selected. The timeslice that the autoencoders use is also variable depending

on the program. The variable timeslice is deployed as programs have different temporal behavior

from one another, and thus the autoencoder model’s performance will be impacted depending on

the size of the timeslice. There is no one size fits all model.

We did not do an exhaustive search of the hyperparameters for the autoencoder, but instead

focused on trying to keep the size of the network low. A basic grid search was deployed to find

optimal hyperparameters for autoencoder topology and timeslice length. Additionally, the other

hyperparameters were the number of epochs the model was allowed to train. If this is to be de-

ployed in an embedded system scenario then the amount of computation required should be min-

imized in order to help keep the space and power requirements down as well. The parameters

that influence the amount of computation and power in this approach are the model topology and

time slice length. Table 4.1 shows the chosen and selected various hyperparameters for each of the

programs in the benchmark.

A 30/70 split of the data set is used. That is 30% of the data is used for training and the

remaining 70% of the data is used for testing. The rationale for this split is that the data set

collected with fgperf is large. Additionally, since this is an anomaly detection approach none of

the non normal data is used in the training. The testing set utilized a 50/50 split of good executions

and executions that were faulty.

Another parameter in this specific experiment is to flush the buffer of the autoencoder after

it evaluates that input. A different configuration would allow for some amount of overlap, and

therefore keep some of the previous data points for the next evaluation. Such and approach would

cause more evaluations of the autoencoder, and thus there would be more computations happening

thereby increasing the amount of power that the system would use. However, this has a potential

to decrease the latency for the system to detect anomalous behavior. This, is an inherent parameter

in the proposed system.

We scale the HPC input values via a power transform so as to have an acceptable input range of
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Figure 4.1: This shows the shape of the time series from a data sample collected by fgperf. The
units for the axis are not important for showing the shape of the time series for this particular
sample.

Program name Topology Timeslice Length
cjpeg 32-16-16-32 32
linear 32-16-16-32 32
loops 32-16-16-32 32
nnet 32-16-16-32 4

parser 32-16-16-32 32
radix 32-16-16-32 4
sha 32-8-8-32 16
zip 32-16-16-32 4

Table 4.1: The programs used in the benchmark with their corresponding hyperparameter values
of the topology configuration and timeslice length.
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Figure 4.2: This is a simplified and abstract diagram that shows what the transformation fgperf
does to a compiled program. The . . . indicate that there are arbitrary instructions there. The call
and ret instructions there to illustrate some arbitrary function level control flow. The “record”
instruction is an abstract instruction that means to take a sample of the HPCs when it is executed.
Additionally, the “record” instruction also has a timing component that is used with the watchdog
timer. This modification is only necessary for the software simulated version.

68



Figure 4.3: A simplified overview of the proposed architecture’s data path is shown here. In this
case the HPCs are already configured and are counting. When a “record” event is hit the sampler
will take a snapshot of the current value of the HPCs and put them onto the stack. The sampler
will also inform the FSM of any accounting computation that should be done. When an accounted
for data point leaves the stack it enters into the LSTM autoencoder. The autoencoder processes a
window of data points and computes the mean absolute error (MAE) of the reconstructed output.
This error value along with a signal from the WDT is sent to a module called the checker. The
checker ultimately decides if the software is operating as expected.
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Figure 4.4: The high level architecture of the LSTM autoencoder. The first 2 layers of nodes
represent the encoder part of the autoencoder, while the last 2 layers are the decoder portion. The
first and last layer are the input and output layers respectively. The middle 2 layers are the encoder
and decoder layers respectively. The scaler block represents a power scaler. The MAE block takes
the output of the autoencoder and output of the scaler to calculate the MAE between the two.
This calculated MAE value represents the reconstruction error introduced by the autoencoder. The
MAE value is forwarded to the checker.
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the autoencoder to a standard scale of approximately −1 to 1 scale. The output of the autoencoder

is not unscaled into the original HPC scale, but left in the scaled form. It is used against the scaled

input to calculate the mean absolute error of the reconstruction error of the autoencoder. The lower

MAE the better the quality of the reconstruction. The calculated MAE value is what is sent to the

checker to see if it is within an acceptable range.

Lastly, we implement a high level synthesis (HLS) design to provide an estimate for hardware

cost. The HLS is not optimized for space, however LSTM type nodes have a lot of state and can

therefore use a lot of space. For brevity, the biggest LSTM autoencoder used 384 BRAM cells,

7229 DSP slices, 893989 flip flops (FF), and 554323 look up tables (LUTs). The smallest used:

85 BRAM, 5095 DSP slices, 587647 FF, 310285 LUTs. Both could achieve a critical path timing

of 5 nanoseconds. These resource usages only include the cost for the LSTM autoencoder, not the

WDT.

4.4.2 Checker Design And Parameters

The design of the checker, which takes the final output signals of the LSTM autoencoder and

WDT to make the decision to determine if the software is operating correctly. In this particular

work we deploy a simple checker that will flag the software as anomalous if it passes a threshold

for error or if it fails an acceptable timer interval.

4.4.3 Arbitrary Execution Results

Table 4.2 shows the proposed technique’s performance across the set of the benchmark pro-

grams. The table shows the classification rates for each program. Additionally, it breaks down the

individual contribution of the LSTM autoencoder and the WDT and their combined performance.

Going from right to left, where a major column is denoted by the double vertical bar, the first

major column shows the program’s name that is being evaluated. The second major column shows

the performance of just the autoencoder alone. The third major column shows the rates for the

WDT when trying to determine normal runtime alone. The last major column shows the combined

performance of the LSTM autoencoder and the WDT.
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The accuracy of each of the techniques: the autoencoder, the WDT, and the combination of

them is reported in Table 4.4.

This scenario is for when the software is maliciously under attack from an adversary. That is,

once a vulnerability has been exploited the adversary can now exercise arbitrary code execution.

The approach does not aim to halt or significantly impede the exploitation itself, but it aims to

significantly raise the bar in what kind of arbitrary code that can be executed. Ideally, the only way

this proposed system can be defeated would be to be running code that passes both the autoencoder

and WDT. This means that an attacker would need to have knowledge of the program’s instruction

composition (% of loads, % of stores, etc.) within a given timeslice. Additionally, an attacker

would ideally need have to know timing information to bypass the WDT.

4.4.4 Random Execution Results

Table 4.3 shows the results the scenario for when the program starts to randomly execute func-

tion within its own address space. This case aims to represent when embedded software goes

wrong due to outside influence or programming error. An example here is if the program has some

bit flips in memory which cause the program to start acting erratically.

We present the accuracy of the two components, autoencoder and WDT, and when combined

in Table 4.5.

This scenario is synthetic compared to the previous scenario. This is because the frequency

which faults that induce this sort of behavior outside of a malicious or contrived scenario is ex-

ceedingly rare.

72



Autoencoder WDT Combined
Program TP FP TN FN TP FP TN FN TP FP TN FN

cjpeg 100.00% 0.00% 100.00% 0.00% 27.27% 0.00% 100.00% 72.73% 100.00% 0.00% 100.00% 0.00%
linear 90.91% 0.00% 100.00% 9.09% 36.36% 0.00% 100.00% 63.64% 100.00% 0.00% 100.00% 0.00%
loops 77.27% 0.00% 100.00% 22.73% 0.00% 0.00% 100.00% 100.00% 77.27% 0.00% 100.00% 22.73%
nnet 86.36% 27.27% 72.73% 13.64% 63.64% 0.00% 100.00% 36.36% 86.36% 27.27% 72.73% 13.64%

parser 100.00% 4.55% 95.45% 0.00% 9.09% 0.00% 100.00% 90.91% 100.00% 4.55% 95.45% 0.00%
radix 100.00% 4.55% 95.45% 0.00% 22.73% 0.00% 100.00% 77.27% 100.00% 4.55% 95.45% 0.00%
sha 27.27% 0.00% 100.00% 72.73% 0.00% 0.00% 100.00% 100.00% 27.27% 0.00% 100.00% 72.73%
zip 100.00% 0.00% 100.00% 0.00% 27.27% 0.00% 100.00% 72.73% 100.00% 0.00% 100.00% 0.00%

Table 4.2: Results for the arbitrary code execution evaluation. The program name of the program in the EEBMC benchmark. TP stands
for true positive. False positive is shortened to (FP). Lastly, true negative and false negative are abbreviated as TN and FN respectively.

Autoencoder WDT Combined
Program TP FP TN FN TP FP TN FN TP FP TN FN

cjpeg 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 0.00% 100.00% 0.00%
linear 9.09% 0.00% 100.00% 90.91% 0.00% 0.00% 100.00% 100.00% 9.09% 0.00% 100.00% 90.91%
loops 90.91% 0.00% 100.00% 9.09% 0.00% 0.00% 100.00% 100.00% 90.91% 0.00% 100.00% 9.09%
nnet 36.36% 27.27% 72.73% 63.64% 0.00% 0.00% 100.00% 100.00% 36.36% 27.27% 72.73% 63.64%

parser 100.00% 4.55% 95.45% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 4.55% 95.45% 0.00
radix 100.00% 4.55% 95.45% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 4.55% 95.45% 0.00%
sha 68.18% 0.00% 100.00% 31.82% 0.00% 0.00% 100.00% 100.00% 68.18% 0.00% 100.00% 31.82%
zip 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 0.00% 100.00% 0.00%

Table 4.3: Results for random code execution in the same address space. The program name of the program in the EEBMC benchmark.
TP stands for true positive. False positive is shortened to (FP). Lastly, true negative and false negative are abbreviated as TN and FN
respectively.
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4.5 Discussion

The proposed approach aims to provide a lightweight technique for raising the bar for exploit-

ing and increasing the robustness of embedded software. Since these are embedded environments

there are constraints on space, power, how much computing power is available, etc. With these

constraints in mind we tried to develop the proposed method to only require a minimal amount of

state space. The work here is similar to that in [31]. The approach in [31] has three shortcomings.

The first is that the placement of detour points is manual. The second is that the detour points can

be bypassed depending on what the attacker does. The third shortcoming is that it uses a database

of “golden values” to check against to ensure the software is still operating correctly.

Our approach solves the first shortcoming by inserting a detour point at every major control

flow change, e.g. calling and returning from functions. We address the second short coming by

incorporating a WDT. While it is possible an attacker could insert and start executing code that

never activates the sampling event, the watchdog prevents this. This is due to the WDT reset being

tied to the sample event. That way, if the watchdog timer is not “pet” within the determined interval

then the program will be flagged as anomalous. The last point is extensive state space. Our method

has four points for state space. The first is the timeslice buffer where the HPC events are stored for

processing. The second is the LSTM autoencoder itself. The third is the parameters for the scaler,

power scaler in this case. The fourth is the thresholds and timing intervals held in the checker. This

is only counting the extra storage space required, not any additional hardware space required for

computation.

4.5.1 Arbitrary Code Execution

Constructing a benchmark to measure the effectiveness for the proposed technique is difficult.

To the best of our knowledge there are no existing available benchmarks for security research like

this described in the literature. Previous works that use similar HPC approaches are either focused

on malware detection [39, 37, 41] or they build their own custom environment to evaluate the

effectiveness [42, 31].
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Program Name Acc. Autoencoder Acc. WDT Acc. Combined
cjpeg 100.00% 63.64% 100.00%
linear 95.45% 68.18% 100.00%
loops 88.64% 50.00% 88.64%
nnet 79.55% 81.82% 79.55%
parser 97.73% 54.55% 97.73%
radix 97.73% 61.36% 97.73%
sha 63.64% 50.00% 63.64%
zip 100.00% 63.64% 100.00%

Table 4.4: Calculated accuracy from the results for arbitrary execution.

Program Name Acc. Autoencoder Acc. WDT Acc. Combined
cjpeg 100.00% 50.00% 100.00%
linear 54.55% 50.00% 54.55%
loops 95.45% 50.00% 95.45%
nnet 54.55% 50.00% 54.55%
parser 97.73% 50.00% 97.73%
radix 97.73% 50.00% 97.73%
sha 84.09% 50.00% 84.09%
zip 100.00% 50.00% 100.00%

Table 4.5: Calculated accuracy from the results for random execution.
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From Table 4.2 we can see that the LSTM autoencoder is doing the majority of the work in

regards to detecting anomalous behavior. This is not unexpected as we are retrofitting a WDT onto

existing software that was built without using a WDT. However, we can see that the WDT still

plays a role in the linear program. The TP percentage increases from 90.91% to 100% after the

WDT has been incorporated. The WDT also has the added benefit of a cheap and effective way of

enforcing that a record event gets executed.

4.5.2 Random Execution

An interesting, but unsurprising outcome is the Acc. WDT column in Table 4.5. The WDT

is 50% for every program in the test corpus. While this shows that the WDT does not contribute

anything meaningful to the detection of catching programs executing random instructions. The

result here shows an obvious place for improvement in future work. However, the only way to

accomplish this might be to allocate more state space for the WDT compared to the simple set of

valid intervals used in this work. Even though the WDT does not contribute to the performance in

detection it is still a valuable resource as it places a hard, strict, and simple bound on the behavior

of anomalous execution.

4.6 Conclusion

We propose a new technique and design a simulator to evaluate our proposed technique of com-

bining autoencoders and watchdog timers for embedded software security. We aim to minimize

the amount of state space required for proposed method as it is to be deployed in an embedded en-

vironment. The technique achieves an average of 91% accuracy in detecting anomalous behavior

of software against arbitrary code execution. When detecting if the program has started to execute

random instructions it has reached an 88% accuracy on the test corpus.

The technique has similar goals, protecting embedded software, to those previously proposed in

the literature. However, it overcomes some of the shortcomings that exist in the existing literature

that utilize HPCs for embedded software security.
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5. CONCLUSION & FUTURE DIRECTIONS

5.1 Conclusions

This dissertation focuses on enhancing the current state of embedded system software security.

It starts with a method to detect anomolous execution of embedded system software. Further, the

dissertation proposes a method of continuous authentication for embedded software. In addition

to anomaly detection and continuous authentication the dissertation also proposes enhancing a

traditional watchdog timer with hardware performance counters to increase robustness against both

random transient errors, as well as malicious attacks. The objectives through this dissertation are

to:

1. Enhance the current state of embedded system software security

2. Aim to keep the overhead of the proposed methods low and suitable for embedded systems

3. Flexible in implementation across the diverse landscape of embedded systems

4. Layerable with other existing security methods and vulnerability mitigations

5. Not become immediately obsolete with future developments in the security space

To accomplish this in Chapter 2 a hardware performance counter based anomaly detection

methods are proposed. Hidden Markov models and long short term memory neural networks are

used for anomaly detection. Chapter 3 explored the use of short time Fourier transforms as a way of

continuous authentication for embedded software. Chapter 4 investigates augmenting a watchdog

timer an autoencoder based in HPCs to enhance security of embedded system software.

5.2 Dissertation Summary

This dissertation proposes three separate ways to increase the security of embedded system

software. The first way presents two separate approaches to using anomaly detection. The first

approach for anomaly detection makes use of hidden Markov models based on the stream of HPC
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data for the embedded software. It trains an HMM model on known good HPC data streams of

executions of the embedded software. The model is then deployed and it calculates a likelihood of

the streamed HPC data so far. If the likelihood drops below a specific threshold then the software’s

execution is flagged as anomolous. The second approach trains on the same stream of HPC data

from known good executions of embedded software. However, this time it trains an LSTM model

to predict what the next HPC data point should be. If the prediction results falls outside of a specific

threshold the software is flagged as anomolous.

The second approach works by way of utilizing the knowledge of program phases. The fre-

quency information of the HPC data stream is calculated by way of short time Fourier transforms,

then the frequency information is encoded into a finite state machine. This way the state machine

encodes the valid transitions between every other state. Once the state machine is built and de-

ployed it is simple to check that the software is executing as intended. To verify the embedded

software is running as intended the frequency information of the HPC data stream is computed and

transformed in to a state. The computed state is the passed into the state machine which checks to

see if it is a valid state transition from the current state it is in. If it is not a valid state the software

is flagged as anomolous and corrective action is taken. Additionally, epsilon transitions can be

added which allow for a free state transition between any two states.

The final approach makes use of watchdog timers. Specifically, a watchdog timer is enhanced

with an autoencoder model trained on the HPC data stream. Every time the watchdog timer is reset,

the HPC data is passed along into the autoencoder. The data is transformed through the autoencoder

and is compared to the original HPC value. The auto encoder is trained on known good executions

of the embedded software’s HPC data stream. If there is a large difference between the output of

the autoencoder and the original HPC value this indicates a high error amount, which is indicative

of unexpected execution of the embedded software. Corrective action can be issued at this point.

The watchdog also serves as another mechanism that must be satisfied by normal operation of the

embedded software. If the watchdog timer is not reset before it expires that indicates the embedded

software is not executing as intended and corrective action can be taken.
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5.3 Future Directions

With the boom and rapid expansion of embedded systems, by way of the the Internet of Things,

embedded system software security’s importance will only become more paramount. With more

systems deployed the overall threat level that insecure systems pose is rising, as demonstrated by

the Mirai and similar botnets. To help defuse this threat future work in the space of embedded

system software security is needed.

5.3.1 Custom Hardware Performance Counters

The work throughout this dissertation was limited to already available HPCs on contemporary

CPUs. Newly proposed, that currently to not exist, HPCs may give much better insight into the

execution characteristics of embedded software. Such HPCs could simplify the approaches taken

and increase the state of embedded software security. Proposing such general counters would be a

difficult, as ideally they would need to work across the broad and diverse landscape of embedded

software.

5.3.2 Purpose Fit Lightweight Artificial Intelligence or Machine Learning

The techniques used in this dissertation are adapted from full scale AI and ML techniques.

With more AI and ML research focused on edge computing these approaches and techniques could

be adapted into this particular application, specifically in deploying custom hardware on chip in

embedded systems.

5.3.3 Runtime Randomization Of HPCs During Embedded Software Execution

To further increase the security of embedded software, the techniques in this dissertation could

be adapted and enhanced to deal with a random selection of the subset of all available HPCs. This

would have the effect of making it harder for an adversary hit a moving target of the subset of

available HPCs thereby increasing the difficulty of defeating the system.
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