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ABSTRACT

In the past few years, there has been a major impetus in the search for quantum dots (QDs),

which are a type of semiconducting nanocrystals (NCs) with tunable optical and optoelectronic

properties for next-generation photonic devices. This can be attributed to their relatively high

photoluminescence quantum yield, wide color gamut, tunable optoelectronic properties, and cost-

effective solution processibilities. Furthermore, the rising market share of these applications has

led to an increased demand for fast and scalable production of QDs and the associated optoelec-

tronics devices. However, there are major commercialization challenges associated with the man-

ufacturing of QDs: (a) lack of mechanistic understanding of the crystallization kinetics of various

QD systems, which hinders the predictive control of the QD size distribution; (b) absence of a

well-established paradigm for high-fidelity modeling and scale-up of various QD manufacturing

processes (e.g., crystallization and thin-film deposition); and (c) no presence of computationally

efficient solutions for control and optimization of QD processes.

To address these knowledge gaps, in this work, we develop different models to describe the

mechanism of QD crystal growth, enable fast-scalable manufacturing of QDs and the associated

optoelectronic devices, and develop an appropriate control framework for various QD processes.

First, a first-principled kinetic Monte Carlo (kMC) was developed and experimentally validated

to describe the crystallization kinetics of QDs. Second, to resolve the various issues associated

with the batch synthesis of QDs, continuous manufacturing of QDs using a plug flow crystallizer

(PFC) was demonstrated using a multiscale modeling approach. Further, this approach was ex-

tended to two-phase slug flow crystallizers (SFCs) by combining the construction of a CFD-based

multiscale model. Also, a highly efficient data-driven optimal control framework was formulated

using a deep neural network (DNN) to control QD crystal size and distribution. Third, model-

ing of thin-film deposition required for manufacturing of solar cells and high-resolution displays

was performed. Specifically, a multiscale model that combines the surface-level discrete element

method (DEM) model of QD aggregation and macroscopic mass and energy balance equations was

ii



developed for describing the spray coating of QDs. Further, given the computational expense of

this model, a surrogate DNN model was developed, which was integrated with a model predictive

controller (MPC) to control the film characteristics (i.e., thickness and roughness). Next, although

the resulting thin-films are of the desired quality, they are chemically labile and cannot withstand

subsequent downstream processing during the manufacturing of LEDs or solar cells. Thus, a kMC

model was developed to describe crosslinking of QD thin-films for increased chemical robustness

resulting in the manufacturing of high-resolution displays. Moreover, it is important to note that

all of the above-developed models were experimentally validated using appropriate experimental

observations.

Lastly, although the above-developed model accurately describes various processes related to

QD manufacturing, these models are very system-specific, and cannot be easily extrapolated to

other QD systems. To provide a concrete direction for addressing this issue in the future, we pro-

pose a transformer-based hybrid model, which can leverage the remarkable transfer learning prop-

erties of transformers for better generalization across different QD systems. Overall, the proposed

work addresses three major challenges in the QD field (i.e., control of QD kinetics, continuous

production of QDs, and designing manufacturing processes for fast scale-up of QD-based devices)

by developing various experimentally validated multiscale models and combining them with an

appropriate control framework.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

The US Department of Energy has set high-priority targets to reduce the cost of photovoltaics

from ∼ 15 cents/kWh to 5 cents/kWh by 2030. This has fueled a plethora of research in the dis-

covery, optimization, and commercial production of high-efficiency solar cells [4, 5]. Towards this

goal, QD-based solar cells have received special attention due to their high quantum efficiency and

tunable absorption/emission spectra [6, 7, 8]. Furthermore, increasing market demand for energy-

efficient high-resolution displays (HRDs) has also propelled the search for new semiconducting

materials which can be nano-patterned to provide the high-resolution requirement [9, 10, 11, 12].

Even in this area, various QDs with a wide color gamut, and high photoluminescence quantum

yield (PLQY) have shown promising results [13]. Basically, the plethora of applications (i.e., solar

cells, HRDs, and other optoelectronics devices) has propelled the investigation of various QDs,

their properties, manufacturing techniques, and potential real-world applications [14, 15, 16].

To this end, the literature is rife with studies investigating the synthesis, and effect of differ-

ent process parameters on the tunable characteristics of QDs, and comparing different synthesis

protocols for better control of QD size (a crucial factor in determining the photoelectronic prop-

erties of QDs) [17, 18, 19, 20]. Unfortunately, previous studies are majorly focused on the small

lab-scale batch synthesis of QDs using umpteen number of different reaction protocols and do

not conclusively yield an understanding of QD crystallization kinetics that can assist in design-

ing better manufacturing protocols [21, 22]. Thus, a continuous synthesis platform for large-scale

QD production with precise size-tuning and prediction capability is highly coveted in the semi-

conductor community. Further, manufacturing of QD-based devices (i.e., solar cells and HRDs)

needs advanced processing capabilities like lithography and thin-film deposition, which have not

seen a detailed computational investigation [23, 24, 25]. Thus, there is an absence of modeling

and optimization studies to enable scale-up, better yield, and superior process control of QD-based

1



thin-film deposition for the manufacturing of various optoelectronics. Overall, the three major

challenges in this field are (a) the need for a mechanistic understanding of various QD processes

to enable better QD models; (b) the lack of a well-established paradigm for high-fidelity modeling

and scale-up of various QD manufacturing processes (e.g., crystallization and thin-film deposi-

tion); and (c) no presence of computationally efficient solutions for control and optimization of

QD processes.

1.2 Literature Review

Given the variety of the above challenges, a single modeling technique or standalone process

will not provide a viable solution, thereby requiring a combination of various modeling, control,

and validation techniques. Thus, this section provides an overview of various existing works in the

literature that can be leveraged to effectively address the above challenges.

1.2.1 Crystallization and Size Control of QDs

Various approaches in the literature have demonstrated size-tuning or bandgap tuning of QDs,

and they can be divided into three categories. First, a set of literature studies achieve facile tuning

of QD bandgap through halide/anion exchange [26, 27, 28]. The second set of studies utilizes

different surface ligand species with varying chain lengths and concentration [29, 30, 31, 32] to

control QD size. Here, the ligands form a ligand shell around the QDs, and hinder the mass transfer

of solute to control the growth kinetics, and thereby the size of QDs. Third, there are some studies

utilizing hot-injection (HI) techniques [33, 34, 35, 36], where reaction temperature is utilized to

control the QD size. However, although there is a plethora of QD synthesis techniques, they

provide little insight into the crystallization kinetics of QDs. For example, during the HI synthesis,

the crystallization reaction proceeds very rapidly (i.e.,∼5 s) making it challenging to control the

size of QDs in every batch, thereby leading to a wide size distribution. Then, the ligand-based QD

control techniques majorly focus on the exploration of different ligand species and chain lengths to

control QD size and shed little light on the mechanism by which these ligands help control the QD

size. Furthermore, existing crystallization models, which are primarily developed for organics and
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protein crystallization cannot mimic QD growth kinetics [37, 38, 39, 40]. Thus, the development

of an alternate crystallization model that can help predict and control QD size is required.

1.2.2 Continuous QD Manufacturing

Conventional lab-scale QD synthesis techniques are difficult to scale up to meet the market

demand and there is batch-to-batch variation resulting in wide QD size distribution, which affects

the performance of QD-based devices. Recently, there have been some efforts towards the devel-

opment of continuous manufacturing techniques for QDs. For example, recent studies showcased

a millifluidic platform for fast-scalable manufacturing of CsPbBr3 QDs in the size range of 5 to

10 nm [41, 42]. However, currently there are no well-established models to describe continuous

QD crystallization, and further control the QD size using an appropriate framework. Then, another

experimental study demonstrated a slug-flow crystallizer (SFC) for continuous production of QDs

[43]. Specifically, the authors utilized a millifluidic SFC with an inlet for inert gas and the pre-

cursor solution and manipulated these flow rates to facilitate size-tuning of CsPbBr3 QDs. They

showcased that an SFC operating in a stable regime provides alternating gas-liquid slugs; each

liquid slug acts as a batch crystallizer, whereas the entire SFC behaves as a continuous reactor.

However, although these select few studies demonstrate continuous production of QDs, the litera-

ture lacks high-fidelity models which can be used for scale-up and subsequent control of the above

processes. For example, existing SFC models do not account (a) slug-to-slug (S2S) variation (i.e.,

all liquid slugs are not identical) can affect the crystallization kinetics and the overall CSD; and (b)

do not have appropriate controllers that can manipulate air/liquid flow rates for regular QD size.

Thus, there is a strong need for the development of a QD crystallization platform that combines a

high-fidelity crystallizer model with an adequate controller to regulate QD crystal size for enabling

continuous manufacturing of QDs in PFCs and SFCs.

1.2.3 Thin-film Deposition of QDs

A majority of QD-based applications need QD thin films to be used in solar cells or HRDs. For

example, current solar cell manufacturing utilizes spin coating to produce QD-based thin films,
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which then act as a functional/active layer [44, 45, 46]. However, batch-to-batch variation, low

material utilization, and the requirement of a separate curing step act as major challenges in the

fast-scalable production of QD-based devices. To resolve this issue, spray coating of QDs has been

proposed in the literature to address the above challenges [47, 48, 49]. Furthermore, studies show

that spray coating couples macroscopic phenomena (e.g., transport and thermal), and surface-level

interactions (i.e., coffee ring effect) contributing to the uneven deposition of thin-film, which is

detrimental to the optoelectronic performance of QDs [50, 51]. Thus, to enable the optimal control

of thin-film characteristics, it is important to have an accurate QD spray coating model, which can

account for the coupling of the above-mentioned surface-level and continuum-level phenomenon.

Another major area where thin-film QDs have received significant attention is the nanopat-

terning of QDs using photolithography for direct application in HRDs [52, 53]. However, when

integrating QDs into thin-film photonic devices, the QD films are damaged during post-processing

steps involving various chemical solvents [54, 55]. To this end, ligand crosslinking of QDs has

emerged as a promising scalable solution [56]. However, despite the successful formation of

crosslinked QD films, these studies offer little insight into the kinetics and mechanism of the

crosslinking reaction. Thus, it is imperative to develop an appropriate model to address this knowl-

edge gap, which devise better nano-patterning techniques for the manufacture of QD thin films in

the future.

1.2.4 Multiscale Modeling Techniques

The above two challenges (i.e., continuous QD manufacturing and spray coating-based thin-

film deposition) require a certain level of multiscale modeling. Specifically, for PFC and SFC,

crystal growth kinetics at the microscopic scale need to be coupled with continuum-level mass and

energy balance equations. Similarly, for spray coating, there are QD-QD interactions at the surface

level that results in thin-film deposition while at the macroscopic level, there is droplet atomization,

heat transfer, and droplet evaporation. Overall, a majority of QD manufacturing techniques require

a combination of system-agnostic macroscopic models with QD-specific microscopic interactions,

thereby necessitating the formulation of a multiscale modeling framework. To this end, there are
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many studies in the literature that utilize such an approach for a wide variety of chemical processes.

1.2.4.1 Multiscale Modeling of Crystallization

Christofides and colleagues have done extensive research work on multiscale modeling and

control of protein crystallization by coupling microscopic-level kinetic Monte Carlo (kMC) with

macroscopic mass and energy balance equations. Specifically, one of the initial studies focuses

on the development and experimental validation of a high-fidelity kMC model, which considers

several microscopic steps (i.e., adsorption, migration, and desorption), of lysozyme crystallization

[57, 37]. The next few studies focus on utilizing the kMC model in conjunction with macroscopic

mass and energy balance equations for a batch crystallizer. and further utilizing a model predic-

tive controller (MPC) to regulate not only the crystal size distribution (CSD) but also the shape of

lysozyme crystals [37, 58]. This work further extended to continuous crystallization and was also

integrated with a run-to-run control scheme to provide better control over the CSD [59, 60]. Fur-

ther, the above models were coupled with particle aggregation dynamics, fine removal strategies,

and product classification protocols to maximize the productivity of continuous protein crystal-

lizers while reducing the polydispersity [61, 62]. Finally, to handle the issue of computational

expense of the above models, one of the studies focuses on development of a multidomain MPI-

powered parallel computation framework that utilizes a combination of problem decomposition,

task assignment, and information flow orchest ration techniques to achieve a speed boost of ∼ 40

times [63]. The above works provide a perfect starting point for developing similar multiscale

models for QD-specific crystallization systems.

1.2.4.2 Multiscale Modeling of Thin-Film Deposition

Considering the other aspect of thin-film deposition, there also have been some notable mul-

tiscale modeling studies by Christofides and colleagues that couple a surface-level kMC model

with gas-phased microscopic models to describe the plasma-enhanced chemical vapor deposition

(PECVD) for manufacturing silicon solar cells. Specifically, the kMC models include four pro-

cesses (i.e., physisorption, surface migration, hydrogen abstraction, and chemisorption), and is
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combined with gas-phase two-dimensional partial differential equations that account for chemi-

cal reactions, diffusion, and convection [64]. Using the developed model, thin-film deposition

with uniform thickness and an optimized light-trapping surface microstructure can be achieved by

choosing different gratings of the wafer surface. Moreover, the authors also demonstrate the use

of run-to-run control that uses an exponentially weighted moving average (EWMA) control algo-

rithm to reduce batch-to-batch variability between different deposition cycles [65]. Finally, these

models are integrated with a CFD model to accurately capture plasma chemistry and transport

phenomena in a 2D/3D axisymmetric reactor geometry through a dynamic boundary that connects

the surface-level wafer domain with the gas-phase [66, 67]. Similarly, Sandoval and colleagues

have developed various multiscale thin-film deposition models for a generalized CVD system that

combines continuum-level transport model with a surface-level kMC model. Moreover, to gain

computational efficiency, they utilize an artificial neural network to surrogate the multiscale thin-

film model, and then incorporate it within a MPC to control thin-film characteristics [68, 69]. This

model was extended to a stochastic MPC implementation by accounting the inherent uncertainty of

the thin-film deposition process by polynomial series expansion (PSE) and a DNN-based frame-

work [70, 71]. Thus, the above works were utilized as a reference to formulate the multiscale

modeling framework for thin-film deposition.

1.2.4.3 Multiscale Modeling of Pulping Process

Although the above two subsections provide structural guidance on multiscale modeling of

QD systems, there are other notable multiscale modeling studies from the literature that provide

background for coupling of different lengths and time scales, and methods to computationally

treat such systems. For example, Kwon and colleagues performed extensive studies on multi-

scale modeling of the wood pulping process. Specifically, they coupled (a) a microscopic kMC

model that describes the delignification process of various constituents (i.e., lignin, cellulose, and

hemicellulose) in the presence of entrapped liquor with (b) a continuum-level Purdue model that

considers mass and energy balance equations along with cell wall thickness (CWT) and Kappa

number (K) [72, 73]. After experimental validation of the above model, it was integrated with dif-
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ferent soft sensors (e.g., Kalman Filter and Luenberger observer) and implemented within an MPC

for regulating CWT and K [74]. Further, the kMC model was modified with various scission and

degradation mechanisms that are applied to an ensemble of wood fibers to consider fiber-to-fiber

heterogeneity, and subsequently regulate the fiber-length-distribution (i.e., similar to controlling

CSD) [75, 76, 77]. Also, a different study addresses the issue of fiber strength, which is essential

in the paper-based packing industry, by integrating modified buckling theory along with kMC and

the Purdue model, and subsequently using a MPC to reach a target fiber strength of packaging ap-

plications [78]. Finally, as these high-fidelity models are computationally expensive, data-driven

or machine learning (ML)-based surrogate models were developed to expedite the online imple-

mentation of MPC for the pulping process [79, 80]. Moreover, given the highly nonlinear and

complex nature of the pulping process, an offset-free MPC scheme, which utilizes a disturbance

model that is augmented with the state-matrix to minimize the offset, was demonstrated for this

process [81]. In the context of QD processes, the above studies provide inspiration for treating

different lengths and time scales in a computationally tractable manner for efficient online control

as it will be essential during QD manufacturing.

1.2.4.4 Kinetic Monte Carlo Simulation (kMC)

The above examples illustrate that system-specific microscopic interaction can be effectively

captured by kMC simulations, as it is a powerful tool for procuring feature-rich information about

the spatiotemporal evolution of the process at a fraction of the cost than Molecular Dynamics

(MD) or other molecular simulation tools [82, 83, 84]. More importantly, kMC models can be

easily integrated with continuum-level mass-energy balance and population balance equations for

the realistic modeling of chemical reactors, fermenters, pulp digesters, and crystallized [85]. Fur-

thermore, kMC simulations are not restricted to simple adsorption, desorption, and migration steps

as indicated by the above subsections, and can be easily extended to more complex phenomena.

For example, Kwon and colleagues developed extensive kMC models for different biological

systems including cholera toxin subunit B (CTB), multivalency glycan-lectins, and their receptive

receptors (e.g., GM1, GM2, GD1b, and others) [86, 87, 88, 89]. Specifically, the kMC model
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describes the binding mechanism between CTB and GM1 receptors along with the competitive

binding of GM2 receptors [90]. Moreover, different size and shape of CTB and GM1 receptors

can also be considered along with different binding pockets. Using the above models as a basis,

several new models that address cell-to-cell heterogeneity and complexity signaling pathways have

been developed [91, 92]. These models provide inspiration to tackle the QD-QD crosslinking issue,

wherein a kMC model is required to model the interaction between QDs and various multidented

crosslinkers.

Another well-established use case of kMC simulations is in regards to heterogeneous catalysis,

wherein a multitude of microkinetic reaction steps can be modeled with respective rate equations,

various interactions between reaction species can be considered, and the lattice sites can be modi-

fied to reflect some degradation reactions. For example, Kwon and colleagues recently developed

a comprehensive reaction kMC simulation for modeling the nitrogen reduction reaction (NRR) for

shortlisting high-performance bimetallic transition metal catalysts [93, 94]. The literature is rife

with similar notable works for treating industrially relevant catalyst systems [95, 96, 97, 98]. A

similar work is performed by Sandoval and colleagues, wherein they utilize kMC to model surface

chemistry within a tubular catalytic reactor to account for various process uncertainties, and subse-

quently develop a hybrid kMC-data-driven model for simulating this process [99, 100, 101]. Fur-

thermore, Sandoval and colleagues have also developed several kMC models for moving boundary

problems in various microscopic interfacial systems [102, 103].

Moreover, these models were extrapolated to even microscopic modeling of battery systems.

Specifically, Kwon and colleagues developed a microscopic kMC simulation for modeling dendrite-

based capacity degradation in Lithium-ion batteries, wherein different electrochemical reactions

at the battery electrodes are considered. Further, the kMC model also takes input from differ-

ent mechanical properties of battery electrolytes and materials (e.g., Elasticity modulus, diffusion

coefficient, and others) to dynamically change the dendrite forming reactions [104, 105, 106].

Overall, the above studies demonstrate that many different microscopic phenomena (i.e., reaction,

diffusion, degradation, etc.) can be considered in a kMC model using the appropriate equations,
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thereby providing a strong modeling paradigm for treating various QD-specific interactions using

a kMC model.

1.2.5 Existing Data-driven Modeling Techniques

As mentioned earlier, although a standalone or combination of various high-fidelity modeling

techniques can be utilized for resolving the above challenges, online process monitoring and con-

trol requires the presence of computationally efficient data-driven surrogate models. An overview

of the literature suggests that there are three categories of such models: (a) subspace identification

models; (b) machine learning (ML)-based models; and (c) next-generation hybrid models.

1.2.5.1 Subspace Identification Models

A popular approach to developing surrogate models is using data-driven model order reduc-

tion techniques. For example, Kwon and colleagues demonstrated the characterization of reservoir

properties by considering the proper orthogonal decomposition (POD) technique to reduce the

dimensionality of spatially varying Young’s modulus profiles to accurately predict fracture propa-

gation dynamics in hydraulic fracturing [107]. Basically, a POD technique identifies the dominant

modes in a dataset by extracting the most important features, and these features can be linear com-

binations of the original state variables that capture the maximum amount of variability in the data

[108, 109].

Another powerful approach is sparse identification of system dynamics (SINDy), wherein it

utilizes a library of basis functions (selected using a priori process information) to find a sparse and

interpretable set of equations to describe dynamic chemical processes (e.g., second-order CSTR,

hydraulic fracking, battery dynamics, etc.). In addition, SINDy focuses on sparsity by finding a

small number of basis functions that have the most significant impact on the system’s behavior

[110, 111]. However, since SINDy models utilize process data for a certain system, they tend

to be very system-specific, and show plant-model mismatch when process parameters (e.g., rate

constants, diffusion kinetics, degradation mechanism) change. To tackle this issue, Kwon and

colleagues have developed and extensively demonstrated operable adaptive sparse identification of
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systems (OASIS) models, wherein many different individual SINDy models are trained and then

congregated using a deep neural network (DNN). This allows the OASIS model to adeptly select a

local SINDy suited for the current process condition for minimal plant-model mismatch [112, 113].

This framework can be event extended for dynamic risk-based fault prediction in industrial scale

chemical processes [114]. Very recently, a two-stage OASIS model was demonstrated for modeling

capacity fade and cell failure in lithium-ion batteries [115], wherein two separate OASIS models,

one for inter-cycle degradation and another for intra-cycle degradation, was successfully combined

for producing accurate predictions.

Finally, a similar approach was introduced by Kwon and colleagues using the Koopman oper-

ator framework, which utilizes a set of basis functions to transform a low-dimensional nonlinear

system into a higher-dimensional linear system that is easy to compute and integrate with an MPC

[116]. Further, this framework was demonstrated for reactor systems and even highly nonlinear

hydraulic fracking systems [117]. More importantly, a Koopman Lyapunov-based MPC (KLMPC)

framework was demonstrated and theoretically proved to show closed-loop stability on a certain

set of chemical systems [118], and this study was extended to further guarantee closed-loop sta-

bility of nonlinear systems by using a bilinear Koopman MPC system [119]. Furthermore, to

address the challenge of plant-model mismatch due to the Koopman approximation, an offset-free

KLMPC framework was formulated and showcased for accurate regulation of batch pulp digester

[79, 120]. Overall, there are several powerful data-driven reduced-order modeling techniques that

can be utilized to resolve some of the computational challenges associated with QDs.

1.2.5.2 Machine Learning Models

In the past decade, literature is rife with instances of ML-based surrogate models that DNN,

convolution neural networks (CNN), recurrent neural networks (RNN), and others to describe var-

ious chemical processes. First, a majority of the works demonstrated DNNs for input-output pre-

diction, surrogate modeling, and time-series modeling in catalyst, biochemical, and fault detection

applications [121, 122, 123, 124, 92]. Second, many studies utilized convolution neural networks

(CNNs), which allows spatiotemporal convolution and automatic feature detection, for applica-
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tions in process analysis tools (PAT), spectroscopy image analysis and characterization along with

a few cases of time-series prediction [125, 126, 127, 128, 129]. In another study, Bensmail and col-

leagues developed DeepCrystal for protein sequence-based prediction of crystal morphology [130]

using a deep-CNN. Abolhasani and colleagues developed a DNN model to predict QD size and

bang gap at the end of the crystallization process [131, 42]. Also, Shuangshuang and colleagues

developed a CNN model for online image analysis in crystallizers for monitoring the progress of

sugar crystallization [132]. Lastly, Hasan and colleagues provide a comprehensive overview of

various DNN and CNN-based models for expedited exploration of search space in the field of

computational material discovery [133].

Third, although DNNs and CNNs show quick training times, easy construction, and straight-

forward hyper-parameter tuning, they are not tailor-made for long-term time-series predictions,

which is often required in complex non-linear chemical systems (i.e., crystallization, battery mod-

els, heterogeneous catalysis, etc.). To this end, there have been few instances of utilizing se-

quential ML models like recurrent neural networks (RNNs) and long-short-term-memory (LSTM)

networks for time-series modeling in complex chemical systems. More precisely, the internal

model architecture of RNN and LSTM is designed to consider various model states/features in the

form of a time-series sequence using an internal for loop that reads the input state information at

each time-point (i.e., [Xt, Xt−1...Xt−w]) and predicts the state at the next time-point (i.e., yt+1).

Consequently, RNN and LSTM models often perform better than DNN and CNN for long-term

prediction of dynamic chemical systems even with reasonable model size and adequate training

data [134, 135, 136, 137, 138]. For example, Wu and coworkers utilized an encoder-based RNN

to learn the dynamics for batch crystallization of Fesoterodine fumarate [139, 140]. The encoder

layer helps transform crystal size distribution (CSD) in a lower dimensional space that is more

computationally tractable for the RNN to handle, thereby giving good prediction results. Overall,

the abovementioned ML techniques can be treated as a guide path for modeling several computa-

tionally expensive aspects of QD manufacturing processes.

11



1.2.5.3 Hybrid Modeling Techniques

Although the above ML techniques show high accuracy and ease of model training, they result

in black-box models that are not interpretable, and difficult to numerically treat within an online

MPC or an optimal operation problem. Thus, there has been a strong impetus to develop hybrid

models that combine system-agnostic first principles (e.g., mass and energy balance, transport

phenomena, and others) with system-specific data-driven parameters (e.g., process parameters,

kinetic constants, and others) to result in a ‘best-of-both-worlds’ approach. Specifically, Kwon

and colleagues have developed various hybrid models for different non-trivial chemical systems.

For example, in one study, a DNN-based hybrid model is developed for modeling the unknown

dynamics of leak-off rate with a PKN model for accurately describing fracture propagation in

hydraulic fracking [124]. Another study modifies this framework to dynamically estimate the

process parameters (i.e., rate constants, diffusion coefficients, and others) and couple them with

macroscopic mass and energy balance equations in an industrial scale fermentation process [141].

Moreover, this model was further modified to develop a physics informed neural network (PINN)-

based framework for describing batch kinetics of different lab-scale fermentation processes [142].

Finally, the developed hybrid model framework was integrated within an MPC that guarantees

stability within the domain of applicability of the model [143]. In a nutshell, the above examples

of hybrid models provide a good background for integrating system-agnostic process equations

with QD-specific ML models.

1.3 Objectives and Organization of the Proposed Research

The field of manufacturing of QDs and associated applications have garnered significant im-

portance in recent years due to the impetus toward high-performance QD-based devices. However,

there are three major challenges in this endeavor, viz., (a) the development of an accurate crystal-

lization model for continuous manufacturing of QDs; (b) high-fidelity modeling of the different

processes required in the production of QD-based devices; and (c) development of control frame-

work that utilizes computationally efficient surrogate model for both of the above processes. Thus,
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the overall objective of this doctoral study is to address the above challenges using a combination

of different microscopic, macroscopic, machine learning, and control techniques. To this end, a

schematic illustration of the organization of the proposed work is presented in Figure 1.1.

Figure 1.1: Schematic illustration of the proposed work.

Specifically, Section 2 describes our work in the development and testing of a continuous tubu-

lar flow crystallizer for fast-scalable manufacturing of QDs. Specifically, a kinetic Monte Carlo

(kMC)-based microscopic crystallization model is developed and experimentally validated, and

then utilized in conjunction with a nonlinear optimizer to control QD size. Then, Section 3 ad-

dresses the challenge of controlling the QDs size and CSD in SFCs by constructing a multiscale

model, which combines a computational fluid dynamics (CFD) model, a crystallization model, and

a DNN. The above two sections provide appropriate experimentally validated models addressing

the challenge of continuous manufacturing of QDs, and thus, the next two sections focus on QD

thin-film production. Section 4 presents a discrete element method (DEM)-based spray coating

model to describe the thin-film deposition process of QDs along with a demonstration of an MPC

13



for regulating the film characteristics (i.e., film thickness and roughness). Next, Section 5 details a

configuration kMC (ckMC) model describing the ligand crosslinking in QD systems for enabling

the better design of nanopatterning techniques for HRD applications. Furthermore, a brief descrip-

tion of two high-impact future directions is mentioned in Section 6. Lastly, Section 7 gives the

summary of the proposed work, and the list of publications is presented in Section A.
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2. MULTISCALE MODELING AND CONTROL OF TUBULAR CRYSTALLIZER FOR

CONTINUOUS QD MANUFACTURING*

As mentioned earlier, (a) understanding the crystallization kinetics for QDs (i.e., in this case, 

CsPbBr3 QDs), and (b) development of a tubular crystallizer model and an associated control 

framework will be a crucial factor for large-scale continuous manufacturing of CsPbBr3 QDs with 

size-tuning capabilities. These challenges are addressed by proposing a multiscale model for plug-

flow crystallizer (PFC). Specifically, the macroscopic phase of PFC is modeled to describe the dy-

namic spatiotemporal evolution of precursor concentration and QD size using a continuum model 

for mass balance. The discretized continuum model is integrated with a kinetic Monte Carlo simu-

lation (KMC) model to formulate a high-fidelity multiscale model; the KMC simulation describes 

the physics behind QD synthesis (i.e., CsPbBr3 unit cell attachment and mass-transfer rate of ligand 

adsorption and desorption of the ligand), and its dependence on the local precursor concentration 

and superficial flow ve lo city. Th en, the developed crystallizer model is  experimentally validated. 

Then, an optimizer, which dictates the optimal input profile (i.e., inlet precursor concentration and 

flow rate) for set-point tracking is designed. More details about this chapter are presented in our 

previous work.

2.1 Mathematical Modeling of PFC

2.1.1 Process Description

We consider a PFC as shown in Figure 2.1 that has a length of 10 cm and an internal diameter 

of 0.1 cm. The PFC has two manipulated inputs, viz., precursor concentration, Co, and superficial 

flow v elocity, v z, which can be u sed t o fine-tune the si ze of  Cs Pb Br3 QDs at  the en d of  the PFC, 

rfinal. For an initial precursor concentration of Co, and superficial flow velocity, vo, the QD crystals 

start growing at zo (the entry location of the PFC), and reach the desired set-point value, rfinal,sp,

*Content of this chapter was published in the Chemical Engineering Journal [144], and copyright permission 
from the journal has been granted for inclusion in the dissertation. All the figures i n t his w ork a re a dapted f rom the 
abovementioned journal publication.
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at the end of the PFC, zn. Thus, for an accurate description of QD crystal growth in a PFC, it

is important to investigate the spatiotemporal evolution of QD crystal size, r(t, z), and precursor

concentration, C(t, z), in the PFC.

Figure 2.1: Schematic illustration of the proposed multiscale model of a PFC. The inputs to the PFC are the
precursor concentration, Co, and superficial flow velocity, vz . The QD crystal size at the end of the PFC
is denoted by rfinal. The blue spheres represent the QD crystals growing along the flow direction, and the
green extensions around the crystal represent the ligand molecules.

2.1.2 Macroscopic Model of the PFC

By employing a standard continuum model, and considering spherical nanocrystals at root

temperature, we can describe the mass balance within the PFC as follows:

∂C

∂t
= −vz

∂C

∂z
− ρsns(t, z)4πr

2(t, z)Gr(C, vz, r) (2.1)

where r(t, z) is the radius of nanocrystals, ρs is the density of CsPbBr3 QD crystal, ρf is the

density of the solution phase, ns(t, z) is the number of crystals in the PFC, vz is the superficial

flow velocity in the PFC, and Gr is the one-dimensional (1D) crystal growth rate.
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Generally, Gr is estimated experimentally, and is a nonlinear function of precursor concentra-

tion and temperature of the solution phase [40, 145]. However, the room-temperature experimental

studies show that crystal growth in CsPbBr3 QD synthesis depends on the superficial flow velocity

[43, 131]. Further, during CsPbBr3 crystal growth, there are also other phenomena (i.e., ligand-

shell formation [146], and Br rich crystal surface [36]) leading to a size-dependent crystal growth

behavior. To this end, an alternative approach to computing Gr(C, vz, r) is required.

2.1.3 Microscopic Description of QD Crystal Growth

To accurately model the microscopic crystallization kinetics, the following experimental ob-

servation needs to be accounted for in the proposed kMC model. Firstly, the rigorous mixing of

the precursors results in multiple PbBr6 octahedra and subsequent formation of CsPbBr3 unit cells,

which then aggregate to form QD crystals. Secondly, this is accompanied by the attachment of lig-

and molecules on CsPbBr3 crystal surface. Thirdly, recent studies have demonstrated the pivotal

role of the superficial flow velocity in influencing the mixing characteristics in a PFC [1, 131].

2.1.4 KMC Model Development

A KMC model based on a solid-on-solid (SOS) approach, which takes into account the micro-

scopic events (i.e., adsorption, migration, and desorption) occurring in the crystallization process

is developed [147, 148].

2.1.4.1 Surface Kinetics

Firstly, the rate of crystal growth, which dictates the attachment of CsPbBr3 unit cell to the

crystal nuclei, is given as follows:

ra = NKoexp

(
∆µcry

kT

)
; ∆µcry = kBT ln

(
Ccry

S

)
(2.2)

where K0 is the attachment rate at equilibrium (∆µcry = 0), T is the temperature in Kelvin, N is

equal to the KMC lattice size (N = 200), Ccry is the precursor concentration [CsPbBr3], S is the

solubility of [CsPbBr3], which is a constant, kB is the Boltzmann constant and ∆µcry refers to the
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difference in the chemical potentials of [CsPbBr3] in the solution phase and the crystal.

Figure 2.2: Schematic illustration of the ligand attachment event. The green waves schematically show the
formation of ligand-shell on the crystal surface, and the blue spheres represent the individual CsPbBr3 unit
cells which build up to form one CsPbBr3 QD crystal.

Secondly, the rate of ligand attachment is dictated by the molar flux of th ligand molecules

from the solution phase to the crystal surface, which is defined as follows:

Jlig = hm
(
Clig − C∗

lig

)
rlig = NJligNAd

2

(2.3)

where hm is the convective mass transfer coefficient, Clig is the concentration of free ligand

molecules in the solution phase, C∗
lig is the equilibrium concentration of free ligand molecules

on the crystal surface, NA is the Avagadro’s constant, and d is the edge length of one unit cell of

crystalline CsPbBr3.

Thirdly, the loosely bound ligands can detach and dissolve back in the solution, and this is

described as follows:
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rd(i) = Koexp

(
−i Eb

kBT

)
Nlig(i) (2.4)

where Eb is the average binding energy per bond between two ligands, i ∈ [0, 2] is the number of

nearest ligand neighbors, and Nlig(i) is the number of lattice sites occupied by ligand molecules

having i nearest neighbors.

Lastly, the total rate,Wtotal, is the sum of all the three individual rates and is defined asWtotal =

ra + rlig +
∑2

i=0 rd(i).

2.1.4.2 kMC Event Execution

The probability of CsPbBr3 unit cell attachment, ligand attachment, and ligand detachment is

represented as Pa, Plig and Pd, respectively. These probabilities are calculated as shown below:

Pa =
ra

Wtotal

Plig =
rlig
Wtotal

Pd =

∑2
i=0 rd(i)

Wtotal

(2.5)

Only one KMC event can be executed at each event execution step. Thus, to determine which event

to be executed, a random number, ξ1 ∈ (0, 1], is generated and used in conjunction with Table 2.1.

Probability Conditions Event Executed
0 < ξ1 ≤ Pa CsPbBr3 unit cell attachment

Pa < ξ1 ≤ Plig + Pa Ligand attachment
Pa + Plig < ξ1 ≤ Pa + Plig + Pd Ligand detachment

Table 2.1: Probability conditions for selecting a KMC event.

Firstly, if a CsPbBr3 unit cell attachment event is selected, lattice site i ∈ [0, N ] is chosen at

random, then a CsPbBr3 unit cell is deposited on lattice site i and will result in crystal growth.
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Secondly, if a ligand attachment event is selected, then lattice site j ∈ [0, N ] is selected at random,

and a ligand molecule can successfully attach onto the top layer of lattice site j, as shown in

Figure 2.2. Lastly, it is important to correlate the virtually executed KMC events to the time

elapsed in the real world. Hence, after every KMC event, either successful or unsuccessful, there

is a corresponding time increment, ∆t, which is given by ∆t = − log ξ3
Wtotal

, where ξ3 ∈ (0, 1] is a

random number. The detailed methodology can be found in our previous work [144].

2.2 Experimental Validation Results

For experimental validation, time-series data of CsPbBr3 QD crystal size was collected using a

millifluidic platform [43, 131].

Figure 2.3: (a) Validation results for the proposed KMC simulation, where the solid line represents the KMC
simulation and the scatter plot represents the experimental results [1], and (b) KMC simulation results for
varying precursor concentrations at a constant superficial flow velocity of 2.17 cm/s.

Figure 2.3a the KMC simulation and the experimental observations at a precursor concentration

of 10 mM and varying superficial flow velocities. It is evident from the validation results that

the proposed KMC simulation captures the underlying crystallization phenomenon and predicts

the experimental observations well (i.e., error is in the range of 2 % to 15 %). More importantly,
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Figure 2.3 suggests that QD crystal size can be effectively controlled by manipulating the precursor

concentration and superficial flow velocity.

2.3 Optimal Operation of PFC

Thus, for establishing a PFC for continuous QD manufacturing, it is paramount to determine

the values of Co and vo to achieve a minimal offset from the set-point value for rfinal (i.e., the

desired QD size). The formulation shown below presents an optimization problem to compute the

optimal inputs, Co and vo, for a desired rfinal value.

Minimize
Co,vo

(rfinal − rfinal,sp)
2 + λu2

s.t 5 < Co(t) ≤ 15 (mol/m3)

0.05 < vo(t) ≤ 10 (cm/s)

∂C(t, z)

∂t
= −vz

∂C(t, z)

∂z
− ρsns4πr

2(t, z)Gr(C(t, z), vz, r(t, z))

(2.6)

where rfinal,sp is the desired QD crystal size, u is a vector of input variables (C0 and vo), and λ is

the input regularization parameter. The optimizer in Equation 2.6 is subject to certain constraints,

which limits the values of Co and vo to realistic values which can be achieved in an experimental

setup [1, 131]. Unfortunately, Gr(C, vz, r) is obtained by the computationally expensive KMC

model, making it infeasible for the optimizer to perform multiple iterations to procure a feasible

solution. Thus, we use an artificial neural network (ANN) to mimic the developed kMC model

to increase the efficiency of the optimizer. Next, we can combine the kMC-mimicking ANN with

the PDE for concentration balance to develop an ANN-based hybrid model that can efficiently

describe the dynamics in a PFC.
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2.3.1 ANN Architecture and Training

An ANN with three inputs (i.e., C(t, z), vz, and r(t, z)), a single output, Gr(C, vz, r), and

two hidden layers has been developed. The input data comprise of the KMC simulation results

of QD crystal growth for varying precursor concentrations and superficial flow velocities, which

are averaged over 10 kMC trials. Various ANN architectures with two hidden layers and different

numbers of neurons were tested, and it was observed that ANN with 20 neurons gave the least

validation error of 0.0011 along with a testing error of 0.0095. Accordingly, Figure 2.4 shows the

comparison between the proposed ANN, with 2 hidden layers and 10 neurons in each hidden layer,

and the KMC simulation. It is evident that the ANN very well mimics the KMC simulation, and is

24000 times faster than the kMC.

Figure 2.4: (a) Learning curve for ANN training, which shows that ANN with 2 hidden layers, each with 10
neurons, has the least validation error, and (b) comparison of the trained ANN and KMC simulation.

As mentioned earlier, the resulting ANN model simulates the computationally heavy kMC

process in an expedited manner, and thus, it can be integrated with the discretized version of the
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Figure 2.5: (a) Spatiotemporal evolution of QD crystal size for the optimal operation of the PFC for a
set-point value of 9 nm, and (b) precursor concentration profile for the optimal operation of the PFC. The
relative deviation from the set-point value is ∼ 6.1 %.

concentration balance to develop a simple ANN-based hybrid model for the PFC.

2.3.2 Results for QD Size Control

Figure 2.5a shows the QD crystal size evolution in the PFC under optimal operation mode with

a setpoint of 9 nm. Near the entry of the PFC, and for the first 2-3 seconds, the QD crystals grow

very rapidly before they gradually saturate to terminal size, rfinal, towards the end of the PFC.

Initially, the large precursor concentration and absence of a ligand-shell give a boost to fast crystal

growth, and then as precursor concentration drops and ligand-shell formation takes place, the QD

crystal growth ceases and reaches a terminal value. Specifically, the relative deviation between

rfinal and the set-point value is ∼ 6.1 %. Figure 2.5b shows the precursor concentration profile in

the PFC. Initially, the precursor concentration drops significantly due to the rapid crystal growth,

and then it saturates to a stable value. This happens simultaneously with the QD size saturation

(Figure 2.5b); because if the QD crystals cease to grow any further, additional precursors are not

consumed, thereby stabilizing the precursor concentration towards the end of the PFC.
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2.4 Conclusions

Inspired by a recent investigation of CsPbBr3 QDs, a macroscopic model of PFC was modeled.

Specifically, a first-principled KMC model was presented and was dynamically integrated with

continuum models to formulate a multiscale model for a PFC. The KMC model was validated with

relevant experimental observations to ensure model fidelity. The simulation results suggested that

precursor concentration and superficial flow velocity could be manipulated to fine-tune the QD size

at the end of the PFC. Thus, an optimal operation framework was proposed for set-point tracking in

a PFC. To achieve quick computations in the optimizer, an ANN was proposed as a surrogate model

for the high-fidelity KMC simulation. Lastly, open-loop operation was successfully demonstrated

with a relative deviation of < 10 % from the set-point values. Moreover, the proposed PFC can be

continuously operated and optimally controlled to produce CsPbBr3 QDs of a desired size at a rate

of 2-4 ml/min, thereby circumventing the problem of low production volume, which is prevalent

in the conventional flask-based synthesis of perovskite QDs.
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3. MULTISCALE MODELING OF SLUG FLOW CRYSTALLIZERS (SFC) FOR QD

PRODUCTION*

The previous chapter focused on the development of a high-fidelity multiscale model for contin-

uous crystallization of QDs using a PFC, and subsequent control of QD size using an ANN-based 

optimal operation framework. This concept of tubular crystallization can be extended to two-phase 

slug flow crystallizers (SFCs), which can provide access to larger control space by manipulation 

of three process inputs (i.e., gas and liquid velocity, and solute concentration). However, there is a 

scarcity of models which accurately describe slug flow crystallizers (SFCs) by considering (a) the 

existence of a stable slug regime, and (b) considering the effect of slug-to-slug (S2S) variation on 

CSD. To address the aforementioned two challenges, we developed an ANSYS Fluent-based com-

putational fluid dynamics (CFD) model to accurately investigate the complexity associated with an 

SFC. The CFD model was capable of finding a  stable slug flow regime in  an  SFC and analyzing 

the S2S variation. Further, the slug variation results from the CFD simulation were fed to a slug 

crystallizer model which combines a continuum and a kinetic Monte Carlo (kMC) model. The 

proposed CFD-based multiscale model (i.e., CFD + continuum + kMC) was used to investigate 

the effect of slug-variation on CSD in a SFC and underlined the need of minimizing this effect. 

Thus, an optimization problem was formulated to find the optimal operating condition for the SFC, 

which will provide good set-point tracking performance while maintaining a narrow CSD. Overall,

(a) the CFD model was able to capture the phenomenon of S2S variation, and the CFD results were 

fed to the slug crystallizer model that successfully described the crystallization of QDs in a SFC, 

and (b) the optimal operation framework exhibited good set-point tracking performance. More 

details about this chapter are presented in our previous work.

*Content of this chapter was published in the Industrial & Engineering Chemistry Research Journal [149], and 
copyright permission from the journal has been granted for inclusion in the dissertation. All the figures in this work 
are adapted from the abovementioned journal publication.
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3.1 CFD-based Multiscale Modeling of SFC

3.1.1 Process Description

Recently, a millifluidic SFC platform was used to fine-tune the size of QDs by manipulating the

slug flow velocity and the precursor concentration [27, 150]. Here, the alternating air-liquid slugs

are achieved when SFC is operated in a stable slug regime. In this scenario, it was observed that

each liquid slug acts as an independent batch crystallizer while the overall SFC can be continuously

operated. Based on these recent developments, in this work, we consider a SFC as shown in

Figure 3.1. The pipe diameter and length are set to be 1.5 mm and 100 cm, respectively. Also, it

has an L-shaped junction which has two inlets, one for nitrogen, and the other for the precursor

solution. Furthermore, the velocity of gas (nitrogen), vgas, and velocity of liquid (toluene), vliq, are

adjusted to investigate the existence of a stable slug flow regime.

Figure 3.1: Schematic illustration of the multiscale phenomena taking place in a SFC. The blue spheres
represent the QD crystals growing along the flow direction, and the green extensions around the crystal
represent the ligand molecules.
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3.1.2 CFD Modeling of Two-phase Slug Flow

While there exists a plethora of methods for modeling two-phase immiscible fluids, the volume

of fluid (VOF) is the most common method [151]. Due to its superior ability to track topological

changes in the interface and being naturally conservative, it has been widely applied to a number

of different applications [152, 153].

3.1.2.1 Governing Transport Equations

Incompressible Navier-Stokes equations, which can be used to model the velocity (u), and

pressure (p) for two interacting fluids with constant density, are given as follows:

∂u
∂t

+∇ · (uu) = −(∇p+ µ∇2u)
ρ

+
FSF

ρ
+ g

∇ · u = 0

(3.1)

where u is the fluid velocity, p is the pressure, g is the gravitational acceleration, FSF is the contin-

uum surface force (CSF) vector, ρ is the bulk phase density, and µ is the bulk phase viscosity. This

formulation assumes an isothermal flow of two immiscible Newtonian fluids. The VOF method

tracks the topological changes at the interface by creating an isocontour of a globally defined func-

tion (α), which is defined as follows: [154, 155]

∂α

∂t
+∇ · (uα) = 0 (3.2)

A detailed description of the modeling description can be found in our previous work [149],

and in the appendix section.

3.1.2.2 Meshing and Numerical Schemes

The SFC was fine-meshed with triangular structured cells to ensure numerical convergence.

The meshing quality, which can be assessed using various indicators like skewness and aspect

ratio, is shown in Figure 3.2. Generally, an aspect ratio close to unity suggests a good quality

mesh as shown in Figure 3.2c. Also, atmospheric pressure was maintained at the outlet, and a
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Parameters Values
Density (Toluene) 866 (kg/m3)
Density (Nitrogen) 1.225 (kg/m3)

Interfacial tension (Toluene-Nitrogen) 0.022 (N/m)
Mesh size 0.1 mm

# of nodes in mesh 649605
# of elements in mesh 314772

Table 3.1: Parameters for the ANSYS Fluent simulation.

no-slip boundary condition was used at the walls. The PISO (pressure-implicit with the splitting of

operators) was used for pressure velocity coupling. And, the numerical convergence criteria for the

continuity equation was set to 0.0001. Lastly, Table 3.1 presents the other details of the ANSYS

Fluent simulation.

Figure 3.2: Snapshot of the ANSYS Fluent Mesh tool showing (a) triangular mesh of element size 0.1 mm,
(b) distribution of skewness throughout the mesh, (c) distribution of aspect ratio throughout the mesh, and
(d) illustration of skewness and aspect ratio.
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3.1.3 Slug Crystallizer Model

3.1.3.1 Macroscopic Modeling: Mass and Energy Balance

In the stable slug regime, each liquid slug can be treated as a well-mixed mini-batch crystallizer

[156, 157]. Subsequently, mass and energy balance for slug i ∈ [1, N ] can be described as follows:

dC(i)

dt
= ρsns(i, t)4πr

2(i, t)Gr(i)

dT (i)

dt
= −ρs∆Hc

ρfCp

ns(i, t)4πr
2(i, t)Gr(i)−

Ucac
ρfCp

(T (i)− Tw)
(3.3)

where r(i, t) is the average crystal radius in slug i, C(i) is the precursor concentration in slug

i, T (i) is the temperature in slug i, ρs is the density of CsPbBr3 crystals, ρf is the density of

the solution phase (toluene), Cp is the specific heat of the solution phase, Uc is the heat transfer

coefficient for the heating/cooling jacket, ac is the surface area of the heating/cooling jacket, Tw is

the temperature of the jacket wall, ns(i, t) is the number of CsPbBr3 crystals in slug i, and Gr(i)

is the one-dimensional (1D) crystal growth rate in slug i.

3.1.3.2 Microscopic Modeling: kMC Simulation

Furthermore, since CsPbBr3 QDs is a relatively new system, there is a scarcity of reliable

correlations and empirical rate laws for Gr(i). Therefore, it is of significant interest to develop a

microscopic crystal growth model, which considers the effect of ligand-shell formation and slug

velocity on Gr(i). Our previous work describes the microscopic kMC crystallization model in

detail, and is used to compute Gr(i) [144]. Briefly, there are three major events in the KMC

simulations, viz.., unit cell attachment, ligand attachment, and ligand detachment. The interplay

of the aforementioned kMC events simulates the growth of QD crystals, and computes Gr(i).

3.1.3.3 Integration of Macroscopic and Microscopic Model

The solution to Equation 3.3 is found by computing Gr(i) for slug i using the kMC simulation,

which describes the microscopic phenomenon underlying CsPbBr3 crystal growth. Specifically,

since C(i, t) and Gr(i) affect each other, the kMC simulation is performed for each t and slug i to
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Figure 3.3: Schematic illustration of the workflow employed in the proposed CFD-based multiscale model-
ing framework.

accurately trace the evolution of C(i, t) and r(i, t) as shown in Figure 3.3. It is important to note

that each slug i has a slightly different slug velocity, which leads to a variation in the evolution

of crystal size and precursor concentration; this variation ultimately results in a wide CSD. Lastly,

the overall modeling methodology is schematically described in Figure 3.3.
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3.2 Results and Discussion

3.2.1 Stable Slug Regime and Experimental Validation

To find the stable slug flow regime, CFD simulations were performed under various initial

conditions (i.e., different sets of nitrogen and toluene velocities). Specifically, a grid search was

performed, where the nitrogen velocity was varied from 0.01 m/s to 0.1 m/s, and the toluene

velocity was varied from 0.01 to 0.04 m/s. Then the CFD results, which include the slug regime

data and slug velocity, for each of these grid points was tabulated for further analysis.
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Figure 3.4: Comparison of slug velocity measured from experiments [2] and computed from the CFD sim-
ulation for a set of fluid velocities.

A stable slug flow was observed under certain initial conditions. For example, Figure 3.5 shows

the temporal evolution of nitrogen volume fraction in the SFC when vnitrogen is 0.03 m/s and vtoluene

is 0.04 m/s. Clearly, the figure shows various steps in the formation of a stable slug flow, which are

summarized in detail in our previous work [149]. To further confirm the existence of a stable slug

flow, the temporal evolution of gas volume fraction at the tracer plane AB is shown in Figure 3.6.
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Figure 3.5: Compilation of the CFD simulation snapshots, which shows the contour of nitrogen volume
fraction in the SFC. The nitrogen velocity (vnitrogen) was 0.03 m/s, and the toluene velocity (vtoluene) was
0.04 m/s.

The oscillating amplitude (y axis) in Figure 3.6 is characteristic of a stable alternating slug flow

condition[154]. Specifically, gas volume fraction oscillated between a magnitude of 1 (gas slug),

and 0 (liquid slug), thereby indicating the existence of alternating gas-liquid slugs.
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Figure 3.6: Temporal evolution of gas volume fraction in the SFC when operated at a stable slug flow
condition. The gas velocity was 0.03 m/s, and the toluene velocity was 0.04 m/s.

Figure 3.7: Slug velocity at the tracer plane AB showcasing the varying slug velocity for each incoming
liquid slug. In this case, vnitrogen was 0.03 m/s and vtoluene was 0.04 m/s.

Furthermore, to validate the proposed CFD model, the SFC was operated at a set of fluid

velocities, and the corresponding slug velocities were measured experimentally. From Figure 3.4

it can be observed that ANSYS simulation mimics the experimental observations well for a set of

fluid velocities (indicated by ‘Counts’ on x-axis in Figure 3.4).
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3.2.2 Fitting Slug Velocity to Normal Distribution

The phenomenon of S2S can be observed even in the presence of a stable slug flow regime

[158]. For example, Figure 3.7 shows the slug velocity peaks (i.e., y axis) are slightly different for

each incoming slug. Then, the slug velocity was plotted in Figure 3.8 to see if there is a certain

pattern to S2S. It is evident that the slug velocity in a SFC closely follows a normal distribution,

and thus, quantifies this variation.

Figure 3.8: Slug velocity variation in the SFC showcasing a normal distribution for different sets of fluid
velocities: (a) vnitrogen = 0.03 m/s, vtoluene = 0.04 m/s, µ = 0.072 m/s, and σ = 2.1 %; and (b) vtoluene =
0.03 m/s, vnitrogen = 0.06 m/s, µ = 0.091 m/s, and σ = 1.4 %. Here, µ represents the mean slug flow velocity,
and σ represents the standard deviation of the slug velocity.

3.2.3 Lookup table for Predicting Slug Velocity Variation

The previous section exhibited the existence of S2S variation and indicated that slug velocity

conforms well to a normal distribution. When a similar analysis was performed for all the grid

points in the fluid velocity space, it was observed that S2S follows a normal distribution with

varying mean (µ) and standard deviation (σ). Furthermore, the surface contour in Figure 3.9 is

used in the form of a lookup table as it provides the values of average slug velocity (µ), and slug

velocity variation (σ) at the required set of fluid velocities. Overall, Figure 3.9 serves as a guide
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Figure 3.9: Surface contour plot showcasing the spread of (a) variation in slug velocity (σ), and (b) mean
slug velocity (µ) across the fluid velocity space. The region with no color corresponds to the fluid velocities
at which a stable slug flow condition was not achieved.

to determine the fluid velocities which result in a minimum slug variation, and possibly lead to a

homogeneous crystallization behavior across the SFC.

3.3 Multivariable Optimal Operation Problem

An optimization problem aimed at finding the optimal input profile (i.e., nitrogen velocity

(vnitrogen), toluene velocity(vtoluene), and precursor concentration (C0)), which can ensure the good

set-point tracking (i.e., QD size) along with a narrow CSD, was constructed as follows:

Minimize
Co,vnitrogen,vtoluene

(rfinal − rfinal,sp)
2 + λσ2

cry

s.t 5 < Co(t) ≤ 15 (mol/m3)

vnitrogen(t), vtoluene(t) ∈ Stable slug regime

vslug(i) ∈ ϕ(vnitrogen, vtoluene)

∂C(i)

∂t
= ρsnseed(i)4πr

2(i, t)Gr(i)

(3.4)

where rfinal,sp is the desired QD crystal size (i.e., set-point), rfinal is the predicted QD size at the

SFC exit, σcry is the standard deviation of CSD, λ is the regularization parameter, which penalizes
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a broad CSD, and ϕ(vnitrogen, vtoluene) is the normal distribution of slug velocities as described in

the lookup table. Specifically, ϕ(vnitrogen, vtoluene) is used to generate an array of slug velocities

for N liquid slugs. This information is fed to the slug crystallizer model, and the crystal size

evolution and precursor concentration profile are generated (Figure 3.3). Furthermore, since the

solution to Equation 3.4 would require computation of crystal growth rate, Gr(i), over multiple

optimization iterations, the previously developed ANN [144] was utilized to increase the efficiency

of the optimizer.

Figure 3.10: (a) Crystal size evolution of CsPbBr3 QDs in SFC, and (b) CSD of CsPbBr3 QDs at the SFC
exit. The CSD at the SFC exit follows a normal distribution with a mean (µcry) of 9.38 nm, and a standard
deviation (σcry) of 5.71 %.

3.3.1 Optimal Operation Results

The optimal operation problem was solved for a set-point (QD size) value of 9 nm. The solution

to the optimal operation problem yields a C0 value of 13 mM, vnitrogen of 0.082 m/s, and vtoluene

of 0.022 m/s as the optimal input values, which are indeed in the stable slug regime. Feeding this

input to the slug crystallizer model provides the evolution of QD crystal size with time, and the

CSD at the exit of the SFC (Figure 3.10). Specifically, the average crystal size evolution in the SFC

is shown in Figure 3.10a. The light blue region illustrates the variation of crystal size inN different

slugs and represents the evolution of QD crystal size. Figure 3.10b shows the CSD computed at
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the SFC exit follows a normal distribution with a mean (µcry) of 9.38 nm and a standard deviation

(σcry) of 5.71 %. Furthermore, the relative deviation between µcry and the set-point value is ∼ 3.5

%. Also, a σcry of 5.71 % suggests that the crystal size in N different slugs is not significantly

different.

3.4 Conclusions

This present work was motivated by the challenges faced in the operation of SFCs for con-

tinuous manufacturing of CsPbBr3 QDs. Specifically, the existence of a stable slug flow regime

and the effect of S2S on QD crystallization was not addressed in the literature. To tackle these

challenges, a CFD-based multiscale modeling and control framework was introduced in this work.

Firstly, a CFD model was used to investigate the existence of a slug regime, and quantify the vari-

ation in slug velocity under different nitrogen and toluene velocities. Then, the results from the

CFD simulations were incorporated in the slug crystallizer model, which was constructed by cou-

pling a continuum model and previously developed kMC simulation. The proposed CFD-based

multiscale framework described the crystallization of QDs in the SFC, and demonstrated the ef-

fect of slug variation on CSD. Based on this modeling framework, an optimization problem was

formulated to perform set-point (QD size) tracking, and to minimize the effect of slug variation on

crystal growth. The optimization problem provided an optimal input profile comprising fluid ve-

locities and inlet precursor concentration, which ensured a narrow CSD and< 10 % deviation from

the set-point value. Thus, the present work demonstrates a CFD-based multiscale modeling and

control framework for enabling fast manufacturing (i.e., 30 to 170 ml/s) of CsPbBr3 QD crystals.
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4. MODELING OF SPRAY COATING OF QDS FOR THIN-FILM APPLICATIONS*

The above two chapters focus on the construction of a multiscale modeling and control frame-

work for enabling continuous manufacturing of QDs to meet market demands. Subsequently, these 

solution-processed QDs need to be converted to thin-films for application in various QD-based de-

vices. To this end, literature studies demonstrate spray coating as a promising approach for the 

deposition of high-quality thin-films [48, 49]. That being said, the combination of macroscopic 

phenomena (e.g., transport and thermal), and surface-level interactions makes the modeling and 

control of spray coating a non-trivial task.

Motivated by these concerns, in this work, a spray coater is modeled using a system of macro-

scopic mass and energy balance equations (MEBE), which describe solvent evaporation. Then, to 

model the particle aggregation, the discrete element method (DEM) is utilized [159]. Specifically, 

the DEM considers different molecular interactions (i.e., dipole-dipole forces, Brownian motion, 

van der Waals forces, and circulatory flow) [160, 161]. Thus, the DEM-based model in conjunc-

tion with MEBE describes the solvent evaporation, and particle aggregation in spray coating of 

perovskite QDs. Furthermore, the developed model is integrated with a model predictive control 

(MPC) framework to regulate the film characteristics (i.e., thickness, and roughness). Specifically, 

the deposition rate and the spread of the spray cone are manipulated in a spray coating apparatus. 

More details about this work are presented in our previous work.

4.1 Mathematical Modeling of Thin-Film Deposition

4.1.1 Process Description

In this work, a spray applicator atomizes and sprays colloidal QD solution onto a heated sub-

strate to achieve thin-film d eposition a s s hown i n F igure 4 .1. C onsequently, a tomized droplets 

impinge onto the substrate and form tiny droplets followed by solvent evaporation. Furthermore,

*Content of this chapter was published in the Chemical Engineering Research and Design Journal [162], and 
copyright permission from the journal has been granted for inclusion in the dissertation. All the figures in this work 
are adapted from the abovementioned journal publication.
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during solvent evaporation, the QD particles, which have a size range of ∼ 10 nm, undergo parti-

cle aggregation due to the presence of various molecular interactions and result in film formation

[163]. Also, liquid velocity (vl) and gas velocity (vg), which dictate the deposition rate of atomized

droplets, can be adjusted to change the thin-film deposition dynamics. Furthermore, spray nozzle

height (Hn) can be adjusted to change the spread of deposited droplets, which follows a Gaussian

distribution, X ∼ N(µ, σ). That is to say that the density of impinging droplets decreases in a

radial manner as one moves away from the center of spray applicator.

Figure 4.1: A schematic illustration of the proposed multiscale spray coating process along with a heated
substrate for auto-curing of the thin film. The red dots in the magnified area are QD particles that are
undergoing particle aggregation.

4.1.2 Macroscopic Thin-film Deposition Model

Based on the above description, the evolution of QD thin-film thickness is given as follows:

Asub

∫ t

0

dhx,y
dt

=

∫ t

0

F (t)exp

[
−1

2

(
x2 + y2

H2
n

)]
(4.1)
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where hx,y indicates the film height at location (x, y) ∈ L, Asub is the substrate area, and L

represents the substrate lattice. Thus, the evolution of film thickness varies with the deposition rate

(F ), and Hn across the substrate lattice. F is determined by liquid velocity, and is given as F =

vlAnoz, where Anoz is the cross-sectional area of nozzle. Furthermore, along with the deposition

rate, droplet size and the distribution of droplet size are important considerations. Specifically, the

ratio of air velocity (vg) and liquid velocity (vl) controls the droplet size distribution in a spray

nozzle. Thus, to include the size variation of atomized droplets, the following correlation for two-

phase gas/liquid nozzles is utilized:

d̄s =
585

vg − vl

√
σl
ρl

+ 597

(
µl√
ρlσl

)0.45(
1000vg
vl

)
(4.2)

where ds is the Sauter-mean diameter (SMD) of atomized droplets, σl is the surface tension of

solvent, ρl is the solvent density, and µl is the solvent viscosity. Also, to include droplet-to-droplet

size variation, atomized droplets are assumed to have a Gaussian distribution as shown below:

di = Nd(SMD, σd) (4.3)

where di indicates the diameter of an arbitrary droplet, and σd is the standard deviation of the

droplet size around SMD. Lastly, the quality of thin-film was calculated using the root-mean-

square error-based roughness (ψRMSE) of thin-film, which is defined as follows:

ψRMSE =

√√√√ 1

L

L∑(
hx,y − h̄

)2 (4.4)

where h̄ is the average film height, and L represents all the lattice points on the substrate.

4.1.3 Surface-level Droplet Evaporation

Consider droplets of radius Rd that are now stationary on the substrate surface as shown in

Figure 4.2, and a diffusion-controlled droplet evaporation dynamics is considered as shown below

[161]:
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dm

dt
= −4πRdDg (ρg,Rd

− ρg,∞)

ρg,Rd
= Psat/RgasT

(4.5)

where m is the total mass of evaporating droplet, Rd is the radius of droplet, Dg is the gas-vapor

mutual diffusion coefficient, and ρg,Rd
and ρg,∞ are the solvent vapor concentration (kg/m3) at

the surface and ambient condition, respectively. Also, Psat is the saturation pressure of toluene

at temperature T . Additionally, the temperature evolution of droplets needs to be monitored by

defining an energy balance equation across droplets as follows:

ρsCp
dT

dt
= πR2

dλ(Ts − T ) + ∆HL
dm

dt
(4.6)

where T is the droplet temperature, λ is the heat transfer coefficient, and Cp is the heat capacity of

solvent.

Figure 4.2: A schematic illustration of the evaporating droplet is considered in this work. The blue dots in
the magnified area are QD particles within each atomized droplet.

4.1.4 Surface-level QD Particle Interactions

Atomized spray droplets impinge onto the heated substrate and undergo evaporation, and si-

multaneously, the QD particles within the droplets undergo particle aggregation as shown in Fig-
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ure 4.2 due to the influence of various molecular interactions. Thus, to accurately describe the

microscopic dynamics of this phenomenon, a DEM model is developed. In the model, the resul-

tant force on each QD particle in the system is computed in accordance with Newton’s law of

motion, which is used to update the position of that QD particle as shown below:

mp
dvp
dt

= F = fd + fvdW + fb + fc (4.7)

where mp is the mass of a single QD particle, vp is the instantaneous particle velocity, fd is the

dipole force, fvdW is the van der Waal’s force, fb describes Brownian motion, and fc represents

the circulatory flow in an evaporating droplet. After computing the resultant force on each QD

particle, the instantaneous velocity and displacement of the QD particle are calculated in the x and

y directions, and given as follows:

X i
t+∆ts = X i

t +∆tsv
i
x,t ; vix,t = (F i

x/mp)∆ts

Y i
t+∆ts = Y i

t +∆tsv
i
y,t ; viy,t = (F i

y/mp)∆ts

(4.8)

where X i and Y i represent the position of the ith QD particle in the Cartesian space, and ∆ts is

the microscopic simulation time-step. Also, vix and viy are the instantaneous velocity of the ith QD

particle in the x, and y directions, respectively. Finally, a schematic illustration of the computation

of the resultant force on a particular QD particle is shown in Figure 4.3.

4.1.4.1 Brownian Motion

The QD particles are in the size range of 5-20 nm, and at this length scale, Brownian motion

becomes a dominant transport mechanism. The stochasticity of Brownian motion is effectively

captured by Gaussian white noise, which is given as follows [159]:

fB = ξ

√
12πRµlkBT

∆ts
(4.9)

where R is the radius of QD particles, kB is the BoltzmDNN constant, and ξ ∈ (0, 1] is a random

number.
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Figure 4.3: A schematic illustration of resultant force calculation in the developed microscopic DEM model.
Here, dcut is the cut-off distance, after which the strength of molecular interactions is negligible, and d is
the distance between two QD particles.

4.1.4.2 van der Waal’s Interactions

At the nanoscale, it is important to consider the effect of van der Waal’s force between QD

particles. The van der Waal’s force is inversely proportional to the distance between QD particles.

This is defined using a Hamaker approximation of the van der Waal’s interaction, which is given

as follows [164]:

fvdw =


2A131

3
R2[d+ 2R]

(
1

d2+4Rx
− 1

[d+2R]2

)2

if dcut > d > 0.1(R + h0)

R
12

(
−A232

d2
+ 2A123

[d+h0]2
− A131

[d+2h0]2

)
if d < 0.1(R + h0)

(4.10)

where d is the distance between two QD particles, R is the radius of the QD particle, and h0 is the

equilibrium length of the ligand. A131,A123, andA232 are the Hamaker constants for CH3NH3PbX3

QDs, n-octylamine (ligand), and toluene (solvent), respectively [164].
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4.1.4.3 Dipole Interactions

Due to the asymmetric distribution of electron cloud within QD particles, a significant dipole

moment is found for the family of QD particles (i.e., CdTe, CdSe, CsPbX3, MAPbX3) [165, 166].

The literature suggests that the dipole force between two QD particles can be defined as follows

[164]:

fd =
µ2
12C

2
1

4πϵ0ϵeff
e−κd

[
6

d4
+

6κ

d3
+

3κ2

d2
+
κ3

d

]
(4.11)

where µ12 = 1.18 × 10−26 Cm is the dipole moment of the two interacting QD particles, ϵ0 is the

dielectric constant for vacuum (8.854 × 10−12 Fm−1), ϵeff is the relative permittivity of solvent,

1/κ is Debye screening length, and C1 is a proportionality constant.

4.1.4.4 Circulatory Flow

Another important microscopic force that needs to be considered is circulatory flow. Experi-

mental observations suggest that the degree of solvent evaporation near the contact line (i.e., edge

of the evaporating droplet) is higher than that at the center [167, 168]. Further, Deegan and co-

workers advocated that this phenomenon results in a diffusive gradient from the center to the

periphery of droplet [169]. This preferential flow also carries the solute (i.e., QD particles in our

case) to the periphery of the droplet leading to preferential deposition of solute at the droplet edge.

To provide a mathematical expression of this phenomenon, Hu and Larson defined an analytical

expression to compute circulatory flow velocity as shown below [170]:

v̄r =
3

8r̄

(
1

1− t̄

)[
(1− r̄−2)−λ0

] [ z̄2
h̄2

− 2z̄

h̄

]
+
r̄h20h̄

R2
0

[
J̄λ0(1− r̄−2)λ0−1 + 1

] [ z̄
h̄
− 3z̄2

2h̄2

]
(4.12)

where v̄r = vrtf/Rd is the dimensionless circulatory flow velocity, t̄ = t/tf is the dimension-

less evaporation time, z̄/h̄ is the dimensionless droplet height, tf is the total time for complete

evaporation of droplet, J̄ is the dimensionless evaporation rate, r̄ is the dimensionless droplet
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radius, and λ0 is the modified contact angle.

Figure 4.4: Simulation snapshots of the surface-level spatiotemporal evolution of deposition of QD particles.
The blue-colored () QD particles are termed as mobile particles and are within the bulk of the evaporating
drop. The red-colored QD particles () are static particles. The black boundary indicates the receding radius
of the evaporating drop. Here, Ts is 100◦C, and the droplet size is 100 µm.
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4.1.5 Multiscale Thin-film Deposition Model

Next, various aspects of the film-deposition process are combined together as shown in Fig-

ure 4.5. Specifically, (a) thin-film deposition equations; (b) droplet size distribution data; (c) evap-

oration dynamics; and (d) information from the surface-level particle interactions are integrated to

construct a multiscale thin-film deposition model.

Figure 4.5: Schematic illustration of the multiscale thin-film deposition framework developed in this work.

4.2 Simulation Results

4.2.1 Surface-level Particle Aggregation

As mentioned earlier, it is important to elucidate the surface-level deposition pattern of QD

particles. The DEM-based model of an evaporating QD solution droplet was simulated for a rep-

resentative impinging droplet with a size of 100 µm as shown in Figure 4.4. It can be seen that

at t = 0, the QD particles are randomly distributed across the droplet space, and then along with

droplet evaporation, the QD particles can aggregate and move around in the QD suspension. Also,

during droplet evaporation and particle aggregation, there are two competing phenomena: attrac-

tive molecular forces keep QD particles within the central bulk of the droplet, while circulatory
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flow adds a velocity component in the outward radial direction and pushes QD particles towards

the periphery, resulting in the coffee-ring effect (CRE) of QD particles. The uneven deposition of

QD particles due to CRE contributes to the roughness of as-deposited thin films and is an impor-

tant aspect to investigate [167]. Previous experimental studies agree with simulation results on the

existence of the CRE [15, 171].

Figure 4.6: Surface evolution of the thin-film deposition when various inputs (i.e., the gas and liquid veloc-
ities, and the spray nozzle height) have arbitrary values within the operating range of the spray nozzle.

4.2.2 Thin-film Deposition

During spray coating, millions of QD solution droplets will be deposited using spray coating,

and their combined effect will result in thin-film deposition on the substrate [172]. Specifically,

Figure 4.6 shows the simulated film topography when the three inputs (i.e., gas and liquid velocities

and spray nozzle height) follow an arbitrary input profile. It can be seen that thin-film deposition

on the substrate is pretty uneven, with a ψRMSE of ∼ 10 nm, variation in film thickness in the range

of 100 to 250 nm, which is not suitable for direct utilization in QD-based thin-film applications

as it is detrimental to the optoelectronic performance [13, 15]. Thus, there is a need to regulate
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the thin-film deposition process to ensure minimized roughness and achieve the desired set-point

thickness.

4.3 MPC Design

In order to control thin-film thickness (h) and film roughness (ψRMSE), an MPC was utilized

to manipulate the input variable (i.e. gas and liquid velocity, and spray nozzle height). Since

the MPC is deployed in real-time, the solution to the internal optimization problem needs to be

obtained very quickly, which is not possible if we use the above-developed multiscale thin-film

deposition model. Thus, a DNN is developed to significantly increase the computational efficiency

of the MPC.

Figure 4.7: Schematic of the developed DNN showcasing the augmented input vector and the desired thin-
film outputs.

4.3.1 DNN Training and Testing

For this particular case, we are interested in predicting film thickness (i.e., now represented

by y1) and roughness (i.e., now represented by y2). Here, y1 and y2 are dependent on various

inputs (i.e., u1, u2, and u3), and thus, the DNN shown in Figure 4.7 is sufficient to mimic the

thin-film deposition process. Here, simulation data for 4000 sets of arbitrary input combinations
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were collected and stored in the form of the above-mentioned augmented inputs and outputs and

gave a total of 20K data points for the DNN training. Furthermore, various DNN architectures

(i.e., varying hidden layers and neurons) were trained and tested, and the DNN with 5 inputs, three

hidden layers with 20 neurons in each layer, and 2 outputs (i.e., [5, 20, 20, 20, 2]) gave the best

training, validation, and testing performance.

4.3.2 MPC Formulation

Utilizing the DNN-based computationally efficient surrogate model in the previous section, an

MPC can be formulated as follows:

Minimize
u1,u2,u3

α1

(
h̄− hsp

)2
+ α2(ψRMSE − ψsp)

2

s.t 10 ≤ u1 ≤ 20 (m/s)

1 ≤ u2 ≤ 2 (m/s)

0.1 ≤ u3 ≤ 0.5 (cm)

[h̄, ψRMSE] = fDNN(u1, u2, u3)

(4.13)

where α1 and α2 are the weights for the objective function, fDNN is the DNN, and the manip-

ulated inputs u1, u2, and u3 represent the gas velocity, liquid velocity, and spray nozzle height,

respectively.

4.3.3 Closed-Loop MPC Results

For MPC demonstration a, set-point film thickness (h̄sp) of 50 nm (commonly seen in the liter-

ature [173, 16]) was considered along with the objective of minimizing the roughness. Figure 4.8

shows the compilation of the optimal input values and the resultant thin film with the desired film

thickness and a minimum value of roughness. First, the variation in the gas velocity results in

different droplet sizes due to atomization, and it affects the evaporation dynamics and the surface-

level particle aggregation. Second, the variation in liquid velocity largely affects the deposition

rate as more liquid is sprayed onto the substrate. Throughout the deposition process, the spray

nozzle height is fairly consistent. However, towards the end of the process, to further minimize the
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roughness of the thin film, the spray nozzle is increased significantly as it will allow a high spray

cone area leading to much more even deposition and maintaining a low roughness value.

Figure 4.8: Compilation of the optimal inputs, viz., (a) gas velocity, (b) liquid velocity, (c) spray nozzle
height, and the output, (d) thin-film achieved by applying the optimal inputs.

4.4 Conclusions

The recent interest in QD-based thin-film optoelectronic devices has probed research in the

modeling and control of thin-film deposition for the manufacturing of these devices. To this

end, a multiscale thin-film deposition model was developed that considers macroscopic factors

and surface-level characteristics, including uneven deposition and roughness. The model inte-

grates different factors and their individual models to construct a multiscale thin-film deposition

model. Further, an MPC was designed to regulate film characteristics (i.e., thickness and rough-
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ness) by manipulating various inputs, and a computationally efficient DNN-based thin-film depo-

sition model was developed for expediting the internal computations of the MPC. The developed

MPC successfully achieved set-point tracking for desired film thickness and minimized film rough-

ness.
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5. MODELING LIGAND CROSSLINKING FOR NANO-PATTERNING OF QDS*

The above section describes the thin-film deposition of QDs, which is essential in the manufac-

turing of LED displays and solar cells. However, recent studies have revealed that these thin-films 

are chemically facile in nature, and undergo rapid chemical deterioration when exposed to down-

stream chemical or mechanical processing [54]. To tackle this issue, Kang and colleagues demon-

strated azide-based light-activated ligand crosslinking of QDs that interlock the neighboring QDs 

to make robust QD thin-films for manufacturing of high-resolution LED displays [3]. However, (a) 

the chemical reaction involved in the ligand crosslinking process occurs over a very short time (< 

1 ms), which makes probing into the kinetics and degradation mechanism during the crosslinking 

process difficult; and (b) the chemical robustness of the QD film varies with crosslinker composi-

tion and structure. Thus, it is imperative to develop an appropriate modeling approach to gain key 

insights on the crosslinking process, which will help in designing better nano-patterning techniques 

for the manufacture of QD thin-films in the future.

To this end, a kinetic Monte Carlo (kMC) is developed to describe the crosslinking between QD 

surface ligands using cross-linkable additives. Specifically, the crosslinking step is broken down 

into various steps (i.e., reactive radical formation and C-H insertion reaction), and is modeled using 

appropriate rate kinetics. In the developed kMC model, the influence of spatial ligand-crosslinking 

configurations is considered, and it is determined by the geometry and the structural dimensions 

of the crosslinker as well as the ligand spacing density. Furthermore, to perform model validation, 

we selected the case of azide-containing light-induced ligand crosslinkers (referred to as LIXERs) 

for crosslinking the ligands of CdSe QDs as an illustrative example. More details about this work 

are presented in our previous work.

*Content of this chapter was published in the Journal of Material Chemistry C [174], and copyright permission 
from the journal has been granted for inclusion in the dissertation. All the figures in this work are adapted from the 
abovementioned journal publication.
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5.1 kMC Modeling of Ligand Crosslinking

5.1.1 kMC Lattice Description

A two-dimensional kMC model (2D-kMC) was developed to spatially and temporally trace the

progress of the crosslinking reaction. Specifically, a lattice size of N = 100, and periodic boundary

conditions were used to represent the QD surface as shown in Figure 5.1. The ligand molecules

are positioned on the 2D lattice in accordance with the ligand density. Then, the crosslinkers are

randomly initialized across the entire 2D lattice, and the crosslinker density is computed based on

the amount of crosslinkers added to the deposited QD film, Wi, which is % wt. of crosslinkers in

the QD film.

Figure 5.1: Schematic illustration of the QD surface ligands, and the crosslinked network between them.
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5.1.2 Surface Rate Kinetics

Literature studies suggest that the crosslinking reaction occurs in two distinct steps (i.e., a

radical formation step, and then a C-H insertion reaction to crosslink two ligands) [3, 175, 176].

First, the radical formation step can be initiated by photoactivation, or other precursor reactions

[177, 178], and can be described by a general Arrhenius-type empirical rate expression as shown

below:

r1 = k1exp

(
−E1

RT

)
[CCL]

g1 (5.1)

where k1 represents the rate constant, E1 is the activation barrier for this reaction, g1 is the order

of the reaction, CCL is the concentration of crosslinkers, R is the universal gas constant, and T is

temperature.

Second, the activated radicals react with a suitable carbon on the alkyl chain of the surface lig-

ands (i.e., C-H insertion reaction) [179]. Previous studies probing into the kinetics and mechanism

of the C-H insertion reaction suggest that it also follows Arrhenius-type kinetics given as follows:

[180, 181]

r2 = k2exp

(
−E2

RT

)
[C∗

CL]
g2 (5.2)

where k2 represents the rate constant, E2 is the activation barrier for this reaction, g2 is the order of

the reaction, and C∗
CL is the concentration of activated crosslinkers with a reactive radical moiety.

Lastly, the total rate of all the reactions, Rtotal, is the summation of rates of the above-mentioned

two reactions and is defined as Rtotal = r1 + r2.

5.1.3 Different Crosslinking Configurations

During the ligand crosslinking reaction, the activated crosslinker molecule (i.e., with an active

radical), reacts with one of the carbons on the alkyl ligand chain to undergo the C-H insertion

reaction. It is important to note that based on the geometry of the surface ligands, ligand density,
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and the dimensions of the crosslinker, the crosslinker can bond with two ligands in various config-

urations as shown in Figure 5.2 and enumerated in Table 5.1. This crosslinking configuration will

affect the linkage between two neighboring QDs (i.e., QD-QD crosslinking).

Crosslinking Configuration QD-QD crosslinking
1 50% chance
2 Yes
3 No
4 Yes
5 No

Table 5.1: Different crosslinking configurations and their effect on QD-QD crosslinking.

Figure 5.2: Schematic illustration of different crosslinking configurations between a crosslinker and surface
ligands.
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5.1.4 kMC Event Execution

During a kMC simulation, only one kMC event can be performed at each time instant, and the

Gillespie algorithm is followed in this work [182]. Specifically, the probability of a crosslinker

getting activated to form a reactive radical species is denoted by P1, and the probability of the acti-

vated crosslinker reacting with carbon on the alkyl chain of the surface ligand to form a crosslinking

bond is denoted by P2. These probabilities are calculated as shown below:

P1 = r1/Rtotal

P2 = r2/Rtotal

(5.3)

Then, a random number ξ1 ∈ [0, 1] is generated, and used in conjunction with Table 5.2 to select

an appropriate kMC event. For example, if Case 2 is chosen, then an activated crosslinker molecule

undergoes a C-H insertion reaction with one of the surface ligands to form a crosslinking bond.

Then, to decide the crosslinking configurations, another random number, ξ2 ∈ Z+, is chosen to

select a certain crosslinking configuration. Lastly, after every kMC event, there is a corresponding

time increment, ∆t, which is given by ∆t = − log ξ3
Rtotal

, where ξ3 ∈ (0, 1] is a random number.

Cases Probability Conditions Event Executed
Case 1 0 < ξ1 ≤ P1 Nitrene radical formation
Case 2 P1 < ξ1 ≤ P1 + P2 C-H insertion reaction

Table 5.2: Probability conditions for selecting a kMC event.

5.2 Case Study of CdSe QDs

In this work, the particular case of the azide-based ligand crosslinking of CdSe QDs is modeled,

and the simulation results are experimentally validated.
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5.2.1 Process Description

To fabricate a QD-based high-resolution electroluminescence display, a QD film consisting of

QDs emitting either red (R), blue (B), or green (G) light is deposited, and this process is repeated

at least three times to realize RGB patterns. However, the deposited QD films are not chemically

robust, and can be blemished during the subsequent chemical steps, which is highly detrimental

to the photoelectronic characteristics of these materials [183]. To resolve this challenge, azide-

based light-induced ligand crosslinkers (referred to as LIXERs) for interlocking neighboring QDs

to make chemically robust QD films has been demonstrated in our previous work [3]. This process

is illustrated in Figure 5.3, and the precise experimental details about this process can be found in

the literature [3].

Figure 5.3: Schematic illustration of the light-induced crosslinker (LIXER)-based QD patterning process
followed in this work[3].

5.2.2 Kinetic Parameters

The literature studies for CdSe QDs indicate that the crosslinking process follows a two-step

process [3]; (1) the photoactivation of the azide moiety forms a reactive nitrene intermediate (r1);

and (2) the nitrene radical reacts with one of the carbons on the alkyl ligand chain (r2). To this end,
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a first-order C-H insertion reaction (i.e., g is 1) was considered in this work along with specific

reaction parameters enumerated in Table 5.3.

Furthermore, in the case of CdSe QDs, two kinds of LIXERs were studied to understand the in-

fluence of LIXER structure on crosslinking performance. The ethane-1,2-diyl bis(4-azido-2,3,5,6-

tetrafluorobenzoate), which is termed as 2C-LIXER, has an ethane chain separating the two azide

crosslinking arms, and octane-1,8-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate), which is termed

as 8C-LIXER, has an octane chain separating them. Although these two LIXERs will have similar

widths and heights, the 8C-LIXER is significantly longer than the 2C-LIXER.

Parameters Value Reference

k1 4.2× 106 s−1 Platz and co-workers [184]

k2 4.5× 104 M−1s−1 Sundberg and co-workers [181]

Ea 1.8 kcal mol−1 Sundberg and co-workers [181]

Ligand Density 3/nm2 From experiments

QD diameter 13 nm From experiments

Table 5.3: Model parameters for the specific case of azide-based ligand crosslinking for CdSe QDs

5.2.3 Calculating QD-QD Crosslinking

Ligand crosslinking across neighboring QD will keep the QD film chemically interlocked and

resistant. Thus, the key variable of interest in the developed crosslinking model is the percentage

of QD-QD crosslinking LIXERs (i.e., the number of the LIXERs which crosslink two separate

QDs to the number of the total crosslinking LIXERs), which is given as follows:

ηQD−QD =
Number of QD–QD crosslinking LIXERs

Total number of crosslinking LIXERs
(5.4)
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5.3 Results

5.3.1 Temporal Evolution of QD-QD Crosslinking

Figure 5.4 shows the evolution of ηQD−QD for the case of 2C-LIXER and 8C-LIXER. It can be

seen from Figure 5.4 that initially ηQD−QD is zero, and then gradually increases and saturates to a

certain value. Further, ηQD−QD is larger for the case of 8C-LIXER than that for 2C-LIXER. The

is because, the 8C-LIXER is longer than 2C-LIXER, and thus considering the different configu-

rations in Figure 5.2, the 8C-LIXER can crosslink with neighboring QDs over a long distance. In

simpler terms, the 8C-LIXER provides a greater probability of crosslinking two neighboring QDs

than 2C-LIXER, which positively contributes to its crosslinking performance.

Figure 5.4: Comparison of temporal evolution of percentage QD-QD crosslinking (ηQD−QD) for the case
of 2C-LIXER and 8C-LIXER for Wi (i = 2, 5, 10).
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5.3.2 Effect of Weight Percent of LIXERs (Wi)

Further, it is important to see the effect of Wi on ηQD−QD for the two LIXER cases. Figure 5.4

also shows the compilation of ηQD−QD evolution for varyingWi for both the cases (i.e., 8C-LIXER

and 2C-LIXER). It is evident that Wi does not significantly affect the evolution of ηQD−QD for

either of the LIXER cases, and this behavior can be explained in the following manner. The

ordinate in Figure 5.4 shows ηQD−QD, which represents the ratio between the number of QD-QD

crosslinking LIXERs, and the total number of crosslinking LIXERs. Intuitively, the number of

QD-QD crosslinking LIXERs will increase with Wi. However, along with the QD-QD crosslinks,

the total number of LIXERs crosslinking the various ligands will also proportionally increase,

thereby keeping the ratio of these two terms (i.e., ηQD−QD) at a constant value.

Figure 5.5: Evolution of experimentally measured FRR, and FRR predicted from Equation 5.5.
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5.3.3 Experimental Validation

To provide further insight into the role of different LIXER kinetics and structures on the chem-

ical robustness of the QD film, it is important to correlate the experimentally measured FRR

with number of QD-QD crosslinks (NQD−QD) obtained from kMC simulations. Specifically, a

crosslinking correlation developed for polymer crosslinking can be modified for the case of ligand

crosslinking in QDs in the following manner [185, 186]:

FRR = log(NQD−QD)M
1.5
LIXER

(5.5)

where, log(NQD−QD) is a correlation function of number of QD-QD crosslinks which are deter-

mined from the kMC simulation, MLIXER is the molecular weight of the LIXER (g/mol) and

is an indirect measure of the length and bulkiness of the LIXER molecule [187]. Furthermore,

Figure 5.5 shows the evolution of experimentally measured FRR, and FRR predicted from Equa-

tion 5.5. It is evident from Figure 5.5 that the FRR predictions for 8C-2LIXERs are in excellent

agreement with the measured FRR values, whereas the predictions for 2C-LIXER have slight de-

viations from the measured FRR values. Overall, Equation 5.5 provides a quantitative relationship

between experimentally measured FRR and number of QD-QD crosslinks obtained from the kMC

simulations.

5.3.4 Extension to Multiarmed LIXERs

The above two cases utilize a linear two-armed LIXER that requires higher LIXER loading for

better film resistance. However, engineering a 4-armed or 6-armed LIXER can potentially provide

a high level of %QD-QD linkage for a low LIXER loading [188]. Moreover, the large molecular

size of 4-LIXER and 6-LIXER results in steric hindrance that promotes the LIXER to stay on the

surface of the QDs and not penetrate the ligand shell of the QDs. This leads to a higher probabil-

ity of crosslinking neighboring QDs in addition to increased crosslinking due to the presence of

multiple crosslinking arms. Figure 5.6 shows the simulated crosslinking performance (i.e., %QD-

QD linkage) in the presence of multiarmed LIXERs along with the previously mentioned linear

61



LIXER.

Figure 5.6: Crosslinking performance (i.e., QD-QD linkage) for bulkier multiarmed LIXERs.

5.4 Conclusions

Despite the practical importance of forming chemically robust QD films using ligand crosslink-

ers, the effects of different crosslinkers and their loading in the QD film on the crosslinking per-

formance have not been thoroughly investigated. Here, a kMC model was developed to trace the

spatiotemporal evolution of the crosslinking reaction for different crosslinker systems. Specifically,

the developed model considers (a) a two-step crosslinking process; (b) considers different spatial

crosslinking configurations for the crosslinkers; and (c) computes the crosslinking performance

for various different cases. Then, kMC simulations can be performed for different crosslink-

ers with varying structures within a range of crosslinker loading. Furthermore, CdSe QDs with
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light-induced crosslinkers (i.e., LIXERs) were taken as a case study to demonstrate the model

predictions. In this particular case, the simulation results suggest that the long length of the 8C-

LIXER improves the crosslinking performance as compared to the 2C-LIXER, which is consistent

with the experimental observations. Moreover, further analysis shows that engineering multiarmed

LIXERs can provide higher crosslinking performance by virtue of a higher steric hindrance and the

presence of multiple engaging crosslinking arms. Overall, the developed kMC model provides a

mechanistic understanding of the crosslinking process and presents an insight into the engineering

of future crosslinkers for better crosslinking performance.
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6. FUTURE DIRECTIONS

The doctoral thesis work is focused on developing multiscale modeling and control framework

for continuous QD production and QD thin-film deposition for various optoelectronic applications.

Using the above-developed models as a launchpad, high-impact future works can be formulated to

create more generalizable and easily scalable QD models. Specifically, the modeling philosophy

followed in the current work has two parts: (a) developing first-principled high-fidelity QD models,

and then (b) constructing ML-based black-box models that are computationally efficient. Although

this strategy can be implemented for accurate modeling and control of QD manufacturing, it can be

improved by following the paradigm of hybrid modeling. Specifically, a more intimate coupling

between system-agnostic physics (e.g., mass and energy balance equations, population balance,

and transport phenomena, etc.) with system-specific information (i.e., kinetic parameters, growth

and nucleation rate, etc.) will result in a hybrid model that is both accurate and computationally

efficient. To this end, the following section provides brief details on developing a powerful hybrid

model for QD processes and considers a specific example of crystallization.

6.1 Transformer-enhanced Hybrid Modeling of QD Systems

Recent years have seen a tremendous push toward the development of digital twins for different

chemical systems that facilitate better online process monitoring, control, and on-the-go process

optimization. The majority of the digital twins are based on a fully data-driven approach like

DNNs along with a few examples of RNN to account for the time-series dynamics of chemical

systems. However, given the hesitance of directly deploying a black-box tool in practice due to

safety and operational issues, these models have not seen the light of day. To tackle this conun-

drum, hybrid models that combine first-principles physics-based dynamics with some data-driven

components have increased in popularity as they are considered to be a ‘best of both worlds’ ap-

proach. Basically, the first-principle module comprises typical mass and energy balance equations,

rate kinetics, and population balance model (PBM) while the data-driven part estimates the system-
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Figure 6.1: Schematic illustration of different modeling paradigms in process systems engineering (PSE).

specific parameters (i.e., kinetic rate constant, growth and nucleation rate, and other parameters),

thereby acting as an input to the first-principle module.

Unfortunately, existing hybrid models (that are majorly based on DNNs) require a priori infor-

mation of the kinetic equations which then can be fed with the estimated parameters. This provides

a major implementation hurdle as knowing the exact kinetic information of complex systems (i.e.,

crystallization, fermentation, heterogeneous catalysis) is difficult. For example, in crystallization,

knowledge of growth rate (G) and nucleation rate (B) and their dependence on supersaturation,

temperature, crystal moments, etc. is difficult to procure. Further, DNN-based hybrid models find

it difficult to make accurate time-series predictions in the presence of process uncertainties and

noise. Thus, to resolve these two challenges, an alternative paradigm of hybrid modeling that can

(a) utilize process data to approximate the underlying kinetic function, and (b) accurately capture

the short and long-term evolution of system states is required.
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6.1.1 Emergence of Transformer Models

On the lines of transfer learning, very recently, transformer-based large language models (LLMs)

and vision transformers have pioneered the advent of disruptive applications including ChatGPT,

CodeGPT, Dall-E, and others. These applications act as unified models within the natural language

processing (NLP) and computer vision space [189, 190, 191, 192, 193, 194, 195, 196]. The key

driving force for this revolution has been the advent of transformer networks that utilize (a) a mul-

tiheaded self-attention (MAH) mechanism to gain human-like contextual understanding between

the words in a given input sentence, (b) positional encoding to embed sequential information ef-

ficiently, (c) impressive transfer learning capabilities for rapid fine-tuning for niche tasks, and (d)

highly parallelization-friendly architecture (unlike sequential models like RNN) that empowers

training of extraordinarily large models (i.e., 100M+ to 10B+ parameters), with of 10TB+ of tex-

tual/image data by enabling maximum use of graphics processing units (GPUs). Transformers

utilize attention modules that are trained on large amounts of textual data from multiple sources

to learn the underlying grammar, syntax, vocabulary, and nuances of a language. This allows the

trained transformer model to be directly used for tasks like sentiment analysis and fraudulent email

detection or fine-tuned for specific tasks like filtering movie reviews. Unfortunately, utilizing pre-

trained language models (LLMs) for chemical systems, which involve multivariate time-series data

with floats and integers, is a challenging task with only a few studies in the field. Schweidtmann

and colleagues recently converted process flow sheets into input tokens compatible with NLP mod-

els, allowing auto-completion of chemical process flow sheets [197]. Meanwhile, AlphaFold is a

transformer model that predicts protein structure based solely on its amino acid sequence, pro-

viding a groundbreaking solution to the longstanding problem of protein folding [198, 199, 200].

Similarly, Venkatasubramanian and Mann demonstrate excellent improvement on existing protein

modeling transformers [201]. Lastly, a recent study showcased first-of-a-kind transformer-based

MPC implementation for regulation crystal size in an industrial-scale batch crystallizer [202].

Moreover, transformers show a remarkable ability to establish strong correlations between in-

put and outputs, even in the presence of system noise or uncertainties. These models adeptly focus
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on short-term and long-term dependencies in the evolution of system states [203, 204]. In essence,

the attention mechanism performs a scaled-dot product calculation between various input vectors,

enabling it to selectively pay attention to significant long-term (e.g., concentration evolution) and

short-term (e.g., sudden change in temperature due to control actions) process alterations by as-

signing higher attention scores to such instances. As a result, the attention mechanism serves as

a filtering mechanism to dynamically handle process uncertainties and data noise by effectively

dampening weak correlations and amplifying strong interactions between the system states. Given

these unique features, transformers can be highly suitable for time-series predictions and control

tasks in crystallization. This is especially true given the complex dependencies that exist between

system states, which are highly sensitive to short-term control actions. Despite these exciting pos-

sibilities, the practical implementation of various transformer architectures for the modeling and

control of various chemical processes, especially for hybrid modeling, has yet to be conclusively

demonstrated.

6.1.2 Developing TST-based Hybrid Models

Motivated by these exciting opportunities, a hybrid time-series transformer (TST) model for

a chemical system with a specific focus on crystallization can be developed [202, 205]. Specifi-

cally, the first-principle module will include system agnostic dynamics (i.e., mass-energy balance

and population balance equations) while the transformer model approximates a system-specific

functional form of growth and nucleation dynamics to allow for a dynamic coupling with the first-

principle module. Further, since the existing vanilla-transformer architecture utilizes a DNN for

approximating the nonlinearities between inputs and outputs, it is not well suited for providing

multivariate time-series predictions. Thus, long-short-term-memory networks (LSTM) are inte-

grated with the TST architecture to create a novel TST-LSTM framework that combines the re-

markable ability of transformers to learn underlying system dynamics and functionality with the

superior performance of LSTM on time-series predictions. As a result, the hybrid-TST-LSTM

model is comprised of a first-principles module comprised of generalized mass, energy, and PBM,

and a TST-LSTM model that utilizes state information (i.e., concentration, temperature, crystal
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moments, etc.) to estimate the functional form of G and B. The developed hybrid model can be

trained and tested for simulating various QD crystallization systems developed in the previous sec-

tions and can be even integrated with an MPC. Overall, the unique ability of transformers to learn

complex system dynamics and functions, coupled with superior temporal predictions offered by

LSTM, and first-principle modeling offers exciting opportunities for the development of accurate

hybrid model-based digital twins for various chemical systems. Moreover, the developed frame-

work can be extended to other chemical systems such as fermentation, reaction engineering, and

catalysis. In light of these promising avenues, the future is indeed bright, and we look forward to

seeing transformer-based hybrid models make a profound impact in the chemical industry.

Figure 6.2: Schematic illustration of a transformer-based hybrid model for QD systems.
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7. SUMMARY

Although there has been a huge impetus for research and commercialization of high-performance

QDs for various optoelectronic applications (i.e., solar cells and display technology), there are cer-

tain challenges that have not been adequately addressed in the literature. For example, (a) there

is a lack of understanding of the crystallization kinetics of various QD systems, which hinders

the predictive control of the QD size; (b) very few demonstrations of fast-scalable manufacturing

of QDs as well as QD-based optoelectronics; and (c) absence of computationally efficient solu-

tions for online control and optimization of QD processes (i.e., QD crystallization and thin-film

deposition). To address these challenges (Figure 7.1), we have developed a continuous QD man-

ufacturing framework using multiscale modeling and advanced process control techniques. First,

a multiscale PFC model and CFD-based multiscale SFC were developed to demonstrate set-point

tracking of desired QD size and a narrow CSD. This was done by combining a microscopic kMC

model, which incorporates the surface-level phenomenon of unit cell adsorption, ligand attach-

ment, and detachment to describe QD crystallization, with macroscopic mass and energy balance

equations. The resulting high-fidelity multiscale model was then surrogated using a DNN to ob-

tain computationally efficient optimal operation of PFC and SFC for regulation QD size (i.e., a key

product specification for LEDs and solar cells). Second, spray coating-based QD thin-film deposi-

tion was modeled using a multiscale model which combines surface-level DEM with macroscopic

droplet evaporation. Further, a DNN-based surrogate model was incorporated within the MPC

and utilized in conjunction with the multiscale model to regulate thin-film thickness and rough-

ness. Third, although QD crystals of desired size, and smooth thin-films of desired size can be

simulated and experimentally synthesized using the above methods, they are not chemically robust

leading to postprocessing problems for QD-based devices. Thus, a configurational kMC (ckMC)

model for ligand crosslinking was developed to provide insight into QD-QD crosslinking for the

development of robust QD nano-patterning techniques. Using the ckMC model, different mul-

tiarmed crosslinking agents were engineered to boost QD the thin-film resistance. Overall, the
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presented work tackles various modeling challenges in QD manufacturing using a combination

of multiscale models (i.e., coupled microscopic and macroscopic models), machine learning, and

process control techniques. Moreover, as a natural extension of the developed framework (Fig-

ure 7.1), a time-series transformer-based hybrid modeling paradigm is suggested as a promising

future direction.

Figure 7.1: Schematic illustration of the QD modeling framework utilized in the current work.
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