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ABSTRACT

The study of quantum many body physics occupies a special place in the landscape of

theoretical science, as it behaves like a connective tissue between seemingly disparate domains

of inquiry, such as computer science, condensed matter physics and quantum gravity. A

major challenge in the field concerns the solvability of strongly-interacting, non-integrable

models driven away from equilibrium. Usually, such models can be exactly solved numerically

for small-N , or in certain cases one can access their early time behaviour analytically in the

infinite-N limit.

In this work, we shed light on the Brownian SYK models as exactly-solvable candidates

to study non-equilibrium quantum dynamics. We show that these models have emergent

symmetry structures post disorder averaging, where the model built with Majorana fermions

(without charge conservation) maps to SO(n) spins and the complex fermionic model with

charge conservation maps to SU(n) spins, both of which evolve in imaginary time. This

enables us to probe various kinds of dynamical properties, such as charge transport and

information scrambling, at both large finite-N and in the infinite-N limit. Apart from the

obvious advantage of exact numerical solvability at large-N , the hydrodynamic descriptions

that emerge from these models are valid at all time scales, in contrast to other commonly

used methods. In case of the model with U(1) symmetry, the emergent hydrodynamics also

describe the coupling of the charge-transport with the operator dynamics for arbitrary charge

density-profiles.

Using the insights gained from the U(1) symmetric model, we also explicitly demonstrate

the difference between commonly used probes of dynamics, such as the Green’s functions, and

more complicated higher-order correlators such the OTOC (out-of-time ordered correlator)

in the study of non-equilibrium quantum dynamics.
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1. INTRODUCTION

1.1 The role of quantum correlations in thermalization

The study of quantum many-body physics has recently seen a surge of interest not just in

fields relevant to fundamental physics such as high energy theory, condensed matter physics

and quantum information science, but also in applied physics and computer science, such

as in the context of quantum computing. The key goal of the field is to understand and

classify the structure of many-body quantum-states and describe the dynamics of these

states, especially in the presence of strong interactions. A modern classification scheme

relies upon the notions of thermalization and ergodicity. This classification is also tied to

the puzzle of explaining why local operators in generic, closed, quantum many-body systems

behave as if they are a part of a thermal ensemble at late times [1, 2, 3]. It is well known

that in statistical mechanics, the density matrix of equilibrium states behaves as a part of

the Gibbs ensemble:

ρeq =
e−βH

Z
. (1.1)

This is commonly understood as a consequence of interactions between a system and a bath

at inverse temperature β. However, it is interesting to think about how this equilibrium is

established for a closed quantum system. The seemingly ubiquitous phenomenon of reaching

equilibrium is especially puzzling since the quantum system evolves under unitary dynam-

ics. Thus, one would usually expect an initially pure state to evolve into another pure

state, and not the thermal ensemble, which is a mixed state. Moreover, the phenomena

of thermalization in classical mechanics is linked to chaos and non-linear dynamics, but in

quantum mechanics the time-evolution of the density matrix is governed by a strictly linear

Schrödinger equation:

i
dρ

dt
= [H, ρ] (1.2)

1



which is not expected to be chaotic. Along with this, for a time-independent Hamiltonian,

the equation does not even host any steady-state solution. In spite of these concerns, given

a closed system divided into subsystem A and its complement Ac, it has been observed that

the state over the local region A is well-approximated by the thermal ensemble:

ρeqA (t→∞) = TrAc

(
e−βH

Z

)
(1.3)

where β is the inverse temperature determined by the energy of the initial state and on the

right hand side we have traced out the degrees of freedom in Ac. This ensemble is usually

determined by measuring expectation values of local observables and other simple correlators

over the region A.

The puzzle is resolved when one thinks more carefully about the nature of the observables

that display this behaviour. These involve operators which are localized, which usually

means their support is negligible when compared to the size of the overall system. Hence

the mixed nature appears because the rest of the system (Ac) acts as a bath on the small

number of degrees of freedom represented by the region A, even though the whole system

A + Ac evolves unitarily. This phenomenon is neatly encoded in the conjecture labelled as

the ‘Eigenstate Thermalization Hypothesis’. To dispel the notion that this is related to the

quantum transport of energy between A and Ac, one can instead use Floquet dynamics,

where the system is evolved using two different Unitaries eiH1∆t and eiH2∆t alternatively. In

such a scenario energy is not strictly conserved as long as [H1, H2] ̸= 0, but local states still

relax to the infinite temperature Gibbs ensemble. Hence what we observe is a consequence

of something more general, i.e. a buildup of quantum correlations between A and Ac.

A quantitative way to classify many-body states is through their entanglement structure,

which roughly measures the amount of quantum correlations contained within the state.

Given a pure state |ψ⟩, the correlations between region A and its complement Ac are encoded

in the reduced density matrix ρA = TrAc(|ψ⟩ ⟨ψ|), where we have traced out the degrees of

2



freedom contained in Ac. One measure of these correlations is given by the nth Rényi entropy

[4, 5, 6, 7], defined as:

S(n)(A) =
1

1− n log Tr (ρnA) (1.4)

where n → 1 limit recovers the Von-Neumann entropy S(A) = −Tr(ρ log ρ). The basic

ingredient of entanglement can be understood from the simple example of 2 spins, where

the entanglement is 0 for a product state such as |↑↑⟩ and maximal for any Bell-pair state

such as |↑↓ + ↓↑⟩. A detailed calculation showing this can be found in [7]. The general

expectation is that under quantum dynamics that are thermalizing, any simple state, such

as a product state, will develop quantum correlations and will converge to a state with large

amount of entanglement [2, 1, 8, 9]. This precisely measures how a local subsystem A builds

correlations with its environment Ac.

1.2 Operator growth and the OTOC

A general way to characterize the non-equilibrium journey to these thermalized states

in many-body systems is to track the evolution of operators. Under dynamics driven by a

Hamiltonian H for example, an initially localized operator Wi will evolve according to

Wi(t) = Wi +
it

ℏ
[H,Wi] +

1

2!

(
it

ℏ

)2

[H, [H,Wi]] + . . . (1.5)

where generically, each nested commutator will make the operator more and more non-local

and complicated. As an example, in a system where one starts with a local spin operator σ,

it generically grows in ‘size’ as:

σ
t→ σ + σσ + σσσ + . . . (1.6)

Hence we have posited that entanglement growth and operator spreading are two main

features of thermalizing many-body systems. A simple way to track the growth of the
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operator is through the out-of-time-ordered correlator (OTOC) [10, 11, 12]:

F(Wi(t), Vr) =
1

Tr(I)
Tr(W †

i (t)V
†
r Wi(t)Vr) (1.7)

which for the case where Wi and Vr are Hermitian and Unitary, such as when they are Pauli

operators describing spins, is related to the squared commutator:

C(t) = 1

Tr(I)
Tr
(
[Wi(t), Vr]

† [Wi(t), Vr]
)
= 2[1− Re(F)]. (1.8)

Here i and r can be thought of as spatial indices denoting specific spins in a spin chain.

Initially, the operator Wi(t) is separated from Vr and they commute, i.e. C(t = 0) = 0 and

F(t = 0) = 1. However, under thermalizing dynamics, the operator Wi grows until its sup-

port spreads to the site r and it fails to commute with Vr. This leads to the growth/decay

of C/F , and in spatially extended chaotic systems, the operator Wi typically expands bal-

listically with a speed known as the butterfly velocity until it has covered the entire chain,

and F reaches its equilibrium value.

The operator Wi(t) is referred to as the dynamical operator in the OTOC, whereas Vr is

the probing operator. To understand what F measures physically, one can imagine evolving

a state using two different protocols [13]:

• First, we apply the operator Vr on the state, wait for a time t and then apply Wi

|ψ1⟩ = WiUVr |ψ⟩ (1.9)

• On the second run, apply Wi first at time t, go back in time to t = 0 then apply Vr,

and then let it evolve naturally to time t again.

|ψ2⟩ = UVrU
†WiU |ψ⟩ (1.10)
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• F then measures the overlap between these two modified states, thereby capturing the

effect of reversing the ordering of operators on the state.

F = ⟨ψ2|ψ1⟩ = ⟨ψ|U †WiUVrU
†WiUVr |ψ⟩ = ⟨ψ|Wi(−t)VrWi(−t)Vr |ψ⟩ (1.11)

One can interpret Vr as a sort of ‘perturbation’, and the OTOC as a measure of how

sensitive the system is to such perturbations.

In the more traditional version of the OTOC (Eq. 2.1), we average over all the states ψ in the

Hilbert space. To see how the OTOC works in more detail, let’s consider a system with N

Majorana fermions, where the fermions satisfy the anti-commutation relation {χi, χj} = 2δij.

A suitable way to discuss operator spreading is through the notion of operator-strings

S = s1s2 . . . sN ; si ∈ (χi, I) (1.12)

where the operator S is either χ or I on every site/fermion i. This labels the complete

set of operators in the model (because χ2 = I), and is also an orthonormal basis over the

operator-space:

1

Tr(I)
Tr(S†S ′) = δ(S ′,S), 1

Tr(I)

∑

S
S†
mnSpq = δmqδnp. (1.13)

Due to these properties, we can expand any operator in such a basis. Doing the same for a

local Majorana operator at time t, we write:

χi(t) =
∑

S
cS(t)S ; Tr(χi(t)χi(t)) = Tr(I) =⇒

∑

S
|cS(t)|2 = 1 (1.14)

where we are expressing the fact that due to unitarity, norms are conserved over time and

this leads to the coefficients |cS(t)|2 describing a probability distribution over the operator-

strings S. Now let’s plug in the expression for χi(t) into the OTOC averaged over the choice
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of the local probing operator:

∑

j

F (χi(t), χj) =
1

2N/2

∑

j

Tr (χi(t)χjχi(t)χj) =

(
2
∑

S
|cS(t)|2 size(S)−N

)

= (2size(χi)−N)

(1.15)

where size(S) measures the number of χ in the string S. For example, the size of χi at t = 0

is 1:
∑

j

F (χi(t = 0), χj) =
1

2N/2

∑

j

Tr (χiχjχiχj) = 1− (N − 1) (1.16)

where the 1 on the right is the result when i = j and the −(N − 1) comes from the anti-

commuting contributions when i ̸= j. However, the size of the operator will grow with time,

as we expect from Eq. (1.5). Under thermalizing dynamics, one expects that the operator

will become maximally complex, which means it will flow to all operator-strings in the basis

with equal probability. This implies that all sizes will occur with equal probability, and

since there are N fermions, the average size will approach N/2. In the equation above, this

will result in the average OTOC becoming 0, which establishes a precise connection between

operator growth and the OTOC. A more detailed version of this calculation can be found in

Sec. 3.2.1.

1.3 Scrambling and the OTOC

As it turns out, the OTOC is also useful for characterizing the growth of quantum-

correlations under a given unitary channel. This was described in [14], where the authors

studied the growth of correlations via the information shared between a quantum system

and its time-evolved counterpart. A simple qualitative way to see the connection between

operator growth and information scrambling is via the following example. Let’s consider a

simple product state ψ over N qubits which is time evolved via a generic unitary U :

ψ(t = 0) = |00...0⟩ =⇒ ψ(t) = U |00...0⟩ (1.17)
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We can compare this to another similar state ψ′ , where we initialize the first qubit in the

state 1 instead of 0 and evolve it using the same unitary as before:

ψ
′
(t = 0) = |10...0⟩ = σ1,x |00...0⟩ =⇒ ψ

′
(t) = Uσ1,xU

† ψ(t) (1.18)

Hence in the Heisenberg picture, the ‘information’ about the initial qubit can be viewed from

the lens of the growth of the operator σ1,x. The difference in the two states ψ and ψ′ , which

is encoded in the initialization of the the first qubit, can also be viewed as being stored in the

time-evolved operator σ1,x(t). As the simple operator grows into a more complex operator, it

carries information about the input state into more and more non-local degrees of freedom,

thereby making it practically unrecoverable via local measurements. Therefore, the OTOC

can measure the growth of such an operator and also provides a measure of information

scrambling.

It is important to mention that this connection with the OTOC has been experimentally

utilized to measure scrambling in various platforms, such as nuclear magnetic resonance

quantum simulators [15, 16, 17, 18], trapped ions [19, 20, 21] and superconducting qubits [22,

23, 24, 25]. The OTOC is also related to the measurement of fidelity during many-body

teleportation, which serves as a quantifier of teleportation success [26, 27]. Hence the OTOC

serves as a test bed for many quantum simulators and will play an increasingly important

role in the quantum information era of physics.
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2. GENERAL FORMALISM1

In this chapter, we will cover the formalism used to compute the OTOC in later chapters.

The strategy revolves around utilizing both the Brownian averaging of the models, as well as

rewriting the OTOC in terms of four copies of the Hilbert space. The procedure can also be

similarly applied to arbitrarily complex correlators. For completeness and notational clarity,

we will redefine the OTOC as

F(W (t), V ) =
1

TrI
Tr(W †(t)V †W (t)V ) (2.1)

2.1 Operator to state mapping on 4 copies of the Hilbert Space

To compute the OTOC, we map it to the overlap between two quantum states in four

replicas of the original Hilbert space, labelled by a, b, c, d. The OTOC in Eq. (2.1) can be

written as

F(W (t), V ) = TrI ⟨out|U |in⟩ (2.2)

where |in⟩ and |out⟩ are the input and output states defined as

|in⟩ = 1

TrI

∑
W †

mnWpq |m⊗ n⊗ p⊗ q⟩

|out⟩ = 1

TrI

∑
V †
mqVpn |m⊗ n⊗ p⊗ q⟩

(2.3)

and m, n, p, q are the computational basis states spanning the Hilbert space of each replica.

On the other hand, terms such as Vpn refer to the element of the matrix representation of

the operator V , in the row p and column n. The time evolution operator U is given by

U = U ⊗ U∗ ⊗ U ⊗ U∗. (2.4)

1Reprinted with permission from "Emergent Symmetry in Brownian SYK models and charge dependent
scrambling" by L. Agarwal and S. Xu [28]
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The time evolved state |in(t)⟩ is

|in(t)⟩ = U |in⟩ = 1

TrI

∑
W †(t)mnW (t)pq |m⊗ n⊗ p⊗ q⟩ (2.5)

One can verify that ⟨out|in(t)⟩ does indeed lead to F(W (t), V ). To simplify the notation,

we rewrite |in⟩ as

|in⟩ = 1

TrI
|W † ⊗W ⟩ . (2.6)

On the other hand, using a complete operator basis S, we rewrite the state |out⟩ as

|out⟩ = 1

Tr2I

∑
V †
mm′S†

m′n′Vn′nSpq |m⊗ n⊗ p⊗ q⟩

=
1

Tr2I

∑

S
|V †S†V ⊗ S⟩ .

(2.7)

Therefore, the OTOC is written as

F(Wi(t), Vj) =
1

Tr2(I)

∑

S
⟨V †

j S†Vj ⊗ S|U |W †
i ⊗Wi⟩ . (2.8)

This is equivalent to Eq. (2.2) and does not reduce the computational complexity in general.

However, as we will show in the following sections, for a special class of chaotic quantum

many-body models called Brownian models, the symmetry and algebraic structure of U after

the random averaging significantly reduces the computational complexity. This allows us to

calculate the OTOC exactly for all time scales, including the early time growth and late-time

saturation, for large system size.

2.2 General structure of Brownian models

The Hamiltonian of Brownian models takes the following general form,

H(t) =
∑

A

JA(t)X̂A + h.c. (2.9)
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where X̂A describes few body interactions, i.e. spin-spin interactions or 4-body fermionic

interactions between the different degrees of freedom, and A is a generic index labeling the

degrees of freedom this term acts on. The model is Brownian because the coupling strength

JA(t) is a Gaussian white noise uncorrelated in time obeying

JA(t) = 0, JA(t)J∗
A′(t′) = JδAA′δ(t− t′). (2.10)

Because the disorder is uncorrelated in time, the disorder average can be computed indepen-

dently at different times. At each time slice, we have

dU = dUadU b,∗dU cdUd,∗ = (1 +Hdt) (2.11)

where
H = −J

2

∑

A

(
XAX†

A + X†
AXA

)
,

XA = Xa
A −Xb,∗

A

†
+Xc

A −Xd,∗
A

†
.

(2.12)

The operator H is Hermitian and semi-negative, namely all the eigenvalues are either zero

or negative. As is evident from the expression above, there is a discrete symmetry under

the exchange of replicas a↔ c and b↔ d, along with a conjugation symmetry between the

pairs (a, c) and (b, d). These discrete symmetries have been studied in detail recently [29].

In addition H has two zero energy eigenstates that are independent of the details of X̂A.

We have

eHt |I ⊗ I⟩ = |I ⊗ I⟩ , eHt
∑

S
|S† ⊗ S⟩ =

∑

S
|S† ⊗ S⟩ . (2.13)

This is because the identity operator stays the same under unitary time evolution (Fig. 2.1(b)

and (c)). This condition is useful for consistency checks when we build H for specific models.

If the Hamiltonian has additional symmetries, the corresponding operator-states are also

zero-energy eigenstates with respect to the emergent Hamiltonian. As an example, the

parity operator-state |∏χ⊗∏χ⟩ has null energy with respect to the emergent Hamiltonian
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in the case of the Brownian SYK model.

The unitary time evolution operator on the replicated Hilbert space after Brownian aver-

age U becomes exp(Ht). In other words, the Brownian disorder average converts the unitary

real-time evolution to the imaginary time evolution governed by the Hamiltonian H acting

on four copies of the original Hilbert space. This property follows from the observation that

the term corresponding to first order time in dU has to be paired with another first order

term to be nonzero after disorder average. Then the OTOC in Eq. (2.8) after the disorder

average can be written as

F(Wi(t), Vj) =
1

Tr2(I)

∑

S
⟨V †

j S†Vj ⊗ S| exp(Ht) |W †
i ⊗Wi⟩ (2.14)

which measures the overlap between the input state and output state after quenched imagi-

nary time evolution. This is valid for any Brownian model described by Eq. (2.9). In general,

with this formalism, it is still very challenging to obtain the OTOC F because one needs to

diagonalize the Hamiltonian H numerically, which is limited to small system sizes.

In the following sections, we will show that for a certain class of Brownian models, namely

the Brownian-SYK models, the Hamiltonian H exhibits elegant symmetry structures that

only appear after the disorder average. By exploiting the symmetry structures, we show

that the largest Hilbert space involved in the computation of F scales linearly with the

number of Majoranas or complex fermions in the systems, making results for large but finite

N accessible. More specifically, we find that

• For the Brownian Majorana SYK model without charge conservation, the operator

dynamics can be mapped to imaginary time dynamics of an SU(2) spin with angular

momentum ∼ N/2.

• For the complex Brownian SYK model with charge conservation, the operator dynamics

can be mapped to imaginary time dynamics of an SU(4) spin with fixed weight.

In what follows, we discuss each model individually. For the Brownian Majorana SYK model,
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Figure 2.1: (a) Resolution of the identity in the OTOC, followed by the Brownian average.
(b) The invariance of the Identity operator-state |I ⊗ I⟩ under the effective imaginary-time
evolution. (c) The invariance of the complete set of operator-states

∑
S |S† ⊗ S⟩ under the

effective imaginary-time evolution. Both operator-states considered in (b) and (c) remain
eigenstates of the effective Hamiltonian H because they are invariants of the circuit even
before the random averaging.

our approach, inspired by [30], simplifies the method used therein and unifies the approach

used in [30] and [31, 32, 33]. More importantly, our approach can be generalized to the

complex Brownian SYK model, which is the primary focus of the thesis.
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3. NON-EQUILIBRIUM DYNAMICS IN 0+1 DIMENSIONS1

3.1 Chapter Summary

The goal of this chapter is to show how Brownian SYK models make good candidates to

study non-equilibrium phenomenon in 0 + 1 dimensions, both analytically and numerically.

This is shown both for the model without symmetry, and for the U(1) symmetric model as

well. The steps are as follows:

• First, we take advantage of the uncorrelated nature of the model along the time direc-

tion, to describe the dynamics on four time contours in terms of an effective imaginary

time Schrodinger equation. This is covered in detail in Chapter 2.

• This evolution is governed by an emergent Hamiltonian, which is composed of ‘replica’

fermions on four time contours.

• For the regular Brownian SYK model built with Majorana fermionsa, we show that

these replica fermions follow the commutation relations of an SU(2) algebra, therefore

the emergent Hamiltonian can be viewed as a spin model and this drastically reduces

the computational time complexity of the problem from O(2N/2)→ O(N).

• This is utilized to plot the OTOC in the model for N = 10000 fermions. Along with

this, the spin description also helps us to derive the hydrodynamic equation in the

infinite-N limit.

• Following this, we discuss operator dynamics in the complex Brownian SYK model

built with complex fermions and with a U(1) symmetry. For this model, we show

that the replica complex fermions follow the commutation rules for the SU(4) algebra,

thereby allowing us to interpret the emergent Hamiltonian as an SU(4) spin model.
1Reprinted with permission from "Emergent Symmetry in Brownian SYK models and charge dependent

scrambling" by L. Agarwal and S. Xu [28]
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• Since the U(1) symmetry in the original model causes the SU(4) spin model to conserve

weights, this leads to a reduction in computational time complexity (O(2N)→ O(N)),

which is then utilized to plot the behaviour of the OTOC within each charge sector,

for N = 500 fermions. Knowledge about Gelfand-Tsetlin patterns is used to construct

the emergent Hamiltonian within fixed weight sectors numerically.

• From this, we extract insights about the charge-dependence of information scrambling,

which is then verified analytically as well, in the infinite-N limit.

3.2 The case without symmetry : Brownian SYK model

Our first goal will be to understand dynamics in a dimensionless dot with many in-

teracting quantum particles. Initially, we will compute the OTOC (F in Eq. (2.1)) in a

model without symmetries, i.e. the Brownian SYK model, at both large finite-N and in

the infinite-N limit. In all-to-all interacting models with few-body interactions and a large

number of degrees of freedom, such as the Sachdev-Ye-Kitaev model [34, 35, 36, 37, 38],

F typically grows exponentially fast in the early-time regime, F ∼ 1
N
eλLt [39, 40, 41, 42],

where λL is the Lyapunov exponent. In a local extended system, the support of W (t)

typically grows ballistically, and F features a wavefront travelling at the butterfly veloc-

ity [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 31, 55]. More generally, the behavior

of F depends on the interaction between the different degrees of freedom [56, 57]. The

OTOC has been experimentally measured in nuclear magnetic resonance quantum simula-

tors [15, 16, 17, 18], trapped ions [19, 20, 21] and superconducting qubits [22, 23, 24, 25, 58].

On the other hand, Brownian many-body models [40, 59, 60, 31, 33, 30, 32], in which the

couplings are random variables uncorrelated in the time direction, are useful for understand-

ing scrambling dynamics. In the absence of conserved quantities, the operator dynamics

in Brownian models can be mapped to a Markovian process [31, 33, 61] or imaginary time

dynamics of bosonic models [30] post disorder average, in which case the OTOC can be

calculated efficiently for all time at large finite N . The analytical expression of the OTOC
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in the large N limit can also be derived, which obeys a logistic type differential equation [33]

for all-to-all connected models and reaction-diffusion equation [44, 31] in higher dimensions.

Related to Brownian models, scrambling for random Hamiltonians [62] and noisy spin sys-

tems [63, 64] has also been studied.

Building on previous work on the Majorana Brownian SYK model [30], we demonstrate

that Brownian SYK models have a simple symmetry structure for arbitrary N after taking

the random disorder average, which makes the numerical calculation of the OTOC at large

finite N possible even in the case with charge conservation. The operator dynamics can be

organized into various irreducible representations (irreps) of the symmetry group. We show

that in the case of the Majorana Brownian SYK model, this approach maps the operator

dynamics to that of an SU(2) spin in imaginary time, with the angular momentum being

related to N . In what follows, we will first revisit the notion of how the OTOC is tied to

operator growth in models built with Majorana fermions, which is relevant when we want

to consider non-symmetric models.

3.2.1 Operator growth for Majorana fermions

We begin with the analysis of the operator dynamics of Majorana fermions, which is

relevant in the case of the regular and Brownian SYK models. Although this has been talked

about in the Introduction, here we will flesh it out in more detail and cover edge cases as

well. We consider a system of N Majoranas with the Hilbert space dimension Tr(I) = 2N/2,

where the Hamiltonian is a function of the Majorana operators χi, and the subscript i goes

from 1 to N . The operators obey the anti-commutation relation {χi, χj} = 2δij. A good

basis for the operator dynamics are the Majorana strings [10], which are products of local

operators, either χi or Ii. The Majorana strings take the form

S = s1s2 · · · sN (3.1)
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Where each si in the string is either the identity (I) or the Majorana operator (χ) at that

site. We define the size of the Majorana string as size(S), which counts the number of χ’s

in the string. The Majorana strings satisfy the orthogonality and completeness relations in

Eq. (1.13). Therefore, any Heisenberg operator at arbitrary time can be expanded in this

basis with coefficients c(S, t):
W (t) =

∑

S
c(S, t)S. (3.2)

We choose the operator W to have the normalization Tr(W †W ) = TrI and this leads to

the constraint
∑

S |c(S, t)|2 = 1. Thus the coefficients |c(S, t)|2 have the interpretation

of a probability distribution over the different strings of operators. Quantum information

scrambling is tied to the fact that a simple initial operator becomes as complicated as possible

under Heisenberg time evolution. This suggests that the operator probability distribution,

starting with one localized at a single operator-string, would approach uniform distribution

in the late time regime where every operator is equally probable and the system becomes

fully scrambled. An important caveat to keep in mind is that the operator cannot spread to

the identity or parity operator at late times if it has a null overlap with the specified steady

operators at zero time.

Physical systems usually conserve the fermionic parity, since the Hamiltonian only con-

tains an even number of Majorana operators and commutes with the parity operator
∏
χ.

As a result, the parity of an operator, whether it starts with an even or odd number of Ma-

jorana operators, remains invariant under the unitary time evolution. Only the S with even

(odd) lengths appear in the expansion of the operator W (t) with even (odd) parity. In the

late time regime, the operator probability becomes uniform in the parity sector determined

by the initial operator but remains zero in the opposite sector. The simplest quantity to

characterize scrambling of an initially simple operator, such as χ(t), is the average size of the

Majorana strings
∑

S |c(S, t)|2size(S). This average size is precisely measured by the OTOC.

Using the operator expansion and the anti-commutation relation of Majorana operators, one

16



can show that ∑

i

F(W (t), χi) =
1

2N/2

∑

i

Tr(W †(t)χiW (t)χi)

= ±
(
N − 2 size(W )

)
.

(3.3)

The plus or minus sign depends on whether W (t) is parity even or odd. Each OTOC in the

sum
∑

iF(W (t), χi) is related to the probability of the operator χi appearing in the operator

string. For the simple OTOC F(χi(t), χj), the initial and final values are

F(χi(0), χj) = −1 + 2δij, F(χi(∞), χj) = 0. (3.4)

We will compute the time evolution of F from t = 0 to t =∞ in the Brownian Majorana SYK

model and also show that the general expectation is violated when the system becomes non-

interacting. Here we emphasize that the late-time value goes to zero because as intuitively

expected, starting from an operator in the parity odd sector will result in the operator

spreading uniformly to all the operator-strings in the odd sector, therefore odd operator-

sizes will be binomially distributed and the average operator size will be N/2. On the other

hand, if we consider a bosonic initial operator, say χiχi′ , the late-time operator distribution

will be uniform over the operator-strings in the even sector, with the exception of the identity

and parity operator which are static. The binomial distribution of all operators with even

sizes excluding the identity and the parity operator also leads to average operator size N/2.

Therefore, in the majorana system where the only symmetry is the fermionic parity, the

late-time value of the OTOC in Eq. (3.3) approaches zero. This is in contrast with general

spin models, where the only operator excluded from the late-time distribution would be

the identity. In this case, the late-time value of the OTOC contains a finite-size correction

exponentially small as a function of the system size [65].
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3.2.2 Defining the Brownian SYK model

In this section we will review the work done on the Brownian SYK model for the purpose

of completeness and notational clarity. We start with the Hamiltonian

H(t) = i
qsyk
2

∑

i1<...<iqsyk

Ji1,...,iqsyk
(t)χi1χi2 . . . χiqsyk (3.5)

where the generalised index ij can take values between 1 and N . The couplings for general

qsyk are distributed according to

Ji1...,iqsyk
(t)Ji′1...,i′qsyk

(t′) = δi1i′1 · · · δiqsyk i
′
qsyk

δ (t− t′) (qsyk − 1)!

2N (qsyk−1)
. (3.6)

We are interested in computing the OTOC, which can be rewritten in terms of four copies

of the Hilbert space, as shown in Sec. 2.1. The four copies of the unitary operator dU that

encode the time evolution in the OTOC are built using operators of the form

χa
j := χj ⊗ I ⊗ I ⊗ I χb

j := I ⊗ χ∗
j ⊗ I ⊗ I

χc
j := I ⊗ I ⊗ χj ⊗ I χd

j := I ⊗ I ⊗ I ⊗ χ∗
j

(3.7)

These operators satisfy the (anti-)commutation relations
[
χα
j , χ

β
k

]
= 0 for α ̸= β and

{
χα
j , χ

α
k

}
= 2δj,k. We can use the parity operator Q on each copy

Qα =
N∏

k=1

χα
k , α = a, b, c, d (3.8)

to turn χα
i into purely anti-commuting operators as follows [30]

ψa
j = iQaχa

j , ψb
j = Qaχb

j

ψc
j = iQaQbQcχc

j, ψd
j = QaQbQcχd

j .

(3.9)

18



These new operators obey the relation
{
ψα
j , ψ

β
k

}
= 2δα,βδj,k, and since (Qα)2 = 1 (for

N ≡ 0 mod 4), we can exploit the identity
∏M

k=1 χ
α
jk
=
∏M

k=1 ψ
α
jk

to rewrite dU and thus the

effective Hamiltonian H in terms of these new operators. We introduce the bilinear operators

Sαβ =
∑
i

ψα
i ψ

β
i , and remark that the effective Hamiltonian takes the following general form

:

H = H
(
Sαβ

)
, α, β ∈ a, b, c, d. (3.10)

The explicit expression, which depends on qsyk, is provided in the appendix. The main

observation is that the Hamiltonian H is always a function of the six operators Sαβ for

α ̸= β (the term with α = β contributes a constant term to the Hamiltonian).

3.2.3 The emergent SU(2) ⊗ SU(2) algebra

The emergent Hamiltonian H acts on a Hilbert space of dimension 4N . The system

contains N sites, each one hosting 4 local states, which can be thought of as the vac-

uum state (|I ⊗ I⟩), doubly-occupied state (|Qχi ⊗Qχi⟩), and two singly occupied states

(|Qχi ⊗ I⟩ , |I ⊗Qχi⟩), much like those in the Fermi-Hubbard model. Here Q is the par-

ity operator
∏

i χi. The vacuum and doubly occupied state are even parity states whereas

the singly occupied states have odd parity. Now we explore the symmetry of H to block-

diagonalize the Hamiltonian and reduce the effective dimension. First, Sαβ and H commute

with the onsite parity operator ψa
i ψ

b
iψ

c
iψ

d
i . As a result, the number of fermions per site stays

even or odd. One can show that for the input state of the form 2N/2 |in⟩ = |W † ⊗W ⟩, the

parity on each site is even, either the empty state or doubly occupied state. This reduces

the total Hilbert space dimension to 2N . To this end, we map the system to N two-level

systems.

In order to further reduce the Hilbert space dimension, we will rely on additional sym-
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metries of the emergent Hamiltonian. Let us define the following quantities:

Lx =
1

4i
(Sbc + Sad), Jx =

1

4i
(Sbc − Sad)

Ly =
1

4i
(Sca + Sbd), Jy =

1

4i
(Sca − Sbd)

Lz =
1

4i
(Sab + Scd), Jz =

1

4i
(Sab − Scd).

(3.11)

These operators are the generators of the SU(2) ⊗ SU(2) algebra, which can by checked by

verifying the commutation relations

[Li, Lj] = iϵijkLk, [Ji, Jj] = iϵijkJk, [Li, Jj] = 0. (3.12)

The full emergent Hamiltonian can now be written as a function of both the L and the

J operators (Eq. (3.10)). Identifying the SU(2) algebras in the Hamiltonian has reduced

the maximum dimensionality of the dynamical subspace to be of order N2 since the input

state will split into the irreps of the algebras, and the Hamiltonian evolves separate irreps

independently. Consider the four states on a site. They split into a 2⊕ 2 representation of

the SU(2) ⊗ SU(2) group. The empty and doubly occupied states form a doublet of the L

algebra and a singlet of the J algebra, while the two singly occupied states form a singlet of

the L algebra and a doublet of the J algebra. Since the input state |in⟩ has an even number

of fermions per site, it is a singlet state of the J algebra and we have Jα |in⟩ = 0 (α = x, y, z).

Thus the emergent Hamiltonian will now have only one copy of the SU(2) algebra, i.e. the L

algebra. The effective Hamiltonian in this form does not depend on the details of the system

but is fully determined by the irrep of the SU(2) algebra. More explicitly, for qsyk = 2, the

emergent Hamiltonian H is

Hqsyk=2 =
1

2N


−2




N

2


− 3N + 4L2


 . (3.13)
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The Hamiltonian is SU(2) invariant as it only contains the total angular momentum L2, and

is a c number once the irrep is fixed. On the other hand, for qsyk = 4, the Hamiltonian is

Hqsyk=4 =
3

N3


−2




N

4


+

1

4!

(
Hx +Hz −Hy

)

 , (3.14)

where

Hα = 32L4
α + 8(8− 6N)L2

α + 6N(N − 2); α = x, y, z. (3.15)

The full SU(2) symmetry in the qsyk = 2 case is reduced to a discrete rotation symmetry in

the xz plane. For general qsyk, the part of the emergent Hamiltonian which depends on the

angular momentum takes the form Hx+Hz−(−1)qsyk/2Hy, and hence the symmetry is either

discrete π/2 rotations within the xz plane or between the x, y, z axes, depending on whether

qsyk/2 is even or odd respectively. The additional symmetry in the case where qsyk/2 is odd

occurs as a result of the time-reversal symmetry operator commuting with the unitary time

evolution operator [60].

The emergent Hamiltonian is always a function of the angular momentum L⃗ for arbitrary

qsyk. When qsyk = 2, the Hamiltonian is also an SU(2) invariant, making it analytically

tractable. For qsyk > 2, the Hamiltonian only has a square or cubic symmetry. The enhanced

symmetry in the qsyk = 2 case makes the operator dynamics non-scrambling and distinct from

general qsyk. This is expected since the original Brownian SYK is quadratic at qsyk = 2.

Although we still need to diagonalize H to obtain the dynamics for general qsyk, the largest

Hilbert space dimension, which is determined by the angular momentum, is N + 1. This is

drastically reduced from the original Hilbert space size of 4N and enables the exploration of

operator scrambling dynamics for large but finite N and arbitrary time scales. Furthermore,

as we will show in Sec. 3.2.6, this formalism also makes it possible to derive an analytical

expression for the OTOC in the large N limit for arbitrary time scales and is naturally

connected to the previously known approach which consists of mapping to a stochastic
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Figure 3.1: The four local operator-states form two doublets of the emergent SU(2) ⊗ SU(2)
algebra. The J doublets do not contribute to the OTOC because they have odd local parity.
The operator dynamics of N Majoranas are mapped to the imaginary time dynamics of N
1/2-spins from the L doublets, which compose to form N/2 and N/2− 1 spins of the global
SU(2) algebra generated by L⃗ in Eq. (3.11). The largest Hilbert space dimension is N + 1.

model.

3.2.4 Classifying the states in the SU(2) algebra

We are interested in studying the operator dynamics of the Majorana fermions χ(t)

through the OTOC F(χi(t), χj), which, based on Eq. (2.14), takes the following form:

F(χi(t), χj) = 2N/2 ⟨out| exp(Ht) |in⟩

|in⟩ = 1

2N/2
|χi ⊗ χi⟩ , |out⟩ = 1

2N

∑

S
|χjS†χj ⊗ S⟩ .

(3.16)

Now that we have described the structure of the emergent Hamiltonian, the next task is to

decompose the input state |in⟩ and the output state |out⟩. The problem is very similar to

decomposing states of N 1/2-spins into various irreps of the total angular momentum. In

general, we have

2⊗ 2 · · · 2⊗ 2 = (N + 1)⊕ (N − 1)︸ ︷︷ ︸
N−1 copies

⊕ · · · (3.17)
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There is a single irrep with largest angular momentum L = N/2, (N − 1) irreps with

L = N/2 − 1, etc. However, in calculating the OTOC F (χi(t), χj), only the irreps with

L = N/2 and L = N/2 − 1 appear in the decomposition (As shown in Fig. 3.1). Now we

construct the input and the output state explicitly from the SU(2) algebra.

Input State–We first notice that the operator states corresponding to the identity operator

|I ⊗ I⟩ and the parity operator |Q ⊗ Q⟩ are the two fully polarized states in the z direction

and thus belong to the unique L = N/2 irrep. This can be checked explicitly as

Lz|I ⊗ I⟩ = −
N

2
|I ⊗ I⟩, Lz|Q ⊗ Q⟩ =

N

2
|Q ⊗ Q⟩. (3.18)

Therefore, the parity operator state and the identity state can be regarded as the N up spin

state and N down spin state, respectively. Generally, the eigenstates of the Lz operator are

classified as follows :

Lz|Qχi1 ...Qχij ⊗Qχi1 ...Qχij⟩ =
(
j − N

2

)
|Qχi1 ...Qχij ⊗Qχi1 ...Qχij⟩. (3.19)

In the same spirit, the input state is obtained by flipping a local spin at site i from the fully

polarized state |Q ⊗ Q⟩. In the picture of N 1/2-spins, the input state is

|in⟩ = − |↑1 ... ↑i−1↓i↑i+1 ... ↑N⟩ . (3.20)

This state splits into two irreps of the total angular momentum L as

|χi ⊗ χi⟩ =
(

1

N

∑

j

|χj ⊗ χj⟩
)
+

(
|χi ⊗ χi⟩ −

1

N

∑

j

|χj ⊗ χj⟩
)

= −
√

1

N

∣∣∣∣
N

2
,
N

2
− 1

〉

z

+

√
N − 1

N

∣∣∣∣
N

2
− 1,

N

2
− 1

〉

z,i

(3.21)

in the |l,m⟩ notation.

Output State–The output state is more non-trivial to interpret in the spin formalism
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because it requires us to insert a complete set of operators and resolve the identity, as shown

in Fig. 2.1(a)

|out⟩ = 1

2N

∑

S
|χjS†χj ⊗ S⟩ . (3.22)

For an intuitive understanding of expressing this state in the SU(2) language, one can start

with the state corresponding to the complete set of operators and its respective spin repre-

sentation
1

2N

∑

S
|S† ⊗ S⟩ = 1

2N/2

∏

i

(↑ − ↓)i = |← · · · ←⟩ . (3.23)

This is just the lowest weight state polarised along the x-direction, which is a steady state

with respect to the emergent Hamiltonian because of the discrete rotational square (or cubic)

symmetry. For the output state, the term in the summation gains a relative minus sign when

the Majorana string S contains χj. As a result, the jth spin is flipped from ← to →, and

we have

|out⟩ = − |←1 ...←j−1→j←j+1 ...←N⟩ . (3.24)

This output state splits into two irreps of SU(2) as well, similar to the input state, but in

the x direction

|out⟩ = −
√

1

N

∣∣∣∣
N

2
, 1− N

2

〉

x

+

√
N − 1

N

∣∣∣∣
N

2
− 1, 1− N

2

〉

x,j

. (3.25)

3.2.5 The OTOC

The problem reduces to the time evolution of the input state followed by the computation

of the overlap with the output state. Because the Hamiltonian only depends on the total

angular momentum L⃗, the two irreps in the input state do not mix during the time evolution.

As a result, the OTOC can be can be succinctly written as the contribution from the two

irreps

F(χi, χj) = FN/2(t) +

(
Nδij − 1

N − 1

)
FN/2−1(t) (3.26)
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where

FN/2(t) =
2N/2

N
x⟨l, 1− l|eHt|l, l − 1⟩z

FN/2−1(t) = 2N/2

(
N − 1

N

)
x⟨l − 1, 1− l|eHt|l − 1, l − 1⟩z

(3.27)

and 2l = N . Therefore the operator dynamics have been exactly mapped to the imaginary

time dynamics of SU(2) spins with angular momenta L = N/2, N/2− 1.

3.2.5.1 Analytical results for the non-interacting model (qsyk = 2)

We first discuss the non-interacting case, i.e. qsyk = 2 in Eq. (3.5). This special case is

manifest in the effective Hamiltonian H, since it only depends on the total angular momentum

L2 and the SU(2) algebra is promoted to an exact symmetry. Recall that the effective

Hamiltonian for qsyk = 2 takes the form

Hqsyk=2 =
1

2N


−2




N

2


− 3N + 4L2


 .

Where L2 = L2
x + L2

y + L2
z is the total angular momentum squared, which is the Casimir of

the SU(2) group, and hence the Super-Hamiltonian becomes a constant within a given irrep.

For the irreps relevant to the computation of the OTOC,

Hl,qsyk=2 = 0; Hl−1,qsyk=2 = −2. (3.28)

Hence the OTOC for qsyk = 2 becomes:

Fqsyk=2(χi(t), χj) =

(
−1 + 2

N

)
+ 2

(
Nδij − 1

N

)
e−2t. (3.29)

It exponentially decays to the late-time value (−1 + 2/N), which is nonzero and in contrast

with the expectation from scrambling (Eq. (3.4)), because the model for qsyk = 2 is not

interacting.
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3.2.5.2 Scrambling dynamics for qsyk = 4

For qsyk > 2, the model becomes interacting and the effective H is not only a function of

the total angular momentum L2 but depends on Lx, Ly and Lz. An example (for qsyk = 4)

is shown in Eq. (3.14). Therefore, to obtain the OTOC one needs to diagonalize H for the

two irreps L = N/2 and L = N/2− 1. The Hilbert space dimension scales linearly with N ,

permitting calculation from small to large but finite N .

In Fig. 3.2(a) we plot the overall OTOC for the cases i = j and i ̸= j, for N = 10000,

which agrees with the results in [30] up to an overall time scale due to the different con-

vention of J used in this work. The results for smaller N are also benchmarked with exact

diagonalization on the original model in Eq. (3.5), averaged over 200 noise realizations in the

appendix. This demonstrates the validity of our method. The two curves start with different

values and both relax to the late time value 0, in contrast with qsyk = 2 and agreeing with

the general expectation for scrambling dynamics. The difference between i = j and i ̸= j

drastically decreases as time increases, the latter characterized by the Lyapunov growth in

the early time.

From Eq. (3.26), the difference between i = j and i ̸= j is proportional to FN/2−1,

the contribution from the smaller irrep. In this irrep, one can show that the initial state

|l − 1, l − 1⟩z displays an exponential decay, as shown in Fig. 3.2(b), which also fits the ansatz

FN/2−1(χ(t), χ) ≃ 2 (1− 1/N) e−2t. As a result, the difference in F(χi(t), χj) between i = j

and i ̸= j vanishes at a short time scale. On the other hand, the scrambling dynamics

is contained in FN/2(t), the contribution from the largest irrep which corresponds to the

angular momentum L = N/2. This irrep shows early time Lyapunov growth and late time

exponential decay and follows the ansatz

FN/2(t) ∼




−1 + 2

N
e4t t≪ 1

4
lnN

e−2t t≫ 1
4
lnN

(3.30)
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Figure 3.2: (a) The OTOC F(χi(t), χj) for i = j and i ̸= j, computed according to Eq. (3.26),
for N = 10000 fermions. (b) The contribution to the OTOC from the irrep L = N/2 − 1
exponentially decays with time. The curve is fitted against e−2t. (c) The contribution to
the OTOC from the irrep L = N/2, vs time for N = 10000 fermions, displaying scrambling
behavior. The insets (c1) and (c2) show exponential Lyapunov growth in the early time
regime and exponential decay in the late time regime, fitted against the lines 4t−ln(N) and
−2t+ ln(15) respectively. Thus the curve follows the ansatz in Eq. (3.30). (d) The plot of
λL and −λlate as a function of N .
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As discussed in Eq. (3.27),

FN/2(t) =
2N/2

N
⟨N/2, 1−N/2|eHt|N/2, N/2− 1⟩

where H given in Eq. (3.14) is a negative N + 1 dimensional Hermitian matrix with all

eigenvalues smaller or equal to 0. As a result, FN/2(t) in general is a sum of N +1 exponen-

tially decaying terms. Therefore, it is natural to expect that FN/2(t) decays exponentially

in the late time, where the exponents are given by the largest nonzero eigenvalue of H. On

the other hand, the early-time Lyapunov exponential growth emerges from the interplay of

sufficiently many exponentially decaying terms. For example, when N = 4, H only has five

eigenvalues, including four zeros modes (H is identically zero for N = 2, qsyk = 4). As a

result, FN/2(t) would display an exponential decay for all time scales, instead of exponential

growth at early time. Therefore, the Lyapunov growth only occurs for sufficiently large N ,

the time scale for which increases logarithmically with N .

To investigate how the early time behavior changes from the exponential decay to expo-

nential growth as N increases, we use a more general ansatz FN/2(t ∼ 0) ∼ a+ beλLt for the

early time regime of FN/2, and study how λL change as N increases. By Taylor expanding

the ansatz and the definition of FN/2 in Eq. (3.27) and comparing coefficients, we get

λL =
x⟨l, 1− l|H2|l, l − 1⟩z
x⟨l, 1− l|H|l, l − 1⟩z

. (3.31)

This is a more accurate approach to extract λL than curve fitting, especially for relatively

small N where the Lyapunov growth can be short-lived.

We plot the λL obtained using this approach as a function N in Fig. 3.2(d), and we

also include the largest non-zero eigenvalue λlate that controls the late time relaxation for

comparison (FN/2(t→∞) ∼ ce−λlatet). At N = 4, because there is only decaying mode from

H, both λL and −λlate start with the same value. As N increases, λL also increases, changes

sign at N = 10 and asymptotes to 4, while λlate increases and asymptotes to 2.
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To understand why λL = 2λlate in the large N limit and provide an analytical understand-

ing of FN/2(t)’s behavior for all time scales, in the next subsection, we will derive FN/2(t)

directly in the infinite N limit (It should be noted that the ratio of λL/λlate is a function

of qsyk and the behavior for general qsyk is provided in the appendix. The results obtained

there agree with the analysis in [66]). In particular, we will see precisely how the early time

Lyapunov growth emerges from many exponentially decaying modes.

3.2.6 Hydrodynamic equation for the Brownian SYK model

We focus on the sector given by L = N/2, which contains the scrambling behavior. In

this sector, the OTOC is

FN/2(t) = 2N/2 ⟨out|in(t)⟩ =
∑

m

ψout(m)ψin(m, t) (3.32)

where

ψout(m) = −2m

N

(
N

N/2−m

)1/2

. (3.33)

The coefficient of the input state satisfies the imaginary time Schrodinger equation

∂tψin(m, t) =
∑

m′

Hm,m′ψin(m
′, t). (3.34)

To proceed to derive F in the large N limit, we exploit a similarity transformation to remove

the non-uniform N dependence of ψout(m) such that,

ψout(m)→ ψ̃out(m) = −2m

N
. (3.35)

The OTOC therefore becomes FN/2(t) = −2/N
∑
m

mψ̃in(m, t). After the similarity transfor-

mation, the ladder operator takes the following simple form

(L̃+)m+1,m =
N

2
−m, (L̃−)m−1,m =

N

2
+m (3.36)
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while L̃z is the same as Lz. From these angular momentum operators, The transformed

effective Hamiltonian H̃ can be constructed from Eq. (3.14) and becomes non-hermitian.

The transformed input state now obeys,

∂tψ̃in(m, t) =
∑

m′

H̃mm′ψ̃in(m
′, t). (3.37)

Remarkably, H̃ satisfies the property that
∑

m H̃mm′ = 0. This is because one of the eigen-

states of H, the fully polarized state in the x direction becomes uniform after the transforma-

tion, and is a left eigenvector of H̃. As a result, Eq. (3.37) is a master equation and ψ̃in(m, t)

has the interpretation of a probability because
∑

m ψ̃in(m, t) is conserved for all time.

Following this, we take the large N limit of the master equation by using the continuous

variable ξ = 2m/N . To the leading order of 1/N , the master equation becomes

∂tψ̃in(ξ, t) = −2∂ξ
(
ξ(ξ2 − 1)ψ̃in(ξ, t)

)
(3.38)

which can be solved analytically. In particular, if ψ̃in starts with a Delta distribution , it

remains a Delta distribution ψ̃in(ξ, t) = δ(ξ− ξ(t)) for all time. As a result, FN/2(t) = −ξ(t).

The peak value ξ(t) obeys a logistic differential equation

ξ′(t) = 2ξ(t)
(
ξ2(t)− 1). (3.39)

There are 3 static solutions; ξ = ±1 are the unstable solutions corresponding to the states

|I ⊗ I⟩ and |Q ⊗ Q⟩, while ξ = 0 is the stable solution corresponding to complete scrambling.

When ξ(0) = 1 − 2δ, i.e., slightly deviates away from the unstable solution, we obtain the

OTOC F as

FN/2(t) = −ξ(t) = −
1√

1 + 4e4tδ
. (3.40)

It demonstrates the characteristic early-time Lyapunov exponential growth and late-time
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exponential relaxation,

FN/2(t) ∼




−1 + 2e4tδ t≪ −1

4
ln δ

e−2t t≫ −1
4
ln δ

(3.41)

Which is in agreement with the numerical results in Sec. 3.2.4 and [30]. With the analytical

expression in hand, one can expand FN/2(t) as

FN/2(t) =
∞∑

n=0

(−1)n(2n)!
24n+1(n!)2δn+1/2

exp (−2(2n+ 1)t) . (3.42)

This demonstrates the emergence of the Lyapunov growth from many decaying modes with

alternating sign.

Several remarks are in order. First, ψ̃in(ξ, t) remains a Delta probability distribution over

time only in the infinite N limit. One can include the 1/N term in Eq. (3.38) when expanding

the master equation and will obtain a Fokker-Planck equation. The 1/N term would broaden

the distribution, which is a result of quantum fluctuations. Such terms can lead to observable

effects, such as wavefront broadening in higher dimensions [50, 51, 31]. Second, the analytical

form of F in Eq. (3.40) does not have to precisely match the numerics in Sec. 3.2.4. This is

because in the numerics, we always use the simplest initial operator state corresponding to

δ = 1/N while the analytical form is valid when δ is kept a constant as one approaches the

infinite N limit. Finally, the master equation we obtained in Eq. (3.37) precisely matches

that obtained by solving the model using the stochastic method [32]. Thus our approach,

by taking advantage of the emergent symmetry structure after the random disorder average,

reveals that the stochastic approach and the Hamiltonian approach used to solve the model

are simply connected by a similarity transformation. The logistic equation we obtain in

Eq. (3.39) is slightly different from that obtained in the spin Brownian model [31, 33], where

there are only two steady solutions because of the absence of the fermionic parity operator.

In the spin Brownian model, λL and λlate are the same. In the Majorana case, the relation
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between λL and λlate depends on qsyk, as discussed in the appendix.

Our approach, exactly mapping the operator dynamics to the imaginary-time dynamics of

a spin, is readily generalized to the complex Brownian SYK model with charge conservation,

which we will present next.

3.3 The case with U(1) symmetry : complex Brownian SYK model

Now we move on to the primary goal of the program, which is to understand quantum

information dynamics in charged models. There have been many fruitful discussions on the

interplay between scrambling dynamics, conserved quantities such as energy [41, 46, 47, 67,

68, 69, 70, 71, 72, 73, 74, 75], charge [76, 77, 78, 79, 80, 81, 82, 83], dipole [84, 85, 86] and other

symmetries [29, 87]. It has been shown that the presence of conserved quantities bounds the

operator growth [41, 82] and also slows down the relaxation of OTOC in higher dimensions

when the conserved quantities display diffusive transport [77, 78, 75]. From the opposite

perspective, operator growth can also influence transport properties [88, 46, 70]. In systems

with conserved quantities, the operator dynamics contain contributions from different sectors

of the Hilbert space, each labelled by the corresponding value of the conserved charge.

A natural curiosity therefore arises, concerning the relation between scrambling dynamics

and the density of the conserved quantities. In all-to-all interacting models, most studies

related to this question focus on the early time behavior of F characterized by the Lyapunov

exponent. In the SYK model, it is found that the Lyapunov exponent λL = 2πT at low

energy [35, 38], saturating the conjectured chaos bound [41]. More recently, the bound on

λL from the charge density ρ has also been computed, showing λL vanishes algebraically

at low density [82]. These results are consistent with the intuition that scrambling should

slow down at low density of conserved quantities because of the restricted Hilbert space.

However, most calculations of the Lyapunov exponent are in the large N limit or at small

N up to ∼ 60 in the Majorana case [89]. Furthermore, precise results concerning the OTOC

beyond the early time exponential regime are difficult to obtain, even in the large N limit.

Therefore, to further understand the interplay between conserved quantities and scrambling,
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exact large but finite N calculations of the OTOC at a given energy or charge are required.

Although the Brownian model does not conserve energy because of the time-dependent

couplings, one can design such a model to conserve charge. These properties make such mod-

els appealing for understanding the interplay between conserved quantities and scrambling.

One of the simplest Brownian models that conserves charge is the complex Brownian SYK

model. However, the technique used to solve Brownian models previously does not directly

apply to this case, because of the charge conservation. So far, only the charge dependence

of the Lyapunov exponent is available in the large N limit based on a standard field theory

calculation [82].

In the case of the complex Brownian SYK model, which is the primary focus of this work,

our approach maps the operator dynamics to an SU(4) spin with conserved weights and the

particular irrep is related to N . The largest Hilbert space dimension required to compute

the OTOC scales linearly with N , drastically reduced from the original Hilbert space that

scales exponentially with N . This allows for numerical computation of the OTOC for large

but finite N and also makes the derivation of the OTOC possible for all times in the large

N limit. We emphasize that the original Brownian SYK model does not have the specified

symmetry structure, which only appears after taking the random average. This work is

also related to recent studies on the emergent discrete symmetry resulting from the disorder

average over replicas in random circuit models [50, 90, 91, 92, 29, 93, 94] and large N

field theory calculations of the static SYK model [95, 96]. These discrete symmetries can be

intuitively understood as the interplay between permutation among replicas and the physical

symmetries of the model. This work demonstrates that the effective model emerging from

the Brownian SYK model at any N is not only invariant under these discrete symmetries,

but is closed within a larger continuous symmetry group, SU(2) in the case without charge

conservation, or SU(4) with charge conservation, for which the discrete symmetry group is a

subgroup. Furthermore, when the model is non-interacting, i.e., quadratic in the fermionic

operators, it is invariant under the continuous symmetry group [97, 98].
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We will next discuss operator dynamics in the context of complex fermions, where we de-

fine a suitable operator basis which respects the U(1) symmetry. We also use this knowledge

to compute the OTOC analytically for different correlators, which will be verified numerically

for the complex Brownian SYK model.

3.3.1 Operator dynamics of complex fermions

In this section, we discuss the operator dynamics of complex fermions in systems with

charge conservation. In general, we consider a system of N fermions, and a Hamiltonian

that is a function of the creation and annihilation operators χ†
i and χi, where the subscript i

goes from 1 to N . These operators obey the standard anti-commutation relation {χ†
i , χj} =

δij. We define the operator ni = χ†
iχi, which measures the local charge. We also define

n̄i = I−ni for later convenience. The Hamiltonian conserves the total charge, meaning that

[H,
∑

i ni] = 0. As a result, given an initial state with a fixed charge, its dynamics is always

restricted to the corresponding charge-sector of the Hamiltonian.

One can also define the conserved charge for an operator in such systems. Unlike the

state, the operator has two conserved quantities, resulting from measuring the total charge

on the left or on the right. An eigen-operator W of two U(1) symmetries is defined as

(∑

i

ni

)
W = maW, W

(∑

i

ni

)
= mbW. (3.43)

In general, ma and mb are independent and the tuple (ma,mb) is labelled as the charge-profile

of the operator. Because the Hamiltonian conserves the total charge
∑
ni, the Heisenberg

operator W (t) remains an eigen-operator with the same conserved quantities ma and mb.

The appropriate local eigen-operators have the charge profile :

χ† : (1, 0) χ : (0, 1) n : (1, 1) n̄ : (0, 0). (3.44)

Note that the identity operator is not an eigen-operator of the two U(1) symmetries.

34



Using the operators in Eq. (3.44), one can construct a complete operator basis for N

fermions that fully respects the two U(1) symmetries of the operator dynamics

S = 2N/2s1s2 · · · sN , si ∈ {χ†, χ, n, n̄}. (3.45)

One can also show that ma(S) counts the number of χ† plus the number of n in the string,

while mb(S) counts the number of χ plus n. Under unitary time evolution driven by the

charge-conserving Hamiltonian, the only permissible building block for the dynamics of the

operator-states of the form S is the move

n̄n←→ χ†χ (3.46)

which preserves the charge-profile. Following this, one can immediately detect the set of

operators that may have time-dependence but display no operator spreading, i.e. W (t) =

eictW where c is a real constant. For example, it is evident that the operators of the form
∏N

i=1 χ
†
i and

∏N
i=1 χi are the unique operators with the charge profiles (N, 0) and (0, N)

respectively, therefore they simply gain a phase under the dynamics. The identity operator

is more special because it always commutes with the unitary and therefore does not have

dynamics. We can further expand I in the basis S as

I =
N∏

i=1

(ni + n̄i) =
N∑

m=0

Im,N

Im,N =
∑

i1<...<im

ni1 ...nimn̄im+1 ...n̄iN−m
.

(3.47)

Here the operator Im,N is a component of the identity over N fermions in the U(1) basis,

with the charge profile (m,m). Since the identity does not have time dependence, each

component with a different m is also static under the charge-conserving dynamics.

We can determine the dynamics of a local operator WiI after expanding the identity over
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N − 1 fermions in the basis S

WiI = Wi

∏

j ̸=i

(nj + n̄j) =
N−1∑

m=0

WiIm,N−1. (3.48)

Each component Im,N−1 has profile (m,m). Thus it is apparent that when a local operator

chosen from the set {χ†
i , χi, ni, n̄i} is expanded in such a basis, each operator-string in the sum

has a fixed charge profile (ma,mb), where ma−mb is invariant across all the components and

takes the values {1,−1, 0, 0} corresponding to the choice of operator from the set respectively.

Once the expansion is obtained, the dynamics, in the form of the charge conserving move,

take place independently within each charge sector (labelled by m).

Given an initially simple operator Wi, one way to track its complexity under Heisenberg

time evolution is using the OTOC

F(Wi(t), Vj) =
1

2N
Tr
(
W †

i (t)V
†
j Wi(t)Vj

)
(3.49)

where Vj is a local probing operator. Since Wi(t) is a local operator, it does not respect the

two U(1) symmetries and has the expansion shown in Eq. (3.48). Therefore the OTOC F

contains contributions from different charge sectors,

F(Wi(t), Vj) =
∑

m

Tr(Pm)

2N
Fm(Wi(t), Vj)

Fm(Wi(t), Vj) =
1

Tr(Pm)
Tr(PmW

†
i (t)V

†
j Wi(t)Vj)

(3.50)

where Pm =
∑
m

|ψm⟩ ⟨ψm| is the projection operator for the subspace of the Hamiltonian with

charge m and dimension
(
N
m

)
. We denote Fm as the charge-resolved OTOC, contributing

to the overall F based on the binomial distribution. To illustrate this, let us consider

F(χi(t), χ
†
j) where one can start with χi and use χ†

j to probe its growth. In Fm(χi(t), χ
†
j)

given by

Fm(χi(t), χ
†
j) =

1

Tr(Pm)
Tr(Pmχ

†
i (t)χjχi(t)χ

†
j). (3.51)
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The charge profiles of the operator χ†
i (t) (notice the dagger) and χi(t) are fixed to be (m,m−

1) and (m,m + 1) respectively for all time as a result of the charge conserving dynamics.

Therefore, Fm(χi(t), χ
†
j) probes the correlation between the components of the operator

χ†
i (t) in two different charge sectors (m,m − 1) and (m + 1,m). It is generally true that

Fm(Wi(t), χj) probes the correlation between different charge sectors of Wi. To probe the

operator growth within a charge sector, one can also use nj instead as the probing operator

and study the charge resolved OTOC Fm(Wi(t), nj). For example, in Fm(χi(t), nj) the

charge profiles of χ†
i (t) and χi(t) are fixed to be (m,m − 1) and (m − 1,m). Therefore,

Fm(χi(t), nj) probes the operator dynamics of χi(t) within one charge sector (m − 1,m).

Using combinatorics and the assumptions that the Heisenberg operator W (t) becomes as

complicated as possible at late times, we obtain the initial and late-time values of the charge

resolved OTOC Fm(χi(t), χ
†
j) and Fm(χi(t), nj), which are summarized in Table 3.1.

We also consider the Heisenberg dynamics of the operator ni(t). The operator growth

can be probed by the charge resolved OTOC Fm(ni(t), χ
†
j) and Fm(ni(t), nj). When the

local probing operator is χ†
j, Fm probes the correlation between the charge sectors (m,m)

and (m + 1,m + 1) of ni. When the local probing operator is nj, Fm probes the opera-

tor growth of ni within the charge sector (m,m). In the case of the OTOCs Fm(ni(t), χ
†
j)

and Fm(ni(t), nj), the late-time values are more nontrivial to compute than when the ini-

tial operator is chosen to be χi(t), because ni(t) is not traceless. Within each charge sec-

tor, we have Tr(Pmn(t))/Tr(Pm) = m/N , and this will put constraints on the coefficients

of the operators present in the component of the identity in the charge sector (i.e., all

the different operators that make up Im,N in Eq. (3.47)). These constraints will in turn

lead to non-uniform operator spreading. To remedy this, one can investigate the OTOC

through the operator-spreading of a modified operator n(t) − ∆mI within each charge

sector, which is related to the OTOC of n(t) in a simple way. The constant ∆m can

be chosen to precisely guarantee uniform operator spreading at late times, through the

equation Tr(Pm(ni −∆mI)) =
√
(m/N)(1− 2∆m +∆2

mN/m). The initial and late-time
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values for Fm(ni(t), χ
†
j) and Fm(ni(t), nj) are also listed in Table 3.1, and one can use

them to compute the late time values of the overall OTOCs F from the weighted average

F =
∑

m Tr(Pm)Fm/Tr(I)

F(χi(t→∞), χ†
j) = 0

F(χi(t→∞), nj) =
(N − 1)(N + 2)

8N2

N→∞
=

1

8

F(ni(t→∞), χ†
j) =

(N − 1)(N + 2)

8N2

N→∞
=

1

8

(3.52)

For the OTOC F(ni(t), nj), it is difficult to obtain a closed form expression for the overall

OTOC. However, from the charge-resolved value, one can compute the large-N expansion

and find that the leading order piece at late times is F(ni(t → ∞), nj)
N→∞
= 3/16. This

OTOC will also have finite sized effects in its late time value, similar to both the other

OTOCs computed where one of the operators is chosen to be n. In Sec. 3.3.6, we verify

these late-time values in the case of the complex Brownian SYK model (The values for the

charge-resolved case are verified in the appendix). Furthermore, we also provide an exact

formalism to track the time evolution of various OTOCs from the initial value to the late-time

value in different charge sectors.

Using the result in Table. 3.1, one can also compute the late-time value of the overall

OTOC between traceless operators by summing over the contribution from each charge

sector and compare the result without charge conservation. For example, we can consider

the overall OTOC between χi and nj − I/2. Importantly, within each symmetry sector, the

operator nj − I/2 is not traceless, and the charge resolved OTOC approaches a finite value

that depends on m. Summing over contributions from each charge sector leads to a late-time

value (N − 2)/8N2, scaling as ∼ 1/N in sharp contrast with 1/ exp(αN) that is found in

systems without symmetry [65]. The 1/N corrections to the late-time value are present for

all pairs of operators in Table. 3.1, except F(χi(t), χ
†
j) because the operators involved are

traceless in each charge sector. Related to this, the 1/poly(N) correction to the late-time
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Wi Vj Fm(Wi(t = 0), Vj) Fm(Wi(t→∞), Vj)

χi χ†
j (1− δij)m(m−N)

N(N−1)
0

χi nj (1− δij)m(m−1)
N(N−1)

m2(m−1)
N3

ni χ†
j (1− δij)m(m−N)

N(N−1)
m(m+1)(N−m)

N3

ni nj
m(m(1−δij)−1)

N(N(1−δij)−1)
m3

N3 + (m
N
− (m

N
)2)

(
(N−1
m−1)

2−m/N

(Nm)
2−1

)

Table 3.1: The early and late time value of the charge resolved OTOC in Eq. (3.50) for each
charge sector labelled by m and for different choices of the operators W and V .

value of the OTOC is found in energy conserving systems as well [73].

We also note that some subtlety arises for the late value of Fm(Wi(t), Vj) when the

Hamiltonian is qsyk-uniform and only contains terms of the form χ†
i1
· · ·χ†

iqsyk/2
χj1 · · ·χjqsyk/2

.

In this case, some operators in sectors of dilute charge (m ∼ O(1)) have restricted dynamics

owing to the symmetries of the qsyk-uniform Hamiltonian, and the late time value of the

OTOC can be different for the cases i = j and i ̸= j, due to imperfect scrambling.

3.3.2 Defining the complex Brownian SYK model

We start with the Brownian version of the complex SYK model [36] with N complex

fermionic pairs (χ, χ†) and (qsyk = 4)-body interactions with complex time-dependent cou-

plings J

H(t) =
∑

j1,j2,k1,k2

Jj1,j2,k1,k2(t)χ
†
j1
χ†
j2
χk1χk2 + h.c. (3.53)

These fermions satisfy the usual anti-commutation relations

{χj, χk} = 0
{
χ†
j, χk

}
= δjk. (3.54)
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The couplings J are sourced independently from a Gaussian distribution with zero mean and

variance

Jj1,j2,k1,k2(t)J
∗
j′1,j

′
2,k

′
1,k

′
2
(t′) = δj1j′1

δj2j′2
δk1k′1
δk2k′2

δ (t− t′) 1

2N3
(3.55)

This relation can be generalized for other qsyk as well, although in this work we primarily

focus on qsyk = 4. In the main text, as an example, we will primarily be focusing on

computing the OTOC F(χi(t), χ
†
j) and its charge resolved version Fm(χi(t), χ

†
j)

F(χi(t), χ
†
j) =

∑

m

Tr(Pm)

2N
Fm(χi(t), χ

†
j)

Fm(χi(t), χ
†
j) =

1

Tr(Pm)
Tr(Pmχ

†
i (t)χjχi(t)χ

†
j).

(3.56)

We will quote the result for the other OTOCs but leave the details of the calculation in the

appendix.

One can rewrite the OTOC as shown in Sec. 2.1. This gives us the idea to work with

four copies of the Hilbert space, occupied by four “replica" fermions labelled by the indices

(a, b, c, d). This larger Hilbert space is spanned by the basis vectors

χa
j := χj ⊗ I ⊗ I ⊗ I χb

j := I ⊗ χ⊺
j ⊗ I ⊗ I

χc
j := I ⊗ I ⊗ χj ⊗ I χd

j := I ⊗ I ⊗ I ⊗ χ⊺
j

(3.57)

and their Hermitian conjugates (χa
j
†, χb

j
†
, χc

j
†, χd

j
†
). Here we use the notation χ⊺

j = χ∗
j
†, which

implies that we have performed a particle-hole transformation on copies b, d. This is just a

convention which makes things easier when defining the operators of the SU(4) algebra in

the next section. The replica fermions with different indices commute with each other. This

‘mixed’ species of particles populating the Hilbert space is rather inconvenient to work with,

and we convert them to fermions that anti-commute with each other by using the parity
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operator similar to the Majorana case

Qα =
N∏

k=1

exp(iπnα
k ), α = a, b, c, d. (3.58)

One can check that this operator satisfies the following relations : {Qα, χα
k} = 0,

{
Qα, χα

k
†} =

0, (Qα)2 = 1. Following this, we define

ψa
j = Qaχa

j , ψb
j = Qaχb

j

ψc
j = QaQbQcχc

j, ψd
j = QaQbQcχd

j

(3.59)

These operators are purely fermionic, i.e. they anti-commute with themselves and fermions

from other replicas, satisfying :
{
ψα
j
†, ψβ

k

}
= δα,βδj,k,

{
ψα
j , ψ

β
k

}
= 0. One can also confirm

that

ψα
j1

† . . . ψα
jq

†ψα
k1
. . . ψα

kq = χα
j1

† . . . χα
jq

†χα
k1
. . . χα

kq
(3.60)

and hence we can replace the operators in the original Hamiltonian with these new purely

fermionic operators.

We can now take the disorder average of each time step in the discretized time-evoluton

independently using the approach outlined in Sec. 2 and arrive at the averaged time evolution

operator, as well as the effective Hamiltonian U(t) = exp(Ht). Although the full expression

of H is quite complicated (which is given in the Appendix), it takes a general simple form

that results from the general construction as well as the charge conservation on each replica

a ∼ d.

We introduce the bilinear operators

Sαβ =
∑

i

ψα†
i ψ

β
i . (3.61)

The total charges
∑

i χ
†
iχi on each replica are given by (Saa, N − Sbb, Scc, N − Sdd), which

measures the charge profile of an operator state. Note the particle-hole transformation on
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replicas b and d. In terms of these bilinear operators, the Hamiltonian takes the following

general form:

H = H(SαβSβα, Sαα), α, β ∈ a, b, c, d. (3.62)

Which results from the independent charge conservation on the four replicas. One can

explicitly verify that H commutes with all four operators Sαα in this functional form.

3.3.3 Emergence of the SU(4) ⊗ U(1) algebra

Now we analyze the full symmetry structure of H. The dimension of the total Hilbert

space of the effective Hamiltonian H is 16N since it contains 4 copies of the original system.

The dimension scales exponentially with N even with the charge conservation. In this

section, we exploit the additional symmetry structure of H in Eq. (3.62) to further reduce

the dimension.

From the bilinear operator introduced in Eq. (3.61), we define S̃αβ = Sαβ − 1
4
δαβSσσ.

The operators satisfy the commutation relations

[S̃αβ, S̃γσ] = δβγS̃ασ − δασS̃γβ. (3.63)

There are 15 independent operators because
∑

α S̃
αα = 0 and they are generators of the

SU(4) algebra. Along with this, the operator Q =
∑

α S
αα commutes with all the operators

of the SU(4) algebra and defines the U(1) charge to make the overall algebra SU(4)⊗U(1).

Since the emergent Hamiltonian commutes with the four operators Sαα, in addition to

commuting with the total charge operator, it also commutes with the three operators that

form the Cartan-subalgebra of the SU(4) algebra. Each subsector of H can therefore be

labeled by the irrep of the SU(4) algebra, the three weights in the weight diagram of the

irrep, and the total U(1) charge. This fully resolves the symmetry structure of H. It is well

known that there are multiple states corresponding to the same weights in SU(n) irreps for

n > 2. In our case, the dimensions of the irreps of the SU(4) algebra scales as O(N4) and

fixing the weights decreases the scaling to O(N). In other words, the largest dimension of
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subsectors of H scales linearly with N , drastically reducing the computational cost.

Let us compare the structure of H between the Majorana case and the complex case. In

the Majorana case, H can be written as a function of SU(2) generators, and the dimension of

largest subsector scales linearly with N . Here in the complex case, H is a function of SU(4)

generators. In addition, it commutes with the weight of the SU(4) algebra, and as a result,

the largest Hilbert space dimension also scales linearly with N .

The strategy for calculating the OTOC in the complex case is similar to the Majorana

case. We need to decompose the input and the output state into different subsectors of

H, let the different components of the input state evolve in the imaginary time given by

H, and then take the overlap with the different components of the output state. Thus

the OTOC contains the contribution from the different irreps of SU(4) as well as different

charge sectors (weights). This method therefore naturally provides us the OTOC in the

charge resolved manner.

Before proceeding to discuss the decomposition of the initial and the final states into

irreps of SU(4), we note that the non-interacting nature of the quadratic model (qsyk = 2)

manifests itself in the effective Hamiltonian, similar to the Majorana case. A straightforward

calculation reveals that the emergent Hamiltonian Hqsyk=2 takes the following simple form,

Hqsyk=2 =
1

N
(C2 +

Q2

8
− 2N − QN

2
) (3.64)

where Q is the total charge and C2 is the quadratic Casimir of SU(4)

C2 =
1

2

∑

α,β

SαβSβα − Q2

8
. (3.65)

In this case, Hqsyk=2 commutes with all Sαβ and becomes a constant within a given irrep, i.e.

the algebra structure is enhanced to an exact symmetry. These properties make it possible

to solve the OTOC analytically for qsyk = 2, which will be presented in Sec. 3.3.5. Other

than qsyk = 2, the emergent Hamiltonian Hqsyk only conserves the weights within the SU(4)
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irrep. This remarkable difference between qsyk = 2 and qsyk ̸= 2 leads to the distinct operator

dynamics.

The full emergent Hamiltonian for qsyk = 4 is present in the appendix. The general

structure of the Hamiltonian for all qsyk takes the form in Eq. (3.62), which manifestly

preserves the charges for each of the four replicas. This is a powerful property that will

be exploited to ‘chop up’ the input state in the OTOC into states with different weights

within the SU(4) irreps so that each piece will only have dynamics within its own fixed-

weight (charge) subspace.

3.3.4 Classification of states in the SU(4) algebra

The emergent Hamiltonian acts on four replicas of the original Hilbert space. In other

words, the input states correspond to two copies of operators, in total 16N independent

states. In the last section, we demonstrated that the emergent Hamiltonian is closed within

the irreps of the SU(4) algebra. In this section, we organize the input states and the output

states into various irreps of SU(4), from which the operator dynamics and OTOC can be

efficiently computed exactly using Hilbert space of size O(N).

3.3.4.1 N = 1 representation

We first consider the operators acting on the same fermionic index, i.e., N = 1. There are

four independent operators per site, χ†, χ, n = χ†χ and n̄ = χχ†. As discussed in Sec. 3.3.1,

this basis fully utilizes the U(1) symmetry of the complex Brownian model. The identity

operator I is n+ n̄. Combinations from the 4 operators on each copy leads to 16 independent

operator states. The 16 operator states can be grouped into irreps of SU(4) in the following

way,

16 = 1⊕ 4⊕ 6⊕ 4̄⊕ 1. (3.66)

The initial operator state of interest, |χ†
iI ⊗ χiI⟩, contains the operator state χ† ⊗ χ and

I⊗I acting on different fermions, which belong to the six dimensional irrep (0, 1, 0). In other

words, the initial states are only made using states per fermion within the (0, 1, 0) irrep. The
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Figure 3.3: The six onsite operator-states for the complex Brownian SYK model form the
SU(4) irrep (0, 1, 0). Here n̄ = 1 − n and the construction of the generators is provided
in Eq. (3.61). The operator dynamics of N complex fermions with charge conservation
is mapped to the imaginary time dynamics of N SU(4) spins in the (0, 1, 0) irrep, which
compose to form (0, N, 0), (1, N − 2, 1) and (0, N − 2, 0) irreps of the global SU(4) algebra
as shown in Eq. (3.68). In addition, the weights of the global SU(4) spin are also conserved
because of the charge conservation. The largest Hilbert space dimension for a fixed weight
sector within a given global SU(4) irrep scales linearly with N .

operator states in the (0, 1, 0) irrep and their transformation under SU(4) generators are

shown in Fig. 3.3. Since the emergent Hamiltonian only contains the generators of SU(4),

the other single fermion irreps do not contribute to the dynamics. To this end, the operator

dynamics is mapped to the dynamics of N six-dimensional SU(4) spins. This is in the same

spirit with the operator dynamics of the Majorana model mapping to N spin-1/2 SU(2)

spins. Crucially, unlike the Majorana case, the operator on each copy does not have to

match during the dynamics, and the configuration n ⊗ n̄, for example, can be generated in

the dynamics. This leads to the rich charge-dependent operator dynamics of the complex

model.
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3.3.4.2 Representation for general N

Taking into account the SU(4) irreps of operator states at each site reduces the Hilbert

space dimension from 16N to 6N , a significant reduction which however is still difficult to work

with. Since the Hamiltonian only depends on the SU(4) ⊗ U(1) generators, the dynamics

must be closed within the SU(4) irreps of N total fermions. Hence the next step is to build

SU(4) irreps of N fermions from N copies of the irrep (0, 1, 0) corresponding to a single

fermion, based on the composition rule of SU(4) irreps,

(0, 1, 0)⊗ ...⊗ (0, 1, 0)︸ ︷︷ ︸
N times

= (0, N, 0)⊕ (1, N − 2, 1)︸ ︷︷ ︸
N−1 copies

⊕..., (3.67)

and then decompose the initial operators into the various irreps, which evolve independently

under the emergent Hamiltonian. The dimension of each irrep scales polynomially with N ,

drastically reduced from 6N . The dimension of the Hilbert space can be further reduced

to linear scaling because the emergent Hamiltonian also conserves the weight of the states

within the irrep.

This is a well-defined but tedious procedure for a general initial operator state |W † ⊗W ⟩

since many SU(4) irreps can appear in the composition. However, for simple initial operator

states of interest, this procedure is significantly simplified, and at most three irreps appear

in the composition. The initial operator states we consider are local operators of the form

|W †
1 I ⊗W1I⟩, made from the identity operators except for one fermion, which is located at

site 1 without loss of generality. We notice that the operator state |I ⊗ I⟩ on the remaining

N − 1 fermions belongs to a single SU(4) irrep (0, N − 1, 0). Therefore the composition in

Eq. (3.67) is reduced to the composition of two irreps,

(0, 1, 0)⊗ (0, N − 1, 0) = (0, N, 0)⊕ (1, N − 2, 1)⊕ (0, N − 2, 0). (3.68)

Now we present the explicit decomposition of the initial operators into the three irreps,
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which will then be used to calculate OTOC later. We will assume that N is even throughout

this work for simplicity. The notation we use will assume that unless an index is specified,

it is implied that the operator has support on all sites which are not populated by other

operators in the given operator string, i.e.:

O ≡ ΠN
i=1Oi; ÕjO ≡ ÕjΠi ̸=jOi. (3.69)

Our strategy is to build the states from the highest weight state within each of the three

irreps, just like building the state from the fully polarized state using L± in the Majorana

case. The highest weight state is defined so that it is annihilated by Sab, Sbc and Scd, using

the following convention

|W(0,N,0)⟩ =
1

N
|χ† ⊗ χ⟩

|W(1,N−2,1)⟩ = − |n1χ
† ⊗ n1χ⟩+

1

N

N∑

i=1

|niχ
† ⊗ niχ⟩ .

(3.70)

Input state – We will first demonstrate the procedure to build all the states required

to compute the OTOC, using the OTOC F(χi(t), χ
†
j) as an example. We start with the

operator state |χ†
1I ⊗ χ1I⟩, which corresponds to the input state in the OTOC. Using the

SU(2)⊗ SU(2) sub-algebra of SU(4) generated by Sba and Sdc, one can show that,

|χ†
1I ⊗ χ1I⟩ =

N−1∑

k,l=0

(−1)k+l (S
ba)k

k!

(Sdc)l

l!
|χ†

1n⊗ χ1n⟩ . (3.71)

Each term in the summation has the fixed charge profile (N −k,N −1−k,N −1− l, N − l).

The operator state |χ†
1n⊗ χ1n⟩ can be built from the highest weight states using the operator

Scb from the following simple relation:

|χ†
1n⊗χ1n⟩ = (−1)N/2+1

(
(Scb)N−1

(N − 1)!
|W(0,N,0)⟩+

(Scb)N−2

(N − 2)!
|W(1,N−2,1)⟩

)
. (3.72)
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Thus the initial operator state |χ†
1I ⊗ χ1I⟩ is completely decomposed into the two irreps and

built from the highest weight states. This state does not have a component in the (0, N−2, 0)

irrep. Each term in the summation can therefore be restricted to one irrep and has fixed

charges, thus evolving independently under the emergent Hamiltonian. The dimension of

each subspace is given in Eq. (A.23), which scales linearly with N . The other initial state of

interest |n1I ⊗ n1I⟩ can be built from the highest weight state in a similar fashion, but has

components in all three irreps. The details can be found in the appendix.

Output state – Now we discuss building the output state using SU(4) irreps. Similar to

the case of the Majorana model, building the output state requires inserting the resolution of

the identity operator to ensure a proper overlap with the input state. We again consider the

operator state |χ†
1I ⊗ χ1I⟩. After inserting the resolution of the identity, the state becomes

1

4N

∑

S
|χ1S†χ†

1 ⊗ S⟩ =
∑

Sc

P (Sc)

22N−1
|n̄1Sc† ⊗ n1Sc⟩ (3.73)

where P (Sc) is the parity of the string Sc, equaling 1 if the total number of χ and χ† in the

string Sc is even, and −1 otherwise. The string Sc represents all complex fermionic strings

over the fermions except site 1. Using the SU(2)⊗SU(2) sub-algebra of SU(4) generated by

Scb and Sda, one can show that

∑

Sc

P (Sc)

2N−1
|n̄1Sc† ⊗ n1Sc⟩

=
N−1∑

k,l=0

(−1)N/2+k (S
cb)k

k!

(Sda)l

l!
(−Sba) |n1χ

† ⊗ n1χ⟩ .
(3.74)

where the operator state |n1χ
† ⊗ n1χ⟩ is built from the highest weight states as

|n1χ
† ⊗ n1χ⟩ = Scb |W(0,N,0)⟩ − |W(1,N−2,1)⟩ . (3.75)

Thus this completes the prescription of constructing the output state from the highest weight
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states.

3.3.5 The OTOC

As is evident from the sum in Eqs. (3.71) and (3.74), both the input and output states

are composed of N2 different weights. Since the Hamiltonian preserves weights and states

with different weights are orthogonal, it is important to check how many of the weights are

shared between the input and output states. One can deduce that there are N − 1 such

weights, and they can be labelled by a single integer m that also labels the charge in each

corresponding sector, and ranges between [1, N − 1]

|inm⟩ = −
1

2N
(Sdc)N−m−1(Sba)N−m

(N −m− 1)!(N −m)!
|χ†

1n⊗ χ1n⟩

|outm⟩ =
(−1)N/2−m−1

2N
(Sda)N−m−1(Scb)m−1

(N −m− 1)!(m− 1)!
|n̄1χ

† ⊗ n1χ⟩
(3.76)

This is exactly equivalent to restricting the OTOC to a specific charge sector, as shown in

Sec. 3.3.1. The states |χ†
1n⊗ χ1n⟩ and |n̄1χ

† ⊗ n1χ⟩ have been built in the previous section.

One can check that the states defined above have equal weight for the corresponding m,

hence the problem reduces to dynamics within N − 1 subspaces, each of maximum size

O(N). Following this, the OTOC is governed by the equation

F(χi(t), χ
†
j) = F(0,N,0)(t) +

(
Nδij − 1

N − 1

)
F(1,N−2,1)(t)

F(0,N,0)(t) = 2N
N−1∑

m=1

⟨outm|eHmt|inm⟩(0,N,0)

F(1,N−2,1)(t) = 2N
N−1∑

m=1

⟨outm|eHmt|inm⟩(1,N−2,1).

(3.77)

From here on out, we will use the notation Firrep(t) to refer to the OTOC F(χi(t), χ
†
j) and

the notation Fm
irrep(t) to discuss its charge resolved version restricted to the particular irrep,

unless other operators are explicitly specified. As we will see in the upcoming sections, the

scrambling dynamics are present solely in the contribution from the symmetric (0, N, 0) irrep
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(for qsyk ≥ 4) and all other irrep contributions are marked by exponential decays at all times.

3.3.5.1 Analytical results for the non-interacting model (qsyk = 2)

One can compute the OTOC for the free case (qsyk = 2) using the emergent Hamiltonian

which in the case of the non-interacting model depends only on the quadratic Casimir C2

and the total charge Q, as shown below

Hqsyk=2 =
1

N
(C2 +

Q2

8
− 2N − QN

2
).

In this case the dynamics are analytically accessible and the two different irreps involved in

the OTOC are a constant. These are given by

C
(0,N,0)
2 =

N2

2
+ 2N ; C

(1,N−2,1)
2 =

N2

2
+N. (3.78)

Utilizing this knowledge and the fact that the total charges of both irreps are Q = 2N , one

can compute the emergent Hamiltonian corresponding to both irreps

H(0,N,0)
qsyk=2 = 0; H(1,N−2,1)

qsyk=2 = −1. (3.79)

This implies that the dynamics within each irrep takes the following simple form F(0,N,0)(t) =

a, F(1,N−2,1) = be−t. The constant parameters a and b can be conveniently obtained from

the initial value of the overall OTOC Fqsyk=2(χi(t), χ
†
j)

Fqsyk=2(χi(t = 0), χ†
j) =





0 (i = j)

−1
4

(i ̸= j)
(3.80)

The OTOC is then written as

Fqsyk=2(χi(t), χ
†
j) =

(
N − 1

4N

)[
− 1 +

(
Nδij − 1

N − 1

)
e−t

]
. (3.81)

50



Hence the OTOC starts from a value dependent on δij and N , and exponentially decays to

−(N − 1)/4N instead of 0 as in the case of scrambling dynamics.

3.3.5.2 Scrambling dynamics for qsyk = 4

The effective Hamiltonian is not a constant anymore for qsyk > 2. One needs to diago-

nalize H for each irrep and every charge sector to compute the OTOC in Eq. (3.77). This

can be done for large but finite N because the Hilbert space for each sector is at most of size

O(N), given the symmetry structure of H. Constructing the effective Hamiltonian for each

sector requires us to build the matrix representation for the bilinear operators Sαβ for both

irreps (0, N, 0) and (1, N − 2, 1). Unlike the SU(2) case in which all the states within an

irrep can be uniquely labelled by Lz, or equivalently the weight, for SU(n) and n > 2, there

are multiple states within each irrep that are labelled by the same weight. In fact, these

subspaces labelled by the weights are the ones leading to the operator dynamics within each

charge sector in the complex Brownian SYK model. Fortunately, there are well-established

schemes to uniquely label the states of arbitrary irreps for SU(n) groups, called Gelfand-

Tsetlin patterns [99], a brief introduction to which is provided in the appendix. Based on

GT patterns, the matrix representation of SαβSβα for each irrep and fixed weight subsectors

and thus the effective Hamiltonian H can be constructed efficiently, which is local in this

basis.

Using this approach, we compute the overall OTOC F(χi(t), χ
†
j) for N up to 500 and

plot the results in Fig. 3.4(a) and (b) for i = j and i ̸= j, respectively. Similar to the

Majorana model, the two cases start with distinct initial values but quickly approach the

same behavior that exponentially decays to zero. Furthermore, the case with i ̸= j develops

the characteristic early time Lyapunov growth as N increases. As shown in Eq. (3.77), the

difference between the two cases is from F(1,N−2,1), the contribution from the (1, N − 2, 1)

irrep. We plot F(0,N,0)(t) and F(1,N−2,1)(t) in Fig. 3.4(b). Evidently, F(1,N−2,1)(t) shows

purely exponential decay, explaining the early time difference between i = j and i ̸= j in

F(χi(t), χ
†
j). On the other hand, the early time Lyapunov growth is from F(0,N,0)(t). This
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Figure 3.4: (a) The overall OTOC F(χi(t), χ
†
j) vs time for i = j (dashed lines) and i ̸= j

(solid lines) for different values of N . The OTOC decays to zero at late times as expected
from scrambling, which is in contrast with the non-interacting (qsyk = 2) case given in
Eq. (3.81). (b) The OTOC resolved into the contributing irreps, according to Eq. (3.77),
for N = 500 particles. The scrambling behavior is present in the (0, N, 0) irrep while the
(1, N − 2, 1) irrep displays an exponential decay at all times.

demonstrates scrambling in the interacting complex Brownian SYK model for local operators

of the type |χ† ⊗ χ⟩.

OTOCs F(W (t), V ) for other operators, even non local ones and other qsyk can be in

principle calculated following the same procedure, which we summarize below

1. Find the form of H as a function of the operators Sαβ

2. Decompose the input and output states, |in⟩ and |out⟩, which depend on the operators

W and V respectively, into different irreps and weight sectors of SU(4).

3. Construct the matrix representation of H using GT patterns, for the sectors in which

the component of the input and output states have a non-zero overlap.

4. Evolve the input state in imaginary time, using the Hamiltonian constructed in the

last step, for each sector, and take the overlap with the output state.

Among all these steps, step 2 is the most tedious. In what follows, we discuss the other

OTOCs, F(χi(t), nj) and F(ni(t), nj). Note that F(χi(t), nj) and F(nj(−t), χi) are identi-

cal. The calculation involves the same two irreps (0, N, 0) and (1, N − 2, 1) for F(χi(t), nj)
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Figure 3.5: The overall OTOC F(χi(t), nj) in (a) and F(ni(t), nj) in (b), for i ̸= j and
different values of N . Both the OTOCs display pronounced finite-sized effects in their late-
time values, which remain finite as N →∞, in contrast with that of F(χi(t), χ

†
j).

but involves the third irrep (0, N − 2, 0) for F(ni(t), nj). The details of decomposing the

input state and the output state can be found in Appendix A.4. Similar to the previous

example, the scrambling behavior results from the dynamics in the irrep (0, N, 0), while the

contributions from the other irreps are purely exponential decay. In Fig. 3.5, we plot both

F(χi(j), nj) and F(ni(t), nj) for i ̸= j both N up to 500, the behavior of which is dominated

by the contribution from the irrep (0, N, 0). Evidently, they develop the characteristic early

time Lyapunov growth as N increases. Unlike F(χi(t), χj), the late time value has a strong

finite-size effect and asymtotes to 1/8 and 3/16 for large N , in agreement with Eq. (3.52) 2.

This concludes our discussion on the behavior of the overall OTOC in the complex Brow-

nian SYK model. The overall OTOC contains contributions from each charge sector that

we label Fm in Sec. 3.3.6, where m denotes the charge. Remarkably, our approach naturally

provides full access to Fm from each charge sector and can be exploited to understand charge

dependent scrambling for finite but large N and all time scales, which we discuss in the next

section.
2Since we are working with a qsyk-uniform model, sectors corresponding to dilute charge will display

imperfect scrambling and there will be small corrections to the predicted values of the overall OTOC
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3.3.6 Charge-dependent scrambling

As discussed in Sec. 3.3.1, in systems with charge conservation the dynamics of a generic

operator splits into sectors with different charge profiles. We expect that dynamics with

restricted access to states within the full Hilbert space will display slower operator growth

as the restrictions are made more stringent. In other words, OTOCs involving operators

confined to specific sectors of the Hilbert space should experience Lyapunov growth as a

function of the size of the sector. In the case of U(1) conservation, these sectors can be

labelled using the charge. The overall OTOC is a weighted sum of the charge resolved

OTOC defined in Sec. 3.3.1

Fm(W,V ) =
1

Tr(Pm)
Tr(PmW

†(t)V †W (t)V ). (3.82)

We also define ρ = m/N as the charge density. Our approach, which is based on the

SU(4)⊗U(1) symmetry structure of the emergent Hamiltonian in the complex Brownian

SYK model, can be naturally used to compute Fm(W,V ) for each m.

Take the charge resolved OTOC Fm(χi(t), χj) for example. After resolving the symmetry

structure of H, the common subsectors for the input state and the output state are labeled

by conserved quantities Sαα for α in a ∼ d, which are directly related to m as (m,N −

m + 1,m,N − m − 1). Furthermore each charge sector splits into two irreps (0, N, 0) and

(1, N − 2, 1). Then from Eq. (3.77), we can directly obtain the charge resolved OTOC from

each term in the summation. They are

Fm(χi(t), χ
†
j) = Fm

(0,N,0)(t) +

(
Nδij − 1

N − 1

)
Fm

(1,N−2,1)(t)

Fm
(0,N,0)(t) =

4N

Tr(Pm)
⟨outm|eHmt|inm⟩(0,N,0)

Fm
(1,N−2,1)(t) =

4N

Tr(Pm)
⟨outm|eHmt|inm⟩(1,N−2,1).

(3.83)

where the states |inm⟩ and |outm⟩ for each charge sector are given in Eq. (3.76). The other
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Figure 3.6: Contributions to the OTOC from different charge densities ρ = m/N , for the
OTOC Fm(χi(t), χ

†
j). The OTOC has been restricted to the (0, N, 0) irrep with N = 500.

This can be compared with the overall OTOC for the case i ̸= j for large N . The charge
resolved OTOC Fm shows different initial values and time scales.

charge resolved OTOCs share a similar structure, and more irreps might be involved in their

computation, for example, in the case of Fm(ni(t), nj).

As discussed in the last section, the irrep (0, N, 0) contributes to scrambling dynamics

while the contribution from other irreps exponentially decays to zero. Therefore we focus on

Fm
(0,N,0)(t) and study how the scrambling dynamics depend on the charge m both numerically

for large finite N , and analytically directly in the infinite N limit.

Using our approach, we compute Fm
(0,N,0)(χ(t), χ

†) and plot the results for different m in

Fig. 3.6 for N = 500. They start with different initial values and relax to zero, consistent

with Table. 3.1. Since Fm
0,N,0(χ(t), χ

†) is related to the overall one as
∑
j

Fm(χi(t), χ
†
j)/N ,

we obtain the exact initial values as −ρ(1− ρ). The early time behavior is characterized by

the Lyapunov growth. Remarkably, in addition to the different initial values, the time scale

in which Fm relaxes to zero only strongly depends on m or the charge density ρ, which we

analyze in full detail below.

To examine the early time growth and extract the Lyapunov coefficients for each charge
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sector, we will begin by assuming an early time ansatz of the form

Fm
(0,N,0)(χ(t ∼ 0), χ†) ∼ −ρ(1− ρ) + aρ

N
(eλ

ρ
Lt − 1). (3.84)

By Taylor expanding both the ansatz and Eq. (3.83) and matching coefficients, we can relate

λρL to the moments of the effective Hamiltonian

λρL =
⟨outm|H2

m|inm⟩(0,N,0)

⟨outm|Hm|inm⟩(0,N,0)

. (3.85)

This is a more accurate method to extract λρL than curve fitting. We plot the Lyapunov

coefficients obtained in Fig. 3.7(a) for N = 500, via the method outlined above. We see that

the Lyapunov exponent grows with the density till it reaches ρ = 1/2 after which it starts

decreasing again, and the behavior is exactly described by an inverted parabola. The curve

has been fitted against the function

λρL(ρ) = 4ρ(1− ρ) (3.86)

which agrees with [82]. We also plot the magnitude of the late-time relaxation exponent λρlate,

which is given by the largest nonzero eigenvalues for each sector of H labelled by m, as a

function of the charge density ρ. It follows the same behavior as λρL described by the inverted

parabola, but half in magnitude, λρlate = 2ρ(1 − ρ) = λρL/2. This relation is reminiscent of

the Majorana case shown in Fig. 3.2(c).

In Fig. 3.7(b) we plot the maximal Lyapunov exponent and relaxation exponent at half

filling as a function of N . Similar to the Majorana case, λmax
L , starts with a negative value

−1/4, changes sign and asymptotes to the large N value 1 as N increases, while −λmax
late , starts

with the same value, remains negative, and asymptotes to −1/2. The positive Lyapunov

exponent is an effective behavior that emerges from a pool of a large number of eigenvalues,

all of which are negative. For small Hilbert spaces (corresponding to low N), this pool is
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Figure 3.7: (a) The plot of the Lyapunov exponent λρL and the late-time exponent λρlate vs ρ
for N = 500. (b) The maximal Lyapunov exponent λρL and late-time exponent corresponding
to the half filled state ρ = 1/2 plotted as a function of N . The exponents in both (a) and
(b) have been extracted from a given charge sector within the irrep (0, N, 0) for F(χi(t), χ

†
j).

The exponents of OTOCs involving other local operators, restricted to the (0, N, 0) irrep,
show similar behavior.

not large enough to produce a positive exponent. It should also be noted that although

we obtain positive exponents for some small N , this behavior is short-lived and therefore

difficult to obtain using standard curve-fitting techniques. In the large N limit, this λmax
L

is also the overall Lyapunov coefficient of the contribution from the (0, N, 0) irrep since it

corresponds to the sector (half-filled) which dominates, and of the overall OTOC in the case

i ̸= j since the contribution from the (0, N, 0) irrep dominates in that case.

To capture the charge dependence of Fm
(0,N,0) beyond early time, we consider the rescaled

OTOC F̃m = Fm/(−ρ(1− ρ)), which starts from 1 and relaxes to 0 for each m. We define

a new parameter

t̃ρN = ln
(

eλ
ρ
Lt − 1

Nρ(1− ρ)

)
. (3.87)

Then the early time behavior of F̃m
(0,N,0) is given by 1−aρet̃

ρ
N . Using the numerical data, one

can fix aρ = 1. Remarkably, we find that F̃m
(0,N,0) for N = 200 and N = 500, and various m

collapses to a single curve as a function of t̃ρN for all time scales, as shown in Fig. 3.8. This

indicates that the leading charge dependence and also N dependence of Fm
(0,N,0) is captured
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Figure 3.8: The rescaled OTOC F̃m
(0,N,0)(χ(t), χ

†) for different charge sectors and two values
of N : m = {50, 60, ..., 440, 450} for N = 500, and m = {50, 60, ..., 140, 150} for N =
200, plotted against the transformed time variable t̃ρN . The OTOCs for all different m
corresponding to both the values of N collapse into a single function.

by the following simple form

Fm
(0,N,0)(χ(t), χ

†) = −ρ(1− ρ)f(t̃ρN). (3.88)

It must be emphasized that the collapsing behavior is only observed for charge sectors of

finite charge density ρ, which have Hilbert-spaces that are large enough to produce a positive

Lyapunov exponent.

3.3.7 Charge-dependent hydrodynamic equation

To gain analytical understanding of the charge dependent scrambling and its relation to

the Majorana case, we derive the charge resolved OTOC in the large N limit analytically in

this section. Similar to the procedure in the Majorana case, we focus on the irrep (0, N, 0)

that gives rise to the scrambling behavior, and write the OTOC Fm(χi(t), χ
†
j) as follows:

Fm
(0,N,0)(t) =

4N

Tr(Pm)
⟨outm|inm(t)⟩ =

∑

k

ψm
out(k)ψ

m
in(k, t). (3.89)
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Since all the states within a fixed-m subspace have equal weights in the eyes of the algebra,

we use GT-patterns to distinguish them, labelled by the integer k. In this basis k takes

integer values ranging from 0 to min(m− 1, N −m− 1) and the output state takes the form:

ψm
out(k) = −g(N, k)

√
(N −m− k)(m− k)/N

g(N, k) =

((
N + 1

k + 1

)(
N + 1

k

)
N − 2k

N + 1

)1/2

.

(3.90)

We define a similarity transformation to make the N -dependence of ψm
out(k) uniform, just as

shown in Sec. 3.2.6, and the output state is transformed as

ψm
out(k)→ ψ̃m

out(k) = −
√
(N −m− k)(m− k)/N. (3.91)

After the transformation, the Hamiltonian and the input state are

H̃kk′ = g(N, k)Hkk′g(N, k)
−1; ψ̃m

in(k) = g(N, k)−1ψm
in(k). (3.92)

The dynamics of ψ̃m
in is governed by the equation ∂tψ̃m

in(t) = H̃ψ̃m
in , which now is ready to be

expanded in the large-N continuum limit.

The strategy is similar to that in the Majorana case. We use the continuous variables

x = k/N and ρ = m/N , where 0 ≤ x ≤ min(ρ, 1 − ρ). In the large N limit, the building

blocks of the Hamiltonian SαβSβα can be written as differential operators in terms of x after

the similarity transformation, from which the Hamiltonian H̃ as a differential operator acting

on ψ̃m
in can be obtained. In the infinite N limit, ψ̃m

in obeys

∂tψ̃
m
in = ∂x

(
−4(x− 1)x(x2 − x+ ρ(1− ρ))

2x− 1
ψ̃m

in

)
. (3.93)

Similar to the Majorana case, this equation predicts that
∫
dxψm

in(x) is a constant and that

ψm
in(x) can be interpreted as a probability distribution function. If ψ̃m

in starts with a delta
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function, it will remain a delta function
√
ρ(1− ρ)δ(x − x(t)), with the peak value x(t)

obeying an ordinary differential equation

∂tx(t) =
4(x− 1)x(x2 − x+ ρ(1− ρ))

2x− 1
. (3.94)

Then the charge resolved OTOC is given by

Fm
(0,N,0) ∼

∫
ψm

out(x)ψ
m
in(x)dx

= −
√
(1− ρ)ρ(1− ρ− x(t))(ρ− x(t)).

(3.95)

It should be noted that the transformed effective Hamiltonian H̃ at finite N is not stochastic

due to the lack of a steady state for the OTOC we are considering, unlike the Majorana

case. As a result, the interpretation of ψm
in(x) as a probability distribution is only valid in

the infinite N limit and breaks by a 1/N effect. We will discuss some interesting 1/N effects

in the end of this section.

To solve Eq. (3.94), we introduce a new variable ξ as a function of x

ξ =

(
(1− ρ− x)(ρ− x)

(1− ρ)ρ

)1/2

(3.96)

which ranges from 0 to 1. In the transformed variables Eq. (3.94) becomes

∂tξ(t) = 2ρ(1− ρ)ξ(ξ2 − 1), (3.97)

which is the same as the logistic differential equation derived for the Majorana case in

Eq. (3.39) up to a ρ dependent factor that can be absorbed into t. This factor clearly

demonstrates the characteristic time scale associated with the sector of charge density ρ.

The differential equation has two unstable steady solutions ξ = ±1 and one stable steady

solution ξ = 0. Initially ξ starts with a value close to 1, corresponding to x near 0, and

relaxes to the stable steady solution over time.
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In the new variable ξ, the output state is −
√
ρ(1− ρ)ξ, and OTOC is proportional to

ξ(t). Solving the logistic equation, we obtain

Fm
(0,N,0)(t) = Aρξ(t) =

Aρ√
e4tρ(1−ρ)δρ + 1

, (3.98)

where δρ and Aρ are determined by the input operator. We have assumed that δρ ≪ 1. The

early and late time behavior are given by

Fm
(0,N,0)(t) ∼





Aρ − 1
2
e4ρ(1−ρ)tAρδρ t≪ − ln δ

4ρ(1−ρ)

e−2ρ(1−ρ)t t≫ − ln δ
4ρ(1−ρ)

(3.99)

which results from the competition between e4tρ(1−ρ) and δρ. The exponents λρL and λρlate

agree with the leading order of the numerical results. The same comments that apply to

the Majorana case apply here as well, namely the analytical expression is not expected to

match the numerical data as the initial state corresponding to local operators implies an

initial condition of the form x(0) ∝ 1/N , and the analytical technique is only applicable in

cases where the input state is independent of N .

This result illustrates that the majority of the density dependence in the large-N limit

is contained in the initial value and the Lyapunov exponent, and scaling them appropriately

will result in all sectors of finite charge density displaying the same behavior. Given the

analytical expression, one can also expand the solution in a manner very similar to Eq. (3.42)

to observe the emergence of positive Lyapunov exponents from the negative eigenvalues of

the emergent Hamiltonian.

There are also some interesting 1/N effects that we briefly mention here. Similar to

the Majorana case, adding 1/N corrections will result in the dynamical equation for ψ̃m
in

(Eq. (3.93)) transforming into a second-order differential equation in x, which will lead to

the initial delta function broadening under the time-evolution. However, there are two 1/N

effects that are absent in the Majorana case. Firstly, the new logistic equation obtained
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will have zeros which when corrected for the 1/N effect, will lead to steady solutions being

shifted outside of the physical Hilbert space. Secondly, since there will be no steady-state

solutions within the physical Hilbert space,
∫
dx ψ̃m

in will no longer be conserved and the

interpretation of ψ̃m
in as a probability distribution will no longer be valid. Hence we will see

that this quantity will show a late-time decay away from its constant value, which can be

numerically verified as well.

3.3.8 Other OTOCs

We now discuss two other kinds of OTOCs, namely Fm
(0,N,0)(χ(t), n) and Fm

(0,N,0)(n(t), n).

We are again restricting the discussion to the irrep (0, N, 0) because it contains all of the

interesting scrambling dynamics. The relevant charge sector labelled by Sαα are (m,N −

m + 1,m − 1, N −m) and (m,N −m,m,N −m) for Fm
(0,N,0)(χ(t), n) and Fm

(0,N,0)(n(t), n),

respectively. The main difference from the previous OTOC Fm
(0,N,0)(χ(t), χ

†) is that there

reside steady states within these charge sectors. In other words, the effective Hamiltonian

H has a zero eigenvalue in addition to other negative eigenvalues. As a result, when the

input state and the output state both have a finite overlap with the steady state, the OTOC

develops a finite late-time value. This indeed is what is observed here. In Fig. 3.9 (insets

(a1) and (b1)), we plot both OTOCs for different m, which relax to different final values

consistent with those given in Table 3.1.

To study the charge dependence, we rescale Fm
(0,N,0) as

F̃m
(0,N,0)(t) =

Fm
(0,N,0)(t)−Fm

(0,N,0)(∞)

Fm
(0,N,0)(0)−Fm

(0,N,0)(∞)
. (3.100)

The rescaling removes the dependence of the initial and the late-time values, and the rescaled

OTOC monotonically decreases from 1 to 0 as time increases, for all m. Remarkably, as we

show in Fig. 3.9, the rescaled OTOC for different m and two values of N , 200 and 500,

also collapses to a function of the variable t̃ρN defined in Eq. (3.87). This indicates that the

leading charge dependence of all OTOCs considered in this work, apart from the initial and
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Figure 3.9: The rescaled charge resolved OTOCs F̃m
(0,N,0)(χ(t), n) in (a) and F̃m

(0,N,0)(n(t), n)

in (b) for different m and N plotted against the transformed time variable t̃ρN . We choose
m = {50, 60, ..., 440, 450} for N = 500, and m = {50, 60, ..., 140, 150} for N = 200. The
OTOCs for different m and both the values of N collapse into a single functional form. Insets
(a1) and (b1) show the corresponding unrescaled charge-resolved OTOCs Fm

(0,N,0)(χ(t), n) and
Fm

(0,N,0)(n(t), n) for different m at N = 500 as a function of t.

the late-time values, can be captured by t̃ρN .

As is evident from the discussions in this section, all OTOCs display a late-time exponen-

tial decay behavior. Some studies [77, 78, 75] have found late time power law relaxations of

the OTOC in systems with U(1) conservation or energy conservation due to diffusion, which

scales as ∼ td/2, where d is the number of spatial dimensions. However, we are working in

0 spatial dimensions where the charge is static and therefore the OTOC still exponentially

decays in the late-time regime.

3.4 Discussion and summary

In this chapter we studied the Brownian SYK model with and without charge conserva-

tion. We introduced a symmetry-based approach which maps the Brownian SYK dynamics

to SU(n) spin dynamics after taking the disorder average, where n = 2 for the Majorana

model and 4 for the model with complex fermions. This mapping drastically reduces the

dimension of the effective dynamical Hilbert space from ∼ eN to ∼ O(N), allowing us to

numerically compute the OTOCs exactly for large system size and all time scales. For the
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non-interacting case (qsyk = 2), one finds that the SU(n) algebras are promoted to exact

symmetries and the OTOCs can be solved analytically. We also provided a method to con-

nect the Hamiltonian approach used in the formalism to the approach which maps to a

stochastic model, via a similarity transformation, and utilized it to derive a hydrodynamical

description of the OTOC in the large-N limit. In this limit, we find that the OTOC in the

complex model follows the same differential equation as the Majorana model, up to a density

dependent overall scaling.

For the Majorana model, we verified previously known results using the new formalism

and compute the OTOC for N = 10000 fermions. We also utilized the approach to analyze

the early and late time exponents as a function of N and demonstrate how they reach their

asymptotic values for large N . In this context we also discuss the emergence of the positive

Lyapunov exponent which arises from the combined effect of the negative eigenvalues of the

emergent Hamiltonian.

For the complex model, multiple kinds of OTOCs are discussed which involve different

operators. We study the scrambling dynamics of these different operators and provide exact

early and late-time values of the OTOC restricted to different charge sectors in a general

complex model with charge conservation, which are later verified numerically for the case of

the complex Brownian model. We also make use of the formalism to numerically compute

the exact OTOC for N = 500 fermions, and analyze how the OTOC approaches the late

time value starting from the initial value. We find that for qsyk = 4 the Lyapunov exponent

has density dependence λρL = 4ρ(1 − ρ) and that the late time dynamics is marked by an

exponential decay as well, with an exponent that has a similar functional dependence on the

charge density, i.e. λρlate = 2ρ(1 − ρ). Since the formalism provides access to the dynamics

for finite N , we study how these exponents change and approach their asymptotic values

starting from N = 2 to N ≳ 100.

The approach used in this work has several directly visible extensions. One direction

is to explore higher order correlators which will involve more than 4 time-contours and

64



therefore for the Brownian model will still have an emergent SU(n) algebra, albeit with

a higher n and more complex symmetry structure when compared with the conventional

OTOC. As an example, the complex Brownian fermionic model will give rise to an SU(n) ⊗

U(1) algebra on n time contours, while the Majorana model will display an SO(n) algebra.

Another direction is to start with some Brownian model with a non-abelian symmetry such

as SU(n), instead of U(1), and explore the behavior of the correlators as a function of

n to probe the relation between the rank of the continuous symmetry in the model, and

scrambling. Furthermore, it would be very interesting to generalize the procedure given

in this work to higher dimensions, especially for the charge conserved case where one can

derive the hydrodynamic equations to describe the interplay between local Lyapunov growth

and ballistic operator spreading [31, 100] as well as charge diffusion. We expect that the

coupled diffusion equation of the charge and the FKPP equation of the operator [44, 31] can

lead to algebraic decay of OTOC [77, 78] in the late time. We will explore this direction

in the next chapter. From the coupled equations between charge and operator, one can

also study the charge dependence of the butterfly velocity and the relation between the

diffusion constant, butterfly velocity, and the Lyapunov exponent at different charge density.

Some other directions for future work are studying related observables such as entanglement

entropy, tripartite mutual information and spectral form factors in the presence of the U(1)

symmetry.
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4. NON-EQUILIBRIUM DYNAMICS IN 1+1 DIMENSIONS 1

4.1 Chapter Summary

In this chapter, we will explore interesting features of quantum dynamics in extended

spatial dimensions. While scrambling in the dimensionless case is marked by the presence

of a Lyapunov exponent at early times, in general dimensions, travelling wave solutions

emerge which carry ‘quantum information’ with a well-defined butterfly velocity. We will

first understand these solutions deeply by analyzing the case without symmetry, following

which we will proceed to the richer situation where the charge transport couples to the spread

of information. The steps will be as follows:

• We begin by describing the dynamics of the OTOC for a chain of clusters of the Brow-

nian SYK model built with Majorana fermions. As shown previously, the couplings,

which are uncorrelated in the time direction, allow us to describe the computation of

the OTOC in terms of an SU(2) spin chain which evolves in imaginary time.

• Expanding the SU(2) spin operators in the infinite-N limit, gives us a partial differential

equation describing the evolution of the OTOC.

• For the purely inter-site non-interacting model, the equation describes diffusive oper-

ator spreading. When intra-site interactions are added, the OTOC follows dynamics

described by the class of FKPP equations.

• We demonstrate how the Lyapunov exponent and butterfly velocity emerge from these

solutions, and compute them for the Brownian SYK chain.

• Moving on to the case with charge conservation, the dynamics of the OTOC in the

chain of clusters of the complex Brownian SYK model map to an SU(4) spin chain
1Reprinted with permission from "Charge transport, information scrambling and quantum operator-

coherence in a many-body system with U(1) symmetry" by L. Agarwal, S. Sahu and S. Xu [101] (accepted
into JHEP)
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which evolves in imaginary time

• We describe states within the SU(4) algebra, in the GT-pattern basis. This description

allows us to neatly separate the description of the charge dynamics from the operator

spreading.

• We consider both intra-site interactions and inter-site non-interacting models together.

The former causes information scrambling within each cluster, whereas the latter gives

rise to the charge dynamics.

• Expanding the SU(4) spin operators in the GT-pattern basis provides us with the

equations which couple charge transport with operator spreading. We obtain the

charge-dependent Lyapunov exponent and butterfly velocity from these equations, and

simulate them in different domain-wall density backgrounds to explore rich features of

charged information scrambling.

4.2 The case without symmetry : Brownian SYK chain

To keep things simpler, we will first consider a chain of clusters in one dimension, each

containing N Majorana fermions. The results from this analysis can be easily generalized to

higher dimensions.

4.2.1 The non-interacting chain

In this section, we will exactly solve the dynamics in the Brownian SYK chain coupled

using quadratic, i.e. non-interacting, expressions of the Majorana operators:

H(t) = i
∑

r,j,k

Kr,j,k(t)χr,j χr+1,k ; Kr,j,k(t)Kr′,j′,k′(t′) =
1

4N
δj,j′δk,k′δr,r′δ(t− t′) (4.1)

Here r labels the cluster index on the chain of length L, whereas j, k label the N fermions

within each cluster. One can now use the same protocol as before (Sec. 3.2.2), generating
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Majorana fermions on four-time contours that anti-commute with each other and follow the

anti-commutation relation:

{χα
r,i, χ

β
r′,j} = 2δi,jδr,r′δα,β ; α, β = a, b, c, d (4.2)

Using this, one can define an SU(2) algebra within each cluster, such that we can map the

computation of the OTOC in the original Brownian SYK chain to an SU(2) spin-chain that

evolves in imaginary time (Eq. 3.11). This gives rise to the following emergent Hamiltonian

(Assuming periodic boundary conditions without loss of generality):

H =
1

4N

(
− 2N2L+ 8

∑

r

(Lx,rLx,r+1 + Ly,rLy,r+1 + Lz,rLz,r+1)

)
(4.3)

Hence the free Brownian chain on four contours reduces to the SU(2) symmetric Heisenberg

model. First, let’s perform some consistency checks to make sure this result is accurate.

One expects the global identity to be static under unitary dynamics and the global parity

operator to be static due to the underlying parity symmetry in the original model. Under the

SU(2) decomposition, these operators map to the fully spin up and the fully spin down states

respectively (Eq. 3.18), which do not move due to the SU(2) symmetry in the Heisenberg

model:

H |I ⊗ I⟩ = 0 ; H |Q ⊗ Q⟩ = 0 (4.4)

Now, let’s look at the dynamics of local operators, or in other words, compute the OTOC

F(χr(t), χr′) where the operators are assumed to be symmetrized in each cluster to make

computations simpler. Although we can solve this exactly at finite-N , here we will solve this

in the large-N limit, using the procedure in Sec. 3.2.6. We perform a similarity transfor-

mation on each site, following which the emergent Hamiltonian is also transformed H→ H̃.

Writing the overall input state as ψin(m⃗, t), where m⃗ = (m1, . . . ,mL) labels the state in

the z-basis on each site, the evolution in the infinite-N limit is given by the Fokker-Planck
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equation:

∂tψin(m⃗, t) = H̃ψin(m⃗, t)→ ∂tψin(m⃗, t) = −
∑

r

∂r
(
(2mr −mr+1 −mr−1)ψin(m⃗, t)

)
(4.5)

Hence the evolution of mr is modelled by a Langevin equation:

∂tmr(t) = 2mr −mr+1 −mr−1 =⇒ ∂tm(r, t) = ∂2rm(r, t) (4.6)

The OTOC on the other hand, after the similarity transformation, is simply given by F =

−2mr′/N . After the transformation ξ = 2mr′/N , the OTOC (−ξ(r′, t)) is given by the

equation:

∂tξ(r, t) = ∂2r ξ(r, t) (4.7)

It is well known that the OTOC follows diffusive dynamics in a free model, and we have

reproduced that result here starting from a microscopic model. Thus, a free model has neither

a Lyapunov exponent, nor a butterfly velocity. In what follows, we will add interactions back

into the model, reproducing these desired features.

4.2.2 Adding interactions: The FKPP equation

In this section, we will analyze the FKPP equation, which is commonly studied in fields

such as population dynamics, crystallography, physiology and plasma physics. To derive this

from the microscopic model, we will simply add intra-site interactions to the inter-site free

model described in the previous section:

H(t) = Hinter(t) +
∑

r

Hintra,r(t)

Hintra,r(t) = g
∑

i1<...<i4

Ji1,i2,i3,i4,r(t)χi1,rχi2,rχi3,rχiq4 ,r

Hinter(t) = i
∑

r,j,k

Kr,j,k(t)χr,j χr+1,k

(4.8)
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The couplings are sourced from the distributions:

Ji1...,i4(t)Ji′1...,i′4 (t
′) = δi1i′1 · · · δi4i′4δ (t− t

′)
6

2N3

Kr,j,k(t)Kr′,j′,k′(t′) =
1

4N
δj,j′δk,k′δr,r′δ(t− t′)

(4.9)

Since each of these models have been individually solved for the OTOC ξ in the infinite-N

limit (Eq. 3.39), we will write their combined result here:

∂tξ = ∂2r ξ + 2g2ξ(ξ2 − 1) (4.10)

This is a particular instance of the FKPP equation and in the following subsection we will

analyze its important properties.

4.2.3 Properties of the FKPP equation

The Fisher-Kolmogorov-Petrovsky-Piskun (FKPP) equation is a non-linear partial dif-

ferential equation of the form:

∂tξ = D∂2r ξ + F (ξ) (4.11)

with the constraints F (0) = F (1) = 0, F ′(0) = c > 0 and F (v) > 0, F ′(1) < c for all

0 < v < 1. To simplify calculations, we will assume that F takes the general form :

F (ξ) = c ξ(1 − ξn), which is similar to the one we obtain from the Brownian model. It is

well known that at late-times, this equation supports wave-like solutions:

ϕ = exp(λL
(
t− r

vB

)
) (4.12)

The velocity vB is known as the butterfly velocity in an information theory context. It is also

the minimal velocity with which such a wave solution can travel within the FKPP equations.

The Lyapunov exponent and butterfly velocity can be computed by plugging the form of the
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solution into a linearized equation (around ξ = 0):

∂tϕ = D∂2rϕ+ cϕ =⇒ vB = D
λL
vB

+ c
vB
λL

(4.13)

Now, to find the minima of this function, which will give us the butterfly velocity, we set the

derivative of vB with respect to the ratio λL/vB as zero. This gives us the identity:

vB = 2
√
Dc (4.14)

From this, we can also compute the Lyapunov exponent by using the value of λL/vB at which

the minima occurs:
λL
vB

=

√
c

D
=⇒ λL = 2c (4.15)

where in the implication statement we have used the value of the butterfly velocity in Eq. 4.14.

Hence the Lyapunov velocity of the wave-like solution is twice that expected from naive

linearization of the equation (or just with the Hintra,r term).

The FKPP equation thus obtained from the Majorana model can be obtained by similarly

linearizing the equation around the unstable point (ξ = 1), and has the following exponents:

λL = 8g2 ; vB = 4g (4.16)

Although we have derived this interesting phenomenon from a simple microscopic model, in

the next section we will see even richer phenomenon, where the wave-like solution is also

coupled to the moving charge density background.

4.3 The case with U(1) symmetry : complex Brownian SYK chain

Previous work on random circuits and noisy-driven models has established several related

effective classical models of operator dynamics, including biased random walk [50], reaction

diffusion process [31] and population dynamics [102]. These classical models are used to fit
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and understand experimental data of the OTOC on quantum platforms [24, 103]. The mod-

els are obtained by mapping the unitary operator dynamics to a classical stochastic process

by disorder average. While this approach is feasible for usual noisy/random models without

symmetry, adding charge conservation makes the problem more difficult as it causes quan-

tum coherence to persist at the operator level, even after disorder-averaging (Fig. 4.1(e)).

However, such a classical description is important to obtain for charged models, as ther-

malization in systems with charge conservation has recently become accessible on quantum

simulators [104].

The primary mechanism through which charge, or other conserved quantities, can influ-

ence operator growth is by confining the access of growing operators to a specific (symmetry)

sector of the Hilbert space. In addition, within extended systems, the conservation law leads

to transport of local conserved quantities, which couples to the operator dynamics. There-

fore the correct semi-classical picture of operator dynamics in the presence of a symmetry

should at least contain two dynamical variables, the operator size and the local density of

the conserved quantity. In this work, we study operator dynamics in the presence of charge

transport. We derive the required semi-classical equations which couple the charge and the

operator, that are valid even in inhomogeneous and dynamical charge-density backgrounds:

∂tρ = ∂2rρ

∂tξ = ∂2r ξ + 2g2ξ(ξ2 − ρ(1− ρ))
(4.17)

Here ρ(r, t) is the charge density, which obeys the diffusion equation, while ξ(r, t) is the

analog of operator-size in models with symmetries that measures local scrambling of the

operator. The dynamics of ξ is described by a diffusion-reaction equation that depends on

the dynamical charge density. In particular, the local density bounds the range of ξ from 0

to
√
ρ(1− ρ). We note that this class of equations has been independently studied in the

context of bacterial population growth in diffusive media, where it is denoted as the ‘Diffusive

Fisher–Kolmogorov equation’ [105]. To derive these equations, we use the complex Brownian
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SYK model on a lattice with U(1) symmetry.

In this work, we show that the extended complex Brownian model is mapped to a quan-

tum SU(4) spin chain with inter-site Heisenberg coupling and intra-site interaction. In the

large N limit, the microscopic quantum model is reduced to the semi-classical equations in

Eq. (4.17). We provide a complete picture of the coupled dynamics between operators and

charge. Our approach can also be extended to systems with other symmetries.

4.3.1 Summary of the main results

The primary result of our work is captured by Eq (4.17). The equation effectively models

the evolution of the OTOC depicted in Eq. (2.1), for a charge-conserving fermionic model

defined on a chain (Fig. 4.1(a)). The steps via which this connection is established are:

• To begin, one specifies the charge density on each site r. This fixes the profile of

ρ(r, t = 0).

• Because the initial charge on every site has been fixed, the simplest initial operator is

the projection operator onto a symmetry sector with a given charge density on every

site.

• In models where the charge is conserved on each site, this projector is static. However,

once the charge is allowed to flow from site to site, this operator becomes dynamical

as well.

• Just as there are multiple states within each charge sector, there are also multiple

operators [28]. The variable ξ controls the choice of the operator once the charge is

fixed. For example, the maximal value of ξ =
√
ρ(1− ρ) represents a simple operator

such as a projector, while ξ = 0 represents a local scrambled operator within the charge

sector. This is consistent with ξ = 0 being a stable solution of Eq. (4.17), as all simple

operators will eventually evolve into the most complex one.

• Fixing both ρ(t = 0) and ξ(t = 0) also completely fixes the initial global operator
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Figure 4.1: (a) The Brownian SYK model with L clusters of N complex fermions, with
on-site interaction J and nearest neighbor hopping K. The total fermion number operator∑
nr,i is the conserved operator, leading to a U(1) symmetric circuit. (b-d) The time evo-

lution of charge ρ (b),the OTOC F(W (t), χr) (c), and OTOC F(W (t), nr) (d), when the
initial operator W has an initial charge distribution as shown in (b). In each of the graphs
the darkness of the plots increases with increasing times. The charge (b) and conserved
part of the operator (d) have diffusive behavior, while the OTOC F(W (t), χr) (c) and the
uncharged part of OTOC F(W (t), nr) propagates ballistically. (e) Schematic of the time
evolution of two copies of the operator, which is involved in the OTOC computation. Due to
the U(1) symmetry, the super-operator develops coherence, which makes the hydrodynamic
description hard. In this work, we argue that for certain probing operators, the correction
from this induced coherence is 1/N suppressed. In the N →∞ limit, we directly obtain the
hydrodynamical equations 4.17, which lead to the dynamical evolution in (b-d).
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W (t = 0) in Eq. (2.1). Hence the operator W carries information about two separate

modes, the charge, and the ‘complexity’ of the operator within the charge subspace.

Following this, the operator is evolved using Eq. (4.17), where it is observed that the

mode ξ spreads ballistically while ρ is governed by diffusion.

• The evolved operator is then measured via the use of a probing operator V . The choice

of whether V is chosen to be a conserved (has overlap with charge) or non-conserved

operator determines which modes the OTOC detects:

F(t)|V=χr0
= ξ(r0, t)

F(t)|V=nr0
= ξ2(r0, t) + ρ2(r0, t)

(4.18)

The operator χr0 refers to the local creation operator on site r0 of the chain, while nr0 is

the local number operator, which has overlap with the charge. This formalism distinguishes

the time-ordered Green’s function from the OTOC, as the former can only detect the charged

mode and not the fixed-charge operator transitions (Fig. 4.1). It is important to mention

that W is a non-local operator as it fixes the initial charge profile (Sec. 4.3.2). This is neces-

sary if one wishes to obtain a precise description of how information dynamics are related to

charge dynamics, as local operators do not have a well-defined charge. This is perhaps also

related to other works which have observed that locality has non-trivial implications in the

presence of symmetries [106]. The equations in Eq. (4.17) correctly reproduce all known fea-

tures of charged chaotic models, such as the charge-dependent Lyapunov exponent/butterfly

velocity [82, 80], and the late-time diffusive tail of the OTOC [77, 78, 75]. Moreover, since

they are valid for arbitrary initial charge/operator profile, we simulate the coupled equations

in inhomogeneous backgrounds to obtain new phenomena.

The formalism developed in this work encodes the microscopic operator dynamics in

terms of transitions between states in a particular irrep of the SU(4) algebra. Since the

OTOC is computed on four time-contours, this allows us to track the dynamics of the four
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corresponding conserved charges in terms of the weights of the SU(4) algebra, and explains

the emergence of the coupled equations describing the OTOC in terms of a single charged

mode (ρ) and a non-conserved ballistic mode (ξ). This derivation reveals new features of

operator dynamics in the presence of conservation laws. Namely, in contrast with models

that do not have continuous symmetries, the operator dynamics in the model with a U(1)

symmetry allow for transitions that introduce quantum coherence at the operator level.

Therefore, while usual noisy/random models are well described by a classical stochastic

process, for U(1) symmetric models the time-evolution of the operator can only be modeled

by a probability in a fixed subspace, and in the infinite-N limit, this gives rise to a Fokker-

Planck equation which only describes a conserved quantity in the ‘incoherent’ sector of the

operator-states.

4.3.2 Charged operator basis

In this work we will be concerned with computing the OTOC, which can be viewed

through the lens of operator spreading. Due to the charge conservation, we work with a

specific choice of operator basis. We assume the degrees of freedom are represented by

complex fermions, which satisfy the anti-commutation relations:

{χ†
i , χj} = δij ; {χi, χj} = 0

The relevant operators we consider are left and right eigen-operators with respect to the

U(1) symmetry: (∑

i

ni

)
O = qaO; O

(∑

i

ni

)
= qbO (4.19)

where (n = χ†χ) is the number operator. It can be easily checked that for a model with

U(1) conservation, the charges (qa, qb) are a constant of motion during the dynamics of the

operator string. For a single fermionic operator, we choose the relevant four dimensional
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eigen-operator basis and the charges take the following respective values:

χ† : (1, 0) χ : (0, 1) n : (1, 1) n̄ : (0, 0) (4.20)

where n̄ = I−n. Following this insight, we will work with operator strings S when the system

contains N fermions, where each element of the string is picked from the U(1) operator basis

defined above:

S = 2N/2s1s2 · · · sN , si ∈ {χ†
i , χi, ni, n̄i}. (4.21)

This ensures that the entire operator string is also an eigen-operator of the global U(1)

symmetry. The factor of 2N/2 in the string is picked to ensure the following orthogonal and

completeness relations

1

TrI
Tr(S†S ′) = δ(S ′,S), 1

TrI

∑

S
S†
mnSpq = δmqδnp. (4.22)

The procedure to compute the OTOC, on the other hand, begins by rearranging the corre-

lator to write it in the operator state language:

F(W (t), V ) =
1

TrI
Tr(W †(t)V †W (t)V ) = TrI ⟨out|U |in⟩

|in⟩ = 1

TrI

∑
W †

mnWpq |m⊗ n⊗ p⊗ q⟩

|out⟩ = 1

TrI

∑
V †
mqVpn |m⊗ n⊗ p⊗ q⟩

U = U ⊗ U∗ ⊗ U ⊗ U∗

(4.23)

Hence the computation of the OTOC involves four copies of the Unitary and in a charge-

conserving model, four corresponding conserved charges as well. These conserved charges,

which we label as (qa, qb, qc, qd), are the left and right charges of the double-copy of the

operator-state involved in the OTOC. Therefore, an exact dynamical description of the

OTOC would depend on the evolution of these four independent charges as well.

To complete the formalism and ensure a proper overlap between the input and output
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state, we insert the resolution of identity in the output state (Fig. 2.1(a))

|out⟩ = 1

tr2 I

∑
V †
mm′S†

m′n′Vn′nSpq|m⊗ n⊗ p⊗ q⟩

=
1

tr2 I

∑

S

∣∣V †S†V ⊗ S
〉 (4.24)

4.3.3 General procedure and emergent SU(4) algebra

The model we work with is the complex Brownian SYK chain, defined through the all-

to-all quartic on-site and quadratic two-site interaction Hamiltonians

Hintra = g
∑

i1,i2,i3,i4,r

Jr
i1,i2,i3,i4

(t)χ†
i1,r
χ†
i2,r
χi3,rχi4,r + h.c.

Hinter =
∑

j1,j2,r

Kr
j1,j2

(t)χ†
j1,r
χj2,r+1 + h.c.

(4.25)

where i, j, k, l are indices labelling fermions on each site and r is the site/cluster index. Each

cluster contains N fermions and the number of clusters can be chosen to be L. Although we

consider the one-dimensional model, the formalism is easily generalized to higher dimensions.

The couplings in the Brownian model break the time-translation symmetry and satisfy the

constraints
Jr
i1,i2,i3,i4

(t)Jr′∗
j1,j2,j3,j4

(t′) =
1

N3
δi1,j1 ...δi4,j4δr,r′δ(t− t′)

Kr
i1,i2

(t)Kr′∗
j1,j2

(t′) =
1

N
δi1,j1δi2,j2δr,r′δ(t− t′)

(4.26)

Hence the couplings are uncorrelated at different times, and this property makes the Brow-

nian model more analytically and numerically tractable. The on-site Hamiltonian discussed

above conserves charge on each site, whereas the inter-site term facilitates the flow of charge

between clusters but preserves the global charge. The inter-site model is also chosen to

be non-interacting, in contrast to its intra-site counterpart which scrambles quantum infor-

mation within each cluster. In this work we will precisely explore this interplay between

transport and scrambling.
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After disorder averaging, the composite unitary U in Eq. (4.23) for the Brownian model

is mapped to an emergent Hamiltonian H which evolves in imaginary time

U = UaU b∗U cUd∗ = eHt. (4.27)

Here we have labelled individual time-contours by the labels a, b, c, d. For complex fermionic

models, after the disorder average, each copy is occupied by anti-commuting fermions after

a Jordan-Wigner like transformation

{ψ†α
i,r , ψ

β
j,r′} = δi,jδα,βδr,r′ ; α, β = a, b, c, d (4.28)

The details of this transformation are present in the appendix. An important point to

note is that we have performed a particle-hole transformation on replicas b and d, for future

mathematical convenience. While for general fermionic models this procedure does not make

computations simpler, one can show that for the Brownian SYK models considered in this

work, the emergent Hamiltonian can be written purely in terms of permutation symmetric

inter and intra replica number operators which are the generators of the SU(4)⊗U(1) algebra:

H = H(Sαβ
r ); Sαβ

r =
∑

i

ψ†α
i,rψ

β
i,r, α, β = a, b, c, d

[Sαβ
r , Sγσ

r ] = δβγSασ
r − δασSβγ

r .

(4.29)

The 16 generators Sαβ
r can be split into the 15 generators of SU(4) plus one given by

∑
α S

αα
r = Qr which forms the U(1) part of the algebra and commutes with the SU(4)

generators. Hence we have exactly mapped the dynamics of a Brownian all-to-all interact-

ing model to the dynamics of an SU(4) spin chain that evolves in imaginary time. As an

example, for the free-model, i.e. Hinter term in Eq. (4.25), the emergent Hamiltonian takes
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the form of the SU(4) Heisenberg model:

Hinter =
1

N

(∑

α,β,r

Sαβ
r Sβα

r+1 −N
∑

r

Qr

)
(4.30)

This has an appealing format, as it makes the global SU(4) invariance of the emergent model

manifest. Models that have interactions, on the other hand, will lack this exact symmetry.

However, if the model has global charge conservation, it will be reflected in terms of global

weight conservation in the emergent SU(4) spin model. In other words, while the emergent

Hamiltonian corresponding to the free model commutes with all global SU(4) operators

and is therefore SU(4) symmetric, more general models, which conserve charge but have

interactions, will only commute with the Cartan-subalgebra and conserve weights.

Physically, the structure of charges in terms of weights can be understood as follows:

Each replica has its own copy of the globally conserved charge labelled by
∑

r(S
aa
r , N −

Sbb
r , S

cc
r , N−Sdd

r ) =
∑

r(qa,r, qb,r, qc,r, qd,r) respectively, where the Sαα
r operators are defined in

Eq. (4.29). The physical charge is counted differently on replicas b, d due to the particle-hole

transformation (App. B.1). On the right hand side of the equation, qr’s are essentially the

left and right charges of the two copies of the operator on each site, as defined in Eq. (4.19).

However, not all four of them are independent as the Brownian nature of the model fixes

the sum
∑

α S
αα
r = Qr, which forms the U(1) part of the algebra. For example, for the irrep

(0, N, 0), we have a fixed Q = 2N as it commutes with all generators of the SU(4) algebra.

The remaining three charges can be mapped to the three weights of the SU(4) algebra, which

will be made more precise in the next section.

4.3.4 Map from operator strings to SU(4) basis

For a single complex fermion, the four copies a, b, c, d together span a 16 dimensional

Hilbert space, which can be thought of as the double-copy of four-dimensional operator basis.

For the Brownian model, as discussed in the previous section, the emergent Hamiltonian is

composed of SU(4) operators, which suggests that the corresponding states should be viewed

80



Figure 4.2: (a) The SU(4) representation (0, 1, 0) for the relevant operator-states correspond-
ing to a single fermion, along with the rules that govern transitions between the operator-
states. Here n̄ = I − n is the operator orthogonal to the number operator n. (b) The emer-
gence of the SU(4) spin (0, N, 0) as the permutation-symmetric combination of N fermions
within each cluster in the Brownian SYK chain. (c) After disorder average, each cluster in
the chain maps to a (0, N, 0) spin, and in this work we consider the limit of infinite-N .
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in terms of the representations of the algebra. The 16 states split into irreps as:

16 = 1⊕ 4⊕ 6⊕ 4̄⊕ 1. (4.31)

In this work, we will be concerned with the 6 or in fundamental weight notation, the (0, 1, 0)

irrep, as it contains the operators of interest. The states in this irrep are listed in Fig. 4.2(a),

along with how the SU(4) operators act on them. This six-dimensional operator space is

similar to the one presented in [78].

Now we will move on to the discussion of representations which involve multiple fermions.

As is well known, for SU(n) with n > 2, there are n− 1 weights and multiple states with the

same weights in an irrep, hence states cannot be uniquely labeled by just using the Casimir

and the weights. To study the large-N dynamics, we will therefore begin by discussing the

basis labeling the states on each site in the SU(4) spin chain. The scheme to label the states

relies on Gelfand-Tsetlin patterns, where 10 numbers are used to label each state within each

SU(4) irrep [99]: 


m1,4 m2,4 m3,4 m4,4

m1,3 m2,3 m3,3

m1,2 m2,2

m1,1




The numbers have to satisfy the constraint:

mk,l ≥ mk,l−1 ≥ mk+1,l

in order to represent a valid GT-pattern. In this work, we will fix the irrep on each cluster

to be (0, N, 0), which is the unique permutation symmetric tensor composition of N (0, 1, 0)
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irreps (Fig. 4.2(b)).

(0, 1, 0)⊗ ...⊗ (0, 1, 0)︸ ︷︷ ︸
N times

= (0, N, 0)⊕ (1, N − 2, 1)︸ ︷︷ ︸
N−1 copies

⊕..., (4.32)

Physically, this corresponds to restricting the operator-strings of N fermions on each cluster

to be permutation symmetric among the indices which label the fermions. This is justifiable

for two reasons, firstly, it is expected that in the case of scrambling dynamics, the non-

symmetric operator-strings will decay exponentially fast, leaving behind only the symmetric

strings after a short time. Secondly, it has also been shown that features such as Lyapunov

growth and the scrambled steady-state are entirely contained within this symmetric irrep,

making it the only relevant sector to study the chaotic behavior of the model [28]. For

the Brownian model, starting from a symmetric operator-string completely restricts the

dynamics to the symmetric sector, which can be seen from the emergent algebra structure.

Fixing the irrep also completely fixes the first row of the GT-pattern to

(m1,4,m2,4,m3,4,m4,4) = (N,N, 0, 0) (4.33)

Along with this, the entries m1,3 = N,m3,3 = 0 are also fixed due to the constraints of the

GT-pattern. This leaves us with four variables on each site r, which can be understood in

terms of the SU(4) algebra as the three independent weights w1,r, w2,r, w3,r plus an index nr

which labels the state within each fixed-weight subspace.




N N 0 0

N w1,r 0

w2,r − nr nr

w3,r



≡ |w1,r, w2,r, w3,r, nr⟩ (4.34)

As has been discussed in the previous section, the four emergent charges on the four time-

contours (qa,r, qb,r, qc,r, qd,r) map to the three weights of the SU(4) algebra plus one overall
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total charge, which is not dynamical once the irrep is fixed. The variables w1,r, w2,r, w3,r

encode the three remaining dynamical charges, and the variable nr controls the fluctuations

within each fixed-weight sector, i.e. it represents the dynamics of the operator within a fixed

charge subspace. The weights are related to the physical charges on the four contours in the

following way:

qa,r = w3,r ; qb,r = N − w2,r + w3,r

qc,r = N − w2,r + w1,r ; qd,r = w1,r

(4.35)

4.3.5 Quantum operator coherence due to U(1) symmetry

This section will be devoted to the comparison of operator dynamics in Brownian models

with and without charge conservation. An example of a model without charge conservation

is the Brownian SYK model built with Majorana fermions. The operator transitions in such

a model strictly follow the general rule:

|O†
1 ⊗O1⟩ → |O†

2 ⊗O2⟩ (4.36)

Such transitions can be seen as ‘incoherent’ when translating from the operator state to

super-operator language:

|O1 ⊗O†
2⟩ → |O1⟩ ⟨O2| (4.37)

which means that diagonal elements in the super-operator can only transition to other diago-

nal elements. This general rule is also compatible with the parity symmetry in the Majorana

model, which restricts all operators of the form |O† ⊗O⟩ to one symmetry sector since all

such operators have even parity [28].

On the other hand, in the complex model, only a part of the symmetry-resolved emergent

Hilbert space consists of incoherent operator-states (Fig. 4.2). Specifically, the operator-

states |n̄⊗ n⟩ and |n⊗ n̄⟩ break the incoherence. Requiring this incoherence in the operator-

state forces the charges to obey the necessary constraints qa,r = qd,r, qb,r = qc,r =⇒ w1,r =
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w3,r, which in general is not true for a random state in the Hilbert space. One can use the

information in Fig. 4.2 to reproduce the following transition generated by a global-charge

conserving operator Sca
1 S

ac
2 on an operator string over 2 fermions:

Sca
1 S

ac
2 |χ†

1χ2 ⊗ χ1χ
†
2⟩ → |n̄1n2 ⊗ n1n̄2⟩ . (4.38)

This can be viewed as a toy model with two sites and one fermion per site. The operator

Sca
1 S

ac
2 is one of the terms in the emergent Hamiltonian corresponding to the hopping term

in Eq. (4.25), which conserves charge over the two fermions. Even though the transition

conserves the four global charges (qa, qb, qc, qd) = (1, 1, 1, 1) of the entire operator-string,

it introduces operator coherence on each fermion, which means the operators on the right

hand side cannot be written in the form |O† ⊗O⟩ and the corresponding super-operator

develops off-diagonal entries. This insight distinguishes the cases with and without charge

conservation, and also explicitly affects the large-N hydrodynamics of the operators. In this

work, we will utilize permutation symmetric operator-states on each site, which are chosen

from the irrep (0, N, 0), and labelling the states as incoherent is equivalent to the condition

w1,r = w3,r.

4.3.6 The large-N formalism and the ‘restricted’ Fokker-Planck equation

The strategy to obtain the large-N hydrodynamical equations of motion relies on a sim-

ilarity transformation that turns the effective Hamiltonian H into a (partially) stochastic

matrix. As can be seen from Fig. 2.1, the operator-state
∑

S |S† ⊗ S⟩ is an exact eigenstate

of H due to the unitary nature of the underlying dynamics:

H
∑

S
|S† ⊗ S⟩ = 0. (4.39)

This steady-state represents the late-time distribution of an initially simple operator under

scrambling dynamics. For non-conserved local operators which have overlap with this state,
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all other states which are orthogonal to the steady-state decay to zero at late time, due to the

chaotic nature of the Brownian model. The steady-state can be resolved into different charge

sectors, where each component acts as a scrambled steady-state for the specific charge sector

(App. B.2). Thus, when starting from a specific charge sector, the operator evolves into the

charge-resolved steady-state at late times, which also signals the decay of the OTOC. The

full steady state on the chain can be written as a product state of the steady state on every

site r:
∑

S
|S† ⊗ S⟩ =

⊗∑

Sr

|S†
r ⊗ Sr⟩ (4.40)

In the GT-pattern basis, this steady-state on each site is written as:

∑

Sr

|S†
r ⊗ Sr⟩ =

∑

w1r,w2r,nr

cw2r,nr |w1r, w2r, w3r = w1r, nr⟩

cw2r,nr =

√
(w2r + 1− 2nr)

N + 1

(
N + 1

N − (w2r − nr)

)(
N + 1

nr

) (4.41)

One can understand the restriction w1r = w3r here from the perspective that the steady

state
∑

Sr
|S†

r ⊗ Sr⟩ is strictly within the incoherent subspace of the larger Hilbert space.

However, fixing w1r = w3r is merely the necessary condition to obtain the state, whereas the

sufficient condition involves also specifying the correct coffecients cw2r,nr . Following this, we

define a diagonal matrix Sr with the entries:

⟨w1r, w2r, w3r, nr| Sr |w1r, w2r, w3r, nr⟩ = cw2r,nr
(4.42)

We use the matrix Sr to perform a similarity transformation in Eq. (4.23)

⟨out| eHt |in⟩ = ⟨ ˜out| eH̃t |ĩn⟩

H̃ = SHS−1 ; |ĩn⟩ = S |in⟩ ; | ˜out⟩ = S−1 |out⟩
(4.43)
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The global transformation S is the tensor product of local transformations Sr. This proce-

dure has a two-fold advantage. Firstly, it removes the non-uniform N -dependence usually

contained in the output state. As an example, if the probing operator V in the OTOC is

chosen to be the identity, the output state is the resolution of identity, meaning the steady

state in Eq. (4.41). Hence the output state will contain combinatorial factors, which are

not compatible with a continuum analysis. The Similarity transformation strips away these

factors and makes the output state amenable to a large-N expansion. Secondly, due of the

choice of the Similarity matrix S, the coefficients of the steady state corresponding to the

resolution of identity (from the left) all become 1, and hence the transformed Hamiltonian

obeys the equation
∑

w⃗1,w⃗2,n⃗

H̃(w⃗1,w⃗2,w⃗3=w⃗1,n⃗),(w⃗′
1,w⃗

′
2,w⃗

′
3=w⃗′

1,n⃗
′) = 0 (4.44)

due to having a uniform left eigenvector. Here the vectors w⃗i, n⃗ have components (wi,r, nr)

over the space of all sites r. Therefore the matrix H̃ has become stochastic, but only in the

sector w⃗1 = w⃗3 that contains the full steady state. This can be contrasted with the Majorana

and spin version of the model, where the steady state occupies the entire Hilbert space and

therefore the entire emergent Hamiltonian can be made stochastic [31, 107, 33, 28]. The stark

difference between these two scenarios is precisely a consequence of the U(1) symmetry in the

complex model. We write the inner product which governs the OTOC in the wavefunction

notation:

⟨ ˜out| eH̃t |ĩn⟩ =
∑

w⃗1,w⃗2,w⃗3,n⃗

ψout(w⃗1, w⃗2, w⃗3, n⃗)ψin(w⃗1, w⃗2, w⃗3, n⃗, t) (4.45)

where the input state is evolved using the emergent Hamiltonian

∂tψin(w⃗1, w⃗2, w⃗3, n⃗, t) =
∑

w⃗′
1,w⃗

′
2,w⃗

′
3,n⃗

′

H̃(w⃗1,w⃗2,w⃗3,n⃗),(w⃗′
1,w⃗

′
2,w⃗

′
3,n⃗

′)ψin(w⃗
′
1, w⃗

′
2, w⃗

′
3, n⃗

′, t) (4.46)
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Due to the (partially) stochastic nature of H̃, ψin behaves as a probability distribution, but

only in the incoherent sector, and therefore

∂t
( ∑

w⃗1,w⃗2,n⃗

ψin(w⃗1, w⃗2, w⃗3 = w⃗1, n⃗, t)
)
= 0 (4.47)

This will be explicitly reflected in the large-N equation we obtain. We now follow the

standard operating procedure and expand the SU(4) operators in H, in the large-N limit.

The explicit matrix elements of simple raising/lowering operators in SU(n) are known in the

GT-pattern basis [99]. For the purpose of expanding the operators, we use the variables

w1r − w3r → 2Nvr, w2r → Nyr,

w1r + w3r → 2Nρr, nr → Nur.

(4.48)

The resulting equation, which is the continuum version of Eq. (4.46), can be written in the

form of a ‘restricted’ Fokker-Planck as follows:

∂tψin =
∑

r

βrψin + αvr∂vrψin + ∂ur(αurψin) + ∂ρr(αρrψin) + ∂yr(αyrψin) (4.49)

The explicit expressions for the functions α, β depend on the underlying model, but the

‘restricted’ nature of the equation is always valid. As one can immediately check,
∫
ψin is

not conserved due to the βr and αvr terms as they are not total derivative terms 2. However,

they satisfy the important property:

βr|v⃗=0 = 0, αvr |v⃗=0 = 0 (4.50)

for all r. Therefore,
∫
δ(v⃗)ψin is conserved, which is expected from Eq. (4.47) because v⃗ = 0

restricts to the incoherent sector. In what follows, we can restrict our analysis to this sector by
2For models that conserve charge on each site, there is no αvr

term due to the corresponding weight
conservation.
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choosing an output state strictly contained in it, since the overlap (and therefore the OTOC)

will be blind to growth of the input state outside the sector. For example, choosing V = χr0
3

will satisfy this criterion, since vr0 = 1/N for the resulting output state and therefore it is

in the sector to leading order in the infinite-N limit. Hence we impose the condition v⃗r = 0

on the ‘restricted’ Fokker-Planck by starting with an input state sufficiently well localized

around v⃗ = 0 and obtain Langevin equations for the variables yr, ρr, ur (Appendix B.3).

Since the input state is chosen to be localized functions which evolve according to these

Langevin equations, the OTOC will be given by:

F(t) = ψout(yr(t), ρr(t), ur(t)) (4.51)

4.3.7 The OTOC at large N

This section will be devoted to the study of the OTOC in the large-N limit. We will

probe various cases of the OTOC, such as when the dynamics are driven by interacting vs

non-interacting Hamiltonians. We will also study how the behavior of the OTOC changes

with the choice of operators involved. Before we discuss specific models, it is beneficial to

recast the variables yr, ρr in terms of the more ‘physical’ left and right charges ρa and ρb

defined in Sec. 4.3.2:

ρa,r = ρr ; ρb,r = 1− yr + ρr (4.52)

This relation is true in the incoherent sector (w1,r = w3,r) as can be seen from the equations

Eq. (4.35) and Eq. (4.48). Choosing the probing operator as V = χr0 means that the output

state after the similarity transformation and in the continuum limit becomes:

√
(1− ρb,r − ur)(ρa,r − ur) = ξr ; ψout = ξr0 (4.53)

3We suppress the fermionic index and only display the cluster/site index since it is assumed that this
operator will be restricted to the symmetric irrep, and therefore will be symmetrized between all the fermions
in the cluster.
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where we transform to the variable ur → ξr at every site, in which case the OTOC is captured

by the variable F(t) = ξr0(t). The input operator W on the other hand, is determined by

fixing the initial value of ξr, ρa,r and ρb,r on every site.

4.3.7.1 Free-fermionic chain

In this section we will discuss the large-N analysis for the free-fermion complex brownian

SYK chain, namely the Hinter term in Eq. (4.25). For this strictly non-interacting case, the

emergent Hamiltonian is simply the SU(4) Heisenberg model:

Hinter =
1

N

(∑

α,β,r

Sαβ
r Sβα

r+1 −N
∑

r

Qr

)
(4.54)

and is therefore SU(4) invariant. This property can be used to exactly solve the OTOC even

at finite N (Appendix B.4.2). In the new co-ordinates ξ, ρa, ρb, we write down the restricted

Fokker-Planck for the model and the corresponding equations of motion (Langevin equation)

are:

∂tρa = ∂2rρa; ∂tρb = ∂2rρb; ∂tξ = ∂2r ξ (4.55)

As a reminder, the charges ρa and ρb are the left and right continuum charge densities

of the charges qa and qb in Eq. (4.19) and ξ measures the OTOC. Here we have treated

r as a continuous variable. Notice that since we have restricted to the incoherent sector,

the four emergent charges on the time-contours of the OTOC are not all independent and

have collapsed into just two separate charges. We see some important features of the free

fermionic chain from these equations of motion. The first observation is that the charges

ρa, ρb completely decouple from the OTOC ξ. Secondly, all three quantities show diffusive

behavior, which is expected for the two charges from the global charge conservation, and for

the OTOC due to the non-interacting nature of the underlying model.
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Figure 4.3: Figure depicts the reduction of four charges involved in the computation of the
OTOC, to a single charged mode. An operator-state of the form O1⊗O2, where each operator
has two associated charges, has to be restricted to the incoherent subspace (qc = qb ; qd = qa)
in order for its coefficients to represent a conserved probability distribution. This reduces
the four charges to two. Following this, the sector qa ̸= qb represents dynamics with pure
exponential decay (as seen from Eq. (4.56)). Restricting to the single charge (qa = qb) sector
enables the operator to show interesting dynamics such as Lyapunov growth and butterfly
velocity.

4.3.7.2 Charge-dependent FKPP equation

Adding interactions to the model, i.e. H = Hinter + Hintra, does not change the nature

of the charge transport, as the added on-site interaction conserves charge on each site.

However, this does change the behavior of the OTOC as the interaction term scrambles

quantum information within each cluster. We write the equation obtained for ξ in terms of

the left(ρa) and right(ρb) charge densities as follows:

∂tξ = g2ξ(2ξ2 − ρa(1− ρa)− ρb(1− ρb)) + ∂2r ξ

∂tρa/b = ∂2rρa/b

(4.56)

In general, the term proportional to g2 hosts two roots, ξ = 0 which is a stable solution and

ξ =
√

(ρa(1− ρa) + ρb(1− ρb))/2 which is an unstable zero. However, one can obtain the

physical range of ξ by in turn determining the range of n → Nu through the constraints

on the GT-pattern (Eq. (4.34)) and also remembering the coordinate transformation in
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Eq. (4.53):

0 ≤ ξ ≤ min(
√
ρa(1− ρb),

√
(1− ρa)ρb)

Thus, when ρa ̸= ρb, the physically maximal allowed value of ξ is smaller than the

unstable solution of the non-linear term in Eq. (4.56). Therefore in this case, regardless of

the initial profile of ξ, the non-linear term will be negative and the solution on every site

will exponentially decay till it reaches the stable solution ξ = 0. Physically, the stable root

corresponds to the charge-resolved fully scrambled state
∑

S |S† ⊗ S⟩. The unstable root on

the other hand is not a physical solution in general because it would physically correspond

to the vanishing of the identity operator under the emergent Hamiltonian (Fig. 2.1). For

ρa ̸= ρb, however, the charge sector does not host a component of the Identity (App. B.2).

Therefore, the maximal allowed value of ξ is not a solution and only the stable solution is

physical. Hence no butterfly velocity or Lyapunov growth is observed when ρa ̸= ρb. In

terms of operators, the maximal value of ξ in such a sector corresponds to a string with a

large number of χ or χ†, which means the strings are ’far away’ from any component of the

identity and therefore have very high energy (in terms of magnitude) with respect to the

emergent Hamiltonian.

Now we will analyze the situation when ρa = ρb. Due to their equations of motion being

structurally identical, ∂t(ρa − ρb) = 0 and we can conclude that starting with this condition

will fix it for all time. For the charge sector where ρa = ρb = ρ, the coupled equations

become:

∂tρ = ∂2rρ ; ∂tξ = 2g2ξ(ξ2 − ρ(1− ρ)) + ∂2r ξ. (4.57)

This charge-dependent FKPP equation is one of the primary results of our work, which

summarizes the effect of charge conservation on the OTOC. To briefly recap, we originally

started with four variables, namely, three weights which represent charges on the OTOC-

contour and one variable describing operator fluctuations within fixed-charge subspaces. One

charge was fixed by requiring incoherence of the operators. Finally, we set the left and right
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charges to be equal to obtain the above equation describing the charge-dependent OTOC in

terms of a single charged mode. This reduction in charges is depicted in Fig. 4.3. For the

rest of this work, we will assume the use of the condition ρa = ρb.

4.3.7.3 Constant charge density

When ρ is constant, the physically maximal allowed of ξ,
√
ρ(1− ρ), corresponds to

the unstable solution of the FKPP-equation. The equation therefore supports travelling

wave solutions ξ(r, t) = f(r − vBt) with minimal velocity vB when one starts with a source

which is sufficiently well localized. Along with this, there is exponential growth of the field

with Lyapunov exponent λL ahead of the wave-front. The butterfly velocity and Lyapunov

exponent can be computed as

λL = 8g2ρ(1− ρ)

vB = 4g
√
ρ(1− ρ)

(4.58)

in terms of the charge density. Let’s analyze these results in terms of operator-strings.

The sector ρa = ρb hosts null-eigenstates corresponding to the charge resolution of the

identity Iq,N (App. B.2), and starting from a state ‘near’ ξ =
√
ρ(1− ρ) corresponds to

these operator-strings, which contain mostly n and n̄ and very few χ† and χ. These strings

constitute the ground states of the emergent Hamiltonian, and perturbations to this ground

state grow exponentially fast at early times and allow the solution to move with a well-

defined velocity across the chain. The number of n’s in the said string determines the value

ρ, and therefore also the speed of the butterfly velocity and the rate of exponential growth.

On the other hand, the stable solution ξ = 0 represents the charge-resolved, fully scrambled

steady-state, i.e.
∑

S |S† ⊗ S⟩ restricted to the region ρa = ρb = ρ.

4.3.7.4 Charge-transport and late-time behavior

So far we have considered the operator χr0 , which means that the OTOC is given by the

variable F = ξr0(t). This ensures that the OTOC decays to 0, which is related to the fact

that the operator χr0 has zero overlap with the charge. In this case, the late-time behavior
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Figure 4.4: The function ξ2+ρ2, which corresponds to the OTOC when the probing operator
is V = nr0 , is plotted at equal time-intervals. In this scenario, we start with ρ = 1/2 at
every site except near the center where we place ρ = 1 for sites 0.45 ≤ r/L ≤ 0.55. The
variable ξ starts with its maximal value given by ξ(t = 0) =

√
ρ(1− ρ) on every site. We

also impose open boundary conditions and set 2g2 = 0.1. The two equations in Eq. (4.57)
are then simulated and we observe that while a part of the function corresponding to the
non-conserved ξ expands ballistically, the conserved part ρ spreads out diffusively near the
center. This slower mode controls the late-time behavior after the ballistic part has travelled
across the chain, as can be seen from the t = 450 time-step. The OTOC relaxes diffusively
to the equilibrium value given by ρ2eq ∼ 0.3 (the dashed black line) at very late times.

of the OTOC is always determined by the non-linear term in the FKPP equation, which is

represented by an exponential decay.

In contrast, fixing the probe operator in the OTOC to be V = nr0 modifies the output

state and makes it so that the OTOC is given by F = ξ2r0(t)+ρ
2
r0
(t). This function is plotted

in Fig. 4.4, where we start with an initial charge-profile which is non-uniform. We observe

that there is a mode, which does not have overlap with the charge, that travels ballistically

as well a charged mode which is ’left-behind’ near the center [77, 78]. Since the equations of

motion (Eq. (4.57)) remain unchanged, the OTOC does not decay to 0, but instead at late-

times is determined by the equilibrium value of the charge-distribution. In such a scenario,

the late-time behavior of the OTOC is controlled by the nature of the charge-transport, since

ρ decays slower than ξ and is therefore the dominant mode at late times. As an example,

generalizing the model in this work to d spatial dimensions will cause the charge to decay
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Figure 4.5: The solutions of Eq. (4.57) are plotted for two different charge profiles. We
start with the maximally allowed value of ξ(t = 0) =

√
ρ(1− ρ) and impose open boundary

conditions in both cases, along with the condition 2g2 = 0.1. In (a), a charge domain wall is
used with density 1/2 on the left and 1/8 on the right. This causes the operator to acquire an
asymmetric velocity which is evident when observing the wavefront at equal time-intervals.
In (b), the left and right charge densities are 3/4 and 1/4 respectively, causing the operator
to have a flat profile which is static by itself. However, the melting of the domain-wall at
early times forces the operator to have dynamics, even though it has zero overlap with the
charge.

diffusively with the power-law ∼ t−d/2, which will therefore be the late-time behavior of the

OTOC as well. This explains the observed behavior of the OTOC studied in similar models

with U(1) conservation [75, 77, 78].

4.3.8 A case study: operator dynamics in a domain wall density background

In this section we will discuss operator dynamics in the case where the charge-background

starts in a domain-wall configuration. Depending on the initial left and right density, i.e. ρL

and ρR, we gain different insights into how the charge dynamics can affect operator growth.

We will assume that ξ always starts with its maximal initial value
√
ρ(1− ρ).

4.3.8.1 Asymmetric butterfly velocity

The first case we consider involves the left-half of the chain initialized in density-profile

ρL = 1/2 and the right-half being in ρR = 1/8. The operator starts with its maximal value
√
ρ(1− ρ) on every site. In this scenario, both the varying ρ and ξ are perturbed by the
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diffusion term at t = 0, and the non-linear term for ξ then carries the perturbation along

the chain with a butterfly velocity. Due to the nature of the domain wall, the left and right

halves of the operator can travel with different speeds. This phenomenon is depicted in

Fig. 4.5(a), where the wavefront plotted at equal time intervals clearly demonstrates that

the operator moves faster through the left half of the chain, as expected from Eq. (4.58).

It is also clear that the domain wall melts at a rate much slower than the evolution of the

operator, which makes the dynamics of the charge largely inconsequential to the dynamics

of the operator χ, in this scenario.

4.3.8.2 Conserved vs. non-conserved operator

If one starts with a completely filled density on one half (ρL = 1) while the other remains

completely unoccupied (ρR = 0), the variable ξ can only take one value, i.e. 0, at every site.

Since this is a stable solution of the FKPP-equation, the OTOC involving the operator χ

remains completely static, even though the charge and therefore the on-site scrambled-state

changes with time. However, if one uses a conserved operator, such as n, the OTOC is

captured by the variable ξ2 + ρ2. Since the charge moves diffusively as the domain wall

melts, it causes the OTOC to have diffusive behavior at all times. Hence, in this situation,

the OTOC involving an operator such as χ remains perfectly static, whereas the OTOC for

a conserved operator such as n shows diffusive behavior.

4.3.8.3 Charge dynamics influences the dynamics of non-conserved operators

Let’s consider a scenario where the left and right densities are chosen to be ρL = 3/4 and

ρR = 1/4 respectively (Fig. 4.5(b)). This makes it so that the value of ρ(1 − ρ) is equal on

both sides of the chain, even though the density has different values. Thus, at t = 0, the

operator-profile which starts at its maximal value, is flat and static, although the charge is

not. This case is different from the previous one because the operator dynamics are kick-

started purely due to the charge dynamics, where at early times the diffusion for the charge

causes the domain wall to melt and therefore forces the operator to start moving as well.
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In fact, this can be generalized further. When starting with some specific operator-profile

ξ(r, t = 0) = f(r), there are two available solutions for the corresponding charge density

since ξ =
√
ρ(1− ρ). Each solution for ρ individually gives the same behavior for ξ, however

starting from different solutions on the left and right half of the chain creates a perturbation

in the center as the charge moves to bridge the gap between the two solutions. This is

especially interesting because usually one expects the transport to only be relevant when

conserved operators such as n are involved, which have overlap with the charge. However,

even though the operator χ does not have overlap with the charge, the charge dynamics

in the background forces the Hilbert-space dimension and therefore the maximum allowed

value of ξ to change in the middle of the chain. This causes a local perturbation that then

travels ballistically across the chain.

4.4 Conclusion and Discussions

In this chapter we utilized the symmetry structures present in Brownian SYK models,

which emerge after the disorder averaging procedure, to study the relation between charge-

transport and operator growth. We measured operator growth and scrambling by computing

the OTOC in the complex Brownian SYK chain with U(1) symmetry. For this calculation,

the model maps to an SU(4) spin chain which evolves in imaginary time and conserves

weights. The computation of the OTOC involves four time-contours, and therefore four

conserved charges as well. In our formalism, we show that the dynamics of these charges

can be encoded in terms of the evolution of the conserved weights. Moreover, the evolution

of operator-states is represented by transitions between states in the SU(4) algebra.

Tracking these transitions reveals distinct features of operator dynamics in many-body

models with symmetries. While usual Brownian/random models can be modeled by a clas-

sical stochastic process, we show that the U(1) symmetry introduces quantum-coherence

at the operator level, which only allows for a classical description in a subspace of the

operator-space. In the infinite-N limit, the model therefore is described by a ‘restricted’

Fokker-Planck equation, which represents a probability distribution only in the sector where
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the operator-states have no coherence.

We utilized the mapping to solve the OTOC and charge-transport exactly at finite-

N , for the non-interacting model. For the model with both transport and scrambling, we

computed the OTOC involving simple operators, which can be shown to lie in the incoherent

subspace, in the large-N limit. This enables us to derive an FKPP-equation governing the

evolution of the operator coupled to the charge which is valid for all charge-density profiles

and at all time-scales. For constant charge-density background, the coupled FKPP equation

provides us with the Lyapunov exponent and the butterfly velocity as a function of the charge

density. Using these equations we also explain known results for charged-operator dynamics,

such as the diffusive late-time behavior, and explore new regimes of varying charge-density

backgrounds. When starting with different domain-wall solutions, we obtain novel solutions

for operator dynamics, including one where the dynamics even for a non-conserved operator

such as χ are kick-started purely due to the charge dynamics. Next, we share some additional

insights involving operator growth in the presence of symmetries.

In this work, we have considered a model which moves the charge and scrambles quantum

information simultaneously. However, it is possible to decouple the movement of the charge

from the spatial movement of the operator, by considering a Brownian Hamiltonian like:

H =
∑

i,j,k,l,r

Ji,j,k,l,r(t)χ
†
i,rχj,rχ

†
k,r+1χl,r+1 + h.c. (4.59)

This model is interacting, yet does not allow the transfer of charge as it conserves charge

on each site r. It can be solved in the large-N limit as well, where the equation for ξ (the

OTOC) has a stable zero at ξ = 0 and a transport term for ξ, but not the charge. This can

be contrasted with the case in Sec. 4.3.8.2, in which case the charge transport was required

to kickstart the operator dynamics. Thus, if one were to consider the model in Eq. (4.59)

instead, the OTOC in that scenario would remain completely static.

In contrast with this, if one considers a model which conserves energy, it does not seem
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possible to construct scenarios which scramble information yet do not simultaneously trans-

port energy. This marks a stark difference between a gauge symmetry, such as charge

conservation, and energy conservation.
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APPENDIX A

APPENDIX FOR NON-EQUILIBRIUM DYNAMICS IN 0+1 DIMENSIONS

A.1 The emergent Hamiltonian

A.1.1 The Majorana model

The Emergent Hamiltonian for the Majorana case, for qsyk = 2 and qsyk = 4 body

couplings in the original Hamiltonian, is given by:

Hqsyk=2 =
1

2N

(
− 2

(
N

2

)
− 3N − 1

2

∑

(α ̸=β)

(Sαβ)2

)

Hqsyk=4 =
3

N3

(
− 2

(
N

4

)
+

1

4!

∑

(α ̸=β)

(−1)γα,β
[
(Sαβ)4 − (Sαβ)2(−6N + 8) + 3N(N − 2)

]
)

(A.1)

Where

Sαβ =
N∑

i=1

ψα
i ψ

β
i ; (−1)γα,β =





1 (α, β) = (a, b), (a, d), (b, c), (c, d)

−1 (α, β) = (a, c), (b, d)
(A.2)

The emergent Hamiltonians for larger qsyk can be obtained iteratively, and are always func-

tions of the 6 operators Sαβ.

We will devote the rest of the Majorana section to the discussion of the qualitative

behavior of the OTOC for larger qsyk in the Brownian SYK model. We will use qsyk = 8 as

an example to build intuition about the behavior for general qsyk. The emergent Hamiltonian

for qsyk = 8 in terms of the SU(2) algebra takes the manifestly square symmetric form:

Hqsyk=8 =
7!

2N7


−2




N

8


+

1

8!

(
(Hx)qsyk=8 + (Hz)qsyk=8 − (Hy)qsyk=8

)

 (A.3)

111



Where

(Hα)qsyk=8 = 512L8
α − 3584(−4 +N)L6

α + 448(176 + 5N(−22 + 3N))L4
α

+32(2112− 7N(424 + 15(−10 +N)N))L2
α

+210(−6 +N)(−4 +N)(−2 +N)N ; α = x, y, z

(A.4)

Now we expand the Hamiltonian obtained within the L = N/2 irrep, in the infinite-N limit,

keeping the input and output states the same as in Sec. 3.2.6. The Logistic equation in this

case is given by:

ξ′(t) = 2ξ(ξ6 − 1) ; ξ(0) = 1− 2δ , δ ≪ 1 (A.5)

with the solution:

(FN/2(t))qsyk=8 = −
1

6
√
1 + 12e12tδ

. (A.6)

This solution has the following early and late-time behavior:

(FN/2(t))qsyk=8 ∼




−1 + 2e12tδ t≪ − 1

12
ln δ

e−2t t≫ − 1
12
ln δ

(A.7)

The Hamiltonian for larger qsyk can be derived iteratively through the equation:

(Hα)qsyk+1 = 2iLα(Hα)qsyk + qsyk(N + 1− qsyk)(Hα)qsyk−1 ;

(Hα)qsyk=0 = 2 ; (Hα)qsyk=1 = 2iLα

(A.8)

The emergent Hamiltonian for general qsyk can then be written as the square or cubic sym-

metric function of (Hα)qsyk , depending on whether qsyk/2 is even or odd. Based on the results

obtained so far, we can conjecture that the logistic equation and OTOC for general qsyk will

take the form:

ξ′(t) = 2ξ(ξ(qsyk−2) − 1) =⇒ (FN/2(t))qsyk = − 1
(qsyk−2)

√
1 + 2(qsyk − 2)e2(qsyk−2)tδ

. (A.9)
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which implies that the ratio of the early to late exponent is (λL/λlate)qsyk = (qsyk − 2), for

qsyk > 2. Therefore changing the qsyk leads to a larger Lyapunov exponent but leaves the

late-time exponent unchanged (λlate = 2).

A.1.2 The complex model

To derive the emergent Hamiltonian, one has to account for the fact that the Hamiltonian

on the replicas a, c looks slightly different from the one on the replicas b, d due to the particle-

hole transformation.

Hα =
∑

i,j,k,l

Ji,j,k,l ψ
α
i
† ψα

j
† ψα

k ψ
α
l ;α = a, c

Hα∗ =
∑

i,j,k,l

J∗
i,j,k,l ψ

α
i ψ

α
j ψ

α
k
† ψα

l
† ;α = b, d.

(A.10)

Since the couplings are complex, J only couples to J∗, and when the disorder average is

computed, the resultant operator depends on which sites are paired together. As an example,

for qsyk = 4:

HaHa ∝
∑

i,j,k,l

ψa
i
†ψa

j
†ψa

kψ
a
l ψ

a
l
†ψa

k
†ψa

jψ
a
i ; HaHb∗ ∝

∑

i,j,k,l

ψa
i
†ψa

j
†ψa

kψ
a
l ψ

b
iψ

b
jψ

b
k

†
ψb
l

†
. (A.11)

The emergent Hamiltonian after disorder average reads

H = −1

2

(
HaHa +Hb∗Hb∗ +HcHc +Hd∗Hd∗

)
+
(
HaHb,∗ +Hb,∗Hc +HcHd,∗ +Hd,∗Ha

)

−
(
HaHc +Hb,∗Hd,∗

)
.

(A.12)

To simplify the notation for qsyk = 4, we define the operators Pαβ which sends the index

α → β and the conjugation operator C which sends ψa,c → (ψb,d)† and therefore CSaa →

N − Sbb and CSac → −Sdb. One can then write :

Hqsyk=4 = −
1

2
(1 + C)(1 + Pac)HaHa + (1 + Pbd)(1 + Pac)HaHb,∗ − (1 + C)HaHc (A.13)
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Where
HaHa = Saa(Saa − 1)(N − Saa + 2)(N − Saa + 1)

HaHb,∗ = [(SabSba)2 + (Saa − Sbb − 2)SabSba]

HaHc = [2(Saa − 1)(Saa)− (3Saa + Scc − 2)SacSca + (SacSca)2]

(A.14)

and Sαβ =
∑

i ψ
α
i
†ψβ

i . It is evident that this Hamiltonian, although more complicated than

the qsyk = 2 case, also preserves the charge profile (Saa, N − Sbb, Scc, N − Sdd) since it

commutes with Sαα, α = {a, b, c, d}.

A.2 Consistency checks

We will dedicate this section to independent consistency checks to make sure our results

are accurate.

A.2.1 Invariance of the identity operator

First we will note that within our formalism, we expect operator-states which correspond

to symmetries of the Hamiltonian to vanish under the emergent Hamiltonian. One such

operator that vanishes identically without depending on the details of the theory, is the

identity operator |I⟩. A generalised version of this statement for an operator O can be

written as
[
H,O

]
= 0 =⇒ UOU † = O =⇒

(
U ⊗ U∗) |O⟩ = |O⟩ (A.15)

What is theory dependent however, are the details of how the identity state splits into the

representations of the algebra respected by the Hamiltonian. For the complex Brownian

SYK model, the identity state splits into different states within the (0, N, 0) irrep as

|I ⊗ I⟩ =
N∑

l,m=0

∣∣∣∣∣
∑

α1<...<αl

n̄α1 . . . n̄αl
ni1 . . . niN−l

⊗
∑

β1<...<βm

n̄β1 . . . n̄βmnj1 . . . njN−m

〉

=
N∑

l,m=0

(−1)N/2 (S
dc)m(Sba)l(Scb)N

(N − 1)! l!m!
|W(0,N,0)⟩

(A.16)
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Figure A.1: (a) Benchmarking of the initial values of the OTOC Fm(χi(t), χ
†
j), for N = 500

and differentm. (b) Benchmarking of the initial and final values of the OTOCs Fm(χi(t), nj),
for N = 500 and different m. (c) Benchmarking of the initial and final values of the OTOCs
Fm(ni(t), nj), for N = 500 and different m. All of the benchmarking has been performed
using the numerical values obtained using the Lie Algebra method and the values obtained
analytically listed in Table. 3.1.

This shows that the identity splits into (N + 1)2 different states with different weights.

Since the identity cannot have dynamics, it must vanish under the action of the emergent

Hamiltonian, i.e. H |I ⊗ I⟩ = 0. Because the emergent Hamiltonian conserves weights,

it implies that each state in the decomposition of the identity with a unique weight must

vanish independently as well. We have already seen that this happens for the free case, i.e.

H(0,N,0)
qsyk=2 |I ⊗ I⟩ = 0, in the section 3.3.5.1, because the operator vanishes for the entire irrep

(0, N, 0). One can check that the identity indeed does vanish even under the action of the

emergent Hamiltonian for qsyk = 4, which completes our first consistency check.

A.2.2 Comparison of initial and final values obtained numerically vs analytically

The second consistency check comes from comparing the theoretical and numerical values

of the initial and final values of the OTOCs. We plot this check in Fig. A.1. The numerical

values are obtained using the Lie Algebra method and the theoretical values are listed in

Table. 3.1

A.2.3 Benchmarking with small systems using explicit random averaging

Another consistency check comes from comparing the prediction of the OTOC obtained

using the emergent Lie Algebra in Eq. (3.26), with the numerical results obtained from
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Figure A.2: A plot of the OTOC F(χi(t), χj) in the Majorana model vs time, from both
the ED of the original model in Eq. (3.5) with explicit disorder average, and Lie Algebra
(SU(2)) methods. Here N = 12, qsyk = 4 and the numerical ED results are computed using
200 disorder averages.
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Figure A.3: A plot of the OTOCs F(χi(t), χ
†
j) in (a), F(χi(t), nj) in (b) and F(ni(t), nj) in

(c) vs time, from both the ED of the original model in Eq. (3.53) and Lie Algebra (SU(4))
methods. Here N = 6, qsyk = 4 and the numerical ED results are computed using 500
disorder averages.

directly computing the OTOC via ED. We display the plot in Fig. A.2 for N = 12 particles

in the Majorana model using 200 disorder averages.

We also make the same comparison for the complex model in Fig. A.3, for OTOCs

involving different local operators. The Lie Algebra method corresponds to computing the

OTOC using the contribution from each irrep after evolving the input state and taking the

overlap with the output state. As an example, Eq. (3.77) shows how to do this for the OTOC

F(χi(t), χ
†
j), and the ED is computed for N = 6 particles over 500 disorder averages for all

the OTOCs considered.
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A.3 Gelfand-Tsetlin pattern calculus

To label states in the SU(4) irreps and explicitly build the matrices in the group for

numerical purposes, we will make use of Gelfand-Tsetlin patterns. In this section we will

provide a brief introduction to GT-patterns (a more detailed review can be found in [99]) and

demonstrate their utility for the purpose of solving problems that involve SU(n) algebras.

For SU(4), GT-patterns are labelled by 10 non-negative integers arranged in the triangular

pattern depicted below:




m1,4 m2,4 m3,4 m4,4

m1,3 m2,3 m3,3

m1,2 m2,2

m1,1




Each entry in the pattern is uniquely labelled by the 2 integers k, l such that the entry

mk,l lies along the kth diagonal and in the lth row. A valid GT-pattern has entries that satisfy

the constraint mk,l ≥ mk,l−1 ≥ mk+1,l. The top-most row of the pattern is determined by the

irrep and stays fixed for all states within the irrep. To label the highest-weight state of an

irrep, one needs to compute the values of (Saa, Sbb, Scc, Sdd) corresponding to the state, and

the values in the highest row of the corresponding pattern (m1,4,m2,4,m3,4,m4,4) take these

values respectively. The values in the lower rows are given by the maximum values that

are allowed in a valid GT-pattern. A subtle point here is that the charge sensitivity of the

Hamiltonian that emerges after disorder-averaging makes it important to label the patterns

differently for irreps with the same young diagrams but different charges. For example,

the states |χ1
†...χN

† ⊗ χ1
†...χN

†⟩ and |χ1...χN ⊗ χ1...χN⟩ are both singlets but have charge

profiles (N,N,N,N) and (0, 0, 0, 0) respectively and therefore have different eigenvalues with

respect to the emergent Hamiltonian. Often this charge is ’gauged’ away by requiring that

the element mN,N be set to zero, however it is unwise to do so for this problem. The Young-

diagrams for the irreps can be read off using the rule that mk,4 labels the number of boxes
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in the kth row of the diagram. For the highest-weight states in Eq. (3.70) (with the correct

normalizations) :

N |W(0,N,0)⟩ =




N N 0 0

N N 0

N N

N



∈

N boxes︷ ︸︸ ︷
. . .

. . .

√
N |W(1,N−2,1)⟩√

(N − 1)
=




N N − 1 1 0

N N − 1 1

N N − 1

N



∈

N boxes︷ ︸︸ ︷
. . .

. . .

(A.17)

To construct states lower in these irreps, the rule states that the action of the operators E±αl

results in adding(subtracting) Mk,l, the pattern with all entries 0 except for the position k, l

which has value 1 (Mk,l is not a valid GT-pattern by itself). If |M⟩ represents a GT-pattern

then the raising(lowering) action is given by:

E±αl
|M⟩ =

∑

k

c±k |M ±Mk,l⟩. (A.18)

Thus it is possible to act on a single pattern and generate multiple ones, all corresponding

to states with the same weight. The coefficients c±k have been determined as:

c−k =
〈
M −Mk,l |E−αl

|M
〉
=

( ∏l+1
k′=1(mk′,l+1−mk,l+k−k′+1)

∏l−1
k′=1(mk′,l−1−mk,l+k−k′)∏l

k′=1
k′ ̸=k

(mk′,l−mk,l+k−k′+1)(mk′,l−mk,l+k−k′)

) 1
2

c+k =
〈
M +Mk,l |E+αl

|M
〉
=

( ∏l+1
k′=1(mk′,l+1−mk,l+k−k′)

∏l−1
k′=1(mk′,l−1−mk,l+k−k′−1)∏l

k′=1
k′ ̸=k

(mk′,l−mk,l+k−k′)(mk′,l−mk,l+k−k′−1)

) 1
2

.

(A.19)

If |M ±Mk,l⟩ is not a valid pattern, c±k will be 0. These equations can be used to build

the matrix elements of raising/lowering operators in any SU(n) algebra. The ’traditional’
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weight of a state, which is composed of the eigenvalues of the Cartan subalgebra, is given

by ’z-weights’ which are

λMl = σM
l −

1

2

(
σM
l+1 + σM

l−1

)
;

(
σM
l =

l∑

k=1

mk,l, σM
0 = 0

)
(A.20)

However one can also use an equivalent formalism called ’p-weights’ (wM
l = σM

l −σM
l−1) which

can be mapped to the z-weights. Patterns with the same sum of individual rows have the

same p-weights and therefore the same z-weights and form the subspaces in the irrep with

the same weight. For the irrep (0, N, 0), one can write down the states appearing in the

decomposition of the input state as individual GT-patterns, owing to the symmetrisation of

indices in the irrep. The states that occur within the sum in Eq. (3.71) when restricted to

the (0, N, 0) irrep can be represented as:

(Sdc)m(Sba)l

l!m!
|χ†

1n⊗ χ1n⟩(0,N,0) ∝




N N 0 0

N N −m 0

N 1

N − l




(A.21)

One can take advantage of this feature to gain analytical leverage. Since the Hamiltonian

conserves weights, it is important to know the multiplicity of the weights that reside in the

input states within each irrep. For the (0, N, 0) irrep, this can be calculated by realising that

the patterns with the same weight(p-weight) are the ones that differ along the second row

but give the same sum. This is because they are the only valid GT-patterns that have the
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same row sums as Eq. (A.21). These patterns look like




N N 0 0

N N −m 0

x y

N − l




x+ y = N + 1; N ≥ x ≥ N −m;

N −m ≥ y ≥ 0; x ≥ N − l ≥ y
(A.22)

The number of different non-negative x, y that satisfy these constraints determine the weight

multiplicity I, and can be computed for both the irreps that contribute to the OTOC

I
(
(Sdc)m(Sba)l |χ†

1n⊗ χ1n⟩(0,N,0)

)
= min(l + 1,m+ 1, N − l, N −m)

I
(
(Sdc)m(Sba)l |χ†

1n⊗ χ1n⟩(1,N−2,1)

)
= 2min(l + 1,m+ 1, N − l, N −m)

+min(l + 1,m+ 2, N − l, N −m− 1) + min(l + 1,m,N − l, N −m+ 1)− 2.

(A.23)

This means the subspaces that the Hamiltonian can have dynamics within are at most of

size O(N).

A.4 Decomposition of operator states to SU(4) irreps

In this section, we present more details on how to organize the input and output operator

states into irreps of SU(4) algebra. We consider the initial operators that take the form

|O1I ⊗O†
1I⟩, where O1 acts on the first fermion. The operator states on the first fermion

belongs to the six dimensional (0, 1, 0) irrep of SU(4). The operator state acting on the

remaining fermions is I ⊗ I belongs to (0, N − 1, 0). As a result, the total states can be

decomposed into three irreps,

(0, 1, 0)⊗ (0, N − 1, 0) = (0, N, 0)⊕ (1, N − 2, 1)⊕ (0, N − 2, 0). (A.24)
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The operator states corresponding to the highest weight states in (0, N, 0) and (1, N − 1, 1)

are

|W(0,N,0)⟩ =
1

N
|χ† ⊗ χ⟩ , |W(1,N−1,1)⟩ = − |n1χ

† ⊗ n1χ⟩+
1

N

∑

i

|niχ
† ⊗ niχ⟩ (A.25)

A.4.1 W = n1 as the input state

Now we consider the decomposition of |n1I ⊗ n1I⟩ in the interest of computing correlators

involving this state. We first perform the double rotation in the SU(2)⊗SU(2) subgroup of

SU(4) to rotate the state to |(n1 − n̄1)n⊗ (n1 − n̄1)n⟩. We study the states in the expansion,

which have fixed weights, term by term. The most involved term is |n̄1n⊗ n̄1n⟩. Based on

the weight counting, in the basis of GT patterns, there are two states in (0, N, 0), 4 states

in (1, N − 1, 1) and 1 state in (0, N − 2, 0) contributing to the decomposition. The state |g⟩

in the irrep (0, N − 2, 0) is

|g⟩ =
∑

i ̸=1

(
|(n̄1ni − n1n̄i)⊗ (n̄1ni − n1n̄i)⟩+ |χ†

1χin⊗ χ1χ
†
in⟩+ |χ1χ

†
in⊗ χ†

1χin⟩
)

− 1

2N

(∑

i,j ̸=1

|(n̄inj − nin̄j)⊗ (n̄inj − nin̄j)⟩+ |χ†
iχjn⊗ χiχ

†
jn⟩+ |χiχ

†
jn⊗ χ†

iχjn⟩
)
.

(A.26)

The two independent states in the irrep (0, N, 0) that are required for the construction are:

|a⟩ = 1

N !
SdcSba(Scb)N |χ† ⊗ χ⟩ ; |b⟩ = SbcScb |a⟩ . (A.27)

For the contribution from the (1, N − 2, 1) irrep, we will begin by defining the state |X⟩

(−1)N/2+1 (S
cb)N−2

(N − 2)!
|W ⟩1,N−2,1 = |χ†

1n⊗ χ1n⟩ −
1

N

∑

j

|χ†
jn⊗ χjn⟩ = |X⟩ . (A.28)
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Using this state, one can construct the 4 independent states in (1, N − 2, 1) irrep required:

|k⟩ = ScbSdcSba |X⟩ ; |l⟩ = SdcScbSba |X⟩ ; |m⟩ = SbaScbSdc |X⟩ ; |j⟩ = SbcScb |m⟩
(A.29)

and we use a linear combination of the 4 states above to build the required state:

=⇒ |g⟩+ N + 2

N2
(|b⟩+ |a⟩) + (1 + 1/N)(|j⟩ − |k⟩+ 2(|l⟩+ |m⟩))

= (N + 3 + 2/N)|n̄1n⊗ n̄1n⟩.
(A.30)

Hence we have built the desired operator-state using states from all three contributing irreps.

The other parts of the state |(n1 − n̄1)n⊗ (n1 − n̄1)n⟩ can be built using just two of the three

irreps in the young decomposition:

|n̄1n⊗ n⟩ = (−1)N
2
+1 (S

cb)N−1Sba

(N − 1)!
(Scb |W(0,N,0)⟩ − |W(1,N−2,1)⟩)

|n⊗ n̄1n⟩ = (−1)N
2
+1 (S

cb)N−1Sdc

(N − 1)!
(Scb |W(0,N,0)⟩ − |W(1,N−2,1)⟩)

|n⊗ n⟩ = (−1)N/2 (Scb)N

(N − 1)!
|W(0,N,0)⟩

(A.31)

Now the overall state can be rotated back into the desired z-basis by applying the following

rotation operator:

N∑

l,m=0

(Sba)l(Sdc)m

l!m!
|(n1 − n̄1)n⊗ (n1 − n̄1)n⟩ = |n1I ⊗ n1I⟩ . (A.32)

The OTOC F(n1(t), χ
†
j) in each charge sector, labelled by the charge m, has the charge-

profile (m,m,m + 1,m + 1) on the four replicas. This state can therefore be split into

different charge-profiles that contribute to the OTOC by applying the appropriate part of

the rotation operator. The full output state
∑

S |χjSχ†
j ⊗ S†⟩ has been built in the main

text, which can also be rotated into the relevant charge profiles to find the output state

restricted to each charge sector. Hence the equation above builds the charge resolved input
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and output states required to compute the OTOC Fm(n1(t), χ
†
j). This OTOC can also be

used to compute the charge resolved OTOC Fm(χi(−t), n1) in the following way:

Tr(Pm n1(t)χj n1(t)χ
†
j) = Tr(Pm+1 χ

†
j(−t)n1 χj(−t)n1) (A.33)

Hence the OTOCs can be equated once the charge-sector is shifted by 1.

A.4.2 V = n1 as the output state

Next, we task ourselves with computing |n1I ⊗ n1I⟩ as the output state in the inter-

est of computing the correlator F(ni(t), n1). Since we know how to build the input state

|niI ⊗ niI⟩, we will build the output state using the SU(2) ⊗ SU(2) subalgebra formed by

the operators Sda and Scb. Inserting the resolution of the identity into the output state, we

get

|out⟩ = 1

4N

∑

S

|n1S†n1 ⊗ S⟩ =
1

22N−1

∑

Sc

|n1Sc† ⊗ n1Sc⟩ , (A.34)

where the sum Sc is over operator-strings on all sites except 1. This state can be rotated

into just four states and then rotated back in the following way:

∑

Sc

|n1Sc† ⊗ n1Sc⟩ = (−1)N/2

N∑

k=0

N−1∑

l=0

(−1)l (S
da)k

k!

(Scb)l

l!
(1 + Sbc)

(
|χ† ⊗ χ⟩ − |χ1χ

† ⊗ χ†
1χ⟩+ |n̄1χ

† ⊗ n̄1χ⟩ − |n1χ
† ⊗ n1χ⟩

) (A.35)

The state |χ† ⊗ χ⟩ is proportional to the highest weight state |W(0,N,0)⟩. Two of the other

states are simple to build using

|n1χ
† ⊗ n1χ⟩ = Scb |W(0,N,0)⟩ − |W(1,N−2,1)⟩ ; |n̄1χ

† ⊗ n̄1χ⟩ = SbaSdc |n1χ
† ⊗ n1χ⟩ (A.36)

123



Now we move onto building the fourth state and to build this, we first construct the highest

weight state in (0, N − 2, 0):

|W(0,N−2,0)⟩ = (N − 1) |χ1χ
† ⊗ χ†

1χ⟩+
∑

i ̸=1

(|n̄1niχ
† ⊗ n̄1niχ⟩ − |n1n̄iχ

† ⊗ n̄1niχ⟩

− |n̄1niχ
† ⊗ n1n̄iχ⟩+ |n1n̄iχ

† ⊗ n1n̄iχ⟩) +
2

N

∑

i ̸=1

|χiχ
† ⊗ χ†

iχ⟩

− 1

N

∑

i,j ̸=1

(|n̄injχ
† ⊗ n̄injχ⟩ − |n̄injχ

† ⊗ nin̄jχ⟩)

(A.37)

The state in the (0, N, 0) irrep relevant to the construction is:

|c⟩ = (ScbSbaSdcScb − 1

4
SbaSdc(Scb)2) |W(0,N,0)⟩

=
∑

i

|χiχ
† ⊗ χ†

iχ⟩ −
1

2

∑

i,j

(|n̄injχ
† ⊗ n̄injχ⟩ − |n̄injχ

† ⊗ nin̄jχ⟩)
(A.38)

Hence

|W ⟩(0,N−2,0) −
2

N
|c⟩ = (N − 1− 2/N) |χ1χ

† ⊗ χ†
1χ⟩

+ (1 + 1/N)
∑

i ̸=1

(|n̄1niχ
† ⊗ n̄1niχ⟩ − |n1n̄iχ

† ⊗ n̄1niχ⟩

− |n̄1niχ
† ⊗ n1n̄iχ⟩+ |n1n̄iχ

† ⊗ n1n̄iχ⟩)

(A.39)

Now in the irrep (1, N − 2, 1), we build the 4 states:

|x⟩ = SdcScbSba |W(1,N−2,1)⟩ ; |y⟩ = SbaScbSdc |W(1,N−2,1)⟩ ;

|z⟩ = ScbSbaSdc |W(1,N−2,1)⟩ ; |w⟩ = SbaSdcScb |W(1,N−2,1)⟩
(A.40)
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And using these, we can build the fourth state required to rotate into the overall state
∑

Sc |n1S
c† ⊗ n1S

c⟩

|W ⟩(0,N−2,0) +

(
2N + 4

N2

)
|c⟩+

(
1 +

1

N

)
(2(|x⟩+ |y⟩)− |w⟩ − 4 |z⟩)

= (N + 3 + 2/N) |χ1χ
† ⊗ χ†

1χ⟩
(A.41)

For the correlator Fm(ni(t), n1), the values of Sαα on each replica corresponding to the

overall charge m(∈ [1, N ]) are (m,N −m,m,N −m). Therefore, the input and output state

built can be rotated appropriately into these charge sectors to compute the OTOC.

A.5 Additional irreps

The OTOC Fm(χi(t), χ
†
j) contains contributions from two irreps. The early and late time

behavior of sectors in the (1, N − 2, 1) irrep displays an exponential decay (for large enough

N) governed by eigenvalues similar to λρlate, shown in Fig. 3.7(a), for large N

Fm
(1,N−2,1)(χ(t), χ

†) ≃ ρ(1− ρ)e−λρ
latet (A.42)

where smaller sectors have larger eigenvalues and therefore decay slower. This behavior has

been plotted in Fig. A.4(a) and is similar to the behavior of the irrep L = N/2 − 1 in the

Majorana case. It should be noted that this irrep shows similar behavior for other OTOCs.

The OTOC F(ni(t), nj) is unique amongst the ones discussed in this work because it contains

the contribution from the third irrep (0, N−2, 0). This irrep also shows an exponential decay

as well, with eigenvalues picked from the λρL distribution

Fm
(0,N−2,0)(n(t), n) ≃ ρ(1− ρ)e−λρ

Lt (A.43)

We plot this behavior in Fig. A.4(b).
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Figure A.4: (a) The log-behavior of different sectors within the (1, N − 2, 1) contribution
to the Fm(χi(t), χ

†
j) OTOC for N = 500, compared with straight line fits with slope −λρlate

and intercept ln(ρ(1− ρ)) for the corresponding ρ. (b) The log-behavior of different sectors
within the (0, N − 2, 0) contribution to the Fm(ni(t), nj) OTOC for N = 500, compared
with straight line fits with slope −λρL and intercept ln(ρ(1−ρ)) for the corresponding ρ. The
irreps in both (a) and (b) exponentially decay in each charge sector and therefore do not
contribute to the scrambling dynamics.
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APPENDIX B

APPENDIX FOR NON-EQUILIBRIUM DYNAMICS IN 1+1 DIMENSIONS

B.1 Anti-commuting fermions on multiple time-contours

This short section will elucidate the procedure to arrive at anti-commuting fermions on

four time contours. In the original model, we begin with a Brownian model built with

fermions χi,r where i is the fermion index and r is the site/cluster index. These satisfy the

anti-commutation relation {χ†
i,r, χj,r′} = δi,jδr,r′ . When generalizing to four time contours,

we use the ’replica fermions’ on replicas a, b, c, d:

χa
i,r := χi,r ⊗ I ⊗ I ⊗ I χb

i,r := I ⊗ χ⊤
i,r ⊗ I ⊗ I

χc
i,r := I ⊗ I ⊗ χi,r ⊗ I χd

i,r := I ⊗ I ⊗ I ⊗ χ⊤
i,r

(B.1)

where χ⊤ refers to the transpose, and we have performed a particle-hole transformation on

replicas b, d for future mathematical convenience. It’s clear that the fermions on different

replicas commute with each other due to the tensor-product structure. To make them anti-

commute, we use the global parity operator Q

Qα =
∏

j,r

exp(iπnα
j,r), α = a, b, c, d (B.2)

Following this, we define the fermions ψα
i,r using the parity operator:

ψa
j = Qaχa

j , ψb
j = Qaχb

j,

ψc
j = QaQbQcχc

j, ψd
j = QaQbQcχd

j .

(B.3)

These new fermions now anti-commute even on separate replicas, {ψ†α
i,r , ψ

β
j,r′} = δi,jδα,βδr,r′ ,

and can be used to define the SU(4) algebra as highlighted in the main text.
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B.2 Charge-resolution of null-eigenstates

In this section of the appendix, we will discuss the properties of the Identity operator state

and other null-eigenstates in a model with charge conservation. As was noted in Sec. 4.3.2,

we work with an operator basis with a well defined left and right charge, which are both

constants of motion. Since the identity is invariant due to the unitary dynamics (Fig. 2.1),

the corresponding operator state vanishes under the action of the emergent Hamiltonian:

UIU † = I =⇒ U ⊗ U∗ |I⟩ = |I⟩ =⇒ H |I⟩ = 0 ; |I⟩ =
∑

i,j

δij |i⊗ j⟩ (B.4)

While the above statement is true for any unitary Brownian model, in a charge-conserving

model this identity splits into multiple charge sectors. For a complex fermionic model with

N fermions:

I =
N∏

i=1

(ni + n̄i) =
N∑

q=0

Iq,N ; Iq,N =
∑

i1<...<iq

ni1 ...niq n̄iq+1 ...n̄iN−q (B.5)

where we have split the identity into strings Iq,N , each with charge profile (q, q). Since both

the identity and the charge profiles are conserved, each string Iq,N is also a constant of motion

H |Iq,N⟩ = 0. This means that due to charge conservation, we have multiple constants of

motion from the invariance of the identity, instead of just one. There exists one in each

sector with profile (q, q), hence qa = qb is a necessary condition to restrict to a sector with a

component of the identity. Apart from the identity, any other operator which represents a

symmetry will also have corresponding charge-resolved null eigenstates. On the four-contour

level, there emerges another null-eigenstate of the emergent Hamiltonian which is due to

the unitary nature of the dynamics as well. This is the complete set of states
∑

S |S† ⊗ S⟩

(Fig. 2.1), and this as well will split into different charge sectors, each with profile of the form

(q1, q2, q2, q1). This is because the charge profiles of an operator and its complex conjugate
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are related in the following way:

(
∑

i

ni)O = qaO =⇒ O†(
∑

i

ni) = qaO
† (B.6)

B.3 Solving the restricted Fokker-Planck equation

In this section, we will study simple toy versions of the ’restricted’ differential equations

we obtain in the main section. The goal is to show that once we restrict to the sector which

describes a stochastic process, the usual process of obtaining a Langevin equation still remain

valid.

Let’s consider a function P (x, y, t) which satisfies the following differential equation:

∂tP = ∂x((xy + x)P ) + ∂y(yP ) (B.7)

Hence P describes a probability distribution since
∫
Pdxdy is a constant. It is well known

that the equations of motion for x, y can be described by the followin Langevin equations:

x′(t) = −(xy + x); y′(t) = −y (B.8)

Now we modify the equation such that it only describes a probability distribution in the

sector y = 0, which means it is the incoherent sector:

∂tP = ∂x((xy + x)P ) + y∂yP =⇒ ∂t

∫
δ(y)Pdxdy = 0 (B.9)

We begin with an input state which is well localized around the fixed probability sector

P (x, y, t = 0) ∝ e−y2δ(x− ϵ), and we are interested in computing the quantity F is given by

F(t) =
∫
δ(y)xP (x, y, t)dxdy. This model is a simplified version of the situation in the main

text, with y = 0 representing the ‘incoherent’ sector. The restricted differential equation

129



above supports solutions of the form:

P (x, y, t) =
1

x
f

(
y − ln

(
x

y

)
, ln y + t

)
=

1

x
δ

(
lnx+ y(et − 1) + t− ln ϵ

)
e−y2e2t (B.10)

where we have reshaped P (x, y, t = 0) to be of the from f , time-evolved it, and then simplified

it to be the expression on the right. Hence F is given by:

F(t) =
∫
xδ(y)P (x, y, t)dxdy =

∫
x δ(x− e−t − ϵ)dx (B.11)

which implies that x satisfies the equation of motion x′(t) = −x which is precisely what one

gets upon setting y = 0 in Eq. (B.8). The overall equations of motion have changed, but in

the fixed probability sector, variables follow Langevin equations as expected, and there is no

‘feedback’ effect from the non-conserved sector.

B.4 Analytic solution of the free-fermionic chain

In this section we analytically solve the transport properties and OTOC in the free

fermionic chain which is represented by the Hamiltonian:

Hinter =
∑

j1,j2,r

Kr
j1,j2

(t)χ†
j1,r
χj2,r+1 + h.c. (B.12)

This represents a fermionic model with N fermions on each cluster, while driven hopping is

allowed between L such clusters.

B.4.1 Charge transport at finite-N

The transport occurs on two-time contours, as it can be diagnosed by analyzing the

two-point function of the charge density:

⟨ρ(r1, t)ρ(r2, 0)⟩ =
Tr(ρ(r1, t)ρ(r2, 0))

Tr(I)
; ρ =

N∑

i=1

ni

N
(B.13)
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For operator dynamics in the Brownian model, we consider the two-replica level emergent

Hamiltonian, which will show an emergent SU(2) ⊗ U(1) symmetry. Defining the operator

Sαβ =
∑

i χ
†
i

α
χβ
i , we can show that it can be used to define the algebra as follows:

L+ = Sab; L− = Sba; [L+, L−] = 2Lz = Sab − Sba; Q = Sab + Sba (B.14)

where Q is the U(1) part of the algebra. In the SU(2) algebra on each site, the input

state |ρ⟩ can be decomposed as:

|n1⟩ = |n1(n2 + n̄2)...(nN + n̄N)⟩ =
1√
2
|↑→ ...→⟩

=
1

2
|(→ +←)→ ...→⟩ = 1

2
|→→ ...→⟩+ 1

2
|←→ ...→⟩

|←→ ...→⟩ = 1

N

∑

i

|→ ...←i ...→⟩+
(
|←→ ...→⟩ − 1

N
|→ ...←i ...→⟩

)

=⇒ |ρ⟩ = 1

2
|N/2, N/2⟩x +

1

2
√
N
|N/2, N/2− 1⟩x

=⇒ |ρ(r1)⟩ = |I⟩1 ⊗ |I⟩2 ⊗ ... |ρ⟩r1 ...⊗ |I⟩L

(B.15)

The identity is the fully polarized state along the x-direction on every site, and is a constant

of motion for the unitary dynamics (Appendix B.2). The trace is given by:

Tr(ρ(r1, t)ρ(r2, 0))
Tr(I)

= ⟨ρ(r2)|U ⊗ U∗|ρ(r1)⟩ (B.16)

One can verify that these give the correct values at t = 0 according to the spin decomposition,

i.e. 1/4 for r1 ̸= r2 and 1/4(1+1/N) for r1 = r2. Now that we have the state-decomposition,

we can analyze the emergent Hamiltonian, which for the free fermionic chain is:

H =
1

N

( L∑

r=1

2Lz
rL

z
r+1 + L+

r L
−
r+1 + L−

r L
+
r+1 −

N2L

2

)
(B.17)

This is simply the SU(2) Heisenberg model, and we can exploit the SU(2) invariance to
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solve the two-point function exactly. The ’physical’ charge conservation manifests itself as

conservation of global weights
∑

r L
i
r = const, i = x, y, z. This should be contrasted with the

mathematical charge conservation (Q) within each irrep. Since the input state of interest

splits into two states, one of which is static under the emergent Hamiltonian, we only need

to focus on the lower weight state. We define a basis:

|ψr⟩ = |N/2⟩x,1 ⊗ ... |N/2− 1⟩x,r ⊗ ... |N/2⟩x,L (B.18)

such that a general state may be written as:

|ψ(t)⟩ =
∑

r

qr(t) |ψr⟩ =⇒
∑

r

qr(t) = const, (B.19)

hence qr(t) can be viewed as the charge distribution. The equation of motion for the state

is:

∂t |ψ(t)⟩ = H |ψ(t)⟩ =⇒
∑

r

∂tqr(t) |ψr⟩ =
∑

i

qr(t)(|ψr+1⟩+ |ψr−1⟩ − 2 |ψr⟩)

=⇒ ∂tqr(t) = (qr+1(t) + qr−1(t)− 2qr(t)) −→ ∂tρ(r, t) = ∂2rρ(r, t)

(B.20)

where the last equation involves taking the continuum limit of the spatial direction r. Start-

ing with a delta function localized at r = r1, we get the solution:

ρ(r, t) =
1√

8πNt
exp
(
− (r − r1)2

4t

)
(B.21)

which means the expression for the 2-pt func. is:

⟨ρ(r1, t)ρ(r2, 0)⟩ =
1

4
+

1

4N
√
4πt

exp
(
− (r2 − r1)2

4t

)
(B.22)
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B.4.2 OTOC at finite-N

In this section we will exactly solve the OTOC for the free fermion at finite N , for a chain

with L clusters. We will choose both the input operator and output operator, W and V , to

be χ but on clusters r and r′, because it makes the computations simpler. The Emergent

Hamiltonian for the free-fermion case, assuming periodic boundary conditions, is given by:

Hinter =
1

N

(∑

α,β,r

Sαβ
r Sβα

r+1 −N
∑

r

Qr

)
(B.23)

This has been written explicitly in terms of the Casimir of SU(4) to make the SU(4) invariance

manifest. The OTOC we will study will be of the form
∑

i,j F(χi,r, χj,r′). The input state is

the operator-state |χ† ⊗ χ⟩ on site r and the identity |I ⊗ I⟩ on all the other sites.

|inr⟩ =
1

2NL
|I ⊗ I⟩1 ⊗ . . . |χ† ⊗ χ⟩r ⊗ . . . |I ⊗ I⟩L ;

|χ† ⊗ χ⟩r =
1

N

N∑

i=1

|χ†
i ⊗ χi⟩r .

(B.24)

The second line is due to the restriction of the operator to the symmetric irrep (0, N, 0).

Note that since the identity-state is automatically contained within this irrep, we have fixed

the irrep to be the same on every site. This overall state is complicated in terms of its

decomposition into different charge sectors which have independent dynamics. Now we utilize

the SU(4) invariance of the Emergent Hamiltonian and specifically the SU(2) ⊗ SU(2) sub-

algebra formed by the operators Sba and Sdc (Fig. 4.2) to rotate the input state into one

strict charge-sector:

|ĩnr⟩ =
1

2NL
|Πn⊗ Πn⟩1 ⊗ . . . |χ†Πn⊗ χΠn⟩r ⊗ . . . |Πn⊗ Πn⟩L (B.25)

where |ĩn⟩r is the rotated input state. We have simply rotated the identity I = n+ n̄ into n

on both the left and right halves of the string via the SU(2) ⊗ SU(2) rotation. This leaves
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the emergent Hamiltonian unchanged due to the SU(4) invariance. We will now demonstrate

that this state performs a random walk under the dynamics. Let there be a general state

given by:

|ψ̃(t)⟩ =
∑

r

cr(t) |ĩn⟩r

∂t |ψ̃(t)⟩ = H |ψ̃(t)⟩
(B.26)

where on the second line we have demonstrated the rule which governs the dynamics of the

said state. Since the input-state now has fixed values of
∑

r S
αα
r Sαα

r+1 after the rotation, it is

simple to check that it satisfies:

H(
∑

r

cr(t) |ĩnr⟩) =
∑

r

cr(t)(|ĩnr+1⟩+ |ĩnr−1⟩ − 2 |ĩnr⟩)

=⇒ ∂tcr(t) = (cr+1 + cr−1 − 2cr)→ ∂tc(r, t) = ∂2r c(r, t)

(B.27)

In the second line we have used the continuum limit along the spatial dimension r. This

result is exact for all N and L. One can now rotate the states back into the form |in⟩r and

show that it performs a random walk under the time evolution. Since the output operator

is also chosen to be χ, it is simple to verify that it satisfies the following overlap condition:

2NL ⟨outr′|inr⟩ =





1
4N
− 1

4
, if r = r′

−1
4
, otherwise

(B.28)

Hence the overall overlap with the state ψ, which is the state ψ̃ rotated back, takes the form:

F(W (t), V ) = 2NL ⟨outr′|ψ(t)⟩ = −
1

4

∑

r

cr(t) +
1

4N
cr′(t) (B.29)

The sum of the coefficients cr is conserved due to the random-walk nature of the dynamics

and the initial state can be chosen to guarantee that it is fixed at 1. Hence the OTOC in the

continuum limit is determined by the value of c(r′, t) which shows diffusive growth/decay

(Eq. (B.27)). The exact OTOC at finite N therefore matches the OTOC in the infinite N
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limit.
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