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ABSTRACT

Spin waves are the collective wave excitations in the magnetically ordered system, which have

the frequencies typically ranged from GHz up to even THz. In recent years, the study of spin

waves, which is referred to as “magnonics”, has been significantly advanced; and the low-damping

coherent spin waves are considered as a suitable candidate for performing rapid data processing and

wave computing. The scalability of such spin-wave based computing devices is rather promising

due to the possibilities of exciting spin waves with wavelengths down to the nanometer range.

Magnonic crystals are various forms of spatial modulation of magnetic properties that can be seen

as magnetic metamaterials. The magnonic crystals, as a widely used approch to tailor the spin-

wave band structure and an effective way to control the spin-wave propagation, have been studied

extensively. In this dissertation, we explore the possibilities of utilizing various kinds of magnonic

crystals for the controllable spin-wave dynamics in different magnetic systems.

We first develop a description of spin waves in a 3D quantum XY antiferromagnet (AFM) in

terms of macroscopic variables, magnetization and Néel vector densities. We consider a layered

AFM with spins located on the honeycomb lattice. We show that, in the discussed system, the

spectrum of spin waves consists of four modes, all well captured by our macroscopic description.

The gapless mode of the spin waves, i.e., magnons, is described by a system of equations, which

has a structure general for the Goldstone mode in AFMs. We demonstrate that the parameters in

the spin Hamiltonian can be evaluated by fitting the experimental data with the results obtained

for the four modes using the macroscopic variable approach. The description of AFM in terms of

macroscopic variables can be easily extended to the case when the lattice of the magnetic substance

is deformed by an external strain or acoustic wave.

Next, we study the spin-wave dynamics in such a layered AFM in the presence of a periodic

lattice deformation. We suggest to use spatially modulated strain (a type of magnonic crystals) for

the control of a spin wave propagating inside a bulk AFM. The modulation with the wave vector

q, by virtue of magnetoelasticity, mixes spin waves with wave vectors near q/2 and −q/2. This
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leads to lifting the degeneracy of the symmetric and antisymmetric eigenstate combinations of

these waves. Therefore, a moving spin wave being subjected to the lattice modulation after some

time alters its propagation direction to the opposite one, and so on. The resulting picture reminds

one of a tunneling particle in a symmetric double-well potential. The effect can be utilized for the

control of the spin-wave propagation that can be useful for magnonic applications. The control

may include a delay line element, filtering, and waveguide of the spin waves in AFM.

For a ferromagnet (FM), we investigate its spin-wave dynamics under a switchable current-

induced magnonic crystal. In this case, we consider a ferromagnetic (FM) sample with a metallic

meander pattern (whose spatial modulation is described by a wave vector q) fabricated on its top

surface. The magnonic crystal will be switched on and off by applying a current to the meander

structure. For a conventional magnonic crystal with direct current (DC) supply, the spin waves

around q/2 are resonantly coupled to the waves near −q/2, and similar to the periodically deformed

AFM, a band gap is opened at k = ±q/2. We further demonstrate that if instead of the DC current

the magnonic crystal is supplied with an alternating current (AC), then the band gap is shifted to k

satisfying |ωs(k)−ωs(k− q)| = ωac; here ωs(k) is the dispersion of the spin wave, while ωac is the

frequency of the AC modulation. The resulting gap in the case of the AC magnonic crystal is the

half of the one caused by the DC with the same amplitude of modulation. The time evolution of the

resonantly coupled spin waves controlled by properly suited AC pulses can be well interpreted as

the motion on a Bloch sphere. The tunability of the AC magnonic crystal broadens the perspective

of spin-wave computing.
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AFM Antiferromagnet/Antiferromagnetic

FM Ferromagnet/Ferromagnetic

DC Direct current

AC Alternating current

YIG Yttrium iron garnet

RWA Rotating wave approximation
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1. INTRODUCTION*

Classical computers, which are based on electronic circuits, exploit binary digits, known as bits,

to store and process information. Each bit has a value of either 0 or 1, which can be represented by

an electrical signal. Complex calculation tasks are performed via logic gates, which are constructed

using billions of transistors on integrated circuits. The processing speed of a classical computer

is mainly determined by the number of transistors on an integrated circuit; and according to the

prediction of Moore’s Law, this number approximately doubles every two years. Over the past few

decades, the computational capacity of classical computers has grown rapidly. However, it will

become more and more impractical to maintain this exponential growth as the size of transistors

becomes smaller and we approach the limits of classical physics.

Quantum computers, on the other hand, provide a potential solution to these limitations and

have been extensively studied to continue enhancing the computing capabilities. Unlike classical

computers, a quantum computer explores the physics of quantum superposition and entanglement

to perform computations. Instead of bits, quantum computing uses quantum bits, or qubits, which

can be in a superposition of states (i.e., a linear combination of both 0 and 1 states at the same

time). This enables quantum computers to process a large amount of information simultaneously

and execute certain types of calculations much faster than the classical ones. Although quantum

computing shows great promise, its practical implementation in the real world is severely limited

by the intrinsic susceptibility of a quantum system to external perturbations and noises. To build

a truly functional quantum computer, the issue of quantum decoherence in multiple-qubit system

must be addressed.

Classical waves lack the full capacity for quantum entanglement, but they still possess the

superposition property. Lloyd has theoretically shown that, with an extra resource overhead, in-

terference of waves can be exploited for building a computing device that outperform the clas-

*Part of this chapter is reprinted with permission from “Spin-wave dynamics controlled by tunable ac magnonic
crystal” by Ankang Liu and Alexander M. Finkel’stein, 2023. Phys. Rev. B (to be published), Copyright 2023 by
American Physical Society.

1



sical one on database search [1]. This is accomplished by implementing a specific version of

Grover’s algorithm that does not involve quantum entanglement. In addition, other studies (e.g.,

Refs. [2, 3, 4, 5]) have suggested that quantum speedup may rely more on the parallelism of a

quantum system rather than on the entanglement. In these works the authors also discussed the

possibilities of using classical waves to achieve quantum-like speedup.

Spin waves are the collective wave excitations in the magnetically ordered system, which have

the frequencies typically ranged from GHz up to even THz. In fact, the utilization of spin waves

for the purposes of quantum-information exchange was proposed long ago in Ref. [6]. In recent

years, the study of spin waves, which is referred to as “magnonics”, has been significantly ad-

vanced, see Refs. [7] and [8] for reviews. As it is shown in Refs. [9, 10, 11], the spin waves

excited in the low-damping ferromagnetic (FM) material yttrium iron garnet (YIG) can have both

life time and coherence time longer than 100 ns. As a result, the low-damping coherent spin waves

are now considered as a suitable candidate for performing rapid data processing and wave com-

puting [9, 10, 11, 12, 13, 14, 15]. The scalability of such spin-wave based computing devices

is rather promising due to the possibilities of exciting spin waves with wavelengths down to the

nanometer range [16, 17]. Specifically, as demonstrated in Ref. [13], a computing machine relying

on the spin-wave superposition exhibits faster performance on database searching tasks compared

to a classical digital computer. Futhermore, the authors claim that “classical wave-based devices

can perform some of the quantum algorithms with the same efficiency as quantum computers as

long as quantum entanglement is not required”. The results of this study imply that spin-wave-

based computing devices have the potential to achieve quantum-like speedups on certain tasks,

which provide an alternative avenue to bypass the intractable issue of quantum decoherence when

building a quantum computer.

In the abovementioned work, the qubit state was encoded as a linear superposition of two spin

waves with different phases, with each “qubit” sent through its own waveguide (a thin YIG stripe

that guides spin waves) and controlled by an individual phase shifter (an apparatus that adjusts the

phase of a spin wave). However, scaling up such a spin-wave computing device will be a signif-
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icant challenge. To address this challenge, in this dissertation we study the spin-wave dynamics

in various kinds of magnonic crystals for different magnetically ordered systems, and finally we

explore the possibility of using AC magnonic crystals to control different spin-wave pairs. We ex-

pect that distinct spin-wave pairs will be independently manipulated by the AC magnonic crystals

with different modulating frequencies through what we will call the “shifted resonance”. The key

advantage of the proposed scheme is that all pairs of spin waves in the same waveguide can be

simultaneously controlled by a single hardware, which has a fixed spatially modulation.

This dissertation is written based on my three papers on Physical Review B [18, 19, 20]. The

dissertation is organized as the follows: In Chapter 2, we employ simple isotropic exchange spin

models to give an intuitive picture of how long-wavelength spin waves arise in a ferromagnet

(FM) and antiferromagnet (AFM). In Chapter 3, we investigate the spin-wave excitations in van

der Waals layered magnetic material CoTiO3 and develop a quantitatively good description of all

four spin-wave branches in this material using a formalism based on macroscopic variables. The

established formalism can be easily extended to the magnetic system with a lattice deformation and

is applicable to a generic quantum XY AFM. In Chapter 4, we utilize the macroscopic-variable

spin-wave description introduced in Chapter 3 to study the antiferromagnetic (AFM) spin-wave

dynamics under a spatially modulated strain. We demonstrate that the periodic strain acts like

a magnonic crystal on spin waves propagating along the same direction of the modulation; and

switching on the strain modulation leads to a to-and-fro motion of the spin waves that satisfy the

spatial resonance condition. In Chapter 5, we focus on the spin-wave dynamics under a current-

induced magnonic crystal, which has more tunability than the strain-modulated magnonic crystal.

We discuss the possibility of using a tunable AC magnonic crystal for the purpose of spin-wave

computing. Finally, in Chapter 6, we summarize the dissertation by presenting an overview of the

work and outlining future directions for research. Appendices A, B, and C provide supplemental

information to Chapters 3, 4, and 5, respectively.
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2. EXCHANGE MODELS FOR SPIN WAVES*

In this chapter, we employ the exchange Hamiltonian to demonstrate how spin-wave excitations

are formed in magnetically ordered systems such as FMs and AFMs.

2.1 Spin Wave in Ferromagnet

Spin-wave excitation in a FM can arise from various kinds of interactions, e.g., the long-range

magnetic dipole-dipole interactions and the short-range exchange couplings [21]. For readers who

are interested in a full treatment of spin waves that originating from the mixture of the dipole-

dipole and exchange interactions, we refer to papers [22] and [23]. To illustrate the concept of

shifted resonance, which will be introduced in later chapter, we restrict ourselves to the spin waves

purely originating from the short-range exchange couplings. This is sufficient for demonstrating

the idea. To be concrete, we study the isotropic Heisenberg’s spin Hamiltonian

HFM = −J
∑
(i,j)

Si(t) · Sj(t). (2.1)

Here, J > 0 is the FM exchange coupling between the spin Si(t) on the lattice site i and the spin

Sj(t) on its nearest neighbors. The summation (i, j) runs over all pairs of the nearest-neighboring

sites. Using the Heisenberg equation of motion Ṡi =
1
i
[Si, H

FM ], one gets

dSx
i

dt
=J
∑
δ

(Sy
i S

z
i+δ − Sz

i S
y
i+δ),

dSy
i

dt
=J
∑
δ

(Sz
i S

x
i+δ − Sx

i S
z
i+δ),

dSz
i

dt
=J
∑
δ

(Sx
i S

y
i+δ − Sy

i S
x
i+δ). (2.2)

*Part of this chapter is reprinted with permission from “Spin-wave dynamics controlled by tunable ac magnonic
crystal” by Ankang Liu and Alexander M. Finkel’stein, 2023. Phys. Rev. B (to be published), Copyright 2023 by
American Physical Society.
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Here we dropped the argument t in Si in Eq. (2.2) for simplicity of notation. In the case where

all spins are located on a cubic lattice with the lattice constant a (as it is shown in Fig. 2.1), the

summation of δ runs over a(±1, 0, 0), a(0,±1, 0), and a(0, 0,±1).

a
̂x

̂y
̂z

Figure 2.1: A schematic picture of FM cubic spin lattice with lattice constant a. Spins are indicated
as red arrows on each site, and we assume that all spins are aligned along the z direction in the
equilibrium.

Since only the dynamics of long-wavelength spin waves will be studied, in the continuum

limit one can replace the spin operators Si(t) by the continuous variable S(r, t) and expand its

coordinate dependence, see e.g., Ref. [24]. S(r, t) is introduced here as a classical variable, which

can be understood as the averaged spin over a small volume around the position r. As an example,

the term
∑

δ S
z
i S

y
i+δ becomes

Sz(r, t)
∑
δ

(
Sy(r, t) +

∂Sy(r, t)

∂rα
δα +

1

2

∂2Sy(r, t)

∂rα∂rβ
δαδβ + · · ·

)
≈

6Sz(r, t)Sy(r, t) + a2Sz(r, t)
(
∇2Sy(r, t)

)
. (2.3)

Here, the summations of α and β over x, y, and z are indicated explicitly. Eventually, the equations
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of motion (2.2) become

dS

dt
= (Ja2)(S ×∇2S), (2.4)

which is nothing else but the Landau–Lifshitz–Gilbert equation without the damping term (cf. Ref.

[25]). We can assume, without loss of generality, that all spins are aligned along the z direction

in the ground state. As a result, the spin variable S(r, t) takes the form (0, 0, S0) in equilibrium,

where S0 is the saturated spin value. In the case of a spin-wave excitation, S(r, t) deviates from the

equilibrium value, and becomes S(r, t) =
(
Sx(r, t), Sy(r, t),

√
S2
0 − [Sx(r, t)]2 − [Sy(r, t)]2

)
.

In the weak-excitation limit |Sx,y(r, t)| ≪ S0, we get a linearized equation in Sx,y(r, t):

dS±

dt
= ±iJa2S0∇2S±, (2.5)

where S±(r, t) ≡ Sx(r, t) ± iSy(r, t). It can be easily checked that this equation is solved by a

plane wave S±(r, t) = (∆S)e±i[k·r−ωs(k)t+φs] with ωs(k) = Ak2. Here ∆S is the amplitude of

the spin wave, φs is the initial phase, and A ≡ Ja2S0. Note that ωs(k) → 0 as k → 0, which

corresponds to the Goldstone gapless mode of the Heisenberg FM.

2.2 Spin Wave in Antiferromagnet

Now let us show how the spin-wave excitation looks like in an AFM. For simplicity, we study

again the isotropic spin Hamiltonian

HAFM = J
∑
(i,j)

Si(t) · Sj(t), (2.6)

where J > 0 and the summation (i, j) runs over all pairs of the nearest-neighboring sites on a

cubic lattice as well. Note that the opposite sign in this spin Hamiltonian compared with the one

of a FM (cf. Eq. (2.1)). Therefore, as it is schematically depicted in Fig. 2.2, all spins on the A

sublattice are aligned oppositely to the spins on the B sublattice in the thermal equilibrium. This

leads to a vanishing total magnetization for an AFM.
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a
⃗SAi

⃗SBj

̂x

̂y
̂z

Figure 2.2: A schematic picture of AFM cubic spin lattice with lattice constant a. Spins on different
sublattices are indicated as red and blue arrows on the corresponding sites. In the ground state,
all spins on the A sublattice are aligned along the positive z direction while the ones on the B
sublattice are along the negative z direction.

Following the same procedure in the last section, namely, calculating the commutation relations

of Si(t) and HAFM , replacing the spin operators with the corresponding continuous variables in

the continuum limit, and making the gradient expansions, we eventually get

dSA(r, t)

dt
≈− 6J(SA × SB)− (Ja2)(SA ×∇2SB) (2.7)

and

dSB(r, t)

dt
≈− 6J(SB × SA)− (Ja2)(SB ×∇2SA) (2.8)

for the spin dynamics on the A and B sublattices, respectively. To proceed, we introduce the total

magnetization m ≡ SA + SB and the Néel vector l ≡ SA − SB. Using Eqs. (2.7) and (2.8), one

obtains

dm

dt
≈ Ja2

2
(l×∇2l) and

dl

dt
≈ 6J(m× l) (2.9)
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after neglecting the terms that do not contribute to the lowest-order spin-wave dynamics. Next, we

apply the standard parametrization (see e.g., Refs. [26, 27, 28])

l =2S0

√
1−

(
|m⃗|
2S0

)2

(cos θ cosϕ, cos θ sinϕ, sin θ) ,

m =(−mθ sin θ cosϕ−mϕ sinϕ,−mθ sin θ sinϕ+mϕ cosϕ,mθ cos θ) (2.10)

to the total magnetization and Néel vector. Here, S0 is the saturated spin value on both A- and

B-sublattices. The parameters θ, mθ, and mϕ have the equilibrium values θ(0) = 0, m(0)
θ = 0, and

m
(0)
ϕ = 0, while ϕ(0) can be an arbitrary angle. Note that, by the definitions, m · l = 0, and this

orthogonality is automatically fulfilled by the parametrization (2.10).

Finally, we substitute the parametrization (2.10) into Eqs. (2.9), keep only the linear terms in

the parameters that deviate from its equilibrium values, and get two decoupled pairs of linearized

equations:

ṁθ ≈(2S0)
2(
Ja2

2
)∇2ϕ,

ϕ̇ ≈6Jmθ (2.11)

and

ṁϕ ≈− (2S0)
2(
Ja2

2
)∇2θ,

θ̇ ≈− 6Jmϕ. (2.12)

Both pairs of equation lead to the same spin-wave dispersion ωs(k) =
√
12JS0a|k|. In contrast to

the quadratic dispersion in a FM, the AFM spin wave has a linear spectrum. It is worth pointing

out that the degeneracy of two pairs will be lifted by an external magnetic field. In the presence of

an external magnetic field B0ẑ, the equilibrium value of mθ becomes finite, which indicates that

a net magnetization along z direction is induced by the external magnetic field. One can easily
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check that, in this case, the spin wave described by the pair (mθ, ϕ) remains gapless, while the

(mϕ, θ)-pair spin-wave branch acquires a nonzero energy gap which is ∝ B0. The gapless spin-

wave branch (mθ, ϕ) is associated with U(1) symmetry of the system, which is directly related to

the spin-superfluidity transport [28, 29, 30].

At the end of this section, we demonstrate an unconventional way of deriving the AFM La-

grangian density. The standard route to find the the Lagrangian density requires going through the

whole complicated process of constructing the path integral [27, 28]. Here we show that one can

simply restore the Lagrangian density from the equations of motion (2.9), which avoids the mathe-

matical complications of the path-integral formalism. In the continuum limit, the spin Hamiltonian

(2.6) is approximated as

HAFM ∼
∫
d3rHAFM =

∫
d3r

{
6JSA · SB +

Ja2

2

[
SA ·

(
∇2SB

)
+ SB ·

(
∇2SA

)]}
≈
∫
d3r

[
3Jm2 +

Ja2

4

∑
α

(∂αl)
2

]
. (2.13)

In the above equation, the summation of α runs over all three spatial coordinates x, y, and z. The

action, which describes the dynamics of the system, will generally take the form

AAFM ∝
∫
dτd3rLAFM =

∫
dτd3r

(
LAFM

gk −HAFM
)
. (2.14)

Here LAFM
gk is a geometric kinetic term, which appears in the process of constructing the path

integral with the use of the spin coherent states technique. This term is also called the Berry phase

of the spin history [27]. The equations of motion for m and l are obtained by minimizing the

action AAFM . By requiring δAAFM/δm = 0, one gets

∂LAFM
gk

∂m
− 6Jm = 0. (2.15)
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On the other hand, one has

l× dl

dt
≈ (2S0)

26Jm (2.16)

from the second equation in (2.9). Therefore, we find that LAFM
gk = (2S0)

−2m · (l× ∂tl) and

LAFM = (2S0)
−2m · (l× ∂tl)− 3Jm2 − Ja2

4

∑
α

(∂αl)
2 . (2.17)

One can easily check that, with the use of this Lagrangian density, δAAFM/δl = 0 gives the first

equation in (2.9). In this way, the explicit expression of the Berry-phase term was found, and the

AFM Lagrangian density could be restored without the need for constructing the path integral.
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3. SPIN WAVES IN LAYERED ANTIFERROMAGNETS WITH HONEYCOMB

STRUCTURE*

In this chapter we derive the equations of motion for the system of spins in a quantum XY

AFM in terms of pairs of macroscopic quantities, which are the magnetization and the Néel vector

densities. Compared to other classes, the XY AFMs are relatively limited in occurrence. Usually,

they could be met in systems with a hexagonal symmetry of the crystalline lattice, see Ref. [31].

At the present moment, a number of materials has been confirmed to be the layered AFM with

in-plane spins, including NiPS3 [32], CoPS3 [33], CuMnAs [34], CrCl3 [35, 36, 37], etc. Here,

for concreteness, we consider the XY -type layered CoTiO3, although the approach is general and

expected to be applicable to any layered AFM.

We arrive to a relatively simple description of quantum AFM in terms of the gradient expansion

of the pairs of macroscopic variables that in the continuous limit reproduces the main features

of the results obtained for CoTiO3 in Ref. [38]. In particular, this method allows to describe

accurately all four spin-wave modes existing in the discussed system. By comparing their spectrum

calculated here using the macroscopic variables approach with the experimental data of Ref. [38],

we extracted the values of the parameters in the spin Hamiltonian and confirm the XY character

of the intralayer spin exchange in this material.

In a series of papers [39, 40, 41], the magnon backward scattering by a magnonic crystal

was studied experimentally in FMs. The periodic scattering potential (i.e., the magnonic crystal)

was created by a set of current carrying meander wires. The perspective of this experimental

method for bulk AFM samples remains unclear. We, therefore, study here the effect of the lattice

deformation on the spin dynamics. The deformations change distances between spins, and thus

modify exchange coupling constants. The modulation of the coupling constants causes in its turn

scattering of the spin waves. The description in terms of the macroscopic variables developed in

*Reprinted with permission from “Spin waves in layered antiferromagnets with honeycomb structure” by Ankang
Liu and Alexander M. Finkel’stein, 2022. Phys. Rev. B, 105, 214409, Copyright 2022 by American Physical Society.
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this chapter can be easily extended to a system with deformations, and allows one to obtain the

dynamics of the scattering spin waves in the modulated crystal. This is another goal of this chapter.

3.1 Spin Dynamics in the Absence of Lattice Deformations

CoTiO3 is a layered AFM material, and is a sort of a magnetic “ABC-stacked graphite".

Figure 3.1: Schematic spin lattice structure of CoTiO3. The period along the z direction comprises
six layers including the ABC stacking and the alternating ±x spin ordering in the neighbor layers.
The red and blue spheres represent atoms located on the A and B sublattices, respectively, while
arrows indicate the direction of their spins. CoTiO3 is an intralayer FM and simultaneously an
interlayer AFM. The dashed lines display couplings of a selected atom in the middle layer to the
nine next-nearest neighbors in the other two layers. Each of the red atoms on the A sublattice in
the middle layer is coupled with six blue atoms in the top layer and three red atoms in the bottom
layer. A blue atom on the B sublattice in the middle layer is coupled with three blue atoms in the
top layer and six red atoms in the bottom layer.

Namely, in each of the layers, spins are arranged on a honeycomb lattice (xy plane), and different

layers are ABC-stacked along the third direction (z axis). A schematic structure of the spin lattice

is shown in Fig. 3.1. The exchange coupling J∥ within a layer is FM, i.e., J∥ < 0, while the

exchange coupling constant between layers is AFM, J⊥ > 0. Previous measurements (cf. Ref.

[38], and see also the discussion in Section 3.4) found out that the Hamiltonian describing best the
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magnetic excitations in CoTiO3 is

H =
∑
i,δ1

J∥(S
x
i S

x
i+δ1

+ Sy
i S

y
i+δ1

) +
∑
i,δ2

J⊥(S
x
i S̄

x
i+δ2

+ Sy
i S̄

y
i+δ2

+ Sz
i S̄

z
i+δ2

) + {Sx/y/z ↔ S̄x/y/z}.

(3.1)

Notations here are the same as in Ref. [38]; the index i runs over all sites of spin, while δ1 and δ2

run over the nearest neighbors within the same layer, and all the next-nearest neighbors between the

layers. In the Hamiltonian (3.1) we have introduced S and S̄ that are the spin operators for the ±x-

ordered magnetic layers, respectively. Using the Heisenberg equations of motion, Ṡ = 1
i
[S, H],

for each of the spin components of Si, we find

dSx
i
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=
∑
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i S
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z
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+
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δ2

J⊥(−Sz
i S̄

x
i+δ2

+ Sx
i S̄

z
i+δ2

),

dSz
i
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=
∑
δ1

J∥(S
y
i S

x
i+δ1

− Sx
i S

y
i+δ1

) +
∑
δ2

J⊥(S
y
i S̄

x
i+δ2

− Sx
i S̄

y
i+δ2

). (3.2)

The equations of motion for S̄ could be obtained by making the exchange: S ↔ S̄. Although

the period of the spin lattice along the z direction is six layers, there is no need in considering

the dynamics of all six layers. Instead, one just needs to calculate the equations of motion for S

and S̄, which are the spin operators of two oppositely ordered layers. Suppose we start from the

bottom layer in Fig. 3.1 and move upward. Then each next layer requests for the same operation,

i.e., change in the direction of the spin ordering along with a shift by one unit length along the +x

direction. Hence, each layer is in the same environment and does not feel the periodicity along the

z direction.

Next, in order to get a continuum model, we make an expansion in S with respect to its coor-

dinate dependence (cf. Chapter 2). As an example, let us take the term
∑

δ1
J∥S

z
i S

y
i+δ1

and assume

that the site i is on the A sublattice. We are interested in finding the equation of motion for a spin
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located on this site. For this, we need to explore its environment. Performing the expansion, we

obtain

∑
δ1

Sz
i S

y
i+δ1

=
∑
δ1

Sz
iA(S

y
iB +

∂Sy
iB

∂rα
δα1 +

1

2

∂2Sy
iB

∂rα∂rβ
δα1 δ

β
1 + · · · )

≈3Sz
iAS

y
iB +

3

4
Sz
iA(

∂2

∂x2
+

∂2

∂y2
)Sy

iB. (3.3)

Here and further on, the subscription A/B stands for the A/B sublattices. There are three nearest

neighbors for the honeycomb lattice, and δ1 are taken to be δ1,1 = (1, 0, 0), δ1,2 = (−1/2,
√
3/2, 0),

and δ1,3 = (−1/2,−
√
3/2, 0). In Eq. (3.3) the summation over α and β is assumed, where

α, β = x, y, z combines the three Cartesian components of the vector δ1,j with three coordinate

derivatives. Note that for the convenience of the discussion, lengths are measured in the units of

either intra- or inter-layer lattice constants.

Similarly, for a term describing the interlayer interaction,
∑

δ2
J⊥S

z
i S̄

y
i+δ2

, we have

∑
δ2

Sz
i S̄

y
i+δ2

≈3Sz
iA(S̄

y
iB + 2S̄y

iA) + 3Sz
iA[
∂S̄y

iB

∂z
+

1

4
(
∂2

∂x2
+

∂2

∂y2
+ 2

∂2

∂z2
)(S̄y

iB + 2S̄y
iA)]. (3.4)

Here we assumed that a site i is on one of the A sublattices (i.e., i is red), and that δ2 runs over

nine next-nearest neighbors as indicated by the dashed line in Fig. 3.1.

To derive the equations of motion for the macroscopic quantities, we substitute the leading

expansion terms as shown in Eqs. (3.3) and (3.4) back into Eq. (3.2). The calculations are straight-

forward, and details are presented in Appendix A.1. Then, after making a transition from the site

spin operators Si(t) to the continuous variable S(r, t), we introduce the macroscopic quantities

for each of the two sub-lattices: the total magnetization mA/B(r, t) ≡ SA/B(r, t) + S̄A/B(r, t)

and the Néel vector lA/B(r, t) ≡ SA/B(r, t) − S̄A/B(r, t), which will be used for describing the

long-wavelength spin wave excitation. Finally, for the two spin-wave branches with the lowest
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energy we implement the approximation mA = mB = m and lA = lB = l, and as a result get:

dmx

dt
≈ 3

2
J∥(l

zly) +
9

8
J⊥(l

y∇2
+l

z), (3.5)

dmy

dt
≈ −3

2
J∥(l

zlx)− 9

8
J⊥(l

x∇2
+l

z), (3.6)

dmz

dt
≈ −3

8
J∥[l× (∇2

−l)]z +
9

8
J⊥[l× (∇2

+l)]z, (3.7)

dlx

dt
≈ (

3

2
J∥ − 9J⊥)(l

ymz)− 9

8
J⊥(l

y∇2
+m

z), (3.8)

dly

dt
≈ (−3

2
J∥ + 9J⊥)(l

xmz) +
9

8
J⊥(l

x∇2
+m

z), (3.9)

and

dlz

dt
≈9J⊥(m× l)z −

3

8
J∥[l× (∇2

−m)]z −
9

8
J⊥[l× (∇2

+m)]z. (3.10)

Here, the short notation ∇2
± ≡ ∇2 ± ∂2/∂z2 has ben introduced; the indices x, y, z mark the x, y,

and z component of the vectors, respectively. In the following, we drop the last terms in Eqs. (3.8)

and (3.9), because they lead to the terms in dispersion, which are of higher order in k2, while we

are interested in ω2 only up to the order ∼ O(k2).

To proceed further, we will apply the standard parametrization (2.10) to the vectors m and l by

simply replacing S0 there with S̃, which is the effective spin in this system. Note that, under this

parametrization, the vectors m and l are automatically constrained by m · l = 0 and, at the same

time, the lengths of S and S̄ are taken to be a fixed value S̃. De facto, by the transition from spin

operators to the classical variables m and l, we have implemented the language of the nonlinear
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sigma model (NLSM) for the description of the AFM dynamics.

Keeping only the linear terms in Eqs. (3.5)-(3.10), we get two decoupled pairs of equations in

terms of the variables as introduced in Eqs. (2.10):

ṁθ ≈ (4S̃2)(−3

8
J∥∇2

−ϕ+
9

8
J⊥∇2

+ϕ),

ϕ̇ ≈ (−3

2
J∥ + 9J⊥)mθ; (3.11)

and

ṁϕ ≈ (4S̃2)(−3

2
J∥θ −

9

8
J⊥∇2

+θ),

θ̇ ≈ (−9J⊥ − 3

8
J∥∇2

− − 9

8
J⊥∇2

+)mϕ. (3.12)

Note that θ(0) = 0, m(0)
θ = 0, and m(0)

ϕ = 0 are the equilibrium values for these equations, while

ϕ can be arbitrary, because this system has a rotational symmetry along the z direction. In fact the

form of the equations (3.11) and (3.12) does not depend much on the microscopic details of the

Hamiltonian (3.1) and is determined by the symmetry of the system. Only the numerical prefactors

are specific to the model and are determined by the lattice structure.

By taking another time derivative in Eqs. (3.11) and (3.12) we obtain closed equations of the

second order. For example, for mθ and mϕ they look as follows

m̈θ ≈(4S̃2)[−
3J∥
8

(−
3J∥
2

+ 9J⊥)∇2
− +

9J⊥
8

(−
3J∥
2

+ 9J⊥)∇2
+]mθ,

m̈ϕ ≈(4S̃2)[
27

2
J∥J⊥ +

9

16
J2
∥∇2

− +
9J⊥
8

(
3J∥
2

+ 9J⊥)∇2
+]mϕ. (3.13)

These equations give eigen-frequencies of the two low-energy spin-wave branches

ωa ≈(2S̃)[(
9

16
J2
∥ − 81

16
J∥J⊥ +

81

8
J2
⊥)(k

2
x + k2y) + (−27

8
J∥J⊥ +

81

4
J2
⊥)k

2
z ]

1
2 ,

ωsh ≈(2S̃)[−27

2
J∥J⊥ +

9

16
J2
∥ (k

2
x + k2y) + (

81

8
J2
⊥ +

27

16
J∥J⊥)(k

2
x + k2y + 2k2z)]

1
2 . (3.14)
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Here, ωa and ωsh are the acousticlike and the opticlike branches of the spin waves, respectively. In

fact, the two branches exactly repeat each other after shifting kz on ±π. (This is why we indicate

the “fake" opticlike branch by “sh".)

It remains to obtain the two "true" opticlike branches with higher energies. Since the opticlike

excitations are not related with the rotational symmetry along the z directions, we perturb the spins

on A and B sublattices in the anti-phase manner: An ansatz mA/B = ±(δmxx̂ + δmyŷ + δmz ẑ)

and lA/B = 2S̃x̂±(δlxx̂+δlyŷ+δlz ẑ) is implemented for these eigenmodes. Here, + and − stand

for A and B sublattices, respectively. Note that, without loss of generality, we take the equilibrium

Néel vector to be along the x direction, l0 = 2S̃x̂. As above, mA/B and lA/B are subject to the

constraint mA/B · lA/B = 0. Note that, to fulfill this constraint, one can implement for vectors

mA/B and lA/B the standard parametrization (cf. Eqs. (2.10)):

lA/B = 2S̃

√
1−

(
|mA/B|
2S̃

)2(
cos
(
θA/B

)
cos
(
ϕA/B

)
, cos

(
θA/B

)
sin
(
ϕA/B

)
, sin

(
θA/B

))
(3.15)

and

mA/B =
(
− (mθ)A/B sin

(
θA/B

)
cos
(
ϕA/B

)
− (mϕ)A/B sin

(
ϕA/B

)
,

− (mθ)A/B sin
(
θA/B

)
sin
(
ϕA/B

)
+ (mϕ)A/B cos

(
ϕA/B

)
, (mθ)A/B cos

(
θA/B

))
. (3.16)

Here, θA/B = ±θ, ϕA/B = ±ϕ, (mθ)A/B = ±mθ, and (mϕ)A/B = ±mϕ. After linearization, we

get δlxA/B ≈ 0, δlyA/B ≈ ±2S̃ϕ, δlzA/B ≈ ±2S̃θ, δmx
A/B ≈ 0, δmy

A/B ≈ ±mϕ, and δmz
A/B ≈ ±mθ,

which are equivalent to the expansions used here. Expanding the magnetization density and Néel

vector around the equilibrium, we get (more details can be found in Appendix A.1)

dδmx

dt
≈ 0, (3.17)

dδmy

dt
≈ 2S̃[(−3

2
J∥ + 3J⊥)−

3

8
J⊥∇2

+]δl
z, (3.18)
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dδmz

dt
≈ 2S̃[(3J∥ − 3J⊥) +

3

8
J∥∇2

− +
3

8
J⊥∇2

+]δl
y, (3.19)

dδlx

dt
≈ 0, (3.20)

dδly

dt
≈ 2S̃[(−3

2
J∥ + 6J⊥) +

3

8
J⊥∇2

+]δm
z, (3.21)

and

dδlz

dt
≈ 2S̃[(3J∥ − 6J⊥) +

3

8
J∥∇2

− − 3

8
J⊥∇2

+]δm
y. (3.22)

We, thus, get two pairs of equations: Eqs. (3.18) and (3.22) for the pair (δmy, δlz), and Eqs. (3.19)

and (3.21) for (δmz, δly). Consequently, these pairs of equations lead us to two opticlike modes

ωo1 ≈(2S̃)[
9

2
(J∥ − 2J⊥)

2 − 9

16
J∥(J∥ − 2J⊥)(k

2
x + k2y)−

9

16
J⊥(J∥ − 2J⊥)(k

2
x + k2y + 2k2z)]

1
2 ,

ωo2 ≈(2S̃)[
9

2
(J∥ − J⊥)(J∥ − 4J⊥)−

9

16
J∥(J∥ − 4J⊥)(k

2
x + k2y)

+
9

16
J⊥(J∥ + 2J⊥)(k

2
x + k2y + 2k2z)]

1
2 . (3.23)

The gradient terms in Eqs. (3.18), (3.22), and in (3.19), (3.21) determine the dispersion of the

opticlike modes.

3.2 Holstein–Primakoff Approach

As a comparison, we introduce an 8×8 model using the Holstein–Primakoff transformation,

which quantitatively describes the spectrum of the spin waves in CoTiO3 with using the Hamilto-

nian given by Eq. (3.1).
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3.2.1 The 8×8 model

For a layer, where the magnetization is ordered along x direction, we introduce the standard

Holstein-Primakoff operators

Sx
A/B = S̃ − (a†a)/(b†b),

S+
A/B ≡ Sy

A/B + iSz
A/B =

√
2S̃ − (a†a/b†b)(a/b),

S−
A/B ≡ Sy

A/B − iSz
A/B = (a†/b†)

√
2S̃ − (a†a/b†b). (3.24)

Here, the subscriptionA/B indicates theA/B sublattices and, similarly, a†/b† and a/b are creation

and annihilation operators of spin excitations on the A and B sublattices, respectively. In the

discussed system, CoTiO3, the effective spin S̃ = 1/2; see the discussion on this point in Ref. [38].

Finally, for the neighboring layer, where the magnetization is ordered along the −x direction, we

use operators marked with a bar. We have

S̄x
A/B = (ā†ā/b̄†b̄)− S̃,

S̄+
A/B ≡ −S̄y

A/B + iS̄z
A/B =

√
2S̃ − (ā†ā/b̄†b̄)(ā/b̄),

S̄−
A/B ≡ −S̄y

A/B − iS̄z
A/B = (ā†/b̄†)

√
2S̃ − (ā†ā/b̄†b̄). (3.25)

Keeping only the quadratic form in terms of the creation and annihilation operators, one obtains

a Hamiltonian HSW in the quasi-momentum k space which determines the spectrum of the spin

waves. The Hamiltonian HSW = S̃
∑

k V
†
kHkVk is determined as follows:

Vk = {ak, bk, a†−k, b
†
−k, āk, b̄k, ā

†
−k, b̄

†
−k}

T (3.26)
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and

Hk =

H1k H2k

H2k H1k

 . (3.27)

Here, H1k and H2k are 4× 4 matrices

H1k =



Ak Bk 0 Bk

B∗
k Ak B∗

k 0

0 Bk Ak Bk

B∗
k 0 B∗

k Ak


(3.28)

and

H2k =



0 0 Ck Fk

0 0 F ∗
k Ck

Ck Fk 0 0

F ∗
k Ck 0 0


. (3.29)

The matrix elements here are Ak = −3J∥ + 9J⊥, Bk = 1
2
J∥γk, Ck = −J⊥(e−ikzγk + eikzγ∗k),

and Fk = −J⊥e−ikzγ∗k . The factor γk is determined by summation over the nearest neighbors,

i.e., for the honeycomb lattice γk =
∑

j=1,2,3 e
ik·δ1,j with δ1,1 = (1, 0, 0), δ1,2 = (−1/2,

√
3/2, 0),

and δ1,3 = (−1/2,−
√
3/2, 0). In our discussions, we take both in-plane and out-of-plane lattice

constants to be 1 for simplicity. In Ref. [38], the best estimates of J∥ and J⊥ which match quanti-

tatively well with the experimental data are found to be J∥ = −4.41 meV and J⊥ = 0.57 meV. In

the discussions below, we will use for the parameters J∥ and J⊥ these values.

In Section 3.4, we get the parameters of the Hamiltonian (3.1) by analyzing the experimental

data from Ref. [38] using our macroscopic description developed above. The extracted values of

parameters, which optimally fit the data, are very close to the ones presented in Ref. [38].

Note that, this 8 × 8 model gives 4 branches of the magnon spectrum. These 4 branches
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could be divided into 2 groups by the symmetry of the eigenstates. To find the spectrum of

magnons, one needs to solve the eigenvalue problem Hk |ψ⟩ = EkS3 |ψ⟩ with the diagonal matrix

S3 = diag(1, 1,−1,−1, 1, 1,−1,−1). The eigen vector |ψ⟩ here is an eight-dimensional vector

constructed in the basis Vk, see Eq. (3.26). It could be written as |ψ⟩ = {ψT
1 , ψ

T
2 }T , where ψ1 and

ψ2 are four-dimensional vectors within the subspaces {ak, bk, a†−k, b
†
−k}T and {āk, b̄k, ā†−k, b̄

†
−k}T ,

respectively. For one group of the eigenstates, which has the property ψ1 = ψ2, the eigenvalue

equation becomes (H1k + H2k)ψ1 = Ekσ3ψ1, where the diagonal σ3 = diag(1, 1,−1,−1) is a

4 × 4 matrix. For another group of the eigenstates with the property ψ1 = −ψ2, the eigenvalue

equation reduces to (H1k −H2k)ψ1 = Ekσ3ψ1. The effective 4× 4 Hamiltonian H1k +H2k coin-

cides with Eqs. (6) and (7) in the Supplemental Material of Ref. [38]. Each of the reduced 4 × 4

Hamiltonians, H1k ±H2k, describes two branches of the spin waves.
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Four branches of magnon spectrum along kz direction with kx=ky=0

Figure 3.2: Four branches of the magnon spectrum obtained by solving the equations (H1k ±
H2k)ψ1 = Ekσ3ψ1 with J∥ = −4.41 meV and J⊥ = 0.57 meV. The eigenvalues are plotted along
the kz direction with kx = ky = 0.
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We plot in Fig. 3.2 the whole magnon spectrum consisting of four branches. The blue and

orange curves are derived from (H1k+H2k)ψ1 = Ekσ3ψ1, while green and red ones correspond to

(H1k −H2k)ψ1 = Ekσ3ψ1. Actually, these two pairs of branches are connected through π shifting

along the kz direction. This reveals the additional symmetry ψ1 = ±ψ2 possessed by a spin system

with the layered structure of CoTiO3.

One of the four branches, the blue curve, touches zero at k = 0. This acousticlike branch

corresponds to the Goldstone mode. It is a direct consequence of the continuous symmetry with

respect to rotation of the Néel vector l in the xy plane. The other branch (the green curve) after

shifting kz by π reproduces the Goldstone mode.

3.2.2 The eigenstates and eigenfrequencies

In principle, the magnon spectrum as well as its eigenstates can be found by solving the eigen-

value equations (H1k ± H2k)ψ1 = E
(±)
k σ3ψ1. However, it is very intractable, and therefore we

present an approximation here which allows us to describe the eigenstates and eigenfrequencies

in a simplified but still comprehensive way. As an example, we demonstrate how it works for

H+ ≡ H1k +H2k. Under the basis of the subspace {ak, a†−k, bk, b
†
−k}T , H+ becomes

H+ =



Ak Ck Bk G+
k

Ck Ak G+
k Bk

B∗
k (G+

k )
∗ Ak Ck

(G+
k )

∗ B∗
k Ck Ak


(3.30)

withG+
k ≡ Bk+Fk. Since theA andB sublattices are equivalent, we are looking for the eigenstate

in the form

ψ̃1 = a



eiχa

1

eiχb1

eiχb2


+

1

8a



eiχa

−1

eiχb1

−eiχb2


. (3.31)
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Here, a, χa, χb1 , and χb2 are functions of the wave-vector k that need to be evaluated. The mag-

nitudes of the ψ̃-components are all determined by the parameter a, and are equal to a± 1
8a

. Note

that ψ̃1 satisfies the standard normalization condition ψ̃†
1σ̃3ψ̃1 = 1, where σ̃3 = diag(1,−1, 1,−1).

Eq. (3.31) states that the dynamics of spins on the B sublattice is the same as the one on the A

sublattice, except for the phase difference.

Expanding χa, χb1 , and χb2 around 0 (see Appendix A.2), we get the approximate solution of

the equation H+ψ̃1 = Eσ̃3ψ̃1:

E ≈
√
[Ak +Re(Bk) + Ck +Re(G+

k )][Ak +Re(Bk)− Ck − Re(G+
k )],

a ≈ 1

2
√
2

(Ak +Re(Bk)− Ck − Re(G+
k )

Ak +Re(Bk) + Ck +Re(G+
k )

) 1
4
, (3.32)

and

χa ≈−
{
16a2[Im(G+

k ) Re(Bk)− Im(Bk)ReG
+
k ]
}
×
{
Re(Bk)[(64a

4 − 1)Re(Bk)

+ (64a4 + 1)Re(G+
k )] + Ck[(64a

4 + 1)Re(Bk) + (64a4 − 1)Re(G+
k )]
}−1

,

χb1 ≈−
{
Re(Bk)[(64a

4 − 1) Im(Bk) + (64a4 + 1) Im(G+
k )] + Ck[(64a

4 + 1) Im(Bk)

+ (64a4 − 1) Im(G+
k )]
}
×
{
Re(Bk)[(64a

4 − 1)Re(Bk) + (64a4 + 1)Re(G+
k )]

+ Ck[(64a
4 + 1)Re(Bk) + (64a4 − 1)Re(G+

k )]
}−1

,

χb2 =χa + χb1 (3.33)

where Re(· · · ) and Im(· · · ) denote the real and imaginary part of “· · · ”, respectively. The solu-

tion presented by Eq. (3.33) indicates the smallness of the phases, which is consistent with the

expansion in phases χa, χb1 , and χb2 performed after Eq. (3.31).

As for the higher energy state, we use the same ansatz and repeat the above procedures, but

expand χa and χb2 around π. Eventually we get the results similar to Eqs. (3.32) and (3.33) but

with the following changes: (i) Bk → −Bk; (ii) Ck → −Ck; and finally (iii) phase π has to be

added to χa and χb2 .
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(a) Spectrum of the acousticlike branch

(d) Spectrum of the opticlike branch

(b) Component phases of the acousticlike 
magnon state

(e) Component phases of the opticlike 
magnon state

(f) Amplitudes on each component of the 
opticlike magnon state

(c) Amplitudes on each component of the 
acousticlike magnon state
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Figure 3.3: The acousticlike (first row) and opticlike (second row) branches of the magnon spec-
trum found by the Holstein-Primakoff method. Plot (a) and (d) give the spectrum; (b) and (e) are
phases, while (c) and (f) are magnitudes of each of the components. Here, we plotted the depen-
dence on kz with kx = ky = 0. The solid curves represent the exact solutions for the eigenvalue
equations(H1k +H2k)ψ1 = Ekσ3ψ1, while the dashed curves stand for the approximated solutions
Eqs. (3.32) and (3.33).
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In Fig. 3.3, we compare the results obtained for the acousticlike and opticlike branches of the

magnon spectrum by solving the eigenvalue equation exactly, and using the approximate equations

(3.32) and (3.33). In all six plots, the dashed curves (approximate) almost match the solid ones

(exact). Hence, the approximate Eqs. (3.32) and (3.33) work perfectly.

3.3 Results and Discussion

Let us compare the results of the Holstein-Primakoff approach with those obtained using the

magnetization and Néel vector densities. To give a general picture, in Fig. 3.4, we plot four

branches of the magnon spectrum given by two methods. As it is shown, each pair of two branches

obtained through two different approaches is approximately matching with each other at small kz.

Acousticlike

branch

Opticlike

branch 2
Shifted acousticlike

(fake opticlike) branch

Opticlike

branch 1
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Four branches of magnon spectrum along kz direction with kx=ky=0

Figure 3.4: Four branches of the magnon spectrum obtained by the Holstein-Primakoff approach
(solid curves) and macroscopic description (dashed curves). The eigenvalues are plotted along the
kz direction with kx = ky = 0.
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3.3.1 Comparison of different methods

We now compare, in detail, the results of our description in terms of the macroscopic variables

with those obtained from the exact solution of the 8 × 8 model. In Figs. 3.5, we plot the dis-

persion of the acousticlike and opticlike modes along the kz and kx directions. To quantitatively

compare the results obtained by these two very different approaches, we estimate the spin wave

velocities of the acousticlike branch along the x and z directions; see Figs. 3.5(a) and 3.5(e). We

find ∂ωa(k)/∂kz|k=0 ≈ 3.81 for the 8 × 8 model and ∂ωa(k)/∂kz|k=0 ≈ 3.88 for our proposed

macroscopic description. The mismatch is less than 2%. Along x direction, we get an even better

agreement with ∂ωa(k)/∂kx|k=0 estimated to be 5.19 for both models. Consequently, we conclude

that our macroscopic description of the acousticlike magnon branch agrees quantitatively well with

the exact spectrum under the long wavelength limit, i.e., k ≲ 0.5.
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direction

kz (b) Shifted acousticlike branch 
along  directionkz

(c) Opticlike branch 1 along  
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direction
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Figure 3.5: The fragments of the spectrum of the acousticlike, shifted and two opticlike magnon
modes. The first raw presents the spectrum along the kz direction, while the second row gives
the kx direction. (a) and (e) are acousticlike branch; (b) and (f) are the fragments of the shifted
acousticlike branch, while (c), (g), and (d), (h) are related to the opticlike branches 1, and 2,
respectively. In each subfigure, the solid curve represents the exact solutions for the eigenvalue
equations (H1k ±H2k)ψ1 = Ekσ3ψ1, while the dashed curve is described by the semimacroscopic
equations (3.14) and (3.23).

For completeness, we also compare the results obtained for other three branches of the spin
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waves (see Fig. 3.4). For the shifted acousticlike and two opticlike branches, using the Holstein-

Primakoff method, we obtain for the kz direction ∂2ωsh(k)/∂
2kz|k=0 ≈ −0.41, ∂2ωo1(k)/∂

2kz|k=0

≈ 0.22, and ∂2ωo2(k)/∂
2kz|k=0 ≈ −0.24 (see Figs. 3.5(b), 3.5(c), and 3.5(d)). At the same time,

our semimacroscopic approach yields, ∂2ωsh(k)/∂
2kz|k=0 ≈ −0.33, ∂2ωo1(k)/∂

2kz|k=0 ≈ 0.30,

and ∂2ωo2(k)/∂
2kz|k=0 ≈ −0.17. On the contrary, for the kx direction (cf. Figs. 3.5(f), 3.5(g), and

3.5(h)), both methods give the same estimates ∂2ωsh(k)/∂
2kx|k=0 ≈ 1.71, ∂2ωo1(k)/∂

2kx|k=0 ≈

−1.02, and ∂2ωo2(k)/∂
2kx|k=0 ≈ −1.44. Although there is a relatively large mismatch between

the two approaches for the kz direction, the dispersion within (kx, ky) momentum plane is well

captured by our semimacroscopical scheme. We ascribe the discrepancy in the magnon spectrum

along the kz direction to the neglecting of ±∂/∂z-terms in Eqs. (A.4)-(A.9) when deriving the

macroscopic equations of motion, see Appendix A.1 for the details.

3.3.2 Dynamics of four branches in terms of the macroscopic variables

(a) Dynamics of  pair around (mθ, ϕ)
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Figure 3.6: Dynamics of the four spin wave excitations in terms of the macroscopic pairs: (a)
(mθ, ϕ); (b) (mϕ, θ); (c) (δmy, δlz), and (d) (δmz, δly) at k ≈ 0. Spin vectors, magnetization
densities, and Néel vectors on the A and B sublattices are indicated by red and blue colors, re-
spectively. In the lower part of each subfigure, (1), (2), (3), and (4) illustrate the magnitudes and
directions of mA/B and lA/B at t = 0, T/4, T/2, and 3T/4, respectively; T is the period of the
spin wave.
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In this section, to have a better understanding of the four spin-wave branches shown in Fig.

3.4, we give the schematic pictures of their spin dynamics. We start with the acousticlike magnon

branch, i.e., the (mθ, ϕ) pair. As it is shown in Fig. 3.6(a), spins on A and B sublattices are

fully synchronized. The magnetization densities mA/B alternate along the z direction, while the

Néel vectors lA/B rotate back and forth around the equilibrium position within the xy plane. The

magnon frequency of this mode goes to zero as k → 0, because of the rotational symmetry. Gen-

erally, this mode manifests the possibility of the spin superfluidity in a system with XY symmetry,

see e.g., Refs. [28] and [30]. In contrast to the acousticlike branch, the other branch described by

the (mϕ, θ) pair is looking like an opticlike branch due to its finite energy at k = 0 but, in fact, is

the shifted version of the acousticlike branch. This mode has the same dynamics on both A and

B sublattices. It exhibits alternating mA/B along the y direction and rotating lA/B within the xz

plane. Because of absence of the rotational symmetry around the y direction, this mode gets a

finite energy at k = 0. Note, however, that at kz = π, the phase difference between two neigh-

boring layers will interchange the picture of spin dynamics presented in Figs. 3.6(a) and 3.6(b).

At kz = π, the discussed branch (looking like the optic one) touches zero, while the acousticlike

magnon acquires the finite frequency. This is the reason why we named this branch as the “shifted

acousticlike"; see Fig. 3.2.

The dynamics of the other two (true) opticlike branches with finite energies along the whole

spectrum are depicted in Figs. 3.6(c) and 3.6(d). The opticlike branch 1 is similar to the shifted

acousticlike branch with mA/B alternating along the y direction and lA/B rotating within the xz

plane. The decisive point here is that spins on A and B sublattices change oppositely. Finally, the

opticlike branch 2 is a gapped analogue of acousticlike branch: it has out-of-layer magnetization

densities and in-layer Néel vectors. However, spins on sites A and B evolve oppositely which

makes this mode to be opticlike.

In the next section, we evaluated the parameters of the Hamiltonian (3.1) using results obtained

here for the four spin-wave modes.
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3.4 The XY Model Versus the XXZ Model

In this section, we justify the Hamiltonian (3.1), i.e., theXY -type intralayer exchange coupling

of this model, by exploiting our macroscopic description and comparing it with the experimental

data extracted from Ref. [38]. To do it, we first consider a general spin Hamiltonian of the type

XXZ, i.e.,

H =
∑
i,δ1

J∥(S
x
i S

x
i+δ1

+ Sy
i S

y
i+δ1

+ ζSz
i S

z
i+δ1

) +
∑
i,δ2

J⊥(S
x
i S̄

x
i+δ2

+ Sy
i S̄

y
i+δ2

+ ηSz
i S̄

z
i+δ2

)

+ {Sx/y/z ↔ S̄x/y/z} (3.34)

where ζ and η characterize the anisotropy in the intra- and inter-layer couplings, respectively. Note

that, ζ = 0 and η = 1 leads to the XY model we used in this chapter. By following the same steps

of deriving the equations of motion for the macroscopic variables as in Appendix A.1, we get

ṁθ ≈ (4S̃2)

(
−3

8
J∥∇2

− +
9

8
J⊥∇2

+

)
ϕ,

ϕ̇ ≈
(
−3(1− ζ)

2
J∥ +

9(1 + η)

2
J⊥

)
mθ; (3.35)

and

ṁϕ ≈ (4S̃2)

(
−3(1− ζ)

2
J∥ +

9(1− η)

2
J⊥ +

3ζ

8
J∥∇2

− − 9η

8
J⊥∇2

+

)
θ,

θ̇ ≈
(
−9J⊥ − 3

8
J∥∇2

− − 9

8
J⊥∇2

+

)
mϕ. (3.36)

for the two lowest spin-wave branches. As for the pairs (δmy, δlz) and (δmz, δly) which describe

other two opticlike branches, we find:

dδmy

dt
≈(2S̃)

(
−3(1 + ζ)

2
J∥ +

3(3− η)

2
J⊥ − 3ζ

8
J∥∇2

− − 3η

8
J⊥∇2

+

)
δlz,

dδlz

dt
≈(2S̃)

(
3J∥ − 6J⊥ +

3

8
J∥∇2

− − 3

8
J⊥∇2

+

)
δmy; (3.37)
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and

dδmz

dt
≈(2S̃)

(
3J∥ − 3J⊥ +

3

8
J∥∇2

− +
3

8
J⊥∇2

+

)
δly,

dδly

dt
≈(2S̃)

(
−3(1 + ζ)

2
J∥ +

3(3 + η)

2
J⊥ − 3ζ

8
J∥∇2

− +
3η

8
J⊥∇2

+

)
δmz, (3.38)

As the result, using Eqs. (3.35)-(3.38), we obtain

vax ≡ ∂ωa

∂|kx|

∣∣∣
k→0

=

(
3S̃

2

)√(
−(1− ζ)J∥ + 3(1 + η)J⊥

)
(−J∥ + 3J⊥),

vaz ≡
∂ωa

∂|kz|

∣∣∣
k→0

=

(
3
√
6S̃

2

)√(
−(1− ζ)J∥ + 3(1 + η)J⊥

)
J⊥,

ωsh(k → 0) = (3
√
6S̃)
√(

−(1− ζ)J∥ + 3(1− η)J⊥
)
J⊥,

ωo1(k → 0) = (3
√
2S̃)
√(

−(1 + ζ)J∥ + (3− η)J⊥
)
(−J∥ + 2J⊥),

ωo2(k → 0) = (3
√
2S̃)
√(

−(1 + ζ)J∥ + (3 + η)J⊥
)
(−J∥ + J⊥). (3.39)

We take the effective spin S̃ = 1/2 in Eq. (3.39) and adjust the parameters J∥, J⊥, ζ , and η to

fit the measurement in Ref. [38]. From Figs. 3(a) and 3(e) in Ref. [38], we estimate [ωo1(k →

0) + ωo2(k → 0)]/2 ≈ 11.9 meV, vax ≈ 5.1 meV, ωsh(k → 0) ≈ 5.8 meV, and vaz ≈ 3.9

meV (here, the units of spin-wave velocity are indicated in meV, because we use for momenta

dimensionless units). By fitting these data using Eqs. (3.39), an optimal set of the extracted

parameters is found to be J∥ ≈ −4.27 meV, J⊥ ≈ 0.59 meV, ζ ≈ 0.02, and η ≈ 0.97, which is

very close to the best fitting parameters suggested in Ref. [38]. This confirms the legitimacy of the

XY Hamiltonian of the described system.

3.5 Spin Dynamics in the Presence of Lattice Deformations

The successful description of the acousticlike magnon excitations by the two different methods

encourages us to extend the scheme developed in Section 3.1 to a system with a deformation of

the lattice. Lattice deformations change the equations of motion Eqs. (3.11) and (3.12) obtained

in Section 3.1. The point is that deformations change distances between spins that in turn modify
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exchange coupling constants J∥ and J⊥ in Eq. (3.2). The changes of J∥ and J⊥ along δ1 and δ2

directions, denoted accordingly as δJδ1
∥ and δJδ2

⊥ , are connected with the deformation as follolws:

δJδ1
∥ ∼ (1/a)(∂J∥/∂a)δ1 · (δ1 ·∇u) and δJδ2

⊥ ∼ (1/c)(∂J⊥/∂c)δ2 · (δ2 ·∇u). Here, a and c are

the dimensionless intra- and inter-layer distances, and u is the lattice displacement. As a result,

for the in-plane exchange couplings describing an action on a spin located on the A sublattice by

those on the B sublattice, i.e., B → A, we have

δJ
δ1,1
∥ ∼ g1ϵxx,

δJ
δ1,2
∥ ∼ g1(

1

4
ϵxx +

3

4
ϵyy −

√
3

2
ϵxy),

δJ
δ1,3
∥ ∼ g1(

1

4
ϵxx +

3

4
ϵyy +

√
3

2
ϵxy). (3.40)

Here, g1 ≡ (1/a)(∂J∥/∂a), and the strain tensor ϵαβ ≡ (∂αu
β + ∂βu

α)/2 with α, β = x, y, z. For

the interlayer exchange couplings, this idea works similarly, and finally, with the use of the standard

parametrization, we find that in the presence of a lattice deformation the linearized equations for

mθ, mϕ, θ, and ϕ become (c.f. Eqs. (20) and (21), the comprehensive derivation is shown in

Appendix A.3)

ṁθ ≈ (4S̃2)(−3

8
J∥∇2

−ϕ+
9

8
J⊥∇2

+ϕ),

ϕ̇ ≈ (−3

2
J̃∥ + 9J̃⊥)mθ; (3.41)

and

ṁϕ ≈ (4S̃2)(−3

2
J̃∥θ −

9

8
J⊥∇2

+θ),

θ̇ ≈ (−9J̃⊥ − 3

8
J∥∇2

− − 9

8
J⊥∇2

+)mϕ. (3.42)
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Here, exchange coefficients are modified by the strain tensor

J̃∥ ≡ J∥ +
1

2
g1(ϵxx + ϵyy) (3.43)

and

J̃⊥ ≡ J⊥ +
1

2
g2(ϵxx + ϵyy + 2ϵzz) (3.44)

with g2 ≡ (1/c)(∂J⊥/∂c) to be the out-of-plane magnetoelastic coefficient. The equations (3.41)

and (3.42) are one of the main results of this chapter. In Chapter 4 we will use these equations for

description of scattering of the AFM magnons in the backward direction.

3.6 Additional Remarks

In this chapter, we studied the dynamics of spins in a layered van der Waals crystal CoTiO3.

This system is a 3D quantum XY AFM, with the direction of magnetization alternating between

the neighboring layers. As is well known, the XY AFMs are spin analogues of the superfluid

Helium and superconductors [29, 30]. The angle of orientation of the Néel vector is equivalent

to the superfluid phase. Correspondingly, the long-wavelength magnons are the Goldstone excita-

tions in an XY AFM. We have studied the spectrum of magnons using corresponding pairs of the

macroscopic quantities, which are the magnetization and the Néel vector densities of various kind.

We demonstrate here that for the acousticlike excitations (i.e., for the Goldstone mode), the accu-

racy of the scheme is almost perfect. Besides, we have confirmed the XY type of the intralayer

spin exchange in this material by comparing our macroscopic description of the all four spin-wave

modes with the experimental data.

In addition to the spectrum of magnons, we considered the case when the crystal lattice of the

magnetic substance is deformed by an external strain. One may expect that the spin flow could

be manipulated by applying a spatially modulated strain. The description of the quantum AFM

developed in this chapter provides a simple ready-to-use scheme for studying the spin superfluidity
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in such magnetic systems, as well as the possibility to control the spin dynamics through the lattice

deformation (see Chapter 4 for the details).

We would like to emphasize that at the derivation of the equations of motion for the spin-wave

excitations, i.e., Eqs. (3.5)-(3.10), the route used in this chapter is somewhat different from the one

in the conventional approach (cf. Refs. [26] and [27]). Conventionally, one starts from the spin

Hamiltonian, then constructs the path integral using the spin coherent states and, finally, obtains

the Lagrangian density which can be recognized as the nonlinear sigma model. Eventually, the

equations of motion are found by making the variation of the action to be zero. In the present

chapter, the order of operations was changed. We started with the derivation of the equations of

motion for the quantum spin operators directly from the Hamiltonian. Then, these equations were

treated in terms of the continuous variables with a nonlinear constraint. By performing this step,

we effectively executed the transition to the language of the nonlinear sigma model.
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4. CONTROL OF SPIN WAVES BY SPATIALLY MODULATED STRAIN IN

ANTIFERROMAGNET*

In this chapter, we discuss the possibility of using a spatially modulated strain of the lattice for

the control of spin waves (magnons) propagating inside bulk AFMs through the magnetoelasticity.

Actually, interaction between spin waves and mechanical excitations via magnetoelasticity has

been studied for a long time, starting from the works by Kittel [42]. Both, the generation of the

hypersonic waves by excitation of the spin system in FMs [43] and, conversely, the generation

of spin waves by pumping microwave phonons [44, 45] were discussed. Different aspects of the

magnetoacoustic resonance and parametric excitation of magnetostatic and elastic modes have

been considered [46, 47, 48, 49].

In recent years, parametric pumping of spin waves by acoustic waves has been experimentally

realized [50] as well as elastically driven FM resonance [51, 52]. An enormous increase in the

amplitude of the magnetization precession in a FM layer embedded into a phononic resonator was

observed in Ref. [53] when the frequencies of magnetization precession and phonons were equal.

Next, traveling acoustic waves on the surface of a piezoelectric crystal resonantly excite traveling

surface spin waves in an adjacent thin-film FM. These measurements provide a spectroscopy tech-

nique for the surface spin waves [54]. Recently, a nonreciprocal surface acoustic wave propagation

due to the magneto-rotation coupling was also demonstrated experimentally [55].

Here, unlike most of the works cited above, we exploit not the dynamics of phonons but rather

the spatial modulation of the lattice. The deformation of the lattice modulates the spin exchange

between magnetic atoms, which in turn acts as a scattering potential (i.e., a magnonic crystal)

for the spin waves. The intensity of the spin wave is assumed to be weak, so that magnons are

described by linearized equations, and no interconversion between phonons and magnons [56] will

be considered. The main idea looks as follows: The spin wave is a degenerate excitation, i.e.,

*Reprinted with permission from “Control of spin waves by spatially modulated strain” by Ankang Liu and
Alexander M. Finkel’stein, 2022. Phys. Rev. B, 105, L020404, Copyright 2022 by American Physical Society.
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energies of the symmetric and antisymmetric eigenmodes with wave vectors ±k are degenerate.

A spatial modulation caused by either a static strain [57] or a standing acoustic wave [50] with

q = 2k lifts this degeneracy. In the presence of a static 2k modulation, the picture reminds one of

a particle in a symmetric double-well potential, see e.g., Fig. 4.1. Tunneling, as is well known,

Figure 4.1: Tunneling in a symmetric double-well potential as an analogue of the to-and-fro motion
of the spin wave under the strain modulation. The particle which was initially located on the left
starts to tunnel to the right one, and so on. The frequency of these oscillations is given by the energy
split ∆E. In the case of the spatially modulated strain, the forward- and backward-propagating
spin waves correspond to the particle alternating between the left and right potential wells. The
spin-wave band gap opened by the strain modulation plays the role similar to the energy splitting
∆E in the case of tunneling. Asymmetry of the potential (not shown) is equivalent to the energy
mismatch of the spin wave states when δk ̸= 0.

lifts the degeneracy of the energy levels in the double well. If originally a particle is located in one

of the wells, as a result of tunneling it starts to oscillate between the two wells with a frequency

proportional to the level splitting. Here, the strain leads to a similar effect. Suppose, initially, there

is a free right-moving spin wave in the magnetic system and, then, at a certain moment, a strain

modulation is switched on. (For example, a spin-wave packet runs inside the magnet when a strain

is switched on.) As we will show in this chapter, the originally right-moving spin wave being

subjected to the deformation, after some time, will alter its motion to the left-moving propagation,

and so on. Thus, a direct propagation of the spin wave changes into a to-and-fro motion.
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4.1 Equations of Motion under Static Strain Modulation

We are interested in a layered AFM with the spin wave propagating in the direction across the

layers. For the purpose of simplicity, let us now consider a one-dimensional problem by assuming

that there is a static deformation with only one nonzero strain tensor component ϵzz = ϵ0 cos(qz)

(a possible realization of the static strain modulation was proposed in Ref. [57]). Here, ϵ0 is the

magnitude of the strain tensor, and the wave vector q describes its spatial modulation along the z

direction. We first explain the idea behind the calculation. The deformation induced by the strain

modulates the spin exchange between magnetic atoms, which in turn acts as a scattering potential

for spin waves. This simple geometry allows to illustrate the main idea. Note, however, that the

method of controlling the propagation of the spin waves proposed in this chapter is general and

applicable to any magnetic system. To be concrete, let us study the dynamics of the low-energy

acousticlike spin waves in the van der Waals layered magnetic systems CoTiO3 in the presence of

the strain modulation ϵzz = ϵ0 cos(qz). The equations of motion for the pair (mθ, ϕ) now take the

form (cf. Eqs. (3.41) and (3.44))

ṁθ = J
d2

dz2
ϕ,

ϕ̇ = [G1 +G2 cos(qz)]mθ, (4.1)

where G1 = −3J∥/2 + 9J⊥. In the discussed geometry, with the strain applied along the direction

perpendicular to the layers, there is a very clear separation of the roles of J∥ and J⊥. Namely,

in the above pair of equations, J = 9S̃2J⊥ and G2 = 9g2ϵ0. Here, the magnetoelastic coefficient

g2 ≡ (1/c)(∂J⊥/∂c) describes the sensitivity of J⊥ to a modulation of the dimensionless interlayer

distance c.

We proceed with Eqs. (4.1) by taking another time derivative in each of them:

m̈θ = (Dm +D(2)
m )mθ,

ϕ̈ = (Dϕ +D
(2)
ϕ )ϕ. (4.2)
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Here, we defined the operatorsDm/ϕ ≡ JG1d
2/dz2,D(2)

m ≡ JG2 cos(qz)d
2/dz2−2JG2q sin(qz)×

d/dz − JG2q
2 cos(qz), and D(2)

ϕ ≡ JG2 cos(qz)d
2/dz2. Note that mθ and ϕ are not decoupled,

because they are connected through the relation ṁθ = Jd2ϕ/dz2.

4.2 Solutions of Spin Wave under Static Strain Modulation

To find eigenstate solutions for ϕ in the presence of the static strain modulation, we assume

that ϕ has a form ϕ(z, t) = e±iωtφ(z), substitute this ansatz into the second line of Eq. (4.2), and

finally, obtain a time-independent equation for φ:

−ω2φ = (Dϕ +D
(2)
ϕ )φ. (4.3)

To solve this eigenvalue problem, we look for the solution

φ(z) =
∑
k≥0

[Sk sin(kz) + Ck cos(kz)]. (4.4)

In order to find the expansion coefficients Sk and Ck, we calculate the matrix elements

[Dϕ]k′,k(χ) ≡
1

L

∫
sin(k′z + χ)Dϕ sin(kz + χ)dz,

[D
(2)
ϕ ]k′,k(χ) ≡

1

L

∫
sin(k′z + χ)D

(2)
ϕ sin(kz + χ)dz. (4.5)

Here, χ is either 0 or π/2 (introduced for compactness), and L is the size of the system. The reason

to consider only these matrix elements is that
∫
sin(k′z)Dϕ cos(kz)dz =

∫
cos(k′z)Dϕ sin(kz)dz =

0 and similarly for D(2)
ϕ , i.e., there is no mixture between the basis functions sin(kz) and cos(kz).

After straightforward calculations, we find (recall that both k and k′ ≥ 0):

[Dϕ]k′,k(χ) =− 1

2
JG1k

2(δk′,k − cos(2χ)δk′,−k) = −1

2
JG1k

2δk′,k,

[D
(2)
ϕ ]k′,k(χ) =− 1

4
JG2k

2[δk′,k−q + δk′,k+q − cos(2χ)(δk′,−k−q + δk′,−k+q)]
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=− 1

4
JG2k

2 ×


δk′,k+q − cos(2χ)δk′,−k+q, 0 ≤ k < q,

δk′,0 + δk′,2q − cos(2χ)δk′,0, k = q,

δk′,k−q + δk′,k+q, k > q.

(4.6)

Here, δk′,k is the Kronecker delta. As a result, we obtain a set of equations for the coefficients Sk

and Ck:

ω2

2
Sk′ = −

∑
k

{
[Dϕ]k′,k(χ = 0) + [D

(2)
ϕ ]k′,k(χ = 0)

}
Sk,

ω2

2
Ck′ = −

∑
k

{
[Dϕ]k′,k(χ =

π

2
) + [D

(2)
ϕ ]k′,k(χ =

π

2
)
}
Ck. (4.7)

As a simple check, in the absence of the perturbation, D(2)
ϕ = 0, i.e., without the deformation in

the system, we have

ω2



Sk1

Sk2

...

Ck1

Ck2
...


= JG1



k21

k22 0
. . .

k21

0 k22
. . .





Sk1

Sk2

...

Ck1

Ck2
...


. (4.8)

We find from Eq. (4.8), ω2
k = JG1k

2. The corresponding eigenstates are either Sk = 1 or Ck = 1,

i.e., the solutions are φ = sin(kz) or φ = cos(kz). This is nothing but the solutions for free spin

waves.

Next, we study the solutions of φ in the presence of the lattice modulation when the external

perturbation D(2)
ϕ ̸= 0. Under the condition 0 ≤ k < q and k ̸= q/2, instead of a chain of coupled

equations, we get a finite system of equations, and we have two systems of approximated equations
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for finding Sk and Ck:

ω2


Sk

Sk+q

S−k+q

 =M−


Sk

Sk+q

S−k+q

 , (4.9)

and

ω2


Ck

Ck+q

C−k+q

 =M+


Ck

Ck+q

C−k+q

 , (4.10)

where

M± = JG1


k2 1

2
(G2

G1
)(k + q)2 ±1

2
(G2

G1
)(−k + q)2

1
2
(G2

G1
)k2 (k + q)2 0

±1
2
(G2

G1
)k2 0 (−k + q)2

 . (4.11)

Here, we neglected the terms which couple the coefficients of interest with higher harmonics:

S±k+q ↔ S±k+2q, S±k+2q ↔ S±k+3q, · · · , and C±k+q ↔ C±k+2q, C±k+2q ↔ C±k+3q, · · · . The

arguments to neglect the higher order harmonics are comprehensively discussed in Appendix B.1.

A special case is when k = q/2, which we will define it as the “spatial resonance". In this case,

after further neglecting the higher harmonics such as S3q/2 and C3q/2, one can treat the z-coordinate

dependencies in the spirit of the parametric resonance theory (however, the resonance discussed

here is for the wave vectors rather than frequencies). As a result, Eqs. (4.9) and (4.10) are reduced

to a pair of decoupled equations:

ω2S q
2
= JG1[1−

1

2
(
G2

G1

)](
q

2
)2S q

2
(4.12)
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and

ω2C q
2
= JG1[1 +

1

2
(
G2

G1

)](
q

2
)2C q

2
. (4.13)

The above equations lead to the split frequencies ω2
S,q/2 = JG1[1− (G2/2G1)](q/2)

2 and ω2
C,q/2 =

JG1[1 + (G2/2G1)](q/2)
2 for the modes sin(qz/2) and cos(qz/2), respectively.

Now let us focus on a more general case in which the wave vector k deviates from the exact

resonance condition, but remains not too far from it. Namely, k = q/2 + δk with |δk| ≪ q/2.

In this situation, the components Sk+q and Ck+q are excessive, and neglecting them we get the

equations with the components q/2 + δk and q/2− δk appeared to be mixed:

ω2

S q
2
+δk

S q
2
−δk

 = JG1

 ( q
2
+ δk)2 −1

2
(G2

G1
)( q

2
− δk)2

−1
2
(G2

G1
)( q

2
+ δk)2 ( q

2
− δk)2


S q

2
+δk

S q
2
−δk

 , (4.14)

and

ω2

C q
2
+δk

C q
2
−δk

 = JG1

 ( q
2
+ δk)2 1

2
(G2

G1
)( q

2
− δk)2

1
2
(G2

G1
)( q

2
+ δk)2 ( q

2
− δk)2


C q

2
+δk

C q
2
−δk

 . (4.15)

Eqs. (4.14) and (4.15) lead to the eigenvalues

ω2
±(δk) =

1

2

{
JG1[(

q

2
+ δk)2 + (

q

2
− δk)2]

±
√
J2G2

1[(
q

2
+ δk)2 − (

q

2
− δk)2]2 + J2G2

2(
q

2
+ δk)2(

q

2
− δk)2

}
. (4.16)

The corresponding eigenvectors are uS± = {1, A∓(δk)}T for {Sq/2+δk,Sq/2−δk}T , and uC± = {1,

−A∓(δk)}T for {Cq/2+δk, Cq/2−δk}T , with A∓(δk) are defined to be

A∓(δk) ≡
1

JG2(
q
2
− δk)2

{
JG1[(

q

2
+ δk)2 − (

q

2
− δk)2]

∓
√
J2G2

1[(
q

2
+ δk)2 − (

q

2
− δk)2]2 + J2G2

2(
q

2
+ δk)2(

q

2
− δk)2

}
. (4.17)
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As a result of the described manipulations, one obtains for the solutions of φ

φS
±(z)

∣∣
δk

∝
(
sin[(

q

2
+ δk)z] + A∓(δk) sin[(

q

2
− δk)z]

)
, (4.18)

and

φC
±(z)

∣∣
δk

∝
(
cos[(

q

2
+ δk)z]− A∓(δk) cos[(

q

2
− δk)z]

)
. (4.19)

Note that A∓(δk → 0) = ∓1, so that non-vanishing solutions become φS
− ∼ sin(qz/2) and

φC
+ ∼ cos(qz/2), respectively. The corresponding frequencies ω∓(δk → 0) are given by Eqs.

(4.12) and (4.13). In this way, we recovered the results for k = q/2, i.e., at the exact resonance.

With the ansatz ϕ = e−iωtφ, and keeping in mind the relation ṁθ = Jd2ϕ/dz2, we get eight

pairs of the linearly independent solutions (ϕ, mθ) for k = q/2 + δk.

ϕS
1± =

{
sin[(

q

2
+ δk)z] + A∓ sin[(

q

2
− δk)z]

}
cos(ω±t),

mS
θ1± =− 1

ω±

{
J(
q

2
+ δk)2 sin[(

q

2
+ δk)z] + A∓J(

q

2
− δk)2 sin[(

q

2
− δk)z]

}
sin(ω±t); (4.20)

ϕS
2± =

{
sin[(

q

2
+ δk)z] + A∓ sin[(

q

2
− δk)z]

}
sin(ω±t),

mS
θ2± =

1

ω±

{
J(
q

2
+ δk)2 sin[(

q

2
+ δk)z] + A∓J(

q

2
− δk)2 sin[(

q

2
− δk)z]

}
cos(ω±t); (4.21)

ϕC
1± =

{
cos[(

q

2
+ δk)z]− A∓ cos[(

q

2
− δk)z]

}
cos(ω±t),

mC
θ1± =− 1

ω±

{
J(
q

2
+ δk)2 cos[(

q

2
+ δk)z]− A∓J(

q

2
− δk)2 cos[(

q

2
− δk)z]

}
sin(ω±t); (4.22)

and

ϕC
2± =

{
cos[(

q

2
+ δk)z]− A∓ cos[(

q

2
− δk)z]

}
sin(ω±t),
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mC
θ2± =

1

ω±

{
J(
q

2
+ δk)2 cos[(

q

2
+ δk)z]− A∓J(

q

2
− δk)2 cos[(

q

2
− δk)z]

}
cos(ω±t). (4.23)

4.3 To-and-fro Motion at the Resonance

Let us assume that initially there is a freely propagating spin wave with ϕ(z, t) = ϕ0 sin[(qz/2)−

Ωt+φ1], where in the absence of the strain Ω =
√
JG1(q/2) ≡ vs(q/2). Next, at a moment t = 0,

the strain modulation with the wave vector q switches on. In this sense, φ1 is defined as the phase

differences of the freely propagating spin wave and the strain modulation at the moment of switch-

ing on the deformation. The modulation splits the energy of the initially degenerate states. We

demonstrate now that the difference between ωC,q/2 and ωS,q/2 leads to a to-and-fro motion for the

q/2-spin wave, exactly like in the case of a particle in the double-well with the energy levels split

by tunneling. In the following part of this section we discuss this to-and-fro motion in detail.

By matching the spin-wave solutions under the static strain modulation with the initial condi-

tions ϕ(z, t = 0) = ϕ0 sin[(qz/2) + φ1] and mθ(z, t = 0) = −[J(q/2)2ϕ0/Ω] cos[(qz/2) + φ1],

and after neglecting all the small terms, one obtains

ϕ ≈ϕ0

{
(+1) cos

(
ω↓↑t

2

)
sin[(

q

2
)z − Ωt+ φ1]

+ (−1) sin

(
ω↓↑t

2

)
cos[(

q

2
)z + Ωt− φ1]

}
. (4.24)

The resulting combination describes alternation between the two components propagating in the

opposite directions. It works as follows: When | cos(ω↓↑t/2)| > | sin(ω↓↑t/2)|, see Fig 4.2,

the right-propagating component dominates, and thus the superposition of the right- and left-

propagating waves is moving toward the right, and vice versa. For an observer focused on a

certain point of the wave it will look like to-and-fro motion of the spin wave. (In the case of the

wave packet of spin waves centered around the wave vector k = q/2, the packet will exhibit an

alternating motion in the opposite directions, see Appendix B.2 for the result of simulations.) As

follows from Eq. (4.24) and Fig. 4.2, the propagation direction of the spin wave alters with the

frequency ω↓↑ ≡ ωC,q/2 − ωS,q/2 ≈ (G2/2G1)
√
JG1(q/2) = (G2/2G1)Ω. For illustration, we plot
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Figure 4.2: The time dependence of the coefficients of the right- and left-propagating wave com-
ponents according to Eq. (4.24).

in Fig. 4.3 the “position of the wave" as a function of time at different G2 by tracking the profile

(e.g., the zero crossing) of the propagating wave. We observe a number of zigzag curves describing

the to-and-fro motion with slopes corresponding to the velocity of free spin waves. The propaga-

tion direction alters with a frequency, which is proportional to the magnitude of the deformation

of the lattice induced by the strain. (From Fig. 4.3 we observe that at G1 = 2 the picture works

qualitatively well up to G2 ≲ 0.9 confirming the generality of the explanation.)

4.4 Out-of-resonance Motion of the Spin Wave

When it comes to a slightly-out-of-resonance situation, i.e., k = q/2 + δk with δk ̸= 0 and

|δk| ≪ q/2, the eight solutions given by Eqs. (4.20) - (4.23) allow to look for the general solution

(ϕ, mθ) in the form ϕ = αS
1+ϕ

S
1+ +αS

1−ϕ
S
1− +αS

2+ϕ
S
2+ +αS

2−ϕ
S
2− +αC

1+ϕ
C
1+ +αC

1−ϕ
C
1− +αC

2+ϕ
C
2+ +

αC
2−ϕ

C
2− andmθ = αS

1+m
S
θ1++α

S
1−m

S
θ1−+α

S
2+m

S
θ2++α

S
2−m

S
θ2−+α

C
1+m

C
θ1++α

C
1−m

C
θ1−+α

C
2+m

C
θ2++

αC
2−m

C
θ2−.

The coefficients αS/C
1± and αS/C

2± have to be determined from the initial conditions. Suppose

that initially, in the absence of the external perturbation, i.e., in the region where D(2)
m/ϕ = 0, a

free spin wave with a wave vector q/2 + δk is running in the system. This free spin wave is
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Figure 4.3: Position of spin waves at the spatial resonance condition, k = q/2, as a function of
time for different G2. Wave vector q = 20× (2π/1000); other parameters are J = 1, G1 = 2, and
φ1 = 0.

described by the pair solution ϕ(z, t) = ϕ0 sin[(q/2+ δk)z−ω0t+φ1] and mθ(z, t) = −[J(q/2+

δk)2ϕ0/ω0] cos[(q/2 + δk)z − ω0t + φ1] with ϕ0 to be the amplitude of ϕ. The frequency of

this wave is ω0 ≡ ω0(k = q/2 + δk) =
√
JG1(q/2 + δk), and φ1 is an arbitrary phase. Now,

at t = 0, the perturbation term D
(2)
ϕ ̸= 0 is switched on. We are interested in the effect of the

static modulation of the lattice on the propagation of the spin wave. Taking the general solution in

the presence of the external perturbation, and matching the initial conditions, i.e., ϕ(z, t = 0) =

ϕ0 sin[(q/2 + δk)z + φ1] and mθ(z, t = 0) = −[J(q/2 + δk)2ϕ0/ω0] cos[(q/2 + δk)z + φ1], we

find the coefficients

αS
1± =± A±(δk)

A+(δk)− A−(δk)
ϕ0 cos(φ1),

αS
2± =± A±(δk)

A+(δk)− A−(δk)

ω±

ω0

ϕ0 sin(φ1),

αC
1± =± A±(δk)

A+(δk)− A−(δk)
ϕ0 sin(φ1),

αC
2± =∓ A±(δk)

A+(δk)− A−(δk)

ω±

ω0

ϕ0 cos(φ1). (4.25)
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After some tedious but straightforward calculations, we arrange the solution ϕ in the form

ϕ =ϕ0

{
β1 cos

(
ω↓↑t

2

)
sin[(

q

2
+ δk)z + Ωt+ φ1] + β2 sin

(
ω↓↑t

2

)
cos[(

q

2
+ δk)z + Ωt+ φ1]

+ β3 cos

(
ω↓↑t

2

)
sin[(

q

2
+ δk)z − Ωt+ φ1] + β4 sin

(
ω↓↑t

2

)
cos[(

q

2
+ δk)z − Ωt+ φ1]

+ β5 cos

(
ω↓↑t

2

)
sin[(

q

2
− δk)z + Ωt− φ1] + β6 sin

(
ω↓↑t

2

)
cos[(

q

2
− δk)z + Ωt− φ1]

+ β7 cos

(
ω↓↑t

2

)
sin[(

q

2
− δk)z − Ωt− φ1] + β8 sin

(
ω↓↑t

2

)
cos[(

q

2
− δk)z − Ωt− φ1]

}
(4.26)

with Ω ≡ (ω+ + ω−)/2, ω↓↑ ≡ ω+ − ω−, and the coefficients

β1 =
1

2
[

A+

A+ − A−
(1− ω+

ω0

)− A−

A+ − A−
(1− ω−

ω0

)],

β2 =
1

2
[

A+

A+ − A−
(1− ω+

ω0

) +
A−

A+ − A−
(1− ω−

ω0

)],

β3 =
1

2
[

A+

A+ − A−
(1 +

ω+

ω0

)− A−

A+ − A−
(1 +

ω−

ω0

)],

β4 =− 1

2
[

A+

A+ − A−
(1 +

ω+

ω0

) +
A−

A+ − A−
(1 +

ω−

ω0

)],

β5 =
1

2
[
A+A−

A+ − A−
(1 +

ω+

ω0

)− A+A−

A+ − A−
(1 +

ω−

ω0

)],

β6 =
1

2
[
A+A−

A+ − A−
(1 +

ω+

ω0

) +
A+A−

A+ − A−
(1 +

ω−

ω0

)],

β7 =
1

2
[
A+A−

A+ − A−
(1− ω+

ω0

)− A+A−

A+ − A−
(1− ω−

ω0

)],

β8 =− 1

2
[
A+A−

A+ − A−
(1− ω+

ω0

) +
A+A−

A+ − A−
(1− ω−

ω0

)]. (4.27)

We point out that, unlike in the previous section, all parameters presented here as well as in the

remaining part of this chapter, e.g., Ω and ω↓↑, are defined at a finite δk, rather than at δk = 0.

When δk → 0, one can observe that β1, β8 → 0, |β2|, |β4|, |β5|, |β7| → |G2/8G1| ≪ 1, while

β3 → 1, and β6 → −1. After neglecting all the small terms, i.e., keeping only the β3 and β6 terms,

Eq. (4.26) becomes the approximated solution given by Eq. (4.24) in the previous section.

The approximated ϕ-solution (4.26) contains 8 time-dependent components (which consist of
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two different quasimomenta q/2 ± δk, two opposite propagating directions, and two basis func-

tions). The resulting motions are presented in Fig. 4.4. First of all, one may notice that the

durations of motion in the opposite directions are not equal anymore. Furthermore, there is a criti-
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Figure 4.4: Propagation of spin waves with various δk given in the unit (2π/1000) (see boxes on
the right). The parameters used for this simulation are q = 20 × (2π/1000), and J = 1, G1 = 2,
G2 = 0.3, φ1 = 0. Inset is plotted for the wave at δk = 0.1× (2π/1000) with different phases φ1,
which range from −π to π.

cal value δkc, so that for |δk| > δkc, the to-and-fro motion of the spin wave ceases to exist. For the

discussed choice of the parameters, δkc ≈ 0.38× (2π/1000).

The critical value δkc can be determined by comparing the energy difference of the two spin

waves connected through the external perturbation term G2 cos(qz), with the splitting energy ω↓↑.

At δk = δkc the energy difference 2vsδk meets the splitting energy ω↓↑; see Fig. 4.5 (cf. tunneling

in the slightly asymmetric double-well potential).

Next, in the inset of Fig. 4.4, we study the effect of the phase φ1 in the initial conditions, which

appears to be negligible. This can be explained as follows: As one can notice from Eq. (4.24), the

46



0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.005

0.010

0.015

δk in the unit (2π/1000)

F
re
qu
en
cy

ω↓↑

2vsδk

Figure 4.5: The energy splitting of the free spin waves with k = q/2 ± δk, which are connected
through the perturbation term G2 cos(qz). The orange line is the energy splitting, while the blue
line is ω↓↑.

right- and left-propagating wave components contain φ1 only in the combination ±(Ωt− φ1). By

shifting the time with t0 = φ1/Ω, the phase is transferred to the arguments in the time-dependent

coefficients. As a result, from ω↓↑t/2 they change to ω↓↑(t + t0)/2, and therefore the effect of the

shift leads only to a change in the moment of the turn of the propagating wave; cf. Fig. 4.2. The

same argument works for δk ̸= 0 as well; see Eq. (4.26). Furthermore, because of the smallness of

ω↓↑/2Ω, the effect appears to be negligible. Hence φ1 practically does not affect the propagation

of the spin wave.

This observation is of upmost importance. The absence of sensitivity to φ1 implies that meeting

of a spin-wave packet with the induced strain modulation can be considered instantaneous. In other

words, the deformation effectively switches on for the whole wave packet simultaneously.

4.5 Evolution of the Coefficients β1, β2, β3, β4, β5, β6, β7, and β8 with δk

To have a better understanding of the dynamics of the scattered spin wave, we plot in Fig.

4.6 the dependence of the coefficients β1-β8 on δk. First, we have checked that at δk = 0 only

β3 = 1 and β6 = −1 are the only relevant terms, while all other β-coefficients are negligible.

47



β3

β4

β6

-2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

δk in the unit (2π/1000)

M
ag
ni
tu
de

β1(δk)

β2(δk)

β3(δk)

β4(δk)

β5(δk)

β6(δk)

β7(δk)

β8(δk)

Figure 4.6: δk-dependence of the eight coefficients β1-β8 for q = 20× (2π/1000). Parameters of
the system are J = 1, G1 = 2, G2 = 0.3. The two dashed black lines intersect at δkc = G2q/8G1,
which is the critical value of δk determined through the criterion 2vsδkc = ω↓↑(δk = 0). For
k > δkc, propagation of a spin wave is unidirectional.

Next, with δk ̸= 0, the magnitude of β6 starts to decrease. As a result, the balance between the

right- and left-propagating components shifts in favor of the β3-term, which is not sensitive to δk

(i.e., remains unchanged). In Eq. (4.26), the time intervals when β3-term dominates over β6-term

exceed the other ones when β6 takes over. As a result we observe the imbalance between the wave

propagating in the two opposite directions presented by a number of curves in Fig. 4.4.

At the same time, the magnitude of β4 grows with δk, while other five β-coefficients remain

to be negligible. At δkc ≈ G2q/8G1, the magnitude of β4 becomes comparable with β6. Con-

sequently, according to Eq. (4.26), when δk > δkc, β4-term surpasses β6-term. For a spin wave

this leads to ceasing of motion in the backward direction, and as a result the propagation becomes

unidirectional. This observation is consistent with the criterion 2vsδkc ≈ ω↓↑(δk = 0) for the

vanishing of the to-and-fro motion (see Fig. 4.5 for illustration of this point). Finally, as δk → ∞,

β3 → 1, β4 → −1, and β6 → 0, so the leading terms in Eq. (4.26) become β3- and β4-term.

As a consequence, the sum of these two terms, ϕ ≈ ϕ0{cos(ω↓↑t/2) sin[(q/2 + δk)z − Ωt +

φ1] − sin(ω↓↑t/2) cos[(q/2 + δk)z − Ωt + φ1]} = ϕ0 sin[(q/2 + δk)z − (Ω + ω↓↑/2)t + φ1] →

ϕ0 sin[(q/2+ δk)z−ω0t+φ1], which is the freely propagating spin wave with k = q/2+ δk. This
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result indicates that the spatially modulated strain essentially does not affect the propagation of the

spin waves which are far from the spatial resonance.

Thus, the evolution of the dynamics is fully determined by the interplay of only three terms

with the coefficients β3, β4, and β6, while the other terms are non-essential. In particular, the

change of the alternating motion to a straight propagation of the spin wave becomes very clear.

4.6 Additional Remarks

To demonstrate the generality of the idea, we also considered an oblique incidence when the

initial spin wave has a finite momentum component perpendicular to the direction of strain modu-

lation. We observed that in this case the modulated strain acts like a waveguide; see Appendix B.3

for the details. Namely, the to-and-fro motion develops along the direction of modulation, while

in the direction perpendicular to the strain modulation the wave propagates freely.

For the sake of completeness, we further investigated the dynamics of spin wave (see Appendix

B.4) in the presence of a time-dependent strain modulation ϵzz = ϵ0 cos(qz) cos(ωpht+ φ2). This

can be achieved by a standing acoustic wave u = A sin(qz) cos(ωpht+ φ2)ẑ; see, e.g., Ref. [50].

Under the spatial resonance condition, we have observed that the to-and-fro motion can develop

but is limited to the frequencies ωph ≲ ω↓↑, and its dynamics strongly depend on the phase φ2.

In this chapter, we discussed propagation of spin waves across the layered AFM material in the

presence of a static spatially modulated strain. We have found an alternating to-and-fro motion of

the spin wave when its momentum is about half of the wave vector of the strain modulation, i.e.,

k ≈ q/2 (we call it the spatial resonance condition). The frequency of this to-and-fro motion ω↓↑

is proportional to the amplitude of the deformation.

As a practical application, this phenomenon can be used for controlling the spin-wave packets.

Suppose a packet of spin waves centered around the wave vector q/2 is traveling freely across

the layered magnetic system. Then, at a certain moment, one activates the modulated strain along

the transverse direction with the quasi-momentum q. (Alternatively, perhaps more realistically for

experimental realization, the wave packet runs inside the magnet when the deformation is switched

on.) As follows from the discussion of Fig. 4.4, the Fourier components in the packet, which are
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closest to q/2, perform the to-and-fro motion, while the components that are more distant from

q/2 pass through the sample. In this regard, the spatial modulation can work as a spin-wave filter

and a delay line element.
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5. SPIN-WAVE DYNAMICS CONTROLLED BY TUNABLE AC MAGNONIC CRYSTAL IN

FERROMAGNET*

As an efficient way to control spin waves, magnonic crystals have been studied extensively

[39, 40, 41, 58]. One of the most effective ways to control the spin-wave propagation in a FM, as

it was demonstrated experimentally, is through a current-induced magnonic crystal [39, 40]. A

Figure 5.1: (a) A schematic setup of the current-induced magnonic crystal, which was used for
studying the spin-wave dynamics in experiments [39] and [40]. The meander structure at the
top of the FM creates a spatially modulated magnetic field, which is ∝ I(t) cos(qz)ẑ, along the
z direction. Here, q = 2π/d. In the second row, we sketch the spin-wave spectrum when the
magnonic crystal is switched on (the solid red curves) and when it is not effective (the dashed
blue curves). Subfigure (b) is for the DC magnonic crystal while (c) is for the AC case (the gaps
around the wave vectors q − k and −k are not shown). The band gap ∆ ∝ I0. Note that the band
gap caused by the AC magnonic crystal is the half of the one created by the DC with the same
amplitude I0.

*Reprinted with permission from “Spin-wave dynamics controlled by tunable ac magnonic crystal” by Ankang
Liu and Alexander M. Finkel’stein, 2023. Phys. Rev. B (to be published), Copyright 2023 by American Physical
Society.
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prototypical current-induced magnonic crystal for FM is schematically depicted in Fig. 5.1(a). If

a DC current, I(t) = I0, is supplied through a metallic meander structure with a period d, a spa-

tially modulated static magnetic field generates a magnonic crystal for the spin waves propagating

along the direction of the modulation. The key advantage of the current-induced magnonic crystal

is its ability to be easily switched on and off, which provides a highly controllable manner for

manipulating the propagation of spin waves. For the spin waves with a symmetric spectrum, the

DC magnonic crystal resonantly couples the spin waves with wave vectors around ±q/2, where

q = 2π/d is determined by the period of the spatial modulation. As shown in Fig. 5.1(b), the

coupling of the two degenerate waves opens a band gap ∆, which is ∝ I0 [39, 40]. In practice, for

an incident spin-wave packet, after switching on the DC magnonic crystal, the spin-wave compo-

nents that are under the resonant scattering conditions start to alternate between the forward- and

backward-propagating states; while the out-of-resonance spectral components are unaffected by

the perturbation and propagate unidirectionally.

In this chapter, we consider the same experimental setup as was exploited in Ref. [39] or [40],

but extend the discussion to an AC modulated magnonic crystal, i.e., when the current I(t) =

I0 cos(ωact+ φac). We show that under the limit ωac ≫ ∆ a spin-wave pair with wave vectors k

and k − q can be controlled by a tunable AC magnonic crystal that satisfies the shifted resonance

condition |ωs(k)− ωs(k − q)| = ωac (cf. Fig. 5.1(c)).

5.1 Spin-wave Scattering Induced by Magnonic Crystals

Suppose that, initially (i.e., at t < 0), there was a free spin wave with wave vector k = kẑ

propagating inside the FM sample. We consider a device fabricated from a FM with all spins lo-

cated on a cubic lattice. To present the idea we will restrict ourselves to the spin-wave excitations

originating from the short-range exchange couplings. This is sufficient for illustrating the concept

of the shifted resonance. Note that the scheme proposed in this chapter is general and applicable

to all types of spin waves (e.g., the dipolar spin-wave modes). In the continuum limit, the spin op-

erators become a space- and time-dependent variable S(r, t) (cf. Chapter 2). Before the magnonic

crystal is switched on, the constant external magnetic field B = B0ez aligns all spins along the
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z direction in the ground state. In the case of a spin-wave excitation, S(r, t) deviates from the

equilibrium and acquires small Sx,y(r, t). The linearized equation in Sx,y(r, t) can be solved by a

plane wave S+(r, t) ≡ Sx(r, t)+ iSy(r, t) = (∆S)ei[k·r−ωs(k)t+φs], where ∆S is the amplitude of

the spin wave, φs is its initial phase, and ωs(k) = Ak2 + γB0 gives the spin-wave dispersion. The

second term in the dispersion is due to the constant external magnetic field, A > 0 is determined

by the FM exchange coupling between the nearest neighboring spins, and γ is the gyromagnetic

ratio of the spin.

Next, at t = 0, one switches on the AC modulated magnonic crystal, which for t > 0 is

described by ∆B0 cos(ωact+ φac) cos(qz)ẑ. Here, ∆B0 is the intensity of the magnonic crystal

controlled by I0, the frequency of the AC modulation is given by ωac, while φac is the initial

phase determined at the moment t = 0. In the discussed geometry, the spin-wave propagation is

effectively one-dimensional. To find what will be the dynamics of the spin wave after t = 0, one

needs to solve S+(z, t) from the equation

dS+

dt
=iA∇2S+ − iγ[B0 +∆B0 cos(ωact+ φac) cos(qz)]S

+, (5.1)

by matching the solution for t > 0 with the free spin-wave solution for t < 0. Equation 5.1, which

describes the spin-wave dynamics under the magnonic crystal, is simply obtained by adding the

magnetic filed terms to Eq. (2.5).

The magnonic crystal term in Eq. (5.1) couples the spin-wave state k to the state k − q as

long as |ωs(k) − ωs(k − q)| ≈ ωac. To better understand the spin-wave dynamics under the AC

magnonic crystal, we look for the solution of Eq. (5.1) in the form

S+(z, t) =(∆S)
[
Sp(t) sin (k+z) + Sm(t) sin (k−z) + Cp(t) cos (k+z) + Cm(t) cos (k−z)

]
. (5.2)

Here, we introduced four complex time-dependent coefficients Sp/m(t) and Cp/m(t) in front of the

basis functions sin(k±z) and cos(k±z), respectively. Solution (5.2) describes the mutual scatterings

between a pair of the spin waves with the wave vectors k = k+ = q/2 + δk and k − q = −k− =
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−q/2 + δk. Although the scattering occurs between the spin waves with the oppositely directed

wave vectors, the wave vectors k± are defined here as their absolute values and, therefore, are

positive (we assume that −q/2 < δk < q/2). Note that, in Eq. (5.2), the contributions from the

spin waves with wave vectors ±3q/2 + δk and higher are neglected. This is well justified in the

situations we will be interested in (see the discussion on this point later).

5.2 Spin-wave Solution under DC and AC Magnonic Crystals

Here we find explicitly the spin-wave solution after switching on the current-induced magnonic

crystal. To proceed, we substitute the ansatz (5.2) back into Eq. (5.1), and neglecting the higher

harmonics, we obtain for the four complex coefficients:

Ṡp(t) =− iωs(k+)Sp(t) + i

(
γ∆B0

2

)
cos(ωact+ φac)Sm(t),

Ṡm(t) =− iωs(k−)Sm(t) + i

(
γ∆B0

2

)
cos(ωact+ φac)Sp(t),

Ċp(t) =− iωs(k+)Cp(t)− i

(
γ∆B0

2

)
cos(ωact+ φac)Cm(t),

Ċm(t) =− iωs(k−)Cm(t)− i

(
γ∆B0

2

)
cos(ωact+ φac)Cp(t). (5.3)

By matching Eq. (5.2) with the free spin-wave solution at t = 0, we find the corresponding initial

conditions are

Sp(t = 0) = ieiφs , Sm(t = 0) = 0, Cp(t = 0) = eiφs , Cm(t = 0) = 0. (5.4)

We further proceed with the equations of motion for the pair Sp/m(t) in Eq. (5.3) by rewriting

them as i d
dt
|ψS(t)⟩ = ĤS(t) |ψS(t)⟩ with |ψS(t)⟩ ≡ (Sp(t),Sm(t))

T and

ĤS(t) ≡ Ωσ̂0 +
∆ωs

2
σ̂3 −

(
γ∆B0

2

)
cos(ωact+ φac)σ̂1. (5.5)

Here, σ̂0 ≡ 12×2 is the 2 × 2 identity matrix, while σ̂i with i = 1, 2, 3 are the standard Pauli

matrices. Recall that Ω ≡ [ωs(k+) + ωs(k−)]/2 and ∆ωs ≡ ωs(k+) − ωs(k−). Note that the
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Hamiltonian (5.5) describes a system that is an analogue of the two-level atom perturbed by a

linearly polarized light. The Hamiltonian that governs the time evolution of the pair Cp/m(t) is the

same as Eq. (5.5) but with ∆B0 → −∆B0.

The general forms of the time-dependent solution pairs Sp/m(t) and Cp/m(t) are govern by Flo-

quet theorem [59, 60]. Notice, however, the important difference between the problem discussed

here and the ones associated with the so-called “Floquet engineering” (cf. Refs. [61] and [62]).

The Floquet engineering utilizes a time-dependent-only perturbation to tailor the effective Hamil-

tonian, which in turn modifies the physical properties of a given system, while in the discussed

AC magnonic crystal the external perturbation is periodic both in time and space. Moreover, we

are interested in the dynamics of the excitation (i.e., the spin wave) driven by the external signal,

rather than how the magnetic system acquires a modified state.

5.2.1 DC magnonic crystal

At ωac = 0 and φac = 0, the Hamiltonian (5.5) is time-independent and can be diagonalized by

its eigenstates

∣∣ψ±
S
〉
=

1√
1 + f 2

∓(ξ)

 1

f∓(ξ)

 . (5.6)

Here, f±(ξ) ≡ ξ ±
√
1 + ξ2 and ξ ≡ ∆ωs/γ∆B0. After diagonalization, the Hamiltonian (5.5)

becomes

ĤS = ω+

∣∣ψ+
S
〉 〈
ψ+
S
∣∣+ ω−

∣∣ψ−
S
〉 〈
ψ−
S
∣∣ , (5.7)

where

ω± = Ω±
(
γ∆B0

2

)√
1 + ξ2. (5.8)
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Therefore, the time-dependent solution of ĤS can be written as

|ψS(t)⟩ = e−iω+t
∣∣ψ+

S
〉 〈
ψ+
S
∣∣ψS(t = 0)

〉
+ e−iω−t

∣∣ψ−
S
〉 〈
ψ−
S
∣∣ψS(t = 0)

〉
(5.9)

with |ψS(t = 0)⟩ to be the initial state. After substituting the initial condition |ψS(t = 0)⟩ =

(ieiφs , 0)T , we find

Sp(t)

Sm(t)

 =
ie−i(ω+t−φs)

1 + f 2
−(ξ)

 1

f−(ξ)

+
ie−i(ω−t−φs)

1 + f 2
+(ξ)

 1

f+(ξ)

 . (5.10)

Similarly, for the pair Cp/m(t), one gets

Cp(t)

Cm(t)

 =
e−i(ω+t−φs)

1 + f 2
−(ξ)

 1

−f−(ξ)

+
e−i(ω−t−φs)

1 + f 2
+(ξ)

 1

−f+(ξ)

 . (5.11)

Finally, we plug the solutions (5.10) and (5.11) back into Eq. (5.2), and take its real and imaginary

parts. After the straightforward calculations we obtain

Sx(z, t) = Re[S+(z, t)] =∆S

[
(1) cos

(
ω↓↑t

2

)
cos (k+z − Ωt+ φs)

+ ρ1(ξ) sin

(
ω↓↑t

2

)
sin (k+z − Ωt+ φs)

− ρ2(ξ) sin

(
ω↓↑t

2

)
sin (k−z + Ωt− φs)

]
(5.12)

from the real part of Eq. (5.2). As for the imaginary part, we find

Sy(z, t) = Im[S+(z, t)] =∆S

[
(1) cos

(
ω↓↑t

2

)
sin (k+z − Ωt+ φs)

− ρ1(ξ) sin

(
ω↓↑t

2

)
cos (k+z − Ωt+ φs)

− ρ2(ξ) sin

(
ω↓↑t

2

)
cos (k−z + Ωt− φs)

]
. (5.13)
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Here, two ρ functions are

ρ1(ξ) =
ξ√

1 + ξ2
, ρ2(ξ) =

1√
1 + ξ2

. (5.14)

In Eqs. (5.12) and (5.13), ω↓↑ ≡ ω↓↑(ξ) = (γ∆B0)
√
1 + ξ2. Here ξ is a dimensionless variable

defined as ξ(δk) ≡ ∆ωs(δk)/γ∆B0 with ∆ωs(δk) ≡ ωs(k+) − ωs(k−); note that ∆ωs depends

on δk critically. The parameter ξ describes the level of the energy mismatch of the two spin waves

participating in the scattering induced by the DC magnonic crystal; Ω ≡ Ω(δk) ≡ [ωs(k+) +

ωs(k−)]/2 is a sort of “central frequency" which depends on δk non-critically. We would like to

emphasize that ω↓↑ and Ω introduced here as well as ω± in Eq. (5.8) are very different from those

defined in Chapter 4.

A further insight for understanding the spin-wave dynamics can be obtained by noticing that

[cos(ω↓↑t/2)]
2 + [ρ1(ξ) sin(ω↓↑t/2)]

2 = |Sp(t)|2 = |Cp(t)|2 and [ρ2(ξ) sin(ω↓↑t/2)]
2 = |Sm(t)|2 =

|Cm(t)|2. |Sm(t)|2 alternates between 0 and |ρ2(ξ)|2, while |Sp(t)|2 is between 1 and |ρ1(ξ)|2. Let

us now interpret |Sm(t)|2 (or |Cm(t)|2) as the “probability” of finding the spin wave in the reflected

state (i.e., the left-propagating component), while |Sp(t)|2 (or |Cp(t)|2) to be the “probability”

for the wave to propagate in the original right direction. Then, the whole picture becomes a wave

version of the Rabi oscillations [63] with the Rabi frequency ω↓↑(ξ). Note that |Sp(t)|2+|Sm(t)|2 =

1, which is guaranteed by the unitarity of this system. When |δk| > δkc (this corresponds to |ξ| >

1), |ρ1(ξ)| surpasses |ρ2(ξ)| and the right-propagating wave component starts to fully dominate

over the left-propagating one. As a result, the to-and-fro motion ceases to exist; see Appendix C.1

for further details.

At large δk when ξ ≫ 1, ρ1 → 1 and ρ2 → 0, so that Sy(z, t) converts into (∆S) sin[(q/2 +

δk)z − ω+
s t+ φs] and, in this way, the free propagation of the spin wave recovers. In other words,

the two spin-wave states, k and k− q, are essentially disconnected when their energy difference is

much greater than γ∆B0. In a similar way, one can safely ignore the spin-wave components with

higher wave vectors in Eq. (2) as long as |ωs (±3q/2 + δk) − ωs (±q/2 + δk) | ≫ γ∆B0 hold,
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which is indeed true in our case.

5.2.2 AC magnonic crystal

Now, we turn to the AC modulated magnonic crystal. As it was pointed out previously, when

ωac ̸= 0, the general form of the solution pairs Sp/m(t) and Cp/m(t) is governed by Floquet theorem,

and the time dependence of the spin-wave dynamics is determined by the quasi-energies of the

system. Here we focus only on an important limit when ωac ≈ ∆ωs ≫ γ∆B0. In this limit, one

can implement the rotating wave approximation (RWA) [59]. To demonstrate how the RWA works,

we first transform the pair Sp/m(t) to a rotating frame through the unitary transformation R̂(t):

Sp(t)

Sm(t)

 =R̂(t)

 S̄p(t)

S̄m(t)

 ≡ e−i[(Ωt)σ̂0+(ωact+φac
2 )σ̂3]

 S̄p(t)

S̄m(t)

 . (5.15)

Then, using i d
dt
|ψS(t)⟩ = ĤS(t) |ψS(t)⟩, one finds in the rotating frame, the equation of motion

for S̄p/m(t) becomes

i
d

dt

 S̄p(t)

S̄m(t)

 =

[(
∆ωs − ωac

2

)
σ̂3 −

γ∆B0

4
σ̂1 −

γ∆B0

4

(
cos[2(ωact+ φac)]σ̂1

− sin[2(ωact+ φac)]σ̂2

)] S̄p(t)

S̄m(t)


≈
[(

∆ωs − ωac

2

)
σ̂3 −

γ∆B0

4
σ̂1

] S̄p(t)

S̄m(t)

 . (5.16)

In the last line of Eq. (5.16) we dropped the counter-rotating part of the Hamiltonian, which has a

frequency 2ωac. This is justified as long as the condition ωac ≈ ∆ωs ≫ γ∆B0 is fulfilled.

After neglecting the counter-rotating part in Eq. (5.16), one can analytically solve it to get

the RWA solution. We first diagonalize the time-independent Hamiltonian given in the last line of

Eq. (5.16) by finding its eigenvalues and eigenvectors. Then we construct the solution for S̄p/m(t)
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using a proper initial condition (similar to the steps from Eq. (5.6) to (5.10)). Finally, we transform

S̄p/m(t) back to Sp/m(t), and get

Sp(t) ≈ie−i[(Ω+ωac
2 )t−φs]

[
e−iωR+t

1 + f 2
−(ξ̃)

+
e−iωR−t

1 + f 2
+(ξ̃)

]
,

Sm(t) ≈ie−i[(Ω−ωac
2 )t−φs−φac]

[
f−(ξ̃)e

−iωR+t

1 + f 2
−(ξ̃)

+
f+(ξ̃)e

−iωR−t

1 + f 2
+(ξ̃)

]
. (5.17)

Similarly, for the pair Cp/m(t), we have

Cp(t) ≈e−i[(Ω+ωac
2 )t−φs]

[
e−iωR+t

1 + f 2
−(ξ̃)

+
e−iωR−t

1 + f 2
+(ξ̃)

]
,

Cm(t) ≈− e−i[(Ω−ωac
2 )t−φs−φac]

[
f−(ξ̃)e

−iωR+t

1 + f 2
−(ξ̃)

+
f+(ξ̃)e

−iωR−t

1 + f 2
+(ξ̃)

]
. (5.18)

Here, ωR± ≡ ±(γ∆B0/4)

√
1 + ξ̃2 and again, f±(ξ̃) ≡ ξ̃ ±

√
1 + ξ̃2, but with ξ̃ ≡ 2(∆ωs −

ωac)/γ∆B0. Eventually, by putting the above results into the Eq. (5.2), and after simplifications

we find

Sx(z, t) = Re[S+(z, t)] ≈∆S

{
(1) cos

(
ωRt

2

)
cos
[
k+z −

(
Ω +

ωac

2

)
t+ φs

]
+ ρ1(ξ̃) sin

(
ωRt

2

)
sin
[
k+z −

(
Ω +

ωac

2

)
t+ φs

]
− ρ2(ξ̃) sin

(
ωRt

2

)
sin
[
k−z +

(
Ω− ωac

2

)
t− φs − φac

]}
(5.19)

for the real part, while the imaginary part yields

Sy(z, t) = Im[S+(z, t)] ≈∆S

{
(1) cos

(
ωRt

2

)
sin
[
k+z −

(
Ω +

ωac

2

)
t+ φs

]
− ρ1(ξ̃) sin

(
ωRt

2

)
cos
[
k+z −

(
Ω +

ωac

2

)
t+ φs

]
− ρ2(ξ̃) sin

(
ωRt

2

)
cos
[
k−z +

(
Ω− ωac

2

)
t− φs − φac

]}
. (5.20)
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Here, ωR ≡ ωR(ξ̃) = (γ∆B0/2)

√
1 + ξ̃2 while functions ρ1(ξ̃) and ρ2(ξ̃) have the same form as

in Eq. (5.14). However, ξ̃ is defined differently; ξ̃(δk) ≡ 2[∆ωs(δk) − ωac]/γ∆B0. Note that,

besides the shift of ∆ωs on the frequency ωac, there is a factor 2 in ξ̃. The reason why we have

γ∆B0/2 in ωR (instead of γ∆B0 as in ω↓↑ for the DC case) is that the AC modulation splits into

the rotating and counter-rotating parts, and only the contribution from the rotating component has

to be taken into account within the RWA.

Note that the spin-wave solutions in both DC and AC cases (cf. Eqs. (5.13) and (5.20)) possess

the same structure, which contain three time-oscillating terms. The existence of only three terms

can be understood by observing that the time evolution described by the two-level Hamiltonian

(5.5) is equivalent to the rotation of a spin solely around its first and third axes.

5.3 To-and-fro Motion and Shifted Resonance

To better understand the spin-wave dynamics under both DC and AC magnonic crystals, in Fig.

5.2(a) we plot a momentary “position” of the spin wave with wave vector q/2 + δk as a function

of time for different δk after the DC magnonic crystal is switched on at t = 0. The “position” was

determined by tracking numerically the most left zero-crossing point of the imaginary part of the

spin-wave solution (5.2) within a sufficiently large spatial interval (this is similar to how we tracked

the spin-wave position in Fig. 4.3). As one can see from Fig. 5.2(a), at δk = 0, the dependence

of spin-wave position on time is a zigzag curve around the horizontal axis which indicates the

resulting to-and-fro propagation of the spin wave. The period of this zigzag curve is extracted to

be T↓↑ ≈ 6283 ≈ 2π/γ∆B0, which indicates that the gap ∆ induced by the DC magnonic crystal

is equal to γ∆B0 (cf. Fig. 5.1(b)). Moreover, from Fig. 5.2(a), one may conclude that the to-and-

fro motion exists only for a limited interval of δk when |δk| < δkc ≈ 0.33 in units of (2π/1000).

The critical value δkc is roughly determined by the criterion ∆ωs(δkc) = γ∆B0. For the chosen

parameters, we get ∆ωs(0.33) ≈ 0.00104 while γ∆B0 = 0.001.

By properly tuning ωac, the resonant spin-wave wave vector can be noticeably shifted from

q/2. As one may observe from Fig. 5.2(b), if ωac is set to be 0.00316, only the spin waves around

k = 11 perform the to-and-fro motion accurately enough. For the chosen parameters, namely,

60



0.00
0.10
-0.10
0.20
-0.20
0.25
-0.25

0.33

-0.33
0.50

-0.50

0 10000 20000 30000 40000 50000 60000

0

200000

400000

600000

800000

1×106

Time

P
os
iti
on
of
th
e
sp
in
w
av
e

1.00

1.05
0.95

1.10
0.90

1.15
0.85
1.20

0.80
2.00

0.00

0 10000 20000 30000 40000 50000 60000
- 200000

0

200000

400000

600000

800000

1×106

Time

P
os
iti
on
of
th
e
sp
in
w
av
e

Figure 5.2: Time-dependent position of the spin waves with wave vectors q/2 + δk after (a) the
DC magnonic crystal and (b) the AC magnonic crystal (ωac = 0.00316) is switched on at t = 0.
On the panels (a) and (b), different δk (in units of (2π/1000)) are indicated by the number in
the rectangular boxes. Other parameters are A = 2, q = 20 × (2π/1000), γB0 = 1, ∆ =
γ∆B0 = 0.001, and φs = φac = 0. In our plots, the length on the vertical axis is in units of the
lattice constant, which is taken to be 1, while the time on the horizontal axis is measured in units
1/γB0. The connection between the scales of the spin-wave dynamics in a real physical system
and those shown in the figures is discussed in Section 5.6 below. (c) and (d) show the Bloch-
sphere trajectories of the spin waves with three different δk. The trajectories (dashed magenta and
orange curves with arrowheads on the surface of the sphere) are plotted only for the first period of
the to-and-fro motions; the paths of the second half period are indicated by the light colors. The
intermediate positions of each of the waves are shown by the colored 3D arrows at t = 0, T/2, and
T , where T is the period of the to-and-fro motions.
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A = 2 and q = 20, one has ∆ωs(δk = 1) ≈ 0.00316 and, therefore, the shifted resonance (cf.

Fig. 5.1(b)) indeed happens at ξ̃ ≈ 0. Furthermore, in Fig. 5.2(b), the period of the zigzag curves

around the horizontal axis is doubled as compared with the one in Fig. 5.2(a). In addition, the

width of the δk intervals at which the to-and-fro motion develops becomes approximately half of

the one in the DC case. For example, in Fig. 5.2(b), the to-and-fro motion can be observed within

the interval 10.85 ≲ k ≲ 11.15, while for the DC magnonic crystal presented in Fig. 5.2(a) it

develops when the spin-wave wave vectors are within 9.67 ≲ k ≲ 10.33. All these observations

are consistent with our understanding based on the solutions presented by Eqs. (5.12) and (5.19).

The DC or AC magnonic crystal created by a metallic meander structure (which is the “hard-

ware" part of the magnonic crystal) with a fixed period d = 2π/q can be utilized for the con-

trol of the spin waves around k = q/2 or where k satisfies the shifted resonance condition

|ωs(k) − ωs(k − q)| = ωac. As it was presented in Figs. 5.2(a) and 5.2(b), the spin waves,

which are at the resonances (the regular or shifted ones), perform the to-and-fro motion, while the

out-of-resonance spin waves are almost unaffected. The to-and-fro frequency is determined by

the band gap, which is controlled by the amplitude of the supplied DC or AC current. The band

gap is γ∆B0 or γ∆B0/2 (notice the factor 1/2 here) in the DC or AC case. The DC spin-wave

dynamics has been demonstrated in Ref. [40] as the oscillatory energy exchange between the wave

and its counter-propagating reflection. However, the AC dynamics still remains to be investigated

experimentally.

5.4 Bloch-sphere Representation

The spin-wave solutions, e.g., the RWA solution (5.19) in the AC case can be written as

|SW ⟩ ≡ S+(z, t) ≡e−iφg(t)

{[
cos

(
ωRt

2

)
− iρ1(ξ̃) sin

(
ωRt

2

)]
|k⟩

+ ρ2(ξ̃) sin

(
ωRt

2

)
ei(ωact+φac−π/2) |k − q⟩

}
. (5.21)

Here, |k⟩ ≡ (∆S)ei(k+z) and |k − q⟩ ≡ (∆S)ei(−k−z) are two states associated with the wave

vectors k = k+ and k − q = −k−. In the second line, the global phase is given with φg(t) ≡
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ωact/2 + Ωt − φs. (For the DC case, one can obtain the same result as in Eq. (5.21) by replacing

ωR with ω↓↑ and taking both ωac and φac to be 0.)

The state |SW ⟩ described by Eq. (5.21) can be represented by a vector, whose ending point is

moving on the surface of a Bloch sphere with |k⟩ and |k − q⟩ to be its north and south poles. The

motion of the states with different initial wave vectors k on the Bloch spheres, after turning on the

DC and AC magnonic crystal, are shown in Figs. 5.2(c) and 5.2(d), respectively. As demonstrated

by Fig. 5.2(c), at the resonance (i.e., when δk = 0), during the first period of the to-and-fro motion,

the spin-wave state, which is initially located at the north pole, starts to move to the south pole, and

then, after passing the south pole, returns to the north pole. Note that, the spin wave is propagating

forward when the state is on the north hemisphere, and vice versa. However, at δk = 0.2, the

trajectory does not pass through the south pole, and its portion below the equator becomes less

than the one above the equator. Finally, when δk = δkc ≈ 0.33, the full trajectory is on the north

hemisphere only, which indicates the disappearance of the to-and-fro motion.

Figure 5.2(d), plotted for an AC magnonic crystal with ωac = 0.00316, shows a more compli-

cated behavior, which includes a non-trivial precession of the states on the Bloch spheres. In the

presented case, the resonant spin-wave wave vector is shifted to k ≈ 11 (and 9).

5.5 Spin-wave Computing via AC Magnonic Crystal

At the exact shifted resonance (i.e., ξ̃ = 0), Eq. (5.21) is reduced to |SW ⟩ = e−iφg(t){
cos [θ(t)/2] |k⟩+ sin [θ(t)/2] eiϕ(t) |k − q⟩

}
. Here, θ(t) ≡ ωRt and ϕ(t) ≡ ωact + φac − π/2.

This state can be considered as a spin-wave “qubit”, which is characterized by the polar angle θ(t)

and azimuthal angle ϕ(t). Recall that ωR(ξ̃ = 0) = γ∆B0/2 ∝ I0; therefore, the time evolution of

this “qubit” (i.e., θ(t) and ϕ(t)) is fully controlled by the intensity and the AC modulation of the

magnonic crystal. Consequently, one can manipulate this spin-wave based macroscopical “qubit”

using a properly designed AC pulse. For example, Fig. 5.3(a) demonstrates that one can bring the

state from the north pole to the equator on the Bloch sphere utilizing a π/2-pulse shown in Fig.

5.3(b). It is also possible to flip the spin-wave “qubit” by the π-pulse, see, e.g., Figs. 5.3(c) and

5.3(d), and more discussions in Appendix. C.3. Note that the spin-wave “qubit” controlled by the
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Figure 5.3: (a) Motion of the spin wave with the initial wave vector k = 11 on the Bloch sphere
when sending (b) the AC π/2-pulse with ωac = 0.00316. The dashed orange curve with arrowheads
is the trajectory during the activation of the π/2-pulse, while the dashed black curve on the equator
indicates the motion after t3. Subfigure (c) shows the motion when sending (d) the π-pulse. The
widths of the π/2- and π-pulse are π/2ωR and π/ωR, which are determined by the intensity of the
pulse.

AC magnonic crystal has a nonzero energy mismatch ∆ωs = ωac. This leads to a time-dependent

ϕ(t) and, thereby, opens a way to manipulate the azimuthal angle of this “qubit” and makes all

single-qubit operations possible [64].

In principle, any N-qubit state without entanglement can be expressed as

|Ψ⟩ =|ψ⟩1 ⊗ |ψ⟩2 ⊗ · · · ⊗ |ψ⟩N

=
(
p+1 |0⟩1 + p−1 |1⟩1

)
⊗
(
p+2 |0⟩2 + p−2 |1⟩2

)
⊗ · · · ⊗

(
p+N |0⟩N + p−N |1⟩N

)
; (5.22)

and in principle, one can encode it as a spin-wave state

|SW ⟩ =
(
p+1 |k1⟩+ p−1 |k1 − q⟩

)
+
(
p+2 |k2⟩+ p−2 |k2 − q⟩

)
+ · · ·+

(
p+N |kN⟩+ p−N |kN − q⟩

)
,

(5.23)

which contains N pairs of waves with different wave vectors. As long as the frequency dif-
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ferences of individual pairs are well separated in the frequency domain, each spin-wave pair

(|ki⟩ , |ki − q⟩) will be controlled only by an AC pulse with the proper frequency ωac,i, which

satisfies the shifted resonance ωac,i = |ωs(ki)− ωs(ki − q)|. Specifically, the time evolution of the

i-th spin wave pair p+i (0)|ki⟩+p−i (0)|ki−q⟩ → p+i (t)|ki⟩+p−i (t)|ki−q⟩ under the AC modulation

I0,i cos(ωac,it+ φac,i) is described by

p+i (t)
p−i (t)

 = eiφC,i(t)

 cos
[
θi(t)
2

]
eiφA,i(t) sin

[
θi(t)
2

]
eiφB,i(t)

− sin
[
θi(t)
2

]
e−iφB,i(t) cos

[
θi(t)
2

]
e−iφA,i(t)


p+i (0)
p−i (0)

 (5.24)

with

θi(t) =(
γ∆B0,i

2
)t ∝ I0,it,

φA,i(t) =− (
ωac,i

2
)t,

φB,i(t) =− (
ωac,i

2
)t− φac,i −

π

2
,

φC,i(t) =− Ωit+ φs,i, (5.25)

and Ωi = [ωs(ki) + ωs(ki − q)]/2. Hence, one may anticipate that multiple spin-wave “qubits”

constituted of distinct wave pairs can be manipulated simultaneously by sending the proper AC

pulses with different ωac through a meander structure; one can employ this scheme to do spin-

wave computing by implementing some quantum algorithms that do not require entanglement,

e.g., the sophisticated quantum search discussed in Ref. [3].

5.6 Additional Remarks

Finally, we discuss the feasibility of the proposed scheme. To make the RWA valid, ωac has to

be much greater than γ∆B0. In addition, to minimize the higher-order effects from the spin-wave

states with wave vectors k + q, k ± 2q, · · · , the inequalities of the kind
∣∣|ωs (k + q) − ωs (k) | −

ωac

∣∣ ≫ γ∆B0/2 need to be fulfilled. In particular, one may require |ωs(q) − ωs(0)| − ωac ≫

γ∆B0/2. Let us take the experimental parameters in Ref. [40] as an example. In this measurement,
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the value of γ∆B0 was 2π×11 MHz, while |ωs(q)−ωs(0)| was roughly 2π×100 MHz. In this case,

an AC modulation with ωac around 2π× 50 MHz would be suitable for the experimental studies of

the shifted resonance. Spin-wave attenuation and decoherence are the two other factors that need

to be considered. Let us estimate the operation time required to bring the spin-wave state from the

north to the south pole. Using the same value of γ∆B0, we find this time to be 2π/γ∆B0 ≈ 91

ns, which is shorter than both lifetime and coherence time of spin waves in YIG (cf. Refs. [9],

[10], and [11]). In the end, we estimate the length of the device. In practice, the slopes of the

curves plotted in Figs. 5.2(a) and 5.2(b) are determined by the group velocities of the incident

and reflected spin-wave packets, which may vary dramatically for different magnetic material and

geometries. In the case of the magnetostatic spin waves studied in Ref. [40], the spin-wave group

velocity |vg| was found to be about 27404 m/s. Such a spin-wave packet would perform to-and-

fro motion with maximum displacement |vg| × 2π/γ∆B0 ≈ 2.5 mm, and therefore, the meander

structure must have a size of at least 2.5 mm in order to confine this bouncing packet. In principle,

the operating range of ωac can be enlarged to GHz range by fabricating a meander structure with a

shorter period d, and the operation time can be further reduced by applying a bigger I0.

We expect that, with the use of the techniques accessible nowadays, the tunable AC magnonic

crystal can be exploited for controlling spin waves with different wave vectors. One can excite

and detect many spin waves with different frequencies in a magnetic sample at the same time

through one antenna setup. The tunability of the AC magnonic crystal allows one to use a single

hardware (the metallic meander pattern) to simultaneously manipulate multiple spin-wave pairs in

one waveguide. Each pair formed by waves with different frequencies is independently operated

by a suitable AC pulse that satisfies the shifted resonance. As a result, the tunable AC magnonic

crystal can serve as a new building block of the computing device studied in Ref. [13] and improve

its scalability. This opens new possibilities for the spin-wave computing.
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6. SUMMARY AND OUTLOOKS

To summarize, we developed a spin-wave model for van der Waals layered magnetic material

CoTiO3 using a formalism based on the continuous macroscopic variables, i.e., the total magneti-

zation and the Néel vector. The established semimacroscopic spin-wave description gives all four

spin-wave branches in this material and agrees quantitatively well with the experimental measure-

ment at long-wavelength limit. The developed formalism can be easily extended to a deformed

magnetic system and is applicable to a generic quantum XY AFM, which provides a read-to-

use model for studying the spin superfluidity transport in this type of magnetic materials. Then,

we studied the spin-wave dynamics in an AFM while a spatially modulated strain is suddenly

switched on for the system. We demonstrated that the periodic strain, after switching it on, acts

like a magnonic crystal on spin waves propagating along the same direction of the modulation. The

strain-induced magnonic crystal causes a continuous spin-wave scattering and leads to a to-and-fro

motion of the spin waves that satisfy the spatial resonance condition. Finally, we turned our focus

to a current-induced magnonic crystal in FM systems. The key advantages of the current-induced

magnonic crystal include its ability to be easily switched on and off as well as its tunability, which

provide a highly controllable manner for manipulating the propagation of spin waves. We explored

the possibility of using a tunable AC modulated magnonic crystal for the purpose of spin-wave

computing. We proposed to utilize what we called the shifted resonance to manipulate multiple

spin-wave pairs simultaneously through a fixed hardware, namely, the metallic meander structure.

We believe that this study has the potential to open up new avenues in spin-wave computing and to

establish a boundary between wave computing and true quantum computation.

In future, we need to explore practical ways of implementing the proposed scheme for real

computations. In addition, we anticipate that the proposed scheme will work similarly for spin-

wave modes originating from the long-range magnetic dipole-dipole interactions. Therefore, we

need to investigate the possibilities of pushing the limits of classical wave computing, e.g., to what

extent one can use the coupled spin waves in multiple FM films to simulate an entangled qubit
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state.
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APPENDIX A

SUPPLEMENTAL INFORMATION FOR CHAPTER 3*

This appendix is dedicated to providing readers with the additional mathematical details that

were not included in Chapter 3. Here you will find the step-by-step derivations of equations of

motion for m and l with and without a lattice deformation as well as the detailed calculations to

get the solutions (3.32) and (3.33).

A.1 Derivation of Equations of Motion for m and l Without Deformation

In this appendix, we show how to derive Eqs. (3.5)-(3.10) and (3.17)-(3.22) in Chapter 3.

Similar to what were discussed in Chapter 3, for the case when site i is on the B sublattice, Eqs.

(3.3) and (3.4) are modified as follows: (i) A ↔ B; (ii) ∂
∂z

→ − ∂
∂z

. Finally, incorporating the

gradient expansion terms in Eq. (3.2), one obtains the equations of motion for the spin components

SA/B:

dSx
A/B

dt
≈3J∥S

z
A/BS

y
B/A + 3J⊥[S

z
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y
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z
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}
, (A.1)
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*Reprinted with permission from “Spin waves in layered antiferromagnets with honeycomb structure” by Ankang
Liu and Alexander M. Finkel’stein, 2022. Phys. Rev. B, 105, 214409, Copyright 2022 by American Physical Society.
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and

dSz
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dt
≈3J∥(S

y
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x
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A/BS
y
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Here, we eventually dropped the site index i in the spin operators, assuming from now on that

SA/B are space- and time-dependent variables SA/B(r, t). For the spatial derivatives, we have also

introduced a short notation, ∇2
± ≡ ∇2 ± ∂2

∂z2
. The equations of motion for S̄A/B could be obtained

through the exchange SA/B ↔ S̄A/B in the above equations.

Next, we define the total magnetization mA/B ≡ SA/B + S̄A/B and the Néel vector lA/B ≡

SA/B − S̄A/B for the A/B sublattices, see e.g., Ref. [27]. Note that in a simple Néel AFM the

vectors m and l are orthogonal, mA/B · lA/B = 0. In the following part of this appendix, mA/B

and lA/B will be considered as classical variables rather than the quantum operators. The resulting

equations of motion for mA and lA are
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To get the equations of motion for mB and lB, one just needs to apply (i) A ↔ B and (ii) ∂
∂z

→
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− ∂
∂z

in Eqs. (A.4)-(A.9).

At this stage, one could argue that only the underlined terms in Eqs. (A.4)-(A.9) have to be

kept when discussing the linearized dynamics of this system. The reason is that in the equilibrium

mA = mB = 0. Hence all terms quadratic in m have to be ignored. Furthermore, the equilibrium

positions of vectors lA and lB are limited to the xy plane, i.e., lzA = lzB = 0. Therefore, all terms

containing a product of lz and any component of m have to be ignored. Finally, terms containing

derivatives may coexist only with lx,y, but not with lz or components of m. All this limits the

linearized dynamics to the underlined terms only.

Next, one could notice that the equations of motion for vectors in the sublattices A and B

differ only by the terms containing ± ∂
∂z

. To derive the equations which describe the two low-

energy branches of magnons, we ignore the difference in the dynamics of the A and B sublattices,

and will proceed with the approximation when mA = mB = m and lA = lB = l. In result, Eqs.

(3.5)-(3.10) are obtained.

To derive the equations of motion for the two opticlike branches, we perturb the spins on A

and B lattices oppositely with respect to each other. With this in mind, we adopt the expansions

mA/B = ±(δmxx̂ + δmyŷ + δmz ẑ) and lA/B = 2S̃x̂ ± (δlxx̂ + δlyŷ + δlz ẑ), where 2S̃x̂ is the

equilibrium Néel vector. Next, we substitute the expansions in δmx,y,x and δlx,y,x into Eqs. (A.4)

- (A.9), and keep there only the linear terms. We again neglected ± ∂
∂z

-terms in Eqs. (A.4)-(A.9)

and, eventually, arrive to Eqs. (3.17)-(3.22).

A.2 Equations for E, a, and χa,b1,b2

The procedure here is rather straightforward. We substitute the ansatz Eq. (3.31) into the

eigenvalue equation H+ψ̃1 = Eσ̃3ψ̃1, expand χa, χb1 , and χb2 around 0, and take the real parts of

the equation. As a result, we get

a
{
[Im(Bk) + Re(Bk)(χb1 − χa)]− Ckχa + [Im(G+

k ) + Re(G+
k )(χb2 − χa)]

}
+

1

8a

{
[Im(Bk) + Re(Bk)(χb1 − χa)] + Ckχa − [Im(G+

k ) + Re(G+
k )(χb2 − χa)]

}
≈ 0,
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a
{
[Im(Bk) + Re(Bk)χb2 ] + Ckχa + [Im(G+

k ) + Re(G+
k )χb1 ]

}
+

1

8a

{
− [Im(Bk) + Re(Bk)χb2 ] + Ckχa + [Im(G+

k ) + Re(G+
k )χb1 ]

}
≈ 0,

a
{
− [Im(Bk) + Re(Bk)(χb1 − χa)] + Ck(χb2 − χb1)− [Im(G+

k ) + Re(G+
k )χb1 ]

}
+

1

8a

{
− [Im(Bk) + Re(Bk)(χb1 − χa)]− Ck(χb2 − χb1) + [Im(G+

k ) + Re(G+
k )χb1 ]

}
≈ 0,

a
{
− [Im(Bk) + Re(Bk)χb2 ]− Ck(χb2 − χb1)− [Im(G+

k ) + Re(G+
k )(χb2 − χa)]

}
+

1

8a

{
[Im(Bk) + Re(Bk)χb2 ]− Ck(χb2 − χb1)− [Im(G+

k ) + Re(G+
k )(χb2 − χa)]

}
≈ 0.

(A.10)

As for the imaginary parts, we find

a[Ak +Re(Bk) + Ck +Re(G+
k )] +

1

8a
[Ak +Re(Bk)− Ck − Re(G+

k )] ≈ E(a+
1

8a
),

a[Ak +Re(Bk) + Ck +Re(G+
k )]−

1

8a
[Ak +Re(Bk)− Ck − Re(G+

k )] ≈ E(−a+ 1

8a
). (A.11)

Finally, by solving Eqs. (A.10) and (A.11), we obtain the solution Eqs. (3.32) and (3.33).

A.3 Derivation of Equations of Motion for m and l in the Presence of Deformation

In this appendix, we derive Eqs. (3.41) and (3.42). Following the discussion in Section 3.5 and

considering the change in the exchange coupling constants according to Eq. (3.40), the deformed

term
∑

δ1
(δJδ1

∥ )Sz
i S

y
i+δ1

in Eq. (3.2) becomes

∑
δ1

(δJδ1
∥ )Sz

i S
y
i+δ1

=Sz
iAS

y
iB

∑
δ1

(δJδ1
∥ ) + Sz

iA[δJ
δ1,1
∥

∂Sy
iB

∂x
+ δJ

δ1,2
∥ (−1

2

∂Sy
iB

∂x
+

√
3

2

∂Sy
iB

∂y
)

+ δJ
δ1,3
∥ (−1

2

∂Sy
iB

∂x
−

√
3

2

∂Sy
iB

∂y
)] + · · ·

≈3

2
g1(ϵxx + ϵyy)S

z
iAS

y
iB +

3

4
g1S

z
iA(d ·∇)Sy

iB. (A.12)

Here, it was assumed that site iwas located on theA sublattice. The vector d = (ϵxx−ϵyy,−2ϵxy, 0)

describes the vector-type coupling of the deformed honeycomb lattice with the spin-wave excita-
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tions. For the case A→ B the following changes should be made: (i) A↔ B; (ii) d → −d.

The out-of-plane exchange interactions could be considered similarly to the in-plane ones.

Like g1, there is a new coefficient g2 ≡ 1
c
∂J⊥
∂c

which describes the sensitivity to the inter-plane

deformation. In addition, there appears a new vector e describing the vector coupling of the out-

of-plane deformations with the spin waves. In terms of the strain tensor, components of e could be

found as follows: e =
(
− (ϵxx − ϵyy) + 4ϵxz, 2ϵxy + 4ϵyz, 2(ϵxx + ϵyy + 2ϵzz)

)
. Finally, we obtain

a system of equations describing the spin dynamics in the presence of the lattice deformations

dSx
A/B

dt
≈(· · · ) + 3

2
g1(ϵxx + ϵyy)S

z
A/BS

y
B/A +

3

2
g2(ϵxx + ϵyy + 2ϵzz)[(S

z
A/BS̄

y
B/A + 2Sz

A/BS̄
y
A/B)

− (Sy
A/BS̄

z
B/A + 2Sy

A/BS̄
z
A/B)] +

3

4
g1S

z
A/B(±d ·∇)Sy

B/A +
3

4
g2[S

z
A/B(±e ·∇)S̄y

B/A

− Sy
A/B(±e ·∇)S̄z

B/A], (A.13)

dSy
A/B

dt
≈(· · · )− 3

2
g1(ϵxx + ϵyy)S

z
A/BS

x
B/A +

3

2
g2(ϵxx + ϵyy + 2ϵzz)[(S

x
A/BS̄

z
B/A + 2Sx

A/BS̄
z
A/B)

− (Sz
A/BS̄

x
B/A + 2Sz

A/BS̄
x
A/B)]−

3

4
g1S

z
A/B(±d ·∇)Sx

B/A +
3

4
g2[S

x
A/B(±e ·∇)S̄z

B/A

− Sz
A/B(±e ·∇)S̄x

B/A], (A.14)

and

dSz
A/B

dt
≈(· · · ) + 3

2
g1(ϵxx + ϵyy)(S

y
A/BS

x
B/A − Sx

A/BS
y
B/A) +

3

2
g2(ϵxx + ϵyy + 2ϵzz)[(S

y
A/BS̄

x
B/A

+ 2Sy
A/BS̄

x
A/B)− (Sx

A/BS̄
y
B/A + 2Sx

A/BS̄
y
A/B)] +

3

4
g1[S

y
A/B(±d ·∇)Sx

B/A

− Sx
A/B(±d ·∇)Sy

B/A] +
3

4
g2[S

y
A/B(±e ·∇)S̄x

B/A − Sx
A/B(±e ·∇)S̄y

B/A]. (A.15)

Here, (· · · ) represents all the terms on the right hand side of Eqs. (A.1), (A.2), and (A.3) without

considering the deformation in the system. Again, the equations of motion for S̄A/B could be

obtained through the exchange SA/B ↔ S̄A/B in Eqs. (A.13)-(A.15).

In terms of the macroscopic quantities mA/B and lA/B, the equations describing the spin dy-
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namics are

dmx
A

dt
≈(· · · ) + 3

4
g1(ϵxx + ϵyy)(m

z
Am

y
B + lzAl

y
B) +

3

4
g2(ϵxx + ϵyy + 2ϵzz)[(m

z
Am

y
B −my

Am
z
B)

− (lzAl
y
B − lyAl

z
B)] +

3

8
g1[m

z
A(d ·∇)my

B + lzA(d ·∇)lyB] +
3

8
g2

{
[mz

A(e ·∇)my
B

−my
A(e ·∇)mz

B]− [lzA(e ·∇)lyB − lyA(e ·∇)lzB]
}
, (A.16)

dmy
A

dt
≈(· · · )− 3

4
g1(ϵxx + ϵyy)(m

z
Am

x
B + lzAl

x
B) +

3

4
g2(ϵxx + ϵyy + 2ϵzz)[(m

x
Am

z
B −mz

Am
x
B)

− (lxAl
z
B − lzAl

x
B)]−

3

8
g1[m

z
A(d ·∇)mx

B + lzA(d ·∇)lxB] +
3

8
g2

{
[mx

A(e ·∇)mz
B

−mz
A(e ·∇)mx

B]− [lxA(e ·∇)lzB − lzA(e ·∇)lxB]
}
, (A.17)

dmz
A

dt
≈(· · · ) + 3

4
g1(ϵxx + ϵyy)[(m

y
Am

x
B −mx

Am
y
B) + (lyAl

x
B − lxAl

y
B)]

+
3

4
g2(ϵxx + ϵyy + 2ϵzz)[(m

y
Am

x
B −mx

Am
y
B)− (lyAl

x
B − lxAl

y
B)]

+
3

8
g1

{
[my

A(d ·∇)mx
B −mx

A(d ·∇)my
B] + [lyA(d ·∇)lxB − lxA(d ·∇)lyB]

}
+

3

8
g2

{
[my

A(e ·∇)mx
B −mx

A(e ·∇)my
B]− [lyA(e ·∇)lxB − lxA(e ·∇)lyB]

}
, (A.18)

dlxA
dt

≈(· · · ) + 3

4
g1(ϵxx + ϵyy)(m

z
Al

y
B + lzAm

y
B) +

3

4
g2(ϵxx + ϵyy + 2ϵzz)[(l

z
Am

y
B − lyAm

z
B)

− (mz
Al

y
B −my

Al
z
B) + 4(lzAm

y
A −mz

Al
y
A)] +

3

8
g1[m

z
A(d ·∇)lyB + lzA(d ·∇)my

B]

+
3

8
g2

{
[lzA(e ·∇)my

B − lyA(e ·∇)mz
B]− [mz

A(e ·∇)lyB −my
A(e ·∇)lzB]

}
, (A.19)

dlyA
dt

≈(· · · )− 3

4
g1(ϵxx + ϵyy)(m

z
Al

x
B + lzAm

x
B) +

3

4
g2(ϵxx + ϵyy + 2ϵzz)[(l

x
Am

z
B − lzAm

x
B)

− (mx
Al

z
B −mz

Al
x
B) + 4(lxAm

z
A −mx

Al
z
A)]−

3

8
g1[m

z
A(d ·∇)lxB + lzA(d ·∇)mx

B]

+
3

8
g2

{
[lxA(e ·∇)mz

B − lzA(e ·∇)mx
B]− [mx

A(e ·∇)lzB −mz
A(e ·∇)lxB]

}
, (A.20)
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and

dlzA
dt

≈(· · · ) + 3

4
g1(ϵxx + ϵyy)[(m

y
Al

x
B −mx

Al
y
B) + (lyAm

x
B − lxAm

y
B)]

+
3

4
g2(ϵxx + ϵyy + 2ϵzz)[(l

y
Am

x
B − lxAm

y
B)− (my

Al
x
B −mx

Al
y
B) + 4(lyAm

x
A −my

Al
x
A)]

+
3

8
g1

{
[my

A(d ·∇)lxB −mx
A(d ·∇)lyB] + [lyA(d ·∇)mx

B−lxA(d ·∇)my
B]
}

+
3

8
g2

{
[my

A(e ·∇)mx
B −mx

A(e ·∇)my
B]− [my

A(e ·∇)lxB −mx
A(e ·∇)lyB]

}
. (A.21)

Again, (· · · ) is the short notation which represents all the terms on the right hand side of the

unperturbed Eqs. (A.4)-(A.9). To obtain the equations of motion for mB and lB, one just needs to

apply (i) A↔ B, (ii) ∂
∂z

→ − ∂
∂z

, (iii) d → −d, and (iv) e → −e to Eqs. (A.16)-(A.21).

For linearized dynamics, we may keep in the above equations the underlined terms only. Next,

we drop all the terms containing ± ∂
∂z

, d, and e. As we have argued previously, under this approxi-

mation, the equations for A and B sublattices coincide, and we will assume that mA = mB = m

and lA = lB = l. Finally, by applying the standard parametrization, we find the linearized equa-

tions for mθ, mϕ, θ, and ϕ in the presence of a lattice deformation, i.e., Eqs. (3.41) and (3.42)

written in Chapter 3.
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APPENDIX B

SUPPLEMENTAL INFORMATION FOR CHAPTER 4*

In Chapter 4 we concentrated on the to-and-fro motion of a spin wave (magnon) in the presence

of a spatially modulated static strain. The deformation induced by the strain modulates the spin

exchange between magnetic atoms which in turn acts as a scattering potential for spin waves. A

possible way to impose the static strain modulation was suggested in Ref. [57].

To present the idea in the simplest way, we discussed a layered van der Waals AFM which has

a very clear geometry. For waves propagating in the direction transverse to the layers, it allows to

reduce the problem to a one-dimensional one. Additional simplification is in the magnetic structure

of the substance which consists of FM layers with the direction of magnetization alternating be-

tween the neighboring layers. This allows to use macroscopic classic variables for the description

of spin waves.

We start with presenting the arguments that allowing us to neglect the higher harmonics in the

process of scattering in Section B.1 of this appendix. In Chapter 4, we have studied the dynamics

of the spin wave which propagates freely in the system when at a certain time the static strain is

switched on. The problem has been solved by matching the initial conditions at the moment of

switching on. Here, in Section B.2, we simulate a more practical scenario in which a Gaussian

spin-wave packet is running inside or entering a region where the spatially modulated strain has

been already imposed.

The possibility of controlling magnons by a spatially modulated deformation has a general

character, and is not related neither to the specific geometry nor to the material considered in this

chapter. To demonstrate the generality, we consider in Section B.3 the case of the oblique incidence

of the spin wave, i.e., when the initial spin wave has a finite momentum component perpendicular

to the direction of strain modulation. We showed that in the case of an oblique incidence the

*Reprinted with permission from “Control of spin waves by spatially modulated strain” by Ankang Liu and
Alexander M. Finkel’stein, 2022. Phys. Rev. B, 105, L020404, Copyright 2022 by American Physical Society.
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modulation works as a spin waveguide: the to-and-fro motion of a spin wave across the spatially

deformed region is still preserved, whereas in the direction perpendicular to the strain modulation

the wave propagates unidirectionally.

For the purpose of completeness, in Section B.4, we consider the time-dependent periodic

potential, which is created by a standing acoustic wave (see, e.g., Ref. [50]). (In the case of a two-

dimensional geometry, grating of the lattice can be done using the Surface Acoustic Wave (SAW)

technique [54, 55].) The dynamics is most clear in the adiabatic limit, i.e., when the deformation

of the lattice changes slowly compared to the spin waves. Note in this respect that in the van

der Waals systems, both the speed of sound and of the magnons in the direction transverse to the

layers are rather low, because of smallness of the inter-layer couplings. The widths of the acoustic

and magnon bands are of the order of a few meV. The mutual relation of the speeds depends on a

specific choice of the material [65, 66].

Finally, we discuss the role of the phases φ1 and φ2. They are the space and time phase

differences of the freely propagating spin wave and the strain modulation defined at the moment

of their meeting. The phase φ2 exists, of course, only in the case of the time-dependent strain

modulation. Unlike φ1, the time phase difference affects the dynamics of spin waves very strongly.

As an application of the discussed mechanism of the control of magnons, we see magnonics.

B.1 Higher Harmonics

In Section 4.2, we have indicated that after dropping higher harmonics, like S 3q
2

and C 3q
2

, one

gets Eqs. (4.12) and (4.13). These equations yield the frequencies ω2
S, q

2
= JG1[1− 1

2
(G2

G1
)]( q

2
)2 and

ω2
C, q

2
= JG1[1 +

1
2
(G2

G1
)]( q

2
)2. The frequencies are splitted by the interaction G2 (i.e., magnetoelas-

ticity).

If the term S 3q
2

is nevertheless considered, instead of Eq. (4.13), one obtains an extended

equation

ω2

S q
2

S 3q
2

 =

JG1(
q
2
)2 − 1

2
JG2(

q
2
)2 1

2
JG2(

3q
2
)2

1
2
JG2(

q
2
)2 JG1(

3q
2
)2


S q

2

S 3q
2

 (B.1)
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which couples S q
2

and S 3q
2

. This matrix equation gives two eigenvalues ω2
± = 1

4
J [20G1 − G2 ±

(256G2
1 + 32G1G2 + 37G2

2)
1
2 ]( q

2
)2. Obviously, we are interested only in the eigen-frequency, ω−.

Under the perturbative condition, i.e., G2 ≪ G1, the expansion of ω2
− yields ω2

− = JG1(
q
2
)2 −

1
2
JG2(

q
2
)2 − 9

128
JG2q

2(G2
G1

) + 9
2048

JG2q
2(G2

G1
)2 + 9

4096
JG2q

2(G2
G1

)3 + · · · . Keeping only the first

two terms in ω2
−, one gets the approximated frequency ω2

S, q
2
= JG1[1 − 1

2
(G2

G1
)]( q

2
)2. When even

higher harmonics like S 5q
2

or C 5q
2

are taken into account, a system of the coupled equation for S q
2
,

S 3q
2

, and S 5q
2

becomes

ω2


S q

2

S 3q
2

S 5q
2

 =


JG1(

q
2
)2 − 1

2
JG2(

q
2
)2 1

2
JG2(

3q
2
)2 0

1
2
JG2(

q
2
)2 JG1(

3q
2
)2 1

2
JG2(

5q
2
)2

0 1
2
JG2(

3q
2
)2 JG1(

5q
2
)2




S q
2

S 3q
2

S 5q
2

 . (B.2)

The smallest eigen-frequency of the matrix Eq. (B.2) has the expansion ω2
exp = JG1(

q
2
)2 −

1
2
JG2(

q
2
)2− 9

128
JG2q

2(G2
G1

)+ 9
2048

JG2q
2(G2

G1
)2− 603

32768
JG2q

2(G2
G1

)3+ · · · . To generalize the results

even further, we get the matrix equation

ω2



S q
2

S 3q
2

S 5q
2

S 7q
2

...


=



JG1(
q
2
)2 − 1

2
JG2(

q
2
)2 1

2
JG2(

3q
2
)2 0 0 · · ·

1
2
JG2(

q
2
)2 JG1(

3q
2
)2 1

2
JG2(

5q
2
)2 0 · · ·

0 1
2
JG2(

3q
2
)2 JG1(

5q
2
)2 1

2
JG2(

7q
2
)2 · · ·

0 0 1
2
JG2(

5q
2
)2 JG1(

7q
2
)2 · · ·

...
...

...
... . . .





S q
2

S 3q
2

S 5q
2

S 7q
2

...


(B.3)

with all harmonics S q
2
, S 3q

2
, S 5q

2
, S 7q

2
, · · · , taken into considerations. One can check that ω2

S, q
2

is a

good approximation for the lowest eigenfrequency of this infinite system as long as G2 ≪ G1. It

is worth noting that numeric coefficients are in favor of this approximation; the expansion remains

applicable even when G2 ∼ G1.

The discussion of the harmonics C 3q
2

, C 5q
2

, C 7q
2

, · · · is similar.
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B.2 Simulations of Spin-wave Packet

In this section, we present the results of simulations of the dynamics of a Gaussian spin-wave

packet propagating inside (or entering into) the region, which is deformed by a static strain modula-

tion along the z direction, i.e., ϵzz = ϵ0 cos(qz). In Fig. B.1, we simulate the influence of the static

strain modulation on the propagation of the Gaussian spin-wave packet. Suppose that, at t = 0,

(a) Lattice deformation is of (b) Lattice deformation is on

Figure B.1: Simulations of a Gaussian wave packet propagating inside a region where the lattice
deformation is (a) off and (b) on. In both figures (a) and (b), blue and red curves represent the
wave packet at t = 0 and 3000 in unit time, respectively. In these simulations, we take ϕ0 = 1,
z0 = 5000, w = 250, and q = 20×(2π/1000); other parameters are J = 1, G1 = 2, andG2 = 0.3.

there is a Gaussian wave packet ϕ(z, t = 0) = ϕ0e
− (z−z0)

2

w2 cos[ q
2
(z − z0)] which consists of spin

waves with momenta centered around q
2
. Here, ϕ0 is the magnitude of wave packet, z0 indicates

the initial position of the packet, while w describes the packet width. In free system, we expect the

evolution of this Gaussian spin-wave packet leads to ϕ(z, t) = ϕ0e
− (z−z0−vst)

2

w2 cos[ q
2
(z− z0− vst)].

This is confirmed by the result shown in Fig. B.1(a) when the deformation in the system is off. As

expected, we observe a straight motion of the wave packet without any change of its shape. How-

ever, when this spin-wave packet is running inside a region with deformation, we observe that,

instead of propagating freely, the wave packet is spreading aside with respect to its initial position.

This is because the wave components with momentum around q
2

perform the to-and-fro motion as
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has been discussed in Chapter 4 (see Fig. B.1(b)).

Furthermore, we have also simulated the case when a freely propagating Gaussian spin-wave

packet runs on a region with preformed static deformation. From Fig. B.2, we observe that, after a

(a) G2 = 0.3 (b) G2 = 0.6
Figure B.2: Simulations of a Gaussian wave packet running on a deformed region with (a) G2 =
0.3 and (b) G2 = 0.6. In both figures (a) and (b), blue and red curves represent the wave packet
at t = 0 and 3700 in unit time, respectively. The dashed vertical lines indicate the interface
which separates the region with (on the right side of dashed line) and without (on the left side of
dashed line) strain modulation. In these simulations, we take ϕ0 = 1, z0 = 4000, w = 250, and
q = 20× (2π/1000); other parameters are J = 1 and G1 = 2.

certain time of evolution, there forms a number of bubble-like envelopes of the wave packet on the

left (undeformed) side of the interface. The width of the bubbles is around vs( 2π
ω↓↑

). We consider

these bubbles as a signature of the to-and-fro motion which develops inside the deformed region.

These bubbles are pumped backward by the wave-components of the packet on the right side of

the interface which perform an alternating motion with the frequency ω↓↑.

B.3 Oblique Incidence of the Spin Wave

Here we consider the case of an oblique incidence of a spin wave on the strain-modulated

region. In other words, the initial direction of the spin wave propagation and the direction of

strain modulation do not coincide. For simplicity, we restrict ourselves to a modulation along the

z direction, i.e., ϵzz = ϵ0 cos(qz), and will assume that the spatial resonance condition holds along
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this direction. Consequently, the equations of motion for (mθ, ϕ) in three dimensions become (cf.

Eqs. (3.41) and (3.44) in Chapter 3):

ṁθ ≈ (4S̃2)[(−3

8
J∥ +

9

8
J⊥)(

∂2

∂x2
+

∂2

∂y2
) +

9

4
J⊥

∂2

∂z2
]ϕ

= [J1(
∂2

∂x2
+

∂2

∂y2
) + J

∂2

∂z2
]ϕ,

ϕ̇ ≈ [G1 +G2 cos(qz)]mθ. (B.4)

Here, we define J1 ≡ (4S̃2)(−3
8
J∥ +

9
8
J⊥) which describes the propagation of the spin wave in

the directions not influenced by the strain (i.e., perpendicular to the direction of the applied strain

modulation); the other coefficients J , G1, and G2 have been already introduced in Chapter 4 in

connection with Eq. (4.1). From Eq. (B.4), we obtain a second time derivative equation for ϕ,

namely,

ϕ̈ ≈ [G1 +G2 cos(qz)][J1(
∂2

∂x2
+

∂2

∂y2
) + J

∂2

∂z2
]ϕ. (B.5)

Note that, when G2 = 0, it leads to a free spin wave solution ϕ(x, z, t) = ϕ0 sin[(k∥x+
q
2
z)−Ωt+

φ1] with the frequency Ω =
√
G1[J1k2∥ + J( q

2
)2]. Here, without losing generality, we take the

in-plane component of the spin-wave momentum k∥ to be along x direction, and φ1 is an arbitrary

initial phase of the wave. In the presence of G2-term, we are looking for the solution which has a

form of ϕ(x, z, t) = e±iωte±ik∥xφ(z). After the substitution, we get

−ω2φ(z) = [G1 +G2 cos(qz)][−J1k2∥ + J
∂2

∂z2
]φ(z). (B.6)

Following the procedure developed in Chapter 4, we write φ(z) ≈ S q
2
sin
(
q
2
z
)
+C q

2
cos
(
q
2
z
)
. Then,

neglecting the higher harmonics, we obtain two decoupled equations

ω2S q
2
= G1[1−

1

2
(
G2

G1

)][J1k
2
∥ + J(

q

2
)2]S q

2
(B.7)

89



and

ω2C q
2
= G1[1 +

1

2
(
G2

G1

)][J1k
2
∥ + J(

q

2
)2]C q

2
. (B.8)

Now, we get two splitted frequencies ω2
S = [1 − 1

2
(G2

G1
)]Ω2 and ω2

C = [1 + 1
2
(G2

G1
)]Ω2 with Ω to be

the frequency of the free spin wave with k = k∥x̂ + q
2
ẑ. As a result, we can construct the general

solution of ϕ(x, z, t), i.e.,

ϕ(x, z, t) =
∑
±±

[λS±±e
±iωS te±ik∥x sin

(q
2
z
)
+ λC±±e

±iωCte±ik∥x sin
(q
2
z
)
]. (B.9)

Correspondingly, the general solution of mθ(x, z, t) is

mθ(x, z, t) =− [J1k
2
∥ + J(

q

2
)2]× [

λS++

iωS
eiωS teik∥x sin

(q
2
z
)
+
λS+−

iωS
eiωS te−ik∥x sin

(q
2
z
)

+
λS−+

−iωS
e−iωS teik∥x sin

(q
2
z
)
+

λS−−

−iωS
e−iωS te−ik∥x sin

(q
2
z
)

+
λC++

iωC
eiωCteik∥x cos

(q
2
z
)
+
λC+−

iωC
eiωCte−ik∥x cos

(q
2
z
)

+
λC−+

−iωC
e−iωCteik∥x cos

(q
2
z
)
+

λC−−

−iωC
e−iωCte−ik∥x cos

(q
2
z
)
]. (B.10)

Here, the eight coefficients λS/C±± need to be determined through the properly chosen initial condi-

tions. Similarly to Chapter 4, we assume that the static strain modulation is switched on at t = 0,

while a free spin wave with k = k∥x̂+
q
2
ẑ is running in the system. Then, the initial conditions to

be matched look as follows:

ϕ(x, z, 0) = ϕ0 sin[(k∥x+
q

2
z) + φ1],

mθ(x, z, 0) = −
J1k

2
∥ + J( q

2
)2

Ω
ϕ0 cos[(k∥x+

q

2
z) + φ1]; (B.11)
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By matching Eqs. (B.9)-(B.10) with Eq. (B.11), we find

λS++ =
1

4
ϕ0(1−

ωS

Ω
)eiφ1 , λS−+ =

1

4
ϕ0(1 +

ωS

Ω
)eiφ1 ,

λS+− =
1

4
ϕ0(1 +

ωS

Ω
)e−iφ1 , λS−− =

1

4
ϕ0(1−

ωS

Ω
)e−iφ1 ,

λC++ = − i

4
ϕ0(1−

ωC

Ω
)eiφ1 , λC−+ = − i

4
ϕ0(1 +

ωC

Ω
)eiφ1 ,

λC+− =
i

4
ϕ0(1 +

ωC

Ω
)e−iφ1 , λC−− =

i

4
ϕ0(1−

ωC

Ω
)e−iφ1 . (B.12)

After substituting the determined coefficients λS/C±± into Eq. (B.9), we get

ϕ(x, z, t) =ϕ0

{
(
ω↓↑

4Ω
) cos

(
ω↓↑t

2

)
sin[(k∥x−

q

2
z)− Ωt+ φ1]

− (1) sin

(
ω↓↑t

2

)
cos[(k∥x−

q

2
z)− Ωt+ φ1]

+ (1) cos

(
ω↓↑t

2

)
sin[(k∥x+

q

2
z)− Ωt+ φ1]

− (
ω↓↑

4Ω
) sin

(
ω↓↑t

2

)
cos[(k∥x+

q

2
z)− Ωt+ φ1]

− (
ω↓↑

4Ω
) cos

(
ω↓↑t

2

)
sin[(k∥x−

q

2
z) + Ωt+ φ1]

+ (0) sin

(
ω↓↑t

2

)
cos[(k∥x−

q

2
z) + Ωt+ φ1]

+ (0) cos

(
ω↓↑t

2

)
sin[(k∥x+

q

2
z) + Ωt+ φ1]

− (
ω↓↑

4Ω
) sin

(
ω↓↑t

2

)
cos[(k∥x+

q

2
z) + Ωt+ φ1]

}
. (B.13)

And, finally,

ϕ(x, z, t) ≈ϕ0

{
cos

(
ω↓↑t

2

)
sin[(k∥x+

q

2
z)− Ωt+ φ1]

− sin

(
ω↓↑t

2

)
cos[(k∥x−

q

2
z)− Ωt+ φ1]

}
. (B.14)

Here, we defined ω↓↑ ≡ ωC − ωS . As a result, the solution ϕ(x, z, t) describes the alternation

between two spin wave states with k = k∥x̂+
q
2
ẑ and k = k∥x̂− q

2
ẑ with an alternating frequency
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ω↓↑, provided that ω↓↑ ≪ Ω, i.e., G2 ≪ G1. In this sense, the strain modulation serves as a spin

waveguide when the propagating direction of the initial wave is not parallel to the one induced by

the strain.

B.4 Solutions of (mθ, ϕ) and Dynamics at Time-dependent Strain Modulation

In this section, we discuss the dynamics of mθ and ϕ when the lattice deformation is not only

spatial- but also time-dependent. We restrict ourselves to the conditions of the spatial resonance,

i.e., k = q
2
, and assume that there is a standing acoustic wave along the z direction, namely,

u = A sin(qz) cos(ωpht+ φ2)ẑ., where the unit vector ẑ indicates the polarization of this wave.

Then, the nonzero component of the strain tensor is ϵzz = ϵ0 cos(qz) cos(ωpht+ φ2) with the

magnitude ϵ0 = Aq. Here, A is the amplitude of the wave, ωph = vphq is the frequency of the

longitudinal acoustic wave, while vph is the speed of sound along the z direction (a brief discussion

of vph versus vs was given in Sec. S1). Recall in connection with the phase φ2 that t = 0 is defined

as the moment of meeting of the spin wave with the acoustic deformation. Correspondingly, the

phase φ2 (as well as φ1; see the discussion of the inset in Fig. 4.4 in Chapter 4) are determined

with respect to this moment. In the discussed case, one needs to solve the time-dependent version

of Eqs. (4.1), i.e.,

ṁθ = J
d2

dz2
ϕ,

ϕ̇ = [G1 +G2 cos(qz) cos(ωpht+ φ2)]mθ. (B.15)

Next, neglecting the higher harmonics and using the ansatz

mθ(z, t) = Smθ,
q
2
(t) sin

(q
2
z
)
+ Cmθ,

q
2
(t) cos

(q
2
z
)

(B.16)

and

ϕ(z, t) = Sϕ, q
2
(t) sin

(q
2
z
)
+ Cϕ, q

2
(t) cos

(q
2
z
)
, (B.17)
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we obtain a set of equations for the time-dependent coefficients Smθ,
q
2
(t), Sϕ, q

2
(t), Cmθ,

q
2
(t), and

Cϕ, q
2
(t):

Ṡmθ,
q
2
(t) =− J(

q

2
)2Sϕ, q

2
(t),

Ṡϕ, q
2
(t) =G1Smθ,

q
2
(t)− 1

2
G2 cos(ωpht+ φ2)Smθ,

q
2
(t); (B.18)

and

Ċmθ,
q
2
(t) =− J(

q

2
)2Cϕ, q

2
(t),

Ċϕ, q
2
(t) =G1Cmθ,

q
2
(t) +

1

2
G2 cos(ωpht+ φ2)Cmθ,

q
2
(t). (B.19)

Thus, Sϕ, q
2

accelerates Smθ,
q
2
, while the time-dependent combination of Smθ,

q
2

terms pushes Sϕ, q
2
.

The same happens with the other pair Cϕ, q
2

and Cmθ,
q
2
. We differentiate the first equation in each of

the pairs, and use the second ones to close the equations for Smθ,
q
2

and Cmθ,
q
2
. Eventually, instead

of Eqs. (7) and (8) in Chapter 4, we get a pair of the Floquet equations:

S̈mθ,
q
2
(t) = −JG1(

q

2
)2[1− (

G2

2G1

) cos(ωpht+ φ2)]Smθ,
q
2
(t) (B.20)

and

C̈mθ,
q
2
(t) = −JG1(

q

2
)2[1 + (

G2

2G1

) cos(ωpht+ φ2)]Cmθ,
q
2
(t). (B.21)

The solutions of Smθ,
q
2
(t) and Cmθ,

q
2
(t) can be found in terms of the Mathieu functions:

Smθ,
q
2
(t) =QS /C

(JG1q
2

ω2
ph

,
JG2q

2

4ω2
ph

,
ωpht+ φ2

2

)
+RS /S

(JG1q
2

ω2
ph

,
JG2q

2

4ω2
ph

,
ωpht+ φ2

2

)
(B.22)
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and

Cmθ,
q
2
(t) =QC /C

(JG1q
2

ω2
ph

,−JG2q
2

4ω2
ph

,
ωpht+ φ2

2

)
+RC /S

(JG1q
2

ω2
ph

,−JG2q
2

4ω2
ph

,
ωpht+ φ2

2

)
.

(B.23)

Here, /C(a, q, v) and /S(a, q, v) are the even and odd solutions to the Mathieu differential equation

[67]. The coefficients QS/C and RS/C are determined by the initial conditions. We take the same

initial conditions as in the static case, namely,mθ(z, t = 0) = −J( q
2
)2

Ω
ϕ0 cos

(
q
2
z + φ1

)
and ϕ(z, t =

0) = ϕ0 sin
(
q
2
z + φ1

)
. For arbitrary φ1 and φ2, by matching this initial conditions, one obtains a

system of relations for the coefficients QS/C and RS/C :

QS /C
(
G̃1, G̃2,

ωpht+ φ2

2

)∣∣∣
t=0

+RS /S
(
G̃1, G̃2,

ωpht+ φ2

2

)∣∣∣
t=0

=
J( q

2
)2

Ω
ϕ0 sinφ1,

QS /̇C
(
G̃1, G̃2,

ωpht+ φ2

2

)∣∣∣
t=0

+RS /̇S
(
G̃1, G̃2,

ωpht+ φ2

2

)∣∣∣
t=0

= −J(q
2
)2ϕ0 cosφ1,

QC /C
(
G̃1,−G̃2,

ωpht+ φ2

2

)∣∣∣
t=0

+RC /S
(
G̃1,−G̃2,

ωpht+ φ2

2

)∣∣∣
t=0

= −
J( q

2
)2

Ω
ϕ0 cosφ1,

QC /̇C
(
G̃1,−G̃2,

ωpht+ φ2

2

)∣∣∣
t=0

+RC /̇S
(
G̃1,−G̃2,

ωpht+ φ2

2

)∣∣∣
t=0

= −J(q
2
)2ϕ0 sinφ1 (B.24)

with G̃1 ≡ JG1q
2/ω2

ph and G̃2 ≡ JG2q
2/4ω2

ph. Thus, one needs to solve the matrix equation

(B.24) to determine the coefficients QS/C and RS/C .

We present first the result of studying the effect of the phase φ1 on the propagation of the spin

waves. As it is shown in Fig. B.3, similarly to the case of static modulation, motion of the spin

wave does not depend much on φ1. By contrast, the motion strongly depends on the other phase,

φ2, which is the initial phase in the time dependence of the standing acoustic wave.

We start discussion of the phase φ2 with the special case φ2 = 0 for various ωph. As it could be

observed from Fig. B.4, a decisive factor here is the relation between the frequency of alternation

ω↓↑ (determined for the static deformation) and the frequency of the acoustic wave, ωph. The

characteristics of the spin wave motion in this special case are as follows: (i) In the limit of slowly

varying acoustic wave, when ωph ≪ ω↓↑, the adiabatic picture holds. The alternating motion of
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Figure B.3: Zig-zag motion of a spin wave at the spatial resonance condition, k = q/2, for different
φ1. The wave vector q = 20× (2π/1000). Parameters of the system are J = 1, G1 = 2, G2 = 0.3.
Frequency of the phonon ωph = 0.0037, and the phase φ2 = 0.

the spin wave still develops, but for a limited interval of time when the deformation induced by the

acoustic wave is large enough. Next, a window follows when the deformation is weak and, hence,

not effective. Within this window, the spin wave propagates in one direction only. (ii) The motion

is strictly quantized. In the discussed case of φ2 = 0, during a half-period of the standing acoustic

wave, changing of the propagation direction occurs always in pairs. The number of pairs decreases

with increasing the frequency: in the interval of frequencies shown in Fig. B.4(b), there are two

pairs of turns during a half-period. For larger frequencies, as one can see from Fig. B.4(c) there

remains only one pair of turns. (iii) Finally, when ωph is comparable with or greater than ω↓↑, the

alternation of the propagating direction ceases to exist. This is due to the rapidness of the acoustic

deformation oscillation. There is simply not enough time for the modulated strain to change the

propagation of the spin wave. As one can see from the top curve in Fig. B.4(c), the spin wave

propagates unidirectionally with the velocity of the free spin waves. (iv) The averaged speed of

the propagation changes non-monotonically with ωph. In this peculiar case, we observe that in the

interval of frequencies presented in Fig. B.4(b), the averaged speed goes down, and even changes
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Figure B.4: Motion of spin waves with k = q/2 at φ2 = 0 and φ1 = 0 for different ωph. Wave
vector q = 20 × (2π/1000); other parameters are J = 1, G1 = 2, G2 = 0.3. For the chosen
parameters, the frequency ω↓↑ ≈ 0.0067. At the bottom of the subfigure (a) the dashed lines show
the magnitude of the external perturbation at different ωph. The phonon frequencies are indicated
in the boxes on the right.

its sign. Then, for larger frequencies, the trend reverses (see Fig. B.4(c)). The speed grows up, so

that eventually the motion becomes unidirectional.

Now, we present our results of studying the propagation of the spin wave at φ2 ̸= 0. In a

number of panels in Fig. B.5, we show how the motion of the spin wave develops with time at

various φ2 for different intervals of ωph. Eventually, we demonstrate that the to-and-fro motion is

a robust phenomenon. It exists for any phase φ2, and even survives the averaging over different

phases. One can notice from Figs. B.5(a), B.5(d), B.5(g), B.5(j), and B.5(m) that for φ2 ̸= 0 the

adiabatic picture still holds when ωph ≪ ω↓↑. On the contrary, at not too small ωph, Figs. B.5(b),

B.5(e), B.5(h), B.5(k), B.5(n) and Figs. B.5(c), B.5(f), B.5(i), B.5(l), B.5(o) demonstrate that for

φ2 ̸= 0 the motion of the spin wave depends on ωph in a different manner as compared with the

results obtained for the special case φ2 = 0, cf. with Figs. B.4(b) and B.4(c). The main difference

is in the time of periodicity. Instead of a half-period discussed above for φ2 = 0, in the general

case, φ2 ̸= 0, the period of the pattern for the propagation of the spin wave coincides with the (full)

period of the acoustic wave. The results obtained here also confirm that the number of turns during

a period decreases with increasing ωph. This eventually leads to a unidirectional propagation of the

spin wave when ωph is comparable with ω↓↑.

One can observe by comparing Fig. B.6 with the corresponding panels in Figs. B.4 and B.5

that the patterns of the to-and-fro motion have a φ2-periodicity that is (roughly) π. Interestingly,
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Figure B.5: Motion of spin waves with k = q/2 at different ωph (see boxes on the right) for various
φ2. (a)-(c): φ2 = π/6; (d)-(f): φ2 = −π/6; (g)-(i): φ2 = 1; (j)-(l): φ2 = −1; (m)-(o): φ2 = π/2.
At the bottom of (a), (d), (g), (j), and (m) the dashed lines show the magnitude of the external
perturbation at various ωph. Wave vector q = 20 × (2π/1000); other parameters are J = 1,
G1 = 2, G2 = 0.3, and φ1 = 0.
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Figure B.6: Motion of the spin wave with k = q/2 for different frequencies ωph (see boxes on
the right) with various φ2. (a)-(c): φ2 = π, (d)-(f): φ = 7π/6; (g)-(i): φ2 = 1 + π; (j)-(l):
φ2 = −π/2. At the bottom of (a), (d), (g), and (j), the dashed lines show the magnitude of the
external perturbation with various ωph. Wave vector q = 20 × (2π/1000); other parameters are
J = 1, G1 = 2, G2 = 0.3, and φ1 = 0.
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the solution does not coincide with itself when φ2 is changed by π. But the pattern of propagation

is reproduced. The reason for this is that changing φ2 by π is equivalent to changing only the sign

of the scattering amplitude G2.

Figure B.7: (a) Motion of the spin wave with k = q/2 at ωph = 0.0037 for different φ2 (see
boxes on the right). At the bottom of the figure, the dashed lines show the time-dependence of
magnitude of the external perturbation for different φ2. (b) The averaged motion of the spin wave
over different positive and negative phases φ2. Wave vector q = 20× (2π/1000); other parameters
are J = 1, G1 = 2, G2 = 0.3, and φ1 = 0.

In order to study further the effects of φ2, we plot (along with the propagation of the spin wave

at different φ2, Fig. B.7(a)) the motion averaged over both positive and negative values of φ2. As

one can observe from Fig. B.7(b), the to-and-fro pattern exists despite this averaging.
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Figure B.8: The Fourier analysis of the spin wave propagation at ωph = 0.0025 with different φ2.
Other parameters are J = 1, G1 = 2, G2 = 0.3, and φ1 = 0.
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Finally, we performed the Fourier analysis of the propagation patterns with different φ2 for the

spin wave when the frequency of the acoustic wave is ωph = 0.0025. As it is shown in Figs. B.8,

there is a major spectral peak at the frequency 0.0025 (at φ2 = π/6 and 1), i.e., the position of

the peak coincides with the frequency of the acoustic wave, ωph. However, in the special case of

φ2 = 0 the pattern has a pronounced spectral peak at the frequency equal to 2ωph = 0.005, which

in this case is the lowest characteristic frequency. As a result, only for the special case φ2 = 0,

the propagation pattern repeats every half-period of the acoustic wave. Generally, however, the

patterns repeat themselves in accord with the full period of the acoustic wave.
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APPENDIX C

SUPPLEMENTAL INFORMATION FOR CHAPTER 5*

In this appendix, we present additional numerical results that support the study of AC magnonic

crystal in Chapter 5. The results presented in Figs. C.1 and C.2 as well as in Figs. 5.2(a) and 5.2(b)

in Chapter 5 are obtained through numerically solving Eq. (5.3) with the initial conditions (5.4)

utilizing Mathematica “NDSolve” function [68]; while the simulations in Figs. C.3 and C.4 are

done by the finite difference method based on the algorithm published in Ref. [69].

C.1 To-and-fro Motion

Figure C.1: Position of the spin waves with initial wave vectors k = q/2 + δk (upper panels (a),
(c), and (e)) together with |Sp/m(t)| (lower panels (b), (d), and (f)) as a function of time. Here, we
plot for (a) and (b) the wave with δk = 0.00; (c) and (d) with δk = 0.20; while (e) and (f) with
δk = 0.50 in units of (2π/1000). Other parameters are A = 2, q = 20 × (2π/1000), γB0 = 1,
γ∆B0 = 0.001, and φs = 0. As shown in all three figures, the spin waves are propagating along
the positive z direction when |Sp(t)| > |Sm(t)|, and vice versa.

*Reprinted with permission from “Spin-wave dynamics controlled by tunable ac magnonic crystal” by Ankang
Liu and Alexander M. Finkel’stein, 2023. Phys. Rev. B (to be published), Copyright 2023 by American Physical
Society.
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As an extension of Fig. 5.2(a), in Fig. C.1 we plot the propagation of the spin waves with dif-

ferent wave vectors along with the competition between |Sp(t)| and |Sm(t)| after the DC magnonic

crystal is switched on at t = 0. As one can conclude with the use of Fig. C.1, the direction of

the propagation is determined by the relation of the amplitudes |Sp(t)| and |Sm(t)|, which were

introduced in Eq. (5.2). When |Sp(t)| > |Sm(t)|, the right-propagating component is dominant,

and the wave is moving towards positive z direction, and vice versa.

C.2 Effect of Changing φs and φac

Figure C.2: Time-dependent position of the spin wave with initial wave vector k = 11 (in units of
(2π/1000)) after the AC modulated magnonic crystal with ωac = 0.00316 is switched on at t = 0.
In (a) φs is varying at φac = 0, while in (b) φac is changing at φs = 0. Other parameters areA = 2,
q = 20× (2π/1000), γB0 = 1, and γ∆B0 = 0.001.

To investigate the influence of different phases φs and φac on the spin-wave propagation, we

plot in Fig. C.2(a) the time-dependent positions of the spin waves with different initial phases φs

when the AC magnonic crystal is activated; while in Fig. C.2(b) the spin-wave propagating curves

with various φac are shown for different AC magnonic crystals. We find from Figs. C.2(a) and

C.2(b) that the effects of changing both φs and φac on the spin-wave propagation are negligible.

This can be explained by the strong inequality between γ∆B0 and the spin-wave frequency ωs.

Note that, although the wave propagation is almost not affected by the changes of two phases; φac,

which is the phase in the AC modulation, directly enters into the evolution of the azimuthal angle

of the spin-wave “qubit” (cf. Eq. (5.21) in Chapter 5).
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It is worth pointing out that the propagation of the spin waves at the exact shifted resonance

(see all curves in both Figs. C.2(a) and C.2(b) as well as the blue curve in Fig. 5.2(b) of Chapter 5)

acquires a small negative average slope. This is caused by the difference between the velocities of

the right- and left-propagating wave components in Eqs. (5.19) and (5.20). Namely, for the given

ωac and δk, we have (Ω + ωac/2)/k+ < (Ω− ωac/2)/k−.

C.3 Spin-wave Dynamics under π-pulse

To study the spin-wave dynamics under the π-pulse, we simulate the evolution of the spin wave

while the magnonic crystal is switched on, and then, after completing the half period of the to-and-

fro motion, is turned off. This is done by numerically solving Eq. (5.1) with the free spin-wave

initial condition. The results are presented in Fig. C.3. It demonstrates clearly that after sending

the DC π-pulse, the initially right-propagating spin wave with k = 10 (in units of (2π/1000)) is

scattered backward to the state k = −10, while other waves with wave vectors k = 11 and 12

are still propagating forward (see Fig. C.3(c)). Furthermore, the simulations presented in Figs.

C.3(e) and C.3(g) show that if the frequency of the AC π-pulse is properly tuned, then the spin

wave with the pre-selected wave vector will be scattered by this pulse. For example, in Fig. C.3(e)

we observe that only the spin wave with initial wave vector k = 11 is reflected to k = −9 by the

AC π-pulse with ωac = 0.00316. Besides, in Fig. C.3(g), when ωac = 0.00632 is exploited, the

spin wave which initially has k = 12 is scattered backward to the state with k = −8. Note that

the complete backward scatterings of the spin waves with different wave vectors (see the magenta,

orange, and cyan waves in Figs. C.3(c), C.3(e), and C.3(g), respectively) are equivalent to the flips

of the corresponding spin-wave “qubits” from the north pole to the south pole by sending π-pulses

(cf. Figs. C.3(b), C.3(d), and C.3(f)).

C.4 Spin-wave Packet

Up to now, the magnonic dynamics was studied only for the extended states, while in reality,

the spin waves are sent as wave packets. For completeness, we simulated the evolution of a spin-

wave packet when sending an AC π/2-pulse to the system. In this simulation, we initiate a wave
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Figure C.3: Propagating directions of the spin waves before (subfigure (a)) and after (subfigures
(c), (e) and (g)) sending the π-pulses as shown in (b), (d), and (f). The initial wave vectors, given in
units of (2π/1000), are k = 10 (magenta), 11 (orange), and 12 (cyan). To indicate the directions of
the wave propagation, the spin-wave solutions Sx(z, t) are plotted at two consecutive time points
(the dashed ones are shown at the time after the solid ones), see also the colored arrows. From
(a) to (c): a DC pulse, as shown in (b), was activated at t = 100 and turned off at t = 3241.
The pulse has the duration ∆T = π/γ∆B0 = 3141, which is the half period of the to-and-fro
motion under the DC magnonic crystal. From (a) to (e), and (a) to (g): the AC modulated π-pulses
of the duration ∆T = 6283 ≈ 2π/γ∆B0 were applied with the AC frequencies ωac = 0.00316
and 0.00632 (cf. (d) and (f)), respectively. Subfigures (b), (d), and (f) also show the Bloch-sphere
representation (see Eq. (5.21) in Chapter 5) of the time evolution of the resonantly coupled spin
waves while sending the corresponding DC or AC π-pulse. Two resonantly coupled states |k⟩ and
|k − q⟩ are represented as the north and south poles on the Bloch spheres. In subfigure (b), the
waves with the wave vectors 10 and −10 are resonantly connected; in subfigure (d), the states |11⟩
and |−9⟩ are coupled; while in subfigure (f), the waves with the wave vectors 12 and −8 are paired.
The trajectories of the states are presented as the dashed curves with the arrowheads on the surface
of each Bloch sphere. The position of the states at three different times t1, t2, and t3 (as indicated
in the lower plots), are shown by the colored 3D arrows. The states initially located at the north
poles is moved to the south poles by the corresponding π-pulses. The duration of the AC π-pulse
is twice of the DC one. The parameters used for the simulations are A = 2, q = 20× (2π/1000),
γB0 = 1, ∆ = γ∆B0 = 0.001, φs = 0, and φac = 0. Time is measured in units 1/γB0. Main
observation: Waves satisfying the resonance conditions (the regular or shifted ones) change the
direction of propagation, while those which are out of the resonance preserve their direction.
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Figure C.4: Time evolution of the Gaussian spin-wave packet under the influence of the AC π/2-
pulse. The wave packet has an initial form S+(z, t = 0) = e−[(z−z0)/w]2eik0z; and we plot Sx(z, t)
at (a) t = 0, (b) t = 2000, (c) t = 4000, and (d) t = 10000 (measured in units 1/γB0). The
time-dependent AC π/2-pulse are shown in the lower part of each subfigure with the red dot to
indicate at which time point the wave is potted. The parameters used in this simulation are A = 2,
q = 20 × (2π/1000), γB0 = 1, ∆ = γ∆B0 = 0.001, ωac = 0.00316, φac = 0, z0 = 10000,
w = 2000, and k0 = 11× (2π/1000).
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packet, which has the center wave vector k0 = 11 × (2π/1000) and the wave-vector spreading

∆k ∼ 1/w ≈ 0.08 × (2π/1000). For the chosen parameters, k0 is at the exact shifted resonance

and the wave-vector spreading is also within the resonant interval (cf. Fig. 5.2(b) in Chapter 5). As

it is shown in Fig. C.4, after sending the π/2-pulse, the initial wave packet splits into two counter-

propagating packets. From that, we conclude that the scattering of a spin-wave packet remains

to be observable and the discussed mechanisms of spin-wave control can be functioning as well,

provided that the energy spread (spectral extent) of the packet is within the gap and the meander

structure is long enough to confine the to-and-fro motion of the wave packet.
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