
GATES IN INSTANTANEOUS NOISE BASED LOGIC: CREATING THE XOR/XNOR GATE

A Thesis

by

MOHAMMAD BASIM A. KHREISHAH

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Laszlo B. Kish
Committee Members, Mi Lu

Jun Zou
Ivan Ivanov

Head of Department, Costas N. Georghiades

August 2023

Major Subject: Electrical Engineering

Copyright 2023 Mohammad Basim A. Khreishah



ABSTRACT

In this research, we propose a new method of applying the XOR and XNOR gates on expo-

nentially large superpositions in Instantaneous Noise-Based Logic. These new gates are repeat-

able, and they can achieve an exponential speed up in computation with a polynomial requirement

in hardware complexity. Applying these basic operations is pivotal for using the Instantaneous

Noise Based Logic in different applications. We will be using mathematical proofs to show how

these gates work and their generality when applied on any superposition. We will show that every

XOR/XNOR gate requires 4 multiplications to do an O(2N ) number of parallel logic operations.

Finally, we will show examples about how to cascade and to apply different logic gates on any

superposition.

ii



DEDICATION

This work is dedicated to my mother, father and three siblings, for their great support and

encouragement throughout all my academic journey.

iii



ACKNOWLEDGMENTS

First of all, I thank all mighty Allah for the endless blessings bestowed upon me, including

very supportive family, advisors and friends.

I would like to thank Prof. Laszlo Kish for his impeccable academic insight and continuous

support, as he supervised and reviewed this work. His teachings has opened my mind and influ-

enced me greatly to try my best in conducting research in a creative and professional way.

Also, I would like to thank Dr. Walter Daugherity for the valuable discussions that we had

during this research, and for sharing his valuable expertise. I would also like to thank him for his

advice and revision while conducting this research.

I thank my committee members, Prof. Jun Zou, Prof. Ivan Ivanov and Prof. Mi Lu for taking

the time to review this work.

I thank my good friends Hasan Ibrahim and Mohammad Nasim for providing valuable advice

and support in academia and on a personal level.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by Prof. Laszlo Kish of the department of Electrical Engineering.

All work for the dissertation was completed by the student.

Funding Sources

All work was completed independently without financial support.

v



NOMENCLATURE

NBL Noise Based Logic

INBL Instantaneous Noise Based Logic

RTW Random Telegraph Waves

RNS Reference Noise System

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION AND LITERATURE REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Classic Logic VS Noise-Based Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Instantaneous Noise-based Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Random Telegraph Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Classical set up of Instantaneous Noise-based Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2.1 The Probabilistic definitions of Random Telegraph Waves . . . . . . . . . 4
1.2.3 Strings and the Representation of Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Superpositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.5 Circuit Realizations of Random Telegraph Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 NOT and CNOT gates in Instantaneous Noise Based Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 The NOT Gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 The CNOT Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. CREATING THE XOR AND THE XNOR GATES IN INBL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Solving the Dependency of the output bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Applying the XOR gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Applying the XNOR gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Cascading XOR gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Cascading an XOR gate with a CNOT gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. CONCLUSIONS AND FUTURE WORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



3.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



LIST OF FIGURES

FIGURE Page

1.1 This is a classic logic scheme. The voltage axis is normalized such that the supply
voltage equals 1. The lower level of power dissipation is scaled with the voltage
supply. The time axis is measured in clock cycles.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Part of a NBL processor.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 RTW example. The dashed line represents that beginning of a new clock cycle. At
the beginning of a clock cycle, the RTW has a 50% chance to change its value, and
50% chance to stay the same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Implementation of a Universe using RTWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 A typical system in INBL that uses reference wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Implementation of a NOT Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 General System before applying a CNOT Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 CNOT Gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9 Cascaded CNOTs: applying CNOTfh then CNOTif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.10 Cascaded CNOTs: applying CNOTif then CNOTfh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 A general system before applying XOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Producing an independent output bit in a superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The XOR gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 The XNOR gate using the NOT operation on the XOR gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 An alternate implementation of the XNOR gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Cascaded XOR gates circuit. The inputs and outputs can be of any value. This is
just an illustration to show the intended operation and does not mean that inputs or
outputs have a singular value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Implementation of cascaded XOR gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Cascading CNOT gate with an XOR gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



2.9 Applying CNOTdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Final implementation of cascaded CNOT and XOR gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

x



1. INTRODUCTION AND LITERATURE REVIEW

1.1 Classic Logic VS Noise-Based Logic

Recently, the increasing use of electronics in high-performance applications has led to a grow-

ing demand for energy-efficient devices that can handle large amounts of computation. As the

electronic devices continue to reach their minimum possible size, the computation demand has

been increasing at a rapid pace. To address this issue, researchers have been developing new ma-

terials, designs and technologies to create devices with a low power cost and a high computation

capability. In this thesis, Noise Based Logic (NBL) is introduced as an alternate method of com-

putation. The main motivation behind NBL is to surpass the limitations of modern computation

devices and to tackle challenging computation problems in an efficient manner.

In Classic logic schemes, binary values are assigned based on voltage levels. Two voltage

thresholds are used to decide the binary value; a high voltage value (Uhigh) and a low voltage value

(Ulow). Figure 1.1 illustrates this idea. If the voltage level is above Uhigh, then that indicates logic

1, and if the voltage is less than Ulow, then that indicates logic 0.

Figure 1.1: This is a classic logic scheme. The voltage axis is normalized such that the supply
voltage equals 1. The lower level of power dissipation is scaled with the voltage supply. The time
axis is measured in clock cycles.

1



NBL [1] was inspired by the stochastic nature of neuron signals, since the brain is incredibly

efficient at processing large amounts of data. Therefore, bits in Noise-Based Logic (NBL) are

stochastic functions of time and can be processed simultaneously. In NBL, each bit requires two

independent orthogonal noise sources, a noise source that represents the high value of a bit, and

another noise source that represents the low value of a bit. A reference system generates the

independent orthogonal noises required for operations. Figure 1.2 shows part of a typical NBL

processor. The reference system needs to be supplied to all gates.

Figure 1.2: Part of a NBL processor.

Power dissipation comparison: In conventional logic, clock distribution is one of the most

significant sources of dynamic power loss, because it is supplied everywhere in chips and it requires

the highest switching frequency. It also requires relatively high voltage so that it can switch fast

enough, as there is a trade off between switching frequency and voltage amplitude. In NBL, the

reference wires need to be supplied throughout the whole system, but it requires significantly

less voltage amplitude. Low voltage requirement makes NBL more efficient because the power

dissipation is proportional to the squared value of the voltage. Leakage currents are also reduced

in NBL because the voltage amplitude is less.

Computation capability comparison: NBL inherently posses the capability to apply operations

2



in a parallel fashion (this shall be discussed later in detail), unlike conventional logic, where the

bits need to be processed separately.

1.2 Instantaneous Noise-based Logic

Since NBL utilizes independent orthogonal stochastic processes, it requires time averaging

to produce the logic information which is inefficient. To eliminate the need for time averaging,

Instantaneous Noise-based Logic (INBL) [2–9] was proposed. INBL is a class of NBL, where

computations only require basic mathematical operations to produce the output. INBL has a higher

computation speed and less hardware complexity than NBL.

Types of INBL include Random Telegraph Waves (RTW) and Random spike train based logic.

This thesis will focus on RTW as it is relevant to the main work. The usual set up for INBL will be

explained using RTWs. In the following sections, all relevant literature will be reviewed in detail.

1.2.1 Random Telegraph Waves

Random Telegraph Waves (RTW) are driven by a periodic clock, such that their values only

change when a new clock cycle begins. Each RTW has only two values, positive and negative.

These two values are also equal in magnitude. At the beginning of each clock cycle, RTWs change

their values randomly with a probability of 0.5. Figure 1.3 illustrates the simplest type of RTWs

where the wave oscillates between 1 and -1 randomly and with equal probabilities. These values

for the RTW will used throughout the rest of this thesis.

1.2.2 Classical set up of Instantaneous Noise-based Logic

Since RTWs are relevant to this work, they will be used as an example to illustrate a typical

INBL scheme. Each bit has two values (high and low), thus, each bit requires two independent

RTWs to represent each of these values. The independent RTWs are generated by a Reference

Noise System (RNS), so that they can be used throughout the whole system and not just in the

generation phase. If a system has a resolution of N noise bits, then 2N independent RTWs are

needed to represent such a system. Each RTW reference is denoted by Ri,j(t), where [i] is the bit

significance number and the [j] is the bit value (j ∈ {1, 0}).

3



Figure 1.3: RTW example. The dashed line represents that beginning of a new clock cycle. At the
beginning of a clock cycle, the RTW has a 50% chance to change its value, and 50% chance to stay
the same.

For example, to represent a 2-bit system, Four independent RTWs need to be supplied by the

RNS. The following RTWs are needed for such a system:

R1,0(t) → Bit significance 1 with binary value 0,

R1,1(t) → Bit significance 1 with binary value 1,

R2,0(t) → Bit significance 2 with binary value 0,

R2,1(t) → Bit significance 2 with binary value 1

1.2.2.1 The Probabilistic definitions of Random Telegraph Waves

Each RTW must have an average of zero:

〈Ri,j(t)〉 = 0 (1.1)

Where the 〈〉 operator is used to indicate the average of a time varying signal.

The amplitude of all RTWs are assumed to be one, and by extension the multiplication of a

RTW with itself will give a one:

R2
i,j(t) = 1 (1.2)

4



All the RTWs must be independent and they must be orthogonal to each other, meaning that

the cross correlation between the RTWs must be zero:

〈Ri,j(t)Rn,m(t)〉 = 0 (1.3)

such that i 6= n or j 6= m.

The product of any number of RTWs is a new RTW that is orthogonal to all other RTWs,

including the RTWs that contribute to the product. The following equations prove and illustrate

this idea:

Ri,j(t)Rn,m(t) = Rk,l(t) (1.4)

such that such that i 6= n or j 6= m.

Rk,l(t) is orthogonal to Ri,j(t) and Rn,m(t):

〈Ri,j(t)Rk,l(t)〉 = 〈R2
i,j(t)Rn,m(t)〉 = 〈Rn,m(t)〉 = 0 (1.5)

〈Rn,m(t)Rk,l(t)〉 = 〈R2
n,m(t)Ri,j(t)〉 = 〈Ri,j(t)〉 = 0 (1.6)

The product Rk,l(t) is also orthogonal to any other RTW Wa,b(t), where a /∈ {i, n}:

〈Ra,b(t)Rk,l(t)〉 = 〈Ra,b(t)Ri,j(t)Rn,m(t)〉 = 0 (1.7)

1.2.3 Strings and the Representation of Numbers

Suppose that the a RNS produces 2N of RTWs, then any binary number {B} in the range of

[0,2N ] can be represented. To represent a binary number, the RTWs corresponding to the binary

value need to be multiplied together:
N∏
i=1

Ri,j(i,B)(t) (1.8)

Where i is the bit significance, and j is the bit value and it is a function of B and i.

5



For example to represent the number (1010)2, then 4 RTWs need to be supplied by the RNS

and their product will be:

B(1010)2 → R1,0(t)R2,1(t)R3,0(t)R4,1(t) (1.9)

The product in equation 1.8 shall be called a string and denoted by SB(t). It is important to note

that each string must be the product of N number of independent RTWs, where N is the number of

the bits.

1.2.4 Superpositions

A superposition Y (t) is the summation of strings:

Y (t) =
U∑

u=1

SBu(t) (1.10)

Where Bu is the binary number corresponding to the index u, and U is the number of strings

that contribute to the overall superposition. The following observations should be noted about

superpositions:

• 1 ≤ U ≤ 2N

• 1 ≤ Bu ≤ 2N

• The number of all possible sub-spaces of a superposition STotal:

STotal =
2N∑
k=1

(
2N

k

)
= 22

N − 1 (1.11)

This means that a superposition can represent more than one string at the same time. This

property is what gives NBL its potential in parallel computing; i.e. exponential parallel operations

can be potentially realized. For example, the superposition that represents the set of binary numbers

6



{(010)2, (110)2, (111)2} will be:

Y (t) = R1,0(t)R2,1(t)R3,0(t) +R1,0(t)R2,1(t)R3,1(t) +R1,1(t)R2,1(t)R3,1(t) (1.12)

Note: From here on, the time notation will be omitted for convenience, as all the signals

included should be functions of time.

Another example is the Achilles Heel algorithm which is an efficient algorithm that can be used

to realize a superposition that includes all possible states, such a superposition is called a Universe

and shall be denoted by U :

U = (R10 +R11)(R20 +R21)(R30 +R31)....(RN0 +RN1) (1.13)

1.2.5 Circuit Realizations of Random Telegraph Waves

As a consequence of the previous discussion, four simple circuit elements can be used to realize

the hardware synthesis of RTWs: Addition, Subtraction, Multiplication and Division (Subtraction

and Division will not be used in this thesis). This means that the implementation of RTWs is fairly

simple. Figure 1.4 shows the implementation of a Universe of a three bit system.

Figure 1.4: Implementation of a Universe using RTWs

7



1.3 NOT and CNOT gates in Instantaneous Noise Based Logic

Previously, the NOT and the CNOT gates were created by applying operations on the reference

wires. Before discussing these methods, it will be beneficial to discuss what a general system

should look like. Figure 1.5 illustrates a typical system, where the "Hyperspace Synthesizer" unit

produces the output superposition Y.

Figure 1.5: A typical system in INBL that uses reference wires

Let us suppose that we have the following arbitrary superposition:

Y = Y0Ri0 + Y1Ri1 (1.14)

Where Y0 and Y1 are arbitrary superpositions that do not contain Ri0 or Ri1. Furthermore, Y0 and

Y1 can not be zero at the same time. Equation 1.14 shows that any arbitrary superposition can be

represented in terms of any bit i. This general superposition can represent a Universe or any subset

of it, and it will used to prove the generality of the gates.

1.3.1 The NOT Gate

To conduct a NOT operation [10] in INBL for a certain bit i, the high value (Ri1) and low value

(Ri0) reference wires of that bit need to be multiplied by the multiplication of the high and low

values (Ri1Ri0) of that bit. Figure 1.6 shows the implementation of the NOT gate.

8



Figure 1.6: Implementation of a NOT Gate

If the NOT operation is applied on the superposition in equation 1.14, then the superposition

becomes:

Y = Y0Ri0Ri0Ri1 + Y1Ri1Ri0Ri1 (1.15)

By using equation 1.2, equation 1.15 becomes:

Y = Y0Ri1 + Y1Ri0 (1.16)

By comparing equation 1.14 and equation 1.16, it is noticed that the NOT gate have been applied

to all strings in the superposition.

1.3.2 The CNOT Gate

The Controlled NOT operation [10] requires a control bit and a target bit. When the control

bit is high value, a NOT operation will be applied to the target bit, and when the control bit is low

value, no operation will be applied to the target bit. Suppose that a system yields the following

superposition:

9



Y = Y0Ri0Rf0 + Y1Ri0Rf1 + Y2Ri1Rf0 + Y3Ri1Rf1 (1.17)

Where Y0, Y1, Y2 and Y3 are arbitrary superposition that do not contain bits i or f. This operation

shall be denoted by CNOTif . Figure 1.7 shows such a system.

Figure 1.7: General System before applying a CNOT Gate

Suppose that in the previous superposition it is required to apply the CNOT gate such that bit i

is the control bit and bit f is the target bit. This operation shall be denoted by CNOTif . To apply

the gate, all that is needed is to multiply the reference wire of the high value of the control bit (Ri1)

by the multiplication of the high value and the low value of the target bit (Rf1Rf0). By substituting

this operation in equation 1.17, the following superposition is produced:

Y = Y0Ri0Rf0 + Y1Ri0Rf1 + Y2Ri1(Rf0Rf1)Rf0 + Y3Ri1(Rf0Rf1)Rf1 (1.18)

Using equation 1.2, equation 1.18 becomes:

Y = Y0Ri0Rf0 + Y1Ri0Rf1 + Y2Ri1Rf1 + Y3Ri1Rf0 (1.19)

10



Figure 1.9 illustrates CNOTif and its output.

Figure 1.8: CNOT Gate

Cascaded CNOT operations shall be investigated next. Suppose that two CNOT gates need

to be applied one after the other, then the sequence of operation must be considered and must be

accounted for. There are two situations that arise from cascading CNOT gates:

• Situation1: The CNOT gates are non-interacting, and that means that the CNOT can be

applied normally just as a single CNOT operation.Non-interacting CNOT gates will occur

when the target bit of the CNOT operation that is being applied first, is not the control bit of

the second CNOT operation.

• Situation2: The CNOT gates are interacting, and that means that the original method needs

modification since the first CNOT will interfere with the second CNOT. Interacting CNOT

gates will occur when the target bit of the CNOT operation that is being applied first is the

control bit of the second CNOT operation.

It is best to explain such situations with examples.Assuming that a system generates the fol-

lowing superposition:

11



Y = Y0Ri0Rf0Rh0 + Y1Ri0Rf1Rh0 + Y2Ri1Rf0Rh0 + Y3Ri1Rf1Rh0+

Y4Ri0Rf0Rh1 + Y5Ri0Rf1Rh1 + Y6Ri1Rf0Rh1 + Y7Ri1Rf1Rh1

(1.20)

Example of Situation1: Let us assume that CNOTfh will be applied first then CNOTif will be

applied next. In this case, the CNOT gates are non-interacting and the gates can applied directly

with no modification, because the control bit i of CNOTif has not changed. To apply CNOTfh,

the reference wire of the high value of the control bit (Rf1) is multiplied by the multiplication of

the high value and the low value of the target bit (Rh1Rh0). To apply CNOTif , the reference wire

of the high value of the control bit (Ri1) is multiplied by the multiplication of the high value and

the low value of the target bit (Rf1Rf0). According to these operations, equation 1.20 becomes:

Y = Y0Ri0Rf0Rh0 + Y1Ri0Rf1(Rh1Rh0)Rh0 + Y2Ri1(Rf1Rf0)Rf0Rh0

+ Y3Ri1(Rf1Rf0)Rf1(Rh1Rh0)Rh0 + Y4Ri0Rf0Rh1 + Y5Ri0Rf1(Rh1Rh0)Rh1

+Y6Ri1(Rf1Rf0)Rf0Rh1 + Y7Ri1(Rf1Rf0)Rf1(Rh1Rh0)Rh1

(1.21)

Using equation 1.2, equation 1.21 becomes:

Y = Y0Ri0Rf0Rh0 + Y1Ri0Rf1Rh1Y2Ri1Rf1Rh0 + Y3Ri1Rf0Rh1+

Y4Ri0Rf0Rh1 + Y5Ri0Rf1Rh0 + Y6Ri1Rf1Rh1 + Y7Ri1Rf0Rh0

(1.22)

Figure 1.9 illustrates the non-interacting CNOTs.

Example of Situation2: Let us assume that CNOTif will be applied first then CNOTfh will

be applied next. In this case, the CNOT gates are interacting because the target bit f in the first

CNOT is the control bit in the second CNOT. A modification is needed to get the correct results. In

this setup, there is an indirect relationship between between bits i and h. Three special interactions

appear here:

12



Figure 1.9: Cascaded CNOTs: applying CNOTfh then CNOTif

• When i is high and f is low, bit h gets complemented.

• When i is high and f is high, bit h doesn’t get complemented.

• When i is low and f is high, bit h gets complemented.

In order to apply the gates successfully, the same operations will be applied as if they were

non-interacting, but to account for the three special cases, the high value of i (Ri1) needs to be

multiplied by the low and high value of h (Rh1Rh0). Equation 1.20 becomes:

Y = Y0Ri0Rf0Rh0 + Y1Ri0Rf1(Rh1Rh0)Rh0 + Y2Ri1(Rf1Rf0)(Rh1Rh0)Rf0Rh0

+ Y3Ri1(Rf1Rf0)(Rh1Rh0)Rf1(Rh1Rh0)Rh0 + Y4Ri0Rf0Rh1 + Y5Ri0Rf1(Rh1Rh0)Rh1

+Y6Ri1(Rf1Rf0)(Rh1Rh0)Rf0Rh1 + Y7Ri1(Rf1Rf0)(Rh1Rh0)Rf1(Rh1Rh0)Rh1

(1.23)

13



Using equation 1.2, equation 1.23 becomes:

Y = Y0Ri0Rf0Rh0 + Y1Ri0Rf1Rh1 + Y2Ri1Rf1Rh1 + Y3Ri1Rf0Rh0+

Y4Ri0Rf0Rh1 + Y5Ri0Rf1Rh0 + Y6Ri1Rf1Rh0 + Y7Ri1Rf0Rh1

(1.24)

Figure 1.10 illustrates such a case.

Figure 1.10: Cascaded CNOTs: applying CNOTif then CNOTfh

14



2. CREATING THE XOR AND THE XNOR GATES IN INBL

2.1 Problem definition

Suppose that an INBL system generates the following superpostion:

Yinitial = Y0Ri0Rf0Rhx0 + Y1Ri0Rf1Rhx1 + Y2Ri1Rf0Rhx2 + Y3Ri1Rf1Rhx3 (2.1)

Where Ri0 represents the zero value of the ith bit,Rf0 represents the zero value of the f th bit, Ri1

represents the one value of the ith bit, Rf1 represents the one value of the f th bit. { Rhx0 , Rhx1 , Rhx2 , Rhx3

} represent the hth bit that have arbitrary initial values of { x0, x1, x2, x3 }. { Y0,Y1,Y2,Y3 } are arbi-

trary superpositions that do not contain RTWs of bits i,f or h. Figure 2.1 illustrates such a system.

Figure 2.1: A general system before applying XOR Gate

Assume that bits { i,f } are the inputs to the XOR gate and the output appears on bit { h }. All

strings in a superposition must be considered when constructing a gate in INBL; this means that

all the combinations of input bits in each string should give the correct result on the output bit.

15



Since there are 3 bits involved in this operation, one would expect that 8 possibilities would arise

in equation 2.1, but this does not happen. Since the XOR gate is only applied on inputs, the output

bit value is not part of the computation and its previous value should not affect the result or the

method. This causes the possibilities to collapse to only 4.

Given the previous discussion, it is concluded that all strings in a superposition need to be

independent of the output bit to successfully apply the XOR gate. This means that the value of the

output bit should not depend on the string in the superposition. Another challenge that arises in

INBL is that there is a way to invert a bit, but there is no way to set it to a certain value with a single

operation. In the following subsections, we will explain how to solve these problems together and

get our desired output.

2.2 Solving the Dependency of the output bit

In order to solve the output dependency on the strings in a superposition, the strings need to be

manipulated such that all output bits in any string will have the same output value. For example,

all the values { x0, x1, x2, x3 } in equation 2.1 need to be the same value. Zero is chosen arbitrarily,

but one would work as well. This can be done by multiplying the reference wire of Rh1 by Rh0Rh1.

If a string contains a Rh1, it will be inverted to a Rh0 and if it contains a Rh0, it will stay the same,

thus, all the strings will contain Rh0. This operation transforms the superposition in equation 2.1

to the following:

YIndependent = Y0Ri0Rf0Rh0 + Y1Ri0Rf1Rh0 + Y2Ri1Rf0Rh0 + Y3Ri1Rf1Rh0 (2.2)

Figure 2.2 illustrates this operation.

16



Figure 2.2: Producing an independent output bit in a superposition

2.3 Applying the XOR gate

An XOR operation yields one when the inputs are the same and yields a zero otherwise. In

equation 2.2, the output bit starts at zero, this means that applying the XOR gate is equivalent

to inverting the output bit when the inputs are different. As discussed previously, inverting Rh0

means multiplying it by Rh0Rh1 and inverting a bit twice yields the original value. In the previous

statement lies the key to the XOR gate, if the high value of the inputs (Ri1 and Rf1) are multiplied

by the inverting operator (Rh0Rh1), the following cases occur:

• Bit i is high and bit f is high: the output is inverted twice and it retains its zero value.

• Bit i is low and bit f is high: the output is inverted to one.

• Bit i is high and bit f is low: the output is inverted to one.

• Bit i is low and bit f is low: no operation happens because the low reference wires of the

inputs have not been multiplied by anything. The output bit retains its zero value.

17



Equation 2.2 becomes:

YXOR = Y0Ri0Rf0Rh0 + Y1Ri0Rf1(Rh0Rh1)Rh0

+ Y2Ri1(Rh0Rh1)Rf0Rh0 + Y3Ri1(Rh0Rh1)Rf1(Rh0Rh1)Rh0

= Y0Ri0Rf0Rh0 + Y1Ri0Rf1NOT (Rh0)

+ Y2Ri1Rf0NOT (Rh0) + Y3Ri1Rf1NOT (NOT (Rh0))

= Y0Ri0Rf0Rh0 + Y1Ri0Rf1Rh1 + Y2Ri1Rf0Rh1 + Y3Ri1Rf1Rh0

(2.3)

The XOR gate is illustrated in Figure 2.3. It is worth noting that there were multiple ways to apply

the XOR, but they all have the same principle. For example, the low value reference wires Ri0 and

Rf0 could have been multiplied by Rh0Rh1 to get the XOR gate.

Figure 2.3: The XOR gate

2.4 Applying the XNOR gate

Since we implemented the XOR gate, we can simply use the result from the XOR gate and the

NOT gate to get the XNOR gate. Figure 2.4 illustrates such an idea. If the NOT gate is applied to

bit h in equation 2.3, then we get the XNOR gate:

18



YXNOR = Y0Ri0Rf0Rh1 + Y1Ri0Rf1Rh0 + Y2Ri1Rf0Rh0 + Y3Ri1Rf1Rh1 (2.4)

Figure 2.4: The XNOR gate using the NOT operation on the XOR gate

Alternatively, the XNOR gate can be derived using the same method as the XOR gate. Starting

from equation 2.2, the high value of an input Ri1 and the low value of the other input Rf0 need to

be multiplied by Rh0Rh1 to get equation 2.4. This is illustrated by Figure 2.5.

19



Figure 2.5: An alternate implementation of the XNOR gate

2.5 Cascading XOR gates

In this section, the cost of cascading XOR gates will be discussed. Suppose that it is needed to

cascade two XOR gates as in Figure 2.6. The following superposition represents such a situation:

Yinitial =Y0Ri0Rf0Rd0Rhx0 + Y1Ri1Rf0Rd0Rhx1 + Y2Ri0Rf1Rd0Rhx2 + Y3Ri1Rf1Rd0Rhx3+

Y4Ri0Rf0Rd1Rhx4 + Y5Ri1Rf0Rd1Rhx4 + Y6Ri0Rf1Rd1Rhx6 + Y7Ri1Rf1Rd1Rhx7

(2.5)

Where superpositions { Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7} are arbitrary. Bits i,f and d are the inputs and

the output is bit h. Only one output bit is needed for such an operation since the gates will be

applied in a single step rather than multiple steps.

20



Figure 2.6: Cascaded XOR gates circuit. The inputs and outputs can be of any value. This is
just an illustration to show the intended operation and does not mean that inputs or outputs have a
singular value.

To apply the cascaded XOR gates, the output needs to be independent and all the high values

of the input reference wires need to be multiplied by Rh0Rh1. Figure 2.7 illustrates this idea. The

following superposition will be generated:

YCascadedXOR =Y0Ri0Rf0Rd0Rh0 + Y1Ri1Rf0Rd0Rh1 + Y2Ri0Rf1Rd0Rh1 + Y3Ri1Rf1Rd0Rh0+

Y4Ri0Rf0Rd1Rh1 + Y5Ri1Rf0Rd1Rh0 + Y6Ri0Rf1Rd1Rh0 + Y7Ri1Rf1Rd1Rh1

(2.6)

Cascading two XOR gates only requires an extra multiplication operation and requires no extra

bits. This can be extended to any XOR operations that are acting on N number of bits. After the

first XOR gate, any extra XOR gate will require only one multiplication operation.

21



Figure 2.7: Implementation of cascaded XOR gates

2.6 Cascading an XOR gate with a CNOT gate

Assume that the circuit in Figure 2.8 needs to be implemented in INBL. The initial superposi-

tion will be the same as the one in equation 2.5.

Figure 2.8: Cascading CNOT gate with an XOR gate

First, the CNOT gate will be applied, where d is the control bit and i is the target bit. The

following superposition will be generated after the CNOT gate:

22



YCNOTdi
=Y0Ri0Rf0Rd0Rhx0 + Y1Ri1Rf0Rd0Rhx1 + Y2Ri0Rf1Rd0Rhx2 + Y3Ri1Rf1Rd0Rhx3+

Y4Ri1Rf0Rd1Rhx4 + Y5Ri0Rf0Rd1Rhx4 + Y6Ri1Rf1Rd1Rhx6 + Y7Ri0Rf1Rd1Rhx7

(2.7)

Figure 2.9 illustrates this operation.

Figure 2.9: Applying CNOTdi

The tricky part is applying the XOR gate. Two cases arise here:

• Bit d is zero: XOR gate is applied normally as bit i did not change.

• Bit d is one: i gets inverted and the XOR gate will be inverted .

These two cases can be realized by multiplying Rd1 by Rh0Rh1, then the regular XOR gate will be

applied. Figure 2.10 demonstrates this.

23



Figure 2.10: Final implementation of cascaded CNOT and XOR gates

The resulting superposition will be:

YCascadedXOR =Y0Ri0Rf0Rd0Rh0 + Y1Ri1Rf0Rd0Rh1 + Y2Ri0Rf1Rd0Rh1 + Y3Ri1Rf1Rd0Rh0+

Y4Ri1Rf0Rd1Rh1 + Y5Ri0Rf0Rd1Rh0 + Y6Ri1Rf1Rd1Rh0 + Y7Ri0Rf1Rd1Rh1

(2.8)

24



3. CONCLUSIONS AND FUTURE WORK

3.1 Conclusions

The XOR and XNOR gates [11] have been successfully implemented in INBL. It was proven

that only 4 multiplications were needed in the implementation:

• A single multiplication for the inverting operator.

• Three multiplications for the input and output bits.

Since the gates in INBL act on all the strings in a superposition, the yield of a single XOR operation

will be exponentially large. It was also shown that the XOR operation is commutative as the

XOR operation was repeatable with low cost. It can also be integrated efficiently with previous

gates. These gates have potential applications in challenging the supremacy of quantum computing

schemes, as they perform the same functions with simpler implementation and higher accuracy.

3.2 Future work

Our future work will focus on implementing other gates in INBL, so that we can eventually

implement quantum algorithms. The commutativity of the cascaded CNOT gate with the XOR

gate shall be explored later. We are also investigating new ways to implement a search algorithm

that is both efficient and repeatable. We are also exploring new NBL schemes that might have

better potential than the current system. Finally, we are investigating schemes that can be applied

directly on the superposition and do not act on the reference wires.

25



REFERENCES

[1] L. B. Kish, “Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition

of logic states,” Physics Letters A, vol. 373, no. 10, pp. 911–918, 2009.

[2] L. B. Kish, S. Khatri, and S. Sethuraman, “Noise-based logic hyperspace with the super-

position of 2n states in a single wire,” Physics Letters A, vol. 373, no. 22, pp. 1928–1934,

2009.

[3] L. B. Kish, S. Khatri, and F. Peper, “Instantaneous noise-based logic,” Fluctuation and Noise

Letters, vol. 09, no. 04, pp. 323–330, 2010. doi: 10.1142/S0219477510000253.

[4] F. Peper and L. B. Kish, “Instantaneous, non-squeezed, noise-based logic,” Fluctuation and

Noise Letters, vol. 10, no. 02, pp. 231–237, 2011. doi: 10.1142/S0219477511000521.

[5] H. E. Wen, L. B. Kish, A. Klappenecker, and F. Peper, “New noise-based logic representations

to avoid some problems with time complexity,” Fluctuation and Noise Letters, vol. 11, no. 02,

p. 1250003, 2012. doi: 10.1142/S0219477512500034.

[6] H. E. Wen, L. B. Kish, and A. Klappenecker, “Complex noise-bits and large-scale instan-

taneous parallel operations with low complexity,” Fluctuation and Noise Letters, vol. 12,

no. 01, p. 1350002, 2013. doi: 10.1142/S0219477513500028.

[7] L. B. Kish, C. G. Granqvist, T. Horvath, A. Klappenecker, H. Wen, and S. M. Bezrukov,

“Bird’s-eye view on noise-based logic,” International Journal of Modern Physics: Confer-

ence Series, vol. 33, p. 1460363, 2014. doi: 10.1142/S2010194514603639.

[8] B. Zhang, L. B. Kish, and C.-G. Granqvist, “Drawing from hats by noise-based logic,” Inter-

national Journal of Parallel, Emergent and Distributed Systems, vol. 32, no. 3, pp. 244–251,

2017. doi: 10.1080/17445760.2016.1140168.

[9] L. B. Kish, “quantum supremacy revisited: low-complexity, deterministic solutions of the

original deutschjozsa problem in classical physical systems,” Royal Society Open Science,

26



vol. 10, no. 3, p. 221327, 2023. doi: 10.1098/rsos.221327.

[10] L. B. Kish and W. C. Daugherity, “Noise-based logic gates by operations on the reference

system,” Fluctuation and Noise Letters, vol. 17, no. 04, p. 1850033, 2018.

[11] M. B. Khreishah, W. C. Daugherity, and L. B. Kish, “XOR and XNOR gates in instantaneous

noise based logic,” 2023.

27


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	Introduction and Literature Review
	Classic Logic VS Noise-Based Logic
	Instantaneous Noise-based Logic
	Random Telegraph Waves
	Classical set up of Instantaneous Noise-based Logic
	The Probabilistic definitions of Random Telegraph Waves

	Strings and the Representation of Numbers
	Superpositions
	Circuit Realizations of Random Telegraph Waves

	NOT and CNOT gates in Instantaneous Noise Based Logic
	The NOT Gate
	The CNOT Gate


	Creating the XOR and the XNOR Gates in INBL
	Problem definition
	Solving the Dependency of the output bit
	Applying the XOR gate
	Applying the XNOR gate
	Cascading XOR gates
	Cascading an XOR gate with a CNOT gate

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future work

	REFERENCES



