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ABSTRACT

Deep learning approaches have demonstrated impressive performance on a variety of data and

tasks, where deep models take some data as inputs and are trained to output desired predictions.

While the capability of expressiveness of advanced deep models has been improved greatly, their

training requires a huge amount of data. A common way to train a deep model is to use the su-

pervised mode in which a sufficient amount of input data and label pairs are given. However,

since a large number of labels are required, the supervised training becomes inapplicable in many

real-world scenarios, where labels are expensive, limited, imbalanced, or even unavailable. In

such cases, self-supervised learning (SSL) enables the training of deep models on unlabeled data,

removing the need for excessively annotated labels. When no labeled data is available, SSL can

serve as an promising approach to learning representations from and enabling explainability for un-

labeled data. In this dissertation, we study and develop multiple theoretically grounded approaches

of using self-supervision to perform both learning and explanation under multiple scenarios with

image and graph data.

The general goal of learning is to learn representations that are both informative and robust to

noise from unlabeled data. In contrast to supervised learning, it is more challenging for SSL to

learn deep models that are robust to the noise in given data. This is because the self-supervision

from data itself may include noise. To achieve such a goal with SSL, we start by studying and

investigating the denoising capability of SSL approaches. In particular, we study SSL approaches

in the image denoising problems under the scenarios where clean image are unavailable. Self-

supervised frameworks that learn denoising models with merely individual noisy images have

shown strong capability and promising performance in various image denoising tasks. Exist-

ing self-supervised denoising frameworks are mostly built upon the same theoretical foundation

inspired by denoising autoencoder, where the denoising models are required to be J -invariant.

However, our analyses indicate that the current theory and the J -invariance may lead to denoising

models with reduced performance. In this dissertation, we first introduce Noise2Same, a novel
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self-supervised denoising framework. In Noise2Same, a new self-supervised loss is proposed by

deriving a self-supervised upper bound of the typical supervised loss. In particular, Noise2Same

requires neither J -invariance nor extra information about the noise model and can be used in a

wider range of denoising applications. We analyze our proposed Noise2Same both theoretically

and experimentally. The experimental results show that our Noise2Same remarkably outperforms

previous self-supervised denoising methods in terms of denoising performance and training effi-

ciency.

Given the promising capability of denoising, we further generalize above theoretical framework

for SSL into even more challenging data and problems. Specifically, we propose self-supervised

approaches to learn representations with graph neural networks (GNNs) on graph data. SSL of

GNNs is emerging as a promising way of leveraging unlabeled graph data. Currently, most meth-

ods are based on contrastive learning adapted from the image domain, which requires view gener-

ation and a sufficient number of negative samples. In contrast, existing predictive models do not

require negative sampling, but lack theoretical guidance on the design of pretext training tasks. In

this dissertation, we then propose the LaGraph, a predictive SSL framework grounded by the above

denoising theory and by formulating the SSL task as the latent graph prediction problem. Learning

objectives of LaGraph are derived as self-supervised upper bounds to objectives for predicting un-

observed latent graphs. In addition to its improved performance, LaGraph provides explanations

for recent successes of predictive models that include invariance-based objectives. We provide the-

oretical analysis comparing LaGraph to related methods in different domains. Our experimental

results demonstrate the superiority of LaGraph in performance and the robustness to the decreasing

training sample size on both graph-level and node-level tasks.

To ensure reliable deep models are learned under self-supervision, one approach is to enable

the explainability of self-supervisely trained models. However, without given downstream tasks

and labels, the explanation become infeasible with existing learning-based explanation pipelines

and approaches. Specifically, they are incapable of producing explanations for a multitask predic-

tion model with a single explainer. They are also unable to provide explanations in cases where
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the model is trained in a self-supervised manner, and the resulting representations are used in

future downstream tasks. In this dissertation, we further demonstrate with graph data that self-

supervision can further be used to learn to explain self-supervisely trained deep models. Specif-

ically, we propose a Task-Agnostic GNN Explainer (TAGE) that is independent of downstream

models and trained under self-supervision with no knowledge of downstream tasks. TAGE enables

the explanation of GNN embedding models with unseen downstream tasks and allows the efficient

explanation of multitask models. Our extensive experiments show that TAGE can significantly

speed up the explanation efficiency by using the same model to explain predictions for multiple

downstream tasks while achieving an explanation quality as good as or even better than the current

state-of-the-art GNN explanation approaches.

Finally, given the success in natural images and graph data, we further investigate the capa-

bility of self-supervised representation learning to advance scientific discoveries in the scenario

of genome-wide association studies (GWAS), which are used to identify relationships between

genetic variations and specific traits. When applying GWAS to high-dimensional medical imag-

ing data, a key step is to extract lower-dimensional, yet informative representations of the data as

traits. Representation learning for imaging genetics is largely under-explored due to the unique

challenges posed by GWAS in comparison to typical visual representation learning. We tackle this

problem from the mutual information (MI) perspective by identifying key limitations of existing

SSL methods. We introduce a trans-modal SSL framework Genetic InfoMax (GIM), including a

regularized MI estimator and a novel genetics-informed transformer to address the specific chal-

lenges of GWAS. We evaluate GIM on human brain 3D MRI data and establish standardized eval-

uation protocols to compare it to existing approaches. Our results demonstrate the effectiveness of

GIM and a significantly improved performance on GWAS.
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1. INTRODUCTION

1.1 Background and Preliminaries*

A deep model takes some data as its inputs and is trained to output desired predictions. A com-

mon way to train a deep model is to use the supervised mode in which a sufficient amount of input

data and label pairs are given. However, since a large number of labels are required, the supervised

training becomes inapplicable in many real-world scenarios, where labels are expensive, limited,

imbalanced [5], or even unavailable. In such cases, self-supervised learning (SSL) enables the

training of deep models on unlabeled data, removing the need of excessive annotated labels. When

no labeled data is available, SSL serves as an approach to learn representations from unlabeled data

itself. When a limited number of labeled data is available, SSL from unlabeled data can be used

either as a pre-training process after which labeled data are used to fine-tune the pre-trained deep

models for downstream tasks, or as an auxiliary training task that contributes to the performance

of main tasks.

Recently, SSL has shown its promising capability in data restoration tasks, such as image

super-resolution [6], image denoising [7, 1, 8], and single-cell analysis [2]. It has also achieved

remarkable progress in representation learning for different data types, including language se-

quences [9, 10, 11], images [12, 13, 14, 15], and graphs with sequence models [16, 17] or spectral

models [18]. The key idea of these methods is to define pretext training tasks to capture and

use the dependencies among different dimensions of the input data, e.g., the spatial, temporal, or

channel dimensions, with robustness and smoothness. Taking the image domain as an example,

[19, 20], and [21] design different pretext tasks to train convolutional neural networks (CNNs) to

capture relationships between different crops from an image. [13] and [22] train CNNs to capture

dependencies between different augmentations of an image.

Based on how the pretext training tasks are designed, SSL methods can be divided into two cat-

*Partially reprinted with permission from “Self-supervised learning of graph neural networks: A unified review”
by Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, Shuiwang Ji, 2022. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45, 2412 - 2429, Copyright 2023 by IEEE.
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Figure 1.1: A comparison between the contrastive model and the predictive model in general.

egories; namely contrastive models and predictive models. The major difference between the two

categories is that contrastive models require data-data pairs for training, while predictive models

require data-label pairs, where the labels are self-generated from the data, as illustrated in Fig-

ure 1.1. Contrastive models usually utilize self-supervision to learn data representation or perform

pre-training for downstream tasks. Given the data-data pairs, contrastive models perform discrim-

ination between positive pairs and negative pairs. On the other hand, predictive models are trained

in a supervised fashion, where the labels are generated based on certain properties of the input data

or by selecting certain parts of the data. Predictive models usually consist of an encoder and one

or more prediction heads. When applied as a representation learning or pre-training method, the

prediction heads of a predictive model are removed in the downstream task.

In graph data analysis, SSL can potentially be of great importance to make use of a massive

amount of unlabeled graphs such as molecular graphs [23, 24]. With the rapid development of

graph neural networks (GNNs) [25, 26, 27, 28, 29, 30, 31], basic components of GNNs [32, 33, 34,

35, 36, 37] and other related fields [38, 39] have been well studied and made substantial progress.

In comparison, applying SSL on GNNs is still an emerging field. Due to the similarity in data

structure, many SSL methods for GNNs are inspired by methods in the image domain, such as
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DGI [40] and graph autoencoders [41]. However, there are several key challenges in applying SSL

on GNNs due to the uniqueness of the graph-structured data. To obtain good representations of

graphs and perform effective pre-training, self-supervised models are supposed to capture essential

information from both nodes attributes and structural topology of graphs [42].

For contrastive models, The performance of the learned representation or pre-trained model

on downstream tasks heavily depends on the specific contrastive objective and the selection of

transformations to generate views. Recent works study advanced theory-guided contrastive ob-

jectives [43] and view generation approaches [44, 45] that optimize the downstream performance

of contrastive models. Although promising performance can be achieved, contrastive learning ap-

proaches usually suffer from computational cost and memory issue because its training requires

the contrast among a sufficient number of examples at the same time. The drawback prevent its

application to extremely large graphs which are very common in industrial applications.

For predictive models, it becomes essential that what labels should be generated so that the non-

trivial representations are learned to capture information in both node attributes and graph struc-

tures. Unlike contrastive methods grounded by the problem of mutual information maximization,

the predictive methods, especially the graph property prediction and invariance regularization-

based methods, utilize different pretext learning tasks motivated by individual hypotheses and

based on empirical studies. However, they lack guidance from unified theoretical frameworks to

design specific pretext tasks for different downstream tasks. The information bottleneck princi-

ple [46, 47] may be used to interpret the effectiveness of several predictive methods but further

study and investigation are desired.

1.2 Dissertation Outline

In this dissertation, we aim to study reliable self-supervised learning approaches for image and

graph data. Specifically, we propose and develop theory-guided self-supervised frameworks and

study the explainability of deep models trained under self-supervision without given downstream

tasks.

The general goal of learning is to learn representations that are both informative and robust to
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noise from unlabeled data. The robustness of deep models to noise in data is especially critical for

its reliability. However, in contrast to supervised learning, it is more challenging for SSL to learn

deep models that are robust to the noise in given data. This is because the self-supervision from

data itself may include noise. To achieve such a goal with SSL, in Chapter 2, we start by studying

and investigating the denoising capability of SSL approaches. In particular, we study SSL ap-

proaches in the image denoising problems under the scenarios where clean image are unavailable.

We first conduct analysis on existing self-supervised image denoising approaches and show their

limitations due to the inconsistency between the assumption of their theorems and empirical condi-

tions in Section 2.3. Next, in Section 2.4, we introduce the proposed self-supervised objectives as

a strict upper bound to the supervised objective for image denoising. We then conduct theoretical

and empirical analyses to show the connection to existing approaches. Finally, in Section 2.5, the

experimental results show that our Noise2Same remarkably outperforms previous self-supervised

denoising methods in terms of denoising performance and training efficiency.

Given the promising capability of denoising, we further generalize above theoretical framework

for SSL into even more challenging data and problems. In Chapter 3, we propose self-supervised

approaches to learn representations with graph neural networks (GNNs) on graph data. In Sec-

tion 3.2, we propose the LaGraph, a predictive SSL framework grounded by the above denoising

theory and by formulating the SSL task as the latent graph prediction problem. Learning objectives

of LaGraph are derived as self-supervised upper bounds to objectives for predicting unobserved la-

tent graphs. In Section 3.3, we provide theoretical analysis comparing LaGraph to related methods

in different domains. Finally, in Section 3.4, our experimental results demonstrate the superior-

ity of LaGraph in performance and the robustness to the decreasing training sample size on both

graph-level and node-level tasks.

To ensure reliable deep models are learned under self-supervision, one approach is to enable the

explainability of self-supervisely trained models. However, without a given downstream task, the

explanation become infeasible with existing learning-based explanation pipelines and approaches.

Specifically, they are incapable of producing explanations for a multitask prediction model with a
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single explainer. They are also unable to provide explanations in cases where the model is trained in

a self-supervised manner, and the resulting representations are used in future downstream tasks. In

Chapter 4, we further demonstrate with graph data that self-supervision can further be used to learn

to explain self-supervisely trained deep models. In Section 4.2, we formulate the task-agnostic ex-

planation problem and introduce a task-agnostic pipeline. Following the pipeline, in Section 4.3,

we propose a Task-Agnostic GNN Explainer (TAGE) that is independent of downstream models

and trained under self-supervision with no knowledge of downstream tasks. In Section 4.4, our ex-

tensive experiments show that TAGE can significantly speed up the explanation efficiency by using

the same model to explain predictions for multiple downstream tasks while achieving explanation

quality as good as or even better than current state-of-the-art GNN explanation approaches.

Finally, in Chapter 5, we formulate the GWAS problem into a representation learning task,

identify, and address the challenges of applying self-supervised learning approaches in the scenario

of GWAS with high-dimensional imaging data. Specifically, in Section 5.2, we distinguish the key

differences between representation learning for natural images and for GWAS and demonstrate

the differences lead to the failure of typical SSL methods. Based on the analysis, we propose

the learning framework Genetic Infomax that is well-suited for learning representations for the

GWAS purpose in Sections 5.3 and 5.4. Our experiments in Section 5.6 demonstrate a significantly

improved performance in terms of the number of brain-gene associations discovered from the

learned representations.
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2. NOISE2SAME: OPTIMIZING A SELF-SUPERVISED BOUND FOR IMAGE

DENOISING *

2.1 Introduction

The quality of deep learning methods for signal reconstruction from noisy images, also known

as deep image denoising, has benefited from the advanced neural network architectures such as

ResNet [48], U-Net [49] and their variants [50, 51, 52, 53, 54, 55]. While more powerful deep

image denoising models are developed over time, the problem of data availability becomes more

critical.

Most deep image denoising algorithms are supervised methods that require matched pairs of

noisy and clean images for training [56, 50, 57, 58]. The problem of these supervised methods is

that, in many denoising applications, clean images are hard to obtain due to instrument or cost lim-

itations. To overcome this problem, Noise2Noise [59] explores an alternative training framework,

where pairs of noisy images are used for training. Here, each pair of noisy images should corre-

spond to the same but unknown clean image. Note that Noise2Noise is basically still a supervised

method, just with noisy supervision.

Despite the success of Noise2Noise, its application scenarios are still limited as pairs of noisy

images are not available in some cases and may have registration problems. Recently, various

of denoising frameworks that can be trained on individual noisy images [6, 60, 61, 8, 2, 1] have

been developed. These studies can be divided into two categories according to the amount of

extra information required. Methods in the first category require the noise model to be known.

For example, the simulation-based methods [60, 61] use the noise model to generate simulated

noises and make individual noisy images noisier. Then a framework similar to Noise2Noise can be

applied to train the model with pairs of noisier images and the original noisy image. The limitation

is obvious as the noise model may be too complicated or even not available.

*Reprinted with permission from “Noise2Same: Optimizing a self-supervised bound for image denoising.” by
Yaochen Xie, Zhengyang Wang, and Shuiwang Ji, 2020. Advances in Neural Information Processing Systems, Copy-
right 2020 by the authors.
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On the other hand, algorithms in the second category target at more general cases where only in-

dividual noisy images are available without any extra information [6, 8, 2, 1]. In this category, self-

supervised learning [62, 19, 63] has been widely explored, such as Noise2Void [8], Noise2Self [2],

and the convolutional blind-spot neural network [1]. Note that these self-supervised models can

be improved as well if information about the noise model is given. For example, Laine et al. [1]

and Krull et al. [64] propose the Bayesian post-processing to utilize the noise model. However,

with the proposed post-processing, these methods fall into the first category where applicability is

limited.

In this chapter, we stick to the most general cases where only individual noisy images are pro-

vided and focus on the self-supervised framework itself without any post-processing step. We note

that all of these existing self-supervised denoising frameworks are built upon the same theoretical

background, where the denoising models are required to be J -invariant (Section 2.2). We perform

in-depth analyses on the J -invariance property and argue that it may lead to denoising models

with reduced performance. Based on this insight, we propose Noise2Same, a novel self-supervised

denoising framework, with a new theoretical foundation. Noise2Same comes with a new self-

supervised loss by deriving a self-supervised upper bound of the typical supervised loss. In par-

ticular, Noise2Same requires neither J -invariance nor extra information about the noise model.

We analyze the effect of the new loss theoretically and conduct thorough experiments to evaluate

Noise2Same. Result show that our Noise2Same consistently outperforms previous self-supervised

denoising methods.

2.2 Background and Related Studies

2.2.1 Self-Supervised Denoising with J Invariant Functions

We consider the reconstruction of a noisy image x ∈ Rm, where m = (d×)h×w× c depends

on the spatial and channel dimensions. Let y ∈ Rm denotes the clean image. Given noisy and clean

image pairs (x,y), supervised methods learn a denoising function f : Rm → Rm by minimizing

the supervised loss L(f) = Ex,y ∥f(x)− y∥2.
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Previous self-supervised denoising methods have been developed [8, 2, 1] by assuming that

the noise is zero-mean and independent among all dimensions. These methods are trained on in-

dividual noisy images to minimize the self-supervised loss L(f) = Ex ∥f(x)− x∥2. Particularly,

in order to prevent the self-supervised training from collapsing into leaning the identity function,

Batson et al. [2] point out that the denoising function f should be J -invariant, as defined below.

Definition 1. For a given partition J = {J1, · · · , Jk} (|J1| + · · · + |Jk| = m) of the dimensions

of an image x ∈ Rm, a function f : Rm → Rm is J -invariant if f(x)J does not depend on xJ for

all J ∈ J , where f(x)J and xJ denotes the values of f(x) and x on J , respectively.

Intuitively, J -invariance means that, when denoising xJ , f only uses its context xJc , where J c

denotes the complement of J . With a J -invariant function f , we have

Ex ∥f(x)− x∥2 = Ex,y ∥f(x)− y∥2 + Ex,y ∥x− y∥2 − 2 ⟨f(x)− y,x− y⟩ (2.1)

= Ex,y ∥f(x)− y∥2 + Ex,y ∥x− y∥2 . (2.2)

Here, the third term in Equation 2.1 becomes zero when f is J -invariant and the zero-mean as-

sumption about the noise holds [2]. We can see from Equation 2.2 that when f is J -invariant,

minimizing the self-supervised loss Ex ∥f(x)− x∥2 indirectly minimizes the supervised loss

Ex,y ∥f(x)− y∥2.

All existing self-supervised denoising methods [8, 2, 1] compute the J -invariant denoising

function f through a blind-spot network. Concretely, a subset J of the dimensions are sampled

from the noisy image x as “blind spots”. The blind-spot network f is asked to predict the values of

these “blind spots” based on the context xJc . In other words, f is blind on J . In previous studies,

the blindness on J is achieved in two ways. Specifically, Noise2Void [8] and Noise2Self [2] use

masking, while the convolutional blind-spot neural network [1] shifts the receptive field. With the

blind-spot network, the self-supervised loss Ex ∥f(x)− x∥2 can be written as

L(f) = EJEx ∥f(xJc)J − xJ∥2 . (2.3)
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While these methods have achieved good performance, our analysis in this chapter indicates

that minimizing the self-supervised loss in Equation 2.3 with J -invariant f is not optimal for

self-supervised denoising. Based on this insight, we propose a novel self-supervised denoising

framework, known as Noise2Same. In particular, our Noise2Same minimizes a new self-supervised

loss without requiring the denoising function f to be J -invariant.

2.2.2 Bayesian Post-Processing

From the probabilistic view, the blind-spot network f attempts to model p(yJ |xJc), where the

information from xJ is not utilized thus limiting the performance. This limitation can be overcome

through the Bayesian deep learning [65] if the noise model p(x|y) is known, as proposed by [1, 64].

Specifically, they propose to compute the posterior by

p(yJ |xJ ,xJc) ∝ p(xJ |yJ) p(yJ |xJc), ∀J ∈ J . (2.4)

Here, the prior p(yJ |xJc) is Gaussian, whose the mean comes from the original outputs of the

blind-spot network f and the variance is estimated by extra outputs added to f . The computation

of the posterior is a post-processing step, which takes information from xJ into consideration.

Despite the improved performance, the Bayesian post-processing has limited applicability as it

requires the noise model p(xJ |yJ) to be knwon. Besides, it assumes that a single type of noise is

present for all dimensions. In practice, it is common to have unknown noise models, inconsistent

noises, or combined noises with different types, where the Bayesian post-processing is no longer

applicable.

In contrast, our proposed Noise2Same can make use of the entire input image without any post-

processing. Most importantly, Noise2Same does not require the noise model to be known and thus

can be used in a much wider range of denoising applications.

2.3 Analysis of the J Invariance Property

In this section, we analyze the J -invariance property and motivate our work. In section 2.3.1,

we experimentally show that the denoising functions trained through mask-based blind-spot meth-
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ods are not strictly J -invariant. Next, in Section 2.3.2, we argue that minimizing Ex ∥f(x)− x∥2

with J -invariant f is not optimal for self-supervised denoising.

2.3.1 Mask-Based Blind-Spot Denoising: Is the Optimal Function J Invariant?

We show that, in mask-based blind-spot approaches, the optimal denoising function obtained

through training is not strictly J -invariant, which contradicts the theory behind these methods.

As introduced in Section 2.2, mask-based blind-spot methods implement blindness on J through

masking. Original values on J are masked out and replaced by other values. Concretely, in Equa-

tion 2.3, xJc becomes 1Jc ·x+1J ·r, where r denotes the new values on the masked locations (J).

As introduced in Section 2.2.1, Noise2Void [8] and Noise2Self [2] are current mask-based blind-

spot methods. The main difference between them is the choice of the replacement strategy, i.e.,

how to select r. Specifically, Noise2Void applies the Uniform Pixel Selection (UPS) to randomly

select r from local neighbors of the masked locations, while Noise2Self directly uses a random

value.

Although the masking prevents f from accessing the original values on J during training, we

point out that, during inference, f still shows a weak dependency on values on J , and thus does

not strictly satisfy the J -invariance property. In other words, mask-based blind-spot methods do

not guarantee the learning of a J -invariant function f . We conduct experiments to verify the

above statement. Concretely, given a denoising function f trained through mask-based blind-spot

methods, we quantify the strictness of J -invariance by computing the following metric:

D(f) = EJEx ∥f(xJc)J − f(x)J∥2 /|J |, (2.5)

where x is the raw noisy image and xJc denotes the image whose values on J are replaced with

random Gaussian noises (σm=0.5). Note that the replacement here is irrelevant to the the replace-

ment strategy used in mask-based blind-spot methods. If the function f is strictly J -invariant,

D(f) should be close to 0 for all x. Smaller D(f) indicates more J -invariant f . To mitigate

mutual influences among the locations within J , we use saturate sampling [8] to sample J and
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Table 2.1: D(f) and PSNR of f trained through mask-based blind-spot methods with different
replacement strategies on BSD68. The last column corresponds to a strictly J -invariant model.

Replacement
Strategy

Gaussian
(σ=0.2)

Gaussian
(σ=0.5)

Gaussian
(σ=0.8)

Gaussian
(σ=1.0)

UPS
(5× 5)

Shifting
RF

D(f) (×10−3) 4.326 10.91 2.141 1.569 18.31 0.105
PSNR 26.14 26.83 26.85 26.98 27.71 27.15

Table 2.2: D(f) and PSNR of f on trained through mask-based blind-spot methods with the same
replacement strategy on different datasets.

Datasets BSD68 HanZi ImageNet
D(f) (×10−3) 10.91 0.249 17.67

PSNR 26.83 13.94 20.38

make the sampling sparse enough (at a portion of 0.01%). D(f) is computed on the output of f

before re-scaling back to [0,255]. In our experiments, we compare D(f) and the testing PSNR for

f trained with different replacement strategies and on different datasets.

Table 2.1 provides the comparison results between f trained with different replacement strate-

gies on the BSD68 dataset [66]. We also include the scores of the convolutional blind-spot neural

network [1] for reference, which guarantees the strict J -invariance through shifting receptive field,

as discussed in Section 2.3.2. As expected, it has a close-to-zero D(f), where the non-zero value

comes from mutual influences among the locations within J and the numerical precision. The

large D(f) for all the mask-based blind-spot methods indicate that the J -invariance is not strictly

guaranteed and the strictness varies significantly over different replacement strategies.

We also compare results on different datasets when we fix the replacement strategy, as shown

in Table 2.2. We can see that different datasets have strong influences on the strictness of J -

invariance as well. Note that such influences are not under the control of the denoising approach

itself. In addition, although the shown results in Tables 2.1 and 2.2 are computed on testing dataset

at the end of training, similar trends with D(f) ≫ 0 is observed during training.

Given the results in Tables 2.1 and 2.2, we draw our conclusions from two aspects. We first
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consider the mask together with the network f as a J -invariant function g, i.e., g(x) := f(1Jc ·

x + 1J · r). In this case, the function g is guaranteed to be J -invariant during training, and

thus Equation 2.2 is valid. However, during testing, the mask is removed and a different non-J -

invariant function f is used because f achieves better performance than g, according to [2]. This

contradicts the theoretical results of [2]. On the other hand, we consider the network f and the

mask separately and perform training and testing with the same function f . In this case, the use

of mask aims to help f learn to be J -invariant during training so that Equation 2.2 becomes valid.

However, our experiments show that f is neither strictly J -invariant during training nor till the end

of training, indicating that Equation 2.2 is not valid. With findings interpreted from both aspects,

we ask whether minimizing Ex ∥f(x)− x∥2 with J -invariant f yields optimal performance for

self-supervised denoising.

2.3.2 Shifting Receptive Field: How do the Strictly J Invariant Models Perform?

We directly show that, with a strictly J -invariant f , minimizing Ex ∥f(x)− x∥2 does not

necessarily lead to the best performance. Different from mask-based blind-spot methods, Laine et

al. [1] propose the convolutional blind-spot neural network, which achieves the blindness on J by

shifting receptive field (RF). Specifically, each pixel in the output image excludes its corresponding

pixel in the input image from its receptive field. As values outside the receptive field cannot affect

the output, the convolutional blind-spot neural network is strictly J -invariant by design.

According to Table 2.1, the shift RF method outperforms all the mask-based blind-spot ap-

proaches with Gaussian replacement strategies, indicating the advantage of the strict J -invariance.

However, we notice that the UPS replacement strategy shows a different result. Here, a denoising

function with less strict J -invariance performs the best. One possible explanation is that the UPS

replacement has a certain probability to replace a masked location by its original value. It weak-

ens the J -invariance of the mask-based denoising model but boosts the performance by yielding

a result that is equivalent to computing a linear combination of the noisy input and the output of

a strictly J -invariant blind-spot network [2]. This result shows that minimizing Ex ∥f(x)− x∥2

with a strictly J -invariant f does not necessarily give the best performance. Another evidence
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Figure 2.1: Top: The framework of the mask-based blind-spot denoising methods. The neural
network takes the masked noisy image and predicts the masked value. The reconstruction loss
is only computed on the masked dimensions. Bottom: The Noise2Same framework. The neural
network takes both the full noisy image and the masked image as inputs and produces two outputs.
The reconstruction loss is computed between the full noisy image and its corresponding output.
The invariance loss is computed between the two outputs.

is the Bayesian post-processing introduced in Section 2.2.2, which also make the final denoising

function not strictly J -invariant while boosting the performance.

To conclude, we argue that minimizing Ex ∥f(x)− x∥2 with J -invariant f can lead to reduc-

tion in performance for self-supervised denoising. In this work, we propose a new self-supervised

loss. Our loss does not require the J -invariance. In addition, our proposed method can take ad-

vantage of the information from the entire noisy input without any post-processing step or extra

assumption about the noise.

2.4 The Proposed Noise2Same Method

In this section, we introduce Noise2Same, a novel self-supervised denoising framework. Noise2Same

comes with a new self-supervised loss. In particular, Noise2Same requires neither J -invariant de-

noising functions nor the noise models.
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2.4.1 Noise2Same: A Self-Supervised Upper Bound without the J Invariance Requirement

As introduced in Section 2.2.1, the J -invariance requirement sets the inner product term

⟨f(x) − y,x − y⟩ in Equation 2.1 to zero. The resulting Equation 2.2 shows that minimizing

Ex ∥f(x)− x∥2 with J -invariant f indirectly minimizes the supervised loss, leading to the cur-

rent self-supervised denoising framework. However, we have pointed out that this framework

yields reduced performance.

In order to overcome this limitation, we propose to control the right side of Equation 2.2 with

a self-supervised upper bound, instead of approximating ⟨f(x) − y,x − y⟩ to zero. The upper

bound holds without requiring the denoising function f to be J -invariant.

Theorem 1. Consider a normalized noisy image x ∈ Rm (obtained by subtracting the mean and

dividing by the standard deviation) and its ground truth signal y ∈ Rm. Assume the noise is zero-

mean and i.i.d among all the dimensions, and let J be a subset ofm dimensions uniformly sampled

from the image x. For any f : Rm → Rm, we have

Ex,y ∥f(x)− y∥2+∥x− y∥2 ≤ Ex ∥f(x)− x∥2+2mEJ

[
Ex ∥f(x)J − f(xJc)J∥2

|J |

]1/2
(2.6)

Proof. We consider the third term on the right-hand side of Equation 2.1. Instead of reducing the

third term 2 ⟨f(x) − y,x − y⟩ to 0 under the J -invariant assumption, we control this term with

its upper bound with the only assumption that E[x|y] = y. Formally, we have

Ex,y⟨f(x)− y,x− y⟩ = EyEx|y
∑
j

(f(x)j − yj)(xj − yj) (2.7)

=
∑
j

Ey
[
Ex|y(f(x)j − yj)(xj − yj)− Ex|y(f(x)j − yj)Ex|y(xj − yj)

]
(2.8)

=
∑
j

Ey [Cov(f(x)j − yj, xj − yj|y)] (2.9)
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=
∑
j

Ey [Cov(f(x)j, xj|y)] . (2.10)

Equation 2.8 holds due to the zero-mean assumption, where Ex|y(xj − yj) = 0. Now we let J be

a uniformly sampled subset of the image dimensions {1, · · · ,m}, then we have the equation

∑
j

Ey [Cov(f(x)j, xj|y)] =
m

|J |EJ
∑
j∈J

Ey [Cov(f(x)j, xj|y)] . (2.11)

The right-hand side of the equation above can be controlled by applying Cauchy-Schwarz

inequality while the input images are normalized. We have, for all J ,

1

|J |
∑
j∈J

Ey

[
Cov(f(x)j, xj|y)

]
=

1

|J |
∑
j∈J

Ey

[
Cov(f(x)j − f(xJc)j, xj|y)

]
(2.12)

≤ 1

|J |
∑
j∈J

Ey

[
Var(f(x)j − f(xJc)j|y) · Var(xj|y)

]1/2
(2.13)

≤
(

1

|J |
∑
j∈J

Ey

[
Var(f(x)j − f(xJc)j|y) · Var(xj|y)

])1/2

(2.14)

≤
(

1

|J |
∑
j∈J

Ey

[
E
[
[f(x)j − f(xJc)j]

2
]
|y
])1/2

(2.15)

=

(
1

|J |
∑
j∈J

E
[
f(x)j − f(xJc)j

]2)1/2

(2.16)

=

(
1

|J |E ∥f(x)J − f(xJc)J∥2
)1/2

. (2.17)

To be more specific, Equation 2.12 follows since f(xJc)J does not correlate to xj due to the

independent noise assumption and j /∈ J c, and subtracting f(xJc)j from f(x)j does not change

the Covariance. Inequality 2.13 applies the Cauchy-Schwarz inequality. Inequality 2.14 holds

due to (EX)2 ≤ EX2. The derivation of Inequality 2.15 uses the fact that Var(xj) = 1 under

normalization and Var(xj|y) ≤ Var(xj) = 1 for all j.
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Consequently, we can control Equation (2.1) as

Ex,y ∥f(x)− y∥2 + Ex,y ∥x− y∥2 = Ex ∥f(x)− x∥2 + 2Ex,y⟨f(x)− y,x− y⟩ (2.18)

≤ Ex ∥f(x)− x∥2 + 2mEJ

[
1

|J |E ∥f(x)J − f(xJc)J∥2
]1/2

.

(2.19)

This completes the proof of Theorem 1.

With Theorem 1, we can perform self-supervised denoising by minimizing the right side of

Inequality (2.6) instead. Following the theoretical result, we propose our new self-supervised

denoising framework, Noise2Same, with the following self-supervised loss:

L(f) = Ex ∥f(x)− x∥2 /m+ λinv EJ
[
Ex ∥f(x)J − f(xJc)J∥2 /|J |

]1/2
. (2.20)

This new self-supervised loss consists of two terms: a reconstruction mean squared error (MSE)

Lrec = Ex ∥f(x)− x∥2 and a squared-root of invariance MSE Linv = EJ(Ex ∥f(x)J − f(xJc)J∥2 /|J |)1/2.

Intuitively, Linv prevents our model from learning the identity function when minimizing Lrec
without any requirement on f . In fact, by comparing Linv with D(f) in Equation 2.5, we can

see that Linv implicitly controls how strictly f should be J -invariant, avoiding the explicit J -

invariance requirement. We balance Lrec and Linv with a positive scalar weight λinv.

By default, we set λinv = 2 according to Theorem 1. In some cases, setting λinv to different

values according to the scale of observed Linv during training could help achieve a better denoising

performance.

Figure 2.1 compares our proposed Noise2Same with mask-based blind-spot denoising meth-

ods. Mask-based blind-spot denoising methods employ the self-supervised loss in Equation 2.3,

where the reconstruction MSE Lrec is computed only on J . In contrast, our proposed Noise2Same

computes Lrec between the entire noisy image x and the output of the neural network f(x). To

compute the invariance term Linv, we still feed the masked noisy image xJc to the neural network
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and compute MSE between f(x) and f(xJc) on J , i.e., f(x)J and f(xJc)J . Note that, while

Noise2Same also samples J from x, it does not require f to be J -invariant.

2.4.2 Analysis of the Invariance Term

The invariance term Linv is a unique and important part in our proposed self-supervised loss. In

this section, we further analyze the effect of this term. To make the analysis concrete, we perform

analysis based on an example case, where the noise model is given as the additive Gaussian noise

N(0, σ). Note that the example is for analysis purpose only, and the application of our proposed

Noise2Same does not require the noise model to be known.

Theorem 2. Consider a noisy image x ∈ Rm and its ground truth signal y ∈ Rm. Assume the

noise is i.i.d among all the dimensions, and let J be a subset of m dimensions uniformly sampled

from the image x. If the noise is additive Gaussian with zero-mean and standard deviation σ, we

have

Ex,y ∥f(x)− y∥2 + ∥x− y∥2 ≤ Ex ∥f(x)− x∥2 + 2mσEJ

[
E ∥f(x)J − f(xJc)J∥2

|J |

]1/2
(2.21)

Proof. We start from Equation (13) in the proof of Theorem 1. Since we have a stronger assump-

tion that the noise model is known to be additive with standard deviation σ and zero-mean, we

have Var(xj − yj) = σ2 for all j. Due to that the additive noise is orthogonal to the signal y, we

futher have the conditional variance Var(xj − yj|y) = σ2. Then, similar to the proof of Theorem

1, we have,

1

|J |
∑
j∈J

Ey

[
Cov(f(x)j, xj|y)

]
=

1

|J |
∑
j∈J

Ey

[
Cov(f(x)j − f(xJc)j, xj − yj|y)

]
(2.22)

≤ 1

|J |
∑
j∈J

Ey

[
Var(f(x)j − f(xJc)j|y) · Var(xj − yj|y)

]1/2
(2.23)
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≤
(

1

|J |
∑
j∈J

Ey

[
Var(f(x)j − f(xJc)j|y) · Var(xj − yj|y)

])1/2

(2.24)

=

(
1

|J |
∑
j∈J

Ey

[
E
[
[f(x)j − f(xJc)j]

2|y
]
· σ2
])1/2

(2.25)

= σ

(
1

|J |
∑
j∈J

E
[
f(x)j − f(xJc)j

]2)1/2

(2.26)

= σ

(
1

|J |E ∥f(x)J − f(xJc)J∥2
)1/2

. (2.27)

Consequently, we can control Equation (2.1) as

Ex,y ∥f(x)− y∥2 + Ex,y ∥x− y∥2 = Ex ∥f(x)− x∥2 + 2Ex,y⟨f(x)− y,x− y⟩ (2.28)

≤ Ex ∥f(x)− x∥2 + 2mσEJ

(
1

|J |E ∥f(x)J − f(xJc)J∥2
)1/2

.

(2.29)

This completes the proof of Theorem 2.

Note that the noisy image x here does not require normalization as in Theorem 1. Compared

to Theorem 1, the σ from the noise model is added to balance the invariance term. As introduced

in Section 2.4.1, the invariance term controls how strictly f should be J -invariant and a higher

weight of the invariance term pushes the model to learn a more strictly J -invariant f . Therefore,

Theorem 2 indicates that, when the noise is stronger with a larger σ, f should be more strictly

J -invariant. Based on the definition of J -invariance, a more strictly J -invariant f will depend

more on the context xJc and less on the noisy input xJ .

This result is consistent with the findings in previous studies. Batson et al. [2] propose to

compute the linear combination of the noisy image and the output of the blind-spot network as

a post-processing step, leading to better performance. The weights in the linear combination are

determined by the variance of noise. And a higher weight is given to the output of the blind-spot
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network with larger noise variance. Laine et al. [1] derive a similar result through the Bayesian

post-processing. This explains how the invariance term in our proposed Noise2Same improves

denoising performance.

However, a critical difference between our Noise2Same and previous studies is that, the post-

processing in [2, 1] cannot be performed when the noise model is unknown. To the contrary,

Noise2Same is able to control how strictly f should be J -invariant through the invariance term

without any assumption about the noise or requirement on f . This property allows Noise2Same to

be used in a much wider range of denoising tasks with unknown noise models, inconsistent noise,

or combined noises with different types.

2.5 Experiments

We evaluate our Noise2Same on four datasets, including RGB natural images (ImageNet ILSVRC

2012 Val [67]), generated hand-written Chinese character images (HànZì [2]), physically captured

3D microscopy data (Planaria [56]) and grey-scale natural images (BSD68 [66]). The four datasets

have different noise types and levels.

2.5.1 Comparisons with Baselines

The baselines include traditional denoising algorithms (NLM [68], BM3D [69]), supervised

methods (Noise2True, Noise2Noise [59]), and previous self-supervised methods (Noise2Void [8],

Noise2Self [2], the convolutional blind-spot neural network [1]). Note that we consider Noise2Noise

as a supervised model since it requires pairs of noisy images, where the supervision is noisy. While

Noise2Void and Noise2Self are similar methods following the blind-spot approach, they mainly

differ in the strategy of mask replacement. To be more specific, Noise2Void proposes to use Uni-

form Pixel Selection (UPS), and Noise2Self proposes to exclude the information of the masked

pixel and uses a random value on the range of given image data. As an additional mask strategy

using the local average excluding the center pixel (donut) is mentioned in [2], we also include it

for comparison. We use the same neural network architecture for all deep learning methods.

Note that ImageNet and HànZì have combined noises and Planaria has unknown noise models.
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Input BM3D Noise2Self Ours Noise2Noise Noise2True Ground Truth

Figure 2.2: RGB natural images and hand-written Chinese character images: Visualizations of
testing results on ImageNet dataset (first two rows) and the HànZì Dataset (the third row). We com-
pare the denoising quality among the traditional method BM3D, supervised methods Noise2True
and Noise2Noise, self-supervised approaches Noise2Self and our Noise2Same. From the left to the
right, the columns are in the ascending order in terms of the denoising quality.
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Table 2.3: Comparisons among denoising methods on different datasets, in terms of Peak Signal-
to-Noise Ratio (PSNR). The post-processing of Laine et al. [1] that requires information about
the noise model is included under the Self-Supervised + noise model category and is excluded
under the Self-Supervised category. Noise2Self-Noise and Noise2Self-Donut refer to two masking
strategies mentioned in [2], where the original results presented in [2] are produced by the noise
masking. Bold numbers indicate the best performance among self-supervised methods.

Datasets
Methods ImageNet HànZì Planaria BSD68

Input 9.69 6.45 21.52 / 21.09 / 20.82 20.19

Traditional
NLM [68] 18.04 8.41 25.80 / 24.03 / 21.62 22.73
BM3D [69] 18.74 10.90 - 28.59

Supervised
Noise2True 23.39 15.66 31.57 / 30.15 / 28.13 29.06
Noise2Noise [59] 23.27 14.30 - 28.86

Self-Supervised
Laine et al. [1] - - - 28.84

+ noise model

Self-Supervised

Laine et al. [1] 20.89 10.70 - 27.15
Noise2Void [8] 21.36 13.72 25.84 / 23.57 / 21.60 27.71
Noise2Self-Noise [2] 20.38 13.94 27.58 / 24.83 / 21.83 26.98
Noise2Self-Donut [2] 8.62 13.29 27.63 / 24.72 / 21.73 28.20
Noise2Same 22.26 14.38 29.48 / 26.93 / 22.41 27.95

As a result, the post-processing steps in Noise2Self [2] and the convolutional blind-spot neural net-

work [1] are not applicable, as explained in Section 2.2. In order to make fair comparisons under

the self-supervised category, we train and evaluate all models only using the images, without extra

information about the noise. In this case, among self-supervised methods, only our Noise2Same

and Noise2Void with the UPS replacement strategy can make use of information from the entire

input image, as demonstrated in Section 2.3.2. We also include the complete version of the convo-

lutional blind-spot neural network with post-processing, who is only available on BSD68, where

the noise is not combined and the noise type is known.

Following previous studies, we use Peak Signal-to-Noise Ratio (PSNR) as the evaluation met-

ric. The comparison results between our Noise2Same and the baselines in terms of PSNR on the

four datasets are summarized in Table 2.3 and visualized in Figure 2.2. The results show that our

Noise2Same achieve remarkable improvements over previous self-supervised baselines on Ima-
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Figure 2.3: Training efficiency. For a fair comparison, we adjust the batch sizes for each method
to fill the memory of a single GPU, namely, 128 for Noise2Self, 64 for Noise2Same and 32 for
Laine et al. One unit of training cost represents 50 minibatch steps.

geNet, HànZì and CARE. In particular, on the ImageNet and the HànZì Datasets, our Noise2Same

and Noise2Void demonstrate the advantage of utilizing information from the entire input image.

Although the using of donut masking can achieve better performance on the BSD68 Dataset, it

leads to model collapsing on the ImageNet Dataset and hence can be unstable. On the other

hand, the convolutional blind-spot neural network [1] suffers from significant performance losses

without the Bayesian post-processing, which requires information about the noise models that are

unknown.

We note that, in our fair settings, supervised methods still have better performance over self-

supervised models, especially on the Planaria and BSD68 datasets. One explanation is that the

supervision usually carries extra information implicitly, such as information about the noise model.

Here, we draw a conclusion different from Batson et al. [2]. That is, there are still performance

gaps between self-supervised and supervised denoising methods. Our Noise2Same moves one step

towards closing the gap by proposing a new self-supervised denoising framework.

In addition to the performance, we compares the training efficiency among self-supervised

methods as well. Specifically, we plot how the PSNR changes during training on the ImageNet

dataset. We compare Noise2Same with Noise2Self and the convolutional blind-spot neural net-

work. The plot shows that our Noise2Same has similar convergence speed to the convolutional

blind-spot neural network. On the other hand, as the mask-based method Noise2Self uses only
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= 0.3

= 0.5

PSNR 15.76

PSNR 11.14

20.01 19.39 19.03 18.64

13.15 15.95 16.66 16.37

Figure 2.4: Effect of the invariance term. Left: Given additive Gaussian noise with certain
σnoise, how the performance of our Noise2Same varies over different σloss. Right: We visualize
some denoising examples from noisy images with σnoise = 0.3, 0.5. From left to right, the columns
correspond to setting σloss to 0.2, 0.3, 0.4, 0.5, 0.6, respectively.

a subset of output pixels to compute the loss function in each step, the training is expected to be

slower [1].

2.5.2 Effect of the Invariance Term

In Section 2.4.2, we analyzed the effect of the invariance term using an example, where the

noise model is given as the additive Gaussian noise. In this example, the variance of the noise

controls how the strictness of the optimal f through the coefficient λinv of the invariance term.

Here, we conduct experiments to verify this insight. Specifically, we construct four noisy

dataset from the HànZì dataset with only additive Gaussian noise at different levels (σnoise =

0.9, 0.7, 0.5, 0.3). Then we train Noise2Same with λinv = 2σloss by varying σloss from 0.1 to 1.0

for each dataset. According to Theorem 2, the best performance on each dataset should be achieved

when σloss is close to σnoise. The results, as reported Figure 2.4, are consistent with our theoretical

results in Theorem 2.

2.6 Conclusion and Future Directions

We analyzed the existing blind-spot-based denoising methods and introduced Noise2Same, a

novel self-supervised denoising method, which removes the assumption and over-restriction on

the neural network as a J -invariant function. We provided further analysis on Noise2Same and

23



experimentally demonstrated the denoising capability of Noise2Same. As an orthogonal work, the

combination of self-supervised denoising result and the noise model has be shown to provide ad-

ditional performance gain. We would like to further explore noise model-augmented Noise2Same

in future works.
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3. SELF-SUPERVISED REPRESENTATION LEARNING VIA LATENT GRAPH

PREDICTION *

3.1 Introduction

Self-supervised learning (SSL) methods seek to use supervisions provided by data itself and

design effective pretext learning tasks. These methods allow deep models to learn from a massive

amount of unlabeled data and have achieved promising successes in natural language processing [9,

10, 11] and image tasks [2, 70, 21, 13]. To use unlabeled graph data, earlier studies [16, 71] adapt

sequence-based SSL methods [72, 73] to learn node representations. Inspired by the recent success

of SSL in the image domain, a variety of SSL methods based on graph neural networks (GNNs)

have been proposed in different learning paradigms. In particular, recent studies [40, 74, 3, 12, 75]

construct SSL tasks as unsupervised approaches to learn representations from graph data at either

node-level or graph-level; Hu et al. [76] propose SSL strategies to pre-train GNNs for downstream

tasks; and other studies [77, 78] employ SSL as auxiliary tasks to boost the performance of main

learning tasks.

Common taxonomies in recent survey works [79, 80] consider two categories of SSL methods

to train GNNs; namely, contrastive methods and predictive methods. Contrastive methods employ

pair-wise discrimination as their pretext learning tasks. It performs transformations or augmenta-

tions to obtain multiple views from a graph and trains GNNs to discriminate between jointly sam-

pled view pairs and independently sampled view pairs. In contrast, predictive methods [81, 82, 83]

train GNNs to predict certain labels obtained from the input graph, such as node reconstruction,

connectivity reconstruction, graph statistical properties, and domain knowledge-based targets.

Adapted from the image domain, current state-of-the-art SSL methods for graphs are mostly

contrastive. As a drawback, they usually depend on a large training sample size to include a

sufficient number of negative samples. With limited computing resources, contrastive methods

*Reprinted with permission from “Self-supervised representation learning via latent graph prediction.” Yaochen
Xie, Zhao Xu, and Shuiwang Ji. 2022. International Conference on Machine Learning, Copyright 2022 by the authors.
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may not be applicable to large-scale graphs without suffering from performance loss. To address

the drawback, BGRL [3] adapts BYOL [22] to the graph domain. BGRL still obtains different

views from each given graph, but it eliminates the requirement of negative samples by replacing

contrastive objectives with the prediction of offline embedding. BGRL has achieved competitive

performance to the contrastive methods. However, unlike contrastive methods grounded by mutual

information estimation and maximization, BYOL and BGRL lack theoretical guidance and require

implementation measures to prevent collapsing to trivial representations, such as stop gradient,

EMA, and normalization layers.

In this chapter, we propose LaGraph, a predictive SSL framework for representation learning

of graph data, based on self-supervised latent graph prediction. In particular, we describe the no-

tion of the latent graph and introduce the latent graph prediction as a pretext learning task. We

adapt the supervised objective of latent graph prediction into a self-supervised setting by deriv-

ing its self-supervised upper bounds, according to which we present the learning framework of

LaGraph. We provide further justifications of LaGraph by comparing it with theoretically sound

methods in different domains. Our experimental results demonstrate the effectiveness of LaGraph

on both graph-level and node-level representation learning, where a remarkable performance boost

is achieved on a majority of datasets with higher stability to smaller batch sizes or training on

subsets of nodes. Our code is available under the DIG library * [84].

Relations with Prior Work: Both LaGraph and some existing contrastive methods [75, 74,

76] apply node masking. While those contrastive methods use node masking as an augmentation

to obtain different views for contrast, LaGraph employs it for the computation of the invariance

term in its predictive objective. In addition, the objective of BGRL has a similar formulation to

the invariance regularization term in our objective. The objectives of LaGraph and BGRL are

from different grounding and have essential differences in their computing and effects. While the

objective of BGRL is designed and engineered as a variant of contrastive methods, the LaGraph

objectives are derived as a whole from the latent graph prediction. Our derived theorems associated

*https://github.com/divelab/DIG.
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with LaGraph objectives can explain the success of BGRL to some extent and provide guidance

on better-adopting objectives related to the invariance regularization on graphs.

3.2 Methods

3.2.1 Notations and Problem Formulation

We consider an undirected graph G = (V,E) with a set of attributed nodes V and a set of

edges E. We formulate the graph data as a tuple of matrices (A,X), where A ∈ R|V |×|V | denotes

the adjacency matrix and X ∈ R|V |×d denotes the node features of dimension d. We employ a

graph encoder E based on graph neural networks (GNNs) to encode each node or graph into a

corresponding representation. Namely, we compute the node-level representations or node em-

bedding by H = E(A,X) ∈ R|V |×q and the graph-level representation or graph embedding by

z = R(H) ∈ R1×q, where q denotes the embedding dimension and R : R|V |×q → R1×q is a

readout function.

Self-supervised representation learning is employed to train the graph encoder E on a set of K

graphs {Gi}Ki=1 without labels from downstream tasks. In particular, we seek to design effective

pre-text learning tasks, whose labels are obtained by task designation or from given data, to train

the graph encoder E and produce informative representations for downstream tasks. Depending on

the pre-text learning tasks, the encoder E is usually trained together with some prediction head D

for predictive SSL or a discriminator for contrastive SSL.

3.2.2 Latent Graph Prediction

Our method considers latent graph prediction as a pretext task to train graph neural networks. In

this subsection, we introduce the general notion of latent data, followed by its specific definition for

graph data, and the construction of the learning task. For any observed data instance x, we assume

that there exists a corresponding latent data xI , determining the semantic of x, such that the latent

data xI is generated from a prior p(xI) and the observed data instance is further generated from

a certain distribution conditioned on the latent data, i.e., p(x|xI). The most common case for the

pair of observed data and latent data is the noisy data and its clean version.
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When it comes to graph data, we consider the case that an observed graph data G = (A,X)

is (noisily) generated from its latent graph Gℓ = (A,F ) with the same node set and edge set,

where node feature matrices X and F for the two graphs have the same dimensionality. We

make two assumptions about the graphs without loss of generality. First, we assume that the

observed feature vector xv of each node v in an observed graph is independently generated from

a certain distribution conditioned on the corresponding latent graph. In other words, how xv is

generated from the latent feature fv is not affected by the generation of other observed feature

vectors. Second, we assume that the conditional distribution of the observed graph is centered

at the latent graph, i.e., E[X|Gℓ] = F . The above assumptions are natural when we have little

knowledge about the generation process and are commonly used in other types of data such as the

non-structural and zero-mean noise in images. In cases where the generation processes of different

nodes are related or the distribution is not centered at F , we can still consider the related or biased

components into the latent feature and therefore have the assumptions satisfied.

As the latent data usually determine the semantic meaning of observed data, we believe the

prediction of the latent graph can provide informative supervision for the learning of both graph-

level and node-level representations. We are hence interested in constructing the learning task of

latent graph prediction. To perform latent graph prediction, it is straightforward to employ a graph

neural network f : {0, 1}|V |×|V | ×R|V |×d → R|V |×d that takes an observed graph G = (A,X) as

inputs and predicts the feature matrix of its latent graph GI = (A,F ). When the ground truth of

the latent feature matrix F is known, the learning objective can be designed as

f ∗ = argmin
f
E ∥f(A,X)− F ∥2 . (3.1)

Intuitively, the latent graph prediction can be considered as a generalized task from noisy data re-

construction that predicts the signal from the noisy data with the objective argminf E ∥f(x)− s∥2,

where the mapping from the signal to the noisy data p(x|s) can usually be explicitly modeled and

samples of signal (ground truth) can usually be captured. In the data reconstruction case, pairs
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of (x, s) can be therefore directly captured or synthetically generated given a certain noise model

p(x|s). However, when the task is generalized to latent graph prediction, there is a key chal-

lenge preventing us from directly applying the prediction task. That is, whereas there are natural

supervisions for noisy data reconstruction, the latent graph is not observed and we are unable to ex-

plicitly model the mapping from latent graphs to observed graphs, i.e., the conditional distribution

p(G|GI).

3.2.3 Self-Supervised Upper Bounds for Latent Graph Prediction

As discussed in the previous subsection, unlike typical noisy data reconstruction tasks, the

latent graph is not observed and p(G|GI) cannot be modeled explicitly. This makes it difficult to

construct a direct learning task for latent graph prediction using the objective in Equation (3.1).

We therefore seek to optimize an alternative objective that approximately optimizes the objective

in Equation (3.1) without requiring the distribution p(G|GI), nor features F of the latent graph.

We now introduce the proposed self-supervised objective for latent graph prediction.

We derive our self-supervised objective without involving F by constructing an upper bound

of the objective in Equation (3.1). Specifically, we let J ⊂ {0, · · · , |V | − 1} be an arbitrary subset

of node indices, J c denote the complement of set J , and XJc := 1Jc ⊙ X + 1J ⊙ M be the

feature matrix with features of nodes in VJ masked, where ⊙ denotes element-wise multiplication,

M ∈ R|V |×d denotes a matrix consisting of independent random noise or zeros as masking values,

and 1J ∈ R|V |×d denotes an indicator matrix such that 1J [i, :] = 1,∀i ∈ J and 1J [i, :] = 0,∀i /∈ J .

We describe the self-supervised upper bound in Theorem 3.

Theorem 3. Consider a graphG = (A,X) and its latent graphGI = (A,F ). We let the variance

of any elements in X be bounded by σ2 and J be a subset of nodes V in the graph G. For any
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graph neural network f : {0, 1}|V |×|V | ×R|V |×d → R|V |×d, we have the following inequality

EA,X,F

[
∥f(A,X)− F ∥2 + ∥X − F ∥2

]
≤ EA,X ∥f(A,X)−X∥2+

2σ|V |EJ
[
EA,X ∥fJ(A,X)− fJ(A,XJc)∥2

|J |

]1/2
.

(3.2)

Intuitively, the first component in the upper bound derived in Theorem 3 measures the recon-

struction error on the feature matrix X of the given observed graph G, enforcing the intermediate

representations to be informative. The second component controls how much information is ac-

cessible from the input feature of a node vi when reconstructing the feature of vi, by encouraging

the output of a node to be invariant to the missing of its features in the input graph. We then call

the first component a reconstruction term and the second component an invariance regularization

term. Note that the invariance regularization is only computed on masked nodes in contrast to the

BGRL objective, based on different theoretical grounding and leading to a different effect. A more

detailed discussion is provided in Section 3.

In tasks of self-supervised representation learning, we are more interested in graph-level or

node-level representations than predicted latent graphs. In these cases, we expect the representa-

tions also hold the invariance property held by the final outputs. We, therefore, seek to apply the

invariance regularization to the representations, since a regularization applied to the output does not

necessarily control the information accessibility of representations produced intermediately in the

graph neural network. To do so, we separately consider the encoder E and decoder D in the graph

neural network f . We introduce certain assumptions to the decoder network D and the readout

function R, and derive two additional upper bounds for node-level and graph-level representation

learning, respectively in the following corollaries.

Corollary 1. Let G = (A,X) be a given graph, GI = (A,F ) be its latent graph, E and D

be a graph encoder and a prediction head (decoder) consisting of fully-connected layers. If the

prediction head D is ℓ-Lipschitz continuous with respect to l2-norm, we further have the following
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inequality,

E
[
∥D(H)− F ∥2 + ∥X − F ∥2

]
≤ E ∥D(H)−X∥2

+2σ|V |ℓEJ
[
E ∥HJ −H ′

J∥2
|J |

]1/2
,

(3.3)

where H = E(A,X) and H ′ = E(A,XJc) denote the node embedding of the given graph and

the masked graph, respectively, and HJ := H [J, :] selects rows with indices in J .

Corollary 2. Let G = (A,X) be a given graph, GI = (A,F ) be its hidden latent graph, E be a

graph encoder, R be a readout function satisfying k-Bilipschitz continuity with respect to l2-norm,

and D be a prediction head (decoder). If the prediction head D is ℓ-Lipschitz continuous with

respect to l2-norm, we have the following inequality,

E
[
∥D(H)− F ∥2 + ∥X − F ∥2

]
≤ E ∥D(H)−X∥2

+2σ|V |kℓEJ
[
E ∥z − z′∥2

|J |

]1/2
,

(3.4)

where z = R(H) and z′ = R(H ′) denote the graph-level representations of the given graph and

the masked graph, respectively.

Proof. We first prove Corollary 1. Consider an ℓ-Lipschitz continuous prediction head with respect

to l2-norm consists of fully connected layers. We have

∥fJ(A,X)− fJ(A,XJc)∥2 = ∥D(HJ)−D(H ′
J)∥2 ≤ ℓ ∥HJ −H ′

J∥2 . (3.5)

We therefore have the following inequality

E ∥fJ(A,X)− fJ(A,XJc)∥22 ≤ E

[
ℓ2 ∥HJ −H ′

J∥22
]
. (3.6)
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We apply the above inequality to Theorem 1 and obtain the following inequality

E
[
∥f(A,X)− F ∥2 + ∥X − F ∥2

]
≤ E ∥f(A,X)−X∥2+2σ|V |EJ

(
1

|J |E ∥fJ(A,X)− fJ(A,XJc)∥2
)1/2

(3.7)

≤ E ∥f(A,X)−X∥2+2σ|V |EJ
(

1

|J |E
[
ℓ2 ∥HJ −H ′

J∥22
])1/2

(3.8)

= E ∥f(A,X)−X∥2+2σ|V |ℓEJ
(
E ∥HJ −H ′

J∥22 /|J |
)1/2

, (3.9)

which completes the proof of Corollay 1.

Similarly, for Corollay 2, we have

∥fJ(A,X)− fJ(A,XJc)∥2 = ∥D(HJ)−D(H ′
J)∥2 ≤ ℓ ∥HJ −H ′

J∥2 . (3.10)

Given an ℓr-Bilipschitz continuous readout function R, the following inequalities hold,

1

ℓr
∥HJ −H ′

J∥2 ≤ ∥R(HJ)−R(H ′
J)∥2 ≤ ℓr ∥HJ −H ′

J∥2 . (3.11)

We therefore have

E
[
∥f(A,X)− F ∥2 + ∥X − F ∥2

]
≤ E ∥f(A,X)−X∥2+2σ|V |ℓEJ

(
E ∥HJ −H ′

J∥22 /|J |
)1/2

(3.12)

≤ E ∥f(A,X)−X∥2+2σ|V |ℓℓrEJ
(
E ∥R(HJ)−R(H ′

J)∥22 /|J |
)1/2

(3.13)

= E ∥f(A,X)−X∥2+2σ|V |kℓEJ
(
E ∥z − z′∥22 /|J |

)1/2

, (3.14)

which completes the proof of Corollay 2.

We note that the assumptions and restrictions are natural or practically satisfiable. The assump-

tion that the variance of each element in X is bounded by σ holds when node features are from
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<latexit sha1_base64="K3Lw/yct4JfQz4wZKLg/lEOo+Rs=">AAACCXicbVDLSgMxFM3UV62vUZdugkWoIGVGBF1W3bisYB/QDiWTybShmWRIMkIZZuvGX3HjQhG3/oE7/8ZMO4vaeiDk5Jx7yb3HjxlV2nF+rNLK6tr6RnmzsrW9s7tn7x+0lUgkJi0smJBdHynCKCctTTUj3VgSFPmMdPzxbe53HolUVPAHPYmJF6EhpyHFSBtpYMNa3xcsUJPIXOl1dgbn393sdGBXnbozBVwmbkGqoEBzYH/3A4GTiHCNGVKq5zqx9lIkNcWMZJV+okiM8BgNSc9QjiKivHS6SQZPjBLAUEhzuIZTdb4jRZHKZzOVEdIjtejl4n9eL9HhlZdSHieacDz7KEwY1ALmscCASoI1mxiCsKRmVohHSCKsTXgVE4K7uPIyaZ/XXcPvL6qNmyKOMjgCx6AGXHAJGuAONEELYPAEXsAbeLeerVfrw/qclZasoucQ/IH19QuGqZo3</latexit><latexit sha1_base64="K3Lw/yct4JfQz4wZKLg/lEOo+Rs=">AAACCXicbVDLSgMxFM3UV62vUZdugkWoIGVGBF1W3bisYB/QDiWTybShmWRIMkIZZuvGX3HjQhG3/oE7/8ZMO4vaeiDk5Jx7yb3HjxlV2nF+rNLK6tr6RnmzsrW9s7tn7x+0lUgkJi0smJBdHynCKCctTTUj3VgSFPmMdPzxbe53HolUVPAHPYmJF6EhpyHFSBtpYMNa3xcsUJPIXOl1dgbn393sdGBXnbozBVwmbkGqoEBzYH/3A4GTiHCNGVKq5zqx9lIkNcWMZJV+okiM8BgNSc9QjiKivHS6SQZPjBLAUEhzuIZTdb4jRZHKZzOVEdIjtejl4n9eL9HhlZdSHieacDz7KEwY1ALmscCASoI1mxiCsKRmVohHSCKsTXgVE4K7uPIyaZ/XXcPvL6qNmyKOMjgCx6AGXHAJGuAONEELYPAEXsAbeLeerVfrw/qclZasoucQ/IH19QuGqZo3</latexit><latexit sha1_base64="K3Lw/yct4JfQz4wZKLg/lEOo+Rs=">AAACCXicbVDLSgMxFM3UV62vUZdugkWoIGVGBF1W3bisYB/QDiWTybShmWRIMkIZZuvGX3HjQhG3/oE7/8ZMO4vaeiDk5Jx7yb3HjxlV2nF+rNLK6tr6RnmzsrW9s7tn7x+0lUgkJi0smJBdHynCKCctTTUj3VgSFPmMdPzxbe53HolUVPAHPYmJF6EhpyHFSBtpYMNa3xcsUJPIXOl1dgbn393sdGBXnbozBVwmbkGqoEBzYH/3A4GTiHCNGVKq5zqx9lIkNcWMZJV+okiM8BgNSc9QjiKivHS6SQZPjBLAUEhzuIZTdb4jRZHKZzOVEdIjtejl4n9eL9HhlZdSHieacDz7KEwY1ALmscCASoI1mxiCsKRmVohHSCKsTXgVE4K7uPIyaZ/XXcPvL6qNmyKOMjgCx6AGXHAJGuAONEELYPAEXsAbeLeerVfrw/qclZasoucQ/IH19QuGqZo3</latexit><latexit sha1_base64="K3Lw/yct4JfQz4wZKLg/lEOo+Rs=">AAACCXicbVDLSgMxFM3UV62vUZdugkWoIGVGBF1W3bisYB/QDiWTybShmWRIMkIZZuvGX3HjQhG3/oE7/8ZMO4vaeiDk5Jx7yb3HjxlV2nF+rNLK6tr6RnmzsrW9s7tn7x+0lUgkJi0smJBdHynCKCctTTUj3VgSFPmMdPzxbe53HolUVPAHPYmJF6EhpyHFSBtpYMNa3xcsUJPIXOl1dgbn393sdGBXnbozBVwmbkGqoEBzYH/3A4GTiHCNGVKq5zqx9lIkNcWMZJV+okiM8BgNSc9QjiKivHS6SQZPjBLAUEhzuIZTdb4jRZHKZzOVEdIjtejl4n9eL9HhlZdSHieacDz7KEwY1ALmscCASoI1mxiCsKRmVohHSCKsTXgVE4K7uPIyaZ/XXcPvL6qNmyKOMjgCx6AGXHAJGuAONEELYPAEXsAbeLeerVfrw/qclZasoucQ/IH19QuGqZo3</latexit>

(A, XJc)
<latexit sha1_base64="7Cjw6rJCqbucaqkC0a9cKFyaWOQ=">AAACD3icbVBNS8MwGE79nPOr6tFLcCgTZLQi6HHqRTxNcB+w1ZKm6RaWNiVJhVH6D7z4V7x4UMSrV2/+G9Oth7n5QMiT53lf8r6PFzMqlWX9GAuLS8srq6W18vrG5ta2ubPbkjwRmDQxZ1x0PCQJoxFpKqoY6cSCoNBjpO0Nr3O//UiEpDy6V6OYOCHqRzSgGCktueZRtedx5stRqK/0MjuB0+9O5qa3Dzg7ds2KVbPGgPPELkgFFGi45nfP5zgJSaQwQ1J2bStWToqEopiRrNxLJIkRHqI+6WoaoZBIJx3vk8FDrfgw4EKfSMGxOt2RolDmE+rKEKmBnPVy8T+vm6jgwklpFCeKRHjyUZAwqDjMw4E+FQQrNtIEYUH1rBAPkEBY6QjLOgR7duV50jqt2ZrfnVXqV0UcJbAPDkAV2OAc1MENaIAmwOAJvIA38G48G6/Gh/E5KV0wip498AfG1y9UGJzV</latexit><latexit sha1_base64="7Cjw6rJCqbucaqkC0a9cKFyaWOQ=">AAACD3icbVBNS8MwGE79nPOr6tFLcCgTZLQi6HHqRTxNcB+w1ZKm6RaWNiVJhVH6D7z4V7x4UMSrV2/+G9Oth7n5QMiT53lf8r6PFzMqlWX9GAuLS8srq6W18vrG5ta2ubPbkjwRmDQxZ1x0PCQJoxFpKqoY6cSCoNBjpO0Nr3O//UiEpDy6V6OYOCHqRzSgGCktueZRtedx5stRqK/0MjuB0+9O5qa3Dzg7ds2KVbPGgPPELkgFFGi45nfP5zgJSaQwQ1J2bStWToqEopiRrNxLJIkRHqI+6WoaoZBIJx3vk8FDrfgw4EKfSMGxOt2RolDmE+rKEKmBnPVy8T+vm6jgwklpFCeKRHjyUZAwqDjMw4E+FQQrNtIEYUH1rBAPkEBY6QjLOgR7duV50jqt2ZrfnVXqV0UcJbAPDkAV2OAc1MENaIAmwOAJvIA38G48G6/Gh/E5KV0wip498AfG1y9UGJzV</latexit><latexit sha1_base64="7Cjw6rJCqbucaqkC0a9cKFyaWOQ=">AAACD3icbVBNS8MwGE79nPOr6tFLcCgTZLQi6HHqRTxNcB+w1ZKm6RaWNiVJhVH6D7z4V7x4UMSrV2/+G9Oth7n5QMiT53lf8r6PFzMqlWX9GAuLS8srq6W18vrG5ta2ubPbkjwRmDQxZ1x0PCQJoxFpKqoY6cSCoNBjpO0Nr3O//UiEpDy6V6OYOCHqRzSgGCktueZRtedx5stRqK/0MjuB0+9O5qa3Dzg7ds2KVbPGgPPELkgFFGi45nfP5zgJSaQwQ1J2bStWToqEopiRrNxLJIkRHqI+6WoaoZBIJx3vk8FDrfgw4EKfSMGxOt2RolDmE+rKEKmBnPVy8T+vm6jgwklpFCeKRHjyUZAwqDjMw4E+FQQrNtIEYUH1rBAPkEBY6QjLOgR7duV50jqt2ZrfnVXqV0UcJbAPDkAV2OAc1MENaIAmwOAJvIA38G48G6/Gh/E5KV0wip498AfG1y9UGJzV</latexit><latexit sha1_base64="7Cjw6rJCqbucaqkC0a9cKFyaWOQ=">AAACD3icbVBNS8MwGE79nPOr6tFLcCgTZLQi6HHqRTxNcB+w1ZKm6RaWNiVJhVH6D7z4V7x4UMSrV2/+G9Oth7n5QMiT53lf8r6PFzMqlWX9GAuLS8srq6W18vrG5ta2ubPbkjwRmDQxZ1x0PCQJoxFpKqoY6cSCoNBjpO0Nr3O//UiEpDy6V6OYOCHqRzSgGCktueZRtedx5stRqK/0MjuB0+9O5qa3Dzg7ds2KVbPGgPPELkgFFGi45nfP5zgJSaQwQ1J2bStWToqEopiRrNxLJIkRHqI+6WoaoZBIJx3vk8FDrfgw4EKfSMGxOt2RolDmE+rKEKmBnPVy8T+vm6jgwklpFCeKRHjyUZAwqDjMw4E+FQQrNtIEYUH1rBAPkEBY6QjLOgR7duV50jqt2ZrfnVXqV0UcJbAPDkAV2OAc1MENaIAmwOAJvIA38G48G6/Gh/E5KV0wip498AfG1y9UGJzV</latexit>

Decoder
D(·)

<latexit sha1_base64="mtOkE6VQuGq8+A4bJ0EkTSxXPyw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyURQZdFXbisYB/QhDKZTNqhk5kwMxFLyK+4caGIW3/EnX/jpM1CWw8MHM65l3vmBAmjSjvOt1VZW9/Y3Kpu13Z29/YP7MN6T4lUYtLFggk5CJAijHLS1VQzMkgkQXHASD+Y3hR+/5FIRQV/0LOE+DEacxpRjLSRRnbdi5GeYMSy27zp4VDos5HdcFrOHHCVuCVpgBKdkf3lhQKnMeEaM6TU0HUS7WdIaooZyWteqkiC8BSNydBQjmKi/GyePYenRglhJKR5XMO5+nsjQ7FSszgwk0VStewV4n/eMNXRlZ9RnqSacLw4FKUMagGLImBIJcGazQxBWFKTFeIJkghrU1fNlOAuf3mV9M5bruH3F432dVlHFRyDE9AELrgEbXAHOqALMHgCz+AVvFm59WK9Wx+L0YpV7hyBP7A+fwCh7pQo</latexit><latexit sha1_base64="mtOkE6VQuGq8+A4bJ0EkTSxXPyw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyURQZdFXbisYB/QhDKZTNqhk5kwMxFLyK+4caGIW3/EnX/jpM1CWw8MHM65l3vmBAmjSjvOt1VZW9/Y3Kpu13Z29/YP7MN6T4lUYtLFggk5CJAijHLS1VQzMkgkQXHASD+Y3hR+/5FIRQV/0LOE+DEacxpRjLSRRnbdi5GeYMSy27zp4VDos5HdcFrOHHCVuCVpgBKdkf3lhQKnMeEaM6TU0HUS7WdIaooZyWteqkiC8BSNydBQjmKi/GyePYenRglhJKR5XMO5+nsjQ7FSszgwk0VStewV4n/eMNXRlZ9RnqSacLw4FKUMagGLImBIJcGazQxBWFKTFeIJkghrU1fNlOAuf3mV9M5bruH3F432dVlHFRyDE9AELrgEbXAHOqALMHgCz+AVvFm59WK9Wx+L0YpV7hyBP7A+fwCh7pQo</latexit><latexit sha1_base64="mtOkE6VQuGq8+A4bJ0EkTSxXPyw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyURQZdFXbisYB/QhDKZTNqhk5kwMxFLyK+4caGIW3/EnX/jpM1CWw8MHM65l3vmBAmjSjvOt1VZW9/Y3Kpu13Z29/YP7MN6T4lUYtLFggk5CJAijHLS1VQzMkgkQXHASD+Y3hR+/5FIRQV/0LOE+DEacxpRjLSRRnbdi5GeYMSy27zp4VDos5HdcFrOHHCVuCVpgBKdkf3lhQKnMeEaM6TU0HUS7WdIaooZyWteqkiC8BSNydBQjmKi/GyePYenRglhJKR5XMO5+nsjQ7FSszgwk0VStewV4n/eMNXRlZ9RnqSacLw4FKUMagGLImBIJcGazQxBWFKTFeIJkghrU1fNlOAuf3mV9M5bruH3F432dVlHFRyDE9AELrgEbXAHOqALMHgCz+AVvFm59WK9Wx+L0YpV7hyBP7A+fwCh7pQo</latexit><latexit sha1_base64="mtOkE6VQuGq8+A4bJ0EkTSxXPyw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyURQZdFXbisYB/QhDKZTNqhk5kwMxFLyK+4caGIW3/EnX/jpM1CWw8MHM65l3vmBAmjSjvOt1VZW9/Y3Kpu13Z29/YP7MN6T4lUYtLFggk5CJAijHLS1VQzMkgkQXHASD+Y3hR+/5FIRQV/0LOE+DEacxpRjLSRRnbdi5GeYMSy27zp4VDos5HdcFrOHHCVuCVpgBKdkf3lhQKnMeEaM6TU0HUS7WdIaooZyWteqkiC8BSNydBQjmKi/GyePYenRglhJKR5XMO5+nsjQ7FSszgwk0VStewV4n/eMNXRlZ9RnqSacLw4FKUMagGLImBIJcGazQxBWFKTFeIJkghrU1fNlOAuf3mV9M5bruH3F432dVlHFRyDE9AELrgEbXAHOqALMHgCz+AVvFm59WK9Wx+L0YpV7hyBP7A+fwCh7pQo</latexit>

D(H)
<latexit sha1_base64="W2+Q5CcHh007iwFlEdiZFPAZLqc=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUlipBSDBWwNCxSPQhNVHlOE5r1bEj20Gqog4s/AoLAwix8hFs/A1OmwFarmT56Jx7dc89QcKo0o7zbZXW1jc2t8rblZ3dvf0D+/Coq0QqMelgwYTsB0gRRjnpaKoZ6SeSoDhgpBdMbnK990CkooLf62lC/BiNOI0oRtpQQ7vqxUiPMWLZ7azuBYKFahqbL2vNzoZ2zWk484KrwC1ADRTVHtpfXihwGhOuMUNKDVwn0X6GpKaYkVnFSxVJEJ6gERkYyFFMlJ/Nj5jBU8OEMBLSPK7hnP09kaFY5d5MZ25ZLWs5+Z82SHV05WeUJ6kmHC8WRSmDWsA8ERhSSbBmUwMQltR4hXiMJMLa5FYxIbjLJ6+C7nnDNfjuota8LuIogyo4AXXggkvQBC3QBh2AwSN4Bq/gzXqyXqx362PRWrKKmWPwp6zPHwJ4mE8=</latexit><latexit sha1_base64="W2+Q5CcHh007iwFlEdiZFPAZLqc=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUlipBSDBWwNCxSPQhNVHlOE5r1bEj20Gqog4s/AoLAwix8hFs/A1OmwFarmT56Jx7dc89QcKo0o7zbZXW1jc2t8rblZ3dvf0D+/Coq0QqMelgwYTsB0gRRjnpaKoZ6SeSoDhgpBdMbnK990CkooLf62lC/BiNOI0oRtpQQ7vqxUiPMWLZ7azuBYKFahqbL2vNzoZ2zWk484KrwC1ADRTVHtpfXihwGhOuMUNKDVwn0X6GpKaYkVnFSxVJEJ6gERkYyFFMlJ/Nj5jBU8OEMBLSPK7hnP09kaFY5d5MZ25ZLWs5+Z82SHV05WeUJ6kmHC8WRSmDWsA8ERhSSbBmUwMQltR4hXiMJMLa5FYxIbjLJ6+C7nnDNfjuota8LuIogyo4AXXggkvQBC3QBh2AwSN4Bq/gzXqyXqx362PRWrKKmWPwp6zPHwJ4mE8=</latexit><latexit sha1_base64="W2+Q5CcHh007iwFlEdiZFPAZLqc=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUlipBSDBWwNCxSPQhNVHlOE5r1bEj20Gqog4s/AoLAwix8hFs/A1OmwFarmT56Jx7dc89QcKo0o7zbZXW1jc2t8rblZ3dvf0D+/Coq0QqMelgwYTsB0gRRjnpaKoZ6SeSoDhgpBdMbnK990CkooLf62lC/BiNOI0oRtpQQ7vqxUiPMWLZ7azuBYKFahqbL2vNzoZ2zWk484KrwC1ADRTVHtpfXihwGhOuMUNKDVwn0X6GpKaYkVnFSxVJEJ6gERkYyFFMlJ/Nj5jBU8OEMBLSPK7hnP09kaFY5d5MZ25ZLWs5+Z82SHV05WeUJ6kmHC8WRSmDWsA8ERhSSbBmUwMQltR4hXiMJMLa5FYxIbjLJ6+C7nnDNfjuota8LuIogyo4AXXggkvQBC3QBh2AwSN4Bq/gzXqyXqx362PRWrKKmWPwp6zPHwJ4mE8=</latexit><latexit sha1_base64="W2+Q5CcHh007iwFlEdiZFPAZLqc=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUlipBSDBWwNCxSPQhNVHlOE5r1bEj20Gqog4s/AoLAwix8hFs/A1OmwFarmT56Jx7dc89QcKo0o7zbZXW1jc2t8rblZ3dvf0D+/Coq0QqMelgwYTsB0gRRjnpaKoZ6SeSoDhgpBdMbnK990CkooLf62lC/BiNOI0oRtpQQ7vqxUiPMWLZ7azuBYKFahqbL2vNzoZ2zWk484KrwC1ADRTVHtpfXihwGhOuMUNKDVwn0X6GpKaYkVnFSxVJEJ6gERkYyFFMlJ/Nj5jBU8OEMBLSPK7hnP09kaFY5d5MZ25ZLWs5+Z82SHV05WeUJ6kmHC8WRSmDWsA8ERhSSbBmUwMQltR4hXiMJMLa5FYxIbjLJ6+C7nnDNfjuota8LuIogyo4AXXggkvQBC3QBh2AwSN4Bq/gzXqyXqx362PRWrKKmWPwp6zPHwJ4mE8=</latexit>

X<latexit sha1_base64="FZ0n0sAsKDG0btS0kTjpB174BA0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+sNxtWa27dnQOtEq8gNSjQGla/BqEkaUyFIRxr3ffcxPgZVoYRTmeVQappgskEj2jfUoFjqv1snnqGzqwSokgqe4RBc/X3RoZjnUezkzE2Y73s5eJ/Xj810ZWfMZGkhgqyeChKOTIS5RWgkClKDJ9agoliNisiY6wwMbaoii3BW/7yKulc1D3L7y5rzeuijjKcwCmcgwcNaMIttKANBBQ8wyu8OU/Oi/PufCxGS06xcwx/4Hz+ACKukuk=</latexit><latexit sha1_base64="FZ0n0sAsKDG0btS0kTjpB174BA0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+sNxtWa27dnQOtEq8gNSjQGla/BqEkaUyFIRxr3ffcxPgZVoYRTmeVQappgskEj2jfUoFjqv1snnqGzqwSokgqe4RBc/X3RoZjnUezkzE2Y73s5eJ/Xj810ZWfMZGkhgqyeChKOTIS5RWgkClKDJ9agoliNisiY6wwMbaoii3BW/7yKulc1D3L7y5rzeuijjKcwCmcgwcNaMIttKANBBQ8wyu8OU/Oi/PufCxGS06xcwx/4Hz+ACKukuk=</latexit><latexit sha1_base64="FZ0n0sAsKDG0btS0kTjpB174BA0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+sNxtWa27dnQOtEq8gNSjQGla/BqEkaUyFIRxr3ffcxPgZVoYRTmeVQappgskEj2jfUoFjqv1snnqGzqwSokgqe4RBc/X3RoZjnUezkzE2Y73s5eJ/Xj810ZWfMZGkhgqyeChKOTIS5RWgkClKDJ9agoliNisiY6wwMbaoii3BW/7yKulc1D3L7y5rzeuijjKcwCmcgwcNaMIttKANBBQ8wyu8OU/Oi/PufCxGS06xcwx/4Hz+ACKukuk=</latexit><latexit sha1_base64="FZ0n0sAsKDG0btS0kTjpB174BA0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+sNxtWa27dnQOtEq8gNSjQGla/BqEkaUyFIRxr3ffcxPgZVoYRTmeVQappgskEj2jfUoFjqv1snnqGzqwSokgqe4RBc/X3RoZjnUezkzE2Y73s5eJ/Xj810ZWfMZGkhgqyeChKOTIS5RWgkClKDJ9agoliNisiY6wwMbaoii3BW/7yKulc1D3L7y5rzeuijjKcwCmcgwcNaMIttKANBBQ8wyu8OU/Oi/PufCxGS06xcwx/4Hz+ACKukuk=</latexit>

MSE(D(H), X)
<latexit sha1_base64="PuO1HUyF3urHJZXoRKw9J40m6/A=">AAACIHicbZDLSgMxFIYz9VbrbdSlm2ARWpAyI0JdFi/QjVDRXqAtJZOmbWgmGZKMWIZ5FDe+ihsXiuhOn8ZMOwttPRD4+P9zyDm/FzCqtON8WZml5ZXVtex6bmNza3vH3t1rKBFKTOpYMCFbHlKEUU7qmmpGWoEkyPcYaXrji8Rv3hOpqOB3ehKQro+GnA4oRtpIPbvc8T3xEF3fXsWFjo/0CCMWXRr2BOuriTFZVI2Lx/C30IqLPTvvlJxpwUVwU8iDtGo9+7PTFzj0CdeYIaXarhPoboSkppiRONcJFQkQHqMhaRvkyCeqG00PjOGRUfpwIKR5XMOp+nsiQr5KdjOdyQ1q3kvE/7x2qAdn3YjyINSE49lHg5BBLWCSFuxTSbBmEwMIS2p2hXiEJMLaZJozIbjzJy9C46TkGr45zVfO0ziy4AAcggJwQRlUQBXUQB1g8AiewSt4s56sF+vd+pi1Zqx0Zh/8Kev7B5a3o9Y=</latexit><latexit sha1_base64="PuO1HUyF3urHJZXoRKw9J40m6/A=">AAACIHicbZDLSgMxFIYz9VbrbdSlm2ARWpAyI0JdFi/QjVDRXqAtJZOmbWgmGZKMWIZ5FDe+ihsXiuhOn8ZMOwttPRD4+P9zyDm/FzCqtON8WZml5ZXVtex6bmNza3vH3t1rKBFKTOpYMCFbHlKEUU7qmmpGWoEkyPcYaXrji8Rv3hOpqOB3ehKQro+GnA4oRtpIPbvc8T3xEF3fXsWFjo/0CCMWXRr2BOuriTFZVI2Lx/C30IqLPTvvlJxpwUVwU8iDtGo9+7PTFzj0CdeYIaXarhPoboSkppiRONcJFQkQHqMhaRvkyCeqG00PjOGRUfpwIKR5XMOp+nsiQr5KdjOdyQ1q3kvE/7x2qAdn3YjyINSE49lHg5BBLWCSFuxTSbBmEwMIS2p2hXiEJMLaZJozIbjzJy9C46TkGr45zVfO0ziy4AAcggJwQRlUQBXUQB1g8AiewSt4s56sF+vd+pi1Zqx0Zh/8Kev7B5a3o9Y=</latexit><latexit sha1_base64="PuO1HUyF3urHJZXoRKw9J40m6/A=">AAACIHicbZDLSgMxFIYz9VbrbdSlm2ARWpAyI0JdFi/QjVDRXqAtJZOmbWgmGZKMWIZ5FDe+ihsXiuhOn8ZMOwttPRD4+P9zyDm/FzCqtON8WZml5ZXVtex6bmNza3vH3t1rKBFKTOpYMCFbHlKEUU7qmmpGWoEkyPcYaXrji8Rv3hOpqOB3ehKQro+GnA4oRtpIPbvc8T3xEF3fXsWFjo/0CCMWXRr2BOuriTFZVI2Lx/C30IqLPTvvlJxpwUVwU8iDtGo9+7PTFzj0CdeYIaXarhPoboSkppiRONcJFQkQHqMhaRvkyCeqG00PjOGRUfpwIKR5XMOp+nsiQr5KdjOdyQ1q3kvE/7x2qAdn3YjyINSE49lHg5BBLWCSFuxTSbBmEwMIS2p2hXiEJMLaZJozIbjzJy9C46TkGr45zVfO0ziy4AAcggJwQRlUQBXUQB1g8AiewSt4s56sF+vd+pi1Zqx0Zh/8Kev7B5a3o9Y=</latexit><latexit sha1_base64="PuO1HUyF3urHJZXoRKw9J40m6/A=">AAACIHicbZDLSgMxFIYz9VbrbdSlm2ARWpAyI0JdFi/QjVDRXqAtJZOmbWgmGZKMWIZ5FDe+ihsXiuhOn8ZMOwttPRD4+P9zyDm/FzCqtON8WZml5ZXVtex6bmNza3vH3t1rKBFKTOpYMCFbHlKEUU7qmmpGWoEkyPcYaXrji8Rv3hOpqOB3ehKQro+GnA4oRtpIPbvc8T3xEF3fXsWFjo/0CCMWXRr2BOuriTFZVI2Lx/C30IqLPTvvlJxpwUVwU8iDtGo9+7PTFzj0CdeYIaXarhPoboSkppiRONcJFQkQHqMhaRvkyCeqG00PjOGRUfpwIKR5XMOp+nsiQr5KdjOdyQ1q3kvE/7x2qAdn3YjyINSE49lHg5BBLWCSFuxTSbBmEwMIS2p2hXiEJMLaZJozIbjzJy9C46TkGr45zVfO0ziy4AAcggJwQRlUQBXUQB1g8AiewSt4s56sF+vd+pi1Zqx0Zh/8Kev7B5a3o9Y=</latexit> +

[MSE(HJ , H 0
J)]

1
2

<latexit sha1_base64="ur+z6IEAWFunv/YDqoQLUqqZJvQ="></latexit><latexit sha1_base64="ur+z6IEAWFunv/YDqoQLUqqZJvQ="></latexit><latexit sha1_base64="ur+z6IEAWFunv/YDqoQLUqqZJvQ="></latexit><latexit sha1_base64="ur+z6IEAWFunv/YDqoQLUqqZJvQ="></latexit>

Input graphs

H = E(A, X)
<latexit sha1_base64="TYd8OZplG2OfxjgU49lIXa0q+kk=">AAACI3icbVBdS8MwFE3n15xfVR99CQ5hgoxWBEUQpiLscYL7gLWMNM22sLQpSSqM0v/ii3/FFx+U4YsP/hfTrQ9z80LIyTn3knuOFzEqlWV9G4WV1bX1jeJmaWt7Z3fP3D9oSR4LTJqYMy46HpKE0ZA0FVWMdCJBUOAx0vZG95nefiZCUh4+qXFE3AANQtqnGClN9cxrx+PMl+NAX0k9vXECpIYYseQhrcxLt+kZnH930tOeWbaq1rTgMrBzUAZ5NXrmxPE5jgMSKsyQlF3bipSbIKEoZiQtObEkEcIjNCBdDUMUEOkmU48pPNGMD/tc6BMqOGXnJxIUyGw33ZlZkItaRv6ndWPVv3ITGkaxIiGefdSPGVQcZoFBnwqCFRtrgLCgeleIh0ggrHSsJR2CvWh5GbTOq7bGjxfl2l0eRxEcgWNQATa4BDVQBw3QBBi8gDfwAT6NV+PdmBhfs9aCkc8cgj9l/PwCFeulvg==</latexit><latexit sha1_base64="TYd8OZplG2OfxjgU49lIXa0q+kk=">AAACI3icbVBdS8MwFE3n15xfVR99CQ5hgoxWBEUQpiLscYL7gLWMNM22sLQpSSqM0v/ii3/FFx+U4YsP/hfTrQ9z80LIyTn3knuOFzEqlWV9G4WV1bX1jeJmaWt7Z3fP3D9oSR4LTJqYMy46HpKE0ZA0FVWMdCJBUOAx0vZG95nefiZCUh4+qXFE3AANQtqnGClN9cxrx+PMl+NAX0k9vXECpIYYseQhrcxLt+kZnH930tOeWbaq1rTgMrBzUAZ5NXrmxPE5jgMSKsyQlF3bipSbIKEoZiQtObEkEcIjNCBdDUMUEOkmU48pPNGMD/tc6BMqOGXnJxIUyGw33ZlZkItaRv6ndWPVv3ITGkaxIiGefdSPGVQcZoFBnwqCFRtrgLCgeleIh0ggrHSsJR2CvWh5GbTOq7bGjxfl2l0eRxEcgWNQATa4BDVQBw3QBBi8gDfwAT6NV+PdmBhfs9aCkc8cgj9l/PwCFeulvg==</latexit><latexit sha1_base64="TYd8OZplG2OfxjgU49lIXa0q+kk=">AAACI3icbVBdS8MwFE3n15xfVR99CQ5hgoxWBEUQpiLscYL7gLWMNM22sLQpSSqM0v/ii3/FFx+U4YsP/hfTrQ9z80LIyTn3knuOFzEqlWV9G4WV1bX1jeJmaWt7Z3fP3D9oSR4LTJqYMy46HpKE0ZA0FVWMdCJBUOAx0vZG95nefiZCUh4+qXFE3AANQtqnGClN9cxrx+PMl+NAX0k9vXECpIYYseQhrcxLt+kZnH930tOeWbaq1rTgMrBzUAZ5NXrmxPE5jgMSKsyQlF3bipSbIKEoZiQtObEkEcIjNCBdDUMUEOkmU48pPNGMD/tc6BMqOGXnJxIUyGw33ZlZkItaRv6ndWPVv3ITGkaxIiGefdSPGVQcZoFBnwqCFRtrgLCgeleIh0ggrHSsJR2CvWh5GbTOq7bGjxfl2l0eRxEcgWNQATa4BDVQBw3QBBi8gDfwAT6NV+PdmBhfs9aCkc8cgj9l/PwCFeulvg==</latexit><latexit sha1_base64="TYd8OZplG2OfxjgU49lIXa0q+kk=">AAACI3icbVBdS8MwFE3n15xfVR99CQ5hgoxWBEUQpiLscYL7gLWMNM22sLQpSSqM0v/ii3/FFx+U4YsP/hfTrQ9z80LIyTn3knuOFzEqlWV9G4WV1bX1jeJmaWt7Z3fP3D9oSR4LTJqYMy46HpKE0ZA0FVWMdCJBUOAx0vZG95nefiZCUh4+qXFE3AANQtqnGClN9cxrx+PMl+NAX0k9vXECpIYYseQhrcxLt+kZnH930tOeWbaq1rTgMrBzUAZ5NXrmxPE5jgMSKsyQlF3bipSbIKEoZiQtObEkEcIjNCBdDUMUEOkmU48pPNGMD/tc6BMqOGXnJxIUyGw33ZlZkItaRv6ndWPVv3ITGkaxIiGefdSPGVQcZoFBnwqCFRtrgLCgeleIh0ggrHSsJR2CvWh5GbTOq7bGjxfl2l0eRxEcgWNQATa4BDVQBw3QBBi8gDfwAT6NV+PdmBhfs9aCkc8cgj9l/PwCFeulvg==</latexit>

H 0 = E(A, XJc)
<latexit sha1_base64="hFZf6s7jLSJR0BSbgnu6rU7uT6o=">AAACKnicbVDLSgMxFM3UV62vUZdugkWsIGVGBN0IrSIUVxXsAzrjkMmkbWjmQZIRyjDf48ZfcdOFUtz6IWbaWdTqhZCTc+4l9xw3YlRIw5hqhZXVtfWN4mZpa3tnd0/fP2iLMOaYtHDIQt51kSCMBqQlqWSkG3GCfJeRjju6y/TOC+GChsGTHEfE9tEgoH2KkVSUo9ctN2SeGPvqShrp6Y3lIznEiCX3aWVRq6fncPHdTZ3k4RmnZ45eNqrGrOBfYOagDPJqOvrE8kIc+ySQmCEheqYRSTtBXFLMSFqyYkEihEdoQHoKBsgnwk5mVlN4ohgP9kOuTiDhjF2cSJAvsg1VZ2ZELGsZ+Z/Wi2X/2k5oEMWSBHj+UT9mUIYwyw16lBMs2VgBhDlVu0I8RBxhqdItqRDMZct/Qfuiair8eFmu3eZxFMEROAYVYIIrUAMN0AQtgMEreAcf4FN70ybaVPuatxa0fOYQ/Crt+weRsqiN</latexit><latexit sha1_base64="hFZf6s7jLSJR0BSbgnu6rU7uT6o=">AAACKnicbVDLSgMxFM3UV62vUZdugkWsIGVGBN0IrSIUVxXsAzrjkMmkbWjmQZIRyjDf48ZfcdOFUtz6IWbaWdTqhZCTc+4l9xw3YlRIw5hqhZXVtfWN4mZpa3tnd0/fP2iLMOaYtHDIQt51kSCMBqQlqWSkG3GCfJeRjju6y/TOC+GChsGTHEfE9tEgoH2KkVSUo9ctN2SeGPvqShrp6Y3lIznEiCX3aWVRq6fncPHdTZ3k4RmnZ45eNqrGrOBfYOagDPJqOvrE8kIc+ySQmCEheqYRSTtBXFLMSFqyYkEihEdoQHoKBsgnwk5mVlN4ohgP9kOuTiDhjF2cSJAvsg1VZ2ZELGsZ+Z/Wi2X/2k5oEMWSBHj+UT9mUIYwyw16lBMs2VgBhDlVu0I8RBxhqdItqRDMZct/Qfuiair8eFmu3eZxFMEROAYVYIIrUAMN0AQtgMEreAcf4FN70ybaVPuatxa0fOYQ/Crt+weRsqiN</latexit><latexit sha1_base64="hFZf6s7jLSJR0BSbgnu6rU7uT6o=">AAACKnicbVDLSgMxFM3UV62vUZdugkWsIGVGBN0IrSIUVxXsAzrjkMmkbWjmQZIRyjDf48ZfcdOFUtz6IWbaWdTqhZCTc+4l9xw3YlRIw5hqhZXVtfWN4mZpa3tnd0/fP2iLMOaYtHDIQt51kSCMBqQlqWSkG3GCfJeRjju6y/TOC+GChsGTHEfE9tEgoH2KkVSUo9ctN2SeGPvqShrp6Y3lIznEiCX3aWVRq6fncPHdTZ3k4RmnZ45eNqrGrOBfYOagDPJqOvrE8kIc+ySQmCEheqYRSTtBXFLMSFqyYkEihEdoQHoKBsgnwk5mVlN4ohgP9kOuTiDhjF2cSJAvsg1VZ2ZELGsZ+Z/Wi2X/2k5oEMWSBHj+UT9mUIYwyw16lBMs2VgBhDlVu0I8RBxhqdItqRDMZct/Qfuiair8eFmu3eZxFMEROAYVYIIrUAMN0AQtgMEreAcf4FN70ybaVPuatxa0fOYQ/Crt+weRsqiN</latexit><latexit sha1_base64="hFZf6s7jLSJR0BSbgnu6rU7uT6o=">AAACKnicbVDLSgMxFM3UV62vUZdugkWsIGVGBN0IrSIUVxXsAzrjkMmkbWjmQZIRyjDf48ZfcdOFUtz6IWbaWdTqhZCTc+4l9xw3YlRIw5hqhZXVtfWN4mZpa3tnd0/fP2iLMOaYtHDIQt51kSCMBqQlqWSkG3GCfJeRjju6y/TOC+GChsGTHEfE9tEgoH2KkVSUo9ctN2SeGPvqShrp6Y3lIznEiCX3aWVRq6fncPHdTZ3k4RmnZ45eNqrGrOBfYOagDPJqOvrE8kIc+ySQmCEheqYRSTtBXFLMSFqyYkEihEdoQHoKBsgnwk5mVlN4ohgP9kOuTiDhjF2cSJAvsg1VZ2ZELGsZ+Z/Wi2X/2k5oEMWSBHj+UT9mUIYwyw16lBMs2VgBhDlVu0I8RBxhqdItqRDMZct/Qfuiair8eFmu3eZxFMEROAYVYIIrUAMN0AQtgMEreAcf4FN70ybaVPuatxa0fOYQ/Crt+weRsqiN</latexit>

Representations
Loss

Node-level

Decoder
D(·)

<latexit sha1_base64="mtOkE6VQuGq8+A4bJ0EkTSxXPyw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyURQZdFXbisYB/QhDKZTNqhk5kwMxFLyK+4caGIW3/EnX/jpM1CWw8MHM65l3vmBAmjSjvOt1VZW9/Y3Kpu13Z29/YP7MN6T4lUYtLFggk5CJAijHLS1VQzMkgkQXHASD+Y3hR+/5FIRQV/0LOE+DEacxpRjLSRRnbdi5GeYMSy27zp4VDos5HdcFrOHHCVuCVpgBKdkf3lhQKnMeEaM6TU0HUS7WdIaooZyWteqkiC8BSNydBQjmKi/GyePYenRglhJKR5XMO5+nsjQ7FSszgwk0VStewV4n/eMNXRlZ9RnqSacLw4FKUMagGLImBIJcGazQxBWFKTFeIJkghrU1fNlOAuf3mV9M5bruH3F432dVlHFRyDE9AELrgEbXAHOqALMHgCz+AVvFm59WK9Wx+L0YpV7hyBP7A+fwCh7pQo</latexit><latexit sha1_base64="mtOkE6VQuGq8+A4bJ0EkTSxXPyw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyURQZdFXbisYB/QhDKZTNqhk5kwMxFLyK+4caGIW3/EnX/jpM1CWw8MHM65l3vmBAmjSjvOt1VZW9/Y3Kpu13Z29/YP7MN6T4lUYtLFggk5CJAijHLS1VQzMkgkQXHASD+Y3hR+/5FIRQV/0LOE+DEacxpRjLSRRnbdi5GeYMSy27zp4VDos5HdcFrOHHCVuCVpgBKdkf3lhQKnMeEaM6TU0HUS7WdIaooZyWteqkiC8BSNydBQjmKi/GyePYenRglhJKR5XMO5+nsjQ7FSszgwk0VStewV4n/eMNXRlZ9RnqSacLw4FKUMagGLImBIJcGazQxBWFKTFeIJkghrU1fNlOAuf3mV9M5bruH3F432dVlHFRyDE9AELrgEbXAHOqALMHgCz+AVvFm59WK9Wx+L0YpV7hyBP7A+fwCh7pQo</latexit><latexit sha1_base64="mtOkE6VQuGq8+A4bJ0EkTSxXPyw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyURQZdFXbisYB/QhDKZTNqhk5kwMxFLyK+4caGIW3/EnX/jpM1CWw8MHM65l3vmBAmjSjvOt1VZW9/Y3Kpu13Z29/YP7MN6T4lUYtLFggk5CJAijHLS1VQzMkgkQXHASD+Y3hR+/5FIRQV/0LOE+DEacxpRjLSRRnbdi5GeYMSy27zp4VDos5HdcFrOHHCVuCVpgBKdkf3lhQKnMeEaM6TU0HUS7WdIaooZyWteqkiC8BSNydBQjmKi/GyePYenRglhJKR5XMO5+nsjQ7FSszgwk0VStewV4n/eMNXRlZ9RnqSacLw4FKUMagGLImBIJcGazQxBWFKTFeIJkghrU1fNlOAuf3mV9M5bruH3F432dVlHFRyDE9AELrgEbXAHOqALMHgCz+AVvFm59WK9Wx+L0YpV7hyBP7A+fwCh7pQo</latexit><latexit sha1_base64="mtOkE6VQuGq8+A4bJ0EkTSxXPyw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyURQZdFXbisYB/QhDKZTNqhk5kwMxFLyK+4caGIW3/EnX/jpM1CWw8MHM65l3vmBAmjSjvOt1VZW9/Y3Kpu13Z29/YP7MN6T4lUYtLFggk5CJAijHLS1VQzMkgkQXHASD+Y3hR+/5FIRQV/0LOE+DEacxpRjLSRRnbdi5GeYMSy27zp4VDos5HdcFrOHHCVuCVpgBKdkf3lhQKnMeEaM6TU0HUS7WdIaooZyWteqkiC8BSNydBQjmKi/GyePYenRglhJKR5XMO5+nsjQ7FSszgwk0VStewV4n/eMNXRlZ9RnqSacLw4FKUMagGLImBIJcGazQxBWFKTFeIJkghrU1fNlOAuf3mV9M5bruH3F432dVlHFRyDE9AELrgEbXAHOqALMHgCz+AVvFm59WK9Wx+L0YpV7hyBP7A+fwCh7pQo</latexit>

D(H)
<latexit sha1_base64="W2+Q5CcHh007iwFlEdiZFPAZLqc=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUlipBSDBWwNCxSPQhNVHlOE5r1bEj20Gqog4s/AoLAwix8hFs/A1OmwFarmT56Jx7dc89QcKo0o7zbZXW1jc2t8rblZ3dvf0D+/Coq0QqMelgwYTsB0gRRjnpaKoZ6SeSoDhgpBdMbnK990CkooLf62lC/BiNOI0oRtpQQ7vqxUiPMWLZ7azuBYKFahqbL2vNzoZ2zWk484KrwC1ADRTVHtpfXihwGhOuMUNKDVwn0X6GpKaYkVnFSxVJEJ6gERkYyFFMlJ/Nj5jBU8OEMBLSPK7hnP09kaFY5d5MZ25ZLWs5+Z82SHV05WeUJ6kmHC8WRSmDWsA8ERhSSbBmUwMQltR4hXiMJMLa5FYxIbjLJ6+C7nnDNfjuota8LuIogyo4AXXggkvQBC3QBh2AwSN4Bq/gzXqyXqx362PRWrKKmWPwp6zPHwJ4mE8=</latexit><latexit sha1_base64="W2+Q5CcHh007iwFlEdiZFPAZLqc=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUlipBSDBWwNCxSPQhNVHlOE5r1bEj20Gqog4s/AoLAwix8hFs/A1OmwFarmT56Jx7dc89QcKo0o7zbZXW1jc2t8rblZ3dvf0D+/Coq0QqMelgwYTsB0gRRjnpaKoZ6SeSoDhgpBdMbnK990CkooLf62lC/BiNOI0oRtpQQ7vqxUiPMWLZ7azuBYKFahqbL2vNzoZ2zWk484KrwC1ADRTVHtpfXihwGhOuMUNKDVwn0X6GpKaYkVnFSxVJEJ6gERkYyFFMlJ/Nj5jBU8OEMBLSPK7hnP09kaFY5d5MZ25ZLWs5+Z82SHV05WeUJ6kmHC8WRSmDWsA8ERhSSbBmUwMQltR4hXiMJMLa5FYxIbjLJ6+C7nnDNfjuota8LuIogyo4AXXggkvQBC3QBh2AwSN4Bq/gzXqyXqx362PRWrKKmWPwp6zPHwJ4mE8=</latexit><latexit sha1_base64="W2+Q5CcHh007iwFlEdiZFPAZLqc=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUlipBSDBWwNCxSPQhNVHlOE5r1bEj20Gqog4s/AoLAwix8hFs/A1OmwFarmT56Jx7dc89QcKo0o7zbZXW1jc2t8rblZ3dvf0D+/Coq0QqMelgwYTsB0gRRjnpaKoZ6SeSoDhgpBdMbnK990CkooLf62lC/BiNOI0oRtpQQ7vqxUiPMWLZ7azuBYKFahqbL2vNzoZ2zWk484KrwC1ADRTVHtpfXihwGhOuMUNKDVwn0X6GpKaYkVnFSxVJEJ6gERkYyFFMlJ/Nj5jBU8OEMBLSPK7hnP09kaFY5d5MZ25ZLWs5+Z82SHV05WeUJ6kmHC8WRSmDWsA8ERhSSbBmUwMQltR4hXiMJMLa5FYxIbjLJ6+C7nnDNfjuota8LuIogyo4AXXggkvQBC3QBh2AwSN4Bq/gzXqyXqx362PRWrKKmWPwp6zPHwJ4mE8=</latexit><latexit sha1_base64="W2+Q5CcHh007iwFlEdiZFPAZLqc=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUlipBSDBWwNCxSPQhNVHlOE5r1bEj20Gqog4s/AoLAwix8hFs/A1OmwFarmT56Jx7dc89QcKo0o7zbZXW1jc2t8rblZ3dvf0D+/Coq0QqMelgwYTsB0gRRjnpaKoZ6SeSoDhgpBdMbnK990CkooLf62lC/BiNOI0oRtpQQ7vqxUiPMWLZ7azuBYKFahqbL2vNzoZ2zWk484KrwC1ADRTVHtpfXihwGhOuMUNKDVwn0X6GpKaYkVnFSxVJEJ6gERkYyFFMlJ/Nj5jBU8OEMBLSPK7hnP09kaFY5d5MZ25ZLWs5+Z82SHV05WeUJ6kmHC8WRSmDWsA8ERhSSbBmUwMQltR4hXiMJMLa5FYxIbjLJ6+C7nnDNfjuota8LuIogyo4AXXggkvQBC3QBh2AwSN4Bq/gzXqyXqx362PRWrKKmWPwp6zPHwJ4mE8=</latexit>

X<latexit sha1_base64="FZ0n0sAsKDG0btS0kTjpB174BA0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+sNxtWa27dnQOtEq8gNSjQGla/BqEkaUyFIRxr3ffcxPgZVoYRTmeVQappgskEj2jfUoFjqv1snnqGzqwSokgqe4RBc/X3RoZjnUezkzE2Y73s5eJ/Xj810ZWfMZGkhgqyeChKOTIS5RWgkClKDJ9agoliNisiY6wwMbaoii3BW/7yKulc1D3L7y5rzeuijjKcwCmcgwcNaMIttKANBBQ8wyu8OU/Oi/PufCxGS06xcwx/4Hz+ACKukuk=</latexit><latexit sha1_base64="FZ0n0sAsKDG0btS0kTjpB174BA0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+sNxtWa27dnQOtEq8gNSjQGla/BqEkaUyFIRxr3ffcxPgZVoYRTmeVQappgskEj2jfUoFjqv1snnqGzqwSokgqe4RBc/X3RoZjnUezkzE2Y73s5eJ/Xj810ZWfMZGkhgqyeChKOTIS5RWgkClKDJ9agoliNisiY6wwMbaoii3BW/7yKulc1D3L7y5rzeuijjKcwCmcgwcNaMIttKANBBQ8wyu8OU/Oi/PufCxGS06xcwx/4Hz+ACKukuk=</latexit><latexit sha1_base64="FZ0n0sAsKDG0btS0kTjpB174BA0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+sNxtWa27dnQOtEq8gNSjQGla/BqEkaUyFIRxr3ffcxPgZVoYRTmeVQappgskEj2jfUoFjqv1snnqGzqwSokgqe4RBc/X3RoZjnUezkzE2Y73s5eJ/Xj810ZWfMZGkhgqyeChKOTIS5RWgkClKDJ9agoliNisiY6wwMbaoii3BW/7yKulc1D3L7y5rzeuijjKcwCmcgwcNaMIttKANBBQ8wyu8OU/Oi/PufCxGS06xcwx/4Hz+ACKukuk=</latexit><latexit sha1_base64="FZ0n0sAsKDG0btS0kTjpB174BA0=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK+sNxtWa27dnQOtEq8gNSjQGla/BqEkaUyFIRxr3ffcxPgZVoYRTmeVQappgskEj2jfUoFjqv1snnqGzqwSokgqe4RBc/X3RoZjnUezkzE2Y73s5eJ/Xj810ZWfMZGkhgqyeChKOTIS5RWgkClKDJ9agoliNisiY6wwMbaoii3BW/7yKulc1D3L7y5rzeuijjKcwCmcgwcNaMIttKANBBQ8wyu8OU/Oi/PufCxGS06xcwx/4Hz+ACKukuk=</latexit>

MSE(D(H), X)
<latexit sha1_base64="PuO1HUyF3urHJZXoRKw9J40m6/A=">AAACIHicbZDLSgMxFIYz9VbrbdSlm2ARWpAyI0JdFi/QjVDRXqAtJZOmbWgmGZKMWIZ5FDe+ihsXiuhOn8ZMOwttPRD4+P9zyDm/FzCqtON8WZml5ZXVtex6bmNza3vH3t1rKBFKTOpYMCFbHlKEUU7qmmpGWoEkyPcYaXrji8Rv3hOpqOB3ehKQro+GnA4oRtpIPbvc8T3xEF3fXsWFjo/0CCMWXRr2BOuriTFZVI2Lx/C30IqLPTvvlJxpwUVwU8iDtGo9+7PTFzj0CdeYIaXarhPoboSkppiRONcJFQkQHqMhaRvkyCeqG00PjOGRUfpwIKR5XMOp+nsiQr5KdjOdyQ1q3kvE/7x2qAdn3YjyINSE49lHg5BBLWCSFuxTSbBmEwMIS2p2hXiEJMLaZJozIbjzJy9C46TkGr45zVfO0ziy4AAcggJwQRlUQBXUQB1g8AiewSt4s56sF+vd+pi1Zqx0Zh/8Kev7B5a3o9Y=</latexit><latexit sha1_base64="PuO1HUyF3urHJZXoRKw9J40m6/A=">AAACIHicbZDLSgMxFIYz9VbrbdSlm2ARWpAyI0JdFi/QjVDRXqAtJZOmbWgmGZKMWIZ5FDe+ihsXiuhOn8ZMOwttPRD4+P9zyDm/FzCqtON8WZml5ZXVtex6bmNza3vH3t1rKBFKTOpYMCFbHlKEUU7qmmpGWoEkyPcYaXrji8Rv3hOpqOB3ehKQro+GnA4oRtpIPbvc8T3xEF3fXsWFjo/0CCMWXRr2BOuriTFZVI2Lx/C30IqLPTvvlJxpwUVwU8iDtGo9+7PTFzj0CdeYIaXarhPoboSkppiRONcJFQkQHqMhaRvkyCeqG00PjOGRUfpwIKR5XMOp+nsiQr5KdjOdyQ1q3kvE/7x2qAdn3YjyINSE49lHg5BBLWCSFuxTSbBmEwMIS2p2hXiEJMLaZJozIbjzJy9C46TkGr45zVfO0ziy4AAcggJwQRlUQBXUQB1g8AiewSt4s56sF+vd+pi1Zqx0Zh/8Kev7B5a3o9Y=</latexit><latexit sha1_base64="PuO1HUyF3urHJZXoRKw9J40m6/A=">AAACIHicbZDLSgMxFIYz9VbrbdSlm2ARWpAyI0JdFi/QjVDRXqAtJZOmbWgmGZKMWIZ5FDe+ihsXiuhOn8ZMOwttPRD4+P9zyDm/FzCqtON8WZml5ZXVtex6bmNza3vH3t1rKBFKTOpYMCFbHlKEUU7qmmpGWoEkyPcYaXrji8Rv3hOpqOB3ehKQro+GnA4oRtpIPbvc8T3xEF3fXsWFjo/0CCMWXRr2BOuriTFZVI2Lx/C30IqLPTvvlJxpwUVwU8iDtGo9+7PTFzj0CdeYIaXarhPoboSkppiRONcJFQkQHqMhaRvkyCeqG00PjOGRUfpwIKR5XMOp+nsiQr5KdjOdyQ1q3kvE/7x2qAdn3YjyINSE49lHg5BBLWCSFuxTSbBmEwMIS2p2hXiEJMLaZJozIbjzJy9C46TkGr45zVfO0ziy4AAcggJwQRlUQBXUQB1g8AiewSt4s56sF+vd+pi1Zqx0Zh/8Kev7B5a3o9Y=</latexit><latexit sha1_base64="PuO1HUyF3urHJZXoRKw9J40m6/A=">AAACIHicbZDLSgMxFIYz9VbrbdSlm2ARWpAyI0JdFi/QjVDRXqAtJZOmbWgmGZKMWIZ5FDe+ihsXiuhOn8ZMOwttPRD4+P9zyDm/FzCqtON8WZml5ZXVtex6bmNza3vH3t1rKBFKTOpYMCFbHlKEUU7qmmpGWoEkyPcYaXrji8Rv3hOpqOB3ehKQro+GnA4oRtpIPbvc8T3xEF3fXsWFjo/0CCMWXRr2BOuriTFZVI2Lx/C30IqLPTvvlJxpwUVwU8iDtGo9+7PTFzj0CdeYIaXarhPoboSkppiRONcJFQkQHqMhaRvkyCeqG00PjOGRUfpwIKR5XMOp+nsiQr5KdjOdyQ1q3kvE/7x2qAdn3YjyINSE49lHg5BBLWCSFuxTSbBmEwMIS2p2hXiEJMLaZJozIbjzJy9C46TkGr45zVfO0ziy4AAcggJwQRlUQBXUQB1g8AiewSt4s56sF+vd+pi1Zqx0Zh/8Kev7B5a3o9Y=</latexit>

+

H = E(A, X)
<latexit sha1_base64="TYd8OZplG2OfxjgU49lIXa0q+kk=">AAACI3icbVBdS8MwFE3n15xfVR99CQ5hgoxWBEUQpiLscYL7gLWMNM22sLQpSSqM0v/ii3/FFx+U4YsP/hfTrQ9z80LIyTn3knuOFzEqlWV9G4WV1bX1jeJmaWt7Z3fP3D9oSR4LTJqYMy46HpKE0ZA0FVWMdCJBUOAx0vZG95nefiZCUh4+qXFE3AANQtqnGClN9cxrx+PMl+NAX0k9vXECpIYYseQhrcxLt+kZnH930tOeWbaq1rTgMrBzUAZ5NXrmxPE5jgMSKsyQlF3bipSbIKEoZiQtObEkEcIjNCBdDUMUEOkmU48pPNGMD/tc6BMqOGXnJxIUyGw33ZlZkItaRv6ndWPVv3ITGkaxIiGefdSPGVQcZoFBnwqCFRtrgLCgeleIh0ggrHSsJR2CvWh5GbTOq7bGjxfl2l0eRxEcgWNQATa4BDVQBw3QBBi8gDfwAT6NV+PdmBhfs9aCkc8cgj9l/PwCFeulvg==</latexit><latexit sha1_base64="TYd8OZplG2OfxjgU49lIXa0q+kk=">AAACI3icbVBdS8MwFE3n15xfVR99CQ5hgoxWBEUQpiLscYL7gLWMNM22sLQpSSqM0v/ii3/FFx+U4YsP/hfTrQ9z80LIyTn3knuOFzEqlWV9G4WV1bX1jeJmaWt7Z3fP3D9oSR4LTJqYMy46HpKE0ZA0FVWMdCJBUOAx0vZG95nefiZCUh4+qXFE3AANQtqnGClN9cxrx+PMl+NAX0k9vXECpIYYseQhrcxLt+kZnH930tOeWbaq1rTgMrBzUAZ5NXrmxPE5jgMSKsyQlF3bipSbIKEoZiQtObEkEcIjNCBdDUMUEOkmU48pPNGMD/tc6BMqOGXnJxIUyGw33ZlZkItaRv6ndWPVv3ITGkaxIiGefdSPGVQcZoFBnwqCFRtrgLCgeleIh0ggrHSsJR2CvWh5GbTOq7bGjxfl2l0eRxEcgWNQATa4BDVQBw3QBBi8gDfwAT6NV+PdmBhfs9aCkc8cgj9l/PwCFeulvg==</latexit><latexit sha1_base64="TYd8OZplG2OfxjgU49lIXa0q+kk=">AAACI3icbVBdS8MwFE3n15xfVR99CQ5hgoxWBEUQpiLscYL7gLWMNM22sLQpSSqM0v/ii3/FFx+U4YsP/hfTrQ9z80LIyTn3knuOFzEqlWV9G4WV1bX1jeJmaWt7Z3fP3D9oSR4LTJqYMy46HpKE0ZA0FVWMdCJBUOAx0vZG95nefiZCUh4+qXFE3AANQtqnGClN9cxrx+PMl+NAX0k9vXECpIYYseQhrcxLt+kZnH930tOeWbaq1rTgMrBzUAZ5NXrmxPE5jgMSKsyQlF3bipSbIKEoZiQtObEkEcIjNCBdDUMUEOkmU48pPNGMD/tc6BMqOGXnJxIUyGw33ZlZkItaRv6ndWPVv3ITGkaxIiGefdSPGVQcZoFBnwqCFRtrgLCgeleIh0ggrHSsJR2CvWh5GbTOq7bGjxfl2l0eRxEcgWNQATa4BDVQBw3QBBi8gDfwAT6NV+PdmBhfs9aCkc8cgj9l/PwCFeulvg==</latexit><latexit sha1_base64="TYd8OZplG2OfxjgU49lIXa0q+kk=">AAACI3icbVBdS8MwFE3n15xfVR99CQ5hgoxWBEUQpiLscYL7gLWMNM22sLQpSSqM0v/ii3/FFx+U4YsP/hfTrQ9z80LIyTn3knuOFzEqlWV9G4WV1bX1jeJmaWt7Z3fP3D9oSR4LTJqYMy46HpKE0ZA0FVWMdCJBUOAx0vZG95nefiZCUh4+qXFE3AANQtqnGClN9cxrx+PMl+NAX0k9vXECpIYYseQhrcxLt+kZnH930tOeWbaq1rTgMrBzUAZ5NXrmxPE5jgMSKsyQlF3bipSbIKEoZiQtObEkEcIjNCBdDUMUEOkmU48pPNGMD/tc6BMqOGXnJxIUyGw33ZlZkItaRv6ndWPVv3ITGkaxIiGefdSPGVQcZoFBnwqCFRtrgLCgeleIh0ggrHSsJR2CvWh5GbTOq7bGjxfl2l0eRxEcgWNQATa4BDVQBw3QBBi8gDfwAT6NV+PdmBhfs9aCkc8cgj9l/PwCFeulvg==</latexit>

H 0 = E(A, XJc)
<latexit sha1_base64="hFZf6s7jLSJR0BSbgnu6rU7uT6o=">AAACKnicbVDLSgMxFM3UV62vUZdugkWsIGVGBN0IrSIUVxXsAzrjkMmkbWjmQZIRyjDf48ZfcdOFUtz6IWbaWdTqhZCTc+4l9xw3YlRIw5hqhZXVtfWN4mZpa3tnd0/fP2iLMOaYtHDIQt51kSCMBqQlqWSkG3GCfJeRjju6y/TOC+GChsGTHEfE9tEgoH2KkVSUo9ctN2SeGPvqShrp6Y3lIznEiCX3aWVRq6fncPHdTZ3k4RmnZ45eNqrGrOBfYOagDPJqOvrE8kIc+ySQmCEheqYRSTtBXFLMSFqyYkEihEdoQHoKBsgnwk5mVlN4ohgP9kOuTiDhjF2cSJAvsg1VZ2ZELGsZ+Z/Wi2X/2k5oEMWSBHj+UT9mUIYwyw16lBMs2VgBhDlVu0I8RBxhqdItqRDMZct/Qfuiair8eFmu3eZxFMEROAYVYIIrUAMN0AQtgMEreAcf4FN70ybaVPuatxa0fOYQ/Crt+weRsqiN</latexit><latexit sha1_base64="hFZf6s7jLSJR0BSbgnu6rU7uT6o=">AAACKnicbVDLSgMxFM3UV62vUZdugkWsIGVGBN0IrSIUVxXsAzrjkMmkbWjmQZIRyjDf48ZfcdOFUtz6IWbaWdTqhZCTc+4l9xw3YlRIw5hqhZXVtfWN4mZpa3tnd0/fP2iLMOaYtHDIQt51kSCMBqQlqWSkG3GCfJeRjju6y/TOC+GChsGTHEfE9tEgoH2KkVSUo9ctN2SeGPvqShrp6Y3lIznEiCX3aWVRq6fncPHdTZ3k4RmnZ45eNqrGrOBfYOagDPJqOvrE8kIc+ySQmCEheqYRSTtBXFLMSFqyYkEihEdoQHoKBsgnwk5mVlN4ohgP9kOuTiDhjF2cSJAvsg1VZ2ZELGsZ+Z/Wi2X/2k5oEMWSBHj+UT9mUIYwyw16lBMs2VgBhDlVu0I8RBxhqdItqRDMZct/Qfuiair8eFmu3eZxFMEROAYVYIIrUAMN0AQtgMEreAcf4FN70ybaVPuatxa0fOYQ/Crt+weRsqiN</latexit><latexit sha1_base64="hFZf6s7jLSJR0BSbgnu6rU7uT6o=">AAACKnicbVDLSgMxFM3UV62vUZdugkWsIGVGBN0IrSIUVxXsAzrjkMmkbWjmQZIRyjDf48ZfcdOFUtz6IWbaWdTqhZCTc+4l9xw3YlRIw5hqhZXVtfWN4mZpa3tnd0/fP2iLMOaYtHDIQt51kSCMBqQlqWSkG3GCfJeRjju6y/TOC+GChsGTHEfE9tEgoH2KkVSUo9ctN2SeGPvqShrp6Y3lIznEiCX3aWVRq6fncPHdTZ3k4RmnZ45eNqrGrOBfYOagDPJqOvrE8kIc+ySQmCEheqYRSTtBXFLMSFqyYkEihEdoQHoKBsgnwk5mVlN4ohgP9kOuTiDhjF2cSJAvsg1VZ2ZELGsZ+Z/Wi2X/2k5oEMWSBHj+UT9mUIYwyw16lBMs2VgBhDlVu0I8RBxhqdItqRDMZct/Qfuiair8eFmu3eZxFMEROAYVYIIrUAMN0AQtgMEreAcf4FN70ybaVPuatxa0fOYQ/Crt+weRsqiN</latexit><latexit sha1_base64="hFZf6s7jLSJR0BSbgnu6rU7uT6o=">AAACKnicbVDLSgMxFM3UV62vUZdugkWsIGVGBN0IrSIUVxXsAzrjkMmkbWjmQZIRyjDf48ZfcdOFUtz6IWbaWdTqhZCTc+4l9xw3YlRIw5hqhZXVtfWN4mZpa3tnd0/fP2iLMOaYtHDIQt51kSCMBqQlqWSkG3GCfJeRjju6y/TOC+GChsGTHEfE9tEgoH2KkVSUo9ctN2SeGPvqShrp6Y3lIznEiCX3aWVRq6fncPHdTZ3k4RmnZ45eNqrGrOBfYOagDPJqOvrE8kIc+ySQmCEheqYRSTtBXFLMSFqyYkEihEdoQHoKBsgnwk5mVlN4ohgP9kOuTiDhjF2cSJAvsg1VZ2ZELGsZ+Z/Wi2X/2k5oEMWSBHj+UT9mUIYwyw16lBMs2VgBhDlVu0I8RBxhqdItqRDMZct/Qfuiair8eFmu3eZxFMEROAYVYIIrUAMN0AQtgMEreAcf4FN70ybaVPuatxa0fOYQ/Crt+weRsqiN</latexit>

Representations
Loss

Graph-level

[MSE(z, z0)]
1
2

<latexit sha1_base64="aq3lRin5tmT7u9HWZBBMXTIpijw=">AAACJHicbVDLSgMxFM3UV62vqks3wSJWkDJTBAU3RRHcCBWtFjpjyaSZNjQzGZKMWMN8jBt/xY0LH7hw47eYPha29UDg5Jx7ufceP2ZUKtv+tjIzs3PzC9nF3NLyyupafn3jRvJEYFLDnHFR95EkjEakpqhipB4LgkKfkVu/e9r3b++JkJRH16oXEy9E7YgGFCNlpGb+uOGGPn/QF1dnadH1OWvJnhGYfkz34fh/d8+7024gENZOqstp2swX7JI9AJwmzogUwAjVZv7DbXGchCRSmCEpG44dK08joShmJM25iSQxwl3UJg1DIxQS6enBkSncMUoLBlyYFyk4UP92aBTK/q6mMkSqIye9vvif10hUcORpGsWJIhEeDgoSBhWH/cRgiwqCFesZgrCgZleIO8jEoEyuOROCM3nyNLkplxzDLw8KlZNRHFmwBbZBETjgEFTAOaiCGsDgCbyAN/BuPVuv1qf1NSzNWKOeTTAG6+cXsI2mDw==</latexit><latexit sha1_base64="aq3lRin5tmT7u9HWZBBMXTIpijw=">AAACJHicbVDLSgMxFM3UV62vqks3wSJWkDJTBAU3RRHcCBWtFjpjyaSZNjQzGZKMWMN8jBt/xY0LH7hw47eYPha29UDg5Jx7ufceP2ZUKtv+tjIzs3PzC9nF3NLyyupafn3jRvJEYFLDnHFR95EkjEakpqhipB4LgkKfkVu/e9r3b++JkJRH16oXEy9E7YgGFCNlpGb+uOGGPn/QF1dnadH1OWvJnhGYfkz34fh/d8+7024gENZOqstp2swX7JI9AJwmzogUwAjVZv7DbXGchCRSmCEpG44dK08joShmJM25iSQxwl3UJg1DIxQS6enBkSncMUoLBlyYFyk4UP92aBTK/q6mMkSqIye9vvif10hUcORpGsWJIhEeDgoSBhWH/cRgiwqCFesZgrCgZleIO8jEoEyuOROCM3nyNLkplxzDLw8KlZNRHFmwBbZBETjgEFTAOaiCGsDgCbyAN/BuPVuv1qf1NSzNWKOeTTAG6+cXsI2mDw==</latexit><latexit sha1_base64="aq3lRin5tmT7u9HWZBBMXTIpijw=">AAACJHicbVDLSgMxFM3UV62vqks3wSJWkDJTBAU3RRHcCBWtFjpjyaSZNjQzGZKMWMN8jBt/xY0LH7hw47eYPha29UDg5Jx7ufceP2ZUKtv+tjIzs3PzC9nF3NLyyupafn3jRvJEYFLDnHFR95EkjEakpqhipB4LgkKfkVu/e9r3b++JkJRH16oXEy9E7YgGFCNlpGb+uOGGPn/QF1dnadH1OWvJnhGYfkz34fh/d8+7024gENZOqstp2swX7JI9AJwmzogUwAjVZv7DbXGchCRSmCEpG44dK08joShmJM25iSQxwl3UJg1DIxQS6enBkSncMUoLBlyYFyk4UP92aBTK/q6mMkSqIye9vvif10hUcORpGsWJIhEeDgoSBhWH/cRgiwqCFesZgrCgZleIO8jEoEyuOROCM3nyNLkplxzDLw8KlZNRHFmwBbZBETjgEFTAOaiCGsDgCbyAN/BuPVuv1qf1NSzNWKOeTTAG6+cXsI2mDw==</latexit><latexit sha1_base64="aq3lRin5tmT7u9HWZBBMXTIpijw=">AAACJHicbVDLSgMxFM3UV62vqks3wSJWkDJTBAU3RRHcCBWtFjpjyaSZNjQzGZKMWMN8jBt/xY0LH7hw47eYPha29UDg5Jx7ufceP2ZUKtv+tjIzs3PzC9nF3NLyyupafn3jRvJEYFLDnHFR95EkjEakpqhipB4LgkKfkVu/e9r3b++JkJRH16oXEy9E7YgGFCNlpGb+uOGGPn/QF1dnadH1OWvJnhGYfkz34fh/d8+7024gENZOqstp2swX7JI9AJwmzogUwAjVZv7DbXGchCRSmCEpG44dK08joShmJM25iSQxwl3UJg1DIxQS6enBkSncMUoLBlyYFyk4UP92aBTK/q6mMkSqIye9vvif10hUcORpGsWJIhEeDgoSBhWH/cRgiwqCFesZgrCgZleIO8jEoEyuOROCM3nyNLkplxzDLw8KlZNRHFmwBbZBETjgEFTAOaiCGsDgCbyAN/BuPVuv1qf1NSzNWKOeTTAG6+cXsI2mDw==</latexit>

z = R(H)
<latexit sha1_base64="47Fc7ANY5huD+0SRSdbwZyjqXr8=">AAACE3icbVDLSsNAFJ34rPUVdelmsAjVRUlE0I1QdNNlFfuAJpTJZNIOnWTCzESoIf/gxl9x40IRt27c+TdO2ixq64VhDufcyz33eDGjUlnWj7G0vLK6tl7aKG9ube/smnv7bckTgUkLc8ZF10OSMBqRlqKKkW4sCAo9Rjre6CbXOw9ESMqjezWOiRuiQUQDipHSVN88dTzOfDkO9Zc+ZldOiNQQI5beZdVZqZGd9M2KVbMmBReBXYAKKKrZN78dn+MkJJHCDEnZs61YuSkSimJGsrKTSBIjPEID0tMwQiGRbjq5KYPHmvFhwIV+kYITdnYiRaHMvenO3LKc13LyP62XqODSTWkUJ4pEeLooSBhUHOYBQZ8KghUba4CwoNorxEMkEFY6xrIOwZ4/eRG0z2q2xrfnlfp1EUcJHIIjUAU2uAB10ABN0AIYPIEX8AbejWfj1fgwPqetS0YxcwD+lPH1C5j0nzU=</latexit><latexit sha1_base64="47Fc7ANY5huD+0SRSdbwZyjqXr8=">AAACE3icbVDLSsNAFJ34rPUVdelmsAjVRUlE0I1QdNNlFfuAJpTJZNIOnWTCzESoIf/gxl9x40IRt27c+TdO2ixq64VhDufcyz33eDGjUlnWj7G0vLK6tl7aKG9ube/smnv7bckTgUkLc8ZF10OSMBqRlqKKkW4sCAo9Rjre6CbXOw9ESMqjezWOiRuiQUQDipHSVN88dTzOfDkO9Zc+ZldOiNQQI5beZdVZqZGd9M2KVbMmBReBXYAKKKrZN78dn+MkJJHCDEnZs61YuSkSimJGsrKTSBIjPEID0tMwQiGRbjq5KYPHmvFhwIV+kYITdnYiRaHMvenO3LKc13LyP62XqODSTWkUJ4pEeLooSBhUHOYBQZ8KghUba4CwoNorxEMkEFY6xrIOwZ4/eRG0z2q2xrfnlfp1EUcJHIIjUAU2uAB10ABN0AIYPIEX8AbejWfj1fgwPqetS0YxcwD+lPH1C5j0nzU=</latexit><latexit sha1_base64="47Fc7ANY5huD+0SRSdbwZyjqXr8=">AAACE3icbVDLSsNAFJ34rPUVdelmsAjVRUlE0I1QdNNlFfuAJpTJZNIOnWTCzESoIf/gxl9x40IRt27c+TdO2ixq64VhDufcyz33eDGjUlnWj7G0vLK6tl7aKG9ube/smnv7bckTgUkLc8ZF10OSMBqRlqKKkW4sCAo9Rjre6CbXOw9ESMqjezWOiRuiQUQDipHSVN88dTzOfDkO9Zc+ZldOiNQQI5beZdVZqZGd9M2KVbMmBReBXYAKKKrZN78dn+MkJJHCDEnZs61YuSkSimJGsrKTSBIjPEID0tMwQiGRbjq5KYPHmvFhwIV+kYITdnYiRaHMvenO3LKc13LyP62XqODSTWkUJ4pEeLooSBhUHOYBQZ8KghUba4CwoNorxEMkEFY6xrIOwZ4/eRG0z2q2xrfnlfp1EUcJHIIjUAU2uAB10ABN0AIYPIEX8AbejWfj1fgwPqetS0YxcwD+lPH1C5j0nzU=</latexit><latexit sha1_base64="47Fc7ANY5huD+0SRSdbwZyjqXr8=">AAACE3icbVDLSsNAFJ34rPUVdelmsAjVRUlE0I1QdNNlFfuAJpTJZNIOnWTCzESoIf/gxl9x40IRt27c+TdO2ixq64VhDufcyz33eDGjUlnWj7G0vLK6tl7aKG9ube/smnv7bckTgUkLc8ZF10OSMBqRlqKKkW4sCAo9Rjre6CbXOw9ESMqjezWOiRuiQUQDipHSVN88dTzOfDkO9Zc+ZldOiNQQI5beZdVZqZGd9M2KVbMmBReBXYAKKKrZN78dn+MkJJHCDEnZs61YuSkSimJGsrKTSBIjPEID0tMwQiGRbjq5KYPHmvFhwIV+kYITdnYiRaHMvenO3LKc13LyP62XqODSTWkUJ4pEeLooSBhUHOYBQZ8KghUba4CwoNorxEMkEFY6xrIOwZ4/eRG0z2q2xrfnlfp1EUcJHIIjUAU2uAB10ABN0AIYPIEX8AbejWfj1fgwPqetS0YxcwD+lPH1C5j0nzU=</latexit>
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Figure 3.1: Overview of the LaGraph framework. Given a training graph, we randomly mask
a small portion VJ ∈ V of its nodes and input both the original graph and masked graph to the
encoder E . Crossed nodes in the figure have all their attributes masked but topology preserved.
The final loss consists of a reconstruction loss on node features and an invariance loss between
representations of the original graph and the masked graph. We omit the encoding part of the
graph-level framework as frameworks for the two levels mainly differ in whether the invariance
term is computed on representations of masked nodes or graph-level representations obtained by
R.

{0, 1}d or when feature normalization is applied. The ℓ-Lipschitz continuous property is common

for neural networks. And the k-Bilipschitz continuity can be satisfied by applying an injective

readout function such as global sum pooling, which is commonly used in graph-level tasks.

3.2.4 The LaGraph Framework

We design our self-supervised learning framework according to upper bounds derived in Corol-

lary 1 and Corollary 2. To train encoder E together with decoder D under self-supervision, we input

to the encoder both the given graph (A,X) and its variation (A,XJc) with a random subset J of

node indices for nodes to be masked and obtain node-level representations H = E(A,X) and

H ′ = E(A,XJc) for the two graphs respectively. The self-supervised losses are computed on in-

put node features, reconstructed node features, and representations, as demonstrated in Figure 3.1.

In particular, we consider a mini-batch of N graphs {(Ai,Xi)}Ni=1 and their corresponding

masked variation {(Ai,X(i,Ji
c))}Ni=1 where Ji denotes the node indices subset for the i-th graph.

The self-supervised loss for node-level representation learning follows Corollary 1 and is computed
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as

Lnode(E ,D) =
1

N

N∑
i=1

∥D(Ai,Hi)−Xi∥2 /|Vi|

+α

[∑
i ∥1Ji ⊙Hi − 1Ji ⊙H ′

i∥2∑
i |Ji|

]1/2
,

(3.15)

where α is a hyper-parameter corresponding to the multiplier 2σℓ in Corollary 1. To fulfill the

conditions in Corollary 1, we employ fully-connected layers instead of graph convolutional layers

in the decoder D.

Similarly, using the same notations above, the self-supervised loss for graph-level representa-

tion learning follows Corollary 2 and is computed as

Lgraph(E ,D) =
1

N

N∑
i=1

∥D(Ai,Hi)−Xi∥2 /|Vi|

+α′

[∑
i

∥zi − z′
i∥2 /

∑
i

|Ji|
]1/2

,

(3.16)

where zi = R(Hi) and z′
i = R(H ′

i) denote the graph-level representations obtained by applying

readout function R to the node-level representations, respectively, and α′ is a hyper-parameter

corresponding to the multiplier 2σkℓ in Corollary 2. To fulfill the conditions in Corollary 2, we

employ global sum pooling as the readout function R, where as the decoder D here can consists

of either fully-connected layers or graph convolutional layers.

3.3 Theoretical Analysis and Relations with Prior Work

In this section, we further theoretically justify and motivate LaGraph by providing compar-

isons and connections between our method and existing related methods, including denoising au-

toencoders [63, 85], information bottleneck principle [46], and contrastive methods based on local-

global mutual information maximization [40, 86, 12]. We also discuss the relation and difference

to BGRL [3] and Barlow-Twin [87].
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3.3.1 Denoising Autoencoders

Denoising autoencoders employ an encoder-decoder network architecture and perform self-

supervised training by masking or corrupting a portion of dimensions of the given data and re-

constructing the masked or corrupted value given their context. Such an approach has been also

applied for self-supervised image denoising [2], known as blind-spot denoising. Similar to our

method, the denoising autoencoder can be also viewed as an approximation of the latent graph

prediction. Using the same notation in Section 3.2, we formulate the connection between latent

graph prediction and the graph denoising autoencoder in the following theorem.

Theorem 4. Let J be a uniformly sampled subset of node indices of the given graph (A,X), F

be the class of all graph neural networks, and F∗ be the class of graph neural networks such that

f ∗
J (A,X) does not depend on XJ , for any J and f ∗ ∈ F∗. Given any graph neural network

f ∈ F , there exist f ∗ ∈ F∗ and f ′ ∈ F such that

EA,X,F

[
∥f(A,X)− F ∥2 + ∥X − F ∥2

]
(3.17)

=EA,X ∥f(A,X)−X∥2+

EA,X,F [2⟨f(A,X)− F ,X − F ⟩] (3.18)

≈EA,X ∥f ∗(A,X)−X∥2 (3.19)

=|V |EJEA,X ∥f ′
J(A,XJc)−XJ∥2 /|J |. (3.20)

Equation (7) is proved in the proof of Theorem 1. It can be verified that the second term, i.e.,

the expectation of the inner product, in Equation (7) reduces to zero when the neural network f

satisfies that fJ(A,X) does not depend on XJ , for any J , according to Batson and Royer [2]. The

objective can be therefore approximated by Equation (8) with the neural network f ∗ satisfying such

a property. To let any graph neural network f satisfy the property, one can apply masks to a portion

of nodes indexed by J so that their original value is inaccessible by f when predicting fJ(A,X).

Therefore, the latent graph prediction objective under supervision can be further approximated by
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Equation (9), which describes the objective of a graph denoising autoencoder.

A substantial difference between our method and the denoising autoencoder lies in how to han-

dle the inner product term in Equation (7). In particular, the denoising autoencoder forces the term

to be zero by assuming certain properties of the graph neural network, whereas our method derives

an upper bound, i.e., the invariance term, for the inner product. Theoretically, the graph denoising

autoencoder is equivalent to our framework with an infinite weight scalar for the invariance term.

As a drawback, when fJ(A,X) does not depend on XJ , the learned representations can be less

informative as representations of nodes in VJ do not include the information of XJ , for any J ,

leading to performance loss. Our proposed upper bounds allow an encoder to access a certain level

of information of the masked nodes, whose representations can be as good as ones from supervised

learning. In fact, our method can be viewed as an autoencoder with an invariance regularization.

3.3.2 The Information Bottleneck Principle

The information bottleneck principle [46] is a technique for data compression and signal pro-

cessing in the field of information theory, and has been widely applied in deep learning prob-

lems [47, 88]. Let X be a random variable to be compressed, X̃ be an observed relevant variable,

and Z denote the compressed representation of X . The information bottleneck principle seeks to

optimize the following problem

T ∗ = argmin
T
I(T ;Y )− βI(T ;X), (3.21)

where I(·; ·) denotes the mutual information and β > 1 is a Lagrange multiplier. The work Bar-

low Twin [87] has discussed a connection between the information bottleneck principle and self-

supervised learning. In particular, to apply information bottleneck to SSL, one usually obtain X̃

by performing augmentations or distortions on the given data X . And Equation (3.21) can be

rewritten into

T ∗ = argmin
T

[
H(T )−H(T |Y )

]
(3.22)
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− β
[
H(T )−H(T |X)

]
(3.23)

= argmin
T
H(T |X)− λH(T ), (3.24)

where λ = β−1
β

> 0 is a weight scalar. Intuitively, the conditional entropy H(Z|X) is to be

minimized, indicating that the distortion should add no additional information to the representation

Z. In other words, the representation Z should be as invariant as possible to distortions applied to

X . In addition, the entropy H(Z) is to be maximized, indicating that the representation Z itself

should be as informative as possible.

The two terms in objectives of LaGraph correspond to the terms in Equation (3.24). In par-

ticular, the invariance term corresponding to H(Z|X) and the reconstruction term aims to ensure

informative representations, i.e., to maximize H(Z). Objectives in existing SSL methods such as

BYOL [22], its variation BGRL [3] in graph domain, and Barlow Twin [87] also include invariance

terms corresponding to H(Z|X). To encourage informative representations, Barlow Twin further

includes a redundancy reduction term to minimize the cross-correlation between different dimen-

sions of the representation, as a proxy of the maximization of H(Z). In addition, the InfoNCE

(NT-XENT) loss employed in some contrastive learning methods [75, 74] induces a similar effect,

according to Zbontar et al. [87]. Both Equation (3.24) and the derivation of LaGraph objectives

indicate the importance of the invariance term in SSL objectives. In addition, compared to the re-

dundancy reduction term in Barlow Twin and the noise contrast in InfoNCE, LaGraph objectives

can directly guarantee the learning of informative representations measured by the reconstruction

capability.

3.3.3 Contrastive Learning by Maximizing Local-Global Mutual Information

Motivated by Deep InfoMax [89], recent graph self-supervised learning methods [40, 86, 12]

constructs their learning tasks by maximizing the mutual information between local (node-level)

representations and a global (graph-level) summary of the graph. Practically, as a k-layer encoder

E has the receptive field of at most k-hop neighborhood, the goal becomes the maximization of the
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mutual information between local representations and their k-hop neighborhood, formulated as

E∗ = argmax
E

|V |∑
i=1

I(X
(k)
i ; Ei(A,X)), (3.25)

where I denotes the mutual information, X(k)
i is the k-hop neighborhood of node i, E is a graph

encoder with k GNN layers, and Ei(A,X) denotes the local representation of node i. The learning

objective is motivated by the goal that the local representations should contain as much the global

information of the entire graph (or the k-hop neighborhood) as possible.

As for LaGraph, the reconstruction term encourages representations to contain sufficient in-

formation to reconstruct the input features while the invariance term limits the information acces-

sibility from a local node when reconstructing its features. The two terms in the objective jointly

promote node representations to learn limited local information and as much contextual informa-

tion from the neighborhood as possible for reconstruction. It hence has a similar effect to the

local-global mutual information maximization.

3.3.4 Other Invariance-Based Objectives

Recent self-supervised learning objectives such as BGRL, Barlow-Twin, and the consistency

regularization [90] have similar invariance terms as one in the LaGraph objective. Specifically,

BGRL minimizes the difference between representations of two augmented views. In spite of

the similarity, the invariance terms in LaGraph and other objectives have different grounding and

effects.

Regarding how the objectives are computed, the invariance term in the LaGraph objective for

node-level representation learning is computed only on masked nodes, in contrast to BGRL and

Barlow-Twins objectives where invariance of all nodes are computed. It is worth noting that the

proposed objective is an upper bound to the latent graph prediction only if the invariance is com-

puted on the masked nodes, according to the derivation in the proof of Theorem 1. Intuitively,

during the computation of a node representation, the invariance term in LaGraph enforces the en-

coder to capture less information from the node itself and more contextual information. Comput-

38



ing the invariance regularization term on unmasked nodes could lead to a contradicted effect, i.e.,

discouraging encoders to capture information from contextual nodes, as it lets the representation

remain consistent when its masked neighbor nodes are changed. We believe the derivation and the

intuition of the proposed objective can provide insights on adopting the invariance regularization

into graph self-supervised learning studies.

3.4 Experiments

We conduct experiments on both node-level and graph-level self-supervised representation

learning tasks with datasets used in two most recent state-of-the-art methods for SSL [75, 3].

For graph-level tasks, we follow GraphCL [75] to perform evaluations on eight graph classi-

fication datasets [91, 92, 93, 94, 95] from TUDataset [96]. For node-level tasks, as the cita-

tion network datasets [97, 98, 99] are recognized to be saturated and unreliable for GNN eval-

uation [100, 3], we follow Thakoor et al. [3] to include four transductive node classification

datasets from Shchur et al. [100], including Amazon Computers, Amazon Photos from the Ama-

zon Co-purchase Graph [101], Coauthor CS, and Coauthor Physics from the Microsoft Academic

Graph [102]. We further include three larger-scale inductive datasets, PPI, Reddit, and Flickr, for

node-level classification used in SUBG-CON [4].

We follow You et al. [75] and Zhu et al. [74] for the standard linear evaluation protocols at

graph-level and node-level, respectively. In particular, for both levels, we first train the graph

encoder on unlabeled graph datasets with the corresponding self-supervised objective. We then

compute and freeze the corresponding representations and train a linear classification model on

top of the fixed representations with their corresponding labels. Linear SVM and the regular-

ized logistic regression are employed as linear classifiers for graph-level datasets and node-level

datasets, according to You et al. [75] and Zhu et al. [74], respectively. For inductive node-level

datasets, the self-supervised training is only performed on graphs in the training datasets whereas

the test graphs are unavailable during the self-supervised training.
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Table 3.1: Performance on graph-level classification tasks, scores are averaged over 5 runs. Bold
and underlined numbers highlight the top-2 performance. OOM indicates running out-of-memory
on a 56GB Nvidia A6000 GPU.

NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B
GL – – – 81.7±2.1 – 77.3±0.2 41.0±0.2 65.9±1.0
WL 80.0±0.5 72.9±0.6 – 80.7±3.0 – 68.8±0.4 46.1±0.2 72.3±3.4

DGK 80.3±0.5 73.3±0.8 – 87.4±2.7 – 78.0±0.4 41.3±0.2 67.0±0.6
Node2Vec 54.9±1.6 57.5±3.6 75.1±0.5 72.6±10.2 55.7±0.2 73.8±0.5 34.1±0.4 50.0±0.8
Sub2Vec 52.8±1.5 53.0±5.6 73.6±1.5 61.1±15.8 62.1±1.4 71.5±0.4 36.7±0.4 55.3±1.5

Graph2Vec 73.2±1.8 73.3±2.1 76.2±0.1 83.2±9.3 59.9±0.0 75.8±1.0 47.9±0.3 71.1±0.5
GAE 73.3±0.6 74.1±0.5 77.9±0.5 84.0±0.6 56.3±0.1 74.8±0.2 37.6±1.6 52.1±0.2

VGAE 73.7±0.3 74.0±0.5 77.6±0.4 84.4±0.6 56.3±0.0 74.8±0.2 39.1±1.6 52.1±0.2
InfoGraph 76.2±1.1 74.4±0.3 72.9±1.8 89.0±1.1 70.7±1.1 82.5±1.4 53.5±1.0 73.0±0.9
GraphCL 77.9±0.4 74.4±0.5 78.6±0.4 86.8±1.3 71.4±1.2 89.5±0.8 56.0±0.3 71.1±0.4
MVGRL 75.1±0.5 71.5±0.3 OOM 89.7±1.1 OOM 84.5±0.6 OOM 74.2±0.7
LaGraph 79.9±0.5 75.2±0.4 78.1±0.4 90.2±1.1 77.6±0.2 90.4±0.8 56.4±0.4 73.7±0.9

3.4.1 Comparisons with Baselines

We perform experiments on both graph-level and node-level datasets to demonstrate the effec-

tiveness of LaGraph. We construct our model and losses according to Section 3.2.4.

Graph-level Datasets. We evaluate the performance of LaGraph in terms of the linear clas-

sification accuracy and compare it with three kernel-based methods including graphlet kernel

(GL) [103], Weisfeiler-Lehman kernel (WL) [104], and deep graph kernel (DGK) [95], together

with five unsupervised methods including Node2Vec [71], Sub2Vec [105], Graph2Vec [17], GAE

and VGAE [41]. We further compare the results with recent SOTA SSL methods based on con-

trastive learning, including InfoGraph [86] , MVGRL [12], and GraphCL [75]. Results in Table 3.1

show that LaGraph outperforms the current SOTA methods on a majority of datasets and is on par

with the best performance on the rest of datasets.

Node-level Datasets. We perform node-level experiments on both transductive and inductive

learning tasks. Transductive self-supervised learning of node representation allows utilization of

all data at hand to pre-train GNNs for downstream tasks. Although labels of nodes are not visible

during pre-training, patterns and information present in all nodes are observed. In contrast to

transductive learning, inductive self-supervised learning only allows using a portion of data to
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pre-train GNNs, while holding out a certain amount of data for downstream tasks. Our inductive

tasks include two cases. First, the PPI dataset consists of 24 graphs, and the training and testing

nodes are split by graphs. In this case, the inductive task is considered across multiple graphs. In

other words, node representations are learned from training graphs, and the encoder is evaluated on

testing graphs. Second, Flickr and Reddit each consist of only one graph, the training and testing

nodes are from the same graph. During self-supervised training, all test nodes are masked-out.

During evaluation, all training nodes are masked-out, i.e., test nodes are unseen nodes of the graph

during train. For both cases of inductive learning, data used during the self-supervised training

stage and data used during evaluation stage are distinct, but the feature dimensionality should be

the same for data used in both stages.

For the evaluation of transductive learning, we compare the performance of LaGraph in terms

of linear classification accuracy with DeepWalk [106], GAE, VGAE, and six contrastive learning

methods including Deep Graph InfoMax (DGI) [40], GMI [107], MVGRL [12], GRACE [74],

GCA [45], and BGRL [3], where BGRL is the current state-of-the-art SSL method for node-level

representation learning. We further include the results of directly performing linear classification

on raw node features (raw features) and by supervised training for references. To be consistent with

Thakoor et al. [3], we have ensured that the GPU memory consumption of LaGraph is under 16GB

for the four transductive datasets. We then perform additional experiments on the larger-scale

inductive datasets [108, 109, 81] and compare our results in terms of micro-averaged F1-score with

DeepWalk, unsupervised GraphSAGE [81], DGI, GMI, SUBG-CON [4] and BGRL. Results for

both transductive datasets and inductive datasets shown in Table 3.2. As there is no official BGRL

implementation available at the time our experiments are conducted, results with ∗ are obtained

from an unofficial public implementation†. Results suggest competitive performance of LaGraph

compared to the existing SOTA methods. Moreover, LaGraph consumes even less memory than

BGRL, which requires twice the memory for its GNN encoders for the EMA parameter update.

Experiment Environment Details. We train graph-level datasets on a 11GB GeForce RTX

†https://github.com/namkyeong/bgrl_pytorch.
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Table 3.2: Performance on node-level datasets, 20 runs averaged. Results of SSL methods with
the best performance are highlighted in bold numbers. Left: Mean classification accuracy on
transductive datasets, with baseline results from Thakoor et al. [3]. Right: Micro-averaged F1
scores on larger-scale inductive datasets, with baseline results from Thakoor et al. [3] and Jiao
et al. [4].

Transductive Am.Comp. Am.Pht. Co.CS Co.Phy
Raw features 73.8±0.0 78.5±0.0 90.4±0.0 93.6±0.0

DeepWalk 85.7±0.1 89.4±0.1 84.6±0.2 91.8±0.2
GAE 87.7±0.3 92.7±0.3 92.4±0.2 95.3±0.1

VGAE 88.1±0.3 92.8±0.3 92.5±0.2 95.3±0.1
Supervised 86.5±0.5 92.4±0.2 93.0±0.3 95.7±0.2

DGI 84.0±0.5 91.6±0.2 92.2±0.6 94.5±0.5
GMI 82.2±0.3 90.7±0.2 OOM OOM

MVGRL 87.5±0.1 91.7±0.1 92.1±0.1 95.3±0.0
GRACE 87.5±0.2 92.2±0.2 92.9±0.0 95.3±0.0

GCA 88.9±0.2 92.5±0.2 93.1±0.0 95.7±0.0
BGRL 89.7±0.3 92.9±0.3 93.2±0.2 95.6±0.1

LaGraph 88.0±0.3 93.5±0.4 93.3±0.2 95.8±0.1

Inductive PPI Flickr Reddit
Raw feat. 42.5±0.3 20.3±0.2 58.5±0.1

GAE 75.7±0.0 50.7±0.2 OOM
VGAE 75.8±0.0 50.4±0.2 OOM

Super-GCN 51.5±0.6 48.7±0.3 93.3±0.1
Super-GAT 97.3±0.2 OOM OOM
GraphSAGE 46.5±0.7 36.5±1.0 90.8±1.1

DGI 63.8±0.2 42.9±0.1 94.0±0.1
GMI 65.0±0.0 44.5±0.2 95.0±0.0

SUBG-CON 66.9±0.2 48.8±0.1 95.2±0.0
BGRL-GCN 69.6±0.2 50.0±0.3* OOM*
BGRL-GAT 70.5±0.1 44.2±0.1* OOM*

LaGraph 74.6±0.0 51.3±0.1 95.2±0.0

2080 Ti GPU, and node-level datasets on a 56GB Nvidia RTX A6000 GPU. Our experiments are

implemented with PyTorch 1.7.0 and PyTorch Geometric 1.7.0. All neural networks employ batch

normalization [110], and are optimized with Adam optimizer [111]. We initialize GNNs with

Xavier initialization [112].

3.4.2 Ablation Study

We further conduct three ablation studies to explore model robustness to smaller batch sizes on

graph-level data and to the training with sub-graphs on large-scale node-level datasets.

Robustness to Batch Sizes. Different from contrastive learning methods, LaGraph does not

require negative samples to perform noise contrast or pair-wise discrimination. Therefore, an

advantage of LaGraph is that the performance is robust to the batch size as it does not depend on

large batch sizes with sufficient negative samples. To verify the statement, we perform an ablation

study on how model performance changes when decreasing the batch size from 128 to 8 for graph-

level datasets. We include corresponding results of GraphCL which uses InfoNCE for references

and show the comparisons in Figure 3.2. The results indicate while contrastive methods based

on InfoNCE suffer from significant performance loss with a small batch size, LaGraph are more
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Table 3.3: Model performance when trained on a subset of nodes.

# nodes sampled 100 1,000 2,500 5,000 10,000 all
% nodes sampled 0.22% 2.24% 5.60% 11.20% 22.41% 100.00%
F1-score - LaGraph 6.07 51.12 51.12 51.27 51.29 51.26

Flickr Memory - LaGraph 1389MB 1465MB 1553MB 1725MB 2065MB 4211MB
F1-score - GraphCL 45.27 45.27 45.27 45.38 45.45 45.48
Memory - GraphCL 1647MB 2599MB 4137MB 6741MB 11905MB 47939MB
% nodes sampled 0.07% 0.65% 1.63% 3.25% 6.50% 100.00%
F1-score - LaGraph 5.76 95.05 95.06 95.08 95.09 95.22

Reddit Memory - LaGraph 1403MB 1475MB 1585MB 1783MB 2161MB 16933MB
F1-score - GraphCL 93.24 93.24 93.25 93.31 93.32 OOM
Memory - GraphCL 4199MB 6117MB 6687MB 9297MB 14495MB OOM

Figure 3.2: Model robustness to small batch sizes on RDT-B and COLLAB. Shown are relative
changes in accuracy over different batch sizes compared to the batch size of 256.

robust to the batch size.

Training on Sub-graphs for Large-scale Datasets. Training graph encoders on all nodes for

some large-scale graphs can be heavily expensive in computation. We hence conduct an ablation

study on how training graph encoders on a portion of sampled nodes instead of the entire graph

affects the effectiveness of training. Results in Table 3.3 suggest that the model performance

remains stable when decreasing the number of nodes until the number becomes extremely small.

The collapse is due to the very sparse connectivity and LaGraph fails to reconstruct a node from its

neighbor nodes as there are no neighbors at all. In contrast, though GraphCL does not collapse at

extremely small subsets, it suffers more from performance loss above 1,000 nodes and consumes
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significantly more GPU memory.

3.5 Conclusions and Future Directions

We introduced LaGraph, a state-of-the-art predictive SSL framework whose objectives are

based on self-supervised latent graph prediction. We provided theoretical analysis and discussed

the relationship between LaGraph and theories in different related domains. Experimental re-

sults demonstrate the strong effectiveness of the proposed framework and the stability to the train-

ing scale for both graph-level and node-level tasks. Currently, our framework mainly considers

the latent graph regarding its node features. Further investigation into a latent graph prediction

framework that includes richer information such as edge features and latent connectivity into self-

supervision can potentially bring additional improvement to the performance.

44



4. TASK-AGNOSTIC GRAPH EXPLANATIONS *

4.1 Introduction

Graph neural networks (GNNs) [25, 113, 26] have achieved remarkable success in learning

from real-world graph-structured data due to their unique ability to capture both feature-wise

and topological information. Extending their success, GNNs are widely applied in various re-

search fields and industrial applications including quantum chemistry [114, 115], drug discov-

ery [116, 117, 23], large-scale social networks [118, 119], and recommender systems [120, 121].

While multiple approaches have been proposed and studied to improve GNN performance, GNN

explainability is an emerging area and has a smaller body of research behind it. Recently, ex-

plainability has gained more attention due to an increasing desire for GNNs with more security,

fairness, and reliability. Being able to provide a good explanation to a GNN prediction increases

model reliability and reduces the risk of incorrect predictions, which is crucial in fields such as

molecular biology, chemistry, fraud detection, etc.

Existing methods adapting the explanation methods for convolutional neural networks (CNNs)

or specifically designed for GNNs have shown promising explanations on multiple types of graph

data. A recent survey [122] categorizes existing explanation methods into gradient-based, pertur-

bation, decomposition, and surrogate methods. In particular, perturbation methods involve learning

or optimization [123, 124, 125, 126, 127] and, while bearing higher computational costs, generally

achieve state-of-the-art performance in terms of explanation quality. These methods train post-

hoc explanation models on top of the prediction model to be explained. Earlier approaches like

GNNExplainer [126] require training or optimizing an individual explainer for each data instance,

i.e., a graph or a node to be explained. In contrast, PGExplainer [125] performs inductive learn-

ing, i.e., it only requires a one-time training, and the explainer can be generalized to explain all

data instances without individual optimization. Compared to other optimization-based explanation

*Reprinted with permission from “Task-agnostic graph explanations.” Yaochen Xie, Sumeet Katariya, Xianfeng
Tang, Edward W. Huang, Nikhil Rao, Karthik Subbian, and Shuiwang Ji, 2022. International Conference on Machine
Learning, Copyright 2022 by the authors.
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Figure 4.1: A comparison between typical end-to-end task-specific GNN explainers and the
proposed task-agnostic explanation pipeline. To explain a multitask model, typical explanation
pipelines need to optimize multiple explainers, whereas the two-stage explanation pipeline only
learns one embedding explainer that can cooperate with multiple lightweight downstream explain-
ers.

methods, PGExplainer significantly improves efficiency in terms of time cost without performance

loss by learning. Following a similar inductive learning paradigm, more recent work ReFine [128]

and GSAT [129] aim to provide multi-grained explanations and jointly learned explanations with

GNNs, respectively.

However, even state-of-the-art explanation methods like PGExplainer are still task-specific at

training and hence suffer from two crucial drawbacks. First, current methods are inefficient in

explaining multitask prediction for graph-structured data. For example, one may need to predict

multiple chemical properties in drug discovery for a molecular graph. In particular, ToxCast from

MoleculeNet has 167 prediction tasks. In these cases, it is common to apply a single GNN model

with multiple output dimensions to make predictions for all tasks. However, one is unable to em-

ploy a single explainer to explain the above model, since current explainers are trained specifically

to explain one prediction task. As a result, in the case of ToxCast, one must train 167 explain-

ers to explain the GNN model. Second, in industry settings, it is common to train GNN models

in a two-stage fashion due to scaling, latency, and label sparsity issues. The first stage trains a

GNN-based embedding model with a massive amount of unlabeled data in an unsupervised man-

ner to learn embeddings for nodes or graphs. The second stage trains lightweight models such as

multilayer perceptrons (MLPs) using the frozen embeddings as input to predict the downstream
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tasks. In the first stage, the downstream tasks are usually unknown or undefined, and existing task-

specific explainers cannot be applied. Also, there can be tens to hundreds of downstream tasks

trained on these GNN embeddings, and training a separate explainer for each task is undesirable

and downright impossible.

To address the above limitations, we present a new task-agnostic explanation pipeline, where

the learned explainer is independent from downstream tasks and can take downstream models as

input conditions, as shown in Figure 4.1. Specifically, we decompose a prediction model into a

GNN embedding model and a downstream model, designing separate explainers for each com-

ponent. We design the downstream explainers to cooperate with the embedding explainer. The

embedding explainer is trained using a self-supervised training framework, which we dub Task-

Agnostic GNN Explainer (TAGE), with no knowledge of downstream tasks, models, or labels.

In contrast to existing explainers, the learning objective for TAGE is computed at the graph or

node embeddings without involving task-related predictions. In addition to eliminating the need

for downstream tasks in TAGE, we argue that the self-supervision performed on the embeddings

can bring an additional performance boost in terms of the explanation quality compared to existing

task-specific baselines such as GNNExplainer and PGExplainer.

We summarize our contributions as follows: 1) We introduce the task-agnostic explanation

problem and propose a two-stage explanation pipeline involving an embedding explainer and a

downstream explainer. This enables the explanation of multiple downstream tasks with a single

embedding explainer. 2) We propose a self-supervised training framework TAGE, which is based

on conditioned contrastive learning to train the embedding explainer. The training of TAGE re-

quires no knowledge of downstream tasks. 3) We perform experiments on real-world datasets and

observe that TAGE outperforms existing learning-based explanation baselines in terms of explana-

tion quality, universal explanation ability, and the time required for training and inference.

Relations with Prior Work Our work studies a novel explanation problem under the two-stage

and multi-task settings. The settings are important in both industrial and academic scenarios but

have not been studied by prior work. Whereas existing studies focus on designing optimization
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Table 4.1: Comparisons on properties of common GNN explainers. Inductivity and task-
agnosticism are inapplicable for gradient/rule-based methods as they do not require learning. In
the last column, we show the number of required explainers for a dataset with N samples and M
tasks.

Learning Inductive Task-agnostic # explainers required
Gradient- & Rule-based No - - 1

GNNExplainer [126] Yes No No M ∗N
SubgraphX [127] Yes No No M ∗N
PGExplainer [125] Yes Yes No M
Task-agnostic explainers Yes Yes Yes 1

approaches [126, 127] and explainer architectures [125] under the typical task-specific setting, our

work focuses on an orthogonal problem to enable task-agnostic explanations with the proposed

framework including the universal embedding explainer and conditioned learning objectives.

4.2 Task-Agnostic Explanations

4.2.1 Notations and Learning-Based GNN explanation

Our study considers the attributed graph G with node set V and edge set E. We formulate the

attributed graph as a tuple of matrices (A,X), where A ∈ {0, 1}|V |×|V | denotes the adjacency

matrix and X ∈ R|V |×df denotes the feature matrix with feature dimension of df . We assume

that the prediction model F that is to be explained operates on graph-structured data through two

components: a GNN-based embedding model and lighter downstream models. Denoting the input

space by G, a node-level embedding model En : G → R|V |×d takes a graph as input and computes

embeddings of dimension d for all nodes in the graph, whereas a graph-level embedding model

Eg : G → R1×d computes an embedding for the input graph. Subsequently, the downstream model

D : Rd → R computes predictions for the downstream task based on the embeddings.

Typical GNN explainers consider a task-specific GNN-based model as a complete unit, i.e.,

F := D ◦ E . Given a graph G and the GNN-based model F to be explained , our goal is to

identify the subgraph Gsub that contributes the most to the final prediction made by F . In other

words, we claim that a given prediction is made because F captures crucial information provided

by some subgraph Gsub. The learning-based (or optimization-based) GNN explanation employs
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a parametric explainer Tθ associated with the GNN model F to compute the subgraph Gsub of

the given graph data. Concretely, the explainer Tθ computes the importance score for each node

or edge, denoted as wi or wij , or masks for node attributes denoted as m. It then selects the

subgraph Gsub induced by important nodes and edges, i.e., whose scores exceed a threshold t, and

by masking the unimportant attributes. In our study, we follow [125], focusing on the importance

of edges to provide explanations to GNNs. Formally, we have Gsub := (V,Esub) = Tθ(G), where

Esub = {(vi, vj) : (vi, vj) ∈ E,wij ≥ t}.

4.2.2 Task-Agnostic Explanations

As introduced in Section 4.1, all existing learning-based or optimization-based explanation ap-

proaches are task-specific and hence suffer from infeasibility or inefficiency in many real-application

scenarios. In particular, they are of limited use when downstream tasks are unknown or undefined,

and fail to employ a single explainer to explain a multitask prediction model.

To enable the explanation of GNNs in two-stage training and multitask scenarios, we introduce

a new explanation paradigm called the task-agnostic explanation. The task-agnostic explanation

considers a whole prediction model as an embedding model followed by any number of down-

stream models. It focuses on explaining the embedding model regardless of the number or the

existence of downstream models. In particular, the task-agnostic explanation trains only one ex-

plainer T (tag)
θ to explain the embedding model E , which should satisfy the following features. First,

given an input graph G, the explainer T (tag)
θ should be able to provide different explanations ac-

cording to specific downstream tasks being studied. Table 1 compares the properties of common

GNN explanation methods and the desired task-agnostic explainers in multitask scenarios. Sec-

ond, the explainer T (tag)
θ can be trained when only the embedding model is available, e.g., at the

first stage of a two-stage training paradigm, regardless of the presence of downstream tasks. When

downstream tasks and models are unknown, T (tag)
θ can still identify which components of the input

graph are important for certain embedding dimensions of interest.
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4.3 The TAGE Framework

Our explanation framework TAGE follows the typical scheme of GNN explanation introduced

in the previous section. It provides explanations by identifying important edges in a given graph

and removing the edges that lead to significant changes in the final prediction. Specifically, the

goal of the TAGE is to predict the importance score for each edge in a given graph. Different

from existing methods, the proposed TAGE breaks down typical end-to-end GNN explainers into

two components. We now provide general descriptions and detailed formulations to the proposed

framework.

4.3.1 Task-Agnostic Explanation Pipeline

Following the principle of the desired task-agnostic explanations, we introduce the task-agnostic

explanation pipeline, where a typical explanation procedure is performed in two steps. In partic-

ular, we decompose the typical end-to-end learning-based GNN explainer into two parts: the em-

bedding explainer TE and the downstream explainer Tdown, corresponding to the two components

in the two-stage training and prediction procedure. We compare the typical explanation pipeline

and the two-stage explanation pipeline in Figure 4.1. The embedding explainer and downstream

explainers can be trained or constructed independently from each other. In addition, the embed-

ding explainer can cooperate with any downstream explainers to perform end-to-end explanations

on input graphs.

The downstream explainer aims to explain task-specific downstream models. As downstream

models are usually lightweight MLPs, we simply adopt gradient-based explainers for downstream

explainers without training. The downstream explainer takes a downstream model and the graph

or node embedding vector as inputs and computes the importance score of each dimension on the

embedding vector. The importance scores then serve as a condition vector input to the embedding

explainer. Given the condition vector, the embedding explainer explains the GNN-based embed-

ding model by identifying an important subgraph from the input graph data. In other words, given

different condition vectors associated with different downstream tasks or models, the embedding
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explainer can provide corresponding explanations for the same embedding model. Formally, we

denote the downstream explainer for models from D by Tdown : D ×Rd → Rd, which maps input

models and embeddings into importance scores m for all embedding dimensions. We denote the

embedding explainer associated with the embedding model E by TE : Rd × G → G, which maps

a given graph into a subgraph of higher importance, conditioned on the embedding dimension

importance m ∈ Rd.

The training procedures of the embedding explainer are independent of downstream tasks or

downstream explainers. In particular, the downstream explainer is obtained from the downstream

model only, and the training of the embedding explainer only requires the embedding model and

the input graphs. As downstream models are usually constructed as stacked fully connected (FC)

layers and the explanation of FC layers has been well studied, our study mainly focuses on the

non-trivial training procedure and design of the embedding explainer.

4.3.2 Training Embedding Explainer under Self-Supervision

A straightforward idea of explaining an embedding model with no knowledge of downstream

tasks is to employ existing explainers and perform explanation on the pretext task, such as graph

reconstruction [41] or context prediction [76], used during the pre-training of GNNs. However,

such explanations cannot be generalized to future downstream tasks as there are limited dependen-

cies between the pretext task and downstream tasks. Therefore, training an embedding explainer

without downstream models or labels is challenging, and it is desirable to develop a generalizable

training approach for the embedding explainer. To this end, we propose a self-supervised learning

framework for the embedding explainer.

The learning objective of the proposed framework seeks to maximize restricted mutual infor-

mation (MI) between two embeddings, i.e., one of the given graph and one of the corresponding

subgraph of high importance induced by the explainer, in a conditioned subspace. We introduce a

masking vector p ∈ Rd as the condition to indicate specific dimensions of embeddings on which

to maximize the MI. During the explanation, we obtain the masking vector from the importance

vector computed by any downstream explainer Tdown. As no downstream importance vector is
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<latexit sha1_base64="hf6TE+uOGK9VnX+wMj7GmhWZW9g=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiy6MZlBXuBdiiZNNOmzWVIMkoZ+g5uXCji1vdx59uYtrPQ1h8CH/85h5zzRwlnxvr+t1dYW9/Y3Cpul3Z29/YPyodHTaNSTWiDKK50O8KGciZpwzLLaTvRFIuI01Y0vp3VW49UG6bkg50kNBR4IFnMCLbOaj71Mjaa9soVv+rPhVYhyKECueq98le3r0gqqLSEY2M6gZ/YMMPaMsLptNRNDU0wGeMB7TiUWFATZvNtp+jMOX0UK+2etGju/p7IsDBmIiLXKbAdmuXazPyv1kltfB1mTCappZIsPopTjqxCs9NRn2lKLJ84wEQztysiQ6wxsS6gkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAgRE8wyu8ecp78d69j0VrwctnjuGPvM8f65+PVw==</latexit><latexit sha1_base64="hf6TE+uOGK9VnX+wMj7GmhWZW9g=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiy6MZlBXuBdiiZNNOmzWVIMkoZ+g5uXCji1vdx59uYtrPQ1h8CH/85h5zzRwlnxvr+t1dYW9/Y3Cpul3Z29/YPyodHTaNSTWiDKK50O8KGciZpwzLLaTvRFIuI01Y0vp3VW49UG6bkg50kNBR4IFnMCLbOaj71Mjaa9soVv+rPhVYhyKECueq98le3r0gqqLSEY2M6gZ/YMMPaMsLptNRNDU0wGeMB7TiUWFATZvNtp+jMOX0UK+2etGju/p7IsDBmIiLXKbAdmuXazPyv1kltfB1mTCappZIsPopTjqxCs9NRn2lKLJ84wEQztysiQ6wxsS6gkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAgRE8wyu8ecp78d69j0VrwctnjuGPvM8f65+PVw==</latexit><latexit sha1_base64="hf6TE+uOGK9VnX+wMj7GmhWZW9g=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiy6MZlBXuBdiiZNNOmzWVIMkoZ+g5uXCji1vdx59uYtrPQ1h8CH/85h5zzRwlnxvr+t1dYW9/Y3Cpul3Z29/YPyodHTaNSTWiDKK50O8KGciZpwzLLaTvRFIuI01Y0vp3VW49UG6bkg50kNBR4IFnMCLbOaj71Mjaa9soVv+rPhVYhyKECueq98le3r0gqqLSEY2M6gZ/YMMPaMsLptNRNDU0wGeMB7TiUWFATZvNtp+jMOX0UK+2etGju/p7IsDBmIiLXKbAdmuXazPyv1kltfB1mTCappZIsPopTjqxCs9NRn2lKLJ84wEQztysiQ6wxsS6gkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAgRE8wyu8ecp78d69j0VrwctnjuGPvM8f65+PVw==</latexit><latexit sha1_base64="hf6TE+uOGK9VnX+wMj7GmhWZW9g=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiy6MZlBXuBdiiZNNOmzWVIMkoZ+g5uXCji1vdx59uYtrPQ1h8CH/85h5zzRwlnxvr+t1dYW9/Y3Cpul3Z29/YPyodHTaNSTWiDKK50O8KGciZpwzLLaTvRFIuI01Y0vp3VW49UG6bkg50kNBR4IFnMCLbOaj71Mjaa9soVv+rPhVYhyKECueq98le3r0gqqLSEY2M6gZ/YMMPaMsLptNRNDU0wGeMB7TiUWFATZvNtp+jMOX0UK+2etGju/p7IsDBmIiLXKbAdmuXazPyv1kltfB1mTCappZIsPopTjqxCs9NRn2lKLJ84wEQztysiQ6wxsS6gkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAgRE8wyu8ecp78d69j0VrwctnjuGPvM8f65+PVw==</latexit>

zi
<latexit sha1_base64="gvVj1E1QdmCCiOO/AVi41pQxl4A=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2GDKZtA3NJEOSKdShf+LGhSJu/RN3/o2ZdhbaeiDkcM695OREKWfaeN63s7a+sbm1Xdmp7u7tHxy6R8dtLTNFaItILlU3wppyJmjLMMNpN1UUJxGnnWh8V/idCVWaSfFopikNEjwUbMAINlYKXbcfSR7raWKv/GkWstCteXVvDrRK/JLUoEQzdL/6sSRZQoUhHGvd873UBDlWhhFOZ9V+pmmKyRgPac9SgROqg3yefIbOrRKjgVT2CIPm6u+NHCe6CGcnE2xGetkrxP+8XmYGN0HORJoZKsjioUHGkZGoqAHFTFFi+NQSTBSzWREZYYWJsWVVbQn+8pdXSfuy7lv+cFVr3JZ1VOAUzuACfLiGBtxDE1pAYALP8ApvTu68OO/Ox2J0zSl3TuAPnM8fU9GUGA==</latexit><latexit sha1_base64="gvVj1E1QdmCCiOO/AVi41pQxl4A=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2GDKZtA3NJEOSKdShf+LGhSJu/RN3/o2ZdhbaeiDkcM695OREKWfaeN63s7a+sbm1Xdmp7u7tHxy6R8dtLTNFaItILlU3wppyJmjLMMNpN1UUJxGnnWh8V/idCVWaSfFopikNEjwUbMAINlYKXbcfSR7raWKv/GkWstCteXVvDrRK/JLUoEQzdL/6sSRZQoUhHGvd873UBDlWhhFOZ9V+pmmKyRgPac9SgROqg3yefIbOrRKjgVT2CIPm6u+NHCe6CGcnE2xGetkrxP+8XmYGN0HORJoZKsjioUHGkZGoqAHFTFFi+NQSTBSzWREZYYWJsWVVbQn+8pdXSfuy7lv+cFVr3JZ1VOAUzuACfLiGBtxDE1pAYALP8ApvTu68OO/Ox2J0zSl3TuAPnM8fU9GUGA==</latexit><latexit sha1_base64="gvVj1E1QdmCCiOO/AVi41pQxl4A=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2GDKZtA3NJEOSKdShf+LGhSJu/RN3/o2ZdhbaeiDkcM695OREKWfaeN63s7a+sbm1Xdmp7u7tHxy6R8dtLTNFaItILlU3wppyJmjLMMNpN1UUJxGnnWh8V/idCVWaSfFopikNEjwUbMAINlYKXbcfSR7raWKv/GkWstCteXVvDrRK/JLUoEQzdL/6sSRZQoUhHGvd873UBDlWhhFOZ9V+pmmKyRgPac9SgROqg3yefIbOrRKjgVT2CIPm6u+NHCe6CGcnE2xGetkrxP+8XmYGN0HORJoZKsjioUHGkZGoqAHFTFFi+NQSTBSzWREZYYWJsWVVbQn+8pdXSfuy7lv+cFVr3JZ1VOAUzuACfLiGBtxDE1pAYALP8ApvTu68OO/Ox2J0zSl3TuAPnM8fU9GUGA==</latexit><latexit sha1_base64="gvVj1E1QdmCCiOO/AVi41pQxl4A=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2GDKZtA3NJEOSKdShf+LGhSJu/RN3/o2ZdhbaeiDkcM695OREKWfaeN63s7a+sbm1Xdmp7u7tHxy6R8dtLTNFaItILlU3wppyJmjLMMNpN1UUJxGnnWh8V/idCVWaSfFopikNEjwUbMAINlYKXbcfSR7raWKv/GkWstCteXVvDrRK/JLUoEQzdL/6sSRZQoUhHGvd873UBDlWhhFOZ9V+pmmKyRgPac9SgROqg3yefIbOrRKjgVT2CIPm6u+NHCe6CGcnE2xGetkrxP+8XmYGN0HORJoZKsjioUHGkZGoqAHFTFFi+NQSTBSzWREZYYWJsWVVbQn+8pdXSfuy7lv+cFVr3JZ1VOAUzuACfLiGBtxDE1pAYALP8ApvTu68OO/Ox2J0zSl3TuAPnM8fU9GUGA==</latexit>

zj
<latexit sha1_base64="/nd7wLHOJqRpqkl6eQM4llFoaRo=">AAAB+XicbVC7TsMwFL0pr1JeAUYWiwqJqUoQEowVLIxFog+pjSLHcVpTx4lsp1KJ+icsDCDEyp+w8Tc4bQZoOZLlo3PulY9PkHKmtON8W5W19Y3Nrep2bWd3b//APjzqqCSThLZJwhPZC7CinAna1kxz2kslxXHAaTcY3xZ+d0KlYol40NOUejEeChYxgrWRfNseBAkP1TQ2V/408x99u+40nDnQKnFLUocSLd/+GoQJyWIqNOFYqb7rpNrLsdSMcDqrDTJFU0zGeEj7hgocU+Xl8+QzdGaUEEWJNEdoNFd/b+Q4VkU4MxljPVLLXiH+5/UzHV17ORNppqkgi4eijCOdoKIGFDJJieZTQzCRzGRFZIQlJtqUVTMluMtfXiWdi4Zr+P1lvXlT1lGFEziFc3DhCppwBy1oA4EJPMMrvFm59WK9Wx+L0YpV7hzDH1ifP1VVlBk=</latexit><latexit sha1_base64="/nd7wLHOJqRpqkl6eQM4llFoaRo=">AAAB+XicbVC7TsMwFL0pr1JeAUYWiwqJqUoQEowVLIxFog+pjSLHcVpTx4lsp1KJ+icsDCDEyp+w8Tc4bQZoOZLlo3PulY9PkHKmtON8W5W19Y3Nrep2bWd3b//APjzqqCSThLZJwhPZC7CinAna1kxz2kslxXHAaTcY3xZ+d0KlYol40NOUejEeChYxgrWRfNseBAkP1TQ2V/408x99u+40nDnQKnFLUocSLd/+GoQJyWIqNOFYqb7rpNrLsdSMcDqrDTJFU0zGeEj7hgocU+Xl8+QzdGaUEEWJNEdoNFd/b+Q4VkU4MxljPVLLXiH+5/UzHV17ORNppqkgi4eijCOdoKIGFDJJieZTQzCRzGRFZIQlJtqUVTMluMtfXiWdi4Zr+P1lvXlT1lGFEziFc3DhCppwBy1oA4EJPMMrvFm59WK9Wx+L0YpV7hzDH1ifP1VVlBk=</latexit><latexit sha1_base64="/nd7wLHOJqRpqkl6eQM4llFoaRo=">AAAB+XicbVC7TsMwFL0pr1JeAUYWiwqJqUoQEowVLIxFog+pjSLHcVpTx4lsp1KJ+icsDCDEyp+w8Tc4bQZoOZLlo3PulY9PkHKmtON8W5W19Y3Nrep2bWd3b//APjzqqCSThLZJwhPZC7CinAna1kxz2kslxXHAaTcY3xZ+d0KlYol40NOUejEeChYxgrWRfNseBAkP1TQ2V/408x99u+40nDnQKnFLUocSLd/+GoQJyWIqNOFYqb7rpNrLsdSMcDqrDTJFU0zGeEj7hgocU+Xl8+QzdGaUEEWJNEdoNFd/b+Q4VkU4MxljPVLLXiH+5/UzHV17ORNppqkgi4eijCOdoKIGFDJJieZTQzCRzGRFZIQlJtqUVTMluMtfXiWdi4Zr+P1lvXlT1lGFEziFc3DhCppwBy1oA4EJPMMrvFm59WK9Wx+L0YpV7hzDH1ifP1VVlBk=</latexit><latexit sha1_base64="/nd7wLHOJqRpqkl6eQM4llFoaRo=">AAAB+XicbVC7TsMwFL0pr1JeAUYWiwqJqUoQEowVLIxFog+pjSLHcVpTx4lsp1KJ+icsDCDEyp+w8Tc4bQZoOZLlo3PulY9PkHKmtON8W5W19Y3Nrep2bWd3b//APjzqqCSThLZJwhPZC7CinAna1kxz2kslxXHAaTcY3xZ+d0KlYol40NOUejEeChYxgrWRfNseBAkP1TQ2V/408x99u+40nDnQKnFLUocSLd/+GoQJyWIqNOFYqb7rpNrLsdSMcDqrDTJFU0zGeEj7hgocU+Xl8+QzdGaUEEWJNEdoNFd/b+Q4VkU4MxljPVLLXiH+5/UzHV17ORNppqkgi4eijCOdoKIGFDJJieZTQzCRzGRFZIQlJtqUVTMluMtfXiWdi4Zr+P1lvXlT1lGFEziFc3DhCppwBy1oA4EJPMMrvFm59WK9Wx+L0YpV7hzDH1ifP1VVlBk=</latexit>

p
<latexit sha1_base64="OLrTX6zxmC1q9PnM2msWz1JbH5I=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK8smQ2rNbfuzoFWiVeQGhRoDatfg1CSNKbCEI617ntuYvwMK8MIp7PKINU0wWSCR7RvqcAx1X42Tz1DZ1YJUSSVPcKgufp7I8OxzqPZyRibsV72cvE/r5+a6MrPmEhSQwVZPBSlHBmJ8gpQyBQlhk8twUQxmxWRMVaYGFtUxZbgLX95lXQu6p7ld5e15nVRRxlO4BTOwYMGNOEWWtAGAgqe4RXenCfnxXl3PhajJafYOYY/cD5/AEcmkwE=</latexit><latexit sha1_base64="OLrTX6zxmC1q9PnM2msWz1JbH5I=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK8smQ2rNbfuzoFWiVeQGhRoDatfg1CSNKbCEI617ntuYvwMK8MIp7PKINU0wWSCR7RvqcAx1X42Tz1DZ1YJUSSVPcKgufp7I8OxzqPZyRibsV72cvE/r5+a6MrPmEhSQwVZPBSlHBmJ8gpQyBQlhk8twUQxmxWRMVaYGFtUxZbgLX95lXQu6p7ld5e15nVRRxlO4BTOwYMGNOEWWtAGAgqe4RXenCfnxXl3PhajJafYOYY/cD5/AEcmkwE=</latexit><latexit sha1_base64="OLrTX6zxmC1q9PnM2msWz1JbH5I=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK8smQ2rNbfuzoFWiVeQGhRoDatfg1CSNKbCEI617ntuYvwMK8MIp7PKINU0wWSCR7RvqcAx1X42Tz1DZ1YJUSSVPcKgufp7I8OxzqPZyRibsV72cvE/r5+a6MrPmEhSQwVZPBSlHBmJ8gpQyBQlhk8twUQxmxWRMVaYGFtUxZbgLX95lXQu6p7ld5e15nVRRxlO4BTOwYMGNOEWWtAGAgqe4RXenCfnxXl3PhajJafYOYY/cD5/AEcmkwE=</latexit><latexit sha1_base64="OLrTX6zxmC1q9PnM2msWz1JbH5I=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUJdFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK8smQ2rNbfuzoFWiVeQGhRoDatfg1CSNKbCEI617ntuYvwMK8MIp7PKINU0wWSCR7RvqcAx1X42Tz1DZ1YJUSSVPcKgufp7I8OxzqPZyRibsV72cvE/r5+a6MrPmEhSQwVZPBSlHBmJ8gpQyBQlhk8twUQxmxWRMVaYGFtUxZbgLX95lXQu6p7ld5e15nVRRxlO4BTOwYMGNOEWWtAGAgqe4RXenCfnxXl3PhajJafYOYY/cD5/AEcmkwE=</latexit>

wij
<latexit sha1_base64="hf6TE+uOGK9VnX+wMj7GmhWZW9g=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiy6MZlBXuBdiiZNNOmzWVIMkoZ+g5uXCji1vdx59uYtrPQ1h8CH/85h5zzRwlnxvr+t1dYW9/Y3Cpul3Z29/YPyodHTaNSTWiDKK50O8KGciZpwzLLaTvRFIuI01Y0vp3VW49UG6bkg50kNBR4IFnMCLbOaj71Mjaa9soVv+rPhVYhyKECueq98le3r0gqqLSEY2M6gZ/YMMPaMsLptNRNDU0wGeMB7TiUWFATZvNtp+jMOX0UK+2etGju/p7IsDBmIiLXKbAdmuXazPyv1kltfB1mTCappZIsPopTjqxCs9NRn2lKLJ84wEQztysiQ6wxsS6gkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAgRE8wyu8ecp78d69j0VrwctnjuGPvM8f65+PVw==</latexit><latexit sha1_base64="hf6TE+uOGK9VnX+wMj7GmhWZW9g=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiy6MZlBXuBdiiZNNOmzWVIMkoZ+g5uXCji1vdx59uYtrPQ1h8CH/85h5zzRwlnxvr+t1dYW9/Y3Cpul3Z29/YPyodHTaNSTWiDKK50O8KGciZpwzLLaTvRFIuI01Y0vp3VW49UG6bkg50kNBR4IFnMCLbOaj71Mjaa9soVv+rPhVYhyKECueq98le3r0gqqLSEY2M6gZ/YMMPaMsLptNRNDU0wGeMB7TiUWFATZvNtp+jMOX0UK+2etGju/p7IsDBmIiLXKbAdmuXazPyv1kltfB1mTCappZIsPopTjqxCs9NRn2lKLJ84wEQztysiQ6wxsS6gkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAgRE8wyu8ecp78d69j0VrwctnjuGPvM8f65+PVw==</latexit><latexit sha1_base64="hf6TE+uOGK9VnX+wMj7GmhWZW9g=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiy6MZlBXuBdiiZNNOmzWVIMkoZ+g5uXCji1vdx59uYtrPQ1h8CH/85h5zzRwlnxvr+t1dYW9/Y3Cpul3Z29/YPyodHTaNSTWiDKK50O8KGciZpwzLLaTvRFIuI01Y0vp3VW49UG6bkg50kNBR4IFnMCLbOaj71Mjaa9soVv+rPhVYhyKECueq98le3r0gqqLSEY2M6gZ/YMMPaMsLptNRNDU0wGeMB7TiUWFATZvNtp+jMOX0UK+2etGju/p7IsDBmIiLXKbAdmuXazPyv1kltfB1mTCappZIsPopTjqxCs9NRn2lKLJ84wEQztysiQ6wxsS6gkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAgRE8wyu8ecp78d69j0VrwctnjuGPvM8f65+PVw==</latexit><latexit sha1_base64="hf6TE+uOGK9VnX+wMj7GmhWZW9g=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuiy6MZlBXuBdiiZNNOmzWVIMkoZ+g5uXCji1vdx59uYtrPQ1h8CH/85h5zzRwlnxvr+t1dYW9/Y3Cpul3Z29/YPyodHTaNSTWiDKK50O8KGciZpwzLLaTvRFIuI01Y0vp3VW49UG6bkg50kNBR4IFnMCLbOaj71Mjaa9soVv+rPhVYhyKECueq98le3r0gqqLSEY2M6gZ/YMMPaMsLptNRNDU0wGeMB7TiUWFATZvNtp+jMOX0UK+2etGju/p7IsDBmIiLXKbAdmuXazPyv1kltfB1mTCappZIsPopTjqxCs9NRn2lKLJ84wEQztysiQ6wxsS6gkgshWD55FZoX1cDx/WWldpPHUYQTOIVzCOAKanAHdWgAgRE8wyu8ecp78d69j0VrwctnjuGPvM8f65+PVw==</latexit>

[zi; zj ]
<latexit sha1_base64="DTYEtsouiLKvjT4BAV2gxwP/hp4=">AAACDHicbVDLSsNAFL2pr1pfVZduBovgqiQiKLgpunFZwT4gDWUymbRjJ5MwMxFq6Ae48VfcuFDErR/gzr9x0mahrReGOZxzLvfe4yecKW3b31ZpaXllda28XtnY3Nreqe7utVWcSkJbJOax7PpYUc4EbWmmOe0mkuLI57Tjj65yvXNPpWKxuNXjhHoRHggWMoK1ofrVmtvzYx6ocWS+7GHSZxdzxJ1nXHbdnhZaBE4BalBUs1/96gUxSSMqNOFYKdexE+1lWGpGOJ1UeqmiCSYjPKCugQJHVHnZ9JgJOjJMgMJYmic0mrK/OzIcqXw744ywHqp5LSf/09xUh+dexkSSairIbFCYcqRjlCeDAiYp0XxsACaSmV0RGWKJiTb5VUwIzvzJi6B9UncMvjmtNS6LOMpwAIdwDA6cQQOuoQktIPAIz/AKb9aT9WK9Wx8za8kqevbhT1mfP5s1nJc=</latexit><latexit sha1_base64="DTYEtsouiLKvjT4BAV2gxwP/hp4=">AAACDHicbVDLSsNAFL2pr1pfVZduBovgqiQiKLgpunFZwT4gDWUymbRjJ5MwMxFq6Ae48VfcuFDErR/gzr9x0mahrReGOZxzLvfe4yecKW3b31ZpaXllda28XtnY3Nreqe7utVWcSkJbJOax7PpYUc4EbWmmOe0mkuLI57Tjj65yvXNPpWKxuNXjhHoRHggWMoK1ofrVmtvzYx6ocWS+7GHSZxdzxJ1nXHbdnhZaBE4BalBUs1/96gUxSSMqNOFYKdexE+1lWGpGOJ1UeqmiCSYjPKCugQJHVHnZ9JgJOjJMgMJYmic0mrK/OzIcqXw744ywHqp5LSf/09xUh+dexkSSairIbFCYcqRjlCeDAiYp0XxsACaSmV0RGWKJiTb5VUwIzvzJi6B9UncMvjmtNS6LOMpwAIdwDA6cQQOuoQktIPAIz/AKb9aT9WK9Wx8za8kqevbhT1mfP5s1nJc=</latexit><latexit sha1_base64="DTYEtsouiLKvjT4BAV2gxwP/hp4=">AAACDHicbVDLSsNAFL2pr1pfVZduBovgqiQiKLgpunFZwT4gDWUymbRjJ5MwMxFq6Ae48VfcuFDErR/gzr9x0mahrReGOZxzLvfe4yecKW3b31ZpaXllda28XtnY3Nreqe7utVWcSkJbJOax7PpYUc4EbWmmOe0mkuLI57Tjj65yvXNPpWKxuNXjhHoRHggWMoK1ofrVmtvzYx6ocWS+7GHSZxdzxJ1nXHbdnhZaBE4BalBUs1/96gUxSSMqNOFYKdexE+1lWGpGOJ1UeqmiCSYjPKCugQJHVHnZ9JgJOjJMgMJYmic0mrK/OzIcqXw744ywHqp5LSf/09xUh+dexkSSairIbFCYcqRjlCeDAiYp0XxsACaSmV0RGWKJiTb5VUwIzvzJi6B9UncMvjmtNS6LOMpwAIdwDA6cQQOuoQktIPAIz/AKb9aT9WK9Wx8za8kqevbhT1mfP5s1nJc=</latexit><latexit sha1_base64="DTYEtsouiLKvjT4BAV2gxwP/hp4=">AAACDHicbVDLSsNAFL2pr1pfVZduBovgqiQiKLgpunFZwT4gDWUymbRjJ5MwMxFq6Ae48VfcuFDErR/gzr9x0mahrReGOZxzLvfe4yecKW3b31ZpaXllda28XtnY3Nreqe7utVWcSkJbJOax7PpYUc4EbWmmOe0mkuLI57Tjj65yvXNPpWKxuNXjhHoRHggWMoK1ofrVmtvzYx6ocWS+7GHSZxdzxJ1nXHbdnhZaBE4BalBUs1/96gUxSSMqNOFYKdexE+1lWGpGOJ1UeqmiCSYjPKCugQJHVHnZ9JgJOjJMgMJYmic0mrK/OzIcqXw744ywHqp5LSf/09xUh+dexkSSairIbFCYcqRjlCeDAiYp0XxsACaSmV0RGWKJiTb5VUwIzvzJi6B9UncMvjmtNS6LOMpwAIdwDA6cQQOuoQktIPAIz/AKb9aT9WK9Wx8za8kqevbhT1mfP5s1nJc=</latexit>

fg(p)
<latexit sha1_base64="Ab4CWaPzDvF62UQo+9Jw8VuczJ0=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSLUTUlE0GXRjcsK9gFtCJPppB06mYSZiRBC/RU3LhRx64e482+ctFlo64FhDufcy5w5QcKZ0o7zba2tb2xubVd2qrt7+weH9tFxV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Lbwe49UKhaLB50l1IvwWLCQEayN5Nu10B83hkHMRyqLzJUns3PfrjtNZw60StyS1KFE27e/hqOYpBEVmnCs1MB1Eu3lWGpGOJ1Vh6miCSZTPKYDQwWOqPLyefgZOjPKCIWxNEdoNFd/b+Q4UkU2MxlhPVHLXiH+5w1SHV57ORNJqqkgi4fClCMdo6IJNGKSEs0zQzCRzGRFZIIlJtr0VTUluMtfXiXdi6Zr+P1lvXVT1lGBEziFBrhwBS24gzZ0gEAGz/AKb9aT9WK9Wx+L0TWr3KnBH1ifP9ZAlOE=</latexit><latexit sha1_base64="Ab4CWaPzDvF62UQo+9Jw8VuczJ0=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSLUTUlE0GXRjcsK9gFtCJPppB06mYSZiRBC/RU3LhRx64e482+ctFlo64FhDufcy5w5QcKZ0o7zba2tb2xubVd2qrt7+weH9tFxV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Lbwe49UKhaLB50l1IvwWLCQEayN5Nu10B83hkHMRyqLzJUns3PfrjtNZw60StyS1KFE27e/hqOYpBEVmnCs1MB1Eu3lWGpGOJ1Vh6miCSZTPKYDQwWOqPLyefgZOjPKCIWxNEdoNFd/b+Q4UkU2MxlhPVHLXiH+5w1SHV57ORNJqqkgi4fClCMdo6IJNGKSEs0zQzCRzGRFZIIlJtr0VTUluMtfXiXdi6Zr+P1lvXVT1lGBEziFBrhwBS24gzZ0gEAGz/AKb9aT9WK9Wx+L0TWr3KnBH1ifP9ZAlOE=</latexit><latexit sha1_base64="Ab4CWaPzDvF62UQo+9Jw8VuczJ0=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSLUTUlE0GXRjcsK9gFtCJPppB06mYSZiRBC/RU3LhRx64e482+ctFlo64FhDufcy5w5QcKZ0o7zba2tb2xubVd2qrt7+weH9tFxV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Lbwe49UKhaLB50l1IvwWLCQEayN5Nu10B83hkHMRyqLzJUns3PfrjtNZw60StyS1KFE27e/hqOYpBEVmnCs1MB1Eu3lWGpGOJ1Vh6miCSZTPKYDQwWOqPLyefgZOjPKCIWxNEdoNFd/b+Q4UkU2MxlhPVHLXiH+5w1SHV57ORNJqqkgi4fClCMdo6IJNGKSEs0zQzCRzGRFZIIlJtr0VTUluMtfXiXdi6Zr+P1lvXVT1lGBEziFBrhwBS24gzZ0gEAGz/AKb9aT9WK9Wx+L0TWr3KnBH1ifP9ZAlOE=</latexit><latexit sha1_base64="Ab4CWaPzDvF62UQo+9Jw8VuczJ0=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSLUTUlE0GXRjcsK9gFtCJPppB06mYSZiRBC/RU3LhRx64e482+ctFlo64FhDufcy5w5QcKZ0o7zba2tb2xubVd2qrt7+weH9tFxV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9Lbwe49UKhaLB50l1IvwWLCQEayN5Nu10B83hkHMRyqLzJUns3PfrjtNZw60StyS1KFE27e/hqOYpBEVmnCs1MB1Eu3lWGpGOJ1Vh6miCSZTPKYDQwWOqPLyefgZOjPKCIWxNEdoNFd/b+Q4UkU2MxlhPVHLXiH+5w1SHV57ORNJqqkgi4fClCMdo6IJNGKSEs0zQzCRzGRFZIIlJtr0VTUluMtfXiXdi6Zr+P1lvXVT1lGBEziFBrhwBS24gzZ0gEAGz/AKb9aT9WK9Wx+L0TWr3KnBH1ifP9ZAlOE=</latexit>

GNN

GNN

x

x

Masked subgraph embedding

Randomly generated 
condition vector

Embedding 
Explainer T✓

<latexit sha1_base64="ueNEuycRgn2cnje9D05voZNhC6I=">AAAB+3icbVDLSsNAFJ3UV62vWpduBovgqiQi6LLoxmWFvqAJYTKdtEMnkzBzI5aQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJEsE12Pa3VdnY3Nreqe7W9vYPDo/qx42+jlNFWY/GIlbDgGgmuGQ94CDYMFGMRIFgg2B2V/iDR6Y0j2UX5gnzIjKRPOSUgJH8esONCEwpEVk3912YMiB+vWm37AXwOnFK0kQlOn79yx3HNI2YBCqI1iPHTsDLiAJOBctrbqpZQuiMTNjIUEkipr1skT3H50YZ4zBW5knAC/X3RkYiredRYCaLpHrVK8T/vFEK4Y2XcZmkwCRdHgpTgSHGRRF4zBWjIOaGEKq4yYrplChCwdRVMyU4q19eJ/3LlmP4w1WzfVvWUUWn6AxdIAddoza6Rx3UQxQ9oWf0it6s3Hqx3q2P5WjFKndO0B9Ynz91K5Sy</latexit><latexit sha1_base64="ueNEuycRgn2cnje9D05voZNhC6I=">AAAB+3icbVDLSsNAFJ3UV62vWpduBovgqiQi6LLoxmWFvqAJYTKdtEMnkzBzI5aQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJEsE12Pa3VdnY3Nreqe7W9vYPDo/qx42+jlNFWY/GIlbDgGgmuGQ94CDYMFGMRIFgg2B2V/iDR6Y0j2UX5gnzIjKRPOSUgJH8esONCEwpEVk3912YMiB+vWm37AXwOnFK0kQlOn79yx3HNI2YBCqI1iPHTsDLiAJOBctrbqpZQuiMTNjIUEkipr1skT3H50YZ4zBW5knAC/X3RkYiredRYCaLpHrVK8T/vFEK4Y2XcZmkwCRdHgpTgSHGRRF4zBWjIOaGEKq4yYrplChCwdRVMyU4q19eJ/3LlmP4w1WzfVvWUUWn6AxdIAddoza6Rx3UQxQ9oWf0it6s3Hqx3q2P5WjFKndO0B9Ynz91K5Sy</latexit><latexit sha1_base64="ueNEuycRgn2cnje9D05voZNhC6I=">AAAB+3icbVDLSsNAFJ3UV62vWpduBovgqiQi6LLoxmWFvqAJYTKdtEMnkzBzI5aQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJEsE12Pa3VdnY3Nreqe7W9vYPDo/qx42+jlNFWY/GIlbDgGgmuGQ94CDYMFGMRIFgg2B2V/iDR6Y0j2UX5gnzIjKRPOSUgJH8esONCEwpEVk3912YMiB+vWm37AXwOnFK0kQlOn79yx3HNI2YBCqI1iPHTsDLiAJOBctrbqpZQuiMTNjIUEkipr1skT3H50YZ4zBW5knAC/X3RkYiredRYCaLpHrVK8T/vFEK4Y2XcZmkwCRdHgpTgSHGRRF4zBWjIOaGEKq4yYrplChCwdRVMyU4q19eJ/3LlmP4w1WzfVvWUUWn6AxdIAddoza6Rx3UQxQ9oWf0it6s3Hqx3q2P5WjFKndO0B9Ynz91K5Sy</latexit><latexit sha1_base64="ueNEuycRgn2cnje9D05voZNhC6I=">AAAB+3icbVDLSsNAFJ3UV62vWpduBovgqiQi6LLoxmWFvqAJYTKdtEMnkzBzI5aQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJEsE12Pa3VdnY3Nreqe7W9vYPDo/qx42+jlNFWY/GIlbDgGgmuGQ94CDYMFGMRIFgg2B2V/iDR6Y0j2UX5gnzIjKRPOSUgJH8esONCEwpEVk3912YMiB+vWm37AXwOnFK0kQlOn79yx3HNI2YBCqI1iPHTsDLiAJOBctrbqpZQuiMTNjIUEkipr1skT3H50YZ4zBW5knAC/X3RkYiredRYCaLpHrVK8T/vFEK4Y2XcZmkwCRdHgpTgSHGRRF4zBWjIOaGEKq4yYrplChCwdRVMyU4q19eJ/3LlmP4w1WzfVvWUUWn6AxdIAddoza6Rx3UQxQ9oWf0it6s3Hqx3q2P5WjFKndO0B9Ynz91K5Sy</latexit>

Mutual Information Maximizationx Element-wise Multiplication

Training Framework

G
<latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit>

Gs = E(T✓(p, G))
<latexit sha1_base64="xrvbX6qun3xCPZvwyzatAUIyTXM=">AAACHnicbZBLS8NAEMc39VXrq+rRS7AILUhJRNGLUBSpxwp9QRPCZrNtl24e7E6EEvJJvPhVvHhQRPCk38ZNW0RbB5b98Z8ZZubvRpxJMIwvLbe0vLK6ll8vbGxube8Ud/faMowFoS0S8lB0XSwpZwFtAQNOu5Gg2Hc57bij6yzfuadCsjBowjiito8HAeszgkFJTvGs7shLy8cwJJgnN2n5h5upY8GQAi5bbsg9OfbVl0Tpcb1ScYolo2pMQl8EcwYlNIuGU/ywvJDEPg2AcCxlzzQisBMsgBFO04IVSxphMsID2lMYYJ9KO5mcl+pHSvH0fijUC0CfqL87EuzLbD1VmS0v53OZ+F+uF0P/wk5YEMVAAzId1I+5DqGeeaV7TFACfKwAE8HUrjoZYoEJKEcLygRz/uRFaJ9UTcV3p6Xa1cyOPDpAh6iMTHSOaugWNVALEfSAntALetUetWftTXuflua0Wc8++hPa5zfdTaLp</latexit><latexit sha1_base64="xrvbX6qun3xCPZvwyzatAUIyTXM=">AAACHnicbZBLS8NAEMc39VXrq+rRS7AILUhJRNGLUBSpxwp9QRPCZrNtl24e7E6EEvJJvPhVvHhQRPCk38ZNW0RbB5b98Z8ZZubvRpxJMIwvLbe0vLK6ll8vbGxube8Ud/faMowFoS0S8lB0XSwpZwFtAQNOu5Gg2Hc57bij6yzfuadCsjBowjiito8HAeszgkFJTvGs7shLy8cwJJgnN2n5h5upY8GQAi5bbsg9OfbVl0Tpcb1ScYolo2pMQl8EcwYlNIuGU/ywvJDEPg2AcCxlzzQisBMsgBFO04IVSxphMsID2lMYYJ9KO5mcl+pHSvH0fijUC0CfqL87EuzLbD1VmS0v53OZ+F+uF0P/wk5YEMVAAzId1I+5DqGeeaV7TFACfKwAE8HUrjoZYoEJKEcLygRz/uRFaJ9UTcV3p6Xa1cyOPDpAh6iMTHSOaugWNVALEfSAntALetUetWftTXuflua0Wc8++hPa5zfdTaLp</latexit><latexit sha1_base64="xrvbX6qun3xCPZvwyzatAUIyTXM=">AAACHnicbZBLS8NAEMc39VXrq+rRS7AILUhJRNGLUBSpxwp9QRPCZrNtl24e7E6EEvJJvPhVvHhQRPCk38ZNW0RbB5b98Z8ZZubvRpxJMIwvLbe0vLK6ll8vbGxube8Ud/faMowFoS0S8lB0XSwpZwFtAQNOu5Gg2Hc57bij6yzfuadCsjBowjiito8HAeszgkFJTvGs7shLy8cwJJgnN2n5h5upY8GQAi5bbsg9OfbVl0Tpcb1ScYolo2pMQl8EcwYlNIuGU/ywvJDEPg2AcCxlzzQisBMsgBFO04IVSxphMsID2lMYYJ9KO5mcl+pHSvH0fijUC0CfqL87EuzLbD1VmS0v53OZ+F+uF0P/wk5YEMVAAzId1I+5DqGeeaV7TFACfKwAE8HUrjoZYoEJKEcLygRz/uRFaJ9UTcV3p6Xa1cyOPDpAh6iMTHSOaugWNVALEfSAntALetUetWftTXuflua0Wc8++hPa5zfdTaLp</latexit><latexit sha1_base64="xrvbX6qun3xCPZvwyzatAUIyTXM=">AAACHnicbZBLS8NAEMc39VXrq+rRS7AILUhJRNGLUBSpxwp9QRPCZrNtl24e7E6EEvJJvPhVvHhQRPCk38ZNW0RbB5b98Z8ZZubvRpxJMIwvLbe0vLK6ll8vbGxube8Ud/faMowFoS0S8lB0XSwpZwFtAQNOu5Gg2Hc57bij6yzfuadCsjBowjiito8HAeszgkFJTvGs7shLy8cwJJgnN2n5h5upY8GQAi5bbsg9OfbVl0Tpcb1ScYolo2pMQl8EcwYlNIuGU/ywvJDEPg2AcCxlzzQisBMsgBFO04IVSxphMsID2lMYYJ9KO5mcl+pHSvH0fijUC0CfqL87EuzLbD1VmS0v53OZ+F+uF0P/wk5YEMVAAzId1I+5DqGeeaV7TFACfKwAE8HUrjoZYoEJKEcLygRz/uRFaJ9UTcV3p6Xa1cyOPDpAh6iMTHSOaugWNVALEfSAntALetUetWftTXuflua0Wc8++hPa5zfdTaLp</latexit>

Select Important Edges

Embedding Model E
<latexit sha1_base64="4auX2Io2oR7boPHV9PimazTYwgk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkUwWUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLa+sbmVnm7srO7t39QPTxqG5VqylpUCaW7ITFMcMlayFGwbqIZiUPBOuHkNvc7T0wbruQjThMWxGQkecQpQSv1+jHBMSUiu5sNqjWv7s3hrhK/IDUo0BxUv/pDRdOYSaSCGNPzvQSDjGjkVLBZpZ8alhA6ISPWs1SSmJkgm0eeuWdWGbqR0vZJdOfq742MxMZM49BO5hHNspeL/3m9FKPrIOMySZFJuvgoSoWLys3vd4dcM4piagmhmtusLh0TTSjaliq2BH/55FXSvqj7lj9c1ho3RR1lOIFTOAcfrqAB99CEFlBQ8Ayv8Oag8+K8Ox+L0ZJT7BzDHzifP3ZkkVs=</latexit><latexit sha1_base64="4auX2Io2oR7boPHV9PimazTYwgk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkUwWUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLa+sbmVnm7srO7t39QPTxqG5VqylpUCaW7ITFMcMlayFGwbqIZiUPBOuHkNvc7T0wbruQjThMWxGQkecQpQSv1+jHBMSUiu5sNqjWv7s3hrhK/IDUo0BxUv/pDRdOYSaSCGNPzvQSDjGjkVLBZpZ8alhA6ISPWs1SSmJkgm0eeuWdWGbqR0vZJdOfq742MxMZM49BO5hHNspeL/3m9FKPrIOMySZFJuvgoSoWLys3vd4dcM4piagmhmtusLh0TTSjaliq2BH/55FXSvqj7lj9c1ho3RR1lOIFTOAcfrqAB99CEFlBQ8Ayv8Oag8+K8Ox+L0ZJT7BzDHzifP3ZkkVs=</latexit><latexit sha1_base64="4auX2Io2oR7boPHV9PimazTYwgk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkUwWUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLa+sbmVnm7srO7t39QPTxqG5VqylpUCaW7ITFMcMlayFGwbqIZiUPBOuHkNvc7T0wbruQjThMWxGQkecQpQSv1+jHBMSUiu5sNqjWv7s3hrhK/IDUo0BxUv/pDRdOYSaSCGNPzvQSDjGjkVLBZpZ8alhA6ISPWs1SSmJkgm0eeuWdWGbqR0vZJdOfq742MxMZM49BO5hHNspeL/3m9FKPrIOMySZFJuvgoSoWLys3vd4dcM4piagmhmtusLh0TTSjaliq2BH/55FXSvqj7lj9c1ho3RR1lOIFTOAcfrqAB99CEFlBQ8Ayv8Oag8+K8Ox+L0ZJT7BzDHzifP3ZkkVs=</latexit><latexit sha1_base64="4auX2Io2oR7boPHV9PimazTYwgk=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkUwWUF+4A2lMl00g6dzISZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPmAhu0PO+ndLa+sbmVnm7srO7t39QPTxqG5VqylpUCaW7ITFMcMlayFGwbqIZiUPBOuHkNvc7T0wbruQjThMWxGQkecQpQSv1+jHBMSUiu5sNqjWv7s3hrhK/IDUo0BxUv/pDRdOYSaSCGNPzvQSDjGjkVLBZpZ8alhA6ISPWs1SSmJkgm0eeuWdWGbqR0vZJdOfq742MxMZM49BO5hHNspeL/3m9FKPrIOMySZFJuvgoSoWLys3vd4dcM4piagmhmtusLh0TTSjaliq2BH/55FXSvqj7lj9c1ho3RR1lOIFTOAcfrqAB99CEFlBQ8Ayv8Oag8+K8Ox+L0ZJT7BzDHzifP3ZkkVs=</latexit>
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Masked embedding

Figure 4.2: Overviews of the self-supervised training framework for the embedding model (right)
and the architecture of the parametric explainers (left). During training, we generate random con-
dition vectors p as an input to the embedding explainer and mask the embeddings. The learning
objective seeks to maximize the mutual information between two embeddings on certain dimen-
sions.

available at training, we sample the masking vector p from a multivariate Laplace distribution due

to the sparse gradient, i.e., only a few dimensions are of high importance, assuming embeddings

from well-trained models are informative with low dimension redundancy. Empirically, the Lapla-

cian assumption holds on all datasets we work with as we observe that gradients follow a Laplace

distribution. Formally, the learning objective based on the restricted MI is

max
θ

Ep[MI(p⊗ E(G),p⊗ E(Tθ(p, G)))], (4.1)

where MI(·, ·) computes the mutual information between two random vectors, p denotes the ran-

dom masking vector sampled from a certain distribution, Tθ(p, G) computes the subgraph of high

importance, and ⊗ denotes the element-wise multiplication, which applies masking to the embed-

dings E(·). Figure 4.2 outlines the training framework and objective. Intuitively, given an input

graph and the desired embedding dimensions to be explained, the explainer Tθ predicts the sub-

graph whose embedding shares the maximum mutual information with the original embedding on

the desired dimensions.

Practically, the mutual information is intractable and is hence hard to directly compute. A
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common approach to achieving efficient computation and optimization is to adopt the upper bound

estimations of mutual information [79], namely, the Jenson-Shannon Estimator (JSE) [130] and

the InfoNCE [131]. These upper bound estimations are also referred to as contrastive loss and are

widely applied in self-supervised representation learning [89, 86, 40] for both images and graphs.

Adopting these estimators, the objectives are efficiently computed as

min
θ

1

N

N∑
i=1

log
[
σ
(
(p⊗ zi)

T (p⊗ zi,θ)
)]

+
1

N2 −N

∑
i ̸=j

log
[
1− σ

(
(p⊗ zi)

T (p⊗ zj,θ)
)]
,

(4.2)

min
θ

− 1

N

N∑
i=1

[
log

exp{(p⊗ zi)
T (p⊗ zi,θ)}∑

j ̸=i exp{(p⊗ zi)T (p⊗ zj,θ)}

]
, (4.3)

for JSE and InfoNCE, respectively, where N denotes the number of samples in a mini-batch, σ

denotes Sigmoid function, zi and zi,θ are embeddings of the original graph Gi and its subgraph

Tθ(Gi), or target nodes of the two graphs. Our objective involves condition vectors as masks on

the embeddings, which differs from typical contrastive loss used in self-supervised representation

learning. We hence call the proposed objective the conditioned contrastive loss.

To restrict the size of subgraphs given by the explainer, we follow previous studies [125] to add

a size regularization term R, computed as the averaged importance score, to the above objectives.

In the case where edge importance scores wij ∈ [0, 1] are computed, the regularization term is

computed as

R(G) =
∑

(vi,vj)∈E

λs|wij| − λe [wij logwij − (1− wij) log(1− wij)] , (4.4)

where λs and λe are hyper-parameters controlling the size and the entropy of edge importance

scores, respectively.
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4.3.3 Explainer Architectures

Embedding explainers. To be consistent with PGExplainer, we adopt the multilayer percep-

tron (MLP) as the base architecture to predict the importance score wij for each edge (ui, uj) ∈ E,

on top of learned embeddings zi and zj of the two nodes connected by the edge. Edges with scores

higher than a threshold are considered important edges that remain in the selected subgraph. In

order for the embedding explainer to cooperate with different downstream explainers and provide

diverse explanations for different tasks, it additionally requires a condition vector as input indicat-

ing the specific downstream task to be explained. Formally, the graph-level embedding explainer

takes the embeddings, zi and zj , and the condition vector p as inputs and computes the importance

score by

wij = MLPg
(
[zi; zj]⊗ σ(fg(p))

)
, (4.5)

where [·; ·] denotes the concatenation along the feature dimension, ⊗ denotes the element-wise

multiplication, σ denotes the activation function, and fg : Rd → R2d is a linear projection. The

node-level embedding explainer takes an additional node embedding as its input, as the explainers

are expected to predict different scores for the same edge when explaining different target nodes.

The formulation of computing the importance score is as follows,

wij = MLPn
(
[zi; zj; ztarget]⊗ σ(fn(p))

)
, (4.6)

where fg : Rd → R3d is a linear projection, and ztarget denotes the embedding of the target node

whose prediction is to be explained.

Downstream explainers. We use the following gradient-based explainer to compute condition

vectors for different downstream models. Formally, given an input embedding z and its predic-

tion probabilities D(z) ∈ [0, 1]C among all C classes, we compute the gradient of the maximal

probability w.r.t. the input embedding:

g =
∂maxc≤C D(z)[c]

∂z
∈ R1×d,
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Figure 4.3: Quantitative performance comparisons on six tasks from MoleculeNet (top row) and
PPI (bottom row). The curves are obtained by varying the threshold for selecting important edges.

where D(z)[c] denotes the probability for class c. To convert the gradient into the condition vector,

we further perform normalization and only take positive values reflecting only positive influence

to the predicted class probability, i.e., p = ReLU(norm(gT )).

4.4 Experimental Studies

We conduct two groups of quantitative studies evaluating the explanation quality and the uni-

versal explanation ability, i.e., training a single explainer to explain all downstream tasks, of TAGE.

We then compare the efficiency of multiple learning-based GNN explainers in terms of training and

explanation time costs. We further provide visualizations to demonstrate the explanation quality

as well as the ability to explain GNN models without downstream tasks.

4.4.1 Datasets

To demonstrate the effectiveness of the proposed TAGE on both node-level and graph-level

tasks, we evaluate TAGE on three groups of real-world datasets that contain potentially multiple

tasks.

MoleculeNet. The MoleculeNet [23] library provides a collection of molecular graph datasets
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for the prediction of different molecule properties. In a molecular graph, each atom in the molecule

is considered a node, and each bond is considered an edge. The prediction of molecule properties

is a graph-level task. We include three graph classification tasks from MoleculeNet to evaluate the

explanation of graph-level tasks: HIV, SIDER, and BACE.

Protein-Protein Interaction. The Protein-Protein Interaction (PPI) [108] dataset documents

the physical interactions between proteins in 24 different human tissues. In PPI graphs, each

protein is considered as a node with its motif and immunological features, and there is an edge

between two proteins if they interact with each other. Each node in the graphs has 121 binary

labels associated with different protein functions. As different protein functions are not exclusive

to each other, the prediction of each protein function is considered an individual task instead of a

multi-class classification. And hence typical approaches require individual explainers for the 121

tasks. We utilize the first five out of 121 tasks to evaluate the explanation of node-level tasks.

E-commerce Product Network. The E-commerce Product Network (EPN)* is constructed

with subsampled, anonymized logs from an e-commerce store, where entities including buyers,

products, merchants, and reviews are considered as nodes, and interactions between entities are

considered as edges. We subsample the data for the sake of experimental evaluations and the

dataset characteristics do not mirror actual production traffic. We study the explanation of the

classification of fraudulent entities (nodes), where the predictions for different types of entities are

considered individual tasks. We evaluate our framework specifically on classifications of the buyer,

merchant, and review nodes.

4.4.2 Experiment Settings and Evaluation Metrics

For each real-world dataset, we evaluate explainers on multiple downstream tasks that share

a single embedding model. For consistency with industrial use cases, we perform the two-stage

training paradigm to obtain GNN models to be explained. In particular, we first use unlabeled

graphs to train the GNN-based embedding model in an unsupervised fashion. We then freeze the

embedding model and use the learned embeddings to train individual downstream models struc-

*Proprietary dataset
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tured as 2-layer MLPs. Specifically, for graph-level classification tasks in MoleculeNet, we employ

the GNN pretraining strategy context prediction [76] to train a 5-layer GIN [26] as the embedding

model on ZINC-2M [132] containing 2 million unlabeled molecules. For the node-level classi-

fication on PPI, we employ the self-supervised training method GRACE [74] to train a 2-layer

GCN [25] on all 21 graphs from PPI without using labels. For the larger-scale node-level classifi-

cation on EPN, we use graph autoencoder (GAE) [41] to train the embedding model on sampled

subgraphs of EPN.

As the involved real-world datasets do not have ground truth for explanations, we follow previ-

ous studies [133, 122, 127] to adopt a fidelity score and a sparsity score to quantitatively evaluate

the explanations. Intuitively, the fidelity score measures the level of change in the probability of

the predicted class when removing important nodes or edges, whereas the sparsity score measures

the relative amount of important nodes or nodes associated with important edges. A formulation of

the scores is provided in Appendix B. Note that compared to explanation evaluation with ground

truths, the fidelity score is considered more faithful to the model, especially when the model makes

incorrect predictions, in which case the explanation ground truths become inconsistent with the ev-

idence of making the wrong predictions. In practice, one needs to trade-off between the fidelity

score and the sparsity score by selecting the proper threshold for the importance.

Table 4.2: Fidelity scores with controlled sparsity on graph-level molecule property prediction
tasks. Each column corresponds to an explainer model trained on (or without) a specific down-
stream task. Underlines highlight the best explanation quality in terms of fidelity, on the same
level of sparsity.

PGExplainer (trained on) TAGE
Eval on BACE HIV BBBP SIDER w/o downstream
BACE 0.252 ±0.340 0.007 ±0.251 0.026 ±0.022 -0.151 ±0.330 0.378 ±0.293
HIV -0.001 ±0.197 0.473 ±0.404 0.013 ±0.029 -0.060 ±0.356 0.595 ±0.321

BBBP 0.001 ±0.237 -0.056 ±0.226 0.182 ±0.169 -0.252 ±0.440 0.193 ±0.161
SIDER 0.012 ±0.219 -0.009 ±0.212 0.003 ±0.029 0.444 ±0.391 0.521 ±0.278
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Table 4.3: Fidelity scores with controlled sparsity on the node-level classification dataset PPI.
Each column corresponds to an explainer model trained on (or without) a specific downstream
task. Underlines highlight the best explanation quality in terms of fidelity, on the same level of
sparsity.

PGExplainer (trained on) TAGE
Eval on Task 0 Task 1 Task 2 Task 3 Task 4 w/o downstream
Task 0 0.184 ±0.3443 -0.005 ±0.268 0.033 ±0.335 0.034 ±0.310 0.018 ±0.194 0.271 ±0.385
Task 1 0.046 ±0.447 0.197 ±0.380 0.043 ±0.314 0.008 ±0.297 0.021 ±0.183 0.300 ±0.415
Task 2 0.028 ±0.434 0.001 ±0.283 0.345 ±0.458 0.024 ±0.320 0.097 ±0.320 0.499 ±0.480
Task 3 0.075 ±0.364 -0.015 ±0.219 0.036 ±0.317 0.262 ±0.418 0.040 ±0.221 0.289 ±0.427
Task 4 0.035 ±0.413 -0.021 ±0.238 0.223 ±0.438 0.075 ±0.374 0.242 ±0.373 0.330 ±0.442

Table 4.4: Fidelity scores with controlled sparsity on the E-commerce product dataset. Each col-
umn corresponds to one explainer model trained on different tasks or without downstream tasks.
Underlines highlight the best explanation quality in terms of fidelity, on the same level of sparsity.

PGExplainer (trained on) TAGE
Eval on Buyers Sellers Reviews w/o downstream
Buyers 0.2009 ±0.2233 0.1731 ±0.3774 0.1740 ±0.4463 0.2713 ±0.1834
Sellers 0.5465 ±0.4773 0.3246 ±0.4026 0.1128 ±0.3019 0.6515 ±0.3426

Reviews 0.4178 ±0.3683 0.1258 ±0.3492 0.2310 ±0.4178 0.5692 ±0.4214

4.4.3 Quantitative Studies

We conduct two groups of quantitatively experimental comparisons. We first demonstrate the

explanation quality of individual tasks in terms of the fidelity score and the sparsity score. We do

this by comparing TAGE with multiple baseline methods including non-learning-based methods

GradCAM [133] and DeepLIFT [134], as well as learning-based methods GNNExplainer [126]

Table 4.5: Comparison of computational time cost among three learning-based GNN explainers on
the PPI dataset. The left two columns record time cost breakdown for T downstream tasks. The
fourth column estimates the total time cost for explaining all 121 tasks of PPI. The last row shows
the speedup times compared to GNNExplainer and PGExplainer, respectively.

Time cost Training (s) Inference (s) Total time (T=1) (s) Est. total for 121 tasks
GNNExplainer 20040.1*T – 20040.1 28 d
PGExplainer 7117.0*T 427.2*T 7604.2 10.7 d

TAGE 1405.3 582.7*T 1988.0 0.83 d
Speedup 14.3*T× / 5.1*T× – / 0.73× 10.1× / 3.8× 33.7× / 12.9×

58



and PGExplainer [125]. We do not include other optimization or search-based methods such as

Monte-Carlo tree search [135] due to the significant time cost on real-world datasets. Note that

to show the effectiveness of universal explanations over different downstream tasks, we only train

one embedding explainer for all tasks in a dataset, on top of which a gradient-based downstream

explainer is applied to explain multiple downstream tasks. In contrast, for existing learning-based

methods, we need to train multiple explainers to explain downstream tasks individually. For all

methods, we vary the threshold for selecting important nodes or edges and compare how fidelity

scores change over sparsity scores on each task and dataset. The results are shown in Figure 4.3.

In particular, TAGE outperforms other learning-based explainers on BACE, SIDER, and PPI (tasks

0 and 1). For HIV and PPI (task 2), TAGE is more effective at higher sparsity levels, i.e., when

fewer nodes are considered important and masked.

To justify the necessity of task-agnostic explanation and demonstrate the universal explanation

ability of TAGE, we include PGExplainer as our baseline and compare the explanation quality

when adopting a single explainer to explain multiple downstream tasks. For PGExplainer, we

train multiple explainers on different downstream tasks and evaluate each explainer on different

downstream tasks. For TAGE, we train one explainer without downstream tasks and evaluate it

on different downstream tasks. Results shown in Table 4.2 (MoleculeNet), Table 4.3 (PPI), and

Table 4.4 (EPN) indicate that task-specific explainers fail to generalize to different downstream

tasks and hence are unable to provide universal explanations. On the other hand, the task-agnostic

explainer, although trained without downstream tasks, can provide explanations with even higher

quality for downstream tasks.

GNNExplainer and PGExplainer should generally outperform task-agnostic explainers, as they

are specific to data examples or tasks. This should especially be true when TAGE and PGExplainer

have the same level of parameters. However, we find that TAGE outperforms the learning-based

baselines. We believe that the underperformance of baselines is due to the non-injective charac-

teristic of the downstream MLPs, where different embeddings can produce similar downstream

prediction results. In other words, a similar downstream prediction are not necessarily produced
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Figure 4.4: Visualizations on explanations to the GNN model for the BACE task. The top 10%
important edges are highlighted with red shadow. The numbers below molecules are fidelity scores
when masking out the top 10% important edges. The right two columns are explanations for
two certain embedding dimensions without downstream tasks. Fidelity scores in the right two
columns explaining two embedding dimensions are still computed for the BACE task but are just
for reference.

by embeddings that share high mutual information. Due to this characteristic, the learning ob-

jective of TAGE computed between embeddings brings stronger supervision than the objective

computed between final predictions, as the latter objective does not guarantee consistency between

embeddings or between input graphs and subgraphs.

Multitask Explanation Efficiency A major advantage of the task-agnostic explanation is that

it removes the need for training individual explainers, which consumes the majority of the total

time cost to explain a model on a dataset. We hence evaluate the efficiency of TAGE in terms of

time cost for explanation and compare it to the two learning-based explainer baselines. We record

the time cost for the training and inference of different explanation methods on the same dataset

and device, shown in Table 4.5. All results are obtained from running the explanation on the PPI

dataset with 121 node classification tasks with a single Nvidia Tesla V100 GPU. Although the
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inference time cost of TAGE is slightly higher than that of PGExplainer, the results show TAGE

costs significantly less time than GNNExplainer and PGExplainer, especially in the multitask cases

(T > 1). TAGE allows the explanation of many downstream tasks within a reasonable time dura-

tion.

4.4.4 Visualization of Explanations

We visualize the explanations of the three learning-based explanation methods on the BACE

task, which aims to predict the inhibitor effect of molecules on human β-secretase 1 (BACE-

1) [23]. The visualization results are shown in Figure 4.4. Each molecule visualization shows the

top 10% important edges (bonds) predicted by an explainer marked in red, together with the fidelity

score on the molecule. The left three columns are explanation results with the BACE downstream

task. The right columns are explanations by TAGE to two specific graph embedding dimensions,

without downstream models. Embedding dimensions with greater values among all are selected in

the visualizations. To obtain explanations of certain embedding dimensions, we input the one-hot

vectors to the embedding explainer as condition vectors. The visualization results indicate that

while baseline methods select scattered edges as important, TAGE tends to select edges that form a

connected substructure, which is more reasonable when explaining molecule property predictions

where a certain functional group is important for the property.

While there are no ground-truth explanations for the molecular datasets, the validity of results

produced by TAGE can be evidenced by multiple domain research. Take BACE for example, [136]

study multiple BACE-1 inhibitors that are similar to one presented in our results (Figure 4.4 - line

3). Inhibitors in Table 1–3 and 8 of [1] share the common “2-imidazoline” structure as explained

by TAGE, whereas structures such as =O and -OCF3 as explained by GNNE and PGE are not

necessarily in an inhibitor. Moreover, inhibitors studied by [137] share the common “-C(=O)-C-

N(H)-C(OH)-” chain structure as present in the explanation results by TAGE (Figure 4.4 - lines 1

and 2), whereas structures explained by other explainers are not necessarily for a molecule to be a

BACE-1 inhibitor. Nevertheless, it’s still fidelity scores that give the most reliable evaluation. In

addition, the right three columns indicate that dimensions in the embedding correspond to different
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substructures and TAGE is able to provide explanations to the dimensions without downstream

tasks.

4.5 Conclusions

Existing task-specific learning-based explainers become inapplicable under real scenarios when

downstream tasks or models are unavailable and suffer from inefficiency when explaining real-

world graph datasets with multiple downstream tasks. We introduced TAGE, including the task-

agnostic GNN explanation pipeline and the self-supervised training framework to train the embed-

ding explainer without knowing downstream tasks or models. Our experiments demonstrate that

the TAGE generally achieves higher explanation quality in terms of fidelity and sparsity with a

significantly reduced explanation time cost.
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5. GENETIC INFOMAX: EXPLORING MUTUAL INFORMATION MAXIMIZATION IN

HIGH-DIMENSIONAL IMAGING GENETICS STUDIES

5.1 Introduction

Genome-wide association studies (GWAS) have been an effective approach driving genetic

discovery in the past 15 years [138]. Given a phenotype of interest and a cohort of individuals

with both the measurements of the phenotype and the genotypes over markers across the genome,

linear or linear mixed model are built to test for the association of each marker to the phenotype

and thus pinpoint the relevant gene loci. However, the typical GWAS studies are focused on well-

established phenotypes, typically the risks of diseases, or well-established macro-level measure-

ments such as heights, BMI, or molecular-level measurements such as protein and metabolomic

biomarkers. When the phenotype of interest is a high-dimensional complex data modality such

as imaging data, there is a lack of sophisticated approaches for deriving phenotypes for GWAS.

Taking brain imaging as an example, existing approaches mostly used traditional non-learning soft-

ware to derive brain region-based volumetric or surface features. These approaches carry human

preconceptions and biases, and thus limited the expressiveness of these phenotypes and the power

of genetic discovery.

Recently deep learning approaches [139, 140, 141, 142] derive phenotypes from medical im-

ages by learning a latent representation that captures the inherent content of the input image.

However, approaches learning from imaging data alone fail to utilize the accompanying genetic

data. Those approaches tend to capture patterns that are not related to genes and common pat-

terns shared by multiple individuals. For example, [139] found that representations learned by an

image autoencoder are unable to fully reconstruct fine details that are individually specific. To

overcome these limitations, a solution is to incorporate trans-modal learning strategies that utilize

the pairwise relationship between imaging and genetic data, such as trans-modal contrastive learn-

ing [143, 144, 142]. Unfortunately, the use of genetic data, including the encoding of data and
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capturing image-genetic relationships, still poses significant challenges. Results by [142] suggest

that, despite the promising results for downstream classification of disease risk, multi-modal con-

trastive approaches still underperform compared to typical image-only approaches [140] on GWAS

tasks. This underperformance becomes even more pronounced for higher-dimensional 3D data.

In this chapter, we formulate the problem as learning the representation of imaging data that

shares the maximum mutual information with genetic data. By using mutual information as a per-

spective, we are able to examine the key reasons for the failure of typical trans-modal contrastive

learning for GWAS on high-dimensional imaging data. To push the limits of existing learning ap-

proaches, we propose Genetic InfoMax (GIM), a trans-modal learning framework that includes

a regularized mutual information estimator and a novel transformer-based genetic encoder. The

framework addresses the issues of dimensional collapse and non-generalizable associations in rep-

resentation learning for GWAS, and fully utilizes the genetic data with physical and genetic posi-

tion information. Our experiments demonstrate that GIM significantly improves performance on

all four evaluation metrics.

5.2 Problem Formulation

We study the problem of genome-wide association studies (GWAS) on high-dimensional data.

The GWAS aims to identify associations between specific genetic variants, known as single nu-

cleotide polymorphisms (SNPs), in the genome and certain traits of interest such as the risk of

disease and other biological characteristics of organisms. In particular, each individual genetic

data is denoted by G = {g1, · · · , gL}, and traits of interest denoted by y, the GWAS process in-

volves statistical tests on the sample pairs {(Gi,yi)}i=1,··· ,M from a large number ofM individuals

to identify the specific subset Gg→y ⊂ G of SNPs that are associated with the target traits y. Here

L is the number of SNPs, each gi ∈ {0, 1, 2}, representing the number of carried variants for each

individual. The values of nearby SNPs are often correlated due to their common inheritance from

a shared ancestor. To account for this, it is necessary to select an independent subset of genetic

information Gind ⊂ Gg→y, which can be achieved by clustering and selecting the SNPs with the

lowest p-value from each cluster after the statistical test, which is important for accurate analysis
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and interpretation of the genetic data. Practically, when conducting GWAS on high-dimensional

data Y such as medical imaging, an additional step is required before performing statistical tests.

This step involves reducing the number of traits from the high-dimensional data Y to a smaller

number y through experts’ diagnosis or computational approaches.

Traits Computing as Representation Learning. To enable GWAS on high-dimensional data, we

are interested in computationally obtaining informative lower-dimensional traits, termed GWAS

representation learning, from the high-dimensional data. Specifically, for any high-dimensional

data Y to be studied, the problem is formulated as to learn lower-dimensional representations

of Y with a corresponding encoder fθ in a self-supervised manner, such that a larger number

of independent SNPs |Gind| can be identified from the pairs {(Gi, fθ(Yi))}i=1,··· ,M . The goal of

identifying more independent SNPs requires that more information related to genetic variants is

captured by the representation of Y . We focus on learning d-dimensional representations y =

fθ(Y ) ∈ Rq with the following optimization objective

θ∗ = argmax
θ

I(fθ(Y ),G), (5.1)

where I(·, ·) denotes the mutual information (MI) between two random variables. As computing

the true value of mutual information is intractable, it becomes critical to develop an appropriate

mutual information estimation under the GWAS problem setting.

Notations of Data. We instantiate our problem specifically with the 3D human brain magnetic

resonance imaging (MRI) data and SNPs from the human genome. We denote the 3D brain MRI

by Y ∈ RH×W×D×1, whereH , W , D denote the three spatial dimensions, and 1 denotes the single

channel of the MRI. The human genetic data G consists ofN positions on the human genome with

frequent variants (SNPs). Each SNP gi is represented by a four-tuple
(
di, ci, p

phy
i , pgeni

)
. In the four-

tuple, di ∈ {0, 1, 2} denotes the genotype of the SNP, the number of copies of the mutant allele,

ci ∈ {1, · · · , 22} denotes the index of chromosome the SNP belongs to, pphyi ∈ N denotes the

physical position in terms of base pair (bp) of the SNP in the chromosome, and pgeni ∈ R+ denotes
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the genetic position of the SNP in terms of centimorgan (cM). Note that the genetic data is not a

sequence but an array since two neighbor SNPs gi and gi+1 are not necessarily to be consecutive

on the original genome and the physical (and genetic) distance between them
∣∣pphyi − pphyi+1

∣∣ is

meaningful. We further denote arrays consisting of all genotypes, chromosomes, and positions

sorted on chromosome id and physical position by d, c, pphy, and pgen, respectively.

5.3 What Makes Appropriate MI Estimators for GWAS?

With the goal of learning representations that capture as much information about the genetic

variations as possible, our objective is to maximize the MI between the representation and genetic

data with an appropriate MI estimator. One commonly used approach for estimating the mutual

information between multi-dimensional variables is the Jensen-Shannon Estimator (JSE) [130].

The JSE involves a discriminator to distinguish whether samples of the two variables belong to

the same individual or are independently sampled. Specifically, under our problem setting, the

JSE-based training loss is computed as

LJSE(B; θ, ϕ) = − 1

|B|
∑

(Y ,G)∈B

log

(
Dϕ

(
fθ(Y ), G

))

− 1

|B|(|B| − 1)

∑
(Y ,G)∈B

[ ∑
(Y ′,G′)∈B\{(Y ,G)}

log

(
1−Dϕ

(
fθ(Y ), G′))], (5.2)

where B is a mini-batch of paired MRI and genetic data and Dϕ : Rq × G → (0, 1) is a learnable

discriminator to determine whether fθ(Y ) and G are from the same individual. Together with the

Noise Contrastive Estimation (InfoNCE) [145], these learning processes are also known to be in

the contrastive manner across two modalities; namely, the MRI and genetic data.

To achieve desirable performance in maximizing MI and discovering genetic associations, the

discriminator should meet certain requirements. First, the learnable discriminator Dϕ should be

able to take as inputs the genetic data G and encode all the useful information from G. A well-

designed genetic encoder is thus a critical component of Dϕ. It should be able to efficiently and

effectively use not only the genotypes, but also their corresponding chromosome, physical posi-
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Dimensional collapse

Non-generalizable

Figure 5.1: An illustration showing how the representation fθ(Y ) captures the mutual information
between Y and G in different cases. The circles are the entropy of G and Y, respectively, and their
intersection is the mutual information I(G, Y ). Areas indicated by squiggles in red represent the
information contained in fθ(Y ).

tion, and genetic position information. In Section 5.4, we propose a novel transformer-based ge-

netic encoder, dubbed genetic transformer, that fully utilizes all this information based on genetic

intuitions.

Second, the discriminator should make predictions based on all generalizably associated pat-

terns, rather than memorizing noise or focusing on a small portion of associated patterns that can be

easily learned. However, due to the nature of contrastive learning and several differences between

typical visual representation learning and GWAS representation learning, we will argue below that

it is challenging to meet this requirement. The typical contrastive loss can lead to degenerated

results for GWAS as shown in Figure 5.1.

5.3.1 Uniqueness of GWAS Representation Learning and Limitations of Contrastive Losses

To understand the limitations of typical contrastive losses in the GWAS setting, we first identify

key differences between the visual representation learning problem for natural images and the

GWAS representation learning on high-dimensional data. We explain how each difference can

contribute to limitations or failures of typical contrastive losses in the GWAS setting, and provide

empirical evidence to support our arguments.

Difference 1: Goals of learning representations. Typical visual representations of natural images

aim to capture the key semantics or class information about major objects in images. With this
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Figure 5.2: The logarithm of the explained variance for the first 10 principal components (left),
the singular value spectrum of learned representations (middle) and embeddings after projection
(right). Comparisons are among contrastive MI estimators with InfoNCE (MI-NCE), with JSE
(MI-JSE), Autoencoder (AE), and genetic data prediction (Pred).

goal, it is acceptable for the representation to capture only semantic or class-related information,

or even required that representations are invariant to elements such as context [146, 147] and

transformations [148, 149]. In this case, a good representation for downstream tasks does not

necessarily maximize the MI during contrastive learning. In contrast, a good representation for

the GWAS purpose should capture every detail or pattern in the high-dimensional MRI data that is

associated with the genes, since there is no such key semantics or class information. In this case,

the downstream GWAS performance is closely associated with I(fθ(Y ),G).

Limitation 1: Dimensional collapse. A recent study on visual representation learning [150]

identifies and empirically shows that typical contrastive approaches suffer from the dimensional

collapse issue, where the learned representations occupy a lower-dimensional subspace than their

designated dimensions. The dimensional collapse results in high redundancy, limits the informa-

tion captured by representations, and therefore leads to reduced performance in downstream tasks.

Indeed, our analyses show that the dimensional collapse issue also presents in the cross-modal con-

trastive setting. We compare the singular values of representations learned by predictive methods

and contrastive methods in Figure 5.2. Results indicate that the contrastive estimators NCE and

JSE suffer from dimensional collapse with a dramatic drop in explained ratios and singular values.
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Figure 5.3: Generalization capability of contrastive MI estimators JSE (left) and InfoNCE (right).
The learned discriminators fail to generalize to unseen pairs, leading to a large discrepancy between
training and validation losses.

Even worse, the GWAS performance suffers more from the dimensional collapse issue due to its

nature described in Difference 1, as both the information of fθ(Y ) and the mutual information

I(fθ(Y ),G) is limited.

Difference 2: Augmentation approaches and data dimensions. Contrastive learning relies on

a large number of samples to more accurately estimate and maximize the mutual information be-

tween different views or modalities. Previous studies [13, 44] have shown that augmentations

are crucial for contrastive learning, as they prevent representations from focusing on patterns

that are irrelevant to downstream tasks and multiply the number of training samples. For higher-

dimensional 3D MRI data, more samples and diverse augmentations are necessary [151]. However,

the availability of medical imaging data is limited, and most augmentations used for typical visual

representation learning are not applicable to medical imaging. For example, since MRIs are single-

channel, color space augmentations are not possible. Augmentations based on rotation and flipping

are not suitable for brain MRI data due to their asymmetric nature. Random linear transform or

non-linear morph may change the shape of the elements of the image and thus are discouraged. In

the case of 3D MRI, the applicable augmentations are very limited.

Limitation 2: Non-generalizable associations. According to [152], augmentations play a criti-

cal role in the generalization capability of contrastive learning approaches. However, due to the
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limited number of applicable augmentation techniques and the dimensionality of 3D data, the dis-

criminator tends to capture non-generalizable or false associations from the training samples such

as memorizing the shape, the layout of the brain in the MRI, or specific noise in the data to identify

individuals. In Figure 5.3, we evaluate the generalizability of models trained with contrastive loss

by comparing the MI estimation on training and validation pairs. The remarkable discrepancy in

losses between the training and validation sets suggests that the discriminator used by contrastive

loss is unable to generalize to new samples, indicating that contrastive loss is a poor estimation of

MI in our case.

From the perspective of mutual information, due to the dimensional collapse, a limited amount

of training samples, sufficient means of augmentations, empirical results show that the JSE is not an

optimal estimator of mutual information. The true mutual information is hence not maximized by

the learned representations, leading to degraded performance in GWAS. Figure 5.1 (a–b) illustrates

the relationship among the brain MRI, genetic data, and the learned representation. In the ideal

case shown in (a), the representation should perfectly cover the mutual information between Y

and G, so that the learning objective achieves its maximal with

I(fθ(Y ),G) = I(Y ,G) ≥ I(fθ′(Y ),G), ∀fθ′ . (5.3)

In practice with brain MRI data, the contrastive loss results in representations that only capture a

small portion of I(Y ,G) due to the two limitations described above, as shown in (b).

5.3.2 MI Estimator with Regularizations

Given the issues and limitations outlined above, our goal is to improve the representation by in-

corporating more generalizably associated patterns in addition to those identified by the contrastive

MI estimator. However, unlike in the case of natural images where many elements are known to be

non-generalizable, our limited knowledge of undiscovered genetic associations makes it difficult

to determine which patterns are generalizable and which are not. As a result, it is challenging to

develop targeted augmentations that make the representation invariant to unwanted patterns.

70



To achieve our goal without requiring further knowledge, we propose to uniformly increase

the total information contained in the representation by including an entropy term in the learning

objective. The objective is formulated as

max
θ

[
Î(fθ(Y ),G) + λH(fθ(Y ))

]
, (5.4)

where Î is the contrastive MI estimation JSE, H denotes the entropy of a random variable, and

λ is a weight scalar. The entropy term encourages the representation to capture more information

about Y and reduces its redundancy. A certain portion of the information can contribute to the

generalizable associations, as illustrated in Figure 5.1-(c). The entropy term serves as a regulariza-

tion to the estimated MI to improve its generalizability. From the optimization aspect of view, the

objective is considered as adding a Lagrange multiplier to maximize the entropy H(fθ(Y )), sub-

ject to the constraint that the estimated mutual information Î(fθ(Y ),G) achieves its maximum.

When multiple patterns can be used to identify individuals, the entropy term encourages the model

to capture as many of them as possible, instead of capturing the easiest ones.

There are various methods to estimate and optimize the entropy, such as minimizing the off-

diagonal values in the covariance matrix of the representation [87]. However, these estimations

require a large mini-batch size, which is not suitable in our case due to memory constraints caused

by the 3D data and MRI encoder. As an alternative, we use the reconstruction of MRI data as a

proxy to maximize the entropy. The loss is then computed as

L(B; θ, ϕ, ψ) = LJSE(B; θ, ϕ) +
λ

|B|
∑

(Y ,G)∈B

∥Y − hψ(fθ(Y ))∥2, (5.5)

where hψ is a deterministic decoding head used to reconstruct the MRI from the representation

fθ(Y ). Compared to other proxies discussed by [87], the reconstruction term is less sensitive to

small mini-batch sizes. To justify the reconstruction term, we have

H(fθ(Y )) = I(fθ(Y ),Y ) +
��������:0
H(fθ(Y )|Y ), (5.6)
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Figure 5.4: A swin-transformer block in the proposed genetic encoder. Red and blue boxes repre-
sent the windows and shifted windows.

and the reconstruction term is to maximize the log-likelihood that fθ(Y ) and Y in a positive pair

belong to the same individual, similarly to the first term in the right-hand side (RHS) of Eq. (5.2).

From the perspective of [153], the two terms in LJSE(B; θ, ϕ) and the reconstruction term aim at

three properties of fθ(Y ); namely, the alignment to G, the uniformity, and the alignment to Y ,

respectively. As the uniformity of fθ(Y ) is encouraged by the estimation of I(fθ(Y ),G), we omit

the corresponding term in the estimation of I(fθ(Y ),Y ) for memory efficiency.

5.4 Genetics-Informed Transformer

A typical current genotyping microarray of the human genome includes more than 650k SNPs,

with the physical spacing between any two consecutive SNPs being inconsistent. Genetic encoders

developed in existing studies [154, 142] based on convolutional neural networks (CNNs) and multi-

layer perceptrons (MLPs) are incapable of handling the unstructured genetic data with extremely

large sizes. To address this, we develop an effective genetics-informed transformer to encode

genetic data in accordance with the following objectives:

1. Significant optimized computational cost, in recognition of certain biological assumptions.

2. Information aggregation among SNPs from arbitrary positions in the genome, considering

multiple genetics dependency measurements.

3. Flexibility to accept any segments or subsets of the genetic data as input, thereby facilitating
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cropping or downsampling-based augmentations on the genetic data.

An overview of the proposed transformer block is shown in Fig. 5.4, where attention oper-

ators with shifting windows [155] are used to enable efficient computation, and the aggregation

is specialized with both physical and genetic distances of SNPs. In the transformer, two blocks

are connected by down-sampling with attention-based pooling operators, and the initial SNP em-

beddings are computed based on both the genotypes and the chromosome each SNP belongs to.

Finally, an attention-based readout is used to compute the global representation.

Window attention in swin-transformer. The 1D swin-transformer performs self-attention op-

erations within each window split from the entire genetic array to enable efficient computing. It

contains two components; those are, window attention and shifted window attention, as shown

in Fig. 5.4. Given input SNP embeddings H ∈ RL×q where L denotes the number of SNPs

and q denotes the embedding dimension, window attention first splits H into a set of windows

{Hi ∈ Rw×q}i=1,··· ,⌊L/w⌋ where each window has a size w. A self-attention block is then applied

to each Hi to update the SNP embeddings by aggregating information within that window. The

updated windows are then merged back following the order when splitting H , forming H ′ as

the final output of the window attention component. In the following shifted window attention

component, H ′ is first shifted by a length of ⌊w/2⌋. Then similar splitting and self-attention are

performed as in window attention to update SNP embeddings from each individual window. Fi-

nally, the updated windows are merged back, and the merged sequence is also shifted back by a

length of ⌊w/2⌋. There exists a biological assumption that strong and informative dependencies

between SNPs exist only when they are within a certain distance. Hence, compared with per-

forming global attention on all 650k marker positions, performing attention within windows in our

proposed methods aggregates similar information, but largely reduces the computing cost.

Aggregation based on multiple dependencies. Multiple attention heads are computed to capture

various types of dependencies among markers. Specifically, the computing of attention scores

captures dependencies from three perspectives; those are, the SNP embeddings reflecting potential

co-mutation, the encodings of the physical positions of SNPs on a chromosome indicating local
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dependencies among SNPs, and the encodings of genetic positions of SNPs measuring genetic

linkages. Formally, the attention score αki,j between the i-th and j-th SNPs for the k-th attention

head is computed as

αki,j = fkα(gi, gj) = fkαg
(hi,hj) + fkαp

(pphyi , pphyj ) + fkRBF(p
gen
i − pgenj ), (5.7)

where hi = H [i] ∈ Rq denote the SNP embedding. We compute the three individual components

of attention scores that can capture different genetic dependencies as

fkh (hi,hj) =
(
hTi W

k,l
h

)(
hTj W

k,r
h

)T
, fkpe(p

phy
i , pphyj ) =

[
ep(p

phy
i )TW k,l

pe

][
ep(p

phy
i )TW k,r

pe

]T
,

fkRBF(p
gen
i − pgenj ) =

[
r
(∣∣pgeni − pgenj

∣∣)]T[1T(pgeni −pgenj )≥0W
k,+
rbf + 1T(pgeni −pgenj )<0W

k,−
rbf

]
, (5.8)

where ep(·) denotes the position encoding [9], W k,l
g ,W k,r

g ,W k,l
pe ,W

k,r
pe , and W k,+

rbf ,W
k,−
rbf are

trainable projections. 1Tcondition is an indicator vector where all elements are 1s if the condition

holds, and are 0s otherwise. The function r denotes a distance expansion with radial basis functions

(RBF) [156]. Denoting s :=
∣∣pgeni − pgenj

∣∣, the term r
(∣∣pgeni − pgenj

∣∣) in the above equation is

computed as

r(s) =
[
exp

{
(s− t)2/σ2

}]
t∈{t0,··· ,tc}

∈ Rc, (5.9)

where {t0, · · · , tc} is a set of non-negative real numbers ranging from 0 and a preset threshold.

The asymmetric projections in all fh, fpe and fRBF functions indicate that αi,j does not necessarily

equal to αj,i, leading to more expressive models to capture dependencies. In addition, the comput-

ing of each attention head is based on a combination of three types of dependencies, which enables

information aggregation among different SNPs based on genetic dependencies. By doing this, the

complicated genetic dependencies of the input genome data can be captured.
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5.5 Related Work

Dimension reduction for GWAS. When doing genome-wide association studies, people of-

tentimes find themselves dealing with high-dimensional quantitative traits. In order to reduce

computational cost and redundancy, and in the hope of finding meaningful underlying patterns,

many works perform dimension reduction of the high dimensional traits before doing GWAS, in-

cluding principal component analysis [157, 158, 159], independent component analysis [160, 161]

and non-negative matrix factorization [162]. These approaches are effective in capturing linear

dependencies but are less capable of identifying complicated traits from imaging data.

Deep learning-based approaches. Recently, several works used unsupervised learning to

characterize high-dimensional medical data. iGWAS [140] applied contrastive learning between

multiple images of the same person to reveal potential genetic signals, ContIG [142] applied con-

trastive learning between medical imaging data and genetic data to learn the feature representation.

DeepEndo autoencoder [139] used a convolutional autoencoder to reduce the dimensionality of the

imaging data and found genetic associations of these extracted phenotypes. TransferGWAS [141]

used both supervised task and reconstruction task to learn the feature representation. Specifically,

ContIG [142] is the first to use contrastive learning between images and genetics on the GWAS

problem. However, there are distinguishable differences between the work and ours. First, ContIG

aims to learn general representation for multiple downstream tasks, such as classifications of the

risk of several diseases. With this goal, ContIG treats the problem as a typical visual representa-

tion learning task. On the contrary, our study focuses on the representation learning specifically for

GWAS. Second, our approaches are built upon the grounding of mutual information maximization,

whereas ContIG is grounded by contrastive learning for unlabelled data. Third, our work focuses

on a more challenging setting with 3D MRI data, where typical contrastive approaches may fail.

Mutual Information Maximization. Previous research has employed mutual information

maximization as a pretext task for representation learning on various data types, including im-

ages [89], videos [163], and graphs [40, 164]. However, these studies primarily focus on clas-

sification or regression as downstream tasks. Our work presents unique challenges and goals of
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mutual information maximization under the GWAS setting and we are the first to examine GWAS

from a mutual information perspective.

5.6 Experiments on GWAS Representation Learning

We use the brain imaging dataset from UK Biobank [165] in this study, it is currently the

largest public brain imaging dataset. Specifically, we use T1-weighted MRI imaging data accessed

on October 15, 2021. We register and pre-process the MRI data into the shape of 182×218×182.

For representation learning, we split the MRI-genetic data pairs into 4,597 training and 1,533

validation pairs based on ethnicity.

5.6.1 Data Processing and Split

All MRIs were linearly registered (affine registration with 12 DOF) to standard MNI152 space

using the UKBiobank-provided transformation matrix with FSL FLIRT [166] and all the outputs

are of shape 182×218×182. A large portion of the UKBiobank population is white British. In

order to maximize the power of genetic discovery and avoid the complication of population strat-

ification, the genetic association study was only done on the white British (UKBiobank data field

21000 and 22006) cohort. So we selected 6,130 images from subjects of mixed ethnicities (all

non-white British samples plus a small number of random white British samples) not overlapped

with the samples for the genetic discovery to do the training and validation, among which 4,597

was randomly selected for training and 1,533 for validation. We used two quality metrics “inverted

contrast-to-noise ratio” (UKBiobank data field 25735) and “Discrepancy between T2 FLAIR brain

image and T1 brain image” (UKBiobank data field 25736) to ensure the quality of the training

data.

Evaluation Metrics We involve three metrics to evaluate the representations learned by differ-

ent models; namely, the number of loci discovered by GWAS, the estimated mutual information,

and the heritability of the representations. Among the three metrics, the number of loci is primary

as it indicates All three metrics are computed on a testing dataset that is unseen during the represen-

tation learning process and measures the quality of representation for GWAS purposes. To enable
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efficient evaluation, we obtain the first 10 principal components of representations and compute all

metrics on the 10-dimensional vectors. Details about the evaluation metrics are provided below.

Number of Loci We perform genome-wide scans over 658,720 directly genotyped SNPs * and

on 28,489 white British participants unseen during training. We use BOLT-LMM (Version 2.3.4)

[167] for running GWAS. Age, gender, and the first 10 ancestral principal components are used as

covariates. We use Bonferroni corrected p-value threshold of 5e−9 and a minor allele frequency

threshold of 1% to get the significant SNPs and filter out the rare variants. We then cluster the

significant SNPs into loci using a 250 kb window, which is approximately 0.25 cM [160]. The

number of loci indicates the amount of genetic contribution to the learned features.

Heritability measures the proportion of variation of the feature explained by the genetic factors. It

provides insight into the genetic basis of a feature. A higher heritability indicates that the represen-

tation is better associated with the genetic data. The heritability is computed using LDSC v1.0.1

[168].

Mutual Information We estimate the mutual information between MRI representations and ge-

netic data on the test set to explicitly demonstrate that the proposed objective adds to the generaliz-

ability of captured associations to unseen pairs. We train individual JSE-based mutual information

estimators with the same architecture for different methods. We train the MI estimator until the

contrastive loss converges and take the opposite of the converged value as the MI estimation for

each model.

5.6.2 Implementation Details

We compare our approach with multiple baseline approaches in four groups; namely, MRI en-

coders that are randomly initialized, trained by predictive approaches, contrastive approaches with

MRI data only, and trans-modal contrastive approaches that involves genetic data. The baselines in-

clude existing or straightforward training schemes Autoencoder [141, 139], Gen Prediction

that uses genetic data prediction as a pretext task, Barlow-Twins [87], SimCLR [13], and Con-

tIG [142]. We additionally include their variants Autoencoder-attention that uses the

*Applied Biosystems UK BiLEVE Axiom Array, UKBiobank data field 22438
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same MRI encoder as ours, SimCLR-JSE, where the contrastive objective in SimCLR is replaced

by JSE, and Decorrelated InfoNCE, where a decorrelation term is added to the contrastive

loss. The implementation details of both our methods and baselines are described below.

MRI encoders The MRI encoder is constructed as a 3D convolutional network consisting of

three residual blocks [169] connected by two downsampling operators with stride convolutions.

The numbers of channel maps are 32, 64, and 128, respectively for the three blocks. The final

representations are 128-dimensional computed by a dense layer upon flattened feature maps. When

computing the reconstruction loss, we include additional 128-dimensional vectors computed from

a multi-head attentive readout from feature maps, and the reconstruction is performed on the 256-

dimensional representation after concatenation. However, dimensions from attention are not used

in GWAS computation. This is to further prevent the encoder from learning too detailed patterns,

possibly noise, that are non-generalizable to the test set.

Genetic encoders Our genetic encoder consists of three 1D swin-transformer blocks connected

by two down-sampling operators with a down-sampling rate of 10. The positional encoding for

SNP physical positions is 128. The embedding dimensions are 32, 64, and 128 for the three

blocks, respectively. The window size to perform attention is 10 and the number of heads is 4

for all self-attention operators. The downsampling operator computes the attention with learnable

queries within each window, where the window size is equal to the downsampling size. The global

pooling operators compute attention with learnable queries among all positions at multiple scales

and resolutions.

Training The models are implemented with PyTorch [170] and are trained on a single Nvidia

A100 GPU. The training is performed with the Adam optimizer [111], cosine annealing sched-

uler [171] with a starting learning rate of 0.001 and the mini-batch size of 12. We simply set λ

in the objective to 1 and do not exhaustively tune it. During training, we randomly crop the 3D

MRI into smaller patches of size [160, 160, 160]. We first train the models with the genetic encoder

frozen for 200 epochs, then include the augmentation on genetic data and continue training for

additional 100 epochs, and finally co-train both MRI and genetic encoders and projection heads
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for 50 epochs with augmentation on genetic data. To perform augmentation, the genetic data has a

probability of 0.2 to be randomly cropped and a probability of 0.8 to be evenly down-sampled into

a length of 65,000.

Baseline approaches For Gen Prediction, we apply a linear layer to the output representation

as a prediction head hg : Rq → |G| to predict the class of each genotype in the genetic data and

optimize the following loss.

LGenPred = Cross-Entropy
(
hg
(
fθ(Y )

)
,d
)
.

For baseline trans-modal contrastive methods, we follow the architecture, training loss, and train-

ing settings in [142]. For the MRI augmentations, we perform the random flipping and rotation on

the x-z plane, along with the random 3D patching. However, we found the flipping and rotation

do not help on the GWAS performance in the 3D MRI case. For correlated InfoNCE, we compute

the covariance matrix of learned MRI representations and minimize its difference with the identity

matrix,

Ldecor = ||ẑT ẑ − I||2,

where ẑ is the normalized MRI representations in the mini-batch. Since the mini-batch size is

small due to memory constrain, the covariance estimation can be less accurate, still leading to

reduced performance.

5.6.3 Quantitative Results on T1-Weighted MRI

The comparisons among representations learned by different methods in terms of the three

metrics are shown in Table 5.1. The results indicate that the proposed learning framework with

regularized MI estimator and genetic transformer significantly improves the quality of learned

representation in terms of the number of discovered loci and the heritability. The improved MI of

our methods on test pairs also suggests a stronger generalization capability. Additionally, we have

the following observations.

The level of mutual information on test pairs agrees with # loci and heritability. The results
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Table 5.1: Comparisons of quantitative evaluation results on the test set. “Unique” refers to the
number of loci discovered by a method that is NOT discovered by any methods in other groups.
All metrics are the higher the better.

# Independent Loci
Methods All Unique MI (JSE) Heritability h2

Random Init 14 1 1.2165 0.0756 ± 0.0656

Predictive
Autoencoder [139] 26 1 1.3120 0.3121 ± 0.0769
Autoencoder-attention 23 4 1.3124 0.2984 ± 0.0773
Gen Prediction 10 0 1.2412 0.0918 ± 0.1110

Contrastive
Barlow Twins [87] 11 1 1.2996 0.0814 ± 0.0636
SimCLR [13] 15 1 1.2397 0.1448 ± 0.1128
SimCLR-JSE 17 7 1.3044 0.1604 ± 0.1151

Trans-Modal
Contrastive

InfoNCE (ContIG, [142]) 11 0 1.2299 0.1334 ± 0.0588
Decorrelated InfoNCE 13 3 1.2382 0.0527 ± 0.0349
GIM (Ours) 40 15 1.3681 0.3723 ± 0.0305

suggest that higher mutual information on the test set implies a higher heritability and more loci

discovered. It justifies our formulation of learning representation for GWAS as the problem of

maximizing mutual information.

Typical trans-modal contrastive approaches fail for MRI data. Trans-modal contrastive learn-

ing with typical contrastive loss performs fairly well on 2D retina imaging [142] but suffers more

from the performance reduction on the higher-dimensional 3D data. In the 3D MRI case, we found

that the simplest Autoencoder approach performs even better than contrastive and typical trans-

modal contrastive approaches. Moreover, [140] suggests that the contrastive learning between the

retina of the left and right eyes can also result in better performance than the typical trans-modal

contrastive approaches. These further strengthen our analyses on the limitations due to dimensional

collapse and non-generalizable associations described in Section 5.3.1.

5.6.4 Additional Results and Ablations

Additional results on T2-weighted MRI. We additionally apply GIM to a second modality,

namely the T2-weighted MRI. Similarly, we compute GWAS on the first 10 principle compo-

nents of the learned representation on the test set. In contrast to the results for T1, we observe that
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Table 5.2: Results for T2-weighted MRI.

Methods # All Indp Loci
Autoencoder 29
Barlow-Twin 7
SimCLR 21
SimCLR-JSE 15
ContIG 22
GIM (Ours) 38

learning informative representations is less challenging for contrastive methods in the T2 case. In

addition, contrastive methods equipped with NCE generally perform better than their JSE coun-

terparts. This result is consistent with those presented in [142]. Nevertheless, results in Table 5.2

show a consistent out-performance of GIM over baselines, indicating generalizable effectiveness.

Effectiveness of individual proposed components. To show the effectiveness and necessity of

both the proposed learning objective and the genetic transformer, we track the change in the num-

ber of all loci, unique loci, the heritability score, and newly discovered genes with the highest sig-

nificance when incrementally adding each component. Table 5.3 shows the results of adding the

regularization to the objective, replacing the MLP encoder with the genetics-informed transformer,

and performing random cropping on the genetic data. The results suggest that adding each compo-

nent generally increases the useful information carried by the representations, leading to more loci

discovered. We mapped significant SNPs to genes using Plink v1.9 [172], and we presented the

genes that are associated with the most significant new SNP of each model in the ablation study in

Table 5.3. CENPW is known to associated with neurogenesis [173] and cortical morphology [174],

WNT16 with skull and brain shape [175, 176], ITPR3 with neuropathy [177] and many psychiatric

disorders [178] and MSRB3 with Alzheimer’s [179]. We also queried each locus in the result of

the Big40 study [180, 160], which uses thousands of conventional image-derived phenotypes to

do GWAS and we found a locus not presented in the Big40 study in Chromosome 2, base pair

218466221 to 218604356 (in hg19 coordinate). This locus is mapped to DIRC3, which has been

shown to be associated with Alzheimer’s disease [181, 182]. This showcases the potential of our
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Figure 5.5: Visualization of learned representations with t-SNE. Forming clusters is not desired in
the GWAS setting.

method in capturing features missed by the traditional expert-defined pipelines.

Table 5.3: Change in the number of loci and heritability when incrementally adding components to
the models. The positive and negative numbers are the counts of newly discovered and missing loci
when a component is added. The last column shows the most significant gene newly discovered.

Methods # Loci Change # Unique Loci Change h2 Significant Gene
Base-Contrastive 11 - 0 - 0.1334 -
+ Regularization 29 +19 / -1 6 +6 / -0 0.3390 CENPW
+ Genetic Transformer 32 +14 / -9 10 +7 / -3 0.3773 WNT16
+ Random Cropping 36 +17 / -13 13 +10 / -7 0.3807 ITPR3
+ Co-training 40 +20 / -16 15 +11 / -9 0.3723 MSRB3

Distribution of learned representations. We visualize the distribution of representations learned

by trans-modal InfoNCE, SimCLR, and GIM, respectively, with t-SNE in Figure 5.5. Compared to

baseline approaches, GIM learns representations that are more uniformly distributed in the space.

According to the discussion on the difference between learning goals, the goal of our representa-

tion learning is not to form clusters for downstream classification purposes but to uniformly encode

as much information about the genetic data as possible [153]. Under this setting, clusters of repre-

sentations are not desired and may harm the GWAS performance due to reduced capacity for other

characteristics.
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5.7 Conditional MRI Generation: A Followup Task

Recently, diffusion models [183] have shown promising performance in multiple generative

tasks such as text-controlled image generation [184], image editing [185, 186], and protein gen-

eration [187]. Specifically, [184] have studied the unconditional generation of T1-weighted brain

MRI. In this section, we extend the success of the proposed learning framework and genetics-

informed transformer by incorporating the diffusion models with the pre-trained genetics-informed

transformer under GIM to enable MRI data generation conditioned on a given gene. We consider

the conditional generation as an additional task to evaluate the pre-trained genetic encoder.

The diffusion model considers the generation process as a reverse process of gradually adding

noise to the data x0 until it becomes fully noisy xT ∈ N (0, I) within T steps. It generates data

from pure noise by performing step-by-step denoising for T steps. Specifically, the training of

diffusion model is to learn a noise estimator fdiff
θ that recovers x0 from the noisy data xt for any

time step t with the objective

min
θ

Et∼[1,T ],x0,ϵt∥ϵt − fdiff
θ (xt, t)∥2, (5.10)

where ϵt is the true noise contained in xt. When conditioned generation is performed, the noise es-

timator f cond
θ additionally takes the condition embedding c as an input and the following objective

is optimized

min
θ

Et∼[1,T ],(x0,c),ϵt∥ϵt − f cond
θ (xt, c, t)∥2, (5.11)

where x0 and c are sampled from a joint distribution (i.e., using paired data). In the case of MRI

generation, we let c ∈ RNtk×q, equivalent to Ntk tokens, be the down-sampled and updated SNP

embeddings at the last transformer block before global readout. The flexible input SNP positions

to the genetics-informed transformer allows for conditioning the generation with a segment or a

down-sampled version of the genetic data. In the noise estimator f cond
θ , the condition is incor-

porated with cross-attention blocks between latent feature maps Xt,ℓ ∈ RDHW×dq and c at each
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Figure 5.6: Framework overview for conditional MRI generation. Given the genetics-informed
transformer pre-trained using GIM, we freeze its parameter and compute the condition embedding
for conditional generation. In the cross-attention block, each voxel in the 3D feature map will
attend and aggregation information from the condition embedding based on the relavance.

convolutional block ℓ. Concretely, we have the output of each cross-attention block as

X ′
t,ℓ = Normalize

(
Q
(
Xt,ℓ

)
K
(
h(c)

)T)V(h(c)), (5.12)

where Q,K,V are linear projections in a cross-attention operator, h is a parametric projection head

upon condition embeddings. The framework is illustrated in Figure 5.6.

Generation Performance as Genetic Encoder Evaluation Since the quality of MRI generation is

closely associated with the performance of genetic encoder, in terms of how much genetic informa-

tion is captured, we consider the quality of generated MRI data as an additional metric to evaluate

the genetic encoder. Specifically, we measure the conditional generation quality using the mean

squared error between the generated MRI from the gene of a certain individual and its physically

captured counterpart. The baselines include the mean squared error between a unconditionally

generated MRI by [184] and real MRI data, together with the averaged squared difference between

any pair of real MRI data. For the genetics-informed transformer, we fix its parameters in all cases
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but add different learnable projection heads h, and vary the input genetic data with downsampling.

The comparison shown in Table 5.4 suggests that including the pre-trained genetic encoder can

consistently enable effective conditional generation with improved generation quality, even when

no parameter is further tuned or added to the genetic encoder. Additional parameters included in

the projection heads can further improve conditional generation performance. This indicates that

useful information associated with the brain MRI can be effectively captured from the genetic data

by the proposed genetics-informed transformer. Moreover, downsampling the input genetic data

does not significantly reduce the generation quality, suggesting a flexibility of condition inputs.

Table 5.4: Conditional generation performance in terms of mean squared error (MSE). Readout
indicate a global readout is applied in the projection head and a single global embedding is used as
the condition. Downsampled indicates a 10 times down-sampling is applied to the input genetic
data.

Models h Downsampled # Tokens MSE
Avg. dist. – – – 0.3505
Diffusion - Unconditional – – – 0.2928

Diffusion - Conditional

Readout No 1 0.2858
Readout + MLP No 1 0.2809
MLP Yes 60 0.2747
MLP No 650 0.2720

Potential application scenarios Existing genetics studies enable the effective and efficient discov-

ery of SNPs that are associated with certain human tissues. However, the complicated nature of

the deep phenotype encoders makes it challenging to interpret which specific substructures, such

as subarea in the brain MRI, is associated with each SNP identified by GWAS. This lack of in-

terpretability prevents further exploration of AD’s cause and highlights the need for appropriate

trans-modal explanation approaches for GWAS. The successful conditional generation allows for

multiple application scenarios to bridge the gap in genetics studies such as counterfactual expla-

nations and phenotype simulation for gene editing. Specifically, when given different genetic data
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as conditions, the generative model tends to produce different MRI data that accurately match the

given condition, even from the same initial noise. This allows us to track the different in the gen-

erated MRI data when perturbing certain SNP locations or segment of interest. The difference can

be further used as an explanation outcome in genome-wide associations.

5.8 Conclusions

In this chapter, we have investigated the differences and limitations of GWAS representation

learning to compare to typical visual representation learning and have presented Genetic InfoMax,

a GWAS representation learning framework. We have established standardized evaluation proto-

cols to benchmark existing and our approaches. Our experiments demonstrate a significant boost

in GWAS performance by GIM.
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