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ABSTRACT

We study the usage of information-theoretic measures in learning problems.

The first problem considered is the algorithm-dependent generalization error bound. Concep-

tually, the mutual information between the output of the learning algorithm and training samples

captures the amount of information the algorithm learned from the samples, which reflects the

overfitting. This motivated the studies on mutual information-based generalization error bound.

We propose the individually conditional individual mutual information (ICIMI) bound based on

a combination of the error decomposition technique of Bu et al. and the conditional mutual in-

formation (CMI) construction of Steinke and Zakynthinou. It combines the merits of the existing

studies and provides a tighter bound, and in the process of establishing this bound, we introduce

a conditional decoupling lemma, which allows us the view the existing bounds in a unified frame-

work. We further propose a stochastic chaining method, which applies the chaining technique in

conjunction with information-theoretic measures to bound the generalization error. The stochas-

tic chaining method borrowed intuition from successive refinement and is more flexible than the

previous deterministic chaining approach in conjunction with information-theoretic bounds. We

finally provide a new information-theoretic generalization error bound that is exactly tight (i.e.,

matching even the constant) for the canonical quadratic Gaussian mean estimation problem. De-

spite considerable existing efforts in deriving information-theoretic generalization error bounds,

applying them to this simple setting where sample average is used as the estimate of the mean

value of Gaussian data has not yielded satisfying results.

Besides capturing the interplay between learning algorithms and samples, information mea-

sures can also be useful to characterize the complexity of the problems. We study the effect of

reward variance heterogeneity in the approximate top-m arm identification problem. In this prob-

lem, the rewards of pulling each arm are sub-Gaussian but with different variance-proxies, and the

agent needs to incorporate this knowledge to minimize the expected number of arm pulls to iden-

tify m arms with the largest means in probably approximately sense. The worst-case sample com-
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plexity of this problem is characterized by a divide-and-conquer style algorithm and a matching

lower bound. The sample complexity reveals that the effect of the reward variance heterogeneity

is quantified by an Entropy-like function of the variances.

In addition to bounding and characterizing certain performance metrics, information measures

can also facilitate the design of algorithms. We study the policy optimization in multi-objective

reinforcement learning and propose an Anchor-changing Regularized Natural Policy Gradient

(ARNPG) framework, which can systematically incorporate ideas from well-performing first-order

methods into the design of policy optimization algorithms for multi-objective Markov decision

process (MDP) problems. The ARNPG framework introduces Kullback-Leibler divergences with

changing anchors as regularization to the intermediate policy update, which enables acceleration

as well as bridging the analysis between the policy gradient update and the incorporated first-order

methods. Under softmax parameterization with exact gradients, the proposed algorithms inherit the

advantages of the integrated first-order methods and are guaranteed to have Õ(1/T ) global con-

vergence without further assumptions on the underlying MDP. Experiments are further provided

to demonstrate that the proposed algorithms provide superior performance.
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1. INTRODUCTION

Information-theoretic methods have been playing important roles in many fields, such as com-

munication, data storage, cryptography, e.c.t., among which machine learning has recently at-

tracted a lot of attention. Lying in the heart of the information-theoretic methods, information-

theoretic measures provide us with the tools for better interpretation, precise characterization, and

constructive intuition. In this dissertation, we study the usage of information-theoretic measures

in some learning problems. Specifically, we study (1) interpreting generalization error by mu-

tual information-based bound, (2) characterizing complexity of top-m arm identification with het-

erogeneous reward variances problem via Shannon’s entropy, and (3) designing policy gradient-

based algorithm for multi-objective Markov decision process based on the idea of anchor changing

Kullback-Leiber divergence regularization.

1.1 Generalization Error Bounded by Mutual Information

The generalization error of a supervised learning algorithm is defined to be the difference be-

tween the empirical risk and the population risk, which is used to quantify the degree to which a

learning algorithm may overfit the training data. Bounding the generalization error of learning al-

gorithms is of fundamental importance in statistical machine learning. The conventional approach

is to bound it using a quantity related to the hypothesis class, such as the VC-dimension [1], and

such bounds are therefore oblivious to the learning algorithm and data distribution. The obtained

results are usually rather conservative, and cannot fully explain the recent success of deep learn-

ing. Recently, information-theoretic approaches that jointly take into consideration the hypothesis

class, the learning algorithm, and the data distribution, have drawn considerable attention [2–11].

The effort of deriving generalization error bounds using information-theoretic approaches was

perhaps first initiated in [2] and [3]. The bound was further tightened in [8], by decomposing the

error, and bounding each term individually. Steinke and Zakynthinou [9] proposed a conditional

mutual information (CMI) based bound, by introducing a dependence structure which resembles
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that in the analysis of the Rademacher complexity [1]. Combining the idea of error decomposition

[8] and the CMI bound in [9], Haghifam et al. [10] subsequently provided a sharpened bound based

on conditional individual mutual information (CIMI).

We propose another generalization error bound, which is also based on a combination of the

error decomposition technique and the CMI construction. This bound is motivated by the ob-

servation that in a simple Gaussian setting, the CIMI bound in [10] (as well as the CMI bound

in [9]) is of constant order, while the bound in [8] is of order Θ( 1√
n
), where n is the number of

training samples. The conditioning term in CIMI is the same as CMI, and it tends to reveal too

much information which makes the bounds loose. The proposed bound is thus obtained by mak-

ing the mutual information conditioned on an individual sample (pair), which we refer to as the

individually conditional individual mutual information (ICIMI) bound.

We propose a new approach to applying the chaining technique in conjunction with information-

theoretic measures to bound the generalization error of machine learning algorithms. Different

from the deterministic chaining approach based on hierarchical partitions of a metric space, pre-

viously proposed by Asadi et al., we propose a stochastic chaining approach, which replaces the

hierarchical partitions with an abstracted Markovian model borrowed from successive refinement

source coding. This approach has three benefits over deterministic chaining: 1) the metric space is

not necessarily bounded, 2) facilitation of subsequent analysis to yield a more explicit bound, and

3) further opportunity to optimize the bound by removing the geometric rigidity of the partitions.

The proposed approach includes traditional chaining methods as a special case, and can therefore

also utilize any deterministic chaining construction. We illustrate these benefits using the problem

of estimating the Gaussian mean and that of phase retrieval. For the former, we derive a bound

that provides an order-wise improvement over previous results, and for the latter, we provide a

stochastic chain that allows optimization over the chaining parameter.

We provide a new information-theoretic bound that is exactly tight (i.e., matching even the con-

stant) for the canonical quadratic Gaussian problem. In fact, most existing bounds are order-wise

loose in this setting, which has raised concerns about the fundamental capability of information-
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theoretic bounds in reasoning the generalization behavior for machine learning. The proposed new

bound adopts the individual-sample-based approach proposed by Bu et al. [8], but also has sev-

eral key new ingredients. Firstly, instead of applying the change of measure inequality on the loss

function, we apply it to the generalization error function itself; secondly, the bound is derived in

a conditional manner; lastly, a reference distribution, which bears a certain similarity to the prior

distribution in the Bayesian setting, is introduced. The combination of these components produces

a general KL-divergence-based generalization error bound. We further show that although the con-

ditional bounding and the reference distribution can make the bound exactly tight, removing them

does not significantly degrade the bound, which results in a mutual-information-based bound that

is also asymptotically tight in this setting.

1.2 The Sample Complexity of Top-mArm Identification with Heterogeneous Reward Vari-

ances Measured by Entropy

Approximate top-m arm identification with fixed confidence is a formal Probably Approxi-

mately Correct (PAC)-learning formulation for the best arm identification setting, where the agent

is required to identify the top-m arms, where the expected rewards of the m arms identified are

not less than that of the m-th best arm by ϵ, with confidence at least 1 − δ. In this setting, the

algorithms will have a performance guarantee in terms of the confidence of success as well as the

precision ϵ. We refer to this setting as (ϵ, δ) top-m arm identification.

In most previous works on multi-armed bandits, an inherent assumption is that the reward

distribution of each arm is sub-Gaussian, and moreover, the variance proxies are known and the

same, i.e., homogeneous among all the arms. Such an assumption may be natural when the rewards

are bounded in a range, or it is reasonable to view the arms as of the same random nature (except

the reward means of the arms). In other applications, this assumption is less suitable, since the

reward distributions are naturally heterogeneous. We consider (ϵ, δ) best m-arm identification

with sub-Gaussian distributed rewards when the variance proxies are heterogeneous and known.

Several well-known algorithms can be straightforwardly adapted to the problem under consid-

eration. We observe that the adapted algorithms only perform well in some respective cases. More
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precisely, the adapted naive elimination algorithm performs well when the heterogeneity is more

significant, and the adapted median elimination algorithm performs well when the heterogeneity is

less significant. Given this observation, we seek for a new algorithm that can naturally account for

the heterogeneity, and propose the variance-grouped median elimination algorithm. There is no

need to artificially ascribe an instance as having either high or low heterogeneity in this algorithm,

and its performance adapts naturally. We further establish a matching lower bound by reformulat-

ing it into an optimization problem and considering its dual. Combined with this lower bound, we

show the proposed algorithm is optimal.

We show that the worst-case sample complexity of this problem is

Θ

 n∑
i=1

σ2
i

ϵ2
ln

1

δ
+
∑
i∈Gm

σ2
i

ϵ2
ln(m) +

∑
j∈Gl

σ2
j

ϵ2
Ent(σ2

Gr)

 , (1.1)

where Gm, Gl, Gr are certain specific subsets of the overall arm set {1, 2, . . . , n}, and Ent(·) is an

entropy-like function which measures the heterogeneity of the variance proxies. The worst-case

sample complexity is in general proportional to the sum of the reward variances and has three

components. The first component (with ln 1
δ
) reflects the effect of the confidence parameter, the

second component reflects the impact of the more homogeneous subset of the arms, and the last

term (with the Ent(·) function) reflects the impact of the more heterogeneous subset of the arms.

The result naturally degrades if the reward variances are indeed homogeneous, which essentially

has only the first two components. The third component captures the impact of the heterogeneity,

which is not critically related to m, but on the variances σ2
1:n through an entropy-like function.

For highly heterogeneous variances, the second term will disappear, and Ent(σ2
Gr) can be of order

O(1), thus becoming independent of m completely.

1.3 Policy Optimization Regularized by Kullback-Leibler Divergence for Multi-Objective

Markov Decision Process

In many sequential decision-making scenarios, agents usually face multiple objectives simul-

taneously. This motivates the study of reinforcement learning (RL) with multiple reward values
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V π
1:m(ρ). The agent exploits certain criteria to reflect the system requirement and aims to optimize

the policy such that its values V π
1:m(ρ) satisfies the criteria.

We study policy gradient-based approaches that optimize over parameterized policies Π =

{πθ : θ ∈ Θ} through policy gradient. In general, the optimization problems above may not be

convex in terms of θ, not even for single-objective MDPs with direct parameterization by θs,a =

πθ(a|s) [12]. Due to the non-convexity, O(1/T ) global convergence of policy gradient-based

methods was only established very recently for single-objective MDPs with exact gradients [12,

13]. These breakthrough results have motivated the study of policy optimization for multi-objective

MDPs, e.g., smooth concave scalarization [14], constrained MDPs (CMDPs) [15, 16].

However, under the exact gradients scenario, the previous approaches for multi-objective MDPs,

either suffer from slow provable O(1/
√
T ) global convergence [15], or require extra assump-

tions [17–19]. The compactness of Θ is assumed in [17], but this assumption forbids a very com-

mon softmax parameterization, where Θ = R|S||A|. The NPG-based methods have been analyzed

in [18, 19] under an ergodicity assumption, but such an assumption is not required for NPG in

single-objective MDPs [12], and therefore appears artificial.

Many criteria for multi-objective MDPs could be viewed as convex optimization problems w.r.t.

a value vector v ∈ V , for which there is a wide array of well-performing first-order methods for

convex optimization problems in general. It is desirable to take full advantage of such efficient first-

order methods in a unified and flexible manner when designing policy gradient-based algorithms

for multi-objective MDPs.

We propose an anchor-changing regularized natural policy gradient (ARNPG) framework that

can exploit and integrate first-order methods for the design of policy gradient-based algorithms for

multi-objective MDPs. We introduce Kullback-Leibler divergences with changing anchors in the

ARNPG framework as regularization to the intermediate policy update. This regularization accel-

erates the policy update due to its local strong convexity, and meanwhile, the changing anchors

reduce the bias caused by introducing regularization to the original problem. Analytically, the

divergences bridge the analysis between policy gradient and the incorporated first-order methods.
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We demonstrate the strength of the ARNPG framework by designing algorithms for three gen-

eral criteria: smooth concave scalarization, constrained MDPs, and max-min trade-off. Under

softmax parameterization with exact gradients, the proposed algorithms inherit the advantages of

the integrated first-order methods and are guaranteed to have Õ(1/T ) global convergence without

further assumptions on the underlying MDP. In addition to the theoretical advantages, we provide

the results of extensive experimentation which demonstrate that the ARNPG-guided algorithms

provide superior performance in exact gradient and sample-based tabular scenarios, as well as

actor-critic deep RL scenarios, compared to several existing policy gradient-based approaches.
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2. INFORMATION-THEORETIC BOUNDS ON GENERALIZATION ERROR∗

In this chapter, we proposed the individually conditional individual mutual information (ICIMI)

bound to upper bound the generalization error. To establish the proposed bound, we introduce a

new conditional decoupling lemma. This lemma allows us to view the bounds in many of the

previous works [3, 8–10] and the proposed bound in a unified manner, which not only yields a

dichotomy of these bounds, but also makes possible a meaningful comparison among them. It also

allows us to take expectation of the conditionals outside of the concave conjugate function, which

may significantly tighten the bound when the Jensen gap is large. Finally, we show that in the

Gaussian setting mentioned earlier, the proposed new bound is also able to provide a bound of the

same order as, but with an improved leading constant than that in [8].

As an application of the proposed ICIMI bound, we apply it on a logistic regression setting

where the mutual information terms need to be estimated from data, and it yields a generalization

bound similar to that in [8]. The CMI bound and the CIMI bound, on the other hand, are much more

difficult to estimate since they involve many more random variables. As another application, we

further analyze the noisy and iterative stochastic gradient Langevin dynamics (SGLD) algorithm,

which includes the Langevin dynamics algorithm as a special case when the full batch is used, and

derive an upper bound on its generalization error, which is more general than previous results (e.g.,

no requirement for the loss function to be bounded).

2.1 Preliminaries

System model. We study the classic supervised learning setting. Denote the data domain as

Z := X ×Y , where X is the feature domain and Y is the label set. The parametric hypothesis class

∗Part of this chapter is reprinted with permissions from “Individually conditional individual mutual information
bound on generalization error," by Ruida Zhou, Chao Tian, and Tie Liu, 2022, IEEE Transactions on Information The-
ory, vol. 68, no. 5, pp. 3304– 3316, Copyright © 2022 IEEE [20], “Stochastic chaining and strengthened information-
theoretic generalization bounds" by Ruida Zhou, Chao Tian, and Tie Liu, 2023, Journal of the Franklin Institute,
vol.360, no. 6, pp. 4114-4134, Copyright © 2023 The Franklin Institute [21], and “Exactly Tight Information-
Theoretic Generalization Error Bound for the Quadratic Gaussian Problem" by Ruida Zhou, Chao Tian, and Tie Liu,
2023, IEEE International Symposium on Information Theory (ISIT), Copyright © 2023 IEEE [22].
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is denoted asHW = {hW : W ∈ W} ⊆ YX , whereW is the parameter space. During training, the

learning algorithm (learner) has access to a sequence of training samples Z[n] = (Z1, Z2, . . . , Zn),

where each Zi is drawn independently from Z following some unknown probability distribution ξ.

The learner can be represented by PW |Z[n]
, which is a kernel (channel) that (randomly) maps Zn to

W .

To complete the classification or regression task, the learner in principle would choose a hy-

pothesis w ∈ W to minimize the following population loss, under a given loss function ℓ :

W ×Z → R,

Lξ(w) = EZ∼ξ[ℓ(w,Z)]. (2.1)

However, since only a training data vector Z[n] is available, the empirical loss of w is usually

computed (and minimized during training), which is given as

LZ[n]
(w) =

1

n

n∑
i=1

ℓ(w,Zi). (2.2)

The expected generalization error of the learner PW |Z[n]
is

gen(ξ, PW |Z[n]
) := E

[
Lξ(W )− LZ[n]

(W )
]
, (2.3)

where the expectation is taken over the distribution PW,Z[n]
as the joint distribution implied by

the kernel PW |Zn]
and the marginal PZ[n]

= ξn. This quantity captures the effect of the learner’s

expected overfitting error due to limited training data, which we shall study in this work.

Formally we write EX∼P [f(X)] =
∫
X f(x)dP (x) as the expectation of f(X). When the

distribution ofX is clear from the context, we omit P and write it as EX [f(X)], where the subscript

X means the expectation is taken with respect to the random variableX . When the random variable

X in f(X) is also clear from the context, we simply write it as E[f(X)].
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We introduce the following quantity

genZ[n]
(ξ, w) := Lξ(w)− LZ[n]

(w), (2.4)

which can be viewed as stochastic process indexed by hypothesisw and the expected generalization

error can by written as gen(ξ, PW |Z[n]
) = E[genZ[n]

(ξ,W )]. Generalization error can also be written

in a different form by defining

geni
Zi
(ξ, w) := Lξ(w)− ℓ(w,Zi), (2.5)

geni(ξ, PW |Zi
) := E[Lξ(W )− ℓ(W,Zi)]. (2.6)

Clearly gen(ξ, PW |Z[n]
) = 1

n

∑n
i=1 gen

i(ξ, PW |Zi
). It is worth noting that the distribution PW |Zi

is

obtained by marginalizing over P (W,Z[n]) (and dividing ξ).

We will then briefly review a few information-theoretic bounds on the generalization error

relevant to this work. A more thorough discussion of their relation is deferred to Section 2.2.4 and

2.2.5, after a unified framework is given.

Mutual information based bounds. Xu and Raginsky, motivated by a previous work by Russo

and Zou [2], provided a mutual information (MI) based bound on the expected generalization

error [3].

Theorem 1 (MI Bound [3]). Suppose ℓ(w,Z) is σ2-sub-Gaussian under ξ for all w ∈ W , then

gen(ξ, PW |Z[n]
) ≤

√
2σ2

n
I
(
W ;Z[n]

)
. (2.7)

The generalization can be written in two ways

gen(ξ, PW |Z[n]
) = E

[
LZ̃[n]

(W̃ )
]
− E

[
LZ[n]

(W )
]

(2.8)

=
1

n

n∑
i=1

E
[
(ℓ(W̃ , Z̃i)− ℓ(W,Zi))

]
, (2.9)
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where W̃ and Z̃i are independent random variables that have the same marginal distributions as W

and Zi, respectively. Instead of bounding the difference (2.8) as in [3], Bu et al. [8] bounded each

individual difference in (2.9) and derived an individual mutual information (IMI) based bound.

Furthermore, the following inverse Fenchel conjugate function was utilized to obtain a tightened

and more general bound. For any random variables F , its cumulant generating function (CGF) is

ΛF (λ) := lnE
[
eλF
]
. (2.10)

The CGF ΛF (λ) may not exist for some λ ∈ R. Define the extended-value centered CGF of F

as ψF (λ) := ∞ for such λ that ΛF (λ) does not exist, and ψF := ΛF (λ) − λE[F ] otherwise. The

inverse of its Fenchel conjugate is given as

ψ∗−1
F (η) := inf

λ>0

η + ψF (λ)

λ
, η ∈ [0,∞). (2.11)

The tightened bound is summarized in the following theorem.

Theorem 2 (IMI Bound [8]). Suppose ψ− is an upper bound of ψ−ℓ(W̃ ,Z̃i)
, then

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

ψ∗−1
− (I (W ;Zi)) , (2.12)

where W̃ and Z̃i are independent random variables that have the same marginal distributions as

W and Zi, respectively.

Conditional mutual information-based bounds. Steinke and Zakynthinou [9] recently intro-

duced a novel bounding approach. In their approach, Z±
[n] := (Z±1

1 , Z±1
2 , . . . , Z±1

n ) is a 2 × n

table of samples that each Zs
i , for s = −1, 1 and i = 1, . . . , n is independently drawn follow-

ing ξ. The training vector (ZR1
1 , ZR2

2 , . . . , ZRn
n ) is selected from the table Z±

[n], where Ri’s are

independent Rademacher random variables, i.e., Ri takes 1 or −1 equally likely. The vector

R[n] = (R1, . . . , Rn) ∈ {−1, 1}n essentially selects one sample from each column in the table,

which partitions Z±
[n] into a training vector and a testing vector. For simplicity, we shall write Z−1

i
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and Z+1
i as Z−

i and Z+
i , when the meaning is clear from the context.

With the structure given above, the expected generalization error can be written as

gen(ξ, PW |Z[n]
) = EZ±

[n]

[
E

[
1

n

n∑
i=1

Ri

(
ℓ(W,Z−

i )− ℓ(W,Z+
i )
) ∣∣∣Z±

[n]

]]
. (2.13)

Steinke and Zakynthinou obtained the following conditional mutual information (CMI) based re-

sult.

Theorem 3 (CMI Bound [9]). Suppose supw∈W |ℓ(w, z1)− ℓ(w, z2)| ≤ ∆(z1, z2) for any z1, z2 ∈

Z , then

gen(ξ, PW |Z[n]
) ≤

√
2

n
E[∆(Z1, Z2)2]I

(
W ;R[n]|Z±

[n]

)
, (2.14)

where Z1, Z2 are independent samples distributed as ξ.

Since Ri is binary, the conditional mutual information is always bounded; in contrast, mutual

information-based bounds (i.e., MI and IMI bounds) can be unbounded, particularly when the

random variables W,Zi are both continuous.

Motivated by the results in [8], Haghifam et al. [10] proposed a sharpened bound by similarly

bounding each term in (2.13). Moreover, they provided a conditional individual mutual information

(CIMI) based bound represented by the sample-conditioned mutual information, which is defined

as

Iu(X;Y ) := I(X;Y |U = u). (2.15)

Clearly IU(X;Y ) is a function of the random variableU , thus also a random variable, and E[IU(X;Y )] =

I(X;Y |U). These sharpened bounds are summarized in the following theorem.
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Theorem 4 (CIMI Bound [10]). Suppose ℓ ∈ [0, 1], then

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

E
[√

2IZ±
[n]
(W ;Ri)

]
≤ 1

n

n∑
i=1

√
2I
(
W ;Ri|Z±

[n]

)
. (2.16)

2.2 The ICIMI Bound and Its Properties

We first introduce a motivating example which shows that the CMI and CIMI bound can be

order-wise worse than the IMI bound. In order to remedy this deficiency, we first introduce an

instrumental (conditional decoupling) lemma, then provide the proposed bound, which we refer to

as individually conditional individual mutual information (ICIMI) bound. The relation between the

proposed bound and the existing bounds is discussed. As a byproduct of the unified view allowed

by the aforementioned conditional decoupling lemma, several more general forms of the existing

bounds are also given. Finally, we return to the motivating example and show that the proposed

bound can indeed provide a bound of the same order as the IMI bound, but with a slightly better

constant factor.

2.2.1 A motivating example

Let us consider the simple setting of estimating the mean from samples generated from a Gaus-

sian distribution N(µ, σ2), by averaging the i.i.d. training samples under the squared loss.

Estimating the Gaussian mean The training samples Z[n] are drawn i.i.d. following N(µ, σ2) for

some unknown µ. The learner deterministically estimates µ by averaging the training samples, i.e.,

W = 1
n

∑n
i=1 Zi, whose empirical error is

LZ[n]
(W ) =

1

n

n∑
i=1

(W − Zi)
2. (2.17)

Bu et al. [8] showed that the mutual information term in the IMI bound is

I(W ;Zi) =
1

2
log

n

n− 1
=

1

2(n− 1)
+ o

(
1

n

)
, (2.18)
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and obtained the following IMI-based bound

σ2

√
2(n+ 1)2

n2
log

n

n− 1
= σ2

√
2

n− 1
+ o

(
1√
n

)
. (2.19)

For this simple setting, the generalization error can in fact be calculated exactly to be 2σ2

n
. Though

the error bound above does not have the same order as the true generalization error, it is consistent

with the VC dimension-based bound and is the best known for this case. Note that the MI bound

will be unbounded, since I(W ;Z[n]) is unbounded.

Next, consider the CMI and CIMI bounds, and let us focus on the mutual information terms in

these bounds, which give

I(W ;R[n]|Z±
[n]) = n/ log2 e, IZ±

[n]
(W ;Ri) = 1/ log2 e, a.s.. (2.20)

It is seen that they are order-wise worse than (2.18), which suggests that the bounds obtained from

the CMI and CIMI bounds would be order-wise worse than (2.19).

Theorem 3 and Theorem 4 do not apply directly in this setting, since their required conditions

do not hold. In Theorem 3, the function ∆(z1, z2) does not exist (i.e., unbounded); even if it

existed, the term E[∆(Z1, Z2)
2] would be a constant, thus the CMI bound would be of constant

order. Similarly, if the condition ℓ ∈ [0, 1] holds, the CIMI bound would also be of constant order.

As we shall show shortly, the CMI and CIMI bounds can be generalized and strengthened, yet the

resultant strengthened bounds in this setting still do not diminish as n → ∞, and thus would be

order-wise worse than the IMI bound.

A question arises naturally: Is the looseness of the CMI and CIMI bounds here due to the in-

troduction of the conditioning terms? As we shall show next, it is caused by too much information

being revealed in the conditioning terms, and there is indeed a natural way to resolve this issue.
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2.2.2 A conditional decoupling lemma

Our main result relies on a key lemma. A few more definitions are first introduced to present

this lemma and the main result.

For any random variables F and U , define the sample-conditioned CGF for any realization

U = u,

ΛF |U(λ, u) := lnE
[
eλF
∣∣∣U = u

]
. (2.21)

Similar to the regular CGF, ΛF |U(λ, u) may not exist for some λ ∈ R. Define the extended-value

centered sample-conditioned CGF as ψF |U(λ, u) := ∞ for such λ that ΛF |U(λ, u) does not exist,

and ψF |U(λ, u) := ΛF |U(λ, u) − λE[F |U = u] otherwise. It is straightforward to verify that for

any realization U = u, ψF |U(0, u) = ψ′
F |U(0, u) = 0 and ψ′′

F |U(0, u) > 0. Hence the inverse of its

Fenchel conjugate

ψ∗−1
F |U(η, u) := inf

λ>0

η + ψF |U(λ, u)

λ
, η ∈ [0,∞) (2.22)

is concave and non-decreasing; see e.g., [8] and [23]. The unconditioned version of this function

was utilized earlier by Asadi et al. [4] and Bu et al. [8]. When it is clear from context, we will write

ΨF |U(λ) := ψF |U(λ, U), Ψ∗−1
F |U(η) := ψ∗−1

F |U(η, U), (2.23)

which are functions of U , thus random. Next, define the extended-value centered conditional CGF

ψ̄F |U = E
[
ΨF |U

]
, (2.24)

and similarly its inverse Fenchel conjugate as ψ̄∗−1
F |U .

For a pair of random variables (X, Y ), its decoupled pair conditioned on a third random vari-
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able U is a pair of random variables (X̃, Ỹ ) , such that

(X̃, U)
D
= (X,U), (Ỹ , U)

D
= (Y, U), (2.25)

i.e., (X̃, U) and (X,U) are identically distributed, and (Ỹ , U) and (Y, U) are identically dis-

tributed, and moreover

X̃ ↔ U ↔ Ỹ (2.26)

forms a Markov string. It follows from this definition that

IU(X;Y ) = D(PX,Y |U ||PX̃,Ỹ |U). (2.27)

We next introduce a conditional decoupling (CD) lemma, which serves an instrumental role in

our work. The unconditioned version was presented in [8].

Lemma 1 (The CD lemma). For any three random variables X, Y, U , let X̃, Ỹ be the decoupled

pair of X, Y conditioned on U . Let F := f(X, Y ) and F̃ := f(X̃, Ỹ ), for some real-valued

measurable function f . The following inequalities hold

E[F ]− E[F̃ ] ≤ E
[
Ψ∗−1

F̃ |U (IU(X;Y ))
]
≤ ψ̄∗−1

F̃ |U (I(X;Y |U)) . (2.28)

2.2.3 The ICIMI bound

For each i = 1, . . . , n, let (W̃i, R̃i) be a decoupled pair of (W,Ri) conditioned on Z±
i . The

bound we propose is presented in Theorem 5.

Theorem 5. (ICIMI Bound) Given an algorithm PW |Z[n]
, the following bounds on the generaliza-

tion hold

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

E
[
Ψ∗−1

G̃i|Z±
i

(IZ±
i
(W ;Ri))

]
(2.29)

15



≤ 1

n

n∑
i=1

ψ̄∗−1

G̃i|Z±
i

(I(W ;Ri|Z±
i )), (2.30)

where G̃i = R̃i

(
ℓ(W̃i, Z

−
i )− ℓ(W̃i, Z

+
i )
)

.

There are two bounds in this theorem. The stronger bound is in terms of the sample-conditioned

mutual information, which is different from the conventional notion of conditional mutual infor-

mation. The weaker bound is in terms of conventional mutual information.

In the proposed bounds, the mutual information is conditioned on the individual data pair Z±
i ,

instead of the full data pair set Z±
[n]. Intuitively, revealing only Z±

i makes it more difficult, than

revealing all data pairs Z±
[n], to deduce information regarding Ri from W . As a consequence, the

mutual information I(W ;Ri|Z±
i ) is always smaller or equal to I(W ;Ri|Z±

[n]), which is formally

shown in Lemma 2, yielding potentially tighter bound.

Proof of Theorem 5. We can rewrite the generalization error given in (2.13) as

gen(ξ, PW |Z[n]
) =

1

n

n∑
i=1

E
[
E
[
Ri

(
ℓ(W,Z−

i )− ℓ(W,Z+
i )
)
|Z±

i

]]
. (2.31)

Now apply the CD lemma on each individual term in (2.31) by letting X = W , Yi = Ri, Ui = Z±
i ,

and Fi = Ri

(
ℓ(W,Z−

i )− ℓ(W,Z+
i )
)
. Since

E[G̃i] = E[F̃i] = E
[
R̃i

(
ℓ(W̃i, Z

−
i )− ℓ(W̃i, Z

+
i )
)]

= 0,

we have

gen(ξ, PW |Z[n]
) =

1

n

n∑
i=1

E[Fi] =
1

n

n∑
i=1

E[Fi]− E[F̃i]

≤ 1

n

n∑
i=1

E
[
Ψ∗−1

G̃i|Z±
i

(IZ±
i
(W ;Ri))

]
(2.32)

≤ 1

n

n∑
i=1

ψ̄∗−1

G̃i|Z±
i

(I(W ;Ri|Z±
i )), (2.33)
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which completes the proof.

We call this bound the individually conditional individual mutual information (ICIMI) bound,

since it is derived by applying the CD lemma on the individual conditional terms in (2.31). We

note that Theorem 5 implies Proposition 3 in [24], which we state below as a corollary.

Corollary 1. Suppose ℓ ∈ [a, b] with a < b, then

gen(ξ, PW |Z[n]
) ≤ b− a

n

n∑
i=1

E
[√

2IZ±
i
(W ;Ri)

]
(2.34)

≤ b− a
n

n∑
i=1

√
2I(W ;Ri|Z±

i ). (2.35)

Proof of Corollary 1. When ℓ ∈ [a, b] and G̃i ∈ [a−b, b−a], it is straightforward to verify that G̃i is

(b−a)2-sub-Gaussian. The definition of the sub-Gaussian distribution gives ΨG̃i|Z±
i
(λ) ≤ (b−a)2

2
λ2,

and thus Ψ∗−1

F̃i|Z±
i

(η) ≤ (b− a)
√
2η, from which the corollary follows.

2.2.4 Dichotomy and generalizations of existing bounds

The CD lemma allows us to view the existing MI, IMI, CMI, and CIMI bounds in a unified

framework. By applying the CD lemma in different manners, these bounds can be obtained al-

most directly. The technical conditions under which the bound hold can also be generalized, and

the bounds themselves can be strengthened using the inverse Fenchel conjugate. These results

are summarized in Table 2.1. We also provide the bounds for the bounded loss function, which

eliminate the ψ̄∗−1 functions and have much simpler forms.

Take the derivation of MI bound [3] as an example: the mutual information I(W ;Z[n]) mea-

sures the correlation between W and Z[n]. We use the CD lemma to decouple such correla-

tion by letting X = W and Y = Z[n], but the conditioning term does not exist. Let function

F = − 1
n

∑n
i=1 ℓ(W,Zi) + Lξ(W ) be the generalization error that we aim to study. Its decoupled

version F̃ = − 1
n

∑n
i=1 ℓ(W̃ , Z̃i)+Lξ(W̃ ) has zero mean and the conjugate CGF ψ̄∗−1

F̃
(η). The MI
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Table 2.1: A dichotomy of several generalization bounds using the CD Lemma

Approach X Y U F Generalization bound Special case ℓ ∈ [0, 1]

MI [3] W Z[n] − 1
n

∑n
i=1 ℓ(W,Zi) + Lξ(W ) ψ̄∗−1

F̃

(
I
(
W ;Z[n]

)) √
1
2n
I(W ;Z[n])

IMI [8] W Zi Fi = −ℓ(W,Zi)
1
n

∑n
i=1 ψ̄

∗−1

F̃i
(I (W ;Zi))

1
n

∑n
i=1

√
1
2
I(W ;Zi)

CMI [9] W R[n] Z±
[n]

1
n

∑n
i=1Ri

(
ℓ(W,Z−

i )− ℓ(W,Z+
i )
)

ψ̄∗−1

F̃ |Z±
[n]

(
I
(
W ;R[n]|Z±

[n]

)) √
2I(W ;R[n]|Z±

[n])

CIMI [10] W Ri Z±
[n] Fi = Ri

(
ℓ(W,Z−

i )− ℓ(W,Z+
i )
)

1
n

∑n
i=1 ψ̄

∗−1

F̃i|Z±
[n]

(
I
(
W ;Ri|Z±

[n]

))
1
n

∑n
i=1

√
2I(W ;Ri|Z±

[n])

ICIMI (this and [24]) W Ri Z±
i Fi = Ri

(
ℓ(W,Z−

i )− ℓ(W,Z+
i )
)

1
n

∑n
i=1 ψ̄

∗−1

F̃i|Z±
i

(
I
(
W ;Ri|Z±

i

))
1
n

∑n
i=1

√
2I(W ;Ri|Z±

i )

bound is then obtained by applying the CD lemma on these assignments, i.e,

gen(ξ, PW |Z[n]
) = E

[
Lξ(W )− LZ[n]

(W )
]
= E[F ]

= E[F ]− E[F̃ ] ≤ ψ̄∗−1

F̃ |U (I(X;Y |U)) = ψ̄∗−1

F̃

(
I
(
W ;Z[n]

))
.

The CD lemma separates the loss geometry captured by ψ̄∗−1 from the information acquired by

the algorithm which is represented as a mutual information term, and it allows us to study them

individually.

The CMI and CIMI results can be further strengthened by utilizing the inverse Fenchel con-

jugate function together with the sample-conditioned mutual information. More precisely, let

(R̃[n], W̃ ) be the decoupled pair of (R[n],W ) conditioned on Z±
[n]. Further define

Ẽi = R̃i

(
ℓ(W̃ , Z−

i )− ℓ(W̃ , Z+
i )
)
, Ẽ =

1

n

n∑
i=1

Ẽi, (2.36)

then we have the strengthened CMI and CIMI bounds:

gen
(
ξ, PW |Z[n]

)
≤ E

[
Ψ∗−1

Ẽ|Z±
[n]

(
IZ±

[n]

(
W ;R[n]

))]
, (2.37)

gen
(
ξ, PW |Z[n]

)
≤ 1

n

n∑
i=1

E
[
Ψ∗−1

Ẽi|Z±
[n]

(IZ±
[n]
(W ;Ri))

]
. (2.38)
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2.2.5 Comparison of the bounds

We first consider the special case where the loss function is bounded, i.e., ℓ ∈ [0, 1]. For this

case, it was shown in [10] that the CIMI bound (2.16) is tighter than the CMI bound (2.14). We

next show that the proposed bound (2.35) is tighter than the CIMI bound (2.16) when ℓ ∈ [0, 1].

Lemma 2. For any i = 1, . . . , n, we have

I(W ;Ri|Z±
i ) ≤ I(W ;Ri|Z±

[n]).

ICIMI (this work)

IMI CIMI

MI CMI≥
≤

≥

≥

≤

Figure 2.1: Relations among generalization bounds, when the inverse Fenchel conjugate functions
are assumed to be the same.

To further understand the relation among these bounds under more general conditions when the

loss function may not be bounded, let us assume the inverse Fenchel conjugate functions, which

roughly capture the geometry induced by the expected loss, are the same (denoted as ψ̄∗−1) for all

the five approaches, i.e.,

ψ̄∗−1 = ψ̄∗−1

−F̃
= ψ̄∗−1

−F̃i
= ψ̄∗−1

F̃ |Z±
[n]

= ψ̄∗−1

F̃i|Z±
[n]

= ψ̄∗−1

F̃i|Z±
i

.

Then we can focus on the information measure quantities, and compare these bounds as shown in

Fig. 2.1. Here the inequalities given in black were proved previously (see [8] and [10]). Since the

common function ψ̄∗−1 is non-decreasing, the inequality "CIMI≥ ICIMI" follows from Lemma 2.

The inequality "IMI ≥ ICIMI" is implied by the following lemma for the same reason.
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Lemma 3. For any i = 1, . . . , n, we have I(W ;Ri|Z±
i ) ≤ I(W ;Zi).

The inverse Fenchel conjugate functions may indeed be different for different bounds, thus

although the above comparison suggests certain dominant relations, it is not clear for any specific

problem, whether any given bound is tighter than the other. This is particularly true if we use the

bounds based on the inverse Fenchel conjugate, however, even for the special case of ℓ ∈ [0, 1], the

different multiplicative factors and the sum-square-root forms imply that the relation can be less

clear.

2.2.6 Revisiting the example

We now return to the problem of estimating the Gaussian mean, and show that the proposed

ICIMI bound can provide scaling behavior similar to that of IMI, thus order-wise stronger than the

CMI and CIMI bounds. In fact, the bound is also strictly better than the IMI bound given in [8]

asymptotically in this setting.

We first formally establish, as suspected previously, that the CMI and CIMI bounds are at least

of constant order for this setting, the proof of which can be found in the appendix.

Proposition 1. The strengthened CMI and CIMI bounds, i.e., (2.37) and (2.38), are at least σ2

π
√
log e

in the problem of estimating the Gaussian mean.

The next proposition establishes a generalization error bound based on the ICIMI bound in this

setting.

Proposition 2. For the problem of estimating the mean of the Gaussian distribution, the ICIMI

bound gives

gen
(
ξ, PW |Z[n]

)
≤ 2σ2

√
π

√
1

n− 1
+ o

(
1√
n

)
. (2.39)

Remark: This bound scales as Θ(
√

1
n
). Compared to the IMI bound in (2.19), the ICIMI-based

bound is asymptotically tighter by a factor of
√

π
2
≈ 1.25.
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Proposition 2 is proved by studying separately the sample-conditioned individual mutual in-

formation IZ±
i
(W ;Ri) and the inverse Fenchel conjugate functions Ψ∗−1

G̃i|Z± . For the former, since

the algorithm here is averaging the samples without any prior of the Gaussian distribution, without

loss of generality, we can assume the mean of the Gaussian distribution to be 0, i.e., µ = 0. There-

fore, given Z±
i = z± ∈ R2, W is mixed-Gaussian distributed, which follows N( z+

n
, n−1

n2 σ
2) when

Ri = 1 and follows N( z−
n
, n−1

n2 σ
2) when Ri = −1. The term IZ±

i
(W ;Ri) is thus related to the

scaling behavior of the differential entropy of a mixed Gaussian distribution, which the following

lemma makes more precise.

Lemma 4. LetR be a Rademacher random variable and V be a mixed-Gaussian random variable,

such that V ∼ N(ν, σ2) when R = 1, and V ∼ N(−ν, σ2) when R = −1. We have

I(V ;R) =
1

2

ν2

σ2
+ o

(
ν2

σ2

)
. (2.40)

The next lemma gives an upper bound on the inverse Fenchel conjugate functions.

Lemma 5. For the problem of estimating the mean of the Gaussian distribution, and any realiza-

tion of Z±
i = z± ∈ R2 with |z+| ≠ |z−|,

Ψ∗−1

G̃i|Z±
i =z±

(η) ≤ Bz±,n(η) = |z2+ − z2−|
√
2η +Θ

(
1

n

)
,

where

Bz±,n(η) := |z2+ − z2−|
√

2η +
2σ2(z+ − z−)2

n|z2+ − z2−|
√
2η +

4max
(
z2+, z

2
−
)

n
; (2.41)

and for |z+| = |z−|,

Ψ∗−1

G̃i|Z±
i =z±

(η) ≤ 4σ

√
2η

n
|z+|+

4max
(
z2+, z

2
−
)

n
. (2.42)

With these lemmas, Proposition 2 can be proved as follows.
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2.3 Application of ICIMI Bound

2.3.1 A setting using empirical evaluations

We evaluate the proposed bound and compare it with the previous bounds in a scenario which

does not have an explicit representation to facilitate the calculation of the distribution PW |Z[n]
or

the corresponding mutual information term. The setup follows that in Section VI of [8], which

is a logistic regression model for binary classification1. The loss function here is the 0-1 loss,

which essentially measures the probability of prediction error. The logistic regressor itself is an

empirical error minimization (ERM) algorithm that minimizes the empirical logistic loss, which is

a differentiable convex surrogate of the 0-1 loss.
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Figure 2.2: Empirical evaluation of the IMI and ICIMI bounds for the expected generalization
error of logistic regression

The training data Z[n] = {(Xi, Yi)}i∈[n] are sampled in an i.i.d. fashion following some distri-

bution ξ unknown to the algorithm, where Xi’s are d-dimensional feature vectors and Yi’s are the

corresponding labels with values ±1. The data generating distribution ξ is set as follows: for any

1We would like to thank Dr. Bu for providing the source codes used in [8], which we adapted to perform the
experiments.
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Figure 2.3: Empirical estimation of the information terms in the IMI and ICIMI bounds for logistic
regression

(Xi, Yi) ∼ ξ, the label Yi follows the Rademacher distribution; and the feature vector Xi, condi-

tioned on Yi, follows a Gaussian distribution with a mean vector Yiµ and a covariance matrix 2Id,

where µ is a d-dimensional non-zero vector and Id is the d× d identity matrix.

Given the training data Z[n], the logistic regressor returns a hypothesis parameterized by W ∈

Rd, which is the minimizer of the empirical logistic loss

Llogistic
Z[n]

(w) =
1

n

n∑
i=1

ln
(
1 + e−Yiw

TXi

)
.

The hypothesisw ∈ Rd predicts that the feature vector x ∈ Rd is associated with label sign(wTx) ∈

{±1}. The information measure terms in the generalization error bounds, such as I(W ;Zi) and

I(W ;Ri|Z±
i ), are empirically estimated by simulations. We shall refer to the process of generating

n training samples and applying logistic regressor on the training data as one “simulation process".

We can collect a copy of the training data Z[n], the output hypothesis W and auxiliary data R[n]

and Z±
[n] after each simulation process.

In the experiment, we set the feature dimension d = 2, and µ = [1, 1]T . The IMI bound and

the proposed ICIMI bound are evaluated as follows. The individual mutual information, and the
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individual conditional individual mutual information are estimated with the K-nearest neighbor-

based mutual information estimator [25] with K = 5, based on the data collected by running

20,000 independent simulation processes. We do not include the CMI bound and the CIMI bound

here, since they use conditioning on the whole data table Z±
n , which involves many more random

variables, and the nearest neighbor-based estimator cannot produce a sufficiently accurate estimate

even within 1, 000, 000 independent simulation processes.

The comparison between the IMI and the ICIMI generalization error bounds is shown in Fig-

ure 2.2. The ICIMI bound is comparable with the IMI bound. Recall that in the logistic regression

problem, the IMI bound is 1
n

∑n
i=1

√
I(W ;Zi)/2, and the ICIMI bound is 1

n

∑n
i=1

√
2I(W ;Ri|Z±

i ),

and there exists a constant factor of 2 mismatch between the two bounds. In Figure 2.3, we isolate

the mutual information terms in the two bounds, from which it can be seen that I(W ;Ri|Z±
i ) is sig-

nificantly less than I(W ;Zi). The ICIMI bound is tighter than IMI bound when 4I(W ;Ri|Z±
i ) <

I(W ;Zi) = I(W ;Ri, Z
±
i ) = I(W ;Z±

i ) + I(W ;Ri|Z±
i ), i.e., 3I(W ;Ri|Z±

i ) < I(W ;Z±
i );

see [11, 24] for similar discussions.

From this example, we see that the ICIMI bound and the IMI bound have the advantage of being

more amiable for estimation than the bounds that use conditioning on all samples since the latter

group involves more random variables. The performance difference between the ICIMI bound and

the IMI bound is however not significant in this example.

2.3.2 Application on a noisy and iterative algorithm

In this section we consider using the ICIMI bound to analyze the stochastic gradient Langevin

dynamics (SGLD) algorithm discussed in [8]. The (non-stochastic) Langevin dynamic (LD) and

more generally minibatch SGLD were considered in [6,10,24] using a more delicate data-dependent

bounding approach, however, in this work we restrict our attention to the SGLD algorithm.

The SGLD algorithm model: We shall largely adopt the notation in [8], however with the

additional data sample selection random variable Ri. Denote the parameter vector at iteration t as

W(t) ∈ Rd. Let W(0) be an arbitrary initial vector for the algorithm. At each iteration t ≥ 1, an

index V(t) ∈ [n] in the data set is randomly selected, and if V(t) = i then the data sample ZRi
i is used
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in the algorithm; the sample ZRi
i is also denoted as ZV(t)

. The gradient is computed at iteration t

as∇ℓ(W(t−1), ZV(t)
). The parameter vector is updated as

W(t) = W(t−1) − η(t)∇ℓ(W(t−1), ZV(t)
) + σ(t)ϵ(t), (2.43)

where η(t) is the learning rate parameter, and ϵ(t) is the independent zero-mean isotropic Gaussian

noise with unit component variance. The parameter σ(t) controls the eventual variance of the

additive Gaussian noise in (2.43).

The algorithm can take multiple iterations for training. If T iterations of training are performed,

each sample is utilized T/n times in expectation. The eventual parameter obtained is denoted

W(T ). The trajectory of the parameter until iteration t is written as W([t]) = (W(0),W(1), . . . ,W(t));

similarly V([T ]) = (V1, V2, . . . , VT ).

Analysis of SGLD using the ICIMI bound: Let πi,(t) be a (possibly randomized) function

that maps the random variables (W([t−1]), Z
±
i , V([T ])) to the range [0, 1], which can be viewed as an

estimate of the probability of Ri = +1; with a slight abuse of notation, we also use πi,(t) to denote

the induced random variable. Furthermore, define the following quantity

Θi,(t)(W([t−1]), Z
±
i , V([T ])) := E

[(
Ri + 1

2
− πi,(t)

)2 ∣∣∣∣W([t−1]), Z
±
i , V([T ])

]
. (2.44)

Note that Θi,(t) is (W([t−1]), Z
±
i , V([T ]))-measurable, which reflects the accuracy of the estimate of

πi,(t) to the true value of Ri given the condition (W([t−1]), Z
±
i , V([T ])). For the purpose of bound-

ing, we could simply use the optimal estimate π∗
i,(t), however, πi,(t) can be any function, and by

setting πi,(t) = 0.5 (and noticing Ri only takes values ±1), a trivial upper bound on Θi,(t) can

be obtained as Θi,(t)(W([t−1]), Z
±
i , V([T ])) ≤ 1/4. When there is no confusion, we shall write

Θi,(t)(W([t−1]), Z
±
i , V([T ])) simply as Θi,(t).

We have the following result for the generalization error of the SGLD algorithm.
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Proposition 3. The generalization error of SGLD is upper-bounded as

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

E

[
Ψ∗−1

F̃i|Z±
i ,V([T ])

(∑
τ∈Ti

Si,τ

)]
, (2.45)

where Si,τ =
η2
(τ)

E
[
Θi,(τ)∥ζ(τ)(Z±

i )∥22
∣∣Z±

i ,V([T ])

]
2σ2

(τ)

, Ti is the set of iterations for which sample ZRi
i is

selected for the random sample path V([T ]), the function Ψ∗−1

F̃i|Z±
i ,V([T ])

with

F̃i = R̃i

(
ℓ(W̃i, Z

−
i )− ℓ(W̃i, Z

+
i )
)
, (2.46)

is defined for each V([T ]) = v([T ]) and Z±
i = z±i , and

ζ(τ)(Z
±
i ) = ∇ℓ(W(τ−1), Z

+
i )−∇ℓ(W(τ−1), Z

−
i ) (2.47)

is the incoherence at iteration τ for sample pair Z±
i .

The bound is more general than those given in [6, 8, 10, 24] in the sense that very few assump-

tions are taken, such as the Lipschitz property or boundedness of the loss function in those results.

This generality is accomplished through the usage of the Ψ∗−1 function, however, it also makes the

result less explicit. We shall discuss several specifications after the proof to make the bound more

explicit.

We could similarly utilize the bound based on ψ̄∗−1 to obtain an alternative looser bound, and

we omit this derivation for brevity. Let us now specialize our result:

• If the gradients of the loss function are bounded, i.e., supw∈W,z∈Z ||∇ℓ(w, z)||2 ≤ L for

some L > 0, then ||ζ(τ)(Z±
i )||22 ≤ 4L2, and thus

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

E

[
Ψ∗−1

F̃i|Z±
i ,V([T ])

(∑
τ∈Ti

S ′
i,τ

)]
,

where S ′
i =

2η2
(τ)

L2

σ2
(τ)

E
[
Θi,(τ)

∣∣V([T ]), Z
±
i

]
.
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• In addition, if the loss function is not bounded, yet conditioned on any (Z±
i , V[T ]) = (z±i , v[T ]),

F̃i is σ2-sub-Gaussian, then we have

gen(ξ, PW |Z[n]
) ≤ 2

n

n∑
i=1

E

√√√√∑
τ∈Ti

σ2η2(τ)L
2

σ2
(τ)

E
[
Θi,(τ)

∣∣V([T ]), Z
±
i

]
.

Note that this bound cannot be obtained using the bounds in [10,24] since their loss function

must be bounded.

• As a special case, when the loss function is also bounded in [a, b], then by applying Corollary

1, we have

gen(ξ, PW |Z[n]
) ≤ 2(b− a)L

n

n∑
i=1

E

√√√√∑
τ∈Ti

η2(τ)
σ2
(τ)

E
[
Θi,(τ)

∣∣V([T ]), Z
±
i

]
. (2.48)

This bound is in a similar form as those given in [10, 24] for the same setting, but can be

looser due to the Jensen gap, because more expectation is taken inside the square root instead

of outside. The bound in (2.48) inherently leverages certain data-dependent information: the

variance term Θi,(t) will diminish, when the number of epochs is large and the estimate of

Ri given the previous iterations becomes more and more accurate.

• Since the term E[Θi,(t)|V([T ]), Z
±
i ] is bounded by 1

4
, we can obtain the following relaxed

bound for bounded and Lipschitz loss functions

gen(ξ, PW |Z[n]
) ≤ (b− a)L

n
EV([T ])

n∑
i=1

√√√√∑
τ∈Ti

η2(τ)
σ2
(τ)

,

which degrades to the same form as those given in [6, 8] for the same setting (with the same

or slightly worse constant factors).

From the discussion above, we see that the tightening effect of the ICIMI bound does not

manifest in this SGLD algorithm setting. We suspect it is due to the specific difficulty in bounding
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the conditional mutual information in this context, particularly under the given assumptions. It is

possible that by taking the data-dependent approach and identifying more specific assumptions as

in [6, 10], the ICIMI can further tighten the result.

2.4 The Stochastic Chaining and Strengthened Bounds

2.4.1 Motivation

[4] introduced the chaining technique, which has traditionally been used in bounding random

processes, into the derivation of information-theoretic generalization bounds. The technique re-

solves the issue that certain unbounded mutual information quantity leads to a vacuous bound, and

may also yield a tighter bound in general. The main idea behind the result in [4] can be summa-

rized as follows. The generalization error can be viewed as a random process {Xt}t∈W indexed by

the hypothesis parameters. If (W , d) is a bounded metric space under the metric d, then W can

be divided into finer and finer partitions, with each coarse partition embedded into the next layer

finer partition, and the partition cells having a decreasing radius. The generalization error can then

be represented by a sum of chained quantities, each relating to two adjacent partition layers. Since

the partitions are becoming finer and finer, each of these decomposed quantities can be bounded

more effectively, eventually resulting in an overall tighter bound. This approach is referred to as

chaining mutual information.

Despite the success of the chaining mutual information approach, we observe several difficul-

ties in applying the chaining technique in this manner, which motivated the current work:

• Restriction on the metric space to be bounded: This chaining approach assumes a bounded

metric space (W , d). However, even in some of the simplest settings, the parameter space

may not be bounded (or impractical to assume the bound on (W , d) is known).

• Difficulty in computation: Using these deterministic and hierarchical partitions, the infor-

mation measures involved in the bounds can be difficult to compute or bound analytically.

• Restrictions in the partitions: The hierarchical partitions place certain unnecessary ge-

ometric constraints on the covering radius sequence of the required partitions, which can
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Figure 2.4: Multilevel quantization of a random value W using quantizers of different stepsize and
the corresponding information-theoretic successive refinement source coding model.

impact the bound.

To make these difficulties more concrete, consider the following two simple examples.

• Example-1: The training samples are drawn i.i.d. following a normal distribution with an

unknown mean µ, and the algorithm wishes to estimate this mean. Here the parameter

space isW = R, which is unbounded under any meaningful metric, particularly so for the

natural Euclidean distance. Moreover, since the induced measure onW will not be uniform,

computing the series sum of mutual information is rather difficult if not impossible.

• Example-2: Let Z := (G1, G2) ∼ N (0, I2) be standard normal vectors in R2. The learner

needs to identify the phase of the vector through certain means, and the learned result is

modeled as the true phase with certain additive noise. HereW is the bounded interval of the

angle [0, 2π). A natural sequence of partitions is to reduce the stepsize by an integer factor γ.

However, this would preclude any non-integer γ values, which potentially makes the bound

looser.

2.4.2 The stochastic chaining methods

The sequence of refining partitions of the metric space associated with the chaining technique

is reminiscent of multilevel quantization in data compression. For example, a scalar source W

distributed on the real line can be quantized with a stepsize of 2−k for the k-th level quantization,
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resulting in its quantized representation Ŵk. As the index k increases, the stepsize reduces and the

accuracy of the quantization improves; see the left side of Fig. 2.4 for an illustration.

The information-theoretic model for multilevel quantization is usually referred to as succes-

sive refinement source coding [26, 27]. Particularly useful to us is a stochastic abstraction in this

framework. For example, assume there are a total of K-levels, then one possible stochastic repre-

sentation of the reconstruction Ŵk is Wk that is written as

Wk = αk

(
W +

K+1∑
i=k+1

N ′
i

)
, (2.49)

where N ′
i’s are mutually independent random noises, also independent of W , and αk’s are certain

fixed scalar coefficients; see the right side of Fig. 2.4. It is seen that the relation among W

and {Wk}Kk=1 is captured by the joint probability distribution among them, and we can measure the

“distance” betweenW andWk using Ed(W,Wk), in contrast to the conventional chaining approach

which uses the covering radius.

The main idea of this work is that these abstracted stochastic versions of {Wk}Ki=1 can be used

to replace the partition-based quantized versions in bounding the generalization error. This new

approach helps to resolve the difficulties mentioned above: firstly the restriction for the metric

space to be bounded is naturally removed, and secondly, it helps to simplify the computation,

and lastly, the abstract model can remove the geometric constraints in designing the hierarchical

partitions in some cases.

The proposed stochastic chaining approach essentially allows more flexible constructions of the

chains than the more traditional deterministic chaining. One can attempt to further optimize the

construction of stochastic chains based on the existing knowledge regarding the underlying metric

space and the corresponding probability distribution for the given problem setting. On the other

hand, when such knowledge is not available, we can safely fall back to the default construction

of the original deterministic chaining partitions, which is essentially a special case of stochastic

chaining.
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We obtain two generalization bounds using stochastic chaining instead of the deterministic

chaining in [4], built on the mutual information bound given in [3] and the individual sample

mutual information bound given in [8], respectively. We further show that the proposed bound can

reduce to the VC-dimension bound correctly. We then illustrate the benefits of this new approach

in the context of the two examples. For the problem of estimating the Gaussian mean mentioned

above, we can obtain a bound that is order-wise stronger than previously given in the literature. For

the phase retrieval problem considered in [4], the bound can be naturally improved by optimizing

over a continuous parameter.

We define a new notion of the stochastic chain as follows.

Definition 1 (Stochastic chain of random process and random variable pair ). Let (XW ,W ) be a

random process and random variable pair, whereW is a random variable in the setW . A sequence

of random variables {Wk}∞k=k0
, each distributed in the set W , is called a stochastic chain of the

pair (XW ,W ), if 1) limk→∞ E[XWk
] = E[XW ], 2) E[XWk0

] = 0, and 3) {Xt}t∈W ↔ W ↔ Wk ↔

Wk−1 is a Markov chain for every k > k0.

We allow k0 to take the value of −∞ instead of providing another parallel definition to that

effect. We are now ready to present the first main theorem of this work.

Theorem 6. Assume {genZ[n]
(ξ, w)}w∈W is sub-Gaussian on (W , d), and {Wk}∞k=k0

is a stochastic

chain of ({genZ[n]
(ξ, w)}w∈W ,W ). Then

gen(ξ, PW |Z[n]
) ≤

∞∑
k=k0+1

E
[
d(Wk,Wk−1)

√
2D(PZ[n]|Wk

||PZ[n]
)
]
. (2.50)

Moreover, we have

gen(ξ, PW |Z[n]
) ≤

∞∑
k=k0+1

√
E[d2(Wk,Wk−1)]

√
2I(Z[n];Wk). (2.51)

The following theorem is based on the individual sample mutual information bound of [8].
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Theorem 7. For each i ∈ [n], assume {geni
Zi
(w)}w∈W is sub-Gaussian on (W , d), and {Wi,k}∞k=k0

is a stochastic chain of ({geni
Zi
(w)}w∈W ,W ). Then

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

∞∑
k=k0+1

E
[
d(Wi,k,Wi,k−1)

√
2D(PZi|Wi,k

||PZi
)
]
. (2.52)

Moreover, we have

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

∞∑
k=k0+1

√
E[d2(Wi,k,Wi,k−1)]

√
2I(Zi;Wi,k). (2.53)

These two theorems are given in the context of bounding generalization errors, which are ob-

tained using a more general result on bounding random processes.

Theorem 8. Assume XW is sub-Gaussian on (W , d), and {Wk}∞k=k0
is a stochastic chain for

(XW ,W ), then

E [XW ] ≤
∞∑

k=k0+1

E
[
d(Wk,Wk−1)

√
2D(PXW |Wk

||PXW )
]
. (2.54)

Moreover, we have

E [XW ] ≤
∞∑

k=k0+1

√
E[d2(Wk,Wk−1)]

√
2I(XW ;Wk). (2.55)

By using a deterministic sequence of partitions to form {Wk}∞k0 , we recover the result in [4]

which was obtained for bounded metric space (W , d).

Corollary 2. Let {Pk}∞k=k0
be an increasing sequence of partitions ofW , where for each k ≥ k0,

Pk is a 2−k-partition of the bounded metric space (W , d), and 2−k0 ≥ diam(W) = maxx,y∈W d(x, y).

Let Wk be the center of the covering ball of the partition cell that W belongs to in the partition

Pk, then for separable process XW on (W , d),

E [XW ] ≤
∞∑

k=k0+1

E
[
3 · 2−k

√
2D(PXW |Wk

||PXW )
]
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≤
∞∑

k=k0+1

3 · 2−k
√

2I(XW ;Wk). (2.56)

Unlike existing deterministic chaining, expected distance instead of worst-case distance is used.

Proof of Theorem 3. To prove the theorem, we start by writing

XW = XWk0
+

k1∑
k=k0+1

(XWk
−XWk−1

) + (XW −XWk1
). (2.57)

Because {Wk}∞k=k0
is a stochastic chain for (X̃W ,W ), we have E[XWk0

] = 0 and limk1→∞ E[XWk1
] =

E[XW ], and it follows that

E [XW ] =
∞∑

k=k0+1

E
[
XWk

−XWk−1

]
=

∞∑
k=k0+1

E
[
E[XWk

−XWk−1
|Wk,Wk−1]

]
. (2.58)

By the Donsker–Varadhan variational representation of the KL divergence, the expectation of

a function g(Y ) with respect to the measure P defined on Y can be bounded as

EP [g(Y )] ≤ inf
λ>0

1

λ

(
D(P ||Q) + logEQ[e

λg(Y )]
)
, (2.59)

where Q is another measure on Y .

In our setting, let Y = g(Y ) = ∆Xwk,wk−1
= Xwk

− Xwk−1
, Q = P∆Xwk,wk−1

, and P =

P∆Xwk,wk−1
|wk,wk−1

:= P∆Xwk,wk−1
|Wk=wk,Wk−1=wk−1

, then we have

EP∆XWk,Wk−1
|wk,wk−1

[∆Xwk,wk−1
]

≤ inf
λ>0

1

λ

(
D(P∆Xwk,wk−1

|wk,wk−1
||P∆Xwk,wk−1

) + logEP∆Xwk,wk−1

[
eλ(Xwk

−Xwk−1
)
] )

≤ inf
λ>0

1

λ

(
D(P∆Xwk,wk−1

|wk,wk−1
||P∆Xwk,wk−1

) +
1

2
d2(wk, wk−1)λ

2
)

= d(wk, wk−1)
√
2D(P∆Xwk,wk−1

|wk,wk−1
||P∆Xwk,wk−1

), (2.60)

33



where the second inequality is because the process XW is sub-Gaussian on (W , d).

Denote X̃W as an independent copy of XW such that X̃W and XW are independent and have

the same distribution. Denote ∆k = XWk
− Xk−1 and ∆̃k = X̃Wk

− X̃k−1. It then follows that

P∆k|Wk=wk,Wk−1=wk
= P∆Xwk,wk−1

|wk,wk−1
and P∆̃k|Wk=wk,Wk−1=wk

= P∆Xwk,wk−1
. The fact that

{Wk}∞k=k0
is a stochastic chain also implies that limk→∞ E[XWk

] = E[XW ], and thus

E [XW ] ≤
∞∑

k=k0+1

E
[
d(Wk,Wk−1)

√
2D(P∆k|Wk,Wk−1

||P∆̃k|Wk,Wk−1
)
]
. (2.61)

By the data processing inequality for the KL divergence, we have

D(P∆k|Wk,Wk−1
||P∆̃k|Wk,Wk−1

) ≤ D(PXW |Wk,Wk−1
||PX̃W |Wk,Wk−1

). (2.62)

Since PXW |Wk,Wk−1
= PXW |Wk

and PX̃W |Wk,Wk−1
= PX̃W

= PXW , from which the second inequal-

ity follows.

The mutual information-based bound can be derived by

E
[
d(Wk,Wk−1)

√
2D(PXW |Wk

||PXW )
]

≤
√
E[d2(Wk,Wk−1)]

√
E[2D(PXW |Wk

||PXW )]

=
√
E[d2(Wk,Wk−1)]

√
2I(XW ;Wk), (2.63)

where the inequality is Cauchy-Schwartz inequality for random variables and the equality is by the

definition of mutual information.

Note that we can also remove the Markov chain assumption in stochastic chaining (Defini-

tion 1). The similar expected generalization upper bounds as in Theorem 3 can be derived by

replacing D(PXW |Wk
||PXW ) and I(XW ;Wk) by D(PXW |Wk,Wk−1

||PXW ) and I(XW ;Wk,Wk−1),

respectively.

To obtain Theorem 6 from Theorem 8, we letW := W , and Xw := gen(w) for w ∈ W . Due
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to the Markov chain

XW = {gen(w)}w∈W ↔ Z[n] ↔ W ↔ Wk, (2.64)

for all k ≥ k1, we can apply the data processing inequality for KL divergence [28] and that for

mutual information, respectively, to arrive at

D(PXW |Wk
||PXW ) ≤ D(PZ[n]|Wk

||PZ[n]
),

I(XW ;Wk) ≤ I(Z[n];Wk), (2.65)

from which Theorem 6 follows immediately. Theorem 7 can be obtained similarly.

When the process is not sub-Gaussian, more general forms of these bounds can also be found

in terms of the cumulant generating function. This result is given in the appendix.

2.4.3 Relations to existing results

Connection to VC theory: For binary classification problems, i.e., |Y| = 2 with zero-one

loss ℓ(w, (x, y)) = I(hw(x) ̸= y), the generalization error of any classifier W is upper bounded as

gen(ξ, PW |Z[n]
) ≤ O(

√
dV C(W)

n
), where dV C(W) is the VC-dimension of the classification function

class HW (c.f., [1] Ch. 6). The generalization error bound in Theorem 8, or more precisely the

proposed stochastic chaining approach, can naturally recover the VC-dimension based bound, and

we establish this connection in the appendix.

Discussion on the chaining construction: The conventional deterministic chaining places

certain structural constraints on the hierarchical partitions. For example, consider a partition of a

bounded 2-D space using congruent hexagon cells; the next partition at the higher level will be col-

lections of such hexagons. This subsequently implies that hierarchy must follow a certain relation

between consecutive levels, and the analysis of such hierarchical partitions can be complex. The

stochastic chaining technique can remove the geometric constraints in the design of hierarchical

partitions as in Corollary 2 in many cases. In the example above, we can replace the partition using
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either an additive Gaussian noise or additive noise with a uniform distribution on hexagons (see

the second example in the next section where a similar uniform additive noise is used).

Since stochastic chains include conventional partition-based chaining as a special case, it is

not more difficult to construct. The construction can be more straightforward due to its flexibil-

ity. For example, for bounded metric space, we can use the following generic construction: let

p(Wk−1|Wk) be uniformly distributed on a metric ball of radius 2−k centering at Wk. If more in-

formation regarding the distribution of W is known, we can further optimize the chain, e.g., by

adjusting the radius such that they are dependent on the density value of Wk; more specifically,

we can let the radius be larger for Wk values of lower density, and vice versa. If the metric space

is also a vector space, it can be convenient to let p(Wk−1|Wk) be some vector Gaussian distribu-

tion with covariance scaling like 2−k. This allows more opportunity for optimization for stronger

bounds in a parametric form. In contrast, it is impossible to design partitions (or deterministic

mappings [29]) to mimic such behaviors, let alone find an analytic bound. This issue has a natural

origin in source coding: deterministic quantization design vs. probabilistic forward test channel

modeling. The latter is used in source coding for mathematically precise characterization, and

analytic optimization.

Comparison to the chaining technique in [29]: The alternative chaining method proposed

by Hafez-Kolahi et al. (Theorem 6 in [29]) used a different chaining construction, which does

not require hierarchical partitions, and to some extent, it helps resolve the difficulty in designing

such hierarchical partitions. However, this simplification came with a heavy price: the learning

algorithm must be deterministic, and the hypothesis space W still needs to be bounded (since

the core steps rely on [4]), and there is a factor of 2 loss in the bound. The restrictions make it

inapplicable in the two examples we study in the next section. In contrast, the proposed method

applies to unbounded metric space and does not require the learning algorithm to be deterministic.

2.4.4 Illustrative examples

We analyze two simple settings, which demonstrate the effectiveness of the proposed stochastic

chaining technique. The purpose of discussing the following two examples is by no means to liter-
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ally characterize the generalization error, since the generalization error can be calculated directly

due to the simplicity of the examples. We aim to show the effectiveness of the proposed stochastic

chaining technique in these two examples by comparing it with the underlining generalization error

and some previous generalization error bounds.

2.4.4.1 Estimating the Gaussian mean

Consider the case when the training samples Z[n] are drawn i.i.d. following N(µ, σ2) for some

unknown µ. HereW = R, and a natural choice of the metric in this space is the (scaled) Euclidean

distance. The loss function is ℓ(w,Z) = (w − Z)2, and by defining Z̄n := 1
n

∑n
i=1 Zi, the random

process (indexed by w) of interest can be written as

genZ[n]
(ξ, w) = σ2 + µ2 −

∑n
i=1 Z

2
i

n
+ 2w(Z̄n − µ). (2.66)

It follows that

genZ[n]
(ξ, w)− genZ[n]

(ξ, v) = 2(w − v)
(
Z̄n − µ

)
, (2.67)

which is d2(w, v) sub-Gaussian with d2(w, v) = 4σ2(w−v)2

n
. The learner deterministically esti-

mates µ by averaging the training samples, i.e., W = Z̄n. We shall use Theorem 6 to bound the

generalization error in this case.

To build a stochastic chain, select a sequence of mutually independent Gaussian noise {N ′
i}i∈N,

which is independent of W , and N ′
i ∼ N (0, σ′2

i ), where σ′2
i = σ2

2in
. Define the cumulative noise

Nk :=
∞∑

i=k+1

N ′
i ∼ N (0, σ2

k), (2.68)

where σ2
k = σ2

2kn
. The stochastic chain is designed as

Wk − µ = αk(W − µ+Nk), (2.69)
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where αk =
σ2/n

σ2/n+σ2
k
= 1

1+2−k . We then have

Wk−1 − µ =
αk−1

αk

(Wk − µ) + αk−1N
′
k, (2.70)

where Wk and N ′
k are independent. Under this stochastic chain, we can derive the expression for√

E[d(Wk,Wk−1)2] and the mutual information term I(Z[n];Wk). Specifically, E[d(Wk,Wk−1)
2] ≤

σ4

n2
3

2k−1+1
, which relies on the relations betweenWk andWk−1 in (2.70) and the detailed calculation

is given in the appendix. The mutual information can be upper bounded as

I(Z[n];Wk) ≤ I(W ;Wk) =
1

2
ln(1 + 2k), (2.71)

where the inequality is due to the data processing inequality over the Markov chain Z[n] ↔ W ↔

Wk and the equality is by the Gaussian channel nature of the stochastic chain design. The detailed

proof steps are given in the appendix. A bound of the following form can then be obtained

E[XW ] ≤ σ2

n

∞∑
k=−∞

√
3 ln(1 + 2k)

2k−1 + 1
. (2.72)

Note that the series sum on the right-hand side of (2.72) converges, and thus the bound is of order

O(σ2/n). Bounding the series sum using numerical methods, we can then obtain E[XW ] ≤ 13σ2

n
.

Due to the simplicity of the setting, the generalization error can in fact be calculated exactly to

be 2σ2

n
. It can be seen that the generalization bound offered by Theorem 6 has the same O(σ2/n)

order as the true generalization error. In contrast, [8] derived a generalization error bound of the

order O(σ2/
√
n) using the individual sample mutual information approach. Thus the proposed

approach results in an order-wise improvement in this example case. More importantly, it can be

seen that the proposed chaining approach allows us to overcome the limitation of bounded metric

space (i.e., the chaining mutual information approach [4] does not even apply in this setting),

and also simplify the calculation due to the introduced dependence structure in the chain. In

the appendix, we further derive an improved bound (with a slightly better constant factor) using
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Table 2.2: Comparison of E[XW ] bounds

ϵ 1/20 1/30 1/40 1/50 1/100 1/200 1/400

Chaining mutual information [4] 1.1013 0.7507 0.5709 0.4612 0.2364 0.1204 0.0610
stochastic chaining (γ = 3.75) 0.4951 0.3387 0.2581 0.2088 0.1074 0.0548 0.0278

E[XW ] true value 0.0626 0.0417 0.0313 0.0250 0.0125 0.0062 0.0031

Theorem 7.

2.4.4.2 Phase retrieval

In the phase retrieval example given in [4], the data Z := (G1, G2) ∼ N (0, I2) is a standard

normal vector in R2. The hypothesis class is W = [0, 2π), and through the transformation t =

(cosw, sinw) for w ∈ W , it is the same as W = {t ∈ R2 : ||t||2 = 1}; we will use them

interchangeably. Define the loss function ℓ(t, Z) = −⟨t, Z⟩, which implies that the learner wishes

to estimate an angle for the underlying data, and the generalization error process is a Gaussian

process Xt := ⟨t, Z⟩. The metric d is the Euclidean distance, and the process XW is sub-Gaussian.

Suppose the learned parameter is

W :=

(
arg max

ϕ∈[0,2π)
Xϕ

)
⊕ ζ (mod 2π), (2.73)

where ζ is independent of XW , and has an atom with a mass ϵ on 0, and 1 − ϵ that is uniformly

distributed in [0, 2π). Note that argmaxϕ∈[0,2π)Xϕ is exactly the phase of (G1, G2), which will be

the hypothesis learned by an ERM learner, and W being retrieved here is a noisy version of the

phase.

The stochastic chain can be given as

Wk = (W ⊕Nk)(mod 2π), (2.74)

where Nk =
∑∞

i=k+1N
′
i , and N ′

k is uniformly distributed on [−γ−kπ, γ−kπ) for some γ > 1 to be

specified later; N ′
k’s are mutually independent and also independent of the hypothesis parameter
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W .

Since W ⊕N−1 is independent of Z and uniformly distributed on [0, 2π), we have E[XW−1 ] =

E[⟨W + N−1, Z⟩] = 0. It is also clear that Wk → W when k → ∞ a.s., and thus E[XW ] =

limk→∞ E[XWk
] since the process is Gaussian. Since Wk−1 − Wk is exactly N ′

k, the Euclidean

distance between Wk and Wk−1 (using their vector representations) is bounded by the length of the

arc, i.e., d(Wk,Wk−1) ≤ γ−kπ. We can now apply Theorem 6, where

I(Wk;XW) = h(Nk ⊕W )− h(Nk ⊕ ζ)

= log 2π − h(Nk ⊕ ζ). (2.75)

The second term can be bounded as

h(Nk ⊕ ζ) ≥ h

(
Nk ⊕ ζ

∣∣∣∣ ∞∑
k+2

N ′
j

)
= h(N ′

k+1 ⊕ ζ), (2.76)

using the fact that more conditioning reduces the differential entropy. Due to the structure of the

distribution of N ′
k+1 and Z, the density of N ′

k+1 ⊕ ζ can be written down explicitly as

f(N ′
k+1 + ζ) =



(2π)−1(1− ϵ)[
−π,−γ−k−1π

)
∪
[
γ−k−1π, π

)
(2π)−1(γk+1ϵ+ (1− ϵ))[

−γ−k−1π, γ−k−1π
)
.

(2.77)

Thus we can bound h(Nk ⊕ ζ) and subsequently I(Wk;XT ) using this density function, which

eventually gives

E[XW ] ≤
√
2π

∞∑
k=0

γ−k
(
(1− ϵ)(1− 1

γk+1
) log(1− ϵ)

+

[
ϵ+

1− ϵ
γk+1

]
log
[
γk+1ϵ+ 1− ϵ

] )1/2
. (2.78)
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When choosing γ = 2, this is almost identical to the result given in [4] using the partition-based

chaining, except the slightly better coefficient
√
2π instead of 6

√
2. This improved coefficient is

mainly due to the more explicit bound on d(Wk,Wk−1) inherent in the Euclidean space, instead of

the same distance derived in a generic metric space.

One advantage of the proposed approach is that we can further optimize γ over R. Observe

that the series has a faster-decaying tail if γ is large, however, the first term, i.e., k = 0, approaches

∞ when γ → ∞. Thus there is an optimal γ value in between for this bound. The numerical

result suggests γ∗ ≈ 3.75, which provides a slight improvement compared to γ = 2. As noted

in [4], in this toy setting, we can calculate the exact true value E[XW ] = ϵ
√
π
2

. A comparison

of several bounds is given in Table. 2.2. To obtain (2.78), we have relaxed this bound in (2.76)

for convenience using a simple property of the entropy function, and therefore loosen the bound to

some extent. Moreover, we have chosen to use the geometric sequence γk to produce the stochastic

chain, and it is possible other sequences can produce tighter bounds.

The individual sample mutual information bound in [8] requires multiple samples. In this phase

retrieval example, however, there is only one sample G2, and this bound degrades to the mutual

information-based bound in [3], which in this case is vacuous since I(W ;XW) is infinite.

2.5 Exactly Tight Information-Theoretic Generalization Error Bound for the Quadratic

Gaussian Problem

2.5.1 Variational representation and Quadratic Gaussian Problem

2.5.1.1 Variational Representation of the KL Divergence

The Donsker-Varadhan variational representation of KL divergence for a random scalar-valued

random function F = f(X) on a random variable X is given by

D(P ||Q) = sup
f

{
λEP [F ]− lnEQ[e

λF ]
}
,where equality achieved when λF ∗ = ln

dP

dQ
+ C,
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or in the inequality form

λEP [F ] ≤ D(P ||Q) + lnEQ[e
λF ], ∀λ ∈ R. (2.79)

This inequality is sometimes also referred to as the change of measure inequality. Note that P and

Q can be the distributions of the underlying random variable X , or more directly, the distributions

of F . In the context of bounding generalization error, examples are F = ℓ(W,Z) or F = Lξ(W )−

ℓ(W,Z).

The centered cumulant generating function of a random variable F is

ΛF,Q(λ) = lnEQ

[
eλF
]
− λEQ[F ]. (2.80)

Combining it with the inequality above gives

D(P ||Q) + ΛF,Q(λ) ≥ λEP [F ]− λEQ[F ], λ ∈ R. (2.81)

Now if we choose F = f(W,Z), then for anyZ = z the conditional version of the above inequality

is

D(PW |Z=z||QW |Z=z) + ΛF |Z=z,QW |Z=z
(λ) ≥ λEP [F |Z = z]− λEQ[F |Z = z], λ ∈ R, (2.82)

where

ΛF |Z=z,QW |Z=z
(λ) = lnEQW |Z=z

[
eλF |Z = z

]
− λEQW |Z=z

[F |Z = z]. (2.83)

We will simply replace Z = z in the condition by Z when the exact conditional value realization

is not specified.

With a negative λ we therefore obtain

EQ[F ]− EP [F ] ≤ inf
λ<0

{
D(P ||Q) + ΛF,Q(λ)

−λ

}
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= inf
λ>0

{
D(P ||Q) + Λ−F,Q(λ)

λ

}
, (2.84)

where equality is achieved if and only if

ln
dP

dQ
∈
{
λ−1F + b : λ ∈ R−, b ∈ R

}
. (2.85)

When P is the joint distribution of underlying random variables, and Q is the product distribution

of their marginals, then D(P ||Q) reduces to a mutual information term. Similarly, with a positive

λ, we obtain

EP [F ]− EQ[F ] ≤ inf
λ>0

{
D(P ||Q) + ΛF,Q(λ)

λ

}
. (2.86)

To be consistent with past results in the literature, we will sometimes use the following defini-

tion. The Legendre dual function on the interval [0, b) for some 0 < b ≤ ∞ is

Λ∗(x) := sup
λ∈[0,b)

(λx− Λ(λ)). (2.87)

Λ(λ) is convex and Λ(0) = Λ′(0) = 0. It can be shown that the inverse dual function is

Λ∗−1(y) = inf
λ∈[0,b)

(
y + Λ(λ)

λ

)
. (2.88)

2.5.1.2 The Quadratic Gaussian Problem

In the canonical Gaussian-mean-estimation problem, data samples are Z1, Z2, . . . , Zn
i.i.d.∼ ξ =

N(µ, σ2) and the sample-average algorithm chooses the following hypothesis W = 1
n

∑n
i=1 Zi.

Then the expected generalization error is

gen(ξ, PW |Z[n]
) = E

[
(Z̃ −W )2 − 1

n

n∑
i=1

(Zi −W )2

]
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=
1

n

n∑
i=1

E
(
σ2 + µ2 − Z2

i + 2(Zi − µ)W
)
, (2.89)

where Z̃[n] are n i.i.d. testing samples, independent of everything else, and the expectation is with

respect to distribution PZ̃PZn,W , where the joint distribution PZn,W is induced by the algorithm

W = 1
n

∑n
i=1 Zi. It is straightforward to show that the true generalization error is 2σ2/n.

In this work, we shall consider a slightly more general version of the sample-average algorithm

that W =
∑n

i=1 αiZi+N , where N is a Gaussian noise∼ N(0, σ2
N), independent of Z[n], and αi’s

are nonnegative weights such that
∑n

i=1 αi = 1. It can be shown that the true generalization error

is also 2σ2/n (see the Appendix).

2.5.2 A New Information-Theoretic Generalization Error Bound

The new information-theoretic generalization error bound is summarized in the following the-

orem.

Theorem 9. Let Fi = Lξ(W )− ℓ(W,Zi), then we have

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

EPZi

[
inf
λ>0

D(PW |Zi
∥Qi

W ) + ΛFi|Zi,Qi
W
(λ)

λ

∣∣∣∣
]

=
1

n

n∑
i=1

EPZi

[
Λ∗−1

Fi|Zi,Qi
W

(
D(PW |Zi

∥Qi
W )
)]
, (2.90)

for any Qi
W,Zi

= Qi
WPZi

, i = 1, 2, . . . , n, i.e., a distribution Qi where W is independent of Zi.

The reference distribution Q can be optimized, which would provide the tightest bound for a

fixed learning algorithm. This bears a certain resemblance to those used in [30] which considers

the computation of tight generalization bound using the PAC-Bayesian approach.

Proof. We start from

gen(ξ, PW |Z[n]
) =

1

n

n∑
i=1

E
[
(ℓ(W, Z̃i)− ℓ(W,Zi))

]
(2.91)

=
1

n

n∑
i=1

E [Lξ(W )− ℓ(W,Zi))] , (2.92)
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and consider each summand on the right-hand side

EPW,Zi
[Lξ(W )− ℓ(W,Zi)] = EPZi

[
EPW |Zi

(
(Lξ(W )− ℓ(W,Zi)

∣∣Zi

)]
≤ EPZi

[
inf
λ>0

D(PW |Zi
||Qi

W ) + ΛFi|Zi,Qi
W
(λ)

λ
+ EQi

W

(
(Lξ(W )− ℓ(W,Zi)

∣∣∣∣Zi

)]

= EPZi

[
inf
λ>0

D(PW |Zi
||Qi

W ) + ΛFi|Zi,Qi
W
(λ)

λ

]
, (2.93)

where the first equality is by the tower rule, the inequality is by (2.82), and the second equality is

due to that for any algorithm QW |Z[n]
that is independent of Z[n],

gen(ξ,QW |Z[n]
) = EQ

[
Lξ(W )− LZ[n]

(W )
]
= 0. (2.94)

Summing over i gives the bound stated in the theorem.

As will be shown in the next section, this bound is exactly tight for the quadratic Gaussian

setting, and therefore, it can be viewed as a tight bound in the sense that it cannot be strictly

improved uniformly, either in terms of the constant or in the scaling. This bound can be loosened

in several ways, which are stated in the following corollaries.

Corollary 3. Let Fi = Lξ(W )− ℓ(W,Zi), then we have

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

inf
λ>0

E

[
D(PW |Zi

∥Qi
W ) + ΛFi,Qi

W
(λ)

λ

]

≤ inf
λ>0

[
1

n

n∑
i=1

E

[
D(PW |Zi

∥Qi
W ) + ΛFi,Qi

W
(λ)

λ

]]
, (2.95)

for any Qi
W,Zi

= Qi
WPZi

, i = 1, 2, . . . , n.

The first inequality is obtained by exchanging expectation and the infimum operation, and the

second is obtained by exchanging the summation and the infimum.
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Corollary 4. Let Fi = Lξ(W )− ℓ(W,Zi), then we have

gen(ξ, PW |Z[n]
) ≤ E inf

λ>0

[
1

n

n∑
i=1

[
D(PW |Zi

∥Qi
W ) + ΛFi,Qi

W
(λ)

λ

]]

≤ inf
λ>0

[
1

n

n∑
i=1

E

[
D(PW |Zi

∥Qi
W ) + ΛFi,Qi

W
(λ)

λ

]]
(2.96)

for any Qi
W,Zi

= Qi
WPZi

, i = 1, 2, . . . , n.

The first inequality is obtained by exchanging the expectation and the summation, and the

second by exchanging the infimum and the expectation.

Remark. The second bounds in Corollaries 3 and 4 are the same, while the first bounds are not

directly comparable.

Notice that when Qi
W,Zi

= PW ⊗ PZi
, i.e., the product of the marginals of PW,Zi

, we have

E[D(PW |Zi
∥Qi

W )] = I(W ;Zi). This leads to the following corollary.

Corollary 5. Let Fi = Lξ(W )− ℓ(W,Zi), then we have

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

inf
λ>0

[
I(W ;Zi) + EΛFi,PW

(λ)

λ

]
≤ 1

n

n∑
i=1

inf
λ>0

[
I(W ;Zi) + ΛFi,PWPZi

(λ)

λ

]
,

=
1

n

n∑
i=1

Λ∗−1
Fi,PWPZi

(I(W ;Zi)) (2.97)

where the second inequality is due to the concavity of the ln(·) function.

By exchanging the infimum and the summation, we straightforwardly obtain further that

gen(ξ, PW |Z[n]
) ≤ inf

λ>0

[
1

n

n∑
i=1

[
I(W ;Zi) + EΛFi,PW

(λ)

λ

]]

≤ inf
λ>0

[
1

n

n∑
i=1

[
I(W ;Zi) + ΛFi,PWPZi

(λ)

λ

]]
. (2.98)
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The second bound in (2.97) is quite similar to the main theorem in [8]. However, there is a

major difference even when we assume the reference distribution Q is the same as the product of

the marginals in P : the function F we choose to bound is different.

2.5.3 Bounding the Quadratic Gaussian Problem Generalization Error

2.5.3.1 Exactly Tight Bounds for the Quadratic Gaussian Setting

The expected generalization error of interest in the quadratic Gaussian setting is

gen(ξ, PW |Z[n]
) = E

[
1

n

n∑
i=1

E
[
σ2 + µ2 − Z2

i + 2(Zi − µ)W |Zi

]]
. (2.99)

For any fixed i, define

Fi = fZi
(W ) := σ2 + µ2 − Z2

i + 2(Zi − µ)W.

Note the conditional distribution

W |Zi
P∼ N

(
µ+ αi(Zi − µ),

∑
j ̸=i

α2
jσ

2 + σ2
N

)
. (2.100)

We will choose the reference distribution Qi
W as

W
Qi

W∼ N

(
µ,
∑
j ̸=i

α2
jσ

2 + σ2
N

)
, (2.101)

which is indeed independent of Zi.

Remark. In the reference distribution Qi
W,Zi

, W and Zi are independent, and the marginal

distribution Qi
W is not the same as that marginalized from PW,Z[n]

. More specifically, the latter is

PW ∼ N

(
µ,

n∑
i=1

α2
iσ

2 + σ2
N

)
,

which can be compared with (2.101).
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With these conditional distributions, we can derive (see appendix) that

D(PW |Zi
||Qi

W ) = α2
i (Zi − µ)2

1

2
∑

j ̸=i α
2
jσ

2 + 2σ2
N

;

ΛFi,Qi
W
(λ) = 2(Zi − µ)2

(∑
j ̸=i

α2
jσ

2 + σ2
N

)
λ2. (2.102)

Therefore

E[D(PW |Zi
||Qi

W )] = α2
iσ

2 1

2
∑

j ̸=i α
2
jσ

2 + 2σ2
N

;

E[ΛFi,Qi
W
(λ)] = 2σ2

(∑
j ̸=i

α2
jσ

2 + σ2
N

)
λ2. (2.103)

Applying the first bound in Corollary 3, we obtain

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

inf
λ>0

E

[
D(PW |Zi

∥Qi
W ) + ΛFi,Qi

W
(λ)

λ

]

=
1

n

n∑
i=1

inf
λ>0

[
E[D(PW |Zi

∥Qi
W )] + E[ΛFi,Qi

W
(λ)]

λ

]

=
2σ2

n
, (2.104)

where the last equality is by choosing the minimizer λ∗i as

λ∗i =
αi

2
∑

j ̸=i α
2
jσ

2 + 2σ2
N

. (2.105)

In contrast, the second bound in Corollary 3 and the first bound in Corollary 4 are not tight for

general assignments of αi’s, due to the fact that the optimal λ∗i is index-dependent. In the extreme

case, consider setting α1 = 1 and αi = 0 for i = 2, 3, . . . , n. Then the second bound in Corollary
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3 gives

gen(ξ, PW |Z[n]
) =

1

n
inf
λ>0

 σ2

2σ2
N
+ 2(n− 1)σ2 (σ2 + σ2

N)λ
2 + 2σ2σ2

Nλ
2

λ


=

2σ2

n

√
2(n− 1) (σ2 + σ2

N) + σ2
N

2σ2
N

, (2.106)

which is of order O(1/
√
n). However, when αi = 1/n, this dependence disappears and the

loosened bounds also become tight. Indeed, consider the second bound in Corollary 3 for this

case, we have

gen(ξ, PW |Z[n]
) =

1

n
inf
λ>0

[∑n
i=1(E[D(PW |Zi

∥Qi
W )] + E[ΛFi,Qi

W
(λ)])

λ

]
=

2σ2

n
, (2.107)

where the last step is obtained by choosing

λ∗ =
αi

2
∑

j ̸=i α
2
jσ

2 + 2σ2
N

=
n

2(n− 1)σ2 + 2nσ2
N

. (2.108)

2.5.3.2 Looseness of Mutual Information Based Bounds

One remaining question is whether we can obtain a tight or asymptotically tight generalization

error bound in the quadratic Gaussian setting using a mutual-information-based bound. To under-

stand this issue, we consider the bounds in Corollary 5 assuming the coefficients αi = 1/n for

i = 1, 2, . . . , n. Note that in this case, the choice of the reference distribution Qi
W is fixed as the

marginal of PW .

The various term we need when applying Corollary 5 in this setting can be shown to be (see

the appendix)

I(W ;Zi) =
1

2
log

n

n− 1

EΛFi,Qi
W
(λ) =

2σ4(n− 1)

n2
λ2

49



ΛFi,Qi
W,Zi

(λ) = λσ2 − 1

2
log

[
1− 2

(
2λ2σ4

n
− λσ2

)]
.

With these quantities, it follows that the first bound in Corollary 5 is

gen(ξ, PW |Z[n]
) ≤ 2σ2

n

√(
log

n

n− 1

)
(n− 1). (2.109)

The bound is of order O(1/n); in fact, it is asymptotically optimal in the sense that it approaches

2σ2

n
. Therefore, the first mutual-information-based bound in Corollary 5 does not lose the tightness

in a significant manner compared to the KL-based bound of those in Corollaries 3 and 4.

The second bound in Corollary 5 has the form

gen(ξ, PW |Z[n]
) ≤ σ2 + inf

λ>0

[
1

2λ
log

n

n− 1
− 1

2λ
log

[
1− 2

(
2λ2σ4

n
− λσ2

)]]
, (2.110)

for any δ ∈ (0, 1/2], and any ϵ > 0, by choosing λ = 1/(2nδσ2), it can be seen that for sufficiently

large n, we have gen(ξ, PW |Z[n]
) ≤ (1 + ϵ) 2σ2

n1−δ . Therefore, the bound can be also viewed as

asymptotically optimal.

Similarly, we can apply the bounds in (2.98). Since in this case, the optimal choice of λ does

not depend on the index-i, they are also asymptotically optimal. It should be noted that when the

weight coefficients αi are not chosen to be uniform, then the optimal λ becomes dependent on

the index i, and the bounds in (2.98) will be looser, in a similar manner as that for the KL-based

bounds.

2.6 Conclusion

We proposed an information-theoretic generalization error bound, referred to as the ICIMI

bound, based on a combination of the error decomposition technique and the conditional mutual

information structure. Due to the reduced information content in the conditioning term, the pro-

posed bound can be tighter, and in some cases significantly tighter, than several existing bounds.

Particularly, when the loss function is bounded, it can be shown that the proposed bound is always
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tighter than the CMI and the CIMI bounds. A conditional decoupling lemma is provided which

leads to a unified framework to study and compare these bounds, and it may be of independent in-

terest. As applications, we studied a logistic regression setting where the mutual information value

needs to be estimated from the data and also analyzed the SGLD algorithm and derived an upper

bound on its generalization error with minimum restrictions on the loss function. We also proposed

a new chaining-based approach to bound the generalization error by replacing the hierarchical par-

titions with a stochastic chain. The proposed approach can firstly remove naturally the restriction

for the metric space to be bounded, and secondly, it helps to simplify the computation, and lastly,

it can remove the geometric constraints in designing the hierarchical partitions in some cases. Two

examples are used to illustrate that the proposed approach can overcome some difficulties in ap-

plying the chaining mutual information approach. The roles that chaining can play in bounding

generalization error in conjunction with other information-theoretic approaches, such as the con-

ditional mutual information [9], information density [31], and Wasserstein distance [32], as well

as the possible application in noisy and stochastic learning algorithms, call for further research.
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3. APPROXIMATE TOP-M ARM IDENTIFICATION WITH HETEROGENEOUS

VARIANCES∗

Besides capturing the interplay between learning algorithms and samples as illustrated in Chap-

ter 2, information measures can also be useful to characterize the complexity of the problems. In

this chapter, we consider the (ϵ, δ) top-m arm identification problem, where the reward variances

are heterogeneous. We propose an optimal divide-and-conquer style algorithm with a matching

lower bound. The characterized worst-case sample complexity, where the variance heterogeneity

is measured by an Entropy-like function.

3.1 Preliminary

System model: We largely follow the canonical sub-Gaussian bandit model, except for the addi-

tional component related to the reward variances. A bandit instance I is represented by a set of arm

indices [n] := {1, 2, . . . , n} and the tuple of reward distributions (ν1, ν2, . . . , νn). For any i ∈ [n],

pulling the i-th arm returns a reward observation, which is independently sampled from distribu-

tion νi, where νi is a sub-Gaussian distribution with mean µi and variance proxy σ2
i . A random

variable X follows some σ2-sub-Gaussian distribution, if lnE[eλ(X−E[X])] ≤ σ2λ2

2
, ∀λ ∈ R, and

σ2 is called the variance proxy. An arm is ϵ-approximate top-m if the mean reward of that arm

is at least maxmi∈[n] µi − ϵ, where maxmi∈[n] indicates the m-th largest (mean reward) value among

the arms in [n]. With the knowledge of variance proxy values σ2
1:n, but without the knowledge of

mean values µ1:n, the agent actively learns the parameters of the sub-Gaussian bandit instance I

by observing independent reward samples. When there is no ambiguity from the context, we omit

“proxy" and simply refer to σ2
1:n as the reward variances.

(ϵ, δ) top-m arm identification: In the (ϵ, δ) top-m arm identification problem, the agent is re-

quired to identify some subset R ⊂ [n] with |R| = m, such that, with probability at least 1 − δ,
∗Part of this chapter is reprinted with permission from “Approximate top-m arm identification with heteroge-

neous reward variances,” by Rudia Zhou and Chao Tian, 2022, International Conference on Artificial Intelligence and
Statistics, pp. 7483–7504, PMLR, Copyright © Ruida Zhou and Chao Tian [33].
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any arm in R is ϵ-approximate top-m.

Algorithm class: Taking the parameters (ϵ, δ,m, [n], σ2
1:n) as input, an algorithm A deployed by

the agent is represented by a tuple (πt, ρt)t≥1. During the learning process, the function πt selects

an arm in [n] based on the inputs of the algorithm as well as the previous observations before

time step t (i.e., the arms that were pulled). The function ρt decides whether to stop based on

the inputs of the algorithm as well as the available observations (the current observation and the

previous observations before time step t). If ρt decides to stop, it returns a set of arms RA ⊂ [n];

otherwise, the process continues. Let T A be the time that the process stops, which is the number of

samples observed by algorithm A. We only study the valid algorithms that solve the (ϵ, δ) top-m

arm identification when dealing with any bandit instance.

Worst-case sample complexity: The number of samples observed by the algorithm T A is a stop-

ping time, whose expectation the agent aims to minimize. We study the worst-case sample com-

plexity for (ϵ, δ) top-m arm identification, which is an intrinsic quantity that measures the difficulty

of the problem, and thus independent of the algorithm and µ1:n. Formally, the worst-case sample

complexity of the (ϵ, δ) top-m arm identification problem under algorithm inputs (ϵ, δ,m, [n], σ2
1:n)

is

SC(ϵ, δ,m, [n], σ2
1:n) := inf

A
sup

I∈I(σ2
1:n)

EI [T
A], (3.1)

where the infimum is taken over all valid algorithms, the supremum is taken over the instance class

I(σ2
1:n) containing all the distribution tuples ν1:n with variances σ2

1:n, and the subscript I in the

expectation EI [·] indicates that it is with respect to the bandit model I .

Measure of heterogeneity: For any positive vector a1:n, define the entropy function as Ent(a1:n) :=

−
∑n

j=1 âi ln âi with âi =
aj∑n
i=1 ai

. It measures the heterogeneity of the vector a1:n, and takes value

within (0, ln(n)]. Note that the entropy function is usually defined on the probability simplex, and

we slightly abused the notation by defining it for a positive vector. We study the worst-case sample

complexity, which is gap-independent.
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Related works: Multi-armed bandit problems have been extensively studied in the machine learn-

ing community in the past decades. A canonical setting is to maximize the cumulative reward,

whose asymptotically optimal behavior was first characterized in the seminal work by [34]. Good

tutorials and books [35–37] are readily available.

An alternative setting is to instead identify the best arm. There are in general two lines of

research: minimizing the misidentification probability within a fixed budget of samples [38–40],

and fast identification with a fixed confidence guarantee [41]. The (ϵ, δ) best arm identification

problem belongs to the latter and was introduced in [42, 43], where several elimination-based

algorithms, such as naive elimination, successive elimination, and median elimination algorithms,

were proposed. The median elimination algorithm was shown to be worst-case optimal for which

a matching lower bound was derived by [44]. The asymptotic (large number of arms) optimal

elimination algorithm was recently discovered [45], which was inspired by the idea of identifying

the “good arms” [46]. The case of exact best arm identification, i.e., ϵ = 0, motivates algorithms

that adapt to the underlining model which usually perform well in an instance-dependent manner

[47–51].

There are multiple variants of the problem [52–56]. One of the most natural generalizations

of the best arm identification problem is to identify multiple best arms. The (ϵ, δ) top-m arm

identification was studied in [57], in which an algorithm named “halving" was proposed, and it

bears similarity to the median elimination algorithm. It was later shown that the halving algorithm

is indeed worst-case optimal [58]. Though more adaptive algorithms were proposed later, such as

LUCB [57] and UGapE [58, 59], they are not worst-case optimal. For the case of exact top-m arm

identification, efforts toward understanding the instance-dependent sample complexity were also

made [60–62].

Gaussian rewards with heterogeneous variances was considered in the earliest work on best

arm identification [63] in the fixed confidence setting, though without a theoretical analysis of the

stopping time. The possible variance heterogeneity among arms gained attention recently in the

fixed budget setting [64], where the confidence bounds are designed based on the central limit
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theorem. Identifying the best arms in multiple bandits with possible heterogeneous variances was

studied in the fixed budget setting [65], where an elimination-based algorithm was proposed to

take variances into designing confidence bound. In addition to the fixed budget setting, most re-

cently [66] studied the best arm identification with unknown heterogeneous variances in the fixed

confidence setting. They assumed the support of reward distribution is bounded, and proposed

an elimination-based algorithm by first estimating the variances (with known upper bound on the

variances) and then utilizing the estimated variances in identifying the unique best arm based on

Bernstein-style confidence bounds. The algorithm achieves near-optimal instance-dependent per-

formance. In comparison, we aim to study the worst-case sample complexity with known variance

proxies as inputs (the support of reward distribution may be unbounded), in the top-m identifica-

tion problem. We propose an optimal algorithm with an exact matching lower bound and studied

the impact of variances transition from the homogeneous setting to the heterogeneous setting in

terms of the parameter m.

3.2 Worst-case Sample Complexity

The main result of this work is the characterization of the worst-case sample complexity

SC(ϵ, δ,m, [n], σ2
1:n). To present this result, we first introduce some additional notation. Let

σ := mini∈[n] σi, and partition [n] into k disjoint subsets G1, . . . , Gk, such that for any j ∈ [k],

Gj := {i ∈ [n] : 2j−1 ≤ σ2
i /σ

2 < 2j}. (3.2)

Define two disjoint sets

Gm := ∪j:|Gj |>2mGj, Gl := ∪j:|Gj |≤2mGj, (3.3)

where | · | denotes the cardinality of the set. For each j with Gj ⊂ Gl, let G′
j = Gj; for each j

with Gj ⊂ Gm, select G′
j ⊂ Gj with |G′

j| = 2m, and denote Gr := ∪j≥1G
′
j as a subset of the

arms, such that Ent (σ2
Gr) is maximized. (The superscripts of Gm, Gl, Gr indicate “more", “less"
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and “reduced", respectively).

The worst-case sample complexity SC(ϵ, δ,m, [n], σ2
1:n) is summarized in the following theo-

rem.

Theorem 10. Suppose n > 2m, ϵ > 0 and 0 < δ < 0.1, then the worst-case sample complexity is

SC(ϵ, δ,m, [n], σ2
1:n) = Θ

∑
i∈[n]

σ2
i

ϵ2
ln

1

δ
+
∑
i∈Gm

σ2
i

ϵ2
ln(m) +

∑
j∈Gl

σ2
j

ϵ2
Ent(σ2

Gr)

 . (3.4)

The following lemma upper bounds the entropy Ent(σ2
Gr) in the third component.

Lemma 6. For any m ≥ 2, Ent(σ2
Gr) ≤ 8 ln(m).

This lemma indicates that the worst-case sample complexity in the heterogeneous variance

setting is upper bounded by O
(∑

i∈[n]
σ2
i

ϵ2
ln m

δ

)
in general. In a certain sense, the heterogeneity

makes the problem “easier" to solve. To further illustrate this point, let us consider two special

cases:

• When the variances are more homogeneous, e.g., in the extreme case σ2
i = σ2, ∀i ∈ [n],

we have Gm = [n] and Gl = ∅. Theorem 10 naturally degrades to the worst-case sample

complexity in the homogeneous setting characterized in [58], which is Θ
(

nσ2

ϵ2
ln m

δ

)
.

• When the variances are highly heterogeneous, e.g., in the extreme case |Gj| = 1, ∀j =

1, 2, . . . , k, we have Gm = ∅ and Gl = [n]. Theorem 10 shows that the worst-case sample

complexity is Θ
(∑

i∈[n]
σ2
i

ϵ2
ln 1

δ

)
, which is independent of m.

Comparing the two cases and assuming the sum of the variances remains the same, the latter clearly

has a more desirable sample complexity. The sets Gm and Gl describe the transition between the

homogeneous and the heterogeneous. In the rest of this article, we present the optimal algorithm

and the matching lower bound to establish Theorem 10.
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3.3 Algorithms

We first revisit several existing algorithms designed mostly under the assumption of homoge-

neous variances. By adapting them to the heterogeneous variance case, we analyze their advantages

and disadvantages. As will become clear shortly, these adapted algorithms still perform well in cer-

tain respective cases. Based on this observation, we will propose an optimal divide-and-conquer

style algorithm.

3.3.1 Adapting Existing Algorithms

3.3.1.1 Weighted naive elimination:

In this adapted algorithm, the agent simply pulls each arm-i a total of 2σ2
i

(ϵ/2)2
ln 1

ωi
times, cal-

culates the sample mean µ̂i, and returns the m arms with the largest sample means. We call it

“weighted” because the numbers of pulls for the arms are determined by the reward variances σ2
1:n

and the confidence parameters ω1:n. The parameters ω1:n need to be optimized in order to pro-

vide the performance guarantee, and the following lemma provides one such assignment of the

optimized ω1:n.

Lemma 7. Let ωi = δ
σ2
i∑n

j=1 σ
2
j
, the weighted naive elimination algorithm takes

8
∑
i∈[n]

σ2
i

ϵ2

(
ln

1

δ
+ Ent(σ2

1:n)

)
(3.5)

samples, and solves the (ϵ, δ) top-m arm identification problem for any ϵ > 0 and 0 < δ < 1.

We will use WNElim(ϵ, δ,m, [n], σ2
1:n) to denote the weighted naive elimination algorithm with

the choices of ω1:n in Lemma 7. The entropy function Ent(σ2
1:n) appears naturally as a multiplica-

tive factor in the second item of Equation (3.5), which measures the heterogeneity of the variances.

If the variance heterogeneity is high, the entropy term Ent(σ2
1:n) can be significantly less than log n.

As mentioned earlier, when σ2
i = 2i, the entropy term is O(1), i.e., no longer a function of n and

m. On the other hand, by the principle of maximum entropy [67], it has the maximum value ln(n)

when the variances are homogeneous. Thus the weighted naive elimination algorithm will provide
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good performance when the arm variances are highly heterogeneous but will lose efficiency when

they are more homogeneous.

3.3.1.2 Adapted median elimination:

Median Elimination (“Halving" algorithm in [57]) is known to achieve the worst-case optimal

performance in the homogeneous variance setting. One simple method to adapt it to the heteroge-

neous setting is to ignore the knowledge of the heterogeneity, and simply assume that all the arms

have the largest variance maxi∈[n] σ
2
i . The original median elimination algorithm can be applied

without any change, and the expected number of samples taken is thusO
(

nmaxi∈[n] σ
2
i

ϵ2

(
ln 1

δ
+ lnm

))
,

as shown in [57].

If the variances are more homogeneous, e.g., σ2
i /σ

2
j ≤ 2,∀i, j ∈ [n], then

∑
i∈[n] σ

2
i ≤

nmaxi∈[n] σ
2
i ≤ 2

∑
i∈[n] σ

2
i and the expected number of samples is O

(∑
i∈[n] σ

2
i

ϵ2

(
ln 1

δ
+ lnm

))
.

For the same example, the weighted naive elimination uses O
(∑

i∈[n] σ
2
i

ϵ2

(
ln 1

δ
+ lnn

))
samples.

Thus this simple adaptation of the median elimination algorithm is able to perform well for the

highly homogeneous case but will induce a loss of performance for the more heterogeneous cases.

3.3.1.3 Adapting other algorithms:

The adaptation of several instance-dependent algorithms, such as LUCB and UGapE, is straight-

forward. For the problem in consideration, both algorithms requireO
(∑

i∈[n] σ
2
i

ϵ2

(
ln 1

δ
+ ln

∑
i∈[n] σ

2
i

ϵ2

))
number of samples in expectation in the worst case. They are not worst-case optimal in the homo-

geneous variance setting, and certainly not in the heterogeneous variance setting since the latter is

a more general setting.

3.3.2 The Optimal Variance-Grouped MedElim Algorithm

It was shown in the previous subsection that the weighted naive elimination algorithm and

the median elimination algorithm have advantages in the respective cases. In order to retain the

advantages of both algorithms, we take a “divide and conquer" approach. Recall the minimum

variance is σ = mini∈[n] σi, and the disjoint subsets G1, . . . , Gk form a partition of [n], and for any
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j ∈ [k],

Gj =
{
i ∈ [n] : 2j−1 ≤ σ2

i /σ
2 < 2j

}
. (3.6)

The largest variance ratio within each subset is at most 2, while the variances among subsets

are well separated. We wish to apply median elimination to each subset and select “good" arms

within that subset, and then apply weighted naive elimination over all the selected “good" arms.

However, the “good" arms within a subset can be “bad" in terms of the overall arm set [n]. To see

this, consider the following example instance: m arms have a mean reward ϵ, and the rest of n−m

arms have a mean reward −ϵ. Then any ϵ-approximate top-m arms need to have mean ϵ. Suppose

the subset G1 contains m′ < m arms with mean ϵ and some other arms with mean −ϵ. Ideally, we

would like to apply median elimination to find those top-m′ arms with mean ϵwithinG1. However,

parameter m′ is not known, and we will apply median elimination on G1 by selecting some l arms.

If l < m′, then the returned l arms will not include all the top-m′ arms in G1, and therefore fail to

identify the final top-m arms. On the other hand, if l > m′, then maxli∈G1
µi = −ϵ. Any arm in

G1 is ranked in the top-l within G1, and the problem is trivial to solve. The returned l arms, even

though are top-l within G1, are not guaranteed to contain those top-m′ arms with mean reward ϵ.

To successfully apply the divide-and-conquer approach, we need a “blind” algorithm that re-

turns a subset containing the approximate top-m′ arms, ideally with a graceful transition of the

confidence values.

Definition 2. The algorithm A(ϵ, δ,m, [n], σ2
1:n) is said to satisfy the (ϵ, δ′) top-m′ condition, where

m′ ≤ m, if with probability at least 1− δ′, maxm
′

j∈RA µj ≥ maxm
′

j∈[n] µi − ϵ.

The condition is equivalent to the standard (ϵ, δ) top-m arm identification requirement, if m′ =

m and δ′ = δ. We first restate the median elimination algorithm presented in Algorithm 1 (the

halving algorithm [57]), with the necessary changes on the constants and the variance values taken

into account (note the input 2m).

The following lemma summarizes the sample complexity of the MedElim algorithm with the
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Algorithm 1: MedElim(ϵ, δ, 2m, [n], σ2
1:n)

Initialize S1 = [n], ℓ = 1 and ϵℓ = (ϵ/3)3
ℓ

4ℓ
, δℓ =

δ/4
2ℓ

while |Sℓ| > 2m do
Pull arm-i ti,ℓ =

2σ2
i

(ϵℓ/2)2
ln m

δℓ
times and calculate their sample mean µ̂i,ℓ for each i ∈ Sℓ

Update the candidate set as Sℓ+1 = argmax
1:max(⌊|Sℓ|/2⌋,2m)
i∈Sℓ

µ̂i,ℓ

Let ℓ = ℓ+ 1
Return Sℓ

aforementioned transition in the confidence values for m′ = 1, 2, . . . ,m for the 2m return arms.

This algorithm will be used as a building block for the variance-grouped median elimination algo-

rithm given next.

Lemma 8. For any σ2
1:n, if maxi∈[n] σ

2
i /minj∈[n] σ

2
j ≤ 2, the MedElim algorithm has an expected

stopping time

O

(∑
i∈[n] σ

2
i

ϵ2

(
ln

1

δ
+ ln(m)

))
. (3.7)

Moreover, for any m′ ≤ m, the MedElim algorithm satisfies the (ϵ, m
′

m
δ) top-m′ condition.

Now we are in a position to provide the proposed algorithm below, which we refer to as the

variance-grouped median elimination algorithm.

Algorithm 2: V-MedElim(ϵ, δ,m, [n], σ2
1:n)

Partition [n] into groups G1, . . . , Gk by (3.6)
for j ∈ 1 : k do

Rj = MedElim(ϵ/2, δ/2, 2m,Gj, σ
2
Gj
)

Let G = ∪kj=1Rj

R = WNElim(ϵ/2, δ/2,m,G, σ2
G)

Return R

The performance of the proposed algorithm is summarized in the following theorem.
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Theorem 11. The variance-grouped median elimination algorithm solves the (ϵ, δ) top-m arm

identification problem for any ϵ > 0 and 0 < δ < 1, and the expected number of samples is

O

∑
i∈[n]

σ2
i

ϵ2
ln

1

δ
+
∑
i∈Gm

σ2
i

ϵ2
ln(m) +

∑
j∈Gl

σ2
j

ϵ2
Ent(σ2

Gr)

 . (3.8)

Proof of Theorem 11. Without loss of generality, assume [m] is the set of top-m arms. For any

j with Gj ∩ [m] ̸= ∅ and i ∈ Gj ∩ [m], arm-i must be one of top-|Gj ∩ [m]| arms in Gj . Let

m′
j = |Gj ∩ [m]| be the number of top-m arms contained in Gj . By Lemma 8, with probability at

least 1− m′
j

m
δ
2
,

max
m′

j

l∈Rj
µl ≥ max

m′
j

l∈Gj∩[m]µl − ϵ/2 ≥ maxm
l∈[n]µl − ϵ/2. (3.9)

It implies that with probability at least 1−
∑k

j=1

m′
j

m
δ
2
= 1− δ

2
, there are at least

∑k
j=1m

′
j = m arms

in G = ∪kj=1Rj that are ϵ/2-approximate top-m. In other words, event maxml∈G µl ≥ maxml∈[n] µl −

ϵ/2 occurs with probability at least 1− δ
2
.

Conditioned on this event occurring, Lemma 7 implies that with probability at least 1− δ
2
, the

returned set R of the weighted naive elimination over G = ∪kj=1Rj satisfies

min
l∈R

µl ≥ maxm
l∈Gµl − ϵ/2 ≥ maxm

l∈[n]µl − ϵ. (3.10)

Thus with probability at least 1− δ, all arms in R are ϵ-approximate top-m.

Recall the definition of Gl, Gm, Gr in Section 3.2. The total number of samples used in the

median elimination subroutine is O
(∑

i∈Gm

σ2
i

ϵ2

(
ln 1

δ
+ ln(m)

))
. The number of samples used in

the weighted naive elimination subroutine is O
(∑

i∈[n]
σ2
i

ϵ2

(
ln 1

δ
+ Ent(σ2

Gr)
))

. By Lemma 6, the

expected total number of samples isO
(∑

i∈[n]
σ2
i

ϵ2
ln 1

δ
+
∑

i∈Gm

σ2
i

ϵ2
ln(m) +

∑
j∈Gl

σ2
j

ϵ2
Ent(σ2

Gr)
)

.

An illustrative example In the following example, we show the number of required samples by
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the variance-grouped median elimination algorithm given in Theorem 11 achieves an order-wise

improvement over
∑

i∈[n] σ
2
i

ϵ2
(ln(1/δ)+Ent(σ2

1:n)) and
∑

i∈[n] σ
2
i

ϵ2
(ln(1/δ)+ln(m)). Take some integer

k ≥ 2 as an auxiliary parameter in this problem setting, and denote ℓ = ⌈log(k)⌉. Let log(m) = k

and log(n) = k2. We aim to approximately identify the top-m arms out of n arms. Among these

n arms, there are 2i arms with the same variance 2−i for each i = 0, 1, . . . , ℓ − 1, and the rest

n−
∑ℓ−1

i=0 2
i = 2k

2−2ℓ+1 arms have the same variance 2−k2ℓ/k. Then Gm is the set of arms with

variances 2−k2ℓ/k, and Gl is the set of arms with variances 2−i for i = 0, 1, . . . , ℓ − 1. It is seen

that

∑
j∈Gm

σ2
j = (2k

2 − 2ℓ + 1)2−k2ℓ/k = Θ(ℓ/k), (3.11)

∑
j∈Gl

σ2
j =

ℓ−1∑
i=0

2i2−i = ℓ = Θ(log(k)), (3.12)

which implies
∑

j∈[n] σ
2
j = Θ(log(k)). Furthermore, we can calculate that

Ent(σ2
Gr) = Θ(Ent(σ2

Gl)) = Θ(log(k)). (3.13)

Thus the number of required samples by the variance-grouped median elimination algorithm is of

order

Θ(ln(k) ln(1/δ) + ln(k)2/ϵ2). (3.14)

Since Ent(σ2
1:n) = Θ(k) and ln(m) = Θ(k), it is seen that

∑
i∈[n] σ

2
i

ϵ2
(ln(1/δ) + Ent(σ2

1:n)) and∑
i∈[n] σ

2
i

ϵ2
(ln(1/δ) + ln(m)) are of the same order

Θ(ln(k) ln(1/δ) + k ln(k)/ϵ2). (3.15)

The detailed calculation of the entropy values used above is given in the supplementary material.

Fix δ > 0 as constant, comparing the numbers of required samples in (3.14) and (3.15), which are
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of order Θ(ln(k)2/ϵ2) and Θ(k ln(k)/ϵ2), respectively, it is seen that the variance-grouped median

elimination algorithm provides an order-wise improvement in this example setting by reducing a

factor k to ln(k).

Remark. Our result establishes the theoretical optimality of the proposed algorithm through a

matching lower bound provided in the following section. However, the empirical performance of

the proposed algorithm suffers from large multiplicative factors introduced by the Median Elimi-

nation subroutine. More aggressive elimination-based algorithms, such as the algorithms proposed

in [45], can be used as a subroutine to improve the multiplicative factor while maintaining the same

order.

3.4 The Lower Bound

In the homogeneous variance setting, the previous lower bound [58] on worst-case (ϵ, δ)-PAC

top-m identification leveraged the change-of-measure technique and was proved by contradiction.

The approach leads to a large multiplicative factor and is also difficult to utilize in the hetero-

geneous variance case. The lower bound was later tightened and generalized to the instance-

dependent case in [61] and [62]. Their approach assumed that the algorithms have a uniform

preference over the arms at the beginning, which is reasonable in the homogeneous setting but not

in the heterogeneous setting.

We derive a flexible simple inequality to better take into account the heterogeneous variances,

given in Lemma 9. Applying this lemma, we formulate the lower bound as an optimization prob-

lem, whose dual formulation (Lemma 10) is then studied. The eventual lower bound is given in

the following theorem, obtained by considering several feasible solutions to the dual problem.

Theorem 12. There exists some universal constant c > 0, that for any 0 < ϵ, 0 < δ < 0.1,

m < n/2, σ2
1:n and any valid algorithm, there exists an instance with the given variances such that

the expected number of samples of the algorithm is at least

c

∑
i∈[n]

σ2
i

ϵ2
ln

1

δ
+
∑
i∈Gm

σ2
i

ϵ2
ln(m) +

∑
j∈Gl

σ2
j

ϵ2
Ent(σ2

Gr)

 . (3.16)
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3.4.1 Dual Formulation of the Lower Bound

We first introduce an inequality in the lemma below, which helps us connect the sample com-

plexity with a multi-hypothesis testing problem.

Lemma 9. For any two probability measure P,Q on the same measurable space (Ω,F), if E ∈ F

with P (E) ≥ 1− δ > Q(E), we have

Q(E) ≥ B(δ)e−
D(P ||Q)

1−δ , (3.17)

where D(·||·) is the Kullback-Leibler divergence and B(δ) = e−
Ent(δ,1−δ)

1−δ is a strictly decreasing

function with B(0.1) > 0.69.

Fix any algorithm A with inputs (ϵ, δ,m, [n], σ2
1:n) that solves the (ϵ, δ) top-m arm identification

problem. Consider the Gaussian instances where the i-th arm has a Gaussian distribution with

variance σ2
i . Denote PI as the probability measure induced by the learning process of applying

algorithm A on Gaussian bandit instance I ∈ I(σ2
1:n).

Let ϵ′ > ϵ be some parameter that can be arbitrarily close to ϵ. For any subset M ⊂ [n] with

|M | = m and any index l ∈ [n] \M , we first construct an instance Il,M ∈ I(σ2
1:n) by specifying

the reward means of each arm as follows: the l-th arm has mean 0, the arms in M have mean ϵ′,

and the rest have mean −ϵ′. The only ϵ-approximate top-m arms of instance Il,M are clearly M .

Similarly, for each subset F ⊂ [n] with |F | = m− 1 and any index l ∈ [n] \ F , we then construct

an instance Il,F ∈ I(σ2
1:n). In instance Il,F , the l-th arm has mean 0, the arms in F have mean ϵ′,

and the rest arms have mean −ϵ′. The only ϵ-approximate top-m arm set of instance Il,F is clearly

F ∪ {l}. These are the possible hypotheses we will consider.

Given an instance Il,M , if F = M \ {i} for some i ∈ M , it is clear that instances Il,M and

Il,F differ only at the i-th arm. Denote tl,F,i as the expected number of pulls of the i-th arm by

algorithm A on instance Il,F . The KL-divergence can be calculated as D(PIl,F ||PIl,M ) = 2ϵ′2

σ2
i
tl,F,i;

see Lemma 5.1 in [37] for more details. Since A solves the (ϵ, δ) top-m arm identification problem,

we have PIl,F (R
A = F ∪ {l}) ≥ 1− δ > δ ≥ PIl,M (RA = F ∪ {l}). Applying Lemma 9 on PII,F ,
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PIl,M and event {RA = F ∪ {l}} gives

PIl,M (RA = F ∪ {l}) ≥ B(δ)e−
D(PIl,F

||PIl,M
)

1−δ = B(δ)e
− 2ϵ′2

σ2
i

tl,F,i
1−δ . (3.18)

This inequality holds for any F =M \{i}with i ∈M . In addition, events {RA =M∪{l}\{i}}’s

are disjoint for any i ∈ M ∪ {l}, and they are also disjoint with the event {RA = M}. It follows

that
∑

i∈M PIl,M

(
RA =M ∪ {l} \ {i}

)
≤ 1 − PIl,M (RA = M) ≤ δ. Summing inequality (3.18)

for all i ∈M gives

δ ≥
∑
i∈M

PIl,M (RA =M ∪ {l} \ {i}) ≥
∑
i∈M

B(δ) exp

(
−2ϵ′2

σ2
i

tl,M\{i},i

1− δ

)
. (3.19)

In the worst-case, algorithm A takes at least maxF,l/∈F
∑

j /∈F∪{l} tl,F,j samples in expectation.

Any valid algorithm has to satisfy (3.19), and thus the sample complexity SC(ϵ, δ,m, [n], σ2
1:n) is

lower bounded by the optimal value of the following optimization problem:

minimize: max
F⊂[n]:|F |=m−1, l ̸∈F

∑
j /∈F∪{l}

tl,F,j (3.20)

subject to:
∑
i∈M

exp
(
−tl,M\{i},i/θi

)
≤ δ′,

∀M ⊂ [n], |M | = m, ∀l /∈M, (3.21)

where θi =
(1−δ)σ2

i

2ϵ2
,∀i ∈ [n] and δ′ = δ

B(δ)
. Though this problem is convex, it is difficult to solve

explicitly. Therefore, we consider its (restricted) dual formulation in the following lemma.

Lemma 10. For ϵ > 0, δ < 0.25, m < n/2, (σ2
i )i∈[n], SC(ϵ, δ,m, [n], σ2

1:n) ≥ 1−δ
2ϵ2
v∗, where v∗ is

the optimal value of the following optimization problem:

maximize:
∑

M⊂[n]:|M |=m

(∑
l∈M

ηM\{l}σ
2
l

)
×
(
ln
B(δ)

δ
+ Ent({ηM\{l}σ

2
l }l∈M)

)
(3.22)

subject to:
∑

F⊂[n]:|F |=m−1

ηF = 1,
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ηF ≥ 0, ∀F ⊂ [n], |F | = m− 1. (3.23)

Though the dual formulation is still difficult to solve, by the weak duality, we can derive lower

bounds for the primal problem by assigning specific feasible values to the dual variables ηF ’s. In

addition, each ηF is a probability mass function and has a clear operational meaning, which is the

worst-case prior distribution of the underlining instance being one of {Il,F}l /∈F .

3.4.2 Dichotomy of the lower bound

As shown in Theorem 12, the lower bound of the sample complexity consists of three terms

∑
i∈[n]

σ2
i

ϵ2
ln

1

δ︸ ︷︷ ︸
I

+
∑
i∈Gm

σ2
i

ϵ2
ln(m)︸ ︷︷ ︸

II

+
∑
j∈Gl

σ2
j

ϵ2
Ent(σ2

Gr)︸ ︷︷ ︸
III

. (3.24)

We will discuss each term from the viewpoint of the dual formulation in Lemma 10. The optimal

value v∗ of the optimization in Lemma 10 can be lower bounded by the average of the objective

function values v1, v2, v3 when assigning the variables certain feasible values in the dual optimiza-

tion problem, i.e., v∗ = Ω(v1 + v2 + v3). We construct three sets of feasible dual variables ηF ’s,

and the resultant values v1:3 will induce Term I-III, respectively.

It is straightforward to see that Term I can be obtained by assigning ηF ’s uniformly, and thus

we can focus on Term II and Term III. More precisely, we aim to lower bound the optimal value of

the following optimization problem:

maximize:
∑

M⊂[n]:|M |=m

(∑
l∈M

ηM\{l}σ
2
l

)
× Ent({ηM\{l}σ

2
l }l∈M) (3.25)

subject to:
∑

F⊂[n]:|F |=m−1

ηF = 1,

ηF ≥ 0, ∀F ⊂ [n], |F | = m− 1. (3.26)

Firstly, to study the sample complexity induced by σ2
Gm , we specify a feasible assignment of
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dual variables ηF ’s as follows. For anyF ⊂ Gm with |F | = m−1, let ηF =
∏

i∈F σ2
i∑

F ′⊂Gm:|F ′|=m−1

∏
j∈F σ2

i
;

and for any F ̸⊂ Gm with |F | = m − 1, set ηF = 0. Then Ent({ηM\{l}σ
2
l }l∈M) = ln(m) for any

M ⊂ Gm with |M | = m. Formally, Term II is introduced by the following lemma.

Lemma 11. The optimal value of the optimization (3.25) is lower-bounded by 1
3

∑
j∈Gm σ2

j ln(m).

Secondly, to study the complexity induced by σ2
Gl , we consider the reduced arm set Gr ⊃ Gl.

Define L ⊂ Gr with |L| = 2m as the arms with 2m largest variances in Gr. We can verify that∑
i∈L σ

2
i dominates

∑
j∈Gr σ2

j . Moreover, Ent(σ2
Gr) and Ent(σ2

L) behave similarly, and thus we

can focus on the arms in L. Rigorously, the following lemma justifies this choice.

Lemma 12. Let ηF =
(

2m
m−1

)−1
for any F ⊂ L with |F | = m−1 and ηF = 0 otherwise. The objec-

tive function of the optimization problem (3.25) is at least c′
∑

i∈Gl σ2
iEnt(σ

2
Gr) − ln(2)

∑
i∈L σ

2
i ,

for some constant c′ > 0.

The first item in Lemma 12 is exactly Term III, and the second item − ln(2)
∑

i∈Gl σ2
i can be

absorbed into Term I.

3.5 Conclusion

We studied the worst-case sample complexity of (ϵ, δ) top-m arm identification problem with

known heterogeneous reward variances. The heterogeneity of reward variances is measured by

a certain entropy-like function. We propose the variance-grouped median elimination algorithm,

which combines the advantages of the median elimination algorithm and the weighted naive elim-

ination algorithm in a divide-and-conquer manner. Matching the lower bound of the worst-case

sample complexity was devised using a dual formulation and finding suitable feasible solutions.

A natural direction is to study the problem without the knowledge of variance proxies. How-

ever, estimating a good (i.e., a valid sub-Gaussian coefficient as small as possible) variance proxy

for general sub-Gaussian distributions is still an open problem. It is due to that any coefficient in

the feasible set {σ2 : lnE[eλ(X−E[X])] ≤ σ2λ2

2
, ∀λ ∈ R} is a valid variance-proxy for the sub-

Gaussian random variable X . Ideally, we would like to estimate the best variance proxy, i.e., the
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minimum value in the feasible set. However, the variance E[(X − E[X])2] of the random variable

is not a valid variance proxy, and canonical variance estimators would not suffice. The study of a

good estimator for the variance proxy is beyond the scope of the draft.
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4. KL-REGULARIZED POLICY-GRADIENT FOR MULTI-OBJECTIVE

REINFORCEMENT LEARNING

In addition to bounding performance metrics of interest as shown in Chapter 2 and charac-

terizing the complexity of the problems as shown in Chapter 3, information measures can also

facilitate the design of algorithms. In this chapter, we consider policy optimization in single-policy

multi-objective MDPs, where the agent aims to find a policy satisfying certain criteria by policy

gradient-based algorithms. We propose an Anchor-changing Regularized Natural Policy Gradient

(ARNPG) framework, which introduces Kullback-Leibler divergences with changing anchors as

regularization.

4.1 Preliminaries

System model A Markov decision process (MDP) is represented by a tuple (S,A, P, ρ, γ, r),

where S is the state space,A the action space, P : S ×A → ∆(S) the transition kernel, ρ ∈ ∆(S)

the initial state distribution, γ ∈ (0, 1) the discount factor, and r : S × A → [0, 1] the reward

function. Given any policy π : S → ∆(A) and any reward function r : S × A → [0, 1], we define

the state value function V π
r : S → [0, 1

1−γ
], and the state-action value function Qπ

r : S × A →

[0, 1
1−γ

], as

V π
r (s) := E[

∞∑
t=0

γtr(st, at) | s0 = s, π], Qπ
r (s, a) := E[

∞∑
t=0

γtr(st, at) | s0 = s, a0 = a, π],

where expectation E is taken over the random trajectory of the Markov chain induced by the policy

π and the transition kernel P . With a slight abuse of notation, we denote V π
r (ρ) := Es∼ρ[V

π
r (s)].

Define the discounted state-action visitation distribution (state-action visitation for short) of policy

π with initial state distribution ρ by dπρ(s, a) := (1 − γ)Es0∼ρ[
∑∞

t=0 γ
tP(st = s, at = a|s0, π)]. It

∗Part of this chapter is reprinted with permission from “Anchor-changing regularized natural policy gradient for
multi-objective reinforcement learning,” by Ruida Zhou, Tao Liu, Dileep Kalathil, P. R. Kumar, and Chao Tian, 2022,
Advances in Neural Information Processing Systems, vol. 35, pp. 13584–13596, Copyright © Ruida Zhou, Tao Liu,
Dileep Kalathil, P. R. Kumar, and Chao Tian [68].
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then follows that V π
r (ρ) =

1
1−γ
⟨dπρ , r⟩ by viewing dπρ and r as |S||A|-dimensional vectors indexed

by (s, a) ∈ S × A. When it is clear from the context, we denote the state visitation distribution

by dπρ(s) := Es0∼ρ [(1− γ)
∑∞

t=0 γ
tP(st = s|s0)], which is the marginal distribution of the state-

action visitation dπρ(s, a), i.e., dπρ(s) =
∑

a∈A d
π
ρ(s, a).

We study an MDP with m objectives represented by (S,A, P, ρ, γ, r1:m), where ri : S × A →

[0, 1] is the i-th reward function for each i ∈ [m]. For simplicity, denote V π
i (·) := V π

ri
(·) and

V π
1:m(·) := (V π

1 (·), . . . , V π
m(·)). We consider parameterized policies in Π = {πθ : θ ∈ Θ}, where

Θ ⊂ Rn is the parameter space. For example, the softmax policy is πθ(a|s) = exp(θs,a)∑
a′ exp(θs,a′ )

with

Θ = R|S||A|; and neural softmax policy is πθ(a|s) = exp(NNθ(s,a))∑
a′ exp(NNθ(s,a′))

, where NNθ is some neural

network parameterized θ. Define V := {V πθ
1:m(ρ) : θ ∈ Θ} as the achievable region of value

vectors. The agent wishes to optimize the policy in Π for a given specific multi-objective criterion

on value vectors in V . For example,

1. Proportional fairness [69]: Given a1:m > 0, find v ∈ V that
∑m

i=1 ai
v′i−vi
vi
≤ 0, ∀v′ ∈ V .

2. Hard constraints [70]: Given b2:m, maximizev∈V v1, subject to vi ≥ bi,∀i = 2, . . . ,m.

3. Max-min trade-off [71]: Given c1:m > 0, maximizev∈V mini∈[m] (vi/ci).

Mirror ascent As one of the most well-known iterative optimization methods, mirror descent

(actually ascent in the context of our formulation as a maximization problem) [72, 73] is a general

class that encompasses many first-order methods in convex optimization. Given a variable x in a

compact convex set X ⊂ Rn and an ascent direction g ∈ Rn, the variational representation of the

mirror ascent update is

x′ ∈ argmax
y∈X
{⟨g, y⟩ − αBh(y||x)}, (4.1)

where Bh(x||y) := h(x) − h(y) − ⟨∇h(y), x − y⟩ is some Bregman divergence generated by

a differentiable convex function h : X → R. When analyzing the convergence of first-order

methods, certain fundamental inequalities are usually established to facilitate the proof. One such
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inequality is

⟨g, x′⟩ − αBh(x
′||x) ≥ ⟨g, y⟩ − αBh(y||x) + αBh(y||x′), ∀y ∈ X , (4.2)

which is a critical step in many previous works, e.g., [74–76].

It is desirable to construct a similar fundamental inequality for multi-objective MDPs that can

facilitate the analysis of convergence. As we will show in the next section, such an inequality can

indeed be established in a new framework, which we refer to as the Anchor-Changing Regularized

Natural Policy Gradient (ARNPG).

Denote KL-divergence between two n-dimensional probability vectors x, y by D(x||y) :=∑n
i=1 xi log(xi/yi), which is a widely-used Bregman divergence. For any policies π, π′ and state

visitation distribution d, defineDd(π||π′) :=
∑

s∈S d(s)D(π(·|s)||π′(·|s)). A uniform policy is one

which chooses actions uniformly at random.

4.2 Anchor-changing Regularized Natural Policy Gradient

Let us consider a hypothetical mirror ascent update on decision value vector vk ∈ V according

to (4.1). Given an ascent direction G̃k along which to improve vk, the updated value vector is

v′ ∈ argmax
v∈V
{⟨G̃k, v⟩ − αBh(v||vk)}. (4.3)

Suppose the value vector vk is achieved by a policy πθk , i.e., vk = V
πθk
1:m (ρ). Denote the reward

function in the ascent direction as r̃k(s, a) = ⟨G̃k, r1:m(s, a)⟩. It follows that ⟨G̃k, vk⟩ = V
πθk
r̃k

(ρ).

Note that Bh(v||vk) in (4.3) serves the role of a soft constraint on v by keeping v within a vicinity

of vk. Replacing B(v||vk) by
D

d
πθ
ρ

(πθ||πθk
)

1−γ
will induce a similar soft constraint that prefers the

vicinity of the “anchor" policy πθk . Therefore we consider replacing the variational update in (4.3)

by

θ′ ∈ argmax
θ∈Θ

{
Ṽ πθ
k,α(ρ)

}
, where Ṽ πθ

k,α(ρ) := V πθ
r̃k

(ρ)− α
Dd

πθ
ρ
(πθ||πθk)
1− γ

. (4.4)
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ARNPG Motivated by the intuition above, we propose the Anchor-Changing Regularized

Natural Policy Gradient (ARNPG) framework. At (macro) step k, the ARNPG framework deter-

mines the reward function in the ascent direction r̃k and the anchor policy πθk , which can exploit

well-performed first-order methods in convex optimization literature utilizing the features of the

specific criteria in use. With r̃k and πθk , we wish to solve for (4.4) to improve the value vector.

However the optimal solution θ′ of (4.4) is generally not determinable explicitly. ARNPG there-

fore approaches the optimal solution via a subroutine that executes a natural policy gradient (NPG)

algorithm w.r.t. the KL-regularized value function Ṽ πθ
k,α(ρ). We refer to this subroutine, given in

Algorithm 3, as InnerLoop(r̃k, πθk , α, η, tk). It iteratively updates the parameter θ(t)k for tk (micro)

steps according to the NPG update rule as in (4.5), where Fρ(θ)
† is the Moore-Penrose inverse of

the Fisher information matrix Fρ(θ) := E(s,a)∼d
πθ
ρ

[
∇θ log πθ(a|s) (∇θ log πθ(a|s))⊤

]
.

Algorithm 3: InnerLoop(r̃k, πθk , α, η, tk)

Initialize θ(0)k = θk
for t = 0, 1, . . . tk − 1 do

θ
(t+1)
k ← θ

(t)
k + ηFρ(θ

(t)
k )†∇θṼ

π
(t)
k

k,α (ρ) (4.5)

Return θ(tk)k

The choice of the number of iterations in InnerLoop (i.e., tk) involves a trade-off between the

variational update precision and the overall efficiency. On the one hand, a larger tk leads to a more

accurate approximation of the optimal solution θ′ to (4.4), but it may cause the algorithm to spend

unnecessary computational resources on the regularized objective Ṽ πθ
k,α(ρ), instead of on the true

optimization problem. On the other hand, a smaller tk saves inner loop iterations but the update

follows less closely to the underlying mirror-ascent update in improving the value vector. In our

experiments, we choose tk within 10 to strike a balance and empirically observe tk > 1 has better

performance.

We note that when tk = 1, the gradient ∇θṼ
πθk
k,α (ρ) = ∇θV

πθk
r̃k

(ρ), since Dd
πθ
ρ
(πθ||πθk) has
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zero gradient at θ = θk. The update in (4.5) reduces to an NPG update on the unregularized value

function Ṽ πθ
r̃k

(ρ). For single-objective MDPs, it reduces to the canonical NPG method.

4.2.1 Theoretical guarantee of ARNPG

We now present the main theoretical tool for the analysis of the ARNPG framework. Recall the

discussion of the fundamental inequality after (4.2). Proposition 4 establishes such a fundamental

inequality with controllable approximation error under the softmax policy parameterization, i.e.,

πθ(a|s) = exp(θs,a)∑
a′ exp(θs,a′ )

. We will omit θ in πθ when it is clear from the context, but it should be

noted that all updates of policies are performed on the parameters.

Proposition 4. Under the softmax parameterization, given ϵk > 0, for any r̃k, tk ≥ 1
1−γ

log( 5∥r̃k∥∞
(1−γ)2ϵk

)+

1, α > 0 and η = 1−γ
α

, the update πk+1 ← InnerLoop(πk, r̃k, α, η, tk) satisfies

V
πk+1

r̃k
(ρ)− α

D
d
πk+1
ρ

(πk+1||πk)
1− γ

≥ V π
r̃k
(ρ)− α

Ddπρ (π||πk)−Ddπρ (π||πk+1)

1− γ
− ϵk, ∀π. (4.6)

The inequality (4.6) is critical to the convergence proof. Its right hand side allows telescoping,

which by summing over k can iteratively cancel the terms Ddπρ (π||πk). Since tk = Θ(log(1/ϵk)) it

suffices to use very few iterations in InnerLoop for maintaining precision.

Remark. It has been shown that for the entropy-regularized MDP, i.e., KL-regularized with

the uniform policy as the anchor policy, NPG converges linearly (i.e., geometrically fast) to the

regularized optimal policy [77]. It is natural to anticipate that for the KL-regularized MDP Ṽ π
k,α(ρ)

with anchor πk, NPG would similarly converge linearly (i.e., Ṽ πk
k,α ≥ Ṽ

π∗
k

k,α−ϵ for tk = Θ(log(1/ϵ)))

to a corresponding optimal policy, denoted as π∗
k. In contrast, the right hand side of inequality (4.6)

has a positive drift α
Ddπρ

(π||πk+1)

1−γ
for any policy π, which is considerably stronger.

Proof sketch of Proposition 4. We can show that InnerLoop approximately solves the varia-

tional update in (4.4) with linear convergence as anticipated. However to establish (4.6), the diffi-

culty lies in the introduction of positive drift, since V πθ
r̃k

(ρ) is not concave w.r.t. θ andDd
πθ
ρ
(πθ||πθk)

may not be a Bregman divergence. We tackle this difficulty by showing that optimizing πθ in In-

nerLoop implicitly performs a mirror ascent update for state action visitation dπθ
ρ .
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As demonstrated in the next section, Proposition 4 ensures that the convergence rate of the

algorithms derived from the ARNPG framework is of the same rate as the underlying first-order

methods with only extra logarithmic factors.

4.3 Theoretical Applications

In this section, we apply the ARNPG framework to several important multi-objective MDP sce-

narios and obtain new policy optimization algorithms by integrating first-order methods in convex

optimization. All the theoretical results presented in this section are under the softmax parameteri-

zation with exact gradients. However, the obtained algorithms can be implemented in more general

settings such as neural softmax and sample-based scenarios, as in the next section. We theoreti-

cally establish Õ(1/T ) convergence of these algorithms by leveraging the fundamental inequality

in Proposition 4.

4.3.1 Smooth concave scalarization function

We start by considering the following optimization problem

max
θ
F (V πθ

1:m(ρ)), (4.7)

where F is a concave function, and β-smooth w.r.t. ∥·∥∞ norm, i.e., ∥∇F (v)−∇F (v′)∥1 ≤ β∥v−

v′∥∞. Since the set of achievable values V ⊆
[
0, 1

1−γ

]m
, it can be verified that ∥∇F (v)∥1 ≤ L for

some factor L > 0.

The proportional fair criterion can be approximated by F (v) :=
∑m

i=1 ai log(δ + vi), where

δ > 0 is some constant introduced to circumvent the pathological case vi = 0 for some i ∈ [m].

Under this criterion, β =
∑m

i=1 ai/δ
2 and L =

∑m
i=1 ai/δ.

When v is viewed as the decision variable, at macro step k with value vector V πk
1:m(ρ), the as-

cent direction in a typical gradient ascent step is the gradient G̃k = ∇vF (V
πk
1:m(ρ)). This naturally

determines the reward in the ascent direction as r̃k(s, a) = ⟨G̃k, r1:m(s, a)⟩. Adapting the ARNPG

framework to this specific context, we present the algorithm for solving the program (4.7) in Al-

gorithm 4. We refer to it as “implicit mirror descent" because the algorithm implicitly employs
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mirror descent.

Algorithm 4: ARNPG Implicit Mirror Descent (ARNPG-IMD)
Input π0, α, η, t0:K−1, K
for k = 0, 1, . . . , K − 1 do

Update πk+1 ←InnerLoop(πk, r̃k, α, η, tk)
Return the policy in {πk}Kk=1 with the largest F (V πk

1:m(ρ))

Let π∗ be the optimal policy for (4.7). Based on Proposition 4, we present the following the-

orem which guarantees the convergence of ARNPG-IMD with appropriately selected parameters

π0, α, η, tk.

Theorem 13. For anyK ≥ 1, take uniform policy π0, α ≥ β
(1−γ)3

, η = 1−γ
α

, and tk = ⌈ 1
1−γ

log( 5LK
β log(|A|))+

1⌉. The optimality gap of ARNPG-IMD (Algorithm 4) satisfies

F (V π∗

1:m(ρ))− max
k∈[1:K]

F (V πk
1:m(ρ)) ≤F (V π∗

1:m(ρ))−
1

K

K∑
k=1

F (V πk
1:m(ρ)) ≤

2α log(|A|)
(1− γ)K

. (4.8)

There are a total of K macro steps, and the total number of iterations is T =
∑K−1

k=0 tk =

Θ( K
1−γ

log(K)). The following corollary provides the convergence rate in terms of T .

Corollary 6. Under the same conditions as in Theorem 13, the ARNPG-IMD algorithm satisfies

F (V π∗
1:m(ρ))− 1

K

∑K
k=1 F (V

πk
1:m(ρ)) = O

(
β log(T )
(1−γ)5T

)
.

Remark. In the absence of knowledge of K, we can select time-varying numbers of InnerLoop

iterations, such as tk = Θ(log(k)), and ARNPG-IMD will still have the same Õ(1/T ) convergence.

4.3.2 Constrained Markov decision process

Another way of trading off the objectives is to optimize one while setting hard constraints on

the others. This can be formulated as the following constrained MDP (CMDP) problem:

max
θ
V πθ
1 (ρ), s.t. V πθ

i (ρ) ≥ bi, ∀i ∈ [2 : m], (4.9)
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where b2:m ∈ [0, 1
1−γ

]m−1. Let π∗ = πθ∗ be the optimal policy of the CMDP problem in (4.9).

Define the Lagrangian of the CMDP problem as L(πθ, λ) = V πθ
1 (ρ) +

∑m
i=2 λi(V

πθ
i (ρ) − bi),

where λi is the Lagrange multiplier (dual variable) corresponding to the constraint V πθ
i ≥ bi, for

each i ∈ [2 : m]. The Lagrange dual function maxπ L(π, ·) is a convex function of dual variables

λ ≥ 0. Denote by λ∗ the optimal dual variables that minimize the Lagrange dual function. We

assume λ∗ is finite, which is guaranteed by Slater’s condition, i.e., there is some πθ and ξ > 0 with

V πθ
i (ρ)−bi ≥ ξ for any i ∈ [2 : m]. Note (π∗, λ∗) is a saddle point of the Lagrangian L(π, λ). This

motivates the primal-dual approach, which iteratively performs gradient ascent for πθ and gradient

descent for λ. This is suitable for the CMDP setting, since for any fixed λ, the Lagrangian L(π, λ)

corresponds to an MDP for which policy gradient can be employed.

The canonical primal-dual gradient ascent-descent method for constrained convex optimiza-

tion can only guarantee O(1/
√
T ) convergence, and consequently the primal-dual policy gradient-

based approach for CMDPs [15] has the same convergence. Recently, Yu et al. [78] have pro-

posed a primal-dual-based method with O(1/T ) convergence under the Euclidean setting, i.e.,

Bh(x||y) = 1
2
∥x − y∥22. Adopting ideas from [78], we next propose the ARNPG with Extra

Primal-Dual (ARNPG-EPD) algorithm (Algorithm 5). To the best of our knowledge, this new

primal-dual update appears in the CMDP-related literature for the first time.

Note that bi − V π
i (ρ) is the amount of constraint violation. There are two key ideas we adopt

from [78]. The first is the design of the reward in the ascent direction

r̃k(s, a) := r1(s, a) +
∑m

i=2(λk,i + η′(bi − V πk
i (ρ)))ri(s, a),

where an extra constraint violation term is added to the dual variables. The second idea is that the

update of dual variables should not fall below the negative constraint violation (the first term in

(4.10)), and it can alleviate the overshooting of dual variables. The extra constraint violation terms

in r̃k and the dual update work jointly to ensure the Õ(1/T ) convergence.

Theorem 14. For any K ≥ 1 and η′ ∈ (0, 1], take uniform policy π0, α ≥ 2η′m
(1−γ)3

, η = 1−γ
α

, and

choose tk = ⌈ 1
1−γ

log( 5LkK
2η′m log(|A|))+1⌉ with Lk = 1+ η′(m−1)

1−γ
+
∑m

i=2 λk,i. The average optimality
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Algorithm 5: ARNPG with Extra Primal Dual (ARNPG-EPD)
Input π0, η′, α, η, t0:K−1, K
Initialize λ0,i = max{η′(V π0

i (ρ)− bi), 0}, ∀i ∈ [2 : m]
for k = 0, 1, . . . , K − 1 do

Update πk+1 ←InnerLoop(πk, r̃k, α, η, tk)

Update λk+1,i = max
{
η′(V

πk+1

i (ρ)− bi), λk,i + η′(bi − V πk+1

i (ρ))
}
, ∀i ∈ [2 : m]

(4.10)

Return: a policy randomly chosen from {πk}Kk=1

gap and the average constraint violation of ARNPG-EPD (Algorithm 5) satisfy

V π∗

1 (ρ)− 1

K

K∑
k=1

V πk
1 (ρ) ≤ 3α log(|A|)

(1− γ)K
, (4.11)

bi −
1

K

K∑
k=1

V πk
i (ρ) ≤ 1

K

(
2∥λ∗∥2
η′

+ 3

√
α log(|A|)
(1− γ)η′

)
∀i ∈ [2 : m]. (4.12)

Note that the number of micro steps tk is chosen according to the dual variables λk in the

previous theorem. Denote by T :=
∑K−1

k=0 tk the total number of iterations.

Corollary 7. Under the same conditions as in Theorem 14, the ARNPG-EPD algorithm satisfies

V π∗
1 (ρ)− 1

K

∑K
k=1 V

πk
1 (ρ) = O(m log(T )

(1−γ)5T
), and bi − 1

K

∑K
k=1 V

πk
i (ρ) = O(

√
m log(T )

(1−γ)2.5T
).

The theorem and corollary establish convergence of the average optimality gap and the aver-

age constraint violation, in the same manner as many previous works [15, 16, 79, 80] on CMDPs.

However, a guarantee on the last iterate is more preferable. This drawback is inherited from the

primal-dual algorithm for convex optimization, where the primal-dual algorithm with sublinear

convergence can only be guaranteed on the average solution, as of our knowledge. Last iterate

convergence is still an on-going open research topic.
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4.3.3 Max-min trade-off criteria

Finally, we consider the max-min trade-off criterion defined as

max
θ

min
λ∈Λ

Φ(V πθ
1:m(ρ), λ), (4.13)

where Λ is a subset of the m-dimensional probability simplex ∆([m]). We assume Φ(·, λ) is

concave and Φ(v, ·) is convex. We also assume Φ is β-smooth w.r.t. the norm Ψ(v, λ) = ∥v∥∞ +

∥λ∥1. The max-min criterion can be represented by Φ(v, λ) =
∑m

i=1 viλi/ci and Λ = ∆([m]). Φ

satisfies the concave-convex assumption and is β-smooth w.r.t. the norm Ψ with β = O(m).

Denote F (v) := minλ∈Λ Φ(v, λ), which is concave but not necessarily smooth. Thus we can-

not apply the ARNPG-IMD algorithm (Algorithm 4) due to the non-smoothness of F , and the

subgradient-based method can only guarantee O(1/
√
T ) convergence.

We next integrate the optimistic mirror descent ascent (OMDA) method [75] for solving min-

imax optimization in the ARNPG framework. Denote the gradients G̃λ
k = ∇λΦ(V

π̃k
1:m(ρ), λ̃k) and

G̃v
k = ∇vΦ(V

π̃k
1:m(ρ), λ̃k). It can be verified that ∥G̃v

k∥1 ≤ L for some L due to the smoothness of

Φ. OMDA performs gradient ascent along the direction G̃v
k w.r.t. the value vector, and therefore

we construct the reward in the ascent direction as r̃k(s, a) = ⟨G̃v
k, r1:m(s, a)⟩. OMDA performs

mirror descent along direction G̃λ
k w.r.t. the dual vector λ. A key ingredient of OMDA is that it

updates twice in each macro step. ARNPG-OMD adopts this idea and update (π, λ) from the same

anchor points (πk, λk), first with ascent direction (r̃k,−G̃λ
k) ∈ R2m and then a further step with

direction (r̃k+1,−G̃λ
k+1) ∈ R2m.

We present ARNPG-OMDA in Algorithm 6, and establish the following performance guaran-

tees:

Theorem 15. For any K ≥ 1, take uniform policy π0, η′ ≤ 1
6β

, α ≥ 6β
(1−γ)3

, η = 1−γ
α

, and
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Algorithm 6: ARNPG with Optimistic Mirror Descent Ascent Update (ARNPG-
OMDA)

Input π0, λ0, η′, α, η, t0:K−1, K
Initialize π̃0 = π0 and λ0, λ̃0 as uniform distribution on [m]
for k = 0, 1, . . . , K − 1 do

Update π̃k+1 ←InnerLoop(πk, r̃k, α, η, tk), λ̃k+1 ← argminλ∈Λ{⟨G̃λ
k , λ⟩+

D(λ||λk)
η′
}

Update πk+1 ←InnerLoop(πk, r̃k+1, α, η, tk),
λk+1 ← argminλ∈Λ{⟨G̃λ

k+1, λ⟩+
D(λ||λk)

η′
}

Return: a policy randomly chosen from {π̃k}Kk=1

tk = ⌈ 1
1−γ

log( 5LK
6β log(|A|)) + 1⌉. The ARNPG-OMDA algorithm (Algorithm 6) satisfies

F (V π∗

1:m(ρ))− F

(
1

K

K∑
k=1

V π̃k
1:m(ρ)

)
≤ 3α log(|A|)

(1− γ)K
+

log(m)

η′K
. (4.14)

Similar to the discussion after Corollary 7, Theorem 15 provides a performance guarantee on

the average value vector F ( 1
K

∑K
k=1 V

π̃k
1:m(ρ)), which is inherited from the OMDA methods. Denote

the total number of iterations by T :=
∑K−1

k=0 2tk.

Corollary 8. Under the same conditions as in Theorem 15, ARNPG-OMDA satisfies F
(
V π∗
1:m(ρ)

)
−

F
(

1
K

∑K
k=1 V

πk
1:m(ρ)

)
= O

(
β log(T )
(1−γ)5T

)
.

4.4 Empirical Evaluation and Application

We compare the performance of the proposed ARNPG-EPD algorithm (Algorithm 5) with two

benchmarks: NPG-PD [15] and CRPO [16]. The tabular CMDP, for both exact-gradient scenario

(Chapter 4.4.1) and sample-based scenario (Chapter 4.4.2), follows the same experimental setting

as in [15]. The MDP with m = 2 objectives represented by (S,A, P, ρ, γ, r1:2) (as the system

model in Chapter 4.1) is randomly generated, where |S| = 20, |A| = 10, ρ is uniform distribution,

and γ = 0.8. For each (s, a) ∈ S × A, P (·|s, a) ∈ ∆(S) is generated by normalizing a random

vector ∼ Unif([0, 1]S), and independent rewards r1(s, a), r2(s, a) ∼ Unif([0, 1]). Choosing the
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constraint coefficient b2 = 3, the experiments are performed on the CMDP

max
θ∈Θ

V πθ
r1

(ρ) s.t. V πθ
r2

(ρ) ≥ b2, (4.15)

with the softmax policy class.

For both the exact-gradient scenario (Chapter 4.4.1) and the sample-based scenario (Chapter

4.4.2), we choose η = 1 and η′ = 1 for ARNPG-EPD and NPG-PD (following the same hy-

perparameter selection as in [15]), since both rely on a primal-dual framework. Additionally, we

fix tk = 1,∀k = 0, 1, . . . , K − 1 and select α = 1−γ
η

= 0.2 for ARNPG-EPD. As for CRPO

with exact gradients, we first fix the tolerance parameter as 0.01 and then choose the best learn-

ing rate 0.4 from the set {0.1, 0.2, . . . , 0.9, 1.0}, which enjoys the smallest average optimality gap

after 300 iterations. For sample-based CRPO, we select the best learning rate 1.0 from the set

{0.1, 0.5, 1, 2, 5}, which leads to the largest reward value after 300 iterations.

4.4.1 Tabular CMDP with exact gradients

Recall that under softmax policy with exact gradients, Corollary 7 (Theorem 14) guarantees

Õ(1/T ) convergence of both performance measures: average optimality gap and average constraint

violation. We compare the proposed ARNPG-EPD with the benchmarks NPG-PD and CRPO

under both performance measures on a randomly generated CMDP with a single constraint, which

are illustrated in Figure 4.1. The horizontal axis is the total number of iterations, i.e., including the

micro steps in InnerLoop of ARNPG-EPD.

Figures 4.1(a) and 4.1(b) show that both the average optimality gap and the average constraint

violation of the ARNPG-EPD algorithm converge faster than those of NPG-PD. Since the CRPO

focuses on the violated constraint, the policy becomes feasible quickly, though at the cost of an

initially slower convergence for the optimality gap. As illustrated in Figures 4.1(c) and 4.1(d), the

slopes of both the optimality gap and the constraint violation of the ARNPG-EPD algorithm in the

log-log plots are approximately between -0.9 and -1, indicating a converge rate of Õ(1/T ).
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(a) (b) (c) (d)

Figure 4.1: The average optimality gap and the average constraint violation versus the total number
of iterations, for ARNPG-EPD, NPG-PD, and CRPO on a randomly generated CMDP.

4.4.2 Sample-based tabular CMDP

(a) (b) (c) (d)

Figure 4.2: The reward values and the constraint violation with respect to the total number of
iterations, for sample-based ARNPG-EPD, NPG-PD, and CRPO on a randomly generated CMDP.

We next consider the same tabular CMDP described in Chapter 4.4.1 without exact policy

gradients. Instead, policy gradients are estimated by samples from a generative model that can

generate independent trajectories starting from any state and action pair. The assumption of such a

generative model is common [15, 16, 81].

The performances of CRPO, NPG-PD, and ARNPG-EPD in the sample-based scenario are

shown in Figure 4.2. Figures 4.2(a) and 4.2(b) display the averaged performance, while Figures

4.2(c) and 4.2(d) display the performance of the current iterate (a.k.a. last-iterate in optimization

literature). It shows that in this sample-based scenario, ARNPG-EPD achieves higher reward val-

ues with faster convergence, while all three algorithms satisfy the constraint after a few iterations.
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4.4.3 Acrobot-v1

To demonstrate the efficacy of ARNPG-EPD on complex tasks, we have conducted experi-

ments on the Acrobot-v1 environment from OpenAI Gym [82]. We follow the same experiment

setup in [16], where there is a reward value to maximize, and two cost values to be constrained

below some thresholds. The superior performance of ARNPG-EPD is shown in Figure 4.3.

(a) (b) (c)

Figure 4.3: Last-iterate performance for sample-based ARNPG-EPD, NPG-PD, CRPO averaged
over 10 random seeds. The black dashed lines in (b) and (c) represent given thresholds.

Figure 4.3(a) shows that ARNPG-EPD achieves a higher reward value compared to NPG-PD

and CRPO, while Figures 4.3(b) and 4.3(c) demonstrate that the cost values of all three algorithms

are below the thresholds after a few initial iterations. We believe the superiority is due to the new

primal-dual design inspired by [83] (discussed in Chapter 4.3.2) and the flexibility of choosing tk

in the InnerLoop in the framework.

4.5 Conclusion

We propose an ARNPG framework to systematically integrate well-performing first-order meth-

ods into the design of policy gradient-based algorithms for multi-objective MDPs. The designed

algorithms achieve a global Õ(1/T ) convergence rate under the softmax parameterization with

exact gradients and empirically have satisfactory performance beyond tabular and exact gradient

settings. We believe that ARNPG has potential applications in other scenarios since the general
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and flexible framework allows integration with more advanced first-order methods, currently and

in the future.

Theoretically, a natural future direction is to extend the results in an exact-gradient tabular

setting to more general settings. For example, without having access to the gradient, the policy

gradients are estimated from trajectory data in the sample-based setting. The theoretical results

in the sample-based setting should incorporate the estimation error induced by the gradient esti-

mate and quantify its impact on the convergence. Due to the KL-divergence regularization in the

ARNPG framework, the policy update may not depart too much away from the anchor policy in

the inner loop. The number of samples needed can be reduced by performing off-policy gradient

estimation [84]. In addition, it would further reduce the sample complexity by leveraging variance-

reduced techniques [85, 86]. Besides extending to the sample-based setting, it is also meaningful

to consider the function approximation setting, which can handle the MDP with large state-action

space.
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5. SUMMARY

Information-theoretic methods have been playing important roles in many fields, among which

machine learning has recently attracted a lot of attention. Lying in the heart of the information-

theoretic methods are the information-theoretic measures, such as mutual information, Shannon’s

entropy, KL divergence, etc, and we have witnessed many success stories of utilizing the information-

theoretic measures in communication, data storage, and statistics.

In this dissertation, we delve into the usage of information-theoretic measures in machine learn-

ing problems. Our research showcases the efficacy of information-theoretic measures in three

fundamental aspects: providing insightful interpretations, enabling precise characterizations, and

fostering constructive intuition. Specifically, in Chapter 2, we use information-theoretic measures

to reason and interpret the generalization error in machine learning algorithms by developing gen-

eralization error upper bounds, where the information-theoretic measures depict the relationship

between algorithm, data, and the generalization performance. Moreover, we demonstrate that

information-theoretic measures can be used for the precise characterization of algorithmic behav-

iors and the fundamental limits of sample complexities for estimation problems in Chapter 2.5 and

bandits learning in Chapter 3. Furthermore, in Chapter 4, we illustrate that information-theoretic

measures not only motivate algorithm design but also facilitate the development of effective learn-

ing strategies for addressing the challenges of policy optimization in multi-objective reinforcement

learning.

Broadly speaking, the findings presented in this dissertation emphasize the vital role that infor-

mation theorists can play in pushing the boundaries of machine learning by fostering innovation,

deriving accurate and constructive analysis, and driving the development of more robust and ef-

ficient learning algorithms. By leveraging the power of information-theoretic measures, we can

unlock new possibilities and pave the way for future advancements in the field of machine learn-

ing.
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APPENDIX A

PROOFS FOR CHAPTER 2

Proof of Lemma 1. The definition of conditional CGF implies that

ΨF̃ |U(λ) = lnE
[
eλF̃ |U

]
− E[λF̃ |U ]. (A.1)

By the Donsker–Varadhan variational representation of KL divergence, for any λ ∈ R

E[λF |U ]− lnE
[
eλF̃ |U

]
≤ D(PX,Y |U ||PX̃,Ỹ |U) (A.2)

= IU(X;Y ), (A.3)

where the equality is due to (2.27). It follows that for λ > 0

E[F |U ]− E[F̃ |U ] ≤ inf
λ>0

IU(X;F ) + ΨF̃ |U(λ)

λ
(A.4)

= Ψ∗−1

F̃ |U (IU(X;Y )) . (A.5)

Moreover

E[F ]− E[F̃ ] ≤ E
[
Ψ∗−1

F̃ |U (IU(X;Y ))
]

(A.6)

= E
[
inf
λ>0

IU(X;F ) + ΨF̃ |U(λ)

λ

]
(A.7)

≤ inf
λ>0

I(X;F |U) + E
[
ΨF̃ |U(λ)

]
λ

(A.8)

= ψ̄∗−1

F̃ |U (I(X;Y |U)) , (A.9)

where the last inequality is by exchanging the order of expectation and infimum. The proof is thus

complete.
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Proof of Lemma 2. By the independence of Ri and Z±
[n], we have

I(W ;Ri|Z±
[n]) = H(Ri)−H(Ri|W,Z±

[n]), I(W ;Ri|Z±
i ) = H(Ri)−H(Ri|W,Z±

i ).

It follows that I(W ;Ri|Z±
[n]) − I(W ;Ri|Z±

i ) = I(Ri;Z
±
[n]|W,Z

±
i ) ≥ 0, which concludes the

proof.

Proof of Lemma 3. First Zi and ZRi
i are both the ith training sample for the input of the algorithm,

thus I(W ;Zi) = I(W ;ZRi
i ). Then since Z−Ri

i , Ri and W are independent given ZRi
i ,

I(W ;Z±
i , Ri) = I(W ;ZRi

i , Z−Ri
i , Ri) = I(W ;ZRi

i ) + I(W ;Z−Ri
i , Ri|ZRi

i ) = I(W ;ZRi
i ).

(A.10)

It follows that

I(W ;Zi) = I(W ;Z±
i , Ri) ≥ I(W ;Ri|Z±

i ), (A.11)

which concludes the proof.

Proof of Proposition 2. Note that IZ±
i
(W ;Ri) = IZ±

i

(
W − Z−

i +Z+
i

2
;Ri

)
sinceZ±

i is known. With-

out loss of generality, Z−
i is assumed to be greater than Z+

i . Then W − Z−
i +Z+

i

2
is a mixture of two

Gaussian distributions with the form of V in Lemma 4 where ν = (Z−
i − Z+

i )/2. By Lemma 4,

we have

IZ±
i
(W ;Ri) =

(Z−
i − Z+

i )
2

8σ2

1

n− 1
+ o

(
1

n

)
. (A.12)

Then Theorem 5 and Lemma 5 imply

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

E
[
Ψ∗−1

G̃i|Z±
i

(
IZ±

i
(W ;Ri)

)]
(A.13)
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≤ 1

n

n∑
i=1

E
[
(Z−

i − Z+
i )

2|Z−
i + Z+

i |
2σ
√
n− 1

+ o

(
1√
n

)]
(A.14)

=
2σ2

√
π

√
1

n− 1
+ o

(
1√
n

)
, (A.15)

which proves the proposition.

Proof of Proposition 3. Similar to [8], we apply the ICIMI bound conditioned on the random sam-

ple path V([T ]), i.e.,

gen(ξ, PW |Z[n]
) = EV([T ])

[
1

n

n∑
i=1

EZ±
i

[
EW,Ri

[
Ri

(
ℓ(W,Z−

i )− ℓ(W,Z+
i )
)
|Z±

i , V([T ])

] ∣∣V([T ])

] ]
=

1

n

n∑
i=1

EZ±
i ,V([T ])

Ψ∗−1

F̃i|Z±
i ,V([T ])

(
IZ±

i ,V([T ])
(W ;Ri)

)
. (A.16)

In order to bound the mutual information term, for any sample path V([T ]) = v([T ]) and any samples

Z±
i = z±i consider

Iz±i ,v([T ])
(W ;Ri) ≤ Iz±i ,v([T ])

(W([T ]);Ri)

=
T∑

τ=1

Iz±i ,v([T ])
(W(τ);Ri|W([τ−1]))

=
∑

τ∈Ti(v([T ]))

Iz±i ,v([T ])
(W(τ);Ri|W([τ−1])), (A.17)

where Ti(v([T ])) is the realization of Ti given V([T ]) = v([T ]) and the last equality is because for

fixed v([T ]) and z±i , Ri is independent of W(τ) given W([τ−1]) for the iterations when index i is not

selected. We can then continue to write

Iz±i ,v([T ])
(W(τ);Ri|W([τ−1])) = h(W(τ)|W([τ−1]), Z

±
i = z±i , V([T ]) = v([T ]))

− h(W(τ)|Ri,W([τ−1]), Z
±
i = z±i , V([T ]) = v([T ])). (A.18)

96



Let us consider the first term for fixed W[(τ−1)] = w[(τ−1)], and for simplicity, denote the condition

W[(τ−1)] = w[(τ−1)], Z±
i = z±i , V([T ]) = v([T ]) (A.19)

as Ci,(τ). Thus we have

h(W(τ)|W([τ−1]) = w([τ−1]), Z
±
i = z±i , V([T ]) = v([T ]))

= h
(
η(τ)∇ℓ(w(τ−1), z

Ri
i ) + σ(τ)ϵ(τ)|Ci,(τ)

)
= h

(
η(τ)∇ℓ(w(τ−1), z

Ri
i )− πi,(τ)η(τ)∇ℓ(w(τ−1), z

+
i )

− (1− πi,(τ))η(τ)∇ℓ(w(τ−1), z
−
i ) + σ(τ)ϵ(τ)

∣∣∣Ci,(τ)

)
. (A.20)

Clearly the term

∇i,(τ) := ∇ℓ(w(τ−1), z
Ri
i )− πi,(τ)∇ℓ(w(τ−1), z

+
i )− (1− πi,(τ))∇ℓ(w(τ−1), z

−
i ) (A.21)

has probability masses only on two elements, and its only source of randomness is due to Ri. Its

covariance is thus given by

E
[
∇i,(τ)∇⊤

i,(τ)|Ci,(τ)

]
= E

[(
Ri + 1

2
− πi,(τ)

)2 ∣∣∣Ci,(τ)

]
ζ(τ)(z

±
i )ζ(τ)(z

±
i )

⊤

= Θi,(τ)(w([τ−1]), z
±
i , v([T ]))ζ(τ)(z

±
i )ζ(τ)(z

±
i )

⊤. (A.22)

Since ϵ(τ) is independent of ∇i,(τ) under condition Ci,(τ), the covariance matrix of η(τ)∇i,(τ) +

σ(τ)ϵ(τ) is thus

η2(τ)Θi,(τ)(w([τ−1]), z
±
i , v([T ]))ζ(τ)(z

±
i )ζ(τ)(z

±
i )

⊤ + σ2
(τ)Id, (A.23)

where Id is the d× d identity matrix. Consequently, the determinant of the conditional covariance
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matrix is

(
σ2
(τ) + η2(τ)Θi,(τ)(w([τ−1]), z

±
i , v([T ]))∥ζ(τ)(z±i )∥22

)
σ
2(d−1)
(τ) . (A.24)

Since Gaussian distributions maximizes the differential entropy for random vectors with a given

covariance matrix, the conditional differential entropy in (A.20) is upper bounded by

1

2
log

(
1 +

η2(τ)Θi,(τ)(w([τ−1]), z
±
i , v([T ]))∥ζ(τ)(z±i )∥22

σ2
(τ)

)
+
d

2
log
(
2πeσ2

(τ)

)
. (A.25)

Recall that Si,τ =
η2
(τ)

E
[
Θi,(τ)∥ζ(τ)(Z±

i )∥22
∣∣Z±

i ,V([T ])

]
2σ2

(τ)

. The upper bound holds for any realizations of

condition Ci,(τ), and it follows that the first term in (A.18) can be bounded as

h(W(τ)|W([τ−1]), Z
±
i = z±i , V([T ]) = v([T ])) (A.26)

≤ 1

2
log
(
1 + E

[
2Si,τ

∣∣∣Z±
i = z±i , V([T ]) = v([T ])

])
+
d

2
log
(
2πeσ2

(τ)

)
. (A.27)

The second term in (A.18) can be straightforwardly calculated as d
2
log(2πeσ2

(τ)), and we thus have

Iz±i ,v([T ])
(W(τ);Ri|W([τ−1]))

≤ 1

2
log
(
1 + E

[
2Si,τ

∣∣∣Z±
i = z±i , V([T ]) = v([T ])

])
≤ E

[
Si,τ

∣∣∣Z±
i = z±i , V([T ]) = v([T ])

]
, (A.28)

since log(1 + x) ≤ x. Combining (A.16) and (A.28), we arrive at

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

E

[
Ψ∗−1

F̃i|Z±
i ,V([T ])

(∑
τ∈Ti

Si,τ

)]
,

which is the desired result.

Proof of Proposition 1. For the special case n = 1, i.e., there is only one training sample, the
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CMI based bound and CIMI based bound, i.e., (2.37), (2.38), are equal. It is straightforward to

verify that conditioned on Z±
1 , Ẽ = Ẽ1 and Ẽ takes (Z−

1 − Z+
1 )

2 with probability 1
2

and takes

−(Z−
1 − Z+

1 )
2 with probability 1

2
. Then we have

ΨẼ|Z±
[1]
(λ) = ln cosh

(
(Z−

1 − Z+
1 )

2λ
)
. (A.29)

Their inverse Fenchel conjugate functions are equal and by the lower bound of ln cosh(·) function

in Lemma 13,

Ψ∗−1

Ẽ|Z±
[1]

(η) = inf
λ>0

η +ΨẼ|Z±
[1]
(λ)

λ
≥ inf

λ>0

η +min
(

(Z−
1 −Z+

1 )2λ

2
,
(Z−

1 −Z+
1 )4λ2

4

)
λ

(A.30)

= min

(
1

2
,
√
η

)
(Z−

1 − Z+
1 )

2. (A.31)

Since IZ±
1
(W ;R1) = 1/ log e, a.s.,, we have

E
[
Ψ∗−1

Ẽ|Z±
[1]

(
IZ±

1
(W ;R1)

)]
≥ σ2 >

σ2

π
√
log e

. (A.32)

For n ≥ 2, denote the mean of Z±
[n] as Z̄, from which we have

Z̄ = E
[
W̃ |Z±

[n]

]
. (A.33)

For each i = 1, . . . , n, let ∆i = ℓ(Z̄, Z−
i )− ℓ(Z̄, Z+

i ). It follows that

∆i =
(
Z−

i − Z+
i

) (
Z−

i + Z+
i − 2Z̄

)
(A.34)

=

(
1− 1

n

)((
Z−

i

)2 − (Z+
i

)2)− ∑j ̸=i(Z
−
j + Z+

j )

n
(Z−

i − Z+
i ). (A.35)

Thus

E[|∆i|] = E
[
E
[
|∆i||Z±

i

]]
≥ E

[∣∣E [∆i|Z±
i

] ∣∣]
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=

(
1− 1

n

)
E
[∣∣ (Z−

i

)2 − (Z+
i

)2 ∣∣] (A.36)

≥ 1

2
E
[
|Z−

i − Z+
i |
]
E
[
|Z−

i + Z+
i |
]
=

2σ2

π
, (A.37)

where the first inequality is by applying Jensen’s inequality with respect to convex function | · |;

the last inequality is because n ≥ 2 and Z−
i − Z+

i and Z−
i + Z+

i are independent; the last equality

is calculated using the fact that |Z−
i −Z+

i | and |Z−
i +Z+

i | follow the folded Gaussian distribution.

In addition, we can write

E
[
ℓ(W̃ , Z−

i )− ℓ(W̃ , Z+
i )|Z±

[n]

]
= E

[(
Z−

i − Z+
i

) (
Z−

i + Z+
i − 2W̃

)
|Z±

[n]

]
=
(
Z−

i − Z+
i

) (
Z−

i + Z+
i − 2E

[
W̃ |Z±

[n]

])
=
(
Z−

i − Z+
i

) (
Z−

i + Z+
i − 2Z̄

)
= ∆i, (A.38)

where the last equality is by the representation of Z̄ in (A.33).

We can then lower-bound the CMI based bound (2.37) for this problem. The function ΨẼ|Z±
[n]
(λ)

satisfies

ΨẼ|Z±
[n]
(λ) = lnE

[
exp

(
λẼ − λE[Ẽ]

) ∣∣∣Z±
i

]
(A.39)

= lnE

[
exp

(
λ

n

n∑
i=1

R̃i(ℓ(W̃ , Z−
i )− ℓ(W̃ , Z+

i ))

)∣∣∣Z±
[n]

]
(A.40)

= lnE

[
E

[
exp

(
λ

n

n∑
i=1

R̃i(ℓ(W̃ , Z−
i )− ℓ(W̃ , Z+

i ))

)∣∣∣Z±
[n], R̃[n]

] ∣∣∣Z±
[n]

]
(A.41)

≥ lnE

[
exp

(
λ

n
E

[
n∑

i=1

R̃i(ℓ(W̃ , Z−
i )− ℓ(W̃ , Z+

i ))
∣∣∣Z±

[n], R̃[n]

]) ∣∣∣Z±
[n]

]
(A.42)

= lnE

[
n∏

i=1

exp

(
λ

n
R̃i∆i

) ∣∣∣Z±
[n]

]
(A.43)

=
n∑

i=1

lnE
[
exp

(
λ

n
R̃i∆i

) ∣∣∣Z±
[n]

]
(A.44)

=
n∑

i=1

ln cosh

(
λ

n
∆i

)
≥

n∑
i=1

min

(
1,
λ|∆i|
2n

)
λ|∆i|
2n

. (A.45)
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The first equality (A.39) is the definition of ΨẼ|Z±
[n]
(λ); the second equality (A.40) is by E[Ẽ] = 0;

the third equality (A.41) is by the law of total expectation; the first inequality (A.42) is by Jensen’s

inequality with respect to convex function exp(·); the fourth equality (A.43) is by (A.38); the fifth

equality (A.44) is by the independence of R̃[n] conditioned on Z±
n ; and the last inequality is due to

Lemma 13. Its inverse Fenchel conjugate function can thus be lower bounded as follows.

Ψ∗−1

Ẽ|Z±
[n]

(η) = inf
λ>0

η +ΨẼ|Z±
[n]
(λ)

λ
≥ inf

λ>0

n∑
i=1

1
n
η +min

(
1, λ|∆i|

2n

)
λ|∆i|
2n

λ
(A.46)

≥
n∑

i=1

inf
λ>0

1
n
η +min

(
1, λ|∆i|

2n

)
λ|∆i|
2n

λ
≥

n∑
i=1

min

(
|∆i|
2n

,

√
η|∆i|
n3/2

)
. (A.47)

Then since IZ±
n
(W ;R[n]) = n/ log e, a.s. and Ψ∗−1

Ẽ|Z±
[n]

is non-negative, the CMI based bound satis-

fies

E
[
Ψ∗−1

Ẽ|Z±
[n]

(IZ±
[n]
(W ;R[n]))

]
≥

n∑
i=1

E
[
min

(
|∆i|
2n

,
|∆i|√
log en

)]
(A.48)

≥
n∑

i=1

E
[
|∆i|

2
√
log en

]
≥ σ2

π
√
log e

, (A.49)

where the last equality is by (A.37).

Similarly, we can lower-bound the CIMI based bound (2.38). The function ΨẼi|Z±
[n]
(λ) satisfies

ΨẼi|Z±
[n]
(λ) = lnE

[
exp

(
λR̃i(ℓ(W̃ , Z−

i )− ℓ(W̃ , Z+
i ))
) ∣∣∣Z±

[n]

]
(A.50)

= ln cosh(λ∆i) ≥ min

(
1,
|λ∆i|
2

)
|λ∆i|
2

. (A.51)

The inverse Fenchel conjugate functions can be lower bounded as

Ψ∗−1

Ẽi|Z±
[n]

(η) ≥ inf
λ>0

η +min
(
1, |λ∆i|

2

)
|λ∆i|
2

λ
(A.52)

= min

(
inf
λ>0

η + λ |∆i|
2

λ
, inf
λ>0

η + λ2
∆2

i

4

λ

)
(A.53)
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= min

(
1

2
,
√
η

)
|∆i|. (A.54)

Since Ψ∗−1

Ẽi|Z±
[n]

(η) is non-negative, and IZ±
n
(W ;Ri) = 1/ log e, a.s., the CIMI based bound satisfies

1

n

n∑
i=1

E
[
Ψ∗−1

Ẽi|Z±
[n]

(IZ±
[n]
(W ;Ri))

]
≥ 1

2
√
log en

n∑
i=1

E[|∆i|] =
σ2

π
√
log e

. (A.55)

We can now conclude that the CMI and CIMI bounds in this setting are both at least σ2

π
√
log e

.

Proof of Lemma 4. By the representation of the differential entropy of mixed Gaussian distribution

in [87], we can write

I(V ;R) = h(V )− h(V |R) = α2 − I(α), (A.56)

where α = |ν|
σ

and

I(α) =
2√
2π
e−α2/2

∫ ∞

0

e−t2/2cosh(αt) ln(cosh(αt))dt.

Since for any x ∈ R, by the Taylor expansion,

1 + x2/2 ≤ cosh(x) =
1

2
(ex + e−x) ≤ ex

2/2, (A.57)

it follows that for any α < 1,

2√
2π
e−α2/2

∫∞
0
e−t2/2cosh(αt) ln(cosh(αt))dt

α2
≤

2√
2π
e−α2/2

∫∞
0
e−t2/2eα

2t2/2 α2t2

2
dt

α2
(A.58)

=
1√
2π
e−α2/2

∫ ∞

0

t2e−t2(1−α2)/2dt =
1

2
√
1− α2

e−α2/2, (A.59)

and take the limit of α2 → 0 on both side,

lim
α2→0

2√
2π
e−α2/2

∫∞
0
e−t2/2cosh(αt) ln(cosh(αt))dt

α2
≤ 1

2
. (A.60)
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In addition,

2√
2π
e−α2/2

∫∞
0
e−t2/2cosh(αt) ln(cosh(αt))dt

α2
(A.61)

≥
2√
2π
e−α2/2

∫∞
0
e−t2/2

(
1 + α2t2

2

)
ln
(
1 + α2t2

2

)
dt

α2
(A.62)

take the limit of α2 → 0 on both side,

lim
α2→0

2√
2π
e−α2/2

∫∞
0
e−t2/2cosh(αt) ln(cosh(αt))dt

α2
(A.63)

≥ lim
α2→0

2√
2π
e−α2/2

∫∞
0
e−t2/2

(
1 + α2t2

2

)
ln
(
1 + α2t2

2

)
dt

α2
(A.64)

=
2√
2π

∫ ∞

0

e−t2/2 lim
α2→0

(
1 + α2t2

2

)
ln
(
1 + α2t2

2

)
α2

dt (A.65)

=
1√
2π

∫ ∞

0

t2e−t2/2dt =
1

2
, (A.66)

where the first equality is by exchanging the limit and integral because function (1+x) ln(1+x)
x

is

monotonically increasing for x ≥ 0 and limα2→0 e
−α2/2 = 1. Thus the Taylor expansion of I(α) is

I(α) =
1

2
α2 + o(α2), (A.67)

plugging which in equation (A.56) completes the proof.

Proof of Lemma 5. Given Z±
i = z± ∈ Z2, W̃i and W are identically distributed. Drop the index i

and write W̃i as W̃ for simplicity. With probability 1/2, W̃ ∼ N
(
z+
n
, n−1

n2 σ
2
)
, and with probability

1/2, W̃ ∼ N
(
z−
n
, n−1

n2 σ
2
)
. For any λ > 0,

exp
(
ΨG̃i|Z±

i =z±
(λ)
)

(A.68)

=E
[
exp

(
λR̃
(
ℓ(W̃ , z−)− ℓ(W̃ , z+)

))]
(A.69)

=E
[
exp

(
λR̃
(
z2− − z2+ + 2(z+ − z−)W̃

))]
(A.70)
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=
1

2
E
[
exp

(
2λ(z+ − z−)W̃

)]
exp

(
λ(z2− − z2+)

)
+
1

2
E
[
exp

(
2λ(z− − z+)W̃

)]
exp

(
−λ(z2− − z2+)

)
(A.71)

≤

(
1

2
exp

(
2λ|z+ − z−|

|z−|
n

+ 2λ2(z+ − z−)2
n− 1

n2
σ2

)

+
1

2
exp

(
2λ|z+ − z−|

|z+|
n

+ 2λ2(z+ − z−)2
n− 1

n2
σ2

))

·
(
1

2
exp(λ(z2− − z2+)) +

1

2
exp(λ(z2+ − z2−))

)
(A.72)

≤ exp

(
2σ2λ2(z+ − z−)2

(
1

n
− 1

n2

))
· exp

(
2λ|z+ − z−|

max(|z+|, |z−|)
n

)
·
(
1

2
exp(λ(z2− − z2+)) +

1

2
exp(λ(z2+ − z2−))

)
(A.73)

≤ exp

(
2σ2λ2(z+ − z−)2

1

n

)
· exp

(
2λ|z+ − z−|

max(|z+|, |z−|)
n

)
· exp

(
λ2

2
(z2− − z2+)2

)
, (A.74)

where the last inequality is from 1
2
(ex + e−x) ≤ ex

2/2. We have for any η > 0,

Ψ∗−1

G̃i|Z±
i

(η) = inf
λ>0

{
1

λ

(
η +ΨG̃i|Z±

i
(λ)
)}

(A.75)

≤ inf
λ>0

{
1

λ
η +

λ

2

((
Z+

i

)2 − (Z−
i

)2)2
+

2σ2λ

n
(Z+

i − Z−
i )

2 +
4max(Z+

i , Z
−
i )

2

n

}
. (A.76)

It follows that if |Z+
i | ≠ |Z−

i |, take λ =
√
2η

|(Z+
i )

2
−(Z−

i )
2
|

Ψ∗−1

G̃i|Z±
i

(η) ≤ BZ±
i ,n(η), (A.77)
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and if Z+
i = Z−

i , take λ→ +∞,

Ψ∗−1

G̃i|Z±
i

(η) ≤
4max

((
Z+

1

)2
,
(
Z−

i

)2)
n

, (A.78)

and if Z+
i = −Z−

i ̸= 0, take λ = 1
2σ|Z+

i |

√
nη
2

,

Ψ∗−1

G̃i|Z±
i

(η) ≤ 4σ

√
2η

n
|Z+

i |+
4
(
Z+

1

)2
n

. (A.79)

Lemma 13. The function ln cosh(x) is lower bounded as

ln cosh(x) ≥ min

(
1,
|x|
2

)
|x|
2
. (A.80)

Proof. When |x| ≥ 2, 1
2
(ex + e−x) > 1

2
e|x| = e|x|/2

2
e|x|/2 > e|x|/2. Take ln on both, ln cosh(x) ≥

|x|
2
, |x| ∈ [2,∞). When |x| ≤ 2, it is straightforward to verify by calculating derivatives that the

function tanh(x)− x
2

for x ≥ 0 is increasing then decreasing. Since tanh(0) = 0, ln cosh(x)− x2

4
,

whose derivative is tanh(x)− x
2
, for x ≥ 0 is increasing (then decreasing but is not needed here).

Since ln cosh(0) = 0 and ln cosh(2)− 1 > 0, by the fact that ln cosh(x)− x2

4
is an even function,

we know ln cosh(x) ≥ x2

4
for any |x| ∈ [0, 2]. We then conclude the proof by combining both

results.
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APPENDIX B

PROOFS FOR CHAPTER 3

B.1 Proofs for Chapter 3.2

We will need the following well known inequality frequently.

Lemma 14 (Hoeffding’s inequality). Let X1:n be n independent random variables follow some

σ2-sub-Gaussian distribution with mean µ. Let µ̂ be their sample mean. Then the following in-

equalities hold

P (µ̂− µ ≥ ϵ) ≤ e−
ϵ2n
2σ2 , P (µ̂− µ ≤ −ϵ) ≤ e−

ϵ2n
2σ2 . (B.1)

Lemma 15 (Restate Lemma 6). For any m ≥ 2, Ent(σ2
Gr) ≤ 8 ln(m).

Proof of Lemma 6. For any choice of σ2
1:n. Let sj =

∑
i∈G′

j
σ2
i for each i = 1, . . . , k. By the

grouping property of entropy, we have

Ent(σ2
Gr) = Ent(s1:k) +

k∑
j=1

sj∑k
i=1 si

Ent(σ2
G′

j
) (B.2)

≤ Ent(s1:k) + ln(2m), (B.3)

where the inequality is due to the principal of maximum entropy.

For j = 1, . . . , k, if |G′
j| > 0, we have 2j−1 ≤ sj/σ

2 < 2m2j , otherwise sj = 0. Without

loss of generality, assume σ2 = 1 and sk > 0. Let s1:k be the assignment with the largest entropy

Ent(s1:k). If there are only 2m non-zero s1:k, we have Ent(s1:k) ≤ ln(2m) and the lemma is

already proved. When there are more than 2m non-zero s1:k, we have

k−2m+1∑
j=1

sj ≤ 2m
k−2m+1∑

j=1

2j = 4m(2k−2m+1 − 1) < 4m2k−2m+1, (B.4)
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and sk ≥ 2k−1. It follows that

k−2m+1∑
j=1

sj =

∑k−2m+1
j=1 sj∑k

i=k−2m+2 si +
∑k−2m+1

j=1 sj

k∑
j=1

sj (B.5)

≤
∑k−2m+1

j=1 sj

sk +
∑k−2m+1

j=1 sj

k∑
j=1

sj <
4m2k−2m+1

2k−1 + 4m2k−2m+1

k∑
j=1

sj (B.6)

=
4m2−2m+2

1 + 4m2−2m+2

k∑
j=1

sj. (B.7)

We can then write

Ent(s1:k) = Ent(
k−2m+1∑

j=1

sj, sk−2m+2:k) +

∑k−2m+1
j=1 sj∑k

j=1 sj
Ent(s1:k−2m+1) (B.8)

≤ ln(2m) +
4m2−2m+2

1 + 4m2−2m+2
Ent(s1:k), (B.9)

where the equality is by the grouping property of entropy function, and the inequality is by

Ent(s1:k−2m+1) ≤ Ent(s1:k) since s1:k is the optimal assignment in terms of the largest en-

tropy with k subsets, thus assignment s1:k−2m+1 has smaller entropy. It implies Ent(s1:k) ≤

(1 + 4m2−2m+2) ln(2m) ≤ 3 ln(2m). We thus have Ent(σ2
Gr) ≤ 4 ln(2m) ≤ 8 ln(m).

B.2 Proofs for Chapter 3.3

Lemma 16 ( Restate Lemma 7). Let ωi = δ
σ2
i∑n

j=1 σ
2
j
, the weighted naive elimination algorithm

takes

8
∑
i∈[n]

σ2
i

ϵ2

(
ln

1

δ
+ Ent(σ2

1:n)

)
(B.10)

samples, and solves the (ϵ, δ) top-m arm identification problem for any ϵ > 0 and 0 < δ < 1.

Proof of Lemma 7. The stopping time is clearly

n∑
i=1

2σ2
i

(ϵ/2)2
ln

1

ωi

= 8

∑n
i=1 σ

2
i

ϵ2

(
ln

1

δ
+ Ent(σ2

1:n)

)
. (B.11)
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After the arms have been pulled and the reward observations collected, by Hoeffding’s inequal-

ity (Lemma 14), we have P(µ̂i ≤ µi − ϵ/2) ≤ ωi for any i ∈ [m] and P(µ̂j ≥ µj + ϵ/2) ≤ ωj

for any j ∈ [n] \ [m]. Since
∑

i∈[n] ωj = δ, the union bound implies that the event E = {µ̂i >

µi − ϵ/2,∀i ∈ [m]} ∩ {µ̂j < µj + ϵ/2,∀j ∈ [n] \ [m]} occurs with probability at least 1− δ.

Suppose event E occurs. Consider a threshold µm − ϵ/2. Firstly, for any i ∈ [m], µ̂i >

µi − ϵ/2 ≥ µm − ϵ/2. In addition, any j ∈ [n]/[m] with µ̂j > µm − ϵ/2 must satisfy µj + ϵ/2 >

µ̂j > µm − ϵ/2, which implies µj > µm − ϵ, i.e., the j-th arm is ϵ-approximate top-m. In other

words, any arm with a sample mean greater than the threshold µm − ϵ/2 must be ϵ-approximate

top-m. Since there are at least m arms with sample means greater than µm − ϵ/2, the m selected

arms must be ϵ-approximate top-m.

Lemma 17 (Restate Lemma 8). For any σ2
1:n, if maxi∈[n] σ

2
i /minj∈[n] σ

2
j ≤ 2, the MedElim algo-

rithm has an expected stopping time

O

(∑
i∈[n] σ

2
i

ϵ2

(
ln

1

δ
+ ln(m)

))
. (B.12)

Moreover, for any m′ ≤ m, the MedElim algorithm satisfies the (ϵ, m
′

m
δ) top-m′ condition.

Proof of Lemma 8. We study the stopping time and accuracy separately.

Stopping time analysis: Recall that r = maxi∈[n] σ
2
i

minj∈[n] σ
2
j

. It is clear that the size of the candidate set Sℓ

decreases as |Sℓ| ≤ n
2ℓ−1 . The sum of variances in the candidate set Sℓ decreases as follows

∑
i∈Sℓ

σ2
i∑

j∈[n] σ
2
j

≤
∑

i∈Sℓ
rσ2∑

j∈[n] σ
2
≤ r
|Sℓ|
n
≤ r

2ℓ−1
. (B.13)

This implies that

∑
i∈Sℓ

σ2
i

(ϵℓ/2)2
= 36

16ℓ

9ℓ

∑
i∈Sℓ

σ2
i

ϵ2
≤ 72r

8ℓ

9ℓ

∑n
i=1 σ

2
i

ϵ2
. (B.14)
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The (random) total number of samples is thus upper bounded by

∞∑
ℓ=1

∑
i∈Sℓ

ti,ℓ =
∞∑
ℓ=1

2
∑

i∈Sℓ
σ2
i

(ϵℓ/2)2
ln

(
m

δℓ

)
(B.15)

≤ r
144

∑n
i=1 σ

2
i

ϵ2

∞∑
ℓ=1

8ℓ

9ℓ

(
ℓ ln(2) + ln

4m

δ

)
(B.16)

= O

(
r

∑n
i=1 σ

2
i

ϵ2

(
ln

1

δ
+ ln(m)

))
, (B.17)

with probability one. Thus the expected stopping time is of order O
(
r̃
∑

i∈[n] σ
2
i

ϵ2

(
ln 1

δ
+ ln(m)

))
.

Accuracy analysis. Take an arbitrary ℓ ≥ 1 with |Sℓ| > 2m. Fix some m′ ≤ m. Let

1ℓ, 2ℓ, . . . ,m
′
ℓ be the indices of the top-m′ arms in Sℓ obtained in iteration-(ℓ−1). For any i ∈ [m′],

by Hoeffding’s inequality (Lemma 14), we have P(µ̂iℓ,ℓ > µiℓ − ϵℓ/2) ≥ 1 − 1
m
δℓ. Define the

event Eℓ = {∀i ∈ [m′], µ̂iℓ,ℓ > µiℓ − ϵℓ/2}. By applying the union bound over i ∈ [m′], it is

straightforward to verify that P(Eℓ) ≥ 1− m′

m
δℓ.

Conditioned on event Eℓ occurring, consider a threshold µm′
ℓ
− ϵℓ/2. It is clear that for any

i ∈ [m′], µ̂iℓ,ℓ > µiℓ − ϵ/2 ≥ µm′
ℓ
− ϵ/2. Thus any arm in {1ℓ, . . . ,m′

ℓ} has an empirical mean

greater than the threshold µm′
ℓ
− ϵℓ/2. In iteration-ℓ, |Sℓ+1| arms with the largest empirical means

are selected from set Sℓ.

• If the selected arm with the smallest sample mean min{µ̂i,ℓ : i ∈ Sℓ+1} is less than or equal

to the threshold, then all the arms in {1ℓ, . . . ,m′
ℓ} must be selected and they are still the

top-m′ arms within Sℓ+1. It implies that µm′
ℓ+1

= µm′
ℓ
> µm′

ℓ
− ϵℓ.

• On the other hand, if the selected arm with the smallest sample mean is greater than the

threshold, some arms in {1ℓ, . . . ,m′
ℓ} may not be selected. Define the set of bad arms Bℓ :=

{i ∈ Sℓ : µi < µm′
ℓ
− ϵℓ}. A bad arm will be selected only if its empirical mean is greater

than the threshold. Denote the set of bad arms with such overestimated sample means as

Nm′,ℓ = {j ∈ Bℓ : µ̂j,ℓ > µm′
ℓ
− ϵℓ/2}. Then there are at most |Nm′,ℓ| bad arms in

Sℓ+1. If |Nm′,ℓ| ≤ |Sℓ+1| − m′, at least m′ good arms remain in Sℓ+1, which guarantees

µm′
ℓ+1
≥ µm′

ℓ
− ϵℓ.
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These two situations indicate that conditioned on Eℓ, |Nm′,ℓ| ≤ |Sℓ+1| − m′ implies µm′
ℓ+1
≥

µm′
ℓ
− ϵℓ. It follows that

P
(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ|Eℓ

)
≤ P (|Nm′,ℓ| ≥ |Sℓ+1| −m′ + 1|Eℓ)

≤ E[|Nm′,ℓ||Eℓ]
|Sℓ+1| − i+ 1

.

where the second inequality is due to Markov inequality. The expectation can be bounded by

E[|Nm′,ℓ||Eℓ] =
∑
j∈Bℓ

P
(
µ̂j,ℓ > µm′

ℓ
− ϵℓ/2|Eℓ

)
=
∑
j∈Bℓ

P
(
µ̂j,ℓ > µm′

ℓ
− ϵℓ/2

)
≤
∑
j∈Bℓ

P (µ̂j,ℓ > µj + ϵℓ/2)

≤ (|Sℓ| −m′)
δℓ
m
,

where the equality is because Eℓ is defined by the samples of arms in [1ℓ, . . . ,m
′
ℓ] which are inde-

pendent from the samples of arms in Bℓ, the first inequality is by µm′
ℓ
> µj for j ∈ Bℓ, and the

last inequality is by applying Hoeffding’s inequality to each µ̂j,l, j ∈ Bℓ and |Bℓ| ≤ |Sℓ| −m′. We

thus have

P
(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ|Eℓ

)
≤ δℓ
m

|Sℓ| −m′

|Sℓ+1| −m′ + 1

≤ δℓ
m

|Sℓ| −m
|Sℓ+1| −m+ 1

by m′ ≤ m

≤ δℓ
m

2|Sℓ+1|+ 1−m
|Sℓ+1| −m+ 1

by |Sℓ| ≤ 2|Sℓ+1|+ 1

=
δℓ
m

(
2 +

m− 1

|Sℓ+1| −m+ 1

)
≤ δℓ
m

(
2 +

m− 1

2m−m+ 1

)
by |Sℓ+1| ≥ 2m

<
3δℓ
m
.
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It follows that

P
(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ

)
= P(E)P

(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ|E

)
+ P(Ec)P

(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ|Ec

)
≤ P

(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ|E

)
+ P(Ec)

≤ 3δℓ
m

+
m′δℓ
m
≤ 4m′

m
δℓ.

The argument above holds for any ℓ ≥ 1 with |Sℓ| > 2m. The parameters satisfy

∞∑
ℓ=1

ϵℓ =
ϵ

3

∞∑
ℓ=1

(3/4)ℓ = ϵ,
∞∑
ℓ=1

4δℓ = δ
∞∑
ℓ=1

(1/2)ℓ = δ.

The returned arm set is R = Sℓ∗ for certain ℓ∗, and thus with probability at least 1− m′

m
δ, the final

returned arm set R satisfies

maxm′

i∈Rµi = maxm′

i∈Sℓ∗
µi

≥ maxm′

i∈Sℓ∗−1
µi − ϵℓ∗−1

≥ · · ·

≥ maxm′

i∈S1
µi −

ℓ∗−1∑
ℓ=1

ϵℓ

> maxm′

i∈[n]µi − ϵ.

The proof is thus complete.

Calculation in the illustrative example. Recall the illustrative example, where log(m) = k and

log(n) = k2 for some integer k ≥ 2 and ℓ = ⌈log(k)⌉. Among these n arms, there are 2i arms

with the same variance 2−i for each i = 0, 1, . . . , ℓ − 1, and the rest n −
∑ℓ−1

i=0 2
i = 2k

2 − 2ℓ + 1

arms have the same variance 2−k2ℓ/k. Then Gm is the set of arms with variances 2−k2ℓ/k, and Gl
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is the set of arms with variances 2−i for i = 0, 1, . . . , ℓ− 1. It is seen that

∑
j∈Gm

σ2
j = (2k

2 − 2ℓ + 1)2−k2ℓ/k = Θ(ℓ/k), (B.18)

∑
j∈Gl

σ2
j =

ℓ−1∑
i=0

2i2−i = ℓ = Θ(log(k)), (B.19)

which implies
∑

j∈[n] σ
2
j = Θ(log(k)). Furthermore, we can calculate that

Ent(σ2
Gl) =

ℓ−1∑
i=0

2i2−i

ℓ
ln(2i) =

ln(2)

2
(ℓ− 1) = Θ(ℓ) = Θ(log(k)). (B.20)

Furthermore, we can calculate that

∑
j∈Gr

σ2
j = 2m2−k2ℓ/k +

∑
j∈Gl

σ2
j = 2−k2+1ℓ+ ℓ = Θ(ℓ) = Θ(log(k)). (B.21)

Then the entropy values can be calculated as

Ent(σ2
Gr) =

∑
j∈Gr/Gl σ2

j∑
j∈Gr σ2

j

Ent(σ2
Gr/Gl) +

∑
j∈Gl σ2

j∑
j∈Gr σ2

j

Ent(σ2
Gl) (B.22)

=
2−k2+1ℓ∑
j∈Gr σ2

j

ln(2m) +
ℓ∑

j∈Gr σ2
j

Ent(σ2
Gl) (B.23)

= Θ
(
2−k2k + Ent(σ2

Gl)
)

(B.24)

= Θ(Ent(σ2
Gl)) = Θ(log(k)), (B.25)

and Ent(σ2
Gm) = Θ(k2) implies

Ent(σ2
1:n) =

∑
j∈Gm σ2

j∑
j∈[n] σ

2
j

Ent(σ2
Gm) +

∑
j∈Gl σ2

j∑
j∈[n] σ

2
j

Ent(σ2
Gl) (B.26)

= Θ

(
ℓ/k

log(k)
k2 + log(k)

)
= Θ(k). (B.27)
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B.3 A More Adaptive Median Elimination Algorithm

Let us sort σ2
1:n in decreasing order, and denote the sorted variances as σ̃2

1:n. For each ℓ ≥ 1,

define hℓ := max{j ≥ m :
∑

i∈[j] σ̃
2
i ≤ 1

2ℓ−1

∑
i∈[n] σ

2
i } if the set is not empty, otherwise hℓ = m.

Let ℓ∗ := min{ℓ ≥ 1 : hℓ = m}.

Define a ratio

r := min
j∈[ℓ∗−1]

hj+1

hj
(B.28)

Algorithm 7: Adapted-MedElim(σ2
1:n,m, [n], ϵ, δ)

sInitialize S1 = [n], ℓ = 1 and ϵℓ = (ϵ/3)3
ℓ

4ℓ
, δℓ =

rδ
2ℓ

for ℓ = 1, 2, . . . , ℓ∗ − 1 do
Pull arm-i ti,ℓ =

2σ2
i

(ϵℓ/2)2
ln m

δℓ
times and calculate their sample mean µ̂i,ℓ for each i ∈ Sℓ

Update candidate set Sℓ+1 = argmax
1:hℓ+1

i∈Sℓ
µ̂i,ℓ

Return: Sℓ∗

In the homogeneous setting, the MedElim algorithm halves the complexity of the problem if

the candidate set is halved. However, it should be noted that in the heterogeneous setting, simply

halving the candidate set may not be efficient since the complexity would depend on the sum of

the variances, instead of the number of the candidate arms. We can instead aim to half the sum of

the variances of the candidate set. This discrepancy is less pronounced when the heterogeneity is

low, and thus the MedElim algorithm performs reasonably well in such cases.

Lemma 18. The algorithm is valid and has an expected stopping time

O

∑
i∈[n]

σ2
i

ϵ2

(
ln

1

δ
+ ln(m) + ln

1

r

) . (B.29)

Proof of Lemma 18. We study the stopping time and accuracy separately.
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Stopping time analysis: First, notice the sum of variances in the candidate set decreases as fol-

lows:

∑
i∈Sℓ

σ2
i =

∑
i∈Sℓ

σ2
i∑

i∈[n] σ
2
i

∑
i∈[n]

σ2
i ≤

∑
i∈[hℓ]

σ̃2
i∑

i∈[n] σ
2
i

∑
i∈[n]

σ2
i ≤

1

2ℓ−1

n∑
i∈[n]

σ2
i . (B.30)

This implies that

∑
i∈Sℓ

σ2
i

(ϵℓ/2)2
= 36

16ℓ

9ℓ

∑
i∈Sℓ

σ2
i

ϵ2
≤ 72r

8ℓ

9ℓ

∑n
i=1 σ

2
i

ϵ2
. (B.31)

The stopping time is thus upper bounded by

∞∑
ℓ=1

∑
i∈Sℓ

ti,ℓ =
∞∑
ℓ=1

2
∑

i∈Sℓ
σ2
i

(ϵℓ/2)2
ln

(
m

δℓ

)
(B.32)

≤ 144
∑n

i=1 σ
2
i

ϵ2

∞∑
ℓ=1

8ℓ

9ℓ

(
ℓ ln(2) + ln

m

δ
+ ln

1

r

)
(B.33)

= O

(∑n
i=1 σ

2
i

ϵ2

(
ln

1

δ
+ ln(m) + ln

1

r

))
. (B.34)

The expected stopping time is of order O
(∑n

i=1 σ
2
i

ϵ2

(
ln 1

δ
+ ln(m) + ln 1

r

))
.

Accuracy analysis. Take an arbitrary ℓ ∈ [ℓ∗ − 1], and it is clear that |Sℓ| = hℓ > m. Fix

some m′ ≤ m. Let 1ℓ, 2ℓ, . . . ,m′
ℓ be the indices of the top-m′ arms in Sℓ, respectively. For any

i ∈ [m′], by Hoeffding’s inequality (Lemma 14), we have P(µ̂iℓ,ℓ > µiℓ − ϵℓ/2) ≥ 1− 1
m
δℓ. Define

the event Eℓ = {∀i ∈ [m′], µ̂iℓ,ℓ > µiℓ − ϵℓ/2}. By applying the union bound over i ∈ [m′], it is

straightforward to verify that P(Eℓ) ≥ 1− m′

m
δℓ.

Conditioned on the event Eℓ occurring, consider a threshold µm′
ℓ
− ϵℓ/2. It is clear that for any

i ∈ [m′], µ̂iℓ,ℓ > µiℓ − ϵ/2 ≥ µm′
ℓ
− ϵ/2. Thus any arm in {1ℓ, . . . ,m′

ℓ} has empirical mean greater

than the threshold µm′
ℓ
− ϵℓ/2. |Sℓ+1| = hℓ+1 arms with the largest sample means are selected from

set Sℓ.

• If the smallest selected sample mean min{µ̂i,ℓ : i ∈ Sℓ+1} is less or equal to the threshold,

all arms in {1ℓ, . . . ,m′
ℓ} must be selected and they are still top-m′ arms within Sℓ+1. It
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implies that µm′
ℓ+1

= µm′
ℓ
> µm′

ℓ
− ϵℓ.

• On the other hand, if the smallest selected sample mean is greater than the threshold, some

arms in {1ℓ, . . . ,m′
ℓ} may not be selected. Define the set of bad arms Bℓ := {i ∈ Sℓ : µi <

µm′
ℓ
− ϵℓ}. A bad arm can be selected only if its empirical mean is greater than the threshold.

Define the set of such overestimated bad arms as Nm′,ℓ = {j ∈ Bℓ : µ̂j,ℓ > µm′
ℓ
− ϵℓ/2}.

Then there are at most |Nm′,ℓ| bad arms in Sℓ+1. If |Nm′,ℓ| ≤ |Sℓ+1| −m′, at least m′ good

arms remain in Sℓ+1, which guarantees µm′
ℓ+1
≥ µm′

ℓ
− ϵℓ.

These two situations indicate that |Nm′,ℓ| ≤ |Sℓ+1| −m′ implies µm′
ℓ+1
≥ µm′

ℓ
− ϵℓ conditioned on

Eℓ. It follows that

P
(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ|Eℓ

)
≤ P (|Nm′,ℓ| ≥ |Sℓ+1| −m′ + 1|Eℓ)

≤ E[|Nm′,ℓ||Eℓ]
|Sℓ+1| − i+ 1

.

where the second inequality is by Markov inequality. The expectation can be bounded by

E[|Nm′,ℓ||Eℓ] =
∑
j∈Bℓ

P
(
µ̂j,ℓ > µm′

ℓ
− ϵℓ/2|Eℓ

)
≤ (|Sℓ| −m′)

δℓ
m
,

where the inequality is by Hoeffding’s inequality and |Bℓ| ≤ |Sℓ| −m′. We thus have

P
(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ|Eℓ

)
≤ δℓ
m

|Sℓ| −m′

|Sℓ+1| −m′ + 1

=
δℓ
m

hℓ −m′

hℓ+1 −m′ + 1

≤ δℓ
m

hℓ+1/r −m′

hℓ+1 −m′ + 1
by hℓ ≤

1

r
hℓ+1

=
δℓ
m

(
1

r
+

(1/r − 1)m′ − 1/r

hℓ+1 −m′ + 1

)
≤ δℓ
m

(1/r + (1/r − 1)m′ − 1/r) by hℓ+1 ≥ m ≥ m′

=
m′δℓ
m

(1/r − 1).
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It follows that

P
(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ

)
= P(E)P

(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ|E

)
+ P(Ec)P

(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ|Ec

)
≤ P

(
µm′

ℓ+1
< µm′

ℓ
− ϵℓ|E

)
+ P(Ec)

≤ m′δℓ
m

(1/r − 1) +
m′δℓ
m

=
1

r

m′

m
δℓ.

The argument above holds for any ℓ ≥ 1 with |Sℓ| > 2m. The parameters satisfy

∞∑
ℓ=1

ϵℓ =
ϵ

3

∞∑
ℓ=1

(3/4)ℓ = ϵ,
∞∑
ℓ=1

1

r
δℓ = δ

∞∑
ℓ=1

(1/2)ℓ = δ.

The returned arm set R = Sℓ∗ for some ℓ∗. With probability at least 1− m′

m
δ, the final returned arm

set R satisfies

maxm′

i∈Rµi = maxm′

i∈Sℓ∗
µi

≥ maxm′

i∈Sℓ∗−1
µi − ϵℓ∗−1

≥ · · ·

≥ maxm′

i∈S1
µi −

ℓ∗−1∑
ℓ=1

ϵℓ

> maxm′

i∈[n]µi − ϵ.

B.4 Lower Bound Proofs for Chapter 3.4

Define I(σ2
1:n) := {(µ1:n, σ

2
1:n) : µ1:n ∈ Rn}. When σ2

1:n is obvious in the context, we simply

write I(σ2
1:n) as I. The sample complexity of the approximate top-m identification problem under

algorithm inputs (ϵ, δ,m, [n], σ2
1:n) is

SC(ϵ, δ,m, [n], σ2
1:n) := inf

A
sup

I∈I(σ2
1:n)

EI [T
A], (B.35)
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where the infimum is taken over all valid algorithms, the supreme is taken over the instance class

I(σ2
1:n) := {(µ1:n, σ

2
1:n) : µ1:n ∈ Rn}, and the subscript I in the expectation EI [·] indicates that it

is with respect to bandit model I .

Lemma 19 (Restate Lemma 9). For any two probability measure P,Q on the same measurable

space (Ω,F), if E ∈ F with P (E) ≥ 1− δ > Q(E), we have

Q(E) ≥ B(δ)e−
D(P ||Q)

1−δ , (B.36)

where D(·||·) is the Kullback-Leibler divergence and B(δ) = e−
Ent(δ,1−δ)

1−δ is a strictly decreasing

function with B(0.1) > 0.69.

Proof of Lemma 9. Let Db(p, q) = p ln p
q
+ (1 − p) ln 1−p

1−q
be the binary KL-divergence. Since

P (E) ≥ 1− δ, by the data processing inequality for the KL-divergence, we have

D(P ||Q) ≥ Db(P (E), Q(E)) ≥ Db(1− δ,Q(E)) (B.37)

> (1− δ) ln 1− δ
Q(E)

+ δ ln δ ≥ (1− δ) ln B(δ)

Q(E)
, (B.38)

where the second inequality is due to P (E) ≥ 1 − δ > Q(E), and the fact that Db(p, q) is mono-

tonically increasing in p in the range [q, 1] for any fixed q. We thus concludes that Q(E) ≥

B(δ)e−
D(P ||Q)

1−δ .

Lemma 20 (Restate Lemma 10). For ϵ > 0, δ < 0.25, m < n/2, (σ2
i )i∈[n], SC(ϵ, δ,m, [n], σ2

1:n) ≥
1−δ
2ϵ2
v∗, where v∗ is the optimal value of the following optimization problem:

maximize:
∑

M⊂[n]:|M |=m

(∑
l∈M

ηM\{l}σ
2
l

)(
ln
B(δ)

δ
+ Ent({ηM\{l}σ

2
l }l∈M)

)
(B.39)

subject to:
∑

F⊂[n]:|F |=m−1

ηF = 1, ηF ≥ 0, ∀F ⊂ [n], |F | = m− 1. (B.40)

Proof of Lemma 10. We have shown in Chapter 3.4 that SC(ϵ, δ,m, [n], σ2
1:n) is lower bounded by
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the optimal value of the following optimization problem:

minimize: max
F⊂[n]:|F |=m−1, l ̸∈F

∑
j /∈F∪{l}

tl,F,j (B.41)

subject to:
∑
i∈M

exp
(
−tl,M\{i},i/θi

)
≤ δ′, ∀M ⊂ [n], |M | = m, ∀l /∈M, (B.42)

where θi =
(1−δ)σ2

i

2ϵ2
,∀i ∈ [n] and δ′ = δ

B(δ)
. This problem is equivalent to the following convex

optimization.

min
t,τ

τ (B.43)

s.t.
∑

j /∈F∪{l}

tl,F,j ≤ τ, ∀F ⊂ [n] \ {l} : |F | = m− 1,∀l ∈ [n] (B.44)

∑
i∈M

exp
(
−tl,M\{i},i/θi

)
≤ δ′, ∀M ⊂ [n] \ {l} : |M | = m,∀l ∈ [n]. (B.45)

For simplicity, we use notation
∑

l,F and
∑

l,M to indicate
∑

l∈[n]
∑

F⊂[n]\{i}:|F |=m−1 and
∑

l∈[n]
∑

M⊂[n]\{i}:|M |=m,

respectively. The Lagrangian of the optimization problem above is

L(t, τ, η, λ) = τ +
∑
l,F

ηl,F

 ∑
j /∈F∪{l}

tl,F,j − τ

+
∑
l,M

λl,M

(∑
i∈M

exp
(
−tl,M\{i},i/θi

)
− δ′

)

(B.46)

It is straightforward to check the optimization problem satisfies Slater’s condition by assigning

large enough tl,F,j and τ values. Since the optimization problem is convex, the optimal value

equals to supη,λ inft,τ L(t, τ, η, λ) according to the strong duality. For the saddle point, we must

have
∑

l,F ηl,F = 1, or else inft,τ L(t, τ, η, λ) = −∞. Decision variable τ can thus be omitted. Let

L(t, η, λ) = L(t, τ, η, λ) by restricting
∑

l,F ηl,F = 1. The derivative can be calculated that

dL(t, η, λ)

dtl,F,i
= ηl,F −

λl,F∪{i}

θi
exp(−tl,F,i/θi). (B.47)
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It implies that when ηl,F > 0 and λl,F∪{i} > 0, tl,F,i = θi ln
λl,F∪{i}
ηl,F θi

. Define ln(0) = −∞ and let

0 · ∞ = 0. The extended real valued function g(η, λ) for
∑

l,F ηl,F = 1, ηl,F ≥ 0 and λl,M ≥ 0, is

g(η, λ) := inf
t
L(t, η, λ) =

∑
l,F

ηl,F
∑

i/∈F∪{l}

θi lnλl,F∪{i} −
∑
l,F

ηl,F
∑

i/∈F∪{l}

θi ln(ηl,F θi)

+
∑
l,M

(∑
i∈M

ηl,M\{i}θi − δ′λl,M

)
. (B.48)

This dual function has two set of variables, however one of them can be eliminated explicitly

as follows. For fixed η’s with
∑

l,F ηl,F = 1 and ηl,F ≥ 0, the function is separable with respect

to λ’s, and thus we can maximize g(η, λ) by optimizing each individual λl,M separately. It is

straightforward to verify that λl,M =
(∑

F,i:F∪{i}=M ηl,F θi

)
/δ′.

Since η’s, θ’s and δ′ are positive, the assignments of λ’s are also positive, which satisfy the

constraints in the dual program. Plug it into g(η, λ), we have the induced objective as

g(η) =
∑
l,F

ηl,F
∑

i/∈F∪{l}

θi ln

∑
F ′,i′:F ′∪{i′}=F∪{i} ηl,F θi

ηl,F θiδ′
(B.49)

=
∑
F

∑
i/∈F

∑
l /∈F∪{i}

ηl,F θi ln

∑
F ′,i′:F ′∪{i′}=F∪{i} ηl,F θi

ηl,F θiδ′
. (B.50)

and the dual variables η’s lie in a probability simplex.

Further constraining the problem by requiring ηF := (n − m)ηl,F for all l /∈ F reduces the

number of dual variables, but does not change the fact that any valid assignment of ηF ’s will

provide a lower bound to the original primal problem. The following restricted objective will be

considered:

g(η) =
∑
F

∑
i/∈F

∑
l /∈F∪{i}

ηF
n−m

θi ln

∑
F ′,i′:F ′∪{i′}=F∪{i} ηF θi

ηF θiδ′
(B.51)

=
∑
F

∑
i/∈F

ηF θi ln

∑
F ′,i′:F ′∪{i′}=F∪{i} ηF θi

ηF θiδ′
. (B.52)

119



The optimal value of the optimization above is lower bounded by

maximize
∑

M⊂[n],|M |=m

((∑
j∈M

ηM\{j}θj

)(
Ent({ηM\{j}σ

2
j}j∈M) + ln

B(δ)

δ

))
(B.53)

subject to
∑

F⊂[n]:|F |=m−1

ηF = 1, ηF ≥ 0, ∀F ⊂ [n], |F | = m− 1. (B.54)

The lemma is proved.

Recall that the optimization in (3.25) is

maximize:
∑

M⊂[n]:|M |=m

(∑
l∈M

ηM\{l}σ
2
l

)
Ent({ηM\{l}σ

2
l }l∈M) (B.55)

subject to:
∑

F⊂[n]:|F |=m−1

ηF = 1, ηF ≥ 0, ∀F ⊂ [n], |F | = m− 1. (B.56)

Lemma 21 (Restate Lemma 11). The optimal value of the optimization (B.55) is lower-bounded

by 1
3

∑
j∈Gm σ2

j ln(m).

Proof of Lemma 11. The objective function of equation (B.55) can be written as

∑
F⊂[n]:|F |=m−1

∑
i/∈F

ηFσ
2
i ln

(∑
F ′∪{j}=F∪{i} ηF ′σ2

j

ηFσi

)

=
∑
i∈[n]

∑
F :i ̸∈F

ηFσ
2
i ln

(∑
F ′∪{j}=F∪{i} ηF ′σ2

j

ηFσi

)
(B.57)

For any F ⊂ Gm with |F | = m − 1, let ηF =
∏

i∈F σ2
i∑

F ′⊂Gm:|F ′|=m−1

∏
j∈F σ2

i
; and for any F ̸⊂ Gm with

|F | = m − 1, set ηF = 0. In the following analysis F indicates subset of Gm with |F | = m − 1

and E indicates subset of Gm with |E| = m− 2. Items in (B.57) can be lower bounded as follows.

ln(m)
∑
i∈Gm

σ2
i

∑
F :i ̸∈F

ηF (B.58)

= ln(m)
∑
i∈Gm

σ2
i

∑
F :i/∈F

∏
l∈F σ

2
l∑

F :i∈F
∏

l∈F σ
2
l +

∑
F :i ̸∈F

∏
l∈F σ

2
l

(B.59)
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= ln(m)
∑
i

σ2
i

(∑
F :i∈F

∏
l∈F σ

2
l∑

F :i/∈F
∏

l∈F σ
2
l

+ 1

)−1

(B.60)

= ln(m)
∑
i∈Gm

σ2
i

(
(m− 1)

∑
F :i∈F

∏
l∈F σ

2
l

(m− 1)
∑

F :i/∈F
∏

l∈F σ
2
l

+ 1

)−1

(B.61)

= ln(m)
∑
i∈Gm

σ2
i

(m− 1)σ2
i

∑
E:i/∈E

∏
l∈E σ

2
l∑

E:i/∈E
∏

l∈E σ
2
l

(∑
j∈Gm\E\{i} σ

2
j

) + 1

−1

(B.62)

≥ ln(m)
∑
i∈Gm

σ2
i

(m− 1)σ2
i

∑
E

∏
l∈E σ

2
l∑

E

∏
l∈E σ

2
l

(
minF :i∈F

∑
j∈Gm\F σ

2
j

) + 1

−1

(B.63)

= ln(m)
∑
i∈Gm

σ2
i

(
(m− 1)σ2

i∑
j∈Gm σ2

j −maxF :i∈F
∑

l∈F σ
2
l

+ 1

)−1

, (B.64)

where the last inequality is by
∑

j∈Gm\E\{i} σ
2
j ≥ minF :i∈F

∑
j∈Gm\F σ

2
j for any E . Recall the

definition of Gm: there are G1:k groups partitioning [n] and Gm = ∪j:|Gj |>2mGj . Consider the

group Gk′ ⊂ Gm with the largest index k′ ≤ k. Since the heterogeneity within group Gk′ is at

most 2, we have maxi∈Gm σ2
i ≤ 2σ2

j for any j ∈ Gk′ . Then for any F ⊂ Gm and any i ∈ Gm,

(m− 1)σ2
i∑

j∈Gm σ2
j −

∑
l∈F σ

2
l

=
(m− 1)σ2

i∑
j∈Gm\F σ

2
j

≤ (m− 1)σ2
i∑

j∈Gk′\F
σ2
j

≤ 2(m− 1)

|Gk′ \ F |
≤ 2(m− 1)

m+ 1
< 2, (B.65)

where the first inequality is by Gk′ ⊂ Gm, the second inequality is by σ2
i ≤ 2σ2

j for any j ∈ Gk′ ,

and the third inequality is by |Gk′ | > 2m. It follows that

ln(m)
∑
i

σ2
i

(
(m− 1)σ2

i∑
j∈Gm σ2

j −maxF :i∈F
∑

l∈F σ
2
l

+ 1

)−1

(B.66)

≥ ln(m)
∑
i

σ2
i (2 + 1)−1 =

1

3
ln(m)

∑
j

σ2
j . (B.67)

Lemma 22. There exists some constant 0 < c′ < 1, that for any choices of σ2
1:n, Ent(σ2

L) ≥

c′Ent(σ2
Gr)− c′ ln(2).
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Proof of Lemma 22. By the grouping property of entropy, we have

Ent(σ2
Gr) = Ent(

∑
j∈L

σ2
j ,
∑

i∈Gr\L

σ2
i ) (B.68)

+

∑
i∈L σ

2
i∑

j∈Gr σ2
j

Ent(σ2
L) +

(
1−

∑
i∈L σ

2
i∑

j∈Gr σ2
j

)
Ent(σ2

Gr\L) (B.69)

< ln(2) + Ent(σ2
L) +

(
1−

∑
i∈L σ

2
i∑

j∈Gr σ2
j

)
8 ln(m) (B.70)

≤ ln(2) + 33Ent(σ2
L), (B.71)

where the first inequality is due to the principal of maximum entropy and Lemma 6, and the last

inequality is by Lemma 25.

Lemma 23 (Retate Lemma 12). Let ηF =
(

2m
m−1

)−1
for any F ⊂ L with |F | = m− 1 and ηF = 0

otherwise. There exists some constant c′ > 0.005. The objective of optimization (3.25) is at least

c′
∑

i∈Gl σ2
iEnt(σ

2
Gr)− ln(2)

∑
i∈L σ

2
i .

Proof. Recall L ⊂ Gr with |L| = 2m is the subset of arms with largest variances within Gr. For

any M ⊂ L with |M | = m, by the grouping property of entropy function we have

Ent(σ2
L) = Ent(

∑
i∈M

σ2
i ,
∑

j∈L\M

σ2
j ) +

∑
i∈M σ2

i∑
j∈L σ

2
j

Ent(σ2
M) +

∑
i∈L\M σ2

i∑
j∈L σ

2
j

Ent(σ2
L\M) (B.72)

≤ ln(2) +

∑
i∈M σ2

i∑
j∈L σ

2
j

Ent(σ2
M) +

∑
i∈L\M σ2

i∑
j∈L σ

2
j

Ent(σ2
L\M), (B.73)

where the inequality is by the principal of maximum entropy. Multiply
∑

j∈L σ
2
j on both side, and

we have

∑
i∈M

σ2
jEnt(σ

2
M) +

∑
i∈L\M

σ2
iEnt(σ

2
L\M) ≥

∑
j∈L

σ2
j (Ent(σ

2
l )− ln(2)). (B.74)

Since |M | = |L \M | = m, summing the inequality above for each M ⊂ L with |M | = m and
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multiplying by 1

2( 2m
m−1)

gives us

∑
M⊂L:|M |=m

1(
2m
m−1

)∑
i∈M

σ2
iEnt(σ

2
M) ≥

(
2m
m

)
2
(

2m
m−1

)(Ent(σ2
L)− ln(2))

∑
i∈L

σ2
i (B.75)

≥ 1

2
(Ent(σ2

L)− ln(2))
∑
i∈L

σ2
i =

1

2
Ent(σ2

L)
∑
i∈L

σ2
i −

ln(2)

2

∑
i∈L

σ2
i (B.76)

≥ 1

2

∑
i∈L

σ2
i

Ent(σ2
Gr)− ln(2)

33
− ln(2)

2

∑
i∈L

σ2
i (B.77)

≥ 1

6

∑
i∈Gr

σ2
i

Ent(σ2
Gr)

33
− 1

2

∑
i∈L

σ2
i

ln(2)

33
− ln(2)

2

∑
i∈L

σ2
i (B.78)

≥ 1

174

∑
i∈Gr

σ2
iEnt(σ

2
Gr)− ln(2)

∑
i∈L

σ2
i , (B.79)

where the second inequality is by (2mm )
( 2m
m−1)

≥ 1, the third and forth inequalities are by Lemma 22.

B.5 Supporting Lemmas

Lemma 24 (Lemma 5.1 in [37]). Given two bandit instances I = (µ1:n, σ
2
1:n) and I ′ = (µ′

1:n, σ
′2
1:n),

and let PI and PI′ be the probability measure associated with the bandit instances, respectively.

Then for any algorithm A with the number of pulling for each arm-i as T A
i , which is a random

variable, let τA be the bandit process and let PI,π and PI′,π be the probability measures induced by

τA on instance I and I ′, respectively. We have

D(PI,A||PI′,A) =
n∑

i=1

EI [T
A
i ]D

(
N (µi, σ

2
i )||N (µ′

i, σ
′2
i )
)
. (B.80)

Lemma 25. For any σ2
1:n, we have

∑
i∈L σ2

i∑
j∈Gr σ2

j
≥ 1

3
. In addition,

(
1−

∑
i∈L σ

2
i∑

j∈Gr σ2
j

)
ln(m) ≤ 4Ent(σ2

L), (B.81)

for some constant c > 0.

Proof of Lemma 25. Suppose the minimum variance in σ2
L is σ̃2. Let α = 2mσ̃2∑

i∈L σ2
i
∈ (0, 1], which

123



implies
∑

i∈L σ
2
i = 2mσ̃2/α. In addition,

∑
j∈Gr\L σ

2
j ≤ 2mσ̃2

∑∞
i=0 2

−i = 4mσ̃2. It is straight-

forward to verify that

∑
i∈L σ

2
i∑

j∈Gr σ2
j

=
2mσ̃2/α∑

j∈Gr\L σ
2
j + 2mσ̃2/α

≥ 2mσ̃2/α

4mσ̃2 + 2mσ̃2/α
=

1/α

2 + 1/α
≥ 1

3
, (B.82)

which proves the first statement. It follows that

1−
∑

i∈L σ
2
i∑

j∈Gr σ2
j

≤ 1− 1/α

2 + 1/α
=

2

2 + 1/α
<

2

1 + 1/α
. (B.83)

By concavity of entropy function, Ent(σ2
L) ≥ Ent

(
1− 2m−1

2m
α, α

2m
, α
2m
, · · · , α

2m

)
. It implies that

(1 + 1/α)Ent(σ2
L) (B.84)

≥ (1 + 1/α)

(
−(1− 2m− 1

m
α) ln

(
1− 2m− 1

2m
α

)
+

2m− 1

2m
α ln

2m

α

)
(B.85)

≥ 2m− 1

2m
ln(2m) +

2m− 1

2m
ln

1

α
−
(
1

α
− 2m− 1

2m

)
ln

(
1− 2m− 1

2m
α

)
(B.86)

≥ 1

2
ln(2m)− 1

2
ln(α)− (1/α− 1) ln(1− α) (B.87)

≥ 1

2
ln(2m) >

1

2
ln(m). (B.88)

We thus have

4Ent(σ2
L) >

2

1 + 1/α
ln(m) >

(
1−

∑
i∈L σ

2
i∑

j∈Gr σ2
j

)
ln(m). (B.89)
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APPENDIX C

PROOFS FOR CHAPTER 4

C.1 Supporting Lemmas

Before delving into detailed proofs for the proposition and theorems, we introduce some sup-

porting lemmas.

Recall that the Bregman divergence generated by a convex differentiable function h(·) is

Bh(x, y) := h(x)− h(y)− ⟨∇h(y), x− y⟩.

The fundamental inequality (4.2) associated with mirror ascent is formally presented in the follow-

ing lemma.

Lemma 26. Let Bh : X × X → R be a Bregman divergence function, X ⊂ Rn be a compact

convex set, and g ∈ Rn. Suppose x′ = argmaxy∈X{⟨g, y⟩ − αBh(y||x)} for a fixed x ∈ X and

α > 0. Then for any y ∈ X ,

⟨g, x′⟩ − αBh(x
′||x) ≥ ⟨g, y⟩ − αBh(y||x) + αBh(y||x′).

Inequalities of the same form have appeared in many previous works, e.g., Lemma 3.4 in [76]

and a case of X being a probability simplex (Lemma 2.1 in [88]). For completeness, we provide a

proof of Lemma 26.

Proof of Lemma 26. Since h is proper and convex, x′ := argmaxy∈X{⟨g, y⟩ − αBh(y||x)} exists

and satisfies the first order condition

⟨g − α∇h(x′) + α∇h(x), x′ − y⟩ = ⟨g − α∇x′Bh(x
′||x), x′ − y⟩ ≥ 0, ∀y ∈ X ,
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which implies ⟨g, x′ − y⟩ ≥ α⟨∇h(x)−∇h(x′), x′ − y⟩. It can be verified that

⟨∇h(x)−∇h(x′), x′ − y⟩ = Bh(x
′||x)−Bh(y||x) +Bh(y||x′).

We can conclude the proof by substituting the equation into the previous inequality.

The following lemma draws a connection between the ℓ1 difference of state-action visitation

distributions and averaged KL-divergence.

Lemma 27. Let dπ
′

ρ , d
π
ρ be two discounted state-action visitation distributions corresponding to

policies π′ and π. Then

∥dπ′

ρ − dπρ∥1 ≤
γ
√
2

1− γ

√
min

(
Ddπ′

ρ
(π′||π), Ddπ′

ρ
(π||π′), Ddπρ (π

′||π), Ddπρ (π||π′)
)
.

Proof. Let dπρ,h(·, ·) be the state-action visitation distribution at step h, which implies 1
1−γ

dπρ(·, ·) =∑
h≥0 γ

hdπρ,h(·, ·). Denote π̃h as the policy that implements policy π for the first h steps and then

commits to policy π′ thereafter. Denote its corresponding discounted state-action visitation distri-

bution by dπ̃h
ρ . It follows that

1

1− γ
∥dπ′

ρ − dπρ∥1
(a)
=

1

1− γ

∥∥∥∥∥
∞∑
h=0

(dπ̃h
ρ − dπ̃h+1

ρ )

∥∥∥∥∥
1

(b)

≤ 1

1− γ

∞∑
h=0

∥dπ̃h
ρ − dπ̃h+1

ρ ∥1

=
∞∑
h=0

∥∥∥∥∥
∞∑
t=0

γt(dπ̃h
ρ,t − d

π̃h+1

ρ,t )

∥∥∥∥∥
1

=
∞∑
h=0

∥∥∥∥∥
∞∑

t=h+1

γt(dπ̃h
ρ,t − d

π̃h+1

ρ,t )

∥∥∥∥∥
1

(c)

≤
∞∑
h=0

∞∑
t≥h+1

γt∥dπ̃h
ρ,t − d

π̃h+1

ρ,t ∥1
(d)

≤
∞∑
h=0

∞∑
t≥h+1

γt∥dπ̃h
ρ,h − d

π̃h+1

ρ,h ∥1

=
γ

1− γ

∞∑
h=0

γhEs∼dπρ,h
∥π(·|s)− π′(·|s)∥1

(e)

≤ γ

1− γ

√√√√(∑
h≥0

γh

)(
∞∑
h=0

γhEs∼dπρ,h
∥π(·|s)− π′(·|s)∥21

)

=
γ

(1− γ)2
√

Es∼dπρ∥π(·|s)− π′(·|s)∥21 .
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Above, (a) holds by telescoping, (b) and (c) hold due to the triangle inequality of ℓ1-norm and the

definition of π̃h, (d) hold owing to the data processing inequality for f -divergence ∥ · ∥1, and (e)

holds due to the Cauchy-Schwarz inequality. Due to the symmetry between π and π′, it can be

similarly derived

∥dπ′

ρ − dπρ∥1 ≤
γ

1− γ

√
Es∼dπ′

ρ
∥π(·|s)− π′(·|s)∥21 .

We can conclude the proof by further applying Pinsker’s inequality.

An application of Lemma 27 gives an upper bound on the difference between value function

vectors as follows.

Lemma 28. For any k = 0, 1, . . . , K − 1,

1

2
∥V πk

1:m(ρ)− V
πk+1

1:m (ρ)∥2∞ ≤
γ2

(1− γ)4
D

d
πk+1
ρ

(πk+1||πk).

Proof. For any i = 1, 2, . . . ,m, we have

∣∣V πk
i (ρ)− V πk+1

i (ρ)
∣∣ = 1

1− γ

∣∣∣∣∣∣
∑

(s,a)∈S×A

ri(s, a)(d
πk
ρ (s, a)− dπk+1

ρ (s, a))

∣∣∣∣∣∣
≤ 1

1− γ
∥dπk

ρ − dπk+1
ρ ∥1 ≤

γ
√
2

(1− γ)2
√
D

d
πk+1
ρ

(πk+1||πk),

where the last inequality is due to Lemma 27.

C.2 Proofs for Chapter 4.2

This section presents the formal proof of Proposition 4. We begin by presenting some proper-

ties of InnerLoop. We shall omit θ in πθ, since the policies are under softmax parameterization.
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C.2.1 Linear convergence of InnerLoop

InnerLoop(r̃k, πk, α, η, tk) approximately solves the following KL-regularized MDP via natural

policy gradient. Note that

Ṽ π
k,α(s) = E

[∑
t≥0

γt (r̃k(st, at)− α log πk(at|st) + α log π(at|st)) |s0 = s, π

]
, (C.1)

which can be viewed as an entropy regularized value with reward function r̃k(s, a)−α log πk(a|s).

The entropy-regularized state-action value function is then defined as [77]

Q̃π
k,α(s, a) = r̃k(s, a)− α log πk(a|s) + γEs′∼P (·|s,a)[Ṽ

π
k,α(s

′)]. (C.2)

The convergence of NPG in entropy-regularized MDP has been well-studied in [77], with the key

results summarized in the following lemma.

Lemma 29 (Linear convergence of entropy-regularized NPG, Theorem 1 in [77]). For any learning

rate 0 < η ≤ (1−γ)/α and any k = 0, 1, . . . , K−1, the entropy-regularized NPG updates satisfy

∥∥∥∥Q̃π∗
k

k,α − Q̃
π
(t+1)
k

k,α

∥∥∥∥
∞
≤ Ckγ(1− ηα)t,∥∥∥log π∗

k − log π
(t+1)
k

∥∥∥
∞
≤ 2Ckα

−1(1− ηα)t,∥∥∥∥Ṽ π∗
k

k,α − Ṽ
π
(t+1)
k

k,α

∥∥∥∥
∞
≤ 3Ck(1− ηα)t,

for all t ≥ 0, where Ck satisfies Ck ≥
∥∥∥∥Q̃π∗

k
k,α − Q̃

π
(0)
k

k,α

∥∥∥∥
∞
+ 2α

(
1− ηα

1−γ

)∥∥∥log π∗
k − log π

(0)
k

∥∥∥
∞

.

Remark. There is a typographical mistake in the inequality “ ∥Ṽ π∗
k

k,α − Ṽ
π
(t+1)
k

k,α ∥∞ ≤ 3γCk(1 −

ηα)t ” in [77], and it has been corrected here. It is not hard to verify that the proofs of the inequal-

ities in Lemma 29 [77] hold without the assumption that 0 ≤ r(s, a) ≤ 1.

Denote Ṽ π
k (s) := V π

r̃k
(s). For the regularized MDP, its optimal policy is uniformly optimal,
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i.e., for any state s ∈ S,

1

1− γ
∥r̃k∥∞ ≥ Ṽ

π∗
k

k (s) ≥ Ṽ
π∗
k

k (s)− α

1− γ
Ddπ∗

s
(π∗||πk) = Ṽ

π∗
k

k,α(s) ≥ Ṽ πk
k,α(s) = Ṽ πk

k (s). (C.3)

It follows that ∀(s, a) ∈ S ×A,

∣∣∣Q̃π∗
k

k,α(s, a)− Q̃
πk
k,α(s, a)

∣∣∣ = γ
∑
s′∈S

P (s′|s, a)
∣∣∣Ṽ π∗

k
k,α(s

′)− Ṽ πk
k,α(s

′)
∣∣∣ (a)≤ γ∥r̃k∥∞

1− γ
,

where (a) holds due to the relation in (C.3). It implies ∥Q̃π∗
k

k,α−Q̃
πk
k,α∥∞ ≤

γ∥r̃k∥∞
1−γ

. Since 1− ηα
1−γ

= 0

when η = 1−γ
α

, we can apply results in Lemma 29 with Ck =
γ∥r̃k∥∞
1−γ

, which gives

Ṽ
πk+1

k (ρ) +
α

1− γ
D

d
πk+1
ρ

(πk+1||πk) ≤ −Ṽ
π∗
k

k (ρ) +
α

1− γ
D

d
π∗
k

ρ

(π∗
k||πk) + 3Ck(1− ηα)tk . (C.4)

C.2.2 Hidden convexity in state-action visitation distribution

Noting that the class of softmax policies is almost complete in the sense that its closure contains

all stationary policies, we will omit the parameter θ in πθ. The set of achievable state-action

visitations isD = {d ∈ ∆(S ×A) : γ
∑

s′,a′ P (s|s′, a′)d(s′, a′)+ (1−γ)ρ(s) =
∑

a d(s, a), ∀s ∈

S}, which is a convex compact set.

For any policies π, π′, define a pseudo KL-divergence between dπρ , d
π′
ρ ∈ Dρ by

D̃(dπρ ||dπ
′

ρ ) :=
∑

(s,a)∈S×A

dπρ(s, a) log
dπρ(s, a)/d

π
ρ(s)

dπ′
ρ (s, a)/d

π′
ρ (s)

. (C.5)

It is not hard to verify that

Ddπρ (π||π
′) =

∑
s∈S

dπρ(s)
∑
a∈A

π(a|s) log π(a|s)
π′(a|s)

=
∑
s∈S

dπρ(s)
∑
a∈A

dπρ(s, a)

dπρ(s)
log

dπρ(s, a)/d
π
ρ(s)

dπ′
ρ (s, a)/d

π′
ρ (s)

=
∑

(s,a)∈S×A

dπρ(s, a) log
dπρ(s, a)/d

π
ρ(s)

dπ′
ρ (s, a)/d

π′
ρ (s)

= D̃(dπρ ||dπ
′

ρ ). (C.6)
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This equation bridges the state-action visitation space and the policy space. The following lemma

shows that the pseudo KL-divergence defined in (C.5) is actually a Bregman divergence between

state-action visitation distributions.

Lemma 30. The pseudo KL-divergence D̃(dπρ ||dπ
′

ρ ) defined in (C.5) is a Bregman divergence

Bh(d
π
ρ ||dπ

′
ρ ) generated by the convex function

h(dπρ) =
∑

(s,a)∈S×A

dπρ(s, a) log d
π
ρ(s, a)−

∑
s∈S

dπρ(s) log d
π
ρ(s).

Proof of Lemma 30. It can be verified by elementary algebera that

D̃(dπρ ||dπ
′

ρ ) = h(dπρ)− h(dπ
′

ρ )− ⟨∇h(dπ
′

ρ ), d
π
ρ − dπ

′

ρ ⟩,

where∇(s,a)h(d
π′
ρ ) = log dπ

′
ρ (s, a)− log dπ

′
ρ (s). Hence we only need to show that h(dπρ) is convex.

The Hessian matrix of function h(dπρ) can be calculated as diag
(
H1, H2, . . . , H|S|

)
, where Hs =

1
dπρ (s)

(
diag(dπρ(s)/d

π
ρ(s, ·))− 11T

)
is an |A| × |A| matrix corresponding to state s. For each Hs,

we know for any x1:|A| ∈ R|A|,

xTHsx =
1

dπρ(s)

∑
a∈A

dπρ(s)

dπρ(s, a)
x2a −

(∑
a∈A

xa

)2


=
1

dπρ(s)

(∑
a∈A

dπρ(s, a)

dπρ(s)

)(∑
a∈A

dπρ(s)

dπρ(s, a)
x2a

)
−

(∑
a∈A

xa

)2


(a)

≥ 1

dπρ(s)

(∑
a∈A

|xa|

)2

−

(∑
a∈A

xa

)2
 ≥ 0,

where (a) is due to the Cauchy-Schwarz inequality. Thus the Hessian matrix of h(dπρ) is positive

semi-definite, which implies that h(dπρ) is convex.
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InnerLoop of the ARNPG framework is solving a KL-regularized MDP with value as in (4.4),

Ṽ πθ
k,α(ρ) = V πθ

r̃k
(ρ)− α

Dd
πθ
ρ
(πθ||πθk)
1− γ

.

This optimization can be equivalently represented by viewing state-action visitation as the decision

variables:

max
π

V π
r̃k
(ρ)− α

Ddπρ (π||πk)
1− γ

⇔ max
d∈D
⟨r̃k, d⟩ − αD̃(d||dπk

ρ ). (C.7)

Here ⇔ means that they are equivalent in the sense that the optimal policy solution π∗
k for the

former optimization and the optimal visitation solution d∗k for the latter satisfy d∗k = d
π∗
k

ρ . Note that

Ṽ π
r̃k
(ρ) = 1

1−γ
⟨r̃k, dπρ⟩ is a linear function of dπρ , D̃(·||·) is a Bregman divergence, andD is compact.

We can apply Lemma 26 on the latter optimization and have

⟨r̃k, d∗k⟩ − αD̃(d∗k||dπk
ρ ) ≥ ⟨r̃k, d⟩ − αD̃(d||dπk

ρ ) + αD̃(d||d∗k), ∀d ∈ D. (C.8)

Since the policy class and the state-action visitation class are both complete, the inequality above

implies that

V
πk+1

r̃k
(ρ)− α

D
d
π∗
k

ρ

(π∗
k||πk)

1− γ
≥ V π

r̃k
(ρ)− α

Ddπρ (π||πk)−Ddπρ (π||π∗
k)

1− γ
, ∀π. (C.9)

InnerLoop does not seek to find the precise solution π∗
k but approximates it with πk+1 = π

(tk)
k via

tk micro-step iterations. Proposition 4 provides a quantitative bound regarding the approximation

error of πk+1.

C.2.3 Proof of Proposition 4

Proof of Proposition 4. Combining (C.4) and (C.9) gives

−Ṽ πk+1

k (ρ) + α
D

d
πk+1
ρ

(πk+1||πk)
1− γ

≤ −Ṽ π
k (ρ) + α

Ddπρ (π||πk)−Ddπρ (π||πk+1)

1− γ
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+ 3Ck(1− ηα)tk + α
Ddπρ (π||πk+1)−Ddπρ (π||π∗

k)

1− γ
.

Note that

Ddπρ (π||πk+1)−Ddπρ (π||π
∗
k) =

〈
dπρ(·, ·), log

π∗
k(·, ·)

πk+1(·, ·)

〉
≤∥dπρ∥1∥ log π∗

k − log πk+1∥∞ = ∥ log π∗
k − log πk+1∥∞ ≤ 2Ckα

−1(1− ηα)tk ,

where the first inequality follows from Cauchy-Schwartz, and the last inequality is due to Lemma

29. We thus have

−Ṽ πk+1

k (ρ) + α
D

d
πk+1
ρ

(πk+1||πk)
1− γ

≤ −Ṽ π
k (ρ) + α

Ddπρ (π||πk)−Ddπρ (π||πk+1)

1− γ
+

5Ck(1− ηα)tk
1− γ

.

We then conclude the proposition, since 5Ck(1−ηα)t

1−γ
≤ ϵk can be guaranteed by tk ≥ 1

1−γ
log( 5γ∥r̃k∥∞

(1−γ)2ϵk
).

C.3 Proofs for Chapter 4.3

C.3.1 ARNPG-IMD for smooth scalarization

Proof of Theorem 13. By |r̃k(s, a)| = |⟨G̃k, r1:m(s, a)⟩| ≤ ∥G̃k∥1∥r1:m(s, a)∥∞ ≤ L, we know

∥r̃k∥∞ ≤ L. Recall α ≥ β
(1−γ)3

. Taking ϵk = α log(|A|)
(1−γ)K

, we choose tk = ⌈ 1
1−γ

log( 5LK
β log(|A|)) + 1⌉.

Thus by Proposition 4, for any policy π, we have the fundamental inequality

V
πk+1

r̃k
(ρ)− α

D
d
πk+1
ρ

(πk+1||πk)
1− γ

≥ V π
r̃k
(ρ)− α

Ddπρ (π||πk)−Ddπρ (π||πk+1)

1− γ
− ϵk. (C.10)

For the RHS of (C.10), by the concavity of F , we have

V π
r̃k
(ρ)− V πk

r̃k
(ρ) = ⟨G̃k, V

π
1:m(ρ)− V

πk
1:m(ρ)⟩ ≥ F (V π

1:m(ρ))− F (V
πk
1:m(ρ)).
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For the LHS of (C.10), by the fact that F is β-smooth, we know

V
πk+1

r̃k
(ρ)− V πk

r̃k
(ρ) = ⟨G̃k, V

πk+1

1:m (ρ)− V πk
1:m(ρ)⟩

≤ F (V
πk+1

1:m (ρ))− F (V πk
1:m(ρ)) +

β

2

∥∥V πk
1:m(ρ)− V

πk+1

1:m (ρ)
∥∥2
∞ .

From Lemma 28 and recalling α ≥ β
(1−γ)3

,

β

2
∥V πk

1:m(ρ)− V
πk+1

1:m (ρ)∥2∞ ≤
γ2β

(1− γ)4
D

d
πk+1
ρ

(πk+1||πk) ≤ α
D

d
πk+1
ρ

(πk+1||πk)
1− γ

.

Substituting these three inequalities into the fundamental inequality (C.10), telescoping from k = 0

to K − 1, and selecting π = π∗, we can conclude that

1

K

K∑
k=1

F (V πk
1:m(ρ)) ≥ F (V π∗

1:m(ρ))−
αDdπ∗

ρ
(π∗||π0)

(1− γ)K
− 1

K

K−1∑
k=0

ϵk ≥ F (V π∗

1:m(ρ))−
2α log(|A|)
(1− γ)K

.

Proof of Corollary 6. Note that T =
∑K−1

k=0 tk = Θ( K
1−γ

log(K)). It implies K
1−γ

= Θ(T/ log(T )).

Substituting this into Theorem 13 concludes Corollary 6.

C.3.2 ARNPG-EPD for CMDP

We first introduce the properties of the Lagrange multiplier updates (4.10) in the following

lemma.

Lemma 31 (Properties of Lagrange multiplier updates). Based on the update of the Lagrange

multipliers λk, for any i ∈ [2 : m] we have:

1. At any macro step k, λk,i ≥ 0.

2. At any macro step k, λk,i + η′(bi − V πk
i (ρ)) ≥ 0.

3. At macro step 0, |λ0,i| ≤ η′|V π0
i (ρ)− bi|; at any macro step k > 0, |λk,i| ≥ η′|V πk

i (ρ)− bi|.
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Remark. The first property guarantees the feasibility of the Lagrange multipliers; the second

property ensures that the Lagrangian in the inner loop can indeed maximize the constraint rewards;

and the third property is a key supporting step for the analysis of the constraint violation.

Proof of Lemma 31. Taking any i ∈ [2 : m], we prove each property respectively.

1. Note that λ0,i = max{0, η′(V π0
i (ρ) − bi)} ≥ 0 by initialization. Suppose λk,i ≥ 0. The

update is λk+1,i = max
{
η′(V

πk+1

i (ρ)− bi), λk,i + η′(bi − V πk+1

i (ρ))
}

.

If bi − V πk+1

i (ρ) < 0, then λk+1,i ≥ 0 by the first component in the max{·, ·}.

If bi − V πk+1

i (ρ) ≥ 0, then λk+1,i ≥ 0 by the second component in the max{·, ·}.

Thus, λk+1,i ≥ 0, and property can be proved by induction.

2. For k = 0, λ0,i + η′(bi − V π0
i (ρ)) = max{η′(bi − V π0

i (ρ)), 0} ≥ 0.

The update is λk+1,i = max
{
η′(V

πk+1

i (ρ)− bi), λk,i + η′(bi − V πk+1

i (ρ))
}

. Thus for k ≥ 0,

λk+1,i + η′(bi − V πk+1

i (ρ)) = max
{
0, λk,i + 2η′(bi − V πk+1

i (ρ))
}
≥ 0.

3. For k = 0, the initialization is λ0,i = max{0, η′(V π0
i (ρ)− bi)}.

If V π0
i (ρ)− bi ≤ 0, then λ0,i = 0 and |λ0,i| ≤ η′|V π0

i (ρ)− bi|.

If V π0
i (ρ)− bi > 0, then λ0,i = η′(V π0

i (ρ)− bi) and |λ0,i| = η′|V π0
i (ρ)− bi|.

For k ≥ 0, the update is λk+1,i = max
{
η′(V

πk+1

i (ρ)− bi), λk,i + η′(bi − V πk+1

i (ρ))
}

.

If V πk+1

i (ρ)−bi ≤ 0, then λk+1,i = λk,i+η
′(bi−V πk+1

i (ρ)), and |λk+1,i| = λk,i+η
′|V πk+1

i (ρ)−

bi| ≥ η′|V πk+1

i (ρ)− bi| by the first property that λk,i ≥ 0.

If V πk+1

i (ρ)−bi > 0, then λk+1,i ≥ η′(V
πk+1

i (ρ)−bi) > 0. Thus |λk+1,i| ≥ η′|V πk+1

i (ρ)−bi|.

We now analyze the optimality gap and constraint violation separately.

C.3.2.1 Optimality gap of ARNPG-EPD

Recall the definition of the reward in the ascent direction

r̃k(s, a) = r1(s, a) +
m∑
i=2

[λk,i + η′(bi − V πk
i (ρ))]ri(s, a). (C.11)
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Since ri(s, a) ≤ 1, we can verify that |r̃k(s, a)| ≤ 1 + η′(m−1)
1−γ

+
∑m

i=2 λk,i =: Lk, which implies

∥r̃k∥∞ ≤ Lk. Taking ϵk =
α log(|A|)
(1−γ)K

, we choose tk = ⌈ 1
1−γ

log( 5LkK
2η′m log(|A|)) + 1⌉.

Since λk,i + η′(bi − V πk
i (ρ)) ≥ 0 by the second property in Lemma 31, and V π∗

i (ρ) ≥ bi for

any i ∈ [2 : m], taking π = π∗ in Proposition 4 gives

V
πk+1

1 (ρ) +
m∑
i=2

[λk,i + η′(bi − V πk
i (ρ))] · [V πk+1

i (ρ)− bi]− α
D

d
πk+1
ρ

(πk+1||πk)
1− γ

≥V π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||πk)−Ddπ∗

ρ
(π∗||πk+1)

1− γ
− ϵk.

(C.12)

Denote δk,i := bi − V πk
i (ρ) as the constraint violation for the i-th constraint at macro step k.

We thus have

[λk,i + η′(bi − V πk
i (ρ))] · (V πk+1

i (ρ)− bi) = −λk,iδk+1,i − η′δk,iδk+1,i.

We can then bound this two terms respectively.

• λk,iδk+1,i: Note that λk+1,i = max{−η′δk+1,i, λk,i + η′δk+1,i}.

If λk+1,i = −η′δk+1,i, then

1

2
λ2k+1,i −

1

2
λ2k,i − η′2δ2k+1,i = −

1

2
λ2k,i −

η′2

2
δ2k+1,i ≤ η′λk,iδk+1,i,

which implies −λk,iδk+1,i ≤
λ2
k,i−λ2

k+1,i

2η′
+ η′δ2k+1,i.

If λk+1,i = λk,i + η′δk+1,i, then

η′λk,iδk+1,i =
1

2
(λk,i + η′δk+1,i)

2 − 1

2
λ2k,i −

η′2

2
δ2k+1,i ≥

1

2
λ2k+1,i −

1

2
λ2k,i − η′2δ2k+1,i,

which also implies −λk,iδk+1,i ≤
λ2
k,i−λ2

k+1,i

2η′
+ η′δ2k+1,i.

• η′δk,iδk+1,i: Note that η′δk,iδk+1,i = η′

2
δ2k,i +

η′

2
δk+1,i − η′

2
(δk,i − δk+1,i)

2, and η′

2
(δk,i −

δk+1,i)
2 ≤ γ2η′

(1−γ)4
D

d
πk+1
ρ

(πk+1||πk). We thus have −η′δk,iδk+1,i ≤ −η′

2
(δ2k,i + δ2k+1,i) +
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γ2η′

(1−γ)4
D

d
πk+1
ρ

(πk+1||πk).

Substituting the above upper bounds into (C.12) leads to

V
πk+1

1 (ρ) +
∥λk∥22 − ∥λk+1∥22

2η′
+ η′
∥δk+1∥22 − ∥δk∥22

2
+

(
η′γ2m

(1− γ)4
− α

1− γ

)
D

d
πk+1
ρ

(πk+1||πk)

≥V π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||πk)−Ddπ∗

ρ
(π∗||πk+1)

1− γ
− ϵk.

Recall α ≥ 2η′m
(1−γ)3

, it then follows from telescoping that

K∑
k=1

V πk
1 (ρ) ≥ KV π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||π0)−Ddπ∗

ρ
(π∗||πK)

1− γ
−

K−1∑
k=0

ϵk

+ η′
∥δ0∥22 − ∥δK∥22

2
+
∥λK∥22 − ∥λ0∥22

2η′
(C.13)

= KV π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||π0)−Ddπ∗

ρ
(π∗||πK)

1− γ
−

K−1∑
k=0

ϵk

+

(
∥λK∥22
2η′

− η′∥δK∥
2
2

2

)
+ η′
∥δ0∥22 − ∥λ0∥22

2
− 1/η′ − η′

2
∥λ0∥22 (C.14)

(a)

≥ KV π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||π0)−Ddπ∗

ρ
(π∗||πK)

1− γ
−

K−1∑
k=0

ϵk −
1/η′ − η′

2
∥λ0∥22

(b)

≥ KV π∗

1 (ρ)− 3α log(|A|)
1− γ

. (C.15)

(a) holds due to the third property of Lemma 31, and (b) holds since π0 is the uniformly distributed

policy. ThusDdπ∗
ρ
(π∗||π0) =

∑
s∈S d

π∗
ρ (s)

∑
a∈A π

∗(a|s) log(|A|π∗(a|s)) ≤ log(|A|),
∑K−1

k=0 ϵk =

α log(|A|)
1−γ

, and λ20,i = η′2[δ0,i]
2
+ implying 1/η′−η′

2
∥λ0∥2 ≤ (η′−η′3)∥δ0∥2

2
≤ η′

2(1−γ)2
≤ α log(|A|)

1−γ
. We now

obtain the bound (4.11), after dividing by K on both sides.

C.3.2.2 Violation gap of ARNPG-EPD

Recall that δk,i := bi − V πk
i (ρ) is the constraint violation for the i-th constraint at macro step

k. We aim to provide an upper bound on
∑K

k=1 δk,i to control the constraint violation.
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For any i ∈ [2 : m], since λk,i = max{−η′δk,i, λk−1,i + η′δk,i} ≥ λk−1,i + η′δk,i, we have

K∑
k=1

δk,i ≤
λK,i − λ0,i

η′
≤ λK,i

η′
≤ ∥λK∥2

η′
≤ ∥λ

∗∥2 + ∥λK − λ∗∥2
η′

. (C.16)

To upper bound the constraint violation, it therefore suffices to bound the dual variables.

Consider the Lagrangian with optimal dual variable L(π, λ∗) = V π
1 (ρ)+

∑m
i=2 λ

∗
i (V

π
i (ρ)− bi),

whose maximum value V π∗
1 (ρ) is achieved by the optimal policy π∗. We know

KV π∗

1 (ρ)
(a)
= KL(π∗, λ∗) ≥

K∑
k=1

L(πk, λ∗) =
K∑
k=1

V πk
1 (ρ) +

m∑
i=2

λ∗i

K∑
k=1

(V πk
i (ρ)− bi)

=
K∑
k=1

V πk
1 (ρ)−

m∑
i=2

λ∗i

K∑
k=1

δk,i
(b)

≥
K∑
k=1

V πk
1 (ρ)− 1

η′

m∑
i=2

λ∗iλK,i

(c)

≥KV π∗

1 (ρ)− α
Ddπ∗

ρ
(π∗||π0)−Ddπ∗

ρ
(π∗||πK)

1− γ
+
∥λK∥2

2η′
− η′∥δK∥2

2
− λ∗i

∑m
i=2 λK,i

η′
−∆K

≥KV π∗

1 (ρ)− α log(|A|)
1− γ

+
αDdπ∗

ρ
(π∗||πK)

1− γ
+
∥λK∥22
2η′

− η′∥δK∥22
2

− λ∗i
∑m

i=2 λK,i

η′
−∆K ,

where ∆K := 2α log(|A|)
1−γ

≥
∑K−1

k=0 ϵk +
1/η′−η′

2
∥λ0∥22. Then (a) holds due to complementary slack-

ness λ∗i (V
π∗
i (ρ) − bi) = 0, (b) follows from (C.16), and (c) follows from (C.14) and the third

property of Lemma 31. It then follows that

∥λK∥22
2η′

− λ∗i
∑m

i=2 λK,i

η′
≤ α log(|A|)

1− γ
−
αDdπ∗

ρ
(π∗||πK)

1− γ
+
η′∥δK∥22

2
+ ∆K . (C.17)

Denoting δ∗i := bi − V π∗
i (ρ) ≤ 0, according to Lemma 28, we have

αDdπ∗
ρ
(π∗||πK)

1− γ
≥ (1− γ)3α

2γ2
∥δK − δ∗∥2∞ ≥

(1− γ)3α
2γ2m

∥δK − δ∗∥22. (C.18)

We can also obtain

−(1− γ)3α
2γ2m

∥δK − δ∗∥22 +
η′

2
∥δK∥22 =

(
η′

2
− γ2mη′2

2[γ2mη′ − (1− γ)3α]

)
∥δ∗∥2 (C.19)
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+
γ2mη′ − (1− γ)3α

2γ2m

∥∥∥∥δK − δ∗ + γ2mη′

γ2mη′ − (1− γ)3α
δ∗
∥∥∥∥2 ,

by substituting a = (1−γ)3α
2γ2m

, b = η′

2
, x = δK − δ∗, y = δ∗ into the binomial equation

−a∥x∥22 + b∥x+ y∥22 = (b− b2

b− a
)∥y∥22 + (b− a)∥x+ b

b− a
y∥22.

Recalling α ≥ 2η′m
(1−γ)3

, we can verify that γ2mη′−(1−γ)3α
2γ2m

≤ 0 and η′

2
− γ2mη′2

2[γ2mη′−(1−γ)3α]
≤ η′. It

follows that

−(1− γ)3α
2γ2m

∥δK − δ∗∥22 +
η′

2
∥δK∥22 ≤ η′∥δ∗∥22. (C.20)

Substituting (C.18) and (C.20) into (C.17) gives

1

2η′
∥λK − λ∗∥22 =

1

2η′
∥λ∗∥2 + 1

2η′
∥λK∥2 −

1

η′

m∑
i=1

λ∗iλK,i

≤ 1

2η′
∥λ∗∥22 +

α log(|A|)
1− γ

+∆K + η′∥δ∗∥2

≤ 1

2η′
∥λ∗∥22 +

3α log(|A|)
1− γ

+
η′(m− 1)

(1− γ)2

≤ 1

2η′
∥λ∗∥22 +

4α log(|A|)
1− γ

, (C.21)

where the last inequality follows from η′(m−1)
(1−γ)2

≤ α log(|A|)
1−γ

. Using the above bound in (C.16), we

get

K∑
k=1

δk,i ≤
∥λ∗∥2
η′

+
∥λK − λ∗∥2

η′
≤ ∥λ

∗∥2
η′

+

√
∥λ∗∥22
η′2

+
8α log(|A|)
(1− γ)η′

≤ 2
∥λ∗∥2
η′

+ 3

√
α log(|A|)
(1− γ)η′

, (C.22)

from which we the constraint violation upper bound given in (4.12) follows.

Proof of Theorem 14. We can conclude Theorem 14 from the above discussion on the optimality
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gap and the constraint violation.

Proof of Corollary 7. Note that the number of iterations in the inner loop depends on the value of

dual variables, i.e., tk = ⌈ 1
1−γ

log( 5LkK
2η′m log(|A|)) + 1⌉ with Lk = 1 + η′(m−1)

1−γ
+
∑m

i=2 λk,i. It is easy

to verify that

1

2η′
∥λk − λ∗∥22 ≤

1

2η′
∥λ∗∥22 +

4α log(|A|)
1− γ

in the same manner as the proof of inequality (C.21). It then follows that

m∑
i=2

λk,i = ∥λk∥1 ≤
√
m∥λk∥2 ≤

√
m(∥λk − λ∗∥+ ∥λ∗∥)

≤

√
2m∥λ∗∥22 +

8η′mα log(|A|)
1− γ

= O

(√
m∥λ∗∥2 +

m log(|A|)
(1− γ)2

)
.

We then have tk = Θ
(

1
1−γ

log(K)
)

, and T =
∑K−1

k=0 tk = Θ
(

K
1−γ

log(K)
)

. We conclude the

proof by K
1−γ

= Θ(T/ log(T )).

C.3.3 ARNPG-OMDA for max-min trade-off

C.3.3.1 Smoothness property

Define X := Vρ ×∆([m]) ⊂ R2m. Define a norm Ψ on R2m by Ψ(v, λ) = ∥v∥∞ + ∥λ∥1. Its

dual norm is Ψ∗(v, λ) = ∥v∥1 + ∥λ∥∞.

Define Gv,−λ(X) := (∇vΦ(X),−∇λΦ(X)) for X ∈ X . Assume the function Φ is β-smooth

w.r.t. the Ψ-norm over its domain X , i.e.,

Ψ∗(Gv,−λ(X)−Gv,−λ(X ′)) ≤ βΨ(X −X ′), ∀X,X ′ ∈ X . (C.23)

Define Ek, which will be an auxiliary term for the convergence analysis, as follows:

Ek :=⟨G̃v
k − G̃v

k+1, V
πk+1

1:m (ρ)− V π̃k+1

1:m (ρ)⟩+ α
D

d
π̃k+1
ρ

(π̃k+1||πk) +Ddπρ (πk+1||π̃k+1)

1− γ
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+ ⟨G̃λ
k − G̃λ

k+1, λ̃k+1 − λk+1⟩+
D(λk+1||λ̃k+1) +D(λ̃k+1||λk)

η′
. (C.24)

Lemma 32 (Technical lemma for smoothness). When α ≥ 6β
(1−γ)4

and η′ ≤ 1
6β

,
∑K−1

k=0 Ek ≥ 0.

Proof of Lemma 32. Recall the definition of Ek (C.24). Let Xk := (V πk
1:m(ρ), λk) ∈ X and X̃k :=

(V π̃k
1:m(ρ), λ̃k) ∈ X ; Gv,−λ

k := Gv,−λ(Xk) and G̃v,−λ
k := Gv,−λ(X̃k). We can then rewrite Ek as

Ek =⟨G̃v,−λ
k − G̃v,−λ

k+1 , Xk+1 − X̃k+1⟩+ α
D

d
π̃k+1
ρ

(π̃k+1||πk) +Ddπρ (πk+1||π̃k+1)

1− γ

+
D(λk+1||λ̃k+1) +D(λ̃k+1||λk)

η′
.

We can obtain

⟨G̃v,−λ
k+1 − G̃

v,−λ
k , Xk+1 − X̃k+1⟩

(a)

≤ Ψ∗(G̃v,−λ
k+1 − G̃

v,−λ
k )Ψ(Xk+1 − X̃k+1)

(b)

≤Ψ∗(G̃v,−λ
k+1 −G

v,−λ
k )Ψ(Xk+1 − X̃k+1) + Ψ∗(Gv,−λ

k − G̃v,−λ
k )Ψ(Xk+1 − X̃k+1)

(c)

≤βΨ(X̃k+1 −Xk)Ψ(Xk+1 − X̃k+1) + βΨ(Xk − X̃k)Ψ(Xk+1 − X̃k+1)

(d)

≤ β√
8− 2

Ψ(X̃k+1 −Xk)
2 +

(
β√
8 + 2

+
β

2

)
Ψ(Xk+1 − X̃k+1)

2 +
β

2
Ψ(Xk − X̃k)

2.

Inequality (a) follows from the Cauchy-Schwarz inequality for the Ψ-norm; (b) from the triangle

inequality; (c) from the smoothness of function Φ defined in (C.23); and (d) from ac + bc ≤
a2√
8−2

+ c2√
8+2

+ b2

2
+ c2

2
.

Since X0 = X̃0, 1√
8+2

+ 1
2
+ 1

2
= 1√

8−2
, and Ψ(v, λ)2 ≤ 2∥v∥2∞ + 2∥λ∥21, we have

K−1∑
k=0

⟨G̃v,−λ
k+1 − G̃

v,−λ
k , Xk+1 − X̃k+1⟩

≤ β√
8− 2

K−1∑
k=0

Ψ(X̃k+1 −Xk)
2 +

β√
8− 2

K∑
k=1

Ψ(Xk − X̃k)
2

≤ 2β√
8− 2

K−1∑
k=0

(
∥V π̃k+1

1:m (ρ)− V πk
1:m(ρ)∥2∞ + ∥λ̃k+1 − λk∥21
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+∥V π̃k+1

1:m (ρ)− V πk+1

1:m (ρ)∥2∞ + ∥λ̃k+1 − λk+1∥21
)
.

Noting that 2β√
8−2
≤ 3β, by Lemma 28 we have

2β√
8− 2

∥V π̃k+1

1:m (ρ)− V πk
1:m(ρ)∥2∞ ≤

6γ2β

(1− γ)4
D

d
π̃k+1
ρ

(π̃k+1||πk).

By Pinsker’s inequality, we have

2β√
8− 2

∥λ̃k+1 − λk+1∥21 ≤ 6βD(λk+1||λ̃k+1).

Since α ≥ 6β
(1−γ)4

and η′ ≤ 1
6β

, we conclude that
∑K−1

k=0 Ek ≥ 0.

C.3.3.2 Convergence of ARNPG-OMDA

Proof of Theorem 15. By |r̃k(s, a)| = |⟨G̃v
k, r1:m(s, a)⟩| ≤ ∥G̃v

k∥1∥r1:m(s, a)∥∞ ≤ L, we know

∥r̃k∥∞ ≤ L. Taking ϵk =
α log(|A|)
(1−γ)K

, we choose tk = ⌈ 1
1−γ

log( 5LK
6β log(|A|)) + 1⌉.

Then by Proposition 4, for any policy π, we have two fundamental inequalities for the updates

π̃k+1 and πk+1 respectively:

V
π̃k+1

r̃k
(ρ)− α

D
d
π̃k+1
ρ

(π̃k+1||πk)

1− γ
≥ V π

r̃k
(ρ)− α

Ddπρ (π||πk)−Ddπρ (π||π̃k+1)

1− γ
− ϵk,

V
πk+1

r̃k+1
(ρ)− α

D
d
πk+1
ρ

(πk+1||πk)
1− γ

≥ V π
r̃k+1

(ρ)− α
Ddπρ (π||πk)−Ddπρ (π||πk+1)

1− γ
− ϵk.

Note that V π
r̃k
(ρ) = ⟨G̃v

k, V
π
1:m(ρ)⟩. Taking π = πk+1 in the first inequality, and summing two

inequalities gives

⟨G̃v
k+1, V

π̃k+1

1:m (ρ)− V π
1:m(ρ)⟩ ≥ α

Ddπρ (π||πk+1)−Ddπρ (π||πk)
1− γ

− 2ϵk (C.25)

+ ⟨G̃v
k − G̃v

k+1, V
πk+1

1:m (ρ)− V π̃k+1

1:m (ρ)⟩+ α
D

d
π̃k+1
ρ

(π̃k+1||πk) +Ddπρ (πk+1||π̃k+1)

1− γ
.
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We can similarly get the inequality for λ that

⟨G̃λ
k , λ̃k+1⟩+

D(λ̃k+1||λk)
η′

≤ ⟨G̃λ
k , λ⟩+

D(λ||λk)−D(λ||λ̃k+1)

η′
, (C.26)

⟨G̃λ
k+1, λk+1⟩+

D(λk+1||λk)
η′

≤ ⟨G̃λ
k+1, λ⟩+

D(λ||λk)−D(λ||λk+1)

η′
. (C.27)

Taking λ = λk+1 in the first inequality and summing two inequalities gives

⟨G̃λ
k+1, λ− λ̃k+1⟩ ≥

D(λ||λk+1)−D(λ||λk)
η′

+ ⟨G̃λ
k − G̃λ

k+1, λ̃k+1 − λk+1⟩+
D(λk+1||λ̃k+1) +D(λ̃k+1||λk)

η′
. (C.28)

Recall the definition of Ek in (C.24) that

Ek =⟨G̃v
k − G̃v

k+1, V
πk+1

1:m (ρ)− V π̃k+1

1:m (ρ)⟩+ α
D

d
π̃k+1
ρ

(π̃k+1||πk) +Ddπρ (πk+1||π̃k+1)

1− γ

+ ⟨G̃λ
k − G̃λ

k+1, λ̃k+1 − λk+1⟩+
D(λk+1||λ̃k+1) +D(λ̃k+1||λk)

η′
.

We then have

− Φ(V π
1:m(ρ), λ̃k+1) + Φ(V

π̃k+1

1:m (ρ), λ)

=Φ(V
π̃k+1

1:m (ρ), λ̃k+1)− Φ(V π
1:m(ρ), λ̃k+1) + Φ(V

π̃k+1

1:m (ρ), λ)− Φ(V
π̃k+1

1:m (ρ), λ̃k+1)

(a)

≥⟨G̃v
k+1, V

π̃k+1

1:m (ρ)− V π
1:m(ρ)⟩+ ⟨G̃λ

k+1, λ− λ̃k+1⟩
(b)

≥α
Ddπρ (π||πk+1)−Ddπρ (π||πk)

1− γ
+
D(λ||λk+1)−D(λ||λk)

η′
− 2ϵk + Ek.

Inequality (a) is by the concavity of Φ(·, λ̃k+1) and convexity of Φ(V π̃k+1

1:m (ρ), ·). Inequality (b) is

based on combining (C.25) and (C.28).
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Taking π = π∗ and λ = argminλ′∈ΛΦ
(

1
K

∑K
k=1 V

π̃k
1:m(ρ), λ

′
)

, we have

F

(
1

K

K∑
k=1

V π̃k
1:m(ρ)

)
= Φ

(
1

K

K∑
k=1

V π̃k
1:m(ρ), λ

)
≥ 1

K

K∑
k=1

Φ(V π̃k
1:m(ρ), λ)

≥ 1

K

K−1∑
k=0

Φ(V π∗

1:m(ρ), λ̃k+1) + α
Ddπ∗

ρ
(π∗||πK)−Ddπ∗

ρ
(π∗||π0)

(1− γ)K
+
D(λ||λK)−D(λ||λ0)

η′K

− 2

K

K−1∑
k=0

ϵk +
1

K

K−1∑
k=0

Ek

(a)

≥F (V π∗

1:m(ρ))−
3α log(|A|)
(1− γ)K

− log(m)

η′K
.

Inequality (a) is due to Ddπ∗
ρ
(π∗||π0) ≤ log(|A|) and Lemma 32.

Proof of Corollary 8. Note that T =
∑K−1

k=0 tk = Θ( K
1−γ

log(K)). It implies K
1−γ

= Θ(T/ log(T )).

Substituting this into Theorem 15 concludes Corollary 8.
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