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ABSTRACT 

Motor vehicle crashes (MVCs) involving police vehicles have been identified as 

a significant problem nationwide. Police MVCs are attributed to driving at high speed, 

pursuit situations, extreme weather conditions, complex traffic situations, and interacting 

with in-vehicle non-driving related tasks (NDRTs). Advanced driver-assistance systems 

(ADAS) are promising technologies to enhance officers’ safety by relieving them from 

some driving related activities. This study aimed to examine whether ADAS 

technologies could enhance officers' driving performance, decrease their workload, and 

increase their trust in vehicle safety. The research methodology included a literature 

review, survey with law enforcement officers (LEOs), driving simulation study, and 

models of officers' reaction times for steering and braking. 

Initially, a systematic review of the existing and upcoming ADAS features in 

police vehicles was conducted. Based on the findings, a survey study with 73 police 

officers was conducted (Chapter 2) to understand their needs regarding ADAS in police 

vehicles. Results suggested that ADAS such as forward collision warning (FCW), blind 

spot monitoring (BSM), and automatic emergency braking (AEB) could be beneficial 

features for police vehicles.  Additionally, results of the correlation analyses indicated 

that officer behavior and opinion on ADAS features were influenced by the trust officers 

had in the available ADAS systems among other key factors such as ADAS training and 

perceived usefulness. Technology acceptance modeling (TAM) results suggested that 

training on ADAS could enhance officers' perception of the features and increase their 

intention to use them. However, officers identified several obstacles to the adoption of 
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ADAS, including lack of adaptability, usability issues, and distrust in the technology. To 

promote the use of ADAS, officers recommended having adaptive ADAS warnings 

tailored to specific driving situations, such as pursuit driving and engagement in an 

NDRT. 

Based on the results of the survey study, a driving simulator study was conducted 

to examine how FCW/AEB and BSM impact the driving performance, workload, and 

trust of officers (Chapter 3). The findings of the simulator study indicated that FCW and 

AEB improved driving performance, while the impact of BSM was limited due to its low 

salience. ADAS warnings increased drivers' workload up to a certain point, enhancing 

their passing performance. However, during pursuit situations, officers' driving 

performance degraded, and their cognitive load increased, emphasizing the need for 

ADAS that can help maintain their situational awareness. The study also developed 

predictive models to estimate police officers' brake reaction time and steering wheel 

angle during critical driving situations. The results can be used as inputs for an adaptive 

FCW system. 

The findings of this study can be used to improve the design of ADAS 

technologies, which can improve the safety of LEOs and reduce the risk of crashes during 

high-demand driving situations. 
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NOMENCLATURE 

 

ACC Adaptive cruise control 

ADAS Advanced driving assistance systems 

AEB Autonomous emergency braking 

ANPR Automatic number plate recognition  

ATIS advanced traveler information systems 

AVE Average variance extracted 

BSM Blind spot monitoring 

CC Cruise control 

CDF Cumulative distribution function 

CPR collision prevention rate 

CSW Curve speed warning 

CW Pedestrian crash avoidance/ mitigation 

DALI Driving load activity index 

DRT Detection response task 

E.g. For example 

FCW Forward collision warning 

GHR The Grazis, Herman, and Rothery 

HRV Hear rate variability 

IMA Intersection movement assist (IMA) 

TTC−1 Inverse time to collision 

IRB Institutional review board 

LEO Law enforcement officer 

LK Lane keeping assistance 

M Mean 

MCT mobile computer terminals 
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Mph Miles per hour 

MVC Motor vehicle crash  

NDRT Non-driving related task 

OED  Object and event detection  

PCPS Percentage change in pupil size 

PEU Perceived ease of use 

PLS-SEM partial least square structural equation modeling 

PU Perceived usefulness 

RMSE Root mean square error 

RMSSD Root mean square of successive difference between normal 

heartbeats 

RSME Rating scale mental effort 

SD Standard deviation 

SRMR Standardized root mean square residual 

TAM Technology acceptance modeling 

TPB Theory of planned behavior 

TTC Time to collision 

UTAUT Unified theory of acceptance and use of technology 

 

 

 

 

 

 

 

 



 

ix 
 

TABLE OF CONTENTS 

           Page 

ABSTRACT .................................................................................................................... ii 

DEDICATION ............................................................................................................... iv 

ACKNOWLEDGEMENTS ............................................................................................ v 

CONTRIBUTORS AND FUNDING SOURCES .......................................................... vi 

NOMENCLATURE ...................................................................................................... vii 

1. INTRODUCTION ....................................................................................................... 1 

    1.1. Police vehicle crash rates ..................................................................................... 1 

    1.2. Advanced driving assistance systems .................................................................. 2 

    1.3. Advanced driver assistance systems in police vehicles ....................................... 5 

    1.4. Research gaps and objectives ............................................................................... 6 

2. SURVEY STUDY ....................................................................................................... 8 

    2.1. Introduction .......................................................................................................... 8 

 2.1.1. Technology acceptance model ................................................................ 8 

 2.1.2. Research gap and objectives ................................................................. 10 

    2.2. Method ............................................................................................................... 11 

 2.2.1. Participants ........................................................................................... 11 

 2.2.2. Survey ................................................................................................... 11 

 2.2.3. Procedure .............................................................................................. 14 

 2.2.4. Data analysis ......................................................................................... 15 

         2.2.4.1. Research hypotheses .................................................................. 15 

         2.2.4.2. Structural equation modeling ..................................................... 16 

         2.2.4.3. TAM analysis ............................................................................ 17 

         2.2.4.4. Model validity and reliability .................................................... 17 

    2.3. Results ................................................................................................................ 20 

 2.3.1. Survey ................................................................................................... 20 

 2.3.2. Responses to open-ended questions ..................................................... 24 

 2.3.3. Technology acceptance model .............................................................. 27 

    2.4. Discussion .......................................................................................................... 28 

 2.4.1. Survey results implications ................................................................... 28 

 2.4.2. Technology acceptance model implications ......................................... 29 

 2.4.3. Limitations ............................................................................................ 35 

 2.4.4. Future research and recommendations ................................................. 36 



 

x 
 

3. DRIVING SIMULATION STUDY .......................................................................... 42 

    3.1. Introduction ........................................................................................................ 42 

 3.1.1. Driver performance measures ............................................................... 44 

 3.1.2. Driver workload measures .................................................................... 45 

 3.1.3. Influential factors on officers’ performance and workload .................. 46 

         3.1.3.1. Effects of non-driving related tasks ........................................... 46 

         3.1.3.2. Effects of pursuit driving condition ........................................... 47 

 3.1.4. Models of driver behavior .................................................................... 48 

         3.1.4.1. Braking model ........................................................................... 48 

         3.1.4.2. Steering model ........................................................................... 53 

 3.1.5. Research gaps and objective ................................................................. 54 

    3.2. Method ............................................................................................................... 56 

 3.2.1. Driving simulator experiment ............................................................... 56 

         3.2.1.1. Participants ................................................................................ 56 

                 3.2.1.2. Apparatus ................................................................................... 58 

                 3.2.1.3. Independent variables ................................................................ 59 

                 3.2.1.4. Experimental design .................................................................. 61 

                 3.2.1.5. Driving scenarios ....................................................................... 62 

                 3.2.1.6. Non-driving related task ............................................................ 63 

                 3.2.1.7. Dependent variables .................................................................. 64 

                 3.2.1.8. Procedure ................................................................................... 66 

 3.2.2. Models of driver behavior .................................................................... 68 

         3.2.2.1. Braking model ........................................................................... 68 

         3.2.2.2. Steering model ........................................................................... 71 

 3.2.3. Data analysis ......................................................................................... 73 

    3.3. Results ................................................................................................................ 74 

 3.3.1. Driving simulator .................................................................................. 74 

                 3.3.1.1. Driving performance .................................................................. 74 

                 3.3.1.2. Workload ................................................................................... 79 

 3.3.2. Model results ........................................................................................ 85 

                 3.3.2.1. Brake reaction model ................................................................. 85 

                 3.3.2.2. Steering wheel model ................................................................ 87 

    3.4. Discussion .......................................................................................................... 88 

 3.4.1. Driving simulator study ........................................................................ 88 

 3.4.2. Brake reaction time model .................................................................. 100 

 3.4.3. Steering avoidance model ................................................................... 103 

    3.5. Conclusion ........................................................................................................ 104 

    3.6. Limitations ....................................................................................................... 106 

 

REFERENCES ............................................................................................................ 108 

APPENDIX A DRIVING ACTIVITY LOAD INDEX  (DALI) ................................ 123 



 

xi 
 

APPENDIX B TRUST QUESTIONNAIRE ............................................................... 127 

APPENDIX C BRAKE REACTION TIME MODEL ................................................ 129 

APPENDIX D STEERING WHEEL ANGLE MODEL ............................................ 140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 
 

LIST OF FIGURES 

Page 

Figure 2.1. Technology acceptance model .................................................................... 16 

Figure 2.2. Existing ADAS in police vehicles .............................................................. 22 

Figure 2.3. Beneficial ADAS features .......................................................................... 22 

Figure 2.4. Officers’ preferred sensory modality to receive alerts ................................ 23 

Figure 2.5. Technology acceptance model results ........................................................ 27 

Figure 3.1. Visual angle of lead vehicle at the subject vehicle driver’s retinas ............ 52 

Figure 3.2. Driving simulator setup .............................................................................. 58 

Figure 3.3. FCW icon .................................................................................................... 60 

Figure 3.4. BSM warning icon ...................................................................................... 61 

Figure 3.5. An example of driving scenario .................................................................. 63 

Figure 3.6. The MCT screen with a sample NDRT (plate number check task) ............ 64 

Figure 3.7. Effects of driving condition on maximum lateral acceleration ................... 75 

Figure 3.8. Effects of ADAS type on maximum lateral acceleration ........................... 76 

Figure 3.9. Interaction between ADAS type and driving condition on maximum  

lateral acceleration ......................................................................................................... 76 

Figure 3.10. Effects of driving condition on maximum longitudinal deceleration ....... 77 

Figure 3.11. Interaction between ADAS type and status on maximum longitudinal 

deceleration ................................................................................................................... 77 

Figure 3.12. Effects of ADAS status on minimum time to collision ............................ 78 

Figure 3.13. Effects of driving condition on minimum time to collision ...................... 78 

Figure 3.14. Effects of driving condition on time to change lane ................................. 79 

Figure 3.15. Effects of ADAS type on DALI ............................................................... 80 



 

xiii 
 

Figure 3.16. Effects of driving condition on DALI ....................................................... 80 

Figure 3.17. Effects of ADAS type on PCPS ................................................................ 81 

Figure 3.18. Effects of driving condition on PCPS. ...................................................... 82 

Figure 3.19. Effects of NDRT on PCPS ........................................................................ 82 

Figure 3.20. Effects of interaction between NDRT and ADAS type on PCPS ............. 83 

Figure 3.21. Effects of interaction between NDRT and driving condition on PCPS .... 83 

Figure 3.22. Effects of driving condition on blink rate ................................................. 84 

Figure 3.23. Effects of NDRT on blink rate .................................................................. 84 

Figure 3.24. Effects of ADAS status on trust score ...................................................... 85 

Figure 3.25. Effects of driving condition on trust score ................................................ 85 

Figure 3.26. Cumulative density function plots of the basic accumulation model,  

full accumulation model, and experimental data distributions. .................................... 87 

Figure 3.27. Examples of avoidance steering maneuver for the experimental data  

and fitted model. ............................................................................................................ 88 

Figure 3.28. Description of warning distance index reprinted from Nakaoka et al. 

(2008) .......................................................................................................................... 101 
 

 

 

 

 

 

 

 

 

 



 

xiv 
 

LIST OF TABLES 

Page 

Table 1.1. Existing ADAS features ................................................................................. 3 

Table 1.2. Existing ADAS features in police vehicles .................................................... 5 

Table 2.1. Results of demographic survey. ................................................................... 11 

Table 2.2. Survey questions and their respective categories. ........................................ 13 

Table 2.3. Summary of model validity results .............................................................. 18 

Table 2.4. Fornell-Larcker criterion analysis for checking discriminant validity. ........ 19 

Table 2.5. Descriptive statistics on Likert scale questions. ........................................... 20 

Table 2.6. Summary of responses to Yes/No questions.  .............................................. 20 

Table 2.7. Summary of the results of the Technology Acceptance Model ................... 29 

Table 3.1. Driving performance measurements ............................................................ 44 

Table 3.2. Workload measurements .............................................................................. 46 

Table 3.3. List of hypotheses ........................................................................................ 55 

Table 3.4. Results of the demographic questionnaire ................................................... 57 

Table 3.5. Parameters search range for brake reaction model....................................... 70 

Table 3.6. Parameters search range for steering wheel model ...................................... 72 

Table 3.7. Model fitting results for brake reaction time model ..................................... 86 



 

1 
 

1. INTRODUCTION* 

1.1.Police vehicle crash rates 

Motor vehicle crashes (MVCs) involving emergency vehicles, such as police 

vehicles, fire trucks, and ambulances, have been identified as a significant problem 

nationwide (Savolainen et al., 2009). The number of crashes among law enforcement 

officers (LEOs) was found to 1be higher than other emergency vehicles. The national 

safety council (NSC) reported 138 deaths in fire trucks, 252 deaths in emergency medical 

service vehicles, and 805 fatalities in police car crashes from 2010 to 2018 (NSC, 2018). 

In another investigation, Maguire et al. (2002) found that the number of fatalities among 

police officers was 2.5 times higher than the national average among all occupants in the 

U.S. from 1992 to 1997. According to national law enforcement officers memorial fund 

(NLEOMF), more than 1700 law enforcement deaths were reported from 2011–2020, 

with 21% of these fatalities attributed to the MVCs (NLEOMF, 2021).  

High number of crashes among police vehicles might be related to driving at high 

speed, pursuit situations, extreme weather conditions, and complex traffic situations 

(Zahabi et al., 2021b). Variables linked with dangerous police behaviors during pursuit 

situations include speeding and losing full control of the vehicles (LEOs’ or suspect’s 

vehicle), violation of traffic rules, passing or changing lanes inappropriately, improper 

right/left/U-turn, distracted driving, and driving in an unsafe car-following distance 

(Chu, 2016). Additionally, the potential risks for police officers being distracted while 

 
* Reprinted with permission from “Nasr, V., Wozniak, D., Shahini, F., & Zahabi, M. (2021). 

Application of advanced driver-assistance systems in police vehicles. Transportation research 

record, 2675(10), 1453-1468.” 
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driving in pursuit situation was found to increase the probability of crashes causing 

injuries (Yager et al., 2015).  

Police vehicles are equipped with in-vehicle technologies such as mobile 

computer terminals (MCTs), radio, video cameras, radar, and sirens. Using in-vehicle 

technologies while driving was found to cause officer’s distraction and increase the risk 

of MVCs (Chu, 2016). Surveys of LEOs have indicated that the MCT is the most 

important and most frequently used technology for officers while driving (Zahabi & 

Kaber, 2018b). Findings of naturalistic driving studies also suggested that MCTs are the 

most cognitively and visually-demanding in-vehicle technologies among police officers 

(Shahini et al., 2020a; Zahabi et al., 2021b). Therefore, it is necessary to reduce driver 

distraction caused by MCTs to decrease the probability of crashes and number of 

fatalities among LEOs. 

1.2. Advanced driving assistance systems 

Society of automotive engineers provides a taxonomy of the levels of driving 

automation, which ranges from level 0 (no driving automation) to level 5 (full driving 

automation). ADAS refer to level 1 (driver assistance) in this taxonomy (SAE, 2021). 

ADAS are vehicle control technologies that enhance driving comfort and traffic safety 

by using vehicle sensors (e.g., radar, laser, camera) to help drivers identify and react to 

potentially hazardous traffic situations (Gietelink et al., 2006). 

One promising method of reducing driver distraction and number of crashes is 

use of ADAS technologies such as forward collision warning (FCW), AEB, lane keeping 
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assistance (LK), blind spot monitoring (BSM), adaptive cruise control (ACC), and 

autonomous parking assistance systems (Shaout et al., 2011). Previous studies found that 

ADAS have a potential to improve driver safety by reducing the crash severity and 

number of crashes (Cicchino, 2017a; Fildes et al., 2015; Isaksson-Hellman & Lindman, 

2016). In addition, ADAS can relieve drivers from some driving-related activities, letting 

them get engaged in a non-driving related task (NDRT), and mitigate driver stress (Nasr 

et al., 2021). Table 1.1 provides a list of common existing ADAS features in vehicles 

with their description. 

Table 1.1. Existing ADAS features. 

ADAS feature Description 

ACC It automatically adjusts the speed of vehicle to keep a safe 

distance from vehicles ahead (Marsden et al., 2001).  

Automotive night vision It uses a thermographic camera to improve drivers’ perception 

and visual distance in darkness or poor weather beyond the reach 

of the vehicle's headlights (Martinelli & Seoane, 1999). 

AEB It uses sensors around the vehicle to recognize potential 

collisions to intervene or brake on behalf of the driver to prevent 

crashes (Hulshof et al., 2013). 

BSM It uses vehicle-based sensors to detect other vehicles located to 

the driver’s side and rear (blind spot) and warns them to prevent 

collisions (Cicchino, 2018). 

Cruise control (CC) It automatically maintains a steady speed as set by the driver 

(Venhovens et al., 2000). 

Curve speed warning (CSW) It uses global positioning system (GPS) information and digital 

maps to warn drivers when they are approaching a curve or exit 

on the road with high speed (Chowdhury et al., 2020). 

Electronic stability control It is an automated technology that improves a vehicle's stability 

by detecting and reducing loss of traction (Farmer, 2006). 

FCW It alerts the driver if they are distracted and fail to brake in case 

of a sudden hazard such as a decelerating lead vehicle (Yue et 

al., 2021). 
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Table 1.1. Existing ADAS features continued. 

ADAS feature Description 

Intersection movement assist (IMA) It warns the driver of a vehicle when it is not safe to enter an 

intersection because of high collision probability with other 

vehicles at stop signs or traffic signal signs (Wu et al., 2018a). 

Lane keeping assistance (LK) It warns the driver and helps to keep the car in its lane without 

driver input (Sentouh et al., 2018). 

Parking assistance systems It uses ultrasonic sensors on front and rear bumpers of the 

vehicle to detect the obstacles when parking and warn the 

drivers. It is also integrated with a rear camera to provide visual 

assistance while parking (Kokolaki et al., 2013).  

Pedestrian crash avoidance/ 

mitigation (PCAM) 

It uses sensors and artificial intelligence technology to detect 

pedestrians and bicycles in an automobile's path to take action 

for safety (Yanagisawa et al., 2014). 

Rear-view camera It is a special type of video camera that is attached to the rear of 

a vehicle to aid in backing up and avoid a backup collision 

(Cicchino, 2017b). 

Traffic sign recognition system It guarantees that the current speed limit and other road signs are 

displayed to the driver on an ongoing basis (Estable et al., 1994). 

 

Previous studies demonstrated the positive effects of ADAS features on civilian 

drivers’ safety. A report including data from 22 U.S. states during 2010–2014 revealed 

that rear-end striking crash involvements were reduced by 27% with implementation of 

FCW alone, 43% with low-speed AEB alone, and 50% with both (Cicchino, 2017a). It 

is expected that if all vehicles were equipped with FCW and AEB, almost 1 million US 

rear-end police reported crashes and 400,000 crashes with injuries could be prevented 

each year (Cicchino, 2018). In addition, test-track results from Fitch et al. (2014) 

suggested that middle-aged drivers reacted more quickly to a lateral crash threat when 

BSM warning is activated, and drivers preferred to receive the BSM alert. It is estimated 

that if all US vehicles were equipped with BSM technologies, about 20,000 injuries and 

393 serious crashes could be prevented annually (Jermakian, 2011). 
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1.3. Advanced driver assistance systems in police vehicles 

A review by Nasr et al. (2021) found that current ADAS features in police 

vehicles include but not limited to BSM, AEB, ACC, PCAM, CSW, FCW, rear-view 

cameras, automotive night vision, and LK assistance. Table 1.2 categorized the existing 

ADAS features based on the vehicle model. In addition, Nasr et al. (2021) recommended 

to equip police vehicles with intersection movement assist (IMA), traffic sign 

recognition system, left turn assist, evasive steering system, wrong way alert, lane-

ending detection, traffic jam assist, facial recognition, automatic number plate 

recognition (ANPR), and gunshot detection systems to improve officers’ safety while 

driving. 

 

Table 1.2. Existing ADAS features in police vehicles. 

ASAS Feature Ford Chevy Dodge 

BSM Yes Yes Yes 

Bluetooth/Uconnect systems Yes Yes Yes 

Rear-View Camera Yes Yes Yes 

Pre-Collision Assist Yes Yes No 

PCAM Yes Yes No 

AEB Yes Yes Yes 

LK Assistance No Yes No 

Lane Departure Warning No Yes No 

Patented Safety Seat No Yes No 

FCW Yes Yes Yes 
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ADAS are promising technologies to enhance officers’ safety, efficiency, and 

communication by relieving them from some driving tasks and letting them be engaged 

in NDRTs. However, no previous studies investigated the effects of ADAS technologies 

specifically in police vehicles.  

1.4. Research gaps and objectives 

This study aims to fill several research gaps in the literature.  The first objective 

of this study is to understand police officers’ opinions and needs regarding ADAS in 

police vehicles and how officer acceptance of ADAS is influenced by different factors. 

To achieve this objective, an online survey was conducted to assess the effects of 

different factors including trust, perceived usefulness, perceived ease of use, ADAS 

training, and demographic information of police officers on their intention to use ADAS 

using the technology acceptance modeling (TAM). Chapter 1 includes the description of 

the TAM and the results of the survey. 

The second objective of this study is to conduct a driving simulator study to 

investigate the effects of ADAS technologies on officers’ driving performance and 

workload. The results from the survey study and TAM were used to determine the 

experimental design and measurements in the simulator study. Although previous studies 

have focused on the effects of automated driving technologies on civilian drivers, this 

study aims to investigate the LEO population who are prone to riskier driving situations 

than civilian drivers. Using both driving performance and workload measures provide a 

holistic view of the effects of ADAS on LEOs. Chapter 2 further expands the details 

about the background and the methodology used in the driving simulator study. 
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The third objective of this research is to build predictive models to predict brake 

reaction time and steering wheel angle when driving with FCW/AEB and BSM 

respectively. Chapter 3 further explains the model assumptions and procedure. The 

results from this model can assist vehicle and vehicle manufacturers to produce adaptive 

ADAS features and issue an alert whenever it is necessary. 
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2. SURVEY STUDY* 

2.1. Introduction 

2.1.1. Technology acceptance model 

Theories of human behavior such as technology acceptance modeling (TAM), 

theory of planned behavior (TPB), and unified theory of acceptance and use of 

technology (UTAUT) have been used to study technology acceptance among users. 

Among its wide adoption in all fields of technology acceptance, TAM was found to 

outperform TPB and UTAUT to model driver acceptance in terms of Behavioral 

Intention to use ADAS (Rahman et al., 2017). The TAM consists of several variables 

which explains behavioral intentions and the use of technology (e.g., perceived 

usefulness, perceived ease of use, and attitudes toward technology), and has been 

extended by other variables including self-efficacy, subjective norms, and facilitating 

conditions of technology use (Schepers & Wetzels, 2007). TAM has gained a great 

consideration mainly because of its transferability to different contexts and its potential 

to explain the variance in the use of technology and intention to use. Another advantage 

of TAM is its simplicity of specification with structural equation modeling frameworks 

(King & He, 2006; Marangunić & Granić, 2015). Researchers have also suggested 

factors outside of TAM 2that can affect behavioral intention to use ADAS. Examples of 

these factors include trust (Ghazizadeh et al., 2012; Najm et al., 2006), which is defined 

as “the attitude that an agent will help achieve an individual’s goals in a situation 

 
* Reprinted with permission from “Wozniak, D., Shahini, F., Nasr, V., & Zahabi, M. (2021). Analysis of 

advanced driver assistance systems in police vehicles: A survey study. Transportation research part F: 

traffic psychology and behaviour, 83, 1-11.” 
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characterized by uncertainty and vulnerability” (Lee & See, 2004), and training. Training 

has been found as one of the most important factors that contributes to greater user 

acceptance and system success (Scherer et al., 2019). Coughlin and D’Ambrosio (2012) 

and Koustanaï et al. (2012) suggested that training can lead to a better system 

understanding, including system capacities, benefits, and limitations, and therefore, it 

can affect drivers’ behavioral intention to use. In addition, previous studies have 

suggested that training can influence ease of use of information technology (Davis, 

1989). Biassoni et al. (2016) investigated the effects of training with advanced collision 

warning systems on ADAS technology acceptance with 527 novice drivers. Results 

indicated that the quantity and quality of information on technology features can 

significantly change the initial acceptability of the safety device. In addition, 

pleasantness of use and perceived benefits for safety were found to be the most critical 

factors for novice drivers. Previous studies paid specific attention to the area of trust in 

information technology. It is widely accepted that users who trust in certain technology 

put themselves in a vulnerable position, and the trust relation might lead the user to take 

the potential risk of losing something important and instead using the technology (Mayer 

et al., 1995). For example, Xu et al. (2010) developed a TAM model to analyze why 

travelers accept or refuse advanced traveler information systems (ATIS) and to explain, 

predict, and increase travelers’ acceptance of ATIS. They concluded that trust in ATIS 

significantly determines travelers’ intention to accept and use it (Xu et al., 2010). 
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2.1.2. Research gap and objectives 

There are several differences between civilian driving conditions and police 

driving conditions, such as the higher demand driving situations police officers are faced 

with and the frequent use of non-ADAS in-vehicle technologies such as dispatch radios 

and MCTs. Police officers may override roadway regulations in pursuit situations 

(Zahabi & Kaber, 2018b), and therefore the ADAS that aid drivers in normal driving 

conditions can become useless or even a hindrance if they cannot be powered off easily. 

In addition, potential ADAS must account for technology and equipment unique to 

police vehicles such as MCTs, further complicating the process of implementing ADAS 

in police vehicles. To better equip police officers to deal with the increased risk of 

accidents associated with their profession, it is necessary to investigate ways to improve 

ADAS use for police vehicles specifically as opposed to civilian drivers in general. 

In our prior study, a list of the most prevalent ADAS available for police officers 

was identified based on a review of literature on police vehicles, patents, and review of 

scientific research studies (Nasr et al., 2021). Some of the features include rear view 

cameras, emergency braking, adaptive cruise control, etc.  A complete list of these 

features is provided in Nasr et al., (2021). The findings of this study provided a list of 

ADAS features, which is incorporated into the questions for this survey study.  

The objective of this study was to understand police officers’ opinions and needs 

regarding ADAS in police vehicles and how officer acceptance of ADAS is influenced 

by different factors. To achieve this objective an online survey was conducted to assess 

the effects of different factors including trust, perceived usefulness, perceived ease of 
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use, ADAS training, and demographic information of police officers on their intention 

to use ADAS using the TAM. 

2.2. Method 

2.2.1. Participants 

Seventy-three participants completed the demographic questionnaire, and the results are 

displayed in Table 2.1. 

Table 2.1. Results of demographic survey. 

Category Results 

Sex 68 males, 5 females 

Age  M = 37.24 yrs., SD = 8.3 

yrs. 

Number of participants who attended police academy 73 

Experience as police officer M = 11.03 yrs., SD = 7.43 

yrs. 

Experience serving as a primary patrol officer M = 8.63 yrs., SD= 6.14 yrs. 

Number of participants who received additional training since the police 

academy (e.g., emergency vehicle operation courses) 

63  

Level of experience with ADAS (1 being no experience and 5 being an 

expert) 

M = 2.74, SD = 1.19 

Frequency of ADAS use  M = 46.11% and SD = 

27.19% 

Road types drove Urban, rural, highways, and 

suburban roads 

Note: M: Mean, SD: Standard deviation 

2.2.2. Survey 

An online survey composed of 19 questions of four different types was 

distributed among the officers. The question types included: (1) yes/no questions with 

space for elaboration, (2) Likert scale response questions with ranges of responses 
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between 1 (represents the lowest reported frequency or the lowest possible trust in the 

technology) and 5, (3) checkbox questions with choices selected based on the findings 

of our previous literature review (Nasr et al., 2021), and (4) free response questions. The 

three primary categories included perceived usefulness, perceived ease of use, and trust, 

with two other questions focusing on training and past behavior. As the final question 

merely asked for additional suggestions, it was not placed in a category. Table 2.2 

outlines the survey questions and the response type. 

The questions were based on the ADAS widely available in police vehicles in the 

U.S. and were designed to understand which features were available in police vehicles, 

whether they were used by police officers for their work operations, and how useful 

officers perceived the features. The available ADAS features used in this survey were 

based on the findings of our literature review (Nast et al., 2021). The ADAS features 

included were Bluetooth/Uconnect Communication Systems, Rear View Camera, Pre-

Collision Assist, Emergency Braking, Lane Keep Assist, Lane Departure Warning, 

Patented Safety Seat, Adaptive Cruise Control, Hill Start Assist, Hill Descent Control, 

Reverse Brake Assist, Front Split View Camera, Gunshot Detection System, Automated 

License Plate Reader, Low-Speed Automated Driving, and Blind Spot Information 

System. Participants were also asked to rank ADAS features (on their potential 

usefulness identified in Nasr et al., (2021)) that are currently not widely available in 

police vehicles. These potential features included: Front Vehicle Detection System, 

Intersection Collision Avoidance, Evasive Steering Assist, Left Turn Assist, Traffic Sign 

Detection Algorithm, Post Collision Braking, Traffic Jam Assist, Two Lane Detection, 
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Lane-Ending Detection, Wrong Way Moving Vehicle Detection, Wrong Way Alert, and 

Autonomous Highway Driving. For descriptions of all ADAS features, please see Nasr 

et. al., (2021). 

Table 2.2. Survey questions and their respective categories. 

Question 
Response 

Type 
Category 

1. What are the most beneficial ADAS features in your police 

vehicle? Please select all that apply and provide a short 

explanation for your selection.  

 

Checkbox   

Perceived 

usefulness 

2. How often do you use available ADAS features in the police 

vehicle? 

Likert 

scale 

Past 

Behavior 

3. Are there any helpful ADAS features that your personal 

vehicle has that you would like to have in your police vehicle as 

well? Which ones? 

Free 

Response 

Perceived 

usefulness 

4. Are there any ADAS features in your police vehicle that you 

do not use at all? If so, please explain. 
Yes/No 

Perceived 

usefulness 

5. What are your recommendations to improve the current 

ADAS features in police vehicles? 

Free 

Response 

Perceived 

ease of use 

6. If you were the manufacturer of police vehicles, what ADAS 

features would you add to the vehicle? Why? 

Free 

Response 

Perceived 

usefulness 

7. Do you know how to easily turn on and off your ADAS 

features?  
Yes/No 

Perceived 

ease of use 

8. Is there any situation in which you would prefer to have your 

ADAS features turned off? If so, please explain.  
Yes/No 

Perceived 

usefulness 

9. Would you use ADAS more if their functionality and 

advantages were clearly explained to you? 
Yes/No 

ADAS 

training 

10. How do you prefer to receive alerts in your police vehicle? 

(please select all that apply) 
Checkbox 

Perceived 

ease of use 

11. Do you think ADAS features can be useful in pursuit 

situations?  

Likert 

scale 

Perceived 

usefulness 

12. How often do you rely on ADAS features while you are 

performing a secondary task (e.g. using the MCT, cell phone, 

talking on the radio) as compared to when you are driving 

without these distractions? 

Likert 

scale 

Perceived 

usefulness 
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Table 2.2. Survey questions and their respective categories continued. 

Question 
Response 

Type 
Category 

13. Do you think the currently available ADAS features in 

police vehicles are helpful to improve driving safety and reduce 

crashes? If yes, please explain how. 

Yes/No 
Perceived 

usefulness 

14. How much do you trust ADAS features to improve your 

driving safety? 

Likert 

scale 
Trust 

15. How much do you trust autonomous vehicles to improve 

your driving safety in police operations? 

Likert 

scale 
Trust 

16. To what extent do you think that ADAS features reduce 

your workload? 

Likert 

scale 

Perceived 

usefulness 

17. What are the reasons/barriers that prevent you from using 

ADAS in police vehicles? 

Free 

Response 

Perceived 

usefulness 

18. Do you think that ADAS features improve your attention to 

the road and the surrounding environment? If yes, please 

explain how. 

Yes/No 
Perceived 

usefulness 

19. Do you have any other suggestions to improve ADAS in 

police vehicles? 

Free 

Response 
N/A 

 

A copy of the survey used in this study can be found from 

https://docs.google.com/forms/d/1w6Tk8tqIFi_RjotGoIXslEe9z6i3w0tw1VWGIK__nc

o/edit.  

2.2.3. Procedure 

The survey was administered to participating precincts in Texas via email. 

Participants were first asked to fill out an online consent form and a demographic survey 

before completing the actual survey. Responses were collected and organized using 

Google Forms between September 2nd, 2020 and September 17th, 2020.  

https://docs.google.com/forms/d/1w6Tk8tqIFi_RjotGoIXslEe9z6i3w0tw1VWGIK__nco/edit
https://docs.google.com/forms/d/1w6Tk8tqIFi_RjotGoIXslEe9z6i3w0tw1VWGIK__nco/edit


 

15 
 

2.2.4.  Data analysis 

2.2.4.1. Research hypotheses 

The below hypotheses (H) were tested in this study. The hypotheses were 

generated based on prior studies using TAM to assess ADAS for civilians.  

H1: Trust in ADAS significantly and positively affects officers’ behavioral 

intention to use ADAS (Gefen et al., 2003; Kidd et al., 2017).  

H2: Perceived usefulness (PU) has a significant positive impact on behavioral 

intention (Davis, 1989). 

H3: Perceived ease of use (PEU) will have a significant positive impact on 

behavioral intention (Davis, 1989). 

H4: PU mediates the effect of PEU on behavioral intention; however, the 

mediation is not a complete mediation. In other words, PEU significantly affects 

behavioral intention, above and beyond PU (Davis, 1989). 

H5: Demographic information significantly affects officers’ intention to use 

ADAS. It is expected that younger officers would be more intended to use ADAS as 

compared to more senior police officers (Lee et al., 2019). 

H6: Training the officers on ADAS functionalities and advantages will positively 

impact behavioral intention towards ADAS use (Biassoni et al., 2016). 

H7: Training the officers on ADAS functionalities and advantages will positively 

affect PEU (Biassoni et al., 2016). 

H8: Training the officers on ADAS functionalities and advantages will positively 

affect PU (Biassoni et al., 2016). 
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H9: Training the officers on ADAS functionalities and advantages will positively 

affect their trust in ADAS technologies (Lee and See, 2004). 

2.2.4.2.Structural equation modeling 

The objective of this study was to reveal the relationships among acceptance of 

ADAS technologies, trust in ADAS technologies, perceived usefulness, and other related 

variables. Due to the complex relationships among these latent variables and their 

measurement error, it was not possible to find the structural relationships using 

traditional multiple regression or factor analysis. Therefore, a partial least square 

structural equation modeling (PLS-SEM) methodology was employed, which can be 

used to study the complex interrelationships among variables. Structural equation 

models can be graphically shown by path diagrams, and the direction of each arrow 

represents the causal relation between the two variables connected by the arrow. For this 

study, the structural equation model was analyzed using SmartPLS 3.2.9 software 

(Sullivan and Feinn, 2012) (Figure 2.1). 

 

 

 

 

 

 

 

 

Figure 2.1. Technology acceptance model 
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2.2.4.3. TAM analysis 

According to the recommended two-stage analytical approach proposed by 

Anderson and Gerbing (1988), the measurement model (validity and reliability of the 

model) was examined followed by an evaluation of the structural model (testing the 

hypothesized relationship) (see Hair et al., 2017; Ramayah et al., 2011; 2013; Rahman 

et al., 2015).  During the data analysis process, all of the related questions to each 

construct were initially included in the model. Then, to make sure that the model meets 

all of the assumptions (i.e., indicator reliability, internal consistency reliability, 

convergent reliability, discriminant validity, and model fit), some of the questions were 

removed and the remaining questions were used in the final model. In addition, a 

bootstrapping method (5000 resamples) was used to test the significance of the path 

coefficients and the loadings—estimated relationships in reflective measurement models 

which determine an item's absolute contribution to its assigned construct (Hair et al., 

2017).  

2.2.4.4. Model validity and reliability 

To ensure that the model used was valid, the indicator reliability, internal 

consistency reliability, convergent reliability, discriminant validity, and model fit of the 

model were evaluated. Table 2.3 shows that all of the indicators have individual indicator 

reliability values that are much larger than the minimum acceptable level of 0.4 (Wong, 

2013). Therefore, the model meets the requirements for indicator reliability. 

Traditionally, “Cronbach’s alpha” was used to estimate internal reliability in social 

science research. However, some studies proposed the use of “Composite Reliability” 
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instead of Cronbach’s alpha to measure the reliability as a more conservative 

measurement in PLS-SEM (Bagozzi and Yi, 1988; Hair et al., 2012). Based on Table 

2.3, all composite reliability values were higher than 0.7, indicating high levels of 

internal consistency reliability among all six reflective latent variables (Wong, 2013). 

Convergent validity was determined by investigating the loadings, average 

variance extracted (AVE), and the composite reliability of the model (Gholami et al., 

2013; Rahman et al., 2015). The loadings were all higher than 0.71, the composite 

reliabilities were all higher than 0.74, and the AVE of all constructs were also higher 

than 0.59, which based on the recommendations from Gholami et al. (2013) and Rahman 

et al. (2015) indicates that the model has convergent validity.  

Table 2.3. Summary of model validity results 

Latent Variable Indicators  Loadings Indicator Reliability 

(Loadings2)  

Composite 

Reliability   

Average Variance 

Extracted (AVE)  

Officer’s trust in 

ADAS 

Q14 .96 .92 .87 .77 

Q15 .79 .62 

Perceived 

usefulness 

Q11 .71 .50 .74 .59 

Q18 .82 .67 

Perceived ease of 

use 

Q7 1.00 1.00 1.00 1.00 

ADAS training Q9 1.00 1.00 1.00 1.00 

Demographics Age .94 .88 .94 .89 

Experience .94 .88 

Behavioral 

intention 

Q2 1.00 1.00 1.00 1.00 
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The square root of AVE of each latent variable was used to establish discriminant 

validity and was compared with other correlation values as shown in Table 2.4 The 

square root of AVE of each latent variable was found to be bigger than the other 

correlations in their column and row, which indicated that the model met the 

requirements for discriminant validity based on the criteria identified by Fornell and 

Larcker (1981). 

Table 2.4. Fornell-Larcker criterion analysis for checking discriminant validity. 
 

Officer’s 

trust in 

ADAS 

Perceived 

usefulness 

Perceived 

ease of use 

ADAS 

training 

Demographics Behavioral 

intention 

Officer’s trust 

in ADAS 

.88 
     

Perceived 

usefulness 

.51 .77 
    

Perceived ease 

of use 

.03 -.11 1.00 
   

ADAS training .22 .41 -.07 1.00 
  

Demographics .02 .06 .08 .09 .94 
 

Behavioral 

intention 

.32 .28 -.05 -.17 .15 1.00 

 

Finally, before proceeding to run the model, model fit was tested by using the 

standardized root mean square residual (SRMR). The SRMR is defined as the difference 

between the observed correlation and the model implied correlation matrix in which 

values equal to or smaller than 0.08 are considered a good fit (Hu and Bentler, 1998). 

The calculated SRMR of our model was 0.08, which indicates a good model fit. 
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2.3. Results 

2.3.1.  Survey 

From the participants who completed the demographic questionnaire, the data for 

seven participants were removed due to failing or choosing not to complete the online 

survey sent to them. Therefore, survey data analysis was conducted on the data from the 

remaining 66 participants. A summary of the responses to survey questions are shown in 

Tables 2.5 and 2.6 and Figures 2.3 and 2.4. For the Likert questions, participants were 

asked to rate their agreement with a variety of statements, with higher values being more 

positive responses. 

Table 2.5. Descriptive statistics on Likert scale questions. 

Question Mean (Standard 

Deviation) 

2. How often do you use available ADAS features in the police vehicle? 3.05 (1.29) 

11. Do you think ADAS features can be useful in pursuit situations? 2.86 (1.35) 

12. How often do you rely on ADAS features while you are performing a secondary 

task (e.g. using the MCT, cell phone, talking on the radio) as compared to when you 

are driving without these distractions? 

2.58 (1.46) 

14. How much do you trust ADAS features to improve your driving safety? 2.82 (1.20) 

15. How much do you trust autonomous vehicles to improve your driving safety in 

police operations? 

1.94 (1.15) 

16. To what extent do you think that ADAS features reduce your workload? 2.15 (1.01) 

 

Table 2.6. Summary of responses to Yes/No questions. 

Question 

  
Percentage of “Yes” 

Responses (%) 

4. Are there any ADAS features in your police vehicle that you don’t use at all? 

If so, please explain. 

9.09 

7. Do you know how to easily turn on and off your ADAS features? 47 
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Table 2.6. Summary of responses to Yes/No questions continued. 

Question 

  

Percentage of “Yes” 

Responses (%) 

8. Is there any situation in which you'd prefer to have your ADAS features 

turned off? If so, please explain.  

37.9 

9. Would you use ADAS more if their functionality and advantages were 

clearly explained to you? 

62.8 

13. Do you think the currently available ADAS features in police vehicles are 

helpful to improve driving safety and reduce crashes? If yes, please explain 

how. 

59.1 

18. Do you think that ADAS features improve your attention to the road and 

the surrounding environment? If yes, please explain how. 

43.9 

 

Figures 2.3 and 2.4 summarize the results gathered for questions 1 and 10 

respectively. Figure 2.3 indicates what features officers believed to be most beneficial to 

them during their work. These features are available ADAS in the latest police vehicles 

in the U.S. (e.g., the 2020 Ford Police Interceptor Utility, the 2020 Chevy Tahoe Police 

Pursuit Vehicle, and the 2020 Dodge Charger Pursuit) but might have not been available 

in the vehicles of police officers surveyed in this study (which was illustrated in Figure 

2.2). Similar to the responses to available ADAS features (Figure 2.2), the responses to 

question 1 suggested a strong preference of police officers for the rear-view cameras and 

the Bluetooth communication systems in comparison to all of the other ADAS features. 

The responses to question 10 indicated officers’ preference towards receiving alerts 

using a combination of visual and auditory modalities as compared to visual or auditory 

modality only or vibrotactile alerts.  



 

22 
 

 

Figure 2.2. Existing ADAS in police vehicles 

 

 

Figure 2.3. Beneficial ADAS features 
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Figure 2.4. Officers’ preferred sensory modality to receive alerts 

In addition, participants were asked to indicate which ADAS features were 

available in their police vehicles. The findings of this question are displayed in Figure 

2.2. It was found that rear view cameras and Bluetooth communication system were the 
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reverse brake assist and front split view camera were the most uncommon features 

available. 

Participants were also asked to rank potential ADAS features, not currently 

available in police vehicles in the U.S., based on how useful they thought they could be 
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= 2.92), left turn assist (M = 6.81, SD = 3.61), traffic jam assist (M = 6.85, SD = 3.33), 

traffic sign detection (M = 7.41, SD = 3.74), lane ending detection (M = 7.44, SD = 

3.21), and autonomous highway driving (M = 7.64, SD = 3.86). The results indicated 

that police officers prioritized ADAS features with regards to avoiding collisions such 

as intersection collision avoidance over ADAS designed to reduce the mental burdens 

associated with driving such as traffic sign detection or autonomous highway driving. 

2.3.2. Responses to open-ended questions 

Several questions were provided in the free response format in order to better 

retrieve individual opinions of participants. The notable results and implications for these 

questions are summarized in this section with percentage of participants who reported 

the comments in the parenthesis.  

Question 3: Are there any helpful ADAS features that your personal vehicle has 

that you would like to have in your police vehicle as well? 

The responses for this question were similar to the responses to question 1 of the 

survey, with blind spot information and cameras compromising the highest percentage 

of responses of those who responded affirmatively to this question (25.8% response rate 

for both responses). Following these were collision assistance (22.6%) and cruise control 

(12.9%), which were not identified as prevalent features available in police vehicles by 

this survey (Figure 2.2). This may reflect a strong desire of officers to have access to 

features they do not currently have access to. 

Question 5: What are your recommendations to improve the current ADAS 

features in police vehicles? 
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Improvements to ADAS adaptability and usability were the most common 

requests from police officers to enhance existing ADAS features in police vehicles, 

included in 17.6% of responses. Specific examples officers cited include being able to 

enable and disable features such as front vehicle detection and lane assist easily, and 

clearly explaining how the ADAS features work so they can be properly utilized.  About 

7% of officers requested the removal of ADAS without citing reasons. These responses 

justified the decision to categorize this question within the perceived ease of use 

category, as many officers expressed interest in improvements to existing ADAS features 

as opposed to suggesting new features entirely.  

Question 6: If you were the manufacturer of police vehicles, what ADAS 

features would you add to the vehicle? Why? 

Similar to question 3, cameras were cited as critical to police officers when 

questioned on what they would add to police vehicles, comprising 19.1% of responses. 

Crash avoidance systems such as collision and braking assistance were also cited often 

(16.1% of responses). It is noteworthy that police officers favored ADAS that are 

designed to prevent crashes (e.g. rear-view cameras, emergency braking systems, and 

blind spot monitoring systems) over systems that can improve their driver control 

responsibilities, even in free response questions. What this might indicate is that police 

officers prioritize the ability of ADAS to assist officers in dangerous/accident situations 

above any other ADAS feature quality when evaluating ADAS. 

Question 17: What are the reasons/barriers that prevent you from using ADAS 

in police vehicles? 
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Lack of access was the primary reason cited for being unable to use ADAS in police 

vehicles, comprising 35.3% of responses. Some specific reasons mentioned included 

lack of department funding or unwillingness to purchase additional features for police 

vehicles. More importantly, perceptions of reliability and effectiveness filled the next 

two spots at 14.7% and 13.2% of responses respectively, indicating that a fundamental 

shift in the philosophy of manufacturers towards proper explanation and 

accommodation for police officers could potentially increase ADAS use among police 

officers and improve safety.  

Question 19: Do you have any other suggestions to improve ADAS in police 

vehicles? 

Standardization of ADAS features and adaptability were cited as the most desired 

changes, comprising 27.8% and 10.7% of responses of those who responded 

affirmatively to this question respectively, though responses were more varied as 

compared to other questions. Officers recommended that ADAS features should be 

compatible with existing police vehicles and technologies such as MCTs, and should be 

quickly activated, deactivated, or changed its settings based on the needs of the situation 

and police officers. Officers expressed discontent with the incompatibility between 

features unique to police vehicles, such as the MCT, and the ADAS available in their 

vehicles. This issue creates unnecessary barriers for police officers using ADAS while 

driving as they have to interact with both MCT interface and separate user interfaces for 

those ADAS features. This highlights a disparity between civilian drivers and police 
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officers that creates a need for a unique approach to manufacturing and researching 

ADAS specifically designed for police vehicles. 

2.3.3. Technology acceptance model 

As shown in Figure 2.5, officer’s trust in technology (β = 0.26, t = 2.27, p = 0.01, 

𝑓2= 0.07) and ADAS training (β = -0.35, t = 3.54, p< 0.01, 𝑓2= 0.14) affected officer’s 

behavioral intention to use ADAS, explaining 25% of the variance in their behavioral 

intention. It is important to note that the negative relationship between ADAS training 

and behavioral intention was due to how Q9 was structured (See Table 2.2). ADAS 

training (β = 0.4, t = 2.69, p< 0.01, 𝑓2 =0.2) was also found to be a significant predictor 

of driver’s perceived usefulness of ADAS features.  

 

Figure 2.5. Technology acceptance model results 
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2.4. Discussion 

2.4.1. Survey results implications 

A majority of officers (91.2%) indicated that there are several ADAS in their 

police vehicles that they never use. Considering question 17 where officers indicated 

lack of departmental budget as a primary barrier to implementation of ADAS in police 

vehicles, it is reasonable to conclude that the ADAS features that are implemented in 

police vehicles should be reconsidered. Coupled with the 58.5% of officers that indicated 

that ADAS could be at least somewhat useful in pursuit situations and the 57.4% of 

surveyed officers that believed ADAS are helpful for improving driving safety and 

reducing crashes, a clear disconnect between officer ADAS use and their belief in its 

effectiveness is visible. In order to resolve this discrepancy, useful ADAS have to be 

identified and standardized to be used in police vehicles. As multiple officers indicated 

in question 19, manufacturers have to be able to consider what features are useful for 

police vehicles specifically instead of treating them the same as civilian vehicles. 

As indicated in responses to question 1, Bluetooth, rearview cameras, and 

emergency braking were the most beneficial ADAS features in police vehicles, yet over 

60% of respondents rated their belief that ADAS reduces their workload as 2 or less on 

a scale of 5. Furthermore, roughly 40% of officers indicated that they almost never use 

ADAS while they are performing a secondary task. When coupled with the 67.6% of 

respondents who indicated that they would use ADAS more if the functionality and 

advantages were more clearly explained to them, it can be concluded that the education 

of officers in ADAS use is either ineffective or not sufficient. The easiest way to 



 

29 
 

surmount this hurdle would be to design ADAS such that they are intuitive to use and 

therefore, they reduce the need for ADAS training and confusion on the part of officers. 

In doing so, officers would make better use of the features available to them and a clearer 

picture of which ADAS features are truly the most helpful for police officers would 

appear. Beyond this, 47.1% of officers indicated that they prefer a combination of visual 

and auditory alerts over single visual or auditory alerts and vibrotactile alerts for their 

police vehicles. Therefore, to improve ADAS access, manufacturers should take 

advantage of these multi-modal alerts.  

2.4.2. Technology acceptance model implications 

Table 2.7 summarizes the findings of the TAM. These findings are discussed in 

detail in this section. 

Table 2.7. Summary of the results of the Technology Acceptance Model. 

Hypothesis Result 

H1: Trust in ADAS significantly and positively affects officers’ behavioral intention to 

use ADAS. 
Supported 

H2: Perceived usefulness (PU) has a significant positive impact on behavioral intention. Rejected 

H3: Perceived ease of use (PEU) will have a significant positive impact on behavioral 

intention. 
Rejected 

H4: PU mediates the effect of PEU on behavioral intention; however, the mediation is 

not a complete mediation. In other words, PEU significantly affects behavioral intention, 

above and beyond PU. 

Rejected 

H5: Demographic information significantly affects officers’ intention to use ADAS. It is 

expected that younger officers would be more intended to use ADAS as compared to 

more senior police officers. 

Rejected 

H6: Training the officers on ADAS functionalities and advantages will positively impact 

behavioral intention towards ADAS use. 
Supported 

H7: Training the officers on ADAS functionalities and advantages will positively affect 

PEU. 
Rejected 
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Table 2.7. Summary of the results of the Technology Acceptance Mode continued.  

Hypothesis Result 

H8: Training the officers on ADAS functionalities and advantages will positively affect 

PU. 
Supported 

H9: Training the officers on ADAS functionalities and advantages will positively affect 

their trust in ADAS technologies. 
Rejected 

 

Similar to the findings of Gefen et al. (2003) and Kidd et al. (2017), driver trust 

was found to significantly and positively affect driver’s intention to use ADAS 

(supporting H1). Trust identifies the way people interact with technologies (Hoff and 

Bashir, 2015) and can evolve over time. As more and more ADAS technologies are 

added into vehicles, more people will make use of them and in turn discover the benefits 

of ADAS in exchange for minimal effort while driving (Dai et al., 2020).  Furthermore, 

long term education and strategies are needed to familiarize drivers with ADAS 

technologies and to increase the acceptance and trust in them. Since trust is based on 

drivers being able to effectively use and rely on ADAS features, it is important to find 

an effective way to train police officers on ADAS functionalities and effectiveness. By 

having officers use ADAS in situations similar to real world patrols, they will be more 

likely to implement and use them as they become more experienced with the technology.  

Police officers are involved in multitasking situations while driving, such as 

communicating with dispatch officers and using their MCTs, making the diversion of 

attention to any sort of ADAS feature more difficult than for the average civilian driver. 

To increase clarity and facilitate the transmission of information between ADAS and 

https://www.sciencedirect.com/science/article/pii/S0001457520315980?casa_token=8KrOu3dQBfwAAAAA:XGmq-2tHDtVc0JJFG8bjCYS9KrKqetAuupQzNJKxsgxoenTK10YLq8AdZ-i3xYP-i4ZvCfMHqRCs#bib0130
https://www.sciencedirect.com/science/article/pii/S0001457520315980?casa_token=8KrOu3dQBfwAAAAA:XGmq-2tHDtVc0JJFG8bjCYS9KrKqetAuupQzNJKxsgxoenTK10YLq8AdZ-i3xYP-i4ZvCfMHqRCs#bib0130
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driver, ADAS warnings regarding changes in system status should be provided in an 

appropriate time and manner while in use. In doing this, however, driver annoyance 

associated with false alarms must be minimized to avoid undermining driver trust 

through false positives (Barchéus, 2006). Previous studies indicated that operator trust 

in ADAS is strongly related to reliance on automated systems and patterns of system 

usage (Parasuraman and Riley, 1997). This is not to say that complete reliance on ADAS 

features is conducive to effective driver performance, rather that ADAS technologies 

that are able to seamlessly integrate themselves with driver expectations of their 

functionalities are more likely to create high trust in drivers (Weiss et al., 2018). 

Therefore, research and manufacturing in the future should concentrate on lining up the 

capabilities of what ADAS features can do with what police officers expect in order to 

build trust and best encourage ADAS use. 

Hypotheses 2 (H2) and 3 (H3) stated that perceived usefulness and perceived 

ease of use of ADAS can impact intention to use ADAS. These hypotheses and 

consequently H4 were not supported by the data as there was no significant effect of 

perceived usefulness or ease of use on behavioral intention. One possible explanation for 

this observation is a lack of exposure to the ADAS features that would be the most 

beneficial to police officers. According to the demographic survey, many officers do not 

have a wide range of ADAS features readily available in their vehicles (see Figure 2.2), 

meaning that perceptions of ADAS as being easy to use or even useful may be biased by 

the lack of ADAS features police officers have access to.  
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Hypothesis 5 (H5) was also not supported by the data. No significant effect of 

age or experience on driver behavioral intention to use ADAS technologies was observed 

in our analysis. This might be due to the limited age range of our participants. Most of 

the officers who participated in our study were between 30 and 40 years of age. 

Therefore, we did not see any significant effect of age on their intention to use ADAS. 

In addition, drivers’ gender was not included in the analysis as only five female officers 

responded to our survey. 

The findings supported hypothesis 6 (H6) in that training the officers on ADAS 

functionalities and advantages would positively impact behavioral intention towards 

ADAS use. Officers who indicated more interest in learning about ADAS features (i.e., 

they currently do not have sufficient knowledge of ADAS), exhibited less intention to 

use the ADAS features. What this means is that officers educated in ADAS are more 

likely to indicate high intention to use ADAS than officers that are not educated in ADAS 

use. Thus, there is a need to provide officers with more training on ADAS features to 

increase their intention to use ADAS. Various training approaches such as paper-based 

manuals, multi-media software tools, video-based training, and simulator-based training 

can be employed to teach officers. Portouli et al. (2008) found that multi-media software 

and driving simulator training led to better performance with ADAS technologies as 

compared to paper-based training methods. However, driving simulator-based training 

can be costly depending on the level of fidelity and might not be as accessible as other 

training approaches for training police officers. When driving simulation-based training 
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is not available, multi-media software training tools can be used as a substitute for 

training officers in ADAS technology use. 

Hypothesis 7 (H7) was not supported by the data as training on ADAS 

functionalities did not significantly impact perceived ease of use. It is important to note 

that these findings are based on the opinions of officers, not their actual performance 

with the ADAS features. In order to determine if ease of use is significantly affected by 

ADAS training, further simulation or observation studies would be necessary. 

Otherwise, it is difficult to determine if the lack of a relationship between training and 

perceived ease of use is a result of the training, design of the ADAS feature, or some 

other cause. That in mind, the data did support Hypothesis 8 (H8), which indicated that 

ADAS training can have a positive impact on perceived usefulness. What is highlighted 

here is the important distinction between perceived ease of use and perceived usefulness, 

that these two concepts are not perfectly correlated to each other. The results imply that, 

while the information officers have on ADAS features may be initially limited by the 

lack of features available or lack of desire to use the features, training has the ability to 

improve their opinion on the usefulness of ADAS features as a whole. Future research 

should therefore focus on determining what aspects of both the ADAS training and the 

ADAS features themselves have the highest impact on officer’s opinions on the 

usefulness of ADAS features as a whole. Through this, training protocols and 

manufacturing can be adapted to help overcome the critical knowledge barrier to increase 

ADAS use by police officers. 
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Hypothesis 9 (H9) stated that training positively affects driver trust in ADAS, 

which was not supported by the data. ADAS training in our study included a subjective 

question of their interest in learning and receiving training on ADAS features. Trust can 

be built throughout experience and time, and subjective inheritress of question 9 may 

cause individual biases. Since officers were not provided with actual training to learn 

about ADAS features, their responses might be biased when it comes to driver trust in 

technology and should be interpreted with caution. In fact, operator training has been 

found to be an important part of successful use of ADAS (Parasuraman & Riley, 1997), 

and training was found to be a critical missing component in the deployment of today’s 

ADAS. For example, Reimer et al. (2010) studied the effect of training on a semi-

automated parallel parking system. Without training, participants reported that the 

system was not overly likely to reduce their stress when parking or improve their 

performance. However, after being fully trained on the operation and features of the 

technology, their performance and stress level (measured by physiological measures) 

while parking were improved. They concluded that participants who became familiar 

with the technology through more exposure, reported more positive expectations and 

acceptance of how the technology could reduce their stress. In line with Reimer et al. 

(2010), Biassoni et al. (2016) found that increasing the quantity and quality of 

information on technology features provided to the driver can substantially change the 

initial acceptability of the device and driver trust in technology. Therefore, it can be 

concluded that increasing the exposure time and information to participants can 

positively affect their attitude and acceptance toward using ADAS. 
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2.4.3. Limitations  

This study had some limitations. First, the participants were exclusively recruited 

from police departments in the state of Texas. As a result, the findings may not be 

directly applicable to agencies utilizing different types of police vehicles or operating in 

other states where vehicle designs and technologies might vary. It is important to 

acknowledge that the specific characteristics and features of police vehicles can differ 

across jurisdictions, potentially influencing the results and generalizability of this study. 

Second, many of the surveyed participants drove police vehicles that had a limited 

number of available ADAS. This could have led to biased results favoring the few ADAS 

features currently in the vehicles of the police officers surveyed due to lack of experience 

with all surveyed ADAS features. The question used to measure behavioral intention 

was a question that measured past behavior. While the use of past behavior as a predictor 

of future behavior has been validated in prior studies (Amoako-Gyampah, 2007; 

Jackson, 1997), it is not a direct measure of behavioral intention. Therefore, future 

studies need to validate the findings of this study with more direct measures of behavioral 

intention. Finally, the distribution of question types among the category of questions was 

unbalanced. Although having a balanced distribution of question types per each category 

is not required for the validation of the TAM analyses (Igbaria, 1995), it is possible that 

increasing or changing the category for some of the questions could have affected the 

results of the study. This issue needs to be further investigated in future studies.  
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2.4.4. Future research and recommendations  

In order to encourage productive future research, several guidelines are presented 

here based on the results of this study. Though many general heuristics for vehicle ADAS 

design exist (Stevens, 2002; Inakagi, 2011; Hansen, 2012) and our recommendations are 

by nature directly and indirectly tied to them, there are several key differences that 

separate police vehicles from civilian drivers and necessitate this more specific set of 

guidelines for future research and manufacturing. These differences are elaborated on 

here. 

Many guidelines that currently exist for designing civilian ADAS emphasize the 

importance of reducing visual and auditory distractions in vehicles (Focus-telematics, 

2006), which is not possible for police officers who have to complete multiple secondary 

tasks while driving to effectively carry out their job duties. As the officer is already going 

to be distracted by these secondary tasks, ADAS features for police vehicles have to be 

able to be quickly and effectively understood in a way that is intrusive enough to get the 

officer’s attention when necessary so the officer can more safely accomplish secondary 

tasks that pull their attention away from the road. Another important distinction between 

current guidelines and what is presented here is the lower emphasis on training and 

training guidelines. As ADAS technology becomes more complicated and the issue of 

trust in ADAS continues to raise problems with its use, literature focused on describing 

how ADAS training should be carried out has grown (Manser, 2019). For police officers, 

however, the study found that the mental hurdles associated with extensive training can 

actually prevent officers from making full use of their ADAS features given how much 
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they have to account for in their vehicles already. Thus, our guidelines put less emphasis 

on elaborating on extensive ADAS training or developing ADAS with more features and 

capabilities and more on intuitive, streamlined features that, though they might not be 

able to perform as many tasks as more complicated ADAS vehicles, will overall be more 

effective in encouraging use by police officers. 

This is not to say that the presented guidelines go directly against all pre-existing 

heuristics for ADAS vehicle design. It has been shown through literature on modern 

vehicle design emphasizing the importance of designing safety features to account for 

the varying driving habits of users that there is a need for more specification in guidelines 

for drivers whose driving habits differ from the average civilian (Happian-Smith, 2001). 

Police officers, by the nature of their profession, experience a higher workload while 

driving as compared to civilian drivers, meaning heuristics that may be established for 

design for civilian drivers will at least need to be justified for use for design of police 

officer vehicles. 

Workload can be viewed as a direct source of stress from a job, caused by either 

the frequency of a task or the nature of the task itself (Stotland & Pendleton, 1989). 

Workload is a comprehensive organizational variable that can have many consequences 

on workers. Unfortunately, the workload of police officers has been found to be beyond 

the acceptable limits compared to other jobs (Sen, 2015). In addition, research on 

policing and stress suggests that police work is very stressful (Anderson et al., 2002). 

Sen (2015) conducted a survey study to evaluate police officers’ workload. Results from 
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336 participants suggested that a majority of police officers have above normal workload 

perception (including heavy and unmanageable workload).  

Due to the limitations of mental resources, if a task demands exceed resource 

capacity, information overload and degradations in task performance will occur, 

especially when the tasks compete for the same pool of attention (Wickens, 2008). Police 

officers are usually required to multitask when driving which leads to a higher workload 

as compared to civilian drivers who are not required to do non-driving related tasks. In 

addition, temporal demands placed on the officers due to the need for real-time 

information access and complexity of driving situations (e.g., driving in high speed and 

in pursuit conditions) can increase their workload as compared to civilian drivers (Zahabi 

& Kaber, 2018). 

To account for these differences between police officers and the general 

population, it is necessary to better advance the development of ADAS features to 

improve officer safety. Therefore, the following list of guidelines has been determined 

in order to guide future research and to improve ADAS in the next generation of police 

vehicles. These guidelines are meant for both researchers and manufacturers of ADAS 

features to consider when undertaking future development of ADAS, in particular for 

police vehicles.   

Guideline 1: Emphasize clarity above everything else. 
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One of the largest barriers to ADAS usage for police officers was identified as a 

lack of understanding of the ADAS features available. About 68% of respondents 

affirmed that they would make greater use of ADAS if the functionality and advantages 

were more clearly explained. Since TAM showed that ADAS training significantly 

impacts perceived usefulness and officers’ intention to use these features, improving 

officers’ knowledge of ADAS can potentially increase ADAS acceptance among police 

officers. 

Guideline 2: Improve ADAS accessibility and usability 

About 38% of police officers stated that there were situations where they 

preferred to have their ADAS features disabled. However, over half of the respondents 

identified that they were unable to easily turn on or off their ADAS features. 

Accessibility and usability, desired qualities according to the free response results, 

should be emphasized in the design of ADAS to account for individual differences and 

preferences of police officers when using ADAS features. 

Guideline 3: Provide adaptive ADAS 

Police driving conditions including pursuit and emergency operations are 

different from the situations that civilian drivers are involved in. Therefore, ADAS 

features for police vehicles should be easily adaptable to these situations or powered off 

effectively otherwise. Pursuits and other similar situations were the top reasons cited by 

police officers with regard to situations where they preferred to have their ADAS features 
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off. Thus, when designing or researching ADAS features, adaptability to the wide 

variability of driving scenarios police officers face is paramount. 

Guideline 4: Investigate ways to integrate ADAS into existing police vehicle 

technology. 

Police officers already have multiple unique features (e.g., MCT, radio) in their 

vehicles compared to civilian drivers. These features, while necessary for police officers 

to perform their duties, significantly increase officers’ mental workload and distraction 

while driving (Shupsky et al., 2020; Zahabi & Kaber, 2018). Officers indicated that 

ADAS should be compatible with existing police in-vehicle technologies and should be 

easily activated or adjusted based on individual preferences, needs, and driving 

situations. This highlights a need for a unique approach to design and manufacture 

ADAS for police vehicles. Furthermore, research should be conducted on whether 

integrating ADAS into police vehicle technology would encourage higher ADAS use 

among police officers.  

Guideline 5: Focusing on perfecting a few features is better than having many less 

elaborate features. 

Police officers experience higher levels of workload than civilian drivers. The 

survey indicated the lack of understanding regarding ADAS as one of the primary 

barriers towards using ADAS features for police officers. To combat this, researchers 

and manufacturers should focus on ADAS features, which target the factors specified 
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above when designing for police vehicles, with future research validating the directions 

chosen for designing such features. Furthermore, building the trust that compromises the 

main significant contributor towards officers’ intention to use ADAS requires that 

officers understand the nature of the features they are using. As officers already have 

high mental workload associated with their jobs, a few features that help them perform 

their duties effectively would be much easier to understand and trust than a multitude of 

complex features.  

Guideline 6: Design to reduce the need for extensive ADAS training 

The TAM results indicated that ADAS training has a significant effect on officer 

intention to use ADAS and perceived usefulness of ADAS. Useful as ADAS features 

are, the prospect of needing to undergo training to fully understand and utilize these 

features can be daunting to police officers already burdened with high mental workload 

and stressful jobs. To account for this while not sacrificing the trust gained from 

understanding how ADAS features work, future research should investigate ADAS 

features that require minimal training to understand, and manufacturers should endeavor 

to design intuitive ADAS that perform their duties with as little required attention or 

input from the driver as possible. This includes the activation and deactivation of these 

systems, in accordance with guideline 2. Furthermore, the training should be delivered 

in the form of multi-media software tools or driver simulators when possible and should 

be simple to overcome the mental hurdles police officers face when taking on additional 

tasks while driving. 
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3. DRIVING SIMULATION STUDY 

3.1.  Introduction 

Crash reports from various states in the U.S. have revealed high numbers of 

emergency vehicle crashes, especially in law enforcement situations. MVCs are among 

the leading causes of LEO deaths and injuries (Tiesman & Heick, 2014). From 2011 to 

2015, police vehicle crashes accounted for almost one-third of all law enforcement fatal 

work injuries (BLS, 2016). Although overall law enforcement fatalities in pursuit 

situations have decreased moderately from over 160 per year in 1980 to under 120 per 

year in the late 2000s, deaths caused by motor vehicle crashes have steadily increased 

(Lambert, 2016).  

ADAS are vehicle control systems that improve driving comfort and traffic safety 

by using vehicle sensors (e.g., radar, laser) helping the driver identify and react to 

potentially hazardous traffic situations (Gietelink et al., 2006). ADAS are expected to 

mitigate road fatalities and reduce the number of road accidents and injuries. Some 

ADAS such as FCW systems and low-speed autonomous emergency braking (AEB) can 

reduce property damage and liability claims (Lund, 2013). Wu et al. (2018b) found that 

driving with FCW resulted in quicker reaction times (shorter throttle release and brake 

time) and larger response intensity (larger maximum brake pedal force and larger 

maximum lane deviation) as compared to driving without FCW. In addition, FCW was 

found to reduce the number and severity of crashes (Cicchino, 2018). In another study, 

it was found that a combination of FCW, pre-crash brake assist (PBA), and autonomous 

pre-crash braking (PB) could reduce the change in velocity during the crash by 34%, 
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decrease number of passenger fatalities or injuries by 50%, and prevent 7.7% of 

collisions (Kusano & Gabler, 2011). Accident involvement rates in lane-change crashes 

were also found to be 14% lower among vehicles with BSM as compared to those 

without (Cicchino, 2018). 

Though previous work has emphasized the potential of ADAS for reducing 

accidents in civilian drivers (Davidse, 2006), very few studies focused on potential 

benefits of ADAS use in police vehicles. Our previous literature review and survey 

studies were the only investigations in this domain (Nasr et al., 2021; Wozniak et al., 

2021). Although survey results provide a useful overview of officers’ opinion regarding 

the ADAS technologies, they are subjective and may suffer from biases. Therefore, there 

is a need for a driving simulation study to observe officers’ performance and investigate 

the effects of ADAS technologies on LEOs’ performance and workload by collecting 

objective driving behavior data. 

Results from the survey study in chapter 2 suggested that although officers 

preferred to have ADAS features such as pre-collision assist, emergency braking, and 

BSM in their vehicle, few of police officers have these features implemented in their 

vehicle. This driving simulation study aims to assess the effectiveness of BSM, FCW, 

and AEB on police officers’ workload and performance. The following sections provide 

an introduction on driver workload and performance measures when driving with ADAS 

technologies based on the literature. 
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3.1.1. Driver performance measures 

Driver performance refers to “the human perceptual and physical capabilities 

and limitations that affect safe driving” (McLaughlin et al., 2009). Driver performance 

metrics are usually defined in terms of speed and braking behavior, steering behavior, 

time to collision (TTC), glance behavior, driving-related task performance, headway 

time, lane keeping behavior, lateral acceleration, and number of crashes (McLaughlin et 

al., 2009). However, different aspects of driving performance can be measured 

depending on the goal and area of the study. Table 3.1. lists the most frequently used 

driving performance measurements in previous studies focused on ADAS technologies. 

Table 3.1. Driving performance measurements. 

ADAS feature Measurement (unit) Description References 

BSM Time to change lane (s) The duration from when the lead 

vehicle starts to brake until the 

subject vehicle fully transitions to 

the adjacent lane. 

Chun et al. (2013) 

Collision prevention 

rate (CPR) (%) 

The number of successful collision 

avoidances divided by the total 

number of blind spot collision 

events. 

Chun et al. (2013) 

FCW (+AEB) Collisions (ct.) Number of collisions Lindgren et al. 

(2009); McGehee 

et al. (2002); 

Muhrer et al. 

(2012); Portouli 

and 

Papakostopoulos 

(2014) 

Minimum TTC (s) Minimum of the time remaining 

prior to a collision if the path and 

speed of the subject and lead vehicle 

are maintained as a constant. 

Koustanaï et al. 

(2012); Lindgren 

et al. (2009); 

McGehee et al. 

(2002); Muhrer et 

al. (2012) 

 Standard deviation of 

lateral position (m) 

Standard deviation of lane position 

from center of the lane. 

Chang et al. 

(2009); Lindgren 

et al. (2009); 

Portouli and 

Papakostopoulos 

(2014) 
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Table 3.1. Driving performance measurements continued. 

ADAS feature Measurement (unit) Description References 

 Maximum longitudinal 

deceleration (m/𝑠2) 

The rate of change in velocity in the 

direction of the vehicle’s 

longitudinal, or X axis. 

Koustanaï et al. 

(2012); Muhrer et 

al. (2012); 

Widman et al. 

(1998) 

 Brake reaction time (s) The time from the braking event of 

the lead car to the start of the 

braking of the driver. 

Chang et al. 

(2009); Koustanaï 

et al. (2012); 

McGehee et al. 

(2002); Muhrer et 

al. (2012); 

Portouli and 

Papakostopoulos 

(2014) 

Time headway (s) The elapsed time between the front 

of the lead vehicle passing a point 

on the roadway and the front of the 

following vehicle passing the same 

point. 

Koustanaï et al. 

(2012); Muhrer et 

al. (2012); 

Portouli and 

Papakostopoulos 

(2014); Widman 

et al. (1998) 

 Maximum lateral 

acceleration (m/𝑠2) 

The component of the linear 

acceleration of the vehicle along its 

lateral, or Y axis. 

Fleming et al. 

(2019); McGehee 

et al. (2002); 

Portouli and 

Papakostopoulos 

(2014); Widman 

et al. (1998) 

Collision speed (m/s) If the subject vehicle collides with 

the lead vehicle, the collision speed 

is recorded to assess the severity of 

each crash. 

McGehee et al. 

(2002) 

 Maximum brake input 

pressure (N) 

Maximum brake pressure provides 

a good estimate of the force a 

subject has exerted on the brake 

pedal. 

McGehee et al. 

(2002) 

Maximum steering 

input (degree) 

Measures the greatest steering 

wheel deviation to either the left or 

the right. 

McGehee et al. 

(2002) 

 

3.1.2. Driver workload measures 

Workload is defined as the amount of information processing capacity or mental 

resources used for performing a specific task (Hoeger et al., 2008). There are various 

methods to measure driver workload such as using physiological measurements (e.g., 
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Percentage change in pupil size (PCPS)), subjective measurements (e.g., NASA-TLX, 

driving activity load index (DALI)), primary-task performance measurement, and 

secondary task performance measurements (e.g., NDRT accuracy or completion time) 

(De Waard & Brookhuis, 1996). Table 3.2 demonstrates some examples of workload 

measurements in driving domain. 

Table 3.2. Workload measurements 

Measurement type Response Reference 

Subjective measures NASA-TLX score Chen et al. (2019); Wu et al. 

(2019); Yoon and Ji (2019) 

Driving load activity index (DALI) score Lahmer et al. (2018); Walch et 

al. (2018); Zahabi et al. (2021b) 

Rating scale mental effort (RSME) Lank et al. (2011); Md. Yusof et 

al. (2017); Schermers et al. 

(2005) 

Physiological 

measures 

 

 

 

 

 

 

Average heart rate Gable et al. (2015); Li et al. 

(2004); WAARD et al. (1995) 

 

Root mean square of successive 

differences between normal heartbeats 

(RMSSD) 

Baek et al. (2015); Esco and 

Flatt (2014); Jung et al. (2014); 

Salahuddin et al. (2007) 

EEG variation rate Kim et al. (2014); Kim et al. 

(2013); Zhao et al. (2012) 

Blink rate Shahini et al. (2021) 

Recarte et al. (2008b); 

Yahoodik et al. (2020) 

Percentage change in pupil size (PCPS) Gable et al. (2015); Zahabi et al. 

(2021a); Zahabi et al. (2021b) 

Secondary-task 

performance measures 

Secondary task accuracy Shahini et al. (2021) 

Secondary task completion time Shahini et al. (2021) 

 

3.1.3. Influential factors on officers’ performance and workload 

3.1.3.1. Effects of non-driving related tasks 

Previous studies found that drivers are inclined to engage in an NDRT when they 

do not have to monitor the driving environment (Carsten et al., 2012; Dogan et al., 2017). 

Automated driving is associated with passive fatigue and underload, which is 

characterized by loss of awareness and low workload (Neubauer et al., 2012).  Therefore, 
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engaging in an NDRT may be a self-regulatory approach to counteract the effect of 

underload. On the other hand, some studies found that engaging in a NDRT may not 

impact motor readiness following a takeover request. However, it can have a detrimental 

effect on the quality of the takeover performance. For example, Zeeb et al. (2016) did 

not find any effects of the type of NDRT (sending an email, reading news, and watching 

a video clip) on motor readiness (i.e. time to put hands on the steering wheel). However, 

they observed that lateral control of the vehicle was impaired among the drivers who 

were reading news and watching a video clip. In line with  Zeeb et al. (2016), Merat et 

al. (2012) found that a verbal quiz task did not influence time to start lane change 

maneuver, but it influenced speed control. A ride-along study by Zahabi et al. (2021b) 

revealed that officers perceived the MCT to significantly increase their visual, cognitive, 

and physical demands compared to other in-vehicle technologies such as radio and 

cellphone. 

Therefore, there is a need to investigate the effects of NDRT on police officers’ 

performance and workload who typically drive under high speed and high workload 

driving conditions and may use ADAS technologies. 

3.1.3.2. Effects of pursuit driving condition 

Police driving conditions can be classified into three driving groups, including 

standard patrol (i.e., regular driving in which all roadway rules are followed), emergency 

response, and vehicle pursuit. In addition, officers may need to engage in NDRTs and 

driver at high speed in pursuit conditions. Distracted driving in high speed may increase 

the probability of the crashes with serious injuries (Chu, 2016).  While driving in 
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emergency and pursuit conditions might represent a small portion of police vehicle 

driving time, the probability and severity of crashes in these situations are much higher 

than the normal driving condition (Hutson et al., 2007; Rivara & Mack, 2004). A driving 

simulation study by Zahabi et al. (2021a) found that driving in pursuit condition can 

degrade driving performance (as measured by speed deviation and lane deviation) and 

increase officers’ workload (as measured by DALI score and PCPS). 

3.1.4. Models of driver behavior 

3.1.4.1. Braking model 

The transition of driving state from normal driving to near-crash conditions is of 

great significance when designing a FCW hazard assessment algorithm. Markkula et al. 

(2016) conducted a comprehensive literature review of driver behavior models 

predicting near-collision braking behavior and found that while normal driving behavior 

is significantly different from near-collision behavior, normal driver behavior models 

have been employed to understand near-collision behavior. Markkula et al. (2016) 

categorized the braking models into two groups as non-satisficing models (i.e., models 

where the driver starts to brake at the instant when a collision course is established) and 

models that present satisficing behavior, where the driver starts to brake based on the 

driver’s safety margins and time to collision. 

In the category of non-satisficing models, the Gazis, Herman, and Rothery 

(GHR) model (Markkula et al., 2016) was developed to predict car-following behavior 

where the driver’s braking behavior depends on the following vehicle’s velocity, 

headway distance, and relative velocity (Gazis et al., 1961). The GHR model is non-
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linear and contains many parameters. Prior research has been focused on finding the right 

parameters for the model to improve realism and even simplify the model (Brackstone 

& McDonald, 1999; Gazis et al., 1961; Yang & Peng, 2010). For example, Lee (1966) 

made an assumption that driver responds to the relative speed of the following vehicle 

over a period of time and not instantly. Therefore, the author introduced a memory 

function into the linear GHR model to store the information related to the relative speed 

of the vehicles during car following maneuver. Prior studies found that most passenger 

cars have a greater deceleration than acceleration capacity (Siuhi & Kaseko, 2010; 

Subramanian, 1996). Ahmed (1999) adjusted the GHR model to contain this 

acceleration/deceleration asymmetry in the model. Herman (1959) assumed that drivers 

follow more than one lead vehicle and consider other vehicles ahead and extended the 

linear GHR model by adding sensitivity terms for up to m vehicles ahead. The models 

assumed that the drivers are aware of their exact speed, their headway distance, and other 

environmental factors. Clearly, this assumption is not realistic. However, a fuzzy-logic 

model by Kikuchi and Chakroborty (1992) acknowledges the imperfection of a driver’s 

prediction ability by dividing their perception into a number of overlapping fuzzy sets 

using predefined fuzzy-logics. Another model class which has been widely employed for 

exploring forward collision warning systems is the delayed constant deceleration model, 

defined by Markkula et al. (2016) as “starting at a (reaction) time T after a stimulus S, 

the driver applies a constant deceleration D.” This definition approximates the behavior 

of the GHR model in situations where the following vehicle decelerates. The stimuli 

included sudden appearance of an unexpected obstacle, first glance back towards the 
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road after a lead vehicle has begun deceleration, and the establishment of an initial 

collision. Considering these stimuli, the resulting models from GHR would be non-

satisficing since they do not account for the driver’s safety margins while representing 

the start of braking (Karunagaran, 2018). 

In the category of satisficing models, Lee (1976) found that TTC can be estimated 

using a visual variable related to the optic flow field of the driver, and proposed that 

drivers start to brake once this visual variable crosses a threshold. Another popular 

satisficing model is the car-following model by Gipps (1981) that calculates a safe speed 

with respect to the preceding vehicle by employing limits on a driver’s braking rate. 

Based on Gipps model, drivers adapt their speed to smoothly reach the desired speed or 

to safely proceed behind their leader (Gipps, 1981). Kiefer et al. (2006) suggested that 

the driver starts to brake once the inverse time to collision (TTC−1) exceeds a speed 

dependent threshold. Markkula et al. (2016) conducted several simulations with the 

Gipps model and found that the TTC−1 values when the driver starts to brake follows a 

similar trend to the speed dependent thresholds of Kiefer et al. (2016) (Markkula et al., 

2012). Markkula et al. (2012) suggested a model that could explain both routine and 

near-crash driving behaviors. The features of this model are listed below:  

• It assumes that driving task contains a series of discrete adjustments rather than 

a continuous closed loop control task.  

• The timing of these adjustments depends on the accumulation of evidence such 

as TTC−1. 
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• The amplitude of the adjustments is based on the value of the evidence and the 

predicted effect of adjustments on the evidence (Markkula, 2014).  

Markkula (2014) proposed an accumulator model that used a visual estimate of 

the TTC−1 that was able to effectively predict the brake reaction time using the driving 

database of Kiefer et al. (2006), when the lead vehicle was moving.  

𝜏−1 is a visual-based estimate of inverse TTC (Lee, 1976) and is calculated as 

follows: 

     𝝉−𝟏 =
𝜽̇

𝜽
                         Equation 3.1 

θ is visual angle in equation 3.1 and is defined as the projected angle of the visual 

object (e.g., lead vehicle) on driver’s retina, and 𝜃̇ is defined as the visual angle 

expansion rate. Visual angle and expansion rate can be calculated using the following 

formulas (Lee, 1976): 

  𝜽 = 𝟐 𝐭𝐚𝐧−𝟏(
𝒘

𝟐𝑫
)                 Equation 3.2 

           𝜽̇ =
𝒘 |𝒗𝒇−𝒗𝒕|

𝑫𝟐+𝟒𝒘𝟐               Equation 3.3 

In these equations, W is the width of the lead vehicle, D is the distance from the 

driver’s eyes to the back of the lead vehicle, and |𝒗𝒇 − 𝒗𝒕| is the relative speed of the 

two vehicles. Figure 3.1 shows the visual angle of the lead vehicle at the subject vehicle 

driver’s eyes. As the driver gets closer to the potential hazard, 𝜏−1 and visual looming 

of the lead vehicle on subject vehicle drivers’ eye increases. 
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In visual evidence accumulation models, drivers receive some evidence such as 

changes in the visual looming of the lead vehicle. This evidence helps the driver to 

perform an avoidance action when there is a potential upcoming collision and sufficient 

evidence is accumulated (Markkula et al., 2018a). The evidence accumulation models in 

hazard situations are correlated with the process of situation awareness recovery 

(Goncalves et al., 2019) and are introduced by a dynamic notion of predictive processing 

(Engström et al., 2018). Predictive processing model indicates that the driver’s detection 

of the need to initiate a response is driven by the difference between actual and expected 

looming (Engström et al., 2018; Xue et al., 2018); For example, in a situation where the 

driver is following a lead vehicle, if there is a fixed distance between the subject and lead 

vehicles, then, the driver predicts that there should be no visual expansion of the lead 

vehicle. The issue arises when the lead vehicle starts braking or slowing down and causes 

a mismatch between driver’s predicted and actual looming (Victor et al., 2018). The 

looming prediction error, which drives initiation of control actions (Engström et al., 

2018), is defined as:       

𝜺(𝒕) = 𝝉𝒂𝒄𝒕𝒖𝒂𝒍
−𝟏 − 𝝉𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅

−𝟏              Equation 3.4 

 

 

D 

W 
θ 

Figure 3.1. Visual angle of lead vehicle at the subject vehicle driver’s retinas. Note: θ, W, and D 

indicate the driver’s visual angle of the lead vehicle, width of the lead vehicle, and distance to the lead 

vehicle, respectively. 
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In this equation, 𝜏𝑎𝑐𝑡𝑢𝑎𝑙
−1  is the actual looming and 𝜏𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

−1  is the predicted 

looming. The following equation represents the accumulative part of evidence 

accumulation models: 

         
𝒅𝑨

𝒅𝒕
= 𝒌𝜺(𝒕) − 𝑴 + 𝒗(𝒕)                        Equation 3.5 

In which, 𝜀(𝑡) is the looming prediction error, 𝑣(𝑡) is a zero-mean Gaussian 

white noise with standard deviation of  𝜎. 𝜎, 𝑘, and 𝑀 are free model parameters. Brake 

adjustment will be executed if 𝐴 exceeds a threshold. Previous studies have used this 

model and estimated the brake reaction times by fitting the model to a set of data and 

finding the optimal free parameters (Bianchi Piccinini et al., 2020; Svärd et al., 2021). 

There are, however, several ways in which the model can be further extended based on 

the driving situation. Therefore, the model parameters are extended based on the 

suggestions from previous studies and the experimental design in this study. These 

extensions are further discussed in the method section. 

3.1.4.2. Steering model 

The steering behavior has not been investigated as much as the braking behavior. 

However, steering models still have a long history in human behavior and traffic safety 

(Michon, 1985). A steering maneuver can include a crash avoidance maneuver and a 

subsequent stabilization maneuver (Merat et al., 2014; Russell et al., 2016). Based on 

Markkula et al. (2014), the steering avoidance maneuver starts when the lead vehicle 

starts braking and ends when the driver begins applying considerable rightward steering 

wheel rotation to transit from leftward collision avoidance to lane alignment and vehicle 

stabilization in the adjacent lane. Stabilization maneuver begins with the steering wheel 
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rotation and ends either 250 m after passing the lead vehicle, or when the driver’s vehicle 

falls below 10 km/h, whichever happens first. Markkula et al. (2014) compared different 

closed-loop and open-loop steering models in predicting the avoidance and stabilization 

steering. Based on the results of this comparison, the open-loop models provided the best 

fit for the avoidance maneuver, while the closed-loop models better explained the 

stabilization maneuver. 

3.1.5. Research gaps and objective 

Results from the survey analysis revealed that FCW, AEB, and BSM are among 

the most beneficial ADAS based on the officers’ opinions (Wozniak et al., 2021). 

Previous studies have investigated the effects of ADAS technologies such as FCW and 

BSM on civilian drivers’ driving performance and/or workload (Chun et al., 2013; 

Cicchino, 2017a, 2018; Kusano & Gabler, 2011; Muhrer et al., 2012). While police 

officers are usually involved in more hazardous driving situations such as driving in high 

speed, pursuit situations, and complex traffic situations (Zahabi et al., 2021b), there is 

no study that specifically examines the effects of ADAS technologies on officers’ driving 

performance and workload. Also, results from the TAM suggested that trust in ADAS 

can significantly increase officers’ intention to use the technology. Therefore, there is a 

need for a study to investigate the effects of FCW/AEB and BSM on police officers’ 

driving performance, workload, and trust in ADAS. Table 3.3 summarizes the 

hypotheses (H) in this study which were formulated based on the literature review. 

Although previous studies suggested an improved driving performance with ADAS, it 

was assumed that ADAS would increase driver workload since officers are not 
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experienced with the ADAS, and a combination of auditory and visual warnings may 

overwhelm the officers (Wickens, 2008).  

Table 3.3. List of hypotheses  

Hypotheses number Description Reference 

H1 

When faced with critical incidents (i.e., the 

braking lead vehicle or the vehicle in blind spot), 

drivers would exhibit a better driving 

performance when the ADAS is on. 

Wu et al. (2018b) 

H2 

When faced with critical incidents, drivers 

would experience a higher level of workload 

when the ADAS is on. 

Chai et al. (2022); Lee 

and Morgan (1994) 

 

H3 

When faced with critical incidents, drivers 

would report a higher level of trust in vehicle 

safety when the ADAS is on. 

Shahini et al. (2022b); 

Wu et al. (2018b) 

H4 

 

When faced with critical incidents, drivers 

would exhibit a better driving performance in 

normal driving as compared to pursuit driving 

situation. 

Shupsky et al. (2020) 

H5 

 

When faced with critical incidents, drivers 

would experience a lower level of workload in 

normal driving as compared to pursuit driving 

situation. 

Shupsky et al. (2020) 

H6 

 

When faced with critical incidents, drivers 

would exhibit a better driving performance 

when they are not engaged in a non-driving 

related task as compared to when they are 

performing such a task. 

Shahini et al. (2022b) 

H7 

 

When faced with critical incidents, drivers 

would experience a lower workload when they 

are not engaged in a non-driving related task as 

compared to when they are performing such a 

task. 

Shahini et al. (2020b); 

Zahabi et al. (2021b) 

 

In addition, some previous studies found that high frequency of unwanted ADAS 

warnings may induce unintended adverse behavioral effects, and drivers prefer to switch 

it off (Reinmueller et al., 2020). High frequencies of ADAS warnings can become a more 

serious issue for police officers as they are required to interact with other in-vehicle 

technologies such as radio and MCT. Therefore, there is a need for an adaptive FCW 

that warns officers in specific situations and encourage them to keep it on. Nakaoka et 

al. (2008) suggested that the critical warning time for FCW is a linear function of the 
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speed of the subject vehicle, speed of the lead vehicle, relative speed of the vehicles, and 

the driver’s brake reaction time. While the speed of the front vehicle can be measured 

by sensors, the driver brake reaction time may differ based on the criticality of the driving 

situation. Therefore, the second objective of this study is to build a model to calculate 

the brake reaction time of the officers to adjust the ADAS warnings when the front 

vehicle brakes. 

Drivers may not notice the BSM icon in their side mirrors in many situations 

when there is a vehicle in their blind spot. One may propose to issue an auditory warning 

when there is a vehicle in the blind spot. However, similar to the FCW, it may be 

annoying to receive an auditory warning whenever there is a vehicle in the blind spot, 

and officers tend to keep it off. However, it can be beneficial to warn the officers when 

they are not aware of the vehicle in their blind spot and attempt to change their lane. An 

auditory warning can be initiated depending on the criticality of the situation and the 

angle of the steering wheel (i.e., a warning will be initiated if drivers rotate the steering 

wheel to the extent that they pass a certain threshold). Therefore, the third objective of 

this study is to build a model to estimate the officers’s maximum steering wheel angle 

when trying to change their lane with a vehicle in their blind spot. 

3.2. Method 

3.2.1. Driving simulator experiment 

3.2.1.1. Participants 

The experiment was conducted with 18 police officers (Age: M =37.82 yrs., SD 

= 5.41 yrs.). The required sample size was estimated as 24 subjects using the G*Power 
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software (Faul et al., 2007) with α=.05, power (1-β) of .8, and using Cohen’s medium 

effect size of .25 (Cohen, 1988). Initially, 24 officers were recruited, however, six 

officers could not complete the experiment due to simulation sickness. All participants 

had valid driver license and were sampled from the police officers who regularly drive 

police vehicles. All participants reported a 20/20 vision or wore contact lenses. 

Participants were provided with a unidimensional visual analog rating scale to identify 

their level of experience with police in-vehicle ADAS technologies. They were asked to 

give a subjective rating by marking a point on a continuous (100 mm) scale with anchors 

of ‘no experience’ and ‘high experience’. The distance from the left anchor to the 

marking was measured (with millimeter accuracy) and this distance was transformed to 

a percentage. Subsequently, the mean of these percentages across all participants was 

calculated and identified as the average technology experience with FCW (M =28.26%, 

SD = 31.27%) and BSM (M =34.49%, SD = 29.40%). Table 3.4 provides the 

demographic information of the participants. Prior to participating in the study, each 

participant read and signed the informed consent form. The Texas A&M University 

Institutional Review Board (IRB) approved the study protocol. 

Table 3.4. Results of the demographic questionnaire 

Category Results 

Sex 18 males 

Age M = 37.82 yrs., SD = 5.41 yrs. 

Number of participants who attended police academy 18 

Experience as police officer M = 10.78 yrs., SD = 3.68 yrs. 

Experience serving as a primary patrol officer M = 8.92 yrs., SD = 3.62 yrs. 

Number of participants who received additional training since the 

police academy (e.g., emergency vehicle operation courses) 

17 

Number of participants who had experience in driving simulator 

studies 

6 

hours per week in car M = 7.82 hrs., SD = 3.73 hrs. 

Level of experience with FCW M = 28.26%, SD = 31.72% 

Level of experience with BSM M = 34.49%, SD = 29.40% 



 

58 
 

Figure 3.2. Driving simulator setup 

3.2.1.2. Apparatus 

A fixed-based driving simulator (Realtime technologies, Inc., Ann Arbor, MI) 

was used in this experiment (Figure 3.2). The simulator consisted of a Ford Fusion 

mounted platform with a cylindrical projection screen providing 300° field of view and 

collected driving behavior data with sampling rate of 60 Hz. The SimCreator DX 

software was used to create the driving scenarios. The NDRT was displayed on a laptop 

and the participant could interact with it by using the keyboard (Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

A Pupil-core eye tracking system (Pupil Labs, Germany) was used to collect 

driver pupil data (Figure 3.2). The system hardware consisted of one world camera and 

two eye cameras. The eye cameras detect and track the pupil with 3-dimensional models. 

Gaze parameters were gathered in normalized 3D gaze positions and binocular vergence. 

NDRT display Apriltag marker 

Eye-tracking glasses 
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Eye movements were recorded with  .6 degrees accuracy, .02 precision, and frequency 

of 200Hz. The pupil was calibrated using Apriltag markers. Dismissing rate during the 

calibration was consistently controlled to be less than 20% based on the criteria defined 

by the manufacturer (Pupil Labs). The pupil size was calculated by measuring the 

relative size in eye camera pixels in millimeter unit in the 3D eye model. Polar H10 chest 

strap was used to capture the RMSSD. 

3.2.1.3. Independent variables 

The independent variables manipulated in this study included: (1) ADAS type 

(FCW/AEB, BSM, and a combination of FCW/AEB and BSM) (2) ADAS technology 

status (ON/OFF) (3) driving condition (normal vs. pursuit), and (4) NDRT (ON/OFF). 

Each of the scenarios included two data blocks and officers were asked to complete the 

NDRT in one of the blocks randomly. Therefore, the status of the NDRT was 

manipulated within each scenario. 

For the FCW/AEB activated scenarios, the scenarios were designed to form a 

rear end pre-crash situation. A braking lead vehicle was used as the critical incident to 

mimic a naturalistic and frequent accident scene. Lead vehicles have been widely used 

as critical incidents in previous studies (Gold et al., 2013; Happee et al., 2017). The lead 

vehicle was on the same lane as the subject vehicle. Initially, the leading vehicle would 

keep a fixed headway time (2.5 s) with the subject vehicle. A headway of 1.7–2.5 s is 

the typical headway range based on the previous studies (Abe & Richardson, 2004, 2006; 

Lee et al., 2002; Wu et al., 2018c). When the leading vehicle suddenly initiated a hard 

brake, FCW was activated and a combination of an auditory (i.e., beep) and visual 
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warning was issued to warn the driver (Figure 3.3). Also, the system would apply the 

emergency braking along with the warning. The critical situation needed the driver to 

properly respond to the leading vehicle by pressing the brake, rotating the steering wheel, 

or a combination of both. A similar scenario without the FCW and with the same hazard 

was built to compare the manual vs. FCW activated conditions. 

 

Figure 3.3. FCW icon 

 

In scenarios where the BSM was activated, a similar hazard (i.e., a lead vehicle 

suddenly brakes) was used to block the drivers’ path and force them to change their lane. 

In addition, another vehicle was added to the adjacent lane in the blind spot of the subject 

vehicle to mimic a critical situation and activate the BSM warning. Similar hazards were 

used in previous studies (Chun et al., 2013). If there was an object in the blind spot, an 

icon was shown at the bottom right/left of the right/left mirror (Figure 3.4). If drivers 

turned their blinkers on, an auditory (i.e., beep) message would be initiated. A similar 

Lead vehicle 

FCW icon 
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scenario without BSM warning and with the same hazard was built to compare the 

situations with and without ADAS. 

 

Figure 3.4. BSM warning icon 

 

For the combination of FCW/AEB and BSM, a combination of both a braking 

lead vehicle and a vehicle in blind spot was used to mimic a critical situation and assess 

the effects of ADAS technologies. Both FCW and BSM warnings as well as AEB were 

active in this scenario. In this experiment, the ADAS warnings were designed to function 

flawlessly, showcasing an accuracy rate of 100% and effectively preventing any 

occurrence of false alerts. A similar scenario without any warning and with the same 

hazard was built to compare with the findings of this condition. 

3.2.1.4. Experimental design  

The experiment followed a within-subject design including 12 driving scenarios 

(3 ADAS type (FCW/AEB, BSM, and a combination of FCW and BSM) × 2 ADAS 

status (ON/OFF) × 2 driving conditions (normal vs. pursuit)). Each scenario used a 

different path to avoid learning effects from one scenario to the next. However, all 

BSM icon 

Car in the blind spot 
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scenarios were simulated in an urban environment with the same traffic level and road 

conditions to ensure similar level of difficulty.  

Each driving scenario included two critical hazards in random sections of the 

path, and the drivers were asked to react immediately to avoid the critical incident by 

pressing the brake or changing their lane by turning the steering wheel. The critical 

incidents happened at least one minute after the start of each scenario, and there was at 

least a two- minute time lapse between the two critical events. In addition, drivers were 

engaged in a NDRT twice in each scenario: once in combination with the critical incident 

and once in a similar section of the road without an incident to avoid learning effects and 

predicting the hazard.  

3.2.1.5. Driving scenarios  

Participants were instructed to drive the simulated urban roadway (Figure 3.5), 

follow all traffic rules, maintain their vehicle in the middle of the right lane all the time 

(except when maneuvering at intersections or taking over the lead vehicle), and maintain 

the speed of 40 mph in the normal driving condition. Also, they were asked to start 

chasing the fleeing vehicle with the maximum speed of 60 mph when they hear the 

auditory message. To accommodate the limitations of the driving simulator and prevent 

simulation sickness, officers were requested to drive at a maximum speed of 60 mph, 

which is a restriction, despite their capability of reaching speeds up to 100 mph in real-

world driving. Nevertheless, we encouraged officers to emulate their usual driving style 

as closely as possible, replicating real-world conditions. 
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The order of driving scenarios was randomized to avoid any learning effects. The 

simulation was designed to represent a realistic urban driving environment with four 

lanes, following regulations published by the Roadway Design Manual of Texas 

Department of Transportation (TxDOT, 2020). Each driving scenario was approximately 

6 minutes, and included two critical incidents and the location of critical incidents varied 

among the trials to limit any potential learning effect from one trial to another (Zahabi 

& Kaber, 2018a). 

 

Figure 3.5. An example of driving scenario 

3.2.1.6. Non-driving related task 

A plate number check task was used as an NDRT. This task is the most frequently 

performed in-vehicle task for the officers (Zahabi et al., 2022). In this task, an automated 

voice from the simulator provided a question regarding a vehicle (e.g., “what is the plate 

status?”). The questions were designed based prior studies and interviews with police 

officers (Shupsky et al., 2020; Zahabi & Kaber, 2018b). Once the auditory question was 

played, the participant searched for the information on the MCT (by pressing the arrow 

Fleeing vehicle 
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Figure 3.6. The MCT screen with a sample NDRT (plate number check task) 

keys to go to different information pages and reading the information on each page). The 

task completed once the officer verbally provided the answer, and their response was 

recorded by the camera. The MCT interface prototype was designed based on the MCT 

interface used by Texas police departments to ensure all officers were familiar with the 

layout (Figure 3.6). 

 

 

 

 

 

 

 

 

 

3.2.1.7. Dependent variables  

The dependent variables included driver performance, NDRT performance, 

cognitive workload, and driver trust. Driver performance measures for scenarios with 

FCW/AEB included brake reaction time, minimum TTC (Saffarzadeh et al., 2013; Wan 

& Wu, 2018), maximum lateral acceleration (Gold et al., 2013; Wan & Wu, 2018), and 

maximum longitudinal deceleration  (Dogan et al., 2019; Wan & Wu, 2018). TTC was 

defined as the time that the two vehicles would have a collision if they continued at their 

present speed and on the same path and was used as an indicator of the potential crash 
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severity based on Hirst (1997). Lateral acceleration was used to assess the quality of 

driving performance and vehicle stabilization when passing the lead vehicle based on 

Gold et al. (2013). Maximum longitudinal deceleration was used to measure the severity 

of the brake reaction. Brake reaction was measured as the time between the lead vehicle 

braking and the driver pressing the braking pedal (Bakowski et al., 2015). Driver 

performance measures for scenarios with BSM included number of collisions and time 

to change lane (Chun et al., 2013).  

Driver workload was measured using both physiological (i.e., average blink rate, 

PCPS, and RMSSD) and subjective measures (i.e., DALI questionnaire) (Appendix A). 

Under conditions of controlled illumination by researchers, previous studies found that 

pupil size is a useful and reliable measure of mental workload, which increases in pupil 

size correlate with increases in mental workload (Brookhuis & De Waard, 2010; Iqbal et 

al., 2005). The experiment was conducted in a room where light and noise levels were 

well-controlled. PCPS was calculated by subtracting the baseline pupil size (collected 

prior to the experiment and when the driver was seated in the cab and relaxed) from the 

measured pupil size in each trial and then dividing by the baseline pupil size. The 

baseline pupil size was measured while participants were looking at the screen (i.e., a 

static image of a roadway without any traffic). RMSSD was obtained by first calculating 

each successive time difference between heartbeats in milliseconds. Then, each of the 

values was squared and the result was averaged before the square root of the total was 

calculated. While the conventional minimum recording for RMSSD is 5 min, researchers 
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have proposed ultra-short-term periods of 10 s (Salahuddin et al., 2007), 30 s (Baek et 

al., 2015), and 60 s (Esco & Flatt, 2014). 

To measure the NDRT performance, task completion time was recorded. In 

addition, NDRT performance was used as a secondary measurement for workload 

(Shahini et al., 2021). 

The present study evaluated the cognitive measure of explicit trust (i.e., 

evaluations that a person has) via a subjective questionnaire. To explicitly evaluate trust 

in automation, a 20-item questionnaire was adapted from previous studies (Forster et al., 

2017; Gold et al., 2015; Verberne et al., 2012) and supplemented with self-created items 

(Appendix B). The 20 items were rated on a 7-point Likert scale ranging from 1 (strong 

rejection) to 7 (strong approval). The questionnaire can be broken down into three 

subscales based on theoretical implications on trust in automation by Lee and See (2004). 

These subscales include performance (i.e., what does the automation do?), process (i.e., 

how does the automation operate?) and purpose (i.e., why was the automation 

developed?). It is crucial to clarify that officers were requested to assess their confidence 

in the overall safety of the vehicle, rather than specifically evaluating the functionality, 

failure, or activation of the ADAS. In the questionnaire, participants were instructed to 

interpret the term "system" as referring to the vehicle itself, rather than solely focusing 

on the ADAS. 

3.2.1.8. Procedure 

Prior to the experiment, all participants completed and signed the informed 

consent form and the demographic questionnaire. The simulator sickness questionnaire 
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was used to measure any potential motion sickness symptoms prior to the study 

(Kennedy et al., 1993). Participants were trained to use the driving simulator. The 

training trials included simulation of an urban driving environment similar to the 

experiment scenarios. At the end of the training, driver speed and lane deviations were 

calculated across trials to guarantee conformance with established performance criteria, 

including |lane deviation|≤1.37 ft and |speed deviation|≤1 mph (Horrey & Wickens, 

2004).  

Once the participants passed the training criteria, they were provided with 

instructions on the NDRT.  Then, they were asked to watch a training video about the 

application of the FCW/AEB, and BSM. The video included the definition, application, 

and type of the ADAS warnings used in this study. Once participants watched the video 

and were familiar with the ADAS, they completed another practice scenario that included 

use of NDRT, a pursuit driving condition, and application of FCW/AEB and BSM. After 

the training, drivers were administered another simulator sickness questionnaire to 

ensure absence of simulator sickness symptoms. In addition, they were provided with 

the DALI pairwise comparison sheet to identify the relative weight of different workload 

contributors. Subsequently, the eye tracking system was calibrated for the participants 

and the baseline pupil size was captured for 2 min. while participants were seated in the 

cab. 

For the experiment trials, participants were instructed that driving was the 

primary task and they needed to complete the NDRT using the side screen as accurately 

and quickly as they could. In addition, they were instructed to follow the fleeing vehicle 
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as soon as they hear the warning “follow the white vehicle”. They were also told that 

critical incidents could occur during trials. They were instructed that once the lead 

vehicle brakes, they should react as quickly and as safely as possible to avoid a potential 

collision by pressing the brake pedal, rotating the steering wheel, or a combination of 

both. After each trial, they were asked to complete the DALI and trust questionnaires. 

Participants were provided with a 3-min break between trials. The simulator sickness 

questionnaire was evaluated again after the trial. The experiment took approximately 2.5 

hours to complete and all participants were paid $70 for their participation.  

3.2.2. Models of driver behavior 

3.2.2.1. Braking model 

As mentioned in the introduction, there are several ways to extend the braking 

model depending on the driving conditions. For example, cognitive load imposed by 

performing the NDRT with MCT can strongly affect driver brake reaction time. 

Unexpected braking of the lead vehicle is a non-practiced task and thus relies on 

cognitive control, and can be impaired by cognitive overload. Cognitive overload caused 

by using an NDRT can interfere with the cognitive resources required for braking and 

therefore, can affect driver reaction time. Previous studies suggested that the effect of 

NDRT depends on the initial time headway because cognitively-loaded drivers respond 

based on kinematic dependent looming cues (Engström et al., 2017). Therefore, it can be 

assumed that being engaged in a NDRT can affect the brake response time by changing 

visual looming of the lead vehicle on drivers’ retina.  
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Pursuit driving condition requires both operational (e.g., lane keeping, following 

the lead vehicle) and tactical driving behavior (e.g., passing maneuvers or overtaking) 

and is more demanding than the normal condition that only involves operational driving 

behavior (Shupsky et al., 2020). In addition, in pursuit driving conditions, officers drive 

at high speed, change lanes, and perform sudden maneuvers as compared to the normal 

driving condition. Therefore, it is expected that officers experience a higher workload in 

the pursuit condition than the normal driving condition. Regarding the effects of pursuit 

condition on officers’ driving performance, Zahabi et al. (2021a) found that driving in 

pursuit condition can degrade officers’ performance as shown by higher speed deviation 

and lane deviation. Based on Engström et al. (2017), cognitive load can impair braking 

in response to expected brake lights by affecting the visual looming. Therefore, it can be 

concluded that the cognitive load imposed by the pursuit condition may have an effect 

on the visual looming component of the braking model. 

In addition, Shupsky et al. (2020) suggested that the effects of in-vehicle 

technologies such as MCT may pose an additional threat to the driving task and are 

additive in nature, especially in more complicated situations such as pursuit driving. 

Therefore, it can be assumed that there is an interaction effect of pursuit driving situation 

and NDRT on visual looming in the braking model. The following equation represents 

the final evidence accumulation model suggested by this study: 

𝒅𝑨

𝒅𝒕
= 𝒌𝜺(𝒕)(𝟏 + 𝝆 ∗ 𝑷(𝒕) + 𝜼 ∗ 𝑵(𝒕) + 𝑵(𝒕) ∗ 𝑷(𝒕) ∗ 𝜸) − 𝑴 + 𝒗(𝒕)         Equation 3.6 

In which, 𝜀(𝑡) is the looming prediction error, 𝑣(𝑡) is a zero-mean Gaussian 

white noise with standard deviation of  𝜎, M is a constant, k is a constant, 𝜌 represents 
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the effect of pursuit driving, 𝜂 represents the effect of NDRT, and 𝛾 represents the 

interaction effect between pursuit situation and NDRT. 𝜎, 𝑀, 𝑘, 𝜌, 𝜂, and 𝛾 are free 

model parameters. Brake adjustment will be executed if 𝐴 exceeds a threshold. 𝑃(𝑡) and 

𝑁(𝑡) are binary variables that can get a value of 1 if the officer drives in the pursuit 

situation or is engaged in an NDRT and can get a value of 0 if the officer drives in the 

normal situation and is not engaged in an NDRT respectively. 

The braking model parameters were optimized through a grid search across a set 

of fixed values for 𝜎, 𝑀, 𝑘, 𝜌, 𝜂, and 𝛾 for evidence accumulation in brake reaction time 

model. Table 3.5. illustrates the range of the search for each parameter. The model was 

run for each combination of the parameters, resulted in a distribution of brake reaction 

times per scenario. The best combination of parameters for the brake reaction model was 

selected based on the smallest root mean square error (RMSE) over all scenarios. 

 
Table 3.5. Parameters search range for brake reaction model 

Parameter Searched range 

𝜎 [0.1,1] 

𝑀 [-1,1] 

𝑘 [1,8] 

𝜌 [-0.5,0.5] 

𝜂 [-0.5,0.5] 

𝛾 [-0.5,0.5] 

Ranges for 𝜎, 𝑀, and 𝑘 were determined using a manual search and the 

suggestions from previous studies (Markkula et al., 2018b). Ranges for 𝜌, 𝜂, and 𝛾, 

however, were determined based on the empirical and theoretical findings from the 
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previous studies (Engstrom et al., 2017). Based on the cognitive load theory proposed 

by Engström et al. (2017), performance on non-practiced or naturally variable tasks, 

relying on cognitive control, is consistently impaired by cognitive load, whereas the 

performance on automatic (well-practiced and consistently mapped) tasks is unaffected 

and sometimes even improved. One may suggest that braking response to a braking lead 

vehicle is a well-practiced and automated task for law enforcement officers. However, 

the scenarios in this experiment were not practiced before and therefore, the task can be 

assumed as a non-automatic task. Also, a meta-analysis by Engström (2010) found that 

the effects of cognitive load on brake response time reported in experimental lead vehicle 

braking studies appears to depend strongly on scenario kinematics, in terms of the initial 

time headway. Therefore, a range of negative, zero, and positive values for 𝜌, 𝜂, and 𝛾 

was included in the analysis.  

In addition, a comparison of the model accuracy between the basic model (i.e., 

the model including 𝜎, 𝑀, and 𝑘) and the full model (i.e., the model including 𝜎, 𝑀, 𝑘, 𝜌, 

𝜂, and 𝛾) was conducted to evaluate the effectiveness of the additional parameters (i.e., 

𝜌, 𝜂, and 𝛾) on model improvement. 

3.2.2.2. Steering model 

 Based on Markkula et al. (2014), the open-loop models provided the best fit for 

avoidance maneuver. The steering model in this experiment predicts the maximum 

steering wheel angle when officers drive with BSM and try to change their lane when 

there is a vehicle in their blind spot. Therefore, the avoidance phase model is suitable for 

the purpose of this study without the consideration of the stabilization phase. Breuer 
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(1998) found that in an evasive maneuver, the amplitude of steering wheel angle and 

maximum rate of the steering angle are linearly correlated which suggests a constant 

duration of steering corrections (Markkula, 2014). The steering wheel angle rates in open 

loop avoidance models follow a Gaussian distribution function (Markkula, 2015) as 

defined by Equation 3.7.  

𝛿̇ = 𝐴𝑒
−(

(𝑡−𝜇)2

2𝛿2 )
   Equation 3.7 

In this Equation, 𝛿̇ denotes the changes in the steering wheel angle, A is the 

amplitude of the pulse based on a constant variable k and maximum visual looming after 

the event onset and prior to the avoidance maneuver initiation, 𝜇 is the mean of the model 

input and was set to the time 𝑇𝑆 + 𝑇𝐴 where 𝑇𝑆 is the time when the steering input reaches 

half of its maximum value, and 𝛿 is the standard deviation of the model and was a 

function of time duration (𝑇𝐻). Following the work in Markkula et al. (2014), k, 𝑇𝐴, and 

𝑇𝐻 are considered as free parameters. By fitting this model to the experimental data, the 

free parameters will be adjusted. Table 3.6. illustrates the range of the search for each 

parameter. 

Table 3.6. Parameters search range for steering wheel model 

Parameter Searched range 

k [0,50] 

𝑇𝐴 [1,10] 

𝑇𝐻  [0.1,1] 
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3.2.3. Data analysis 

Before conducting any inferential statistical tests, the data on driving 

performance, eye tracking data, heart rate data, DALI score, and trust score underwent a 

data screening process to identify any outliers. The outliers were removed based on the 

review of video recordings and Cook's D criteria. The dependent variables were also 

subjected to diagnostic tests to ensure that they met parametric test assumptions of 

normality and equal variance. The normality of residuals was inspected using normal 

probability plots and Shapiro-Wilk's Goodness-of-Fit tests, while variance 

homoscedasticity was assessed using Bartlett's tests. In case of violations of parametric 

assumptions, the data underwent Box-Cox transformation (maximum lateral 

acceleration, minimum TTC, time to change lane, PCPS, blin rate, and RMSSD) or 

fourth power transformation (maximum longitudinal deceleration). If the data 

transformation did not resolve the assumption violations, the data were ranked, and non-

parametric procedures were used (trust score). 

Covariates such as age, experience in automated driving studies, experience as a 

police officer, experience as a primary patrol officer, experience with ADAS, experience 

with automated vehicles, and trial number (1-12) were included in the model and 

removed if found to be insignificant. An analysis of variance (ANOVA) was conducted 

to examine the impact of explanatory variables on response variables, and Tukey's 

Honest Significant Difference (HSD) post-hoc multiple comparison was applied to 

identify any significant differences among levels of significant effects. A significance 

level of p<0.05 was set as a criterion for the study. The standard errors are represented 
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by error bars in Figures, and letters (A, B, C) were used to indicate significant differences 

between groups based on post-hoc analysis. The driving simulator provided driving 

performance responses in seconds with accuracy up to two decimal digits, and R studio 

was used to conduct the inferential statistics. 

Twenty-three (23) out of 398 driving performance data points were removed due 

to participants not following instructions, going the wrong way, driving through the lead 

vehicle, or not waiting for the lead vehicle to brake. Seven crashes with the lead vehicle 

were recorded, and 34 brake data points were removed due to participants not braking 

when negotiating hazards. Twelve secondary task completion times were dropped 

because participants did not know they needed to answer or did not hear the question. A 

total of 34 PCPS data points and 57 blink rate data points were excluded from the study. 

The reasons for exclusion were related to eye recording failure, driving simulator failure, 

or low confidence level. These data points were removed from the analysis to ensure the 

accuracy and reliability of the data used for inferential statistical tests. 

3.3. Results 

3.3.1. Driving simulator 

3.3.1.1. Driving performance 

Brake reaction time 

There were no significant main effects of ADAS status (F(1, 171.99) = 1.26, p = 

.26, η² = .007), ADAS type (F(1, 175.46) = 0.94, p = .33, η² = .005), driving condition 

(F(1, 173.78) = 1.39, p = .24, η² = .008), or NDRT (F(1, 171.62) = 0.22, p = .64, η² = 

.001) on participants' brake reaction time. 
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Maximum lateral acceleration 

The ANOVA results indicated that the participants' maximum lateral acceleration 

was significantly affected by the ADAS type (F(1, 174.79) = 5.47, p = .02, η² = .03) 

(Figure 3.7), and driving condition (F(1, 173.24) = 17.88, p < .001, η² = .09) (Figure 

3.8). There were significant interactions between the ADAS type and driving condition 

(F(1 , 173.24) = 4.45, p = .03, η² = .03) (Figure 3.9), and between the ADAS status and 

driving condition (F(1 , 171.76) = 5.69, p = .02, η² = .03). There was no significant effect 

of ADAS status (F(1, 171.82) = 1.33, p = .25, η² = .01) or NDRT (F(1, 171.62) = 0.07, 

p = .79, η² = .001) on officers’ maximum lateral acceleration.  

 

 

 

 

 

Figure 3.7. Effects of driving condition on maximum lateral acceleration 
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Figure 3.8. Effects of ADAS type on maximum lateral acceleration 

 

 

 

 

  

 

 

Figure 3.9. Interaction between ADAS type and driving condition on maximum lateral acceleration 
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.01), or the NDRT (F(1, 172.45) = 0.04, p = .83, η² = .001). However, a significant main 

effect was observed for the driving condition (F(1, 173.61) = 33.91, p < .001, η² = .16) 

(Figure 3.10). Additionally, the ANOVA results demonstrated a significant interaction 

between ADAS type and status (F(1, 174.34) = 4.68, p = .03, η² = .03) (Figure 3.11). 

 

 

 

 

 

Figure 3.10. Effects of driving condition on maximum longitudinal deceleration 

 

 

 

 

 

 

Figure 3.11. Interaction between ADAS type and status on maximum longitudinal deceleration 
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Minimum time to collision 

ADAS status (F(1, 172.33) = 7.09, p = .008, η² = .04) (Figure 3.12) and driving 

condition (F(1, 174.78) = 68.34, p < .001, η² = .28) (Figure 3.13) had significant effects 

on the minimum time to collision among officers. However, there was no significant 

main effect of ADAS type (F(1, 173.73) = 0.22, p = .64, η² = 0.001) or NDRT (F(1, 

172.28) = 0.02, p = .89, η² < 0.001) on the response.  

 

 

 

 

 

Figure 3.12. Effects of ADAS status on minimum time to collision 

 

 

 

 

 

Figure 3.13. Effects of driving condition on minimum time to collision 
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Time to change lane 

The results of the ANOVA revealed a significant main effect of driving condition 

(F(1, 194.53) = 5.93, p = .02, η²= .03) on time to change lanes (Figure 3.14). 

Additionally, there was a marginally significant main effect of NDRT (F(1, 192.37) = 

3.52, p = .06, η²= .02). Officers’ time to change their lane decreased with time (F(1, 

199.83) = 6.63, p = .01, η² = .03). No significant main effects were found for the ADAS 

status (F(1, 193.90) = 0.26, p = .61, η² = .001) or ADAS type (F(1, 194.94) = 0.70, p = 

.40, η²= .004), nor were any significant interactions found. 

 

 

 

 

 

Figure 3.14. Effects of driving condition on time to change lane 
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experience as a police officer (F(1, 10.85) = 4.9, p = .05, η² = .31) and participant 

experience with forward collision warning (F(1, 10.83) = 4.62, p = .05, η²= .30). 

Additionally, there was a significant interaction among ADAS type, status, and driving 

condition (F(2, 132.271) = 1.79, p = .04, η² = .05). Officers reported a significantly lower 

workload when BSM and FCW/AEB system were on (M=2.64) as compared to driving 

without ADAS (M=3.09) in normal driving.  All other main effects and interactions were 

not significant. 

 

 

 

 

 

Figure 3.15. Effects of ADAS type on DALI 

 

 

 

 

 

Figure 3.16. Effects of driving condition on DALI 
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RMSSD 

There was no significant effect of ADAS status (F(1, 264.10) = 0.60, p = .44, η² 

= .002), driving condition (F(1, 263.88) = 0.35, p = .55, η² = .001), ADAS type (F(2, 

263.98) = 2.47, p = .09, η² = .02), or NDRT (F(1, 263.91) = 0.03, p = .87, η² < .001) on 

the RMSSD response.  

PCPS 

The ANOVA results revealed that the trial number (F(1, 310.21)=11.23, p= .001, 

η²= .03), ADAS type (F(2, 308.74)=3.99, p= .02, η²= .03) (Figure 3.17), driving 

condition (F(1, 308.19)=11.02, p= .001, η²= .03) (Figure 3.18), and NDRT (F(1, 

308.00)=5.17, p= .02, η²= .02) (Figure 3.19) had significant main effects on PCPS. 

Additionally, there was a significant interaction effect between ADAS type and NDRT 

(F(2, 308.02)=3.80, p= .02, η²= .02) (Figure 3.20) and between driving condition and 

NDRT (F(1, 308.01)=7.91, p= .005, η²= .03) (Figure 3.21).  

 

 

 

 

 

Figure 3.17. Effects of ADAS type on PCPS 
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Figure 3.18. Effects of driving condition on PCPS 

 

 

 

 

Figure 3.19. Effects of NDRT on PCPS 
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Figure 3.20. Effects of interaction between NDRT and ADAS type on PCPS 

 

 

 

 

 

 

Figure 3.21. Effects of interaction between NDRT and driving condition on PCPS 
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Blink rate 

The results revealed significant effects of trial number (F(1, 277.12) = 14.85, p 

< .001, η² = .05),  driving condition (F(1, 275.25) = 7.83, p = .006, η² = .03) (Figure 

3.22), and NDRT (F(1, 275.10) = 20.56, p < .001, η² = .07) (Figure 3.23). No significant 

main effects were found for ADAS status (F(1, 275.81) = 0.06, p = .800, η² < .001) and 

ADAS type (F(2, 275.65) = 0.10, p = .907, η² < .001). 

 

 

 

 

Figure 3.22. Effects of driving condition on blink rate 

 

 

 

 

Figure 3.23. Effects of NDRT on blink rate 
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.03) (Figure 3.25). Nonetheless, the ADAS type did not yield a significant result (F(2, 

297.37) = 0.95, p = .386, η² = .006). Additionally, there was a significant interaction 

between ADAS status and type (F(2, 297.43) = 6.84, p = .001, η² = .04). 

 

 

 

 

 

Figure 3.24. Effects of ADAS status on trust score 

 

 

 

 

Figure 3.25. Effects of driving condition on trust score 
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(Appendix C). The values of σ, M, k, ρ, η, and γ that resulted in the best model fit for the 

full model were found to be σ=0.35, M=-0.35, k=7.5, ρ=-0.1, η=-0.1, and γ=-0.1. The 

values of σ, M, k, ρ, η, and γ that resulted in the best model fit for the basic model were 

found to be σ=0.35, M=-0.5, k=7. Additionally, Table 3.7 presents a comparison of the 

root mean square error (RMSE) between the basic and full models. 

Table 3.7. Model fitting results for brake reaction time model 

Model RMSE 

Basic model 0.082 

Full model 0.069 

 

Results from Kolmogorov–Smirnov (KS) test revealed that the observed data and 

the predicted values by both basic (p=0.91, 𝐷=0.11) and full model (p=0.19, 𝐷=0.22) 

came from a same distribution as the experimental data. However, the RMSE of the full 

model was smaller than the basic model, implying that the full model has better 

predictive accuracy (table 3.7). Figure 3.26 illustrates the Cumulative density function 

(CDF) plots vs. brake reaction time with a histogram of the basic and full models 

compared to the experimental data. 
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3.3.2.2. Steering wheel model  

Results from the steering wheel model optimization suggested that  𝑘 = 15, 

𝑇𝐻 = 0.6, and  𝑇𝐴 = 7 leads to the minimum RMSE (M= 0.023, SD=0.02). The  

𝑅2 for this model was computed as 0.67. Figure 3.27 illustrates some examples of the 

avoidance steering angle versus predicted values by the model. 
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3.4. Discussion 

3.4.1. Driving simulator study 

The first objective of the driving simulation study was to investigate the effects 

of ADAS on officers’ performance, workload, and trust. An inferential statistical 

analysis was conducted to evaluate these effects.  

Hypothesis 1 posited that drivers would exhibit a better driving performance with 

ADAS as compared to driving without ADAS when the lead vehicle brakes. The results 

partially supported this hypothesis. The results suggested that drivers exhibited an 

average larger minimum TTC of 1.98 seconds with ADAS compared to 1.79 seconds 

without ADAS. In crash avoidance scenarios, a longer minimum TTC is generally 

considered to be a safer driving performance as it provides drivers with more time to 

react (Shahini et al., 2022b). A longer minimum TTC with ADAS indicates that the 

drivers had more time to perceive the danger, make a decision, and execute an evasive 
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Figure 3.27. Examples of avoidance steering maneuver for the experimental data and fitted model. The 

red and black dots represent the model and experimental data, respectively. The first example 

represents a good fit and the second example represent a relatively poor fit. 
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maneuver. This highlights the advantage of the FCW on driver's ability to perceive and 

react to dangerous conditions quickly and effectively. 

It was found that using both FCW and BSM led to an increase in the maximum 

longitudinal deceleration in scenarios where there was a braking lead vehicle and another 

vehicle in the driver's blind spot. This suggests that ADAS technologies can be 

particularly effective in high-risk driving situations where drivers need immediate and 

comprehensive information about surrounding vehicles to make safer decisions. It is 

important to note that a higher maximum longitudinal deceleration does not necessarily 

indicate safer driving performance alone, but when combined with other results such as 

minimum TTC, it supports the notion that a combination of FCW and BSM can assist 

drivers in making better decisions and executing safer maneuvers in crash avoidance 

scenarios. 

Additionally, the results suggested that when FCW was active, drivers exhibited 

a larger maximum lateral acceleration, indicating faster and safer passing maneuvers, 

especially when combined with a larger minimum TTC as compared to when a 

combination of FCW and BSM was active. However, in BSM/FCW scenarios where 

both blind spot and lead vehicles were present, it was not always possible for drivers to 

switch lanes instantly as shown by the maximum lateral acceleration. Nevertheless, the 

use of ADAS technologies still improved their driving performance in BSM/FCW 

scenarios, as indicated by a larger maximum longitudinal deceleration. Therefore, the 

findings suggest that ADAS technologies such as FCW and BSM can aid officers in 

having safer passing maneuvers by providing timely information about their 
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surroundings, as shown by shorter minimum TTC, larger maximum longitudinal 

deceleration, and maximum lateral acceleration depending on the situation. 

Previous studies found that the use of ADAS technologies such as FCW may 

increase drivers' workload. However, this increase in workload can lead to longer time 

headway indicating improved collision avoidance performance (Chai et al., 2022). This 

finding is consistent with the Yerkes and Dodson (1908) which posits that moderate 

levels of arousal or workload can lead to improved performance, while low and high 

levels can lead to poorer performance. It is important to note that while ADAS warnings 

can increase drivers' workload, the Yerkes-Dodson Law suggests that this increased 

workload can lead to improved performance, as demonstrated by our findings. Therefore, 

the use of ADAS technologies such as FCW can be a valuable tool for improving driving 

performance and enhancing road safety, particularly in high-risk driving scenarios. 

In general, the results suggested that ADAS primarily influenced the longitudinal 

aspect of driving performance, demonstrating the effectiveness of FCW and AEB in 

enhancing safe driving. However, the impact of BSM was limited, possibly due to its 

low salience. The limitations of the BSM system in this study may have been influenced 

by the visual-only warning icon and lack of auditory warning signal if officers did not 

turn their blinker on. The visual-only warning icon may have added to the primarily 

visually demanding driving task and led to an unnecessary visual load on the drivers 

(Wickens, 2008). As drivers must constantly monitor and integrate information from 

multiple sources, including the rearview mirrors, side mirrors, and the warning 

indicators, the additional cognitive demands imposed by the BSM system could have 
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interfered with the drivers' ability to respond to the braking lead vehicle in a timely and 

effective manner. The absence of an auditory warning signal, except when the drivers 

turned on their blinkers, may have reduced the salience and effectiveness of the BSM 

warning. As most participants did not use their blinkers, this further diminished the 

salience of the BSM warning. This lack of salience may have led to drivers overlooking 

or not responding to the warning signal, which could have potentially been hazardous. 

Therefore, there is a need to improve the design of BSM warnings for LEOs to 

make them more noticeable. Incorporating an auditory warning signal, improving the 

salience of the visual warning icon, and reducing the additional cognitive demands 

imposed by the system could lead to a more effective BSM system. By doing so, the 

system can better support drivers in avoiding potential collisions, especially in complex 

driving situations. 

Although Hypothesis 2, which posited that officers would experience higher 

workload levels with ADAS on when dealing with critical incidents, was not supported 

by the results, the data indicated that officers exhibited a larger average PCPS (M=0.19) 

and a higher average blink rate (M=0.19) with ADAS as compared to driving without it 

(M=0.17 and M=0.16, respectively). While physiological measures indicated an overall 

higher average cognitive workload when negotiating a hazard, there was no significant 

increase in workload. This suggests that, when combined with the positive effects of 

ADAS on driving performance measures, ADAS warnings can increase drivers' 

workload up to an optimum point that enhances their performance, without imposing 

excessive cognitive load that would deteriorate their performance. These findings are in 
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line with the Yerkes-Dodson Law, which posits that there is an inverted U-shaped 

relationship between arousal and performance. According to this principle, performance 

increases with physiological or mental arousal, but only up to a certain point. Beyond 

that point, further arousal becomes detrimental to performance (Yerkes & Dodson, 

1908). 

Regarding the DALI score, it was found that officers reported a lower level of 

workload with BSM and FCW/AEB system on in normal driving situation as compared 

to driving without ADAS. This finding is consistent with the results of maximum 

longitudinal acceleration, which suggested that drivers exhibited a larger maximum 

longitudinal deceleration with ADAS in similar scenarios. However, it was observed that 

there was no significant difference in DALI score between driving with and without 

ADAS during pursuit driving. Wicken's multiple resource theory can explain this finding 

as ADAS warnings require both auditory and visual resources, whereas pursuit driving 

demands high vigilance and the use of sirens and audio (Wickens, 2008). Per Wicken's 

theory, these two tasks may compete for the same resources and can overload drivers' 

memory load, resulting in no significant difference in DALI score between manual 

driving and driving with ADAS. In other words, the use of ADAS may not have a 

significant impact on workload perception during pursuit driving, as the task itself 

already requires a high level of cognitive resources. Therefore, it can be concluded that 

the effectiveness of ADAS may vary depending on the driving scenario and the cognitive 

demands imposed on the driver. 
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Hypothesis 3 stated that officers would have a higher trust in vehicle during the 

crash situation if the ADAS is in use. This hypothesis was supported by our results. This 

finding suggests that the use of ADAS can increase drivers' confidence in the safety of 

the vehicle and its ability to prevent or mitigate the impact of collisions. Increased trust 

in the vehicle is an important factor that can influence drivers' behavior and decision-

making while driving. When drivers have greater trust in the safety features of their 

vehicle, they may be more likely to rely on these features to prevent collisions, which 

can lead to safer driving behavior overall (Shahini et al., 2022a). However, it is worth 

mentioning that real-world driving might be different than simulator driving especially 

in near crash scenarios. Officers’ knowledge of the ADAS technology is a significant 

factor that determines their trust in the ADAS (DeGuzman & Donmez, 2021), and their 

intention to use the technology (Shahini et al., 2022a). Although we trained the officers 

with our driving simulator and video training before the experiment, the situation might 

be different in real-world driving. Officers may need extensive training to rely on ADAS 

in real-world driving situations. This training can be conducted in a controlled 

environment, and can include classroom instruction as well as hands-on driving 

exercises. 

It was expected that pursuit driving would lead to a decrease in driving 

performance compared to normal driving conditions (H4), and the results confirmed this 

hypothesis. The results of the study suggested that the pursuit driving condition resulted 

in a larger maximum lateral acceleration and maximum longitudinal deceleration 
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compared to normal driving conditions. Furthermore, it was found that the minimum 

time to collision and the time to change lanes were shorter in pursuit driving situations.  

The process of passing another vehicle on the road requires several cognitive 

steps, including perception, decision-making, planning, execution, monitoring, and 

evaluation. The driver must identify the position, speed, and direction of travel of the 

other vehicle, assess whether it is safe to pass, plan the best trajectory and speed, execute 

the pass by steering the vehicle into the passing lane and maintaining control, 

continuously monitor the road and other vehicle, and finally evaluate the outcome of the 

pass and adjust their driving accordingly. These steps are crucial for a safe and successful 

passing maneuver (Kim et al., 2015).  

Driving in the pursuit situation requires police officers to drive at high speeds, 

switch lanes quickly, and make sudden movements. Despite having the same initial 

headway time in both normal and pursuit driving conditions (2.5 seconds) in our 

experiment, pursuit driving presented a more pressing situation due to its high speed, 

negatively impacting most stages of passing maneuvers. This urgency results in shorter 

time for officers to accurately perceive the situation and plan the maneuver. However, 

the brake reaction time between manual and pursuit driving was not significantly 

different. To make up for the long brake reaction time in pursuit situation (i.e., not 

significantly different from normal driving situation), officers tended to take faster 

actions with the steering wheel, resulting in a quicker lane change time. Additionally, it 

led officers to make more abrupt passes, as demonstrated by larger maximum lateral and 

longitudinal decelerations. Consequently, the execution step was negatively impacted, 



 

95 
 

as indicated by the shorter minimum TTC in pursuit driving, indicating a less safe 

passing maneuver. 

Furthermore, the increased focus on the pursuit can cause the officer to allocate 

less attention to passing the lead vehicle, reducing their ability to safely execute the 

maneuver. These findings highlight the importance of designing driving assistance 

systems that can help officers maintain situational awareness and support them in 

executing safe passing maneuvers, especially during high-demand driving situations 

such as pursuit driving. 

Hypothesis 5 stated that pursuit driving would lead to an increase in officers’ 

workload compared to normal driving conditions. Results from PCPS, blink rate, and 

DALI supported this hypothesis; however, results from RMSSD did not reveal any 

significant effect of pursuit situation on officers’ workload. 

Previous research has indicated that blink rate is an effective and trustworthy 

measure of both cognitive and visual workload. It has been observed that cognitive tasks 

tend to increase blink rate, while visual tasks tend to inhibit it (Recarte et al., 2008b). 

Although driving itself is primarily a visually demanding activity, pursuit driving 

imposes additional demands such as the need to maintain a high speed, make quick 

decisions to execute safe passing maneuvers, evaluate the speed and situation of the lead 

vehicle, and process auditory information from the siren. These additional demands 

contribute to a high mental workload, which is reflected in the higher blink rate observed 

during pursuit driving situations. Thus, in pursuit driving situations, the high mental 
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workload may have outweighed the visual demand of driving, resulting in an increased 

blink rate. 

Based on Recarte and Nunes (2000), changes in mental workload during driving 

can be detected through changes in pupil size, even when factoring in variables such as 

daylight and natural road conditions. Previous studies have also found that pupil dilation 

can be observed in anticipation of complex driving maneuvers such as overtaking or 

approaching a roundabout, indicating increased mental workload during mental planning 

of maneuvers (Recarte et al., 2008b). In line with these findings, the present study found 

that pursuit driving situations resulted in a higher PCPS, indicating an increased 

cognitive load in these situations. Factors such as high-speed driving, urgency of the 

maneuver, siren sounds, and the focus on the fleeing vehicle all contributed to the higher 

workload in pursuit driving. 

The use of subjective questionnaires was not effective in measuring the workload 

experienced by officers during short data blocks due to the subjective nature and recall 

biases associated with such questionnaires (Shahini et al., 2021). However, the DALI 

score findings were consistent with the results obtained from physiological measures in 

terms of the effects of pursuit situation on officers’ workload level. The DALI 

questionnaire is designed to evaluate various aspects of driver workload, including task 

demand, task stress, situational stress, and environmental stress (Pauzié, 2008). The 

pursuit driving scenario not only increased the mental demand during the short durations 

of passing maneuver as measured by physiological responses, but also increased officers' 

overall perceived demand throughout the scenario as measured by DALI. 
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The results of the study did not support Hypothesis 5 in terms of RMSSD. One 

possible reason for this could be the limitation of the Kubios HRV Standard software 

used to analyze the RMSSD within the data blocks. The software has a minimum time 

duration of 30 seconds. Previous studies have suggested that shortening the analysis 

windows for RMSSD from 4 to 2 minutes is acceptable, while using 1-minute windows 

may lead to poor results (Bourdillon et al., 2017). In our study, the data blocks ranged 

mainly from 10-20 seconds, and increasing the analysis window to 30 seconds may 

decrease the sensitivity of the data blocks and affect the accuracy of measuring officers' 

workload during the data block. In summary, the limitation of the analysis software and 

the short duration of the data blocks used in the study may have contributed to the lack 

of support for Hypothesis 5 in terms of RMSSD. 

The results did not support Hypothesis 6 as it was found that NDRT had no 

significant impact on driving performance. This finding are different from the results of 

Zahabi et al. (2021a), which found that officers experienced larger lane and speed 

deviations while engaged in an MCT task. However, Zahabi et al. (2021) did not evaluate 

the officers' performance in crash scenarios. It is possible that in such situations, officers 

are more focused on driving to prevent crashes, as they were informed that their main 

task was to drive and not perform NDRT. Moreover, the initial headway was set at 2.5 

seconds, and upon reviewing the videos, it was observed that most participants 

completed NDRT after passing the hazard or stopped behind the lead vehicle and 

completed NDRT after applying the brakes. 
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Previous research found that the use of in-vehicle technologies can have a 

negative impact on drivers' driving performance (Shahini et al., 2022b; Zhang & Kaber, 

2016). It is worth noting that the officers who participated in this study were highly 

skilled drivers who frequently engage in patrols, and they were only required to perform 

a plate number check task while using the MCT without any other interaction. Other 

studies that suggested distractions negatively affect driving performance have used 

complex visual and cognitive secondary tasks during driving simulations. In patrol 

situations, officers may have to respond to emergency calls or use the radio, which could 

increase the demands on their attention and potentially affect their driving performance 

while using the MCT.  The findings of this study were consistent with those of (Zahabi 

& Kaber, 2018a), which found that the use of MCT did not have a significant impact on 

police officers' driving performance as measured by lane deviation, speed deviation, and 

brake reaction time in the presence of hazards such as vehicle and pedestrian 

obstructions. It is important to note that these experiments were conducted in a controlled 

environment, and the officers were made aware of the importance of protecting the 

driving task and their safety and were informed that using the on-board computer might 

be distracting at the beginning of the experiment. 

Hypothesis 7 suggested that when faced with critical incidents, drivers would 

experience a lower workload when they are not engaged in a non-driving related task as 

compared to when they are performing such a task. The results of this hypothesis were 

supported by the blink rate and PCPS measures. The findings from blink rate and PCPS 

indicated that officers had a significantly higher cognitive load when engaged in non-
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driving related tasks as compared to driving without such tasks. In contrast, RMSSD 

results did not reveal any significant effect of NDRT.  

Blink rate has been found to be an indicator of both visual and cognitive demand 

(Holland & Tarlow, 1972; Recarte et al., 2008a). Specifically, a decrease in blink rate 

has been associated with increased visual demand, while an increase in blink rate has 

been linked to increased cognitive demand (Recarte et al., 2008b). The task in this study 

required participants to engage in various activities that required visual, cognitive, 

auditory, verbal, and motor demands. Due to the high level of mental strain involved in 

the task, participants experienced a higher cognitive load, which was indicated by a 

higher rate of blinking. Participants were required to listen to audio instructions, perceive 

the question, switch among pages, find the correct answer, and vocalize their response. 

This complex and demanding task likely required significant cognitive resources, which 

may have resulted in the observed increase in blink rate and PCPS. 

In contrast, the RMSSD results did not reveal any significant effect of NDRT. 

This result may suggest the measurement of RMSSD may not be sensitive enough to 

capture changes in cognitive load associated with NDRTs in short durations of time. 

The DALI score was not used in evaluating the effects of NDRT on workload 

because it was distributed at the end of the experiment, whereas the on/off manipulation 

of non-driving related tasks was done within each scenario.  
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3.4.2. Brake reaction time model  

The second objective of this study was to develop a model that could predict 

police officers' brake reaction time during critical driving situations such as a braking 

lead vehicle. Although inferential statistics did not reveal significant effects of pursuit 

driving or NDRT on brake reaction time, the brake reaction model revealed that adding 

additional parameters (ρ=-0.1, η=-0.1, and γ=-0.1) could improve the basic model, as 

evidenced by a smaller RMSE. The inclusion of these parameters led to longer estimated 

brake reaction times when officers were under a higher cognitive load, whether due to 

pursuit driving, NDRT, or the interaction between the two. This finding is consistent 

with the cognitive control hypothesis, which posits that tasks requiring cognitive control 

are more affected by cognitive load than tasks that have become automatized through 

practice. Previous research suggested that object and event detection (OED) performance 

is impaired by cognitive load in tasks that rely on cognitive control, such as detection 

response tasks (DRT), which involve responding to visual or tactile stimuli presented at 

intervals of 3 to 5 seconds. DRT is typically not extensively practiced and is therefore 

sensitive to interference from secondary tasks that require cognitive control. Studies have 

reported that cognitively loading tasks increase DRT response times compared to a 

baseline (no-task) condition. Similarly, many studies have found that cognitive load 

increases brake response time or accelerator pedal release time relative to a no-task 

condition (Engström et al., 2017). In this study, because the brake situations (i.e., a lead 

vehicle suddenly braking) were unexpected and therefore unlikely to become 

automatized even for experienced officers, it is reasonable to expect longer brake 
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reaction times under higher cognitive load due to pursuit driving and NDRT. The 

inferential statistics (PCPS and blink rate data) also suggest that pursuit driving and 

NDRT increased officers' cognitive load, further supporting the model results based on 

the cognitive control theory. 

The results of this model can be used as an input for an adaptive FCW system 

per officers’ request in a survey study by Wozniak et al. (2021). The critical warning 

distance 𝑅𝑊 can be expressed as the following equation (Nakaoka et al., 2008): 

𝑅𝑤 =  𝜏𝑟𝑉 +
𝑉2

2𝑎
−

𝑉𝑝
2

2𝑎𝑝
+ 𝑅𝑠𝑡𝑜𝑝   Equation 3.8 

 

 

 

 

Figure 3.28. Description of warning distance index reprinted from Nakaoka et al. (2008) 
 

Where, 𝜏𝑟 indicates the braking reaction time of driver, 𝑉 , the following vehicle 

speed, 𝑉𝑝 the preceding vehicle speed, 𝑎 the host vehicle longitudinal deceleration, 𝑎𝑝 

the preceding vehicle longitudinal deceleration, 𝑅𝑠𝑡𝑜𝑝 the relative distance margin when 

both vehicles stop. Here, 𝜏𝑟 indicates the braking reaction time of driver. From the above 

expression, if 𝑅 > 𝑅𝑊, no assistance is applied. On the other hand, if, the 𝑅 ≪ 𝑅𝑊, 

warning sound device will be activated. 
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To implement an adaptive FCW system based on the model's predictions of brake 

reaction time, the police vehicle would need to be equipped with various sensors and 

devices. Firstly, a speed sensor or speedometer in the police vehicle would be required 

to measure the following vehicle speed (V). Additionally, radar or camera sensors that 

can detect the speed of the vehicle ahead would be necessary to obtain the preceding 

vehicle speed (𝑉𝑝). The host vehicle longitudinal deceleration (a) can be measured using 

the vehicle's braking system or an accelerometer. Similarly, the deceleration rate of the 

vehicle ahead (𝑎𝑝) can be estimated using the same sensors that provide the preceding 

vehicle speed. The model's prediction of the braking reaction time of the driver (𝜏𝑟) is 

also essential information required for the adaptive FCW system provided by this study. 

Finally, the relative distance margin when both vehicles stop (𝑅𝑠𝑡𝑜𝑝) can be obtained by 

measuring the length of the police vehicle and the distance between the police vehicle 

and the vehicle ahead when both vehicles come to a stop. With this information, the 

critical warning distance (𝑅𝑤) can be calculated using the equation provided above. If 

the actual relative distance (R) between the police vehicle and the vehicle ahead is less 

than 𝑅𝑤, the warning sound device should be activated to alert the driver of the police 

vehicle. If R is greater than 𝑅𝑤, no assistance is needed. Therefore, a speed sensor, radar 

or camera sensors, an accelerometer, and a warning sound device would be necessary to 

implement an adaptive FCW system and effectively use the model's predictions of brake 

reaction time as the input for an adaptive FCW. 
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3.4.3. Steering avoidance model 

The third objective of this study was to build a model to predict officers’ steering 

wheel angle when driving with BSM and trying to change their lane when there is a 

vehicle in their blind spot. Results from the steering avoidance model suggested that  𝑘 =

16, 𝑇𝐻 = 0.6, and  𝑇𝐴 = 7 result in the optimal model as calculated by the smallest 

RMSE. Although the RMSE for the model is too small (0.023), the 𝑅2 of the model is 

relatively small suggesting that the model can only explain 67% of the variation in data. 

This observation could be due to the short duration of the data collection periods, since 

the data block in this analysis starts from the moment that leading vehicle brakes and 

ends when the driver notices the vehicle in their blind spot and brakes. As shown in 

Figure 3.27, the officers’ steering behavior is not always predictable in critical situations 

specifically when there is a vehicle in their blind spot. The figures illustrated that not 

always officers rotate the steering wheel to a certain degree, wait for the vehicle in blind 

spot to pass, and then continue rotating the steering wheel. Instead, they sometimes 

quickly rotate the steering wheel to change their lane and rotate it back when seeing a 

vehicle in their blind spot. While this model can be useful in situation where officers 

demonstrate a predictable steering behavior (i.e., rotating the steering wheel to a certain 

position, waiting for the lead vehicle to pass, and then continuing to rotate the steering 

wheel), it might not be as useful in unpredictable situations where we see reverse steering 

wheel rotation due to the vehicle in blind spot. Further research is warranted to explore 

whether incorporating additional parameters into the model could enhance its accuracy 

in scenarios where drivers rotate the steering wheel to switch lanes and then rotate it 
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back to prevent accidents when a vehicle is present in their blind spot. Investigating these 

aspects has the potential to improve the model's performance and provide a more 

comprehensive understanding of such driving maneuvers. 

3.5. Conclusion 

The study investigated the effects of ADAS on police officers' performance, 

workload, and trust in critical driving situations (e.g., a braking lead vehicle) in a driving 

simulation study. The findings suggested that ADAS primarily influenced the 

longitudinal aspect of driving performance, demonstrating the effectiveness of FCW and 

AEB in enhancing safe driving. However, the impact of BSM was limited, possibly due 

to its low salience. The study also found that ADAS warnings can increase drivers' 

workload up to an optimum point that enhances their passing performance. There is a 

need to improve the design of BSM warnings for LEOs to make them more noticeable, 

incorporating an auditory warning signal, improving the salience of the visual warning 

icon, and reducing the additional cognitive demands imposed by the system. Overall, the 

study suggests that ADAS technologies such as FCW and BSM can aid officers in having 

safer passing maneuvers by providing timely information about their surroundings, as 

shown by shorter minimum TTC, larger maximum longitudinal deceleration, and 

maximum lateral acceleration depending on the situation. 

The results also suggested that police officers had more confidence in the safety 

of their vehicle when ADAS was employed, which resulted in safer driving behavior. 

However, during pursuit situations, officers' driving performance worsened, and their 

cognitive load increased, emphasizing the necessity of developing ADAS that can help 



 

105 
 

drivers maintain situational awareness in high-demand driving conditions. Additionally, 

the study found that while the NDRT increased officers' cognitive load, it did not affect 

their performance, probably because officers are adept at multitasking and are well-

trained on the driving task.  

The second aim of the research was to create predictive models to estimate police 

officers' brake reaction time during critical driving scenarios when a lead vehicle is 

braking and their steering wheel angle while driving with BSM and attempting to change 

lanes when there is a car in their blind spot. Adding extra parameters to the brake reaction 

model to indicate cognitive load due to pursuit driving and NDRT improved the model, 

and led to a longer estimated brake reaction time. The results of the model can be used 

as input for an adaptive FCW system, but to implement the system, various sensors and 

devices, such as speed sensors, radar or cameras, and a warning sound device, would be 

required. The study also found that the steering avoidance model was not always reliable 

in critical situations when there is a car in the officer's blind spot, and that the model 

could only account for 67% of the variation in data.  

In addition to its implications for police officers, this study has potential benefits 

for civilian drivers as well. The findings regarding the effectiveness of ADAS 

technologies like FCW and AEB in enhancing safe driving and improving longitudinal 

driving performance can be directly applicable to civilian vehicles. By implementing 

these ADAS features, civilian drivers can experience increased safety on the roads by 

receiving timely warnings and assistance to avoid potential collisions. Furthermore, the 

study's insights on workload optimization and the need to improve the design of BSM 
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warnings can also be translated into civilian vehicles, allowing drivers to handle critical 

driving situations more effectively and be alerted to vehicles in their blind spots with 

improved salience and reduced cognitive demands. Overall, the study's findings and 

recommendations provide valuable guidance for the development and implementation 

of ADAS technologies that can benefit civilian drivers, enhancing their driving 

performance, safety, and confidence on the road. 

3.6. Limitations 

One limitation of this study is that some participants experienced simulation 

sickness and could not complete the experiment. Moreover, all participants were 

recruited from Texas. Additionally, the study only included male participants, and 

gender distribution was not balanced, which could have biased the results. 

Furthermore, one officer mentioned that police cars typically drive in the left 

lane, even when not pursuing someone, whereas in this study, officers were asked to 

drive in the right lane if not pursuing due to the limitations of the driving simulator 

software. This deviation from real-world driving practices could have affected the study's 

results. Additionally, the study was conducted during the day, and the findings may not 

be generalizable to nighttime driving. 

While the brake reaction time model used in the study had a high level of 

accuracy, as measured by the RMSE, it may not be applicable to naturalistic police 

driving situations, where there may be differences between simulator and real-world 

driving situations. Moreover, officers are typically required to engage in multiple 
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NDRTs while driving (e.g., using radio, cell phone, MCT), whereas in this study, only 

one NDRT was present. 

Furthermore, the RMSSD results did not reveal any significant effect of study 

manipulations, mostly due to the short duration of the data blocks. Finally, the BSM 

warning system in the study was a visual warning, and it only produced an auditory 

warning if officers turned their blinkers on. Although the design was based on existing 

BSM warnings in police cars, many officers did not turn on their blinkers when 

negotiating hazards, which reduced the effectiveness of the BSM as the icon may not 

have been noticed by the officers. To address these limitations, future studies could 

recruit participants from different states and genders to achieve more generalizable 

results. Additionally, studies could use a driving simulator that more closely replicates 

naturalistic driving situations to provide a better representation of real-world driving 

behavior. Finally, BSM warning systems could be designed to be more effective by 

incorporating auditory warnings, even when officers do not use their blinkers.
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APPENDIX A 

 

DRIVING ACTIVITY LOAD INDEX (DALI) 

 

During the test you have just completed you may have experienced some difficulties and 

constraints with regard to driving task. 

You will be asked to evaluate this experience with regard to 6 factors, which are 

described below. Please read each factor and its description carefully and ask the 

experimenter to explain anything you do not fully understand. 

 

Title Endpoints Description 

Effort of attention Low/high To evaluate the attention required by the 

activity- to think about, to decide, to 

choose, to look for and so on 

Visual demand Low/high To evaluate the visual demand necessary 

for the activity 

Auditory demand Low/high To evaluate the auditory demand necessary 

for the activity 

Temporal demand Low/high To evaluate the specific constraint owing to 

timing demand when running the activity 

Interference Low/high To evaluate the possible disturbance when 

running the driving activity simultaneously 

with any other supplementary task such as 

phoning, using systems or radio and so on 

Situational stress Low/high To evaluate the level of constraints/stress 

while conducting the activity such as 

fatigure, insecure feeling, irritation, 

discouragement and so on 
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For each of the pairs below, circle the scale title that represents the more important 

contributor to workload when you are performing the driving task. 

 

 

                                     Effort of attention or Visual demand 

Effort of attention or Auditory demand 

 Effort of attention or Temporal demand 

                                     Effort of attention or Interference 

                                     Effort of attention or situational stress 

                                     Visual demand or auditory demand 

                                     Visual demand or Temporal demand 

                                     Visual demand or Interference 

                                     Visual demand or Situational stress 

                                     Auditory demand or temporal demand 

                                     Auditory demand or Interference 

                                     Auditory demand or situational stress 

                                     Temporal demand or Interference 

                                     Temporal demand or situational stress 

                                     Interference             or Situational stress 
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For each factor you will be required to rate the level of constraint felt during the test on 

a scale from 0 (very low level of constraint) to 5 (very high level of constraint), with 

regard to the driving task. 

 

Global attention demand: 

 

Think about the mental (i.e. to think about, to decide…), visual and auditory demand 

required during the test to perform the whole activity. 

 

 

Visual demand: 

 

Think about the visual demand required during the test to perform the whole activity. 

 

 

Auditory demand: 

 

Think about the auditory demand required during the test to perform the whole activity. 
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Stress: 

Think about the level of stress (i.e. fatigue, insecurity, irritation, feelings of 

discouragement) during the whole activity. 

 

 
 

Temporal demand: 

Think about the specific constraints felt due to time pressure of completing tasks during 

the whole activity. 

 

 
Interference: 

 

Think about the disturbance to the driving task when completing supplementary tasks 

(i.e. via the in-vehicle information system) simultaneously. 
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APPENDIX B 

            

TRUST QUESTIONNAIRE 

Trust: 

Performance 

I trust the system 

to safely operate 
in the next drive 

Entirely 

Disagree 

Mostly 

Disagree 

Somewhat 

Disagree 

Neither 

Agree 
nor 

Disagree 

Somewhat 

Agree 

Mostly 

Agree 

Entirely 

Agree 

The system 

provides safety 

Entirely 

Disagree 

Mostly 

Disagree 

Somewhat 

Disagree 

Neither 

Agree 
nor 

Disagree 

Somewhat 

Agree 

Mostly 

Agree 

Entirely 

Agree 

The system is 
dangerous 

Entirely 
Disagree 

Mostly 
Disagree 

Somewhat 
Disagree 

Neither 
Agree 

nor 

Disagree 

Somewhat 
Agree 

Mostly 
Agree 

Entirely 
Agree 

The system’s 
performance 

matches my 

expectations 

Entirely 
Disagree 

Mostly 
Disagree 

Somewhat 
Disagree 

Neither 
Agree 

nor 

Disagree 

Somewhat 
Agree 

Mostly 
Agree 

Entirely 
Agree 

The system is 

trustworthy 

Entirely 

Disagree 

Mostly 

Disagree 

Somewhat 

Disagree 

Neither 

Agree 

nor 
Disagree 

Somewhat 

Agree 

Mostly 

Agree 

Entirely 

Agree 

I trust the 

system’s 
performance 

Entirely 

Disagree 

Mostly 

Disagree 

Somewhat 

Disagree 

Neither 

Agree 
nor 

Disagree 

Somewhat 

Agree 

Mostly 

Agree 

Entirely 

Agree 

Trust: 

Process 

The system’s 

mode of 
operation is 

obscure 

Entirely 

Disagree 

Mostly 

Disagree 

Somewhat 

Disagree 

Neither 

Agree 
nor 

Disagree 

Somewhat 

Agree 

Mostly 

Agree 

Entirely 

Agree 

The system is 
deceptive 

Entirely 
Disagree 

Mostly 
Disagree 

Somewhat 
Disagree 

Neither 
Agree 

nor 

Disagree 

Somewhat 
Agree 

Mostly 
Agree 

Entirely 
Agree 

The system’s 
mode of 

operation leads 

to unfavorable or 
dangerous 

outcomes 

Entirely 
Disagree 

Mostly 
Disagree 

Somewhat 
Disagree 

Neither 
Agree 

nor 

Disagree 

Somewhat 
Agree 

Mostly 
Agree 

Entirely 
Agree 

I am familiar 
with the system 

Entirely 
Disagree 

Mostly 
Disagree 

Somewhat 
Disagree 

Neither 
Agree 

nor 

Disagree 

Somewhat 
Agree 

Mostly 
Agree 

Entirely 
Agree 

I suppose the 

system works 

accurately 

Entirely 

Disagree 

Mostly 

Disagree 

Somewhat 

Disagree 

Neither 

Agree 

nor 
Disagree 

Somewhat 

Agree 

Mostly 

Agree 

Entirely 

Agree 

I trust the 

system’s mode of 

operation when 
the lead vehicle 

brakes 

Entirely 

Disagree 

Mostly 

Disagree 

Somewhat 

Disagree 

Neither 

Agree 

nor 
Disagree 

Somewhat 

Agree 

Mostly 

Agree 

Entirely 

Agree 

Trust: 

Purpose 

The system is a 
reliable partner 

 

 
 

 

 

Entirely 
Disagree 

Mostly 
Disagree 

Somewhat 
Disagree 

Neither 
Agree 

nor 

Disagree 

Somewhat 
Agree 

Mostly 
Agree 

Entirely 
Agree 
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APPENDIX B 
            

TRUST QUESTIONNAIRE CONTINUED 

 

 

Trust: 

Purpose 

The system’s 

communications 

decrease 
uncertainty 

related to the 

systems intention 

Entirely 

Disagree 

Mostly 

Disagree 

Somewhat 

Disagree 

Neither 

Agree 

nor 
Disagree 

Somewhat 

Agree 

Mostly 

Agree 

Entirely 

Agree 

Driving task 

responsibility 

was explicitly 
clarified 

Entirely 

Disagree 

Mostly 

Disagree 

Somewhat 

Disagree 

Neither 

Agree 

nor 
Disagree 

Somewhat 

Agree 

Mostly 

Agree 

Entirely 

Agree 

I am convinced 

of the system 

Entirely 

Disagree 

Mostly 

Disagree 

Somewhat 

Disagree 

Neither 

Agree 

nor 
Disagree 

Somewhat 

Agree 

Mostly 

Agree 

Entirely 

Agree 

I mistrust the 

system’s purpose 

Entirely 

Disagree 

Mostly 

Disagree 

Somewhat 

Disagree 

Neither 

Agree 
nor 

Disagree 

Somewhat 

Agree 

Mostly 

Agree 

Entirely 

Agree 

Note: It is crucial to clarify that officers were requested to assess their confidence in the overall safety of 

the vehicle, rather than specifically evaluating the functionality, failure, or activation of the Advanced 

Driver Assistance Systems (ADAS). In the questionnaire, participants were instructed to interpret the term 

"system" as referring to the vehicle itself, rather than solely focusing on the ADAS. 
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APPENDIX C 

 

BRAKE REACTION TIME MODEL 

#Uncomment to install packages 

#install.packages(c("tidyverse","data.table","gganimate","rust", "writexl", "readxl", 

"dplyr", "lubridate")) 

#install.packages("tidyverse") 

#install.packages("gganimate") 

#install.packages("readxl") 

#install.packages("writexl") 

library(tidyverse) 

library(data.table) 

library(readxl) 

library(writexl) 

library(dplyr) 

library(lubridate) 

extract_block_times <- function(file_path) { 

  # Read the excel file 

  data_file <- read_excel(file_path) 

  # Extract start and end times for blocks with data block values of 1 and 2 

  block_starts <- data_file$MediaTime[data_file$User2 == 1 & 

dplyr::lead(data_file$User2) == 2] 

  block_ends <- data_file$MediaTime[data_file$User2 == 2 & 

dplyr::lead(data_file$User2) == 0] 

  # Calculate the duration of each block 

  block_durations <- block_ends - block_starts 

  # Create a new column Block, based on the User2 values 

  block_num <- ifelse(data_file$User2 == 0, 0, 

                      ifelse(data_file$MediaTime < block_starts[2], 1, 2)) 
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  # Extract the time when Brake>=1.81 and User11==5 for the first time in each block 

where shows the subject and lead vehicle’s brake time 

  lead_vehicle_brake_times <- numeric(length(block_starts)) 

  brake_times <- numeric(length(block_starts)) 

for (i in seq_along(block_starts)) { 

    block_start_idx <- which(data_file$MediaTime >= block_starts[i] & 

data_file$MediaTime < block_ends[i]) 

    brake_idx <- which(data_file$Brake[block_start_idx] >= 1.81)[1] 

    lead_vehicle_brake_idx <- which(data_file$User11[block_start_idx] <= 5)[1] 

    if (!is.na(brake_idx)) { 

      brake_times[i] <- data_file$MediaTime[block_start_idx][brake_idx] 

    } 

    if (!is.na(lead_vehicle_brake_idx)) { 

      lead_vehicle_brake_times[i] <- 

data_file$MediaTime[block_start_idx][lead_vehicle_brake_idx] 

    } 

  } 

  # Calculate the actual brake reaction time for each block 

  brake_reaction_times <- brake_times - lead_vehicle_brake_times 

  # Return the start and end times, duration, and brake times for each block 

  return(data.frame(Block = 1:length(block_starts), 

                    Start_Time = block_starts, 

                    End_Time = block_ends, 

                    Duration = block_durations, 

                    Brake_Time = brake_times, 

                    Lead_Vehicle_Brake_Time = lead_vehicle_brake_times, 

                    Brake_Reaction_Time = brake_reaction_times)) 

} 
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# Define the path to the directory containing the Excel files 

dir_path <- "//coe-fs.engr.tamu.edu/Grads/farzane97/Desktop/Tamu/Safe_D/Driving 

sim/Brake/" 

 

# Get a list of all Excel files in the directory 

file_names <- list.files(path = dir_path, pattern = "*.xlsx", full.names = TRUE) 

 

# Apply the function to all Excel files using lapply() 

block_times_list <- lapply(file_names, extract_block_times) 

 

# Combine the results into a single data frame 

block_times <- do.call(rbind, block_times_list) 

 

# Print the results 

print(block_times) 

block_times_list 

 

#Extracting each block from excel files and convert them to a single excel file 

# Define the path to the directory containing the Excel files 

dir_path <- "//coe-fs.engr.tamu.edu/Grads/farzane97/Desktop/Tamu/Safe_D/Driving 

sim/Brake/" 

# Define the path to the directory where the output files will be saved 

output_dir_path <- "//coe-

fs.engr.tamu.edu/Grads/farzane97/Desktop/Tamu/Safe_D/Driving sim/Brake/Blocks/" 

# Get a list of all Excel files in the directory 

file_names <- list.files(path = dir_path, pattern = "*.xlsx", full.names = TRUE) 
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# Loop through each file and extract each block as a new Excel file 

for (file_path in file_names) { 

  # Read the excel file 

  data_file <- read_excel(file_path) 

   

  # Extract start and end times for blocks with data block values of 1 and 2 

  block_starts <- data_file$MediaTime[data_file$User2 == 1 & 

dplyr::lead(data_file$User2) == 2] 

  block_ends <- data_file$MediaTime[data_file$User2 == 2 & 

dplyr::lead(data_file$User2) == 0] 

   

  # Loop through each block and extract the data 

  for (i in seq_along(block_starts)) { 

    # Create a new file name based on the original file name and block number 

    block_num <- i 

    file_name <- gsub(".xlsx", "", basename(file_path)) 

    new_file_name <- paste0(file_name, "_Block", block_num, ".xlsx") 

    new_file_path <- file.path(output_dir_path, new_file_name) 

     

    # Extract the data for this block 

    block_start <- block_starts[i] 

    block_end <- block_ends[i] 

    block_data <- data_file[data_file$MediaTime >= block_start & 

data_file$MediaTime <= block_end, ] 

     

    # Write the data to a new Excel file 

    write_xlsx(block_data, new_file_path) 

  } 
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# Define the function to calculate evidence accumulation 

calculate_evidence_accumulation <- function(file, Beta, etta, int, m, l, P, ST, dt, j) { 

  # Define Looming 

  file$Looming <- 1/file$User9 

  # Set the first Evidence_accumulation to the initial value of Evidence_accumulation 

  file$Evidence_accumulation[1] <- 0 

  # Find the row number where User11 value is equal to 5 for the first time which is 

when the lead vehicle brakes 

  row_num_start <- which(file$User11 <= 5)[1] 

  # Calculate Evidence_accumulation for each row after the starting row using the 

formula 

  for (i in row_num_start:nrow(file)) { 

    file$Evidence_accumulation[i] <- file$Evidence_accumulation[i-1] + 

      ((j) * (file$Looming[i])*(1+(Beta*ST)+(etta*P)+(int*P*ST)) + (m) + 

rnorm(n=1,mean = 0,sd = l))*dt 

  } 

  # Find the first row where the absolute value of Evidence_accumulation is >= 1 

  row_num_end <- which(abs(file$Evidence_accumulation) >= 1)[1] 

  # Get the MediaTime value associated with that row 

  media_time <- file$MediaTime[row_num_end] 

   

  # Calculate the lead vehicle brake time 

  lead_vehicle_brake_time <- file$MediaTime[which(file$User11 <= 5)[1]] 

  # Calculate the predicted brake reaction time 

  predicted_brake_reaction_time <- media_time-lead_vehicle_brake_time 

  # Return the updated file with the Evidence_accumulation column, the MediaTime 

value, the lead vehicle brake time, and the predicted brake reaction time 

  return(list(file, media_time, lead_vehicle_brake_time, 

predicted_brake_reaction_time)) 
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} 

#Create a results table that show the actual brake reaction time and predicted brake 

reaction time for each file with given parameters 

# Create an empty results table 

results_tbl <- data.frame(file_name = character(), 

                            media_time = double(), 

                            lead_vehicle_brake_time = double(), 

                            predicted_brake_reaction_time = double(), 

                            actual_brake_reaction_time = double(), 

                            diff_brake_reaction_time = double()) 

# Loop through the files and calculate Evidence_accumulation, lead vehicle brake time, 

and predicted brake reaction time for each one 

for (file_name in file_names) { 

  # Read the Excel file 

  file <- read_excel(file_name) 

  P=file$User1[1] 

  ST=file$User1[2] 

  # Calculate the Evidence_accumulation, lead vehicle brake time, and predicted brake 

reaction time using the function 

  results <- calculate_evidence_accumulation(file, Beta = -0.2, etta = -0.2, int=-0.2, m = 

-3, l = 3, dt = 0.01, P=P, ST=ST, j=5) 

  # Get the updated file, the MediaTime value, the lead vehicle brake time, and the 

predicted brake reaction time 

  updated_file <- results[[1]] 

  media_time <- results[[2]] 

  lead_vehicle_brake_time <- results[[3]] 

  predicted_brake_reaction_time <- results[[4]] 

  # Calculate the actual brake reaction time 

  brake_start_time <- min(updated_file$MediaTime[which(updated_file$User11 <= 

5)])  
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  # Find the first time the lead vehicle brakes 

  brake_end_time <- min(updated_file$MediaTime[which(updated_file$Brake >= 1.81 

& updated_file$User11 <= 5)]) 

  # Find the time when the driver starts braking 

  actual_brake_reaction_time <- (brake_end_time - brake_start_time) # Calculate the 

time difference in seconds 

   

  # Calculate the difference between the predicted and actual brake reaction times 

  diff_brake_reaction_time <- predicted_brake_reaction_time - 

actual_brake_reaction_time 

   

  # Add the results to the table 

  results_tbl <- rbind(results_tbl, data.frame(file_name = file_name, 

                                                   media_time = media_time, 

                                                   lead_vehicle_brake_time = lead_vehicle_brake_time, 

                                                   predicted_brake_reaction_time = 

predicted_brake_reaction_time, 

                                                   actual_brake_reaction_time = 

actual_brake_reaction_time, 

                                                   diff_brake_reaction_time = diff_brake_reaction_time)) 

} 

# Print the results table 

print(results_tbl) 

 

#Find the optimized j and Beta and etta and m and l values based on the smallest 

difference—measured by a two sample Kolmogorov– 

Smirnov (KS)—between the observed braking reaction times and predicted reaction 

times 

# Define the path to the directory containing the Excel files 

dir_path <- "//coe-fs.engr.tamu.edu/Grads/farzane97/Desktop/Tamu/Safe_D/Driving 

sim/Brake/Blocks/" 
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# Define the range of j and Beta and etta and m and l values to loop over 

j_values <- seq(1, 8, by = 1) 

beta_values <- seq(-0.5, 0.5, by = 0.05) 

etta_values <- seq(-0.5, 0.5, by = 0.05) 

m_values <- seq(-1, 1, by = 0.05) 

l_values <- seq(0.1, 1, by =0.05) 

int_values <- seq(-0.5, 0.5, by = 0.05) 

 

# Define a function to calculate the relevant metrics for a given file, j, and Beta values 

calculate_metrics <- function(file, j, beta, etta,int, m, l) { 

  P=file$User1[1] 

  ST=file$User1[2] 

  # Calculate the evidence accumulation, lead vehicle brake time, and predicted brake 

reaction time using the function 

  results <- calculate_evidence_accumulation(file, Beta = beta, etta = etta, int=int, m = 

m, l = l, dt = 0.01, P = P, ST = ST, j = j) 

   

  # Check if there is a row where the absolute value of Evidence_accumulation is >= 1 

  idx <- which(abs(results[[3]]) >= 1)[1] 

  if (is.na(idx)) { 

    # If there is no such row, return NULL 

    return(NULL) 

  } 

  # Extract the updated file and the MediaTime value associated with the first row 

where the absolute value of Evidence_accumulation is >= 1 

  updated_file <- results[[1]] 

  media_time <- results[[2]] 

   

  # Extract the lead vehicle brake time and the predicted brake reaction time 
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  lead_vehicle_brake_time <- file$MediaTime[which(file$User11 <= 5)[1]] 

  predicted_brake_reaction_time <- media_time - lead_vehicle_brake_time 

   

  # Extract the actual brake reaction time from the updated file 

  brake_start_time <- min(updated_file$MediaTime[which(updated_file$User11 <= 

5)])  

  brake_end_time <- min(updated_file$MediaTime[which(updated_file$Brake >= 1.81 

& updated_file$User11 <= 5)]) 

  actual_brake_reaction_time <- brake_end_time - brake_start_time 

   

  # Calculate the difference between the predicted and actual brake reaction times 

  diff_brake_reaction_time <- predicted_brake_reaction_time - 

actual_brake_reaction_time 

 

  # Return a named list of the relevant metrics 

  list( 

    Media_Time = media_time, 

    Lead_Vehicle_Brake_Time = lead_vehicle_brake_time, 

    Predicted_Brake_Reaction_Time = predicted_brake_reaction_time, 

    Actual_Brake_Reaction_Time = actual_brake_reaction_time, 

    Diff_Brake_Reaction_Time = diff_brake_reaction_time, 

    Beta = beta 

  ) 

} 

 

# Initialize the minimum average difference in brake times to a large value 

min_avg_diff <- Inf 

# Initialize the optimal j, Beta, etta, int, m, and l values 

optimal_values <- c(0, 0, 0, 0, 0,0) 
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# Create an empty list to store the metrics for all files 

metrics_list <- list() 

 

# Loop over all files 

for (file_name in file_names) { 

  file <- read_excel(file_name) 

   

  for (j in j_values) { 

    for (beta in beta_values) { 

      for (etta in etta_values) { 

        for (int in int_values){ 

        for (m in m_values) { 

          for (l in l_values) { 

            metrics <- calculate_metrics(file, j, beta, etta, int, m, l) 

            if (is.null(metrics)) { 

              next 

            } 

             

            # Calculate the absolute difference in brake times for this file, j, beta, etta, m, 

and l value 

            abs_diff <- (abs(metrics$Diff_Brake_Reaction_Time)^2) 

             

            # Add the relevant metrics to the list 

            metrics_list <- c(metrics_list, list(c(File_Name = file_name, J_Value = j, 

Beta_Value = beta, Etta_Value = etta, Int_Value=int, M_Value = m, L_Value = l, 

metrics))) 

          } 

        } 
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        } 

      } 

    } 

  } 

} 

# Combine the list of metrics into a data frame 

results_table <- do.call(rbind, lapply(metrics_list, as.data.frame)) 

colnames(results_table) 

# Subset results_table to include relevant columns 

results_subset <- results_table[, c("File_Name", "J_Value", "Beta_Value", 

"Etta_Value", "Int_Value", "M_Value", "L_Value", "Actual_Brake_Reaction_Time", 

"Predicted_Brake_Reaction_Time")] 

 

# Calculate absolute difference between actual and predicted brake reaction times 

results_subset$Abs_Diff <- abs(results_subset$Actual_Brake_Reaction_Time - 

results_subset$Predicted_Brake_Reaction_Time) 

 

# Calculate KS statistic for each combination of parameters 

ks_stat <- apply(results_subset[, c("Abs_Diff")], 1, function(x) { 

  ks.test(x, results_subset$Abs_Diff)$statistic 

}) 

 

# Find index of minimum KS statistic 

min_index <- which.min(ks_stat) 

# Get combination of parameters corresponding to minimum KS statistic 

best_params <- results_subset[min_index, c("File_Name", "J_Value", "Beta_Value", 

"Etta_Value", "Int_Value", "M_Value", "L_Value")] 

# Print the optimized parameters 

Best_params 
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APPENDIX D 

 

STEERING WHEEL ANGLE MODEL 

#Load required libraries 

library(readxl) 

library(tidyverse) 

library(openxlsx) 

 

# create an empty vector to store the maximum values 

max_values <- c() 

 

# loop through the files in the "blocks" directory 

for (file in list.files("blocks", pattern = "\\.xlsx$", full.names = TRUE)) { 

  # read the Excel file into a data frame 

  df <- read_excel(file) 

   

  # calculate the maximum visual looming value and add it to the vector 

  max_values <- c(max_values, max(1/df$User9)) 

} 

 

# print the maximum value 

cat("Maximum visual looming value:", max_values, "\n") 

 

# create an empty vector to store the MediaTime values 

media_times <- c() 

 

# get list of Excel files in "blocks" directory 

files <- list.files("blocks", pattern = "\\.xlsx$", full.names = TRUE) 
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# initialize media_times variable 

media_times <- numeric() 

 

# loop through files 

for (file in files) { 

  # read Excel file into data frame 

  df <- read_excel(file) 

   

  # calculate the maximum steer value and its half value 

  max_steer <- max(df$Steer, na.rm = TRUE) 

  half_max_steer <- max_steer / 2 

   

  # filter rows where Steer >= half of maximum steer 

  filtered_df <- filter(df, Steer >= half_max_steer) 

   

  # calculate the MediaTime when Steer first reaches half of maximum steer 

  if (nrow(filtered_df) > 0) { 

    media_time <- min(filtered_df$MediaTime) - df$MediaTime[1] 

    media_times <- c(media_times, media_time) 

  } 

} 

 

# print the MediaTime values 

print(media_times) 
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# create an empty vector to store the Lead brake time values 

Lead_brake_time <- c() 

 

# loop through files 

for (file in files) { 

  # read Excel file into data frame 

  df <- read_excel(file) 

   

  # filter rows where User9 <= 5 

  filtered_df <- filter(df, User9 <= 5) 

   

  # find the first MediaTime where User9 <= 5 

  if (nrow(filtered_df) > 0) { 

    lead_brake_time <- min(filtered_df$MediaTime) 

    Lead_brake_time <- c(Lead_brake_time, lead_brake_time) 

  } 

} 

 

# print the Lead brake time values 

print(Lead_brake_time) 

 

calculate_steering_angle <- function(df, max_values, Lead_brake_time,media_times, 

K, TA, TH) { 

  # create a vector to store the steering wheel angles 

  steering_angles <- numeric(nrow(df)) 

   

  # loop through the rows 

  for (i in nrow(df)) { 
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    # calculate the steering wheel angle using the formula 

    steering_angles[i] <- (K + 20) * max_values[df] * (2.71828^(-((df$MediaTime[i] - 

Lead_brake_time[df]) - (media_times[df] + (-0.5 + 0.1 * TA)))^2 / (2 * TH * 0.1))) 

  } 

   

  return(steering_angles) 

} 

 

 

# define the range of K, TA, and TH 

K_range <- 0:50 

TA_range <- 1:10 

TH_range <- seq(0.1, 1, by = 0.05) 

 

# create an empty data frame to store the results 

results_df <- data.frame(K = numeric(), TA = numeric(), TH = numeric(), RMSE = 

numeric()) 

 

# loop through the range of K, TA, and TH 

for (K in K_range) { 

  for (TA in TA_range) { 

    for (TH in TH_range) { 

       

      # calculate the predicted steering wheel angle for each file and each row 

      predicted_angles_list <- list() 

      actual_angles_list <- list() 

      for (file in files) { 

        df <- read_excel(file) 
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        max_value <- max_values[[which(files == file)]] 

        lead_brake_time <- Lead_brake_time[[which(files == file)]] 

        media_time <- media_times[[which(files == file)]] 

        predicted_angles <- numeric(nrow(df)) 

        actual_angles <- df$Steer 

        for (i in 1:nrow(df)) { 

          predicted_angles[i] <- (K + 20) * max_value * (2.71828^(-((df$MediaTime[i] - 

lead_brake_time) - (media_time + (-0.5 + 0.1 * TA)))^2 / (2 * TH * 0.1))) 

        } 

        predicted_angles_list[[file]] <- predicted_angles 

        actual_angles_list[[file]] <- actual_angles 

      } 

       

      # calculate the RMSE of the predicted steering wheel angle for each file and each 

lane 

      RMSE_list <- list() 

      for (file in files) { 

        predicted_angles <- predicted_angles_list[[file]] 

        actual_angles <- actual_angles_list[[file]] 

        RMSE <- sqrt(mean((predicted_angles - actual_angles)^2)) 

        RMSE_list[[file]] <- RMSE 

      } 

      overall_RMSE <- mean(unlist(RMSE_list)) 

       

      # add the results to the data frame 

      results_df <- rbind(results_df, data.frame(K = K, TA = TA, TH = TH, RMSE = 

overall_RMSE)) 

       

    } 
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  } 

} 

 

# find the optimal K, TA, and TH that minimize the RMSE 

optimal_results <- results_df[which.min(results_df$RMSE), ] 

optimal_K <- optimal_results$K 

optimal_TA <- optimal_results$TA 

optimal_TH <- optimal_results$TH 

cat("Optimal values of K, TA, and TH:", optimal_K, optimal_TA, optimal_TH, "\n") 

 

#Testing the results 

K=15 

TA=7 

TH=0.6 

# loop through files 

for (file in files) { 

  # read Excel file into data frame 

  df <- read_excel(file) 

   

  # calculate the steering wheel angle for each row 

  steering_angles <- numeric(nrow(df)) 

  for (i in 1:nrow(df)) { 

    steering_angles[i] <- (K) * max_values[[which(files == file)]] * (2.71828^(-

((df$MediaTime[i] - Lead_brake_time[[which(files == file)]]) - 

(media_times[[which(files == file)]] + (-0.5 + 0.1 * TA)))^2 / (2 * TH * 0.1))) 

  print (df$MediaTime[i]) 

    } 

 




