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ABSTRACT

With more sensitive data being stored on computers, the cyber-attack risk is increasing globally.

Therefore, it’s crucial to address security vulnerabilities before new threats emerge promptly and

potentially cause significant harm in the future. Recently, Spectre and Meltdown attacks known

as cache side-channel attacks exploit modern processor characteristics. Despite the seriousness of

these attacks, they are under-researched and need more attention to safeguard our data.

This thesis addresses how to optimize and improve the ReViCe, the solution for mitigating vul-

nerabilities of cache side-channel attacks, a problem caused by characteristics of modern proces-

sors. ReViCe enables speculative loads to refresh caches ahead of time while saving any removed

line within the victim cache. If mis-speculation occurs, the replaced lines from the victim cache

can be returned to the cache for undoing the cache changes, which can effectively isolate the cache

changes for protecting us against cache-based Spectre and Meltdown attacks.

We also introduce a more realistic, secure design for ReViCe. We enhance the security design

by conducting experiments, tackling related work CacheRewinder, identifying the appropriate size

of victim cache and buffer, and incorporating a deadlock-free algorithm. These changes allow us

to implement a safer and more practical version of ReViCe, requiring less memory.
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1. INTRODUCTION

1.1 Rising data security costs

In our digital-driven world, all organizations heavily depend on cyberspace for data storage.

This cyberspace reliance stems from the ease and efficiency it provides in managing large pop-

ulations and administrative tasks. However, the growing importance of data security brings with

it numerous threats at the same time. Therefore, the cost of protection has risen significantly,

especially for protecting sensitive data since the world has stored many of those in cyberspace.

Therefore, while computerized data storage allows for quick and efficient management of neces-

sary information, it poses significant security risks that require continuous attention and resources

to mitigate.

1.1.1 Organized cyber-attack

With the escalating value of data held in cyberspace, cyber-attacks are continually evolving,

becoming more intricate, systematic, and organized to extract maximum benefit from this rich

trove of information. Countries such as North Korea exemplify this trend. They have established

advanced, highly-skilled hacking collectives, namely Kimsuky, Lazarus, and APT38, operating

under the auspices of the Reconnaissance General Bureau (RGB)[3]. As these hacking tactics

mature, becoming ever more organized and sophisticated, the damage they inflict has significantly

amplified, causing devastating harm. Moreover, as these attacks are often state-sponsored, they

seriously threaten international security and stability.

1.1.2 Danger of national level of threat

Malicious groups increasingly target data containing critical and sensitive information. Some

of these groups are even state-sponsored organizations that can pose a threat at the national level,

as previously mentioned. The well-known data security threat at the national level is North Korea

again. They have demonstrated their capacity to execute damaging data breaches using diverse

methods, posing a severe crisis for affected countries.
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For example, the U.S. Secretary of Homeland Security recently announced that North Ko-

rea had stolen over 1 billion in crypto-currencies and used them to develop weapons of mass

destruction[4]. Further illustrating more examples was the 2017 WannaCry data breach, attributed

to the Lazarus Group occurred in 2017. This attack affected over two hundred thousand computers

across one hundred fifty countries and cost an estimated four billion dollars in recovery efforts. The

attackers took advantage of a flaw in Microsoft Windows, encrypted user files, and demanded cryp-

tocurrency in exchange for file restoration. The breach affected various organizations, including

hospitals, government agencies, and private companies.[5]. These incidents highlight the criti-

cal nature of data breaches and emphasize the importance of promptly identifying and rectifying

system vulnerabilities.

1.2 New vulnerabilities in hardware

Modern processors have seen significant advancements, bringing novel features and new vul-

nerabilities. A key feature is speculative execution; technique processors use to enhance perfor-

mance by predicting and executing potential instructions ahead of time. This method forecasts

the results of conditional or branch instructions, running possible paths, and then discards any

unnecessary but proceeded operations if the predictions are wrong.

Out-of-order execution is another technique that reorders instructions based on resource avail-

ability instead of executing them in their programmed order. This method allows the processor

to use its resources to the fullest by running independent instructions concurrently. This rear-

rangement leads to faster execution times. However, while these techniques increase speed and

efficiency, they can also create potential security risks that must be managed.

1.2.1 Emergence of cache-side channel attack

Cache-side channel attacks[6, 7] use the above processors to extract sensitive information from

a victim’s computer. The attack works by measuring the time differences it takes to access cached

memory on the system. Furthermore, it checks cache changes made by speculative instructions

and out-of-order execution to access targeted information. This sequence makes it possible to infer
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sensitive data stored in the cache, such as encryption keys, without directly accessing the system.

1.2.2 Mitigation against cache-side channel attack

Against these attacks, new concepts such as Invisispec[8], Cleanupspec[9], and ReViCe[1]

have been developed to mitigate system vulnerabilities. Those defense methods show promise

in mitigating cache side-channel attack vulnerabilities[8, 9]. These above studies use two forms

of ’undo’ or ’redo’ to isolate cache changes caused by speculative execution against attackers.

Invisispec is a representative method that does not expose cache changes as a redoing method

that reverts cache changes by re-executing them in the same state as before[9]. On the contrary,

Cleanupspec and ReViCe are representative methods of Undoing that cancel the action executed

to return to the previous state[8].

1.3 Improving secure design

This thesis will explore the ReViCe method’s potential for mitigating cache-side channel attack

vulnerabilities[1]. ReViCe uses the Undoing method against cache-side channel attacks. ReViCe

stores messages from the cache that can potentially be changed by speculative instructions in the

victim cache to undo the changed cache state. If the result of speculative execution is correct, the

cache state will remain as it has changed, and if the result is not correct, the data stored in the

victim cache will be recalled and put back in place.

1.3.1 Target of research

Through several optimization strategies, we will make ReViCe more realistic and secure in

this study. Firstly, we aim to identify a suitable buffer size. The original ReViCe uses the Gem5

simulation’s primary setting, which assumes an infinite buffer size. Since an unlimited buffer size

is not feasible, we will look for an appropriate, limited size that effectively addresses this issue.

Secondly, we will address CacheRewinder[10], a related study. CacheRewinder asserts a supe-

rior hardware design to ReViCe, as it repurposes an existing write-back buffer for dual functions

- simultaneously handling write-back messages and victim cache functions. We will critique this

approach, highlighting potential issues with transforming a current structural buffer that serves a
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single role to a dual-functioning one within an actively progressing operation. Additionally, we

will search for a better configuration for ReViCe through comparative analysis. Since ReViCe em-

ploys an additional cache structure called victim cache, minimizing its extra memory can reduce

memory overhead. Finally, to maintain system integrity, we will address possible deadlocks by in-

troducing additional logic to dismantle deadlock situations. This step ensures the system’s smooth

functioning, even under potential deadlock circumstances.

1.3.2 Contents of thesis

The remainder of this thesis is organized as follows. Chapter 2 reviews the background on

cache side-channel attacks and existing defenses, write-back buffer, and Spectre and Meltdown,

which are hardware vulnerabilities that allow unauthorized access to sensitive data by exploiting

the speculative execution feature of modern processors. Chapter 3 addresses how to set the realistic

buffer size in the ruby network system in the Gem5 simulation. Chapter 4 criticizes the related

work, CacheRewinder, which uses a write-back buffer with two functions handling write-back

messages and the victim cache function. Chapter 5 proposes optimizing the victim cache size

to improve the system performance. Chapter 6 shows deadlock free scheme to ensure system

integrity, and Chapter 6 discusses the results and future works.
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2. BACKGROUND

2.1 Out-of-order execution

Out-of-order execution is one of the techniques of modern processors to improve program

speed. Instructions are not executed in the order in which they appear in the program but in

the order in which they can achieve the fastest use of processor resources. This can be possible

because the system can dynamically reorder instructions by determining each instruction before it

is executed.

The system reorders the instructions after judging whether the commands do not have a depen-

dency relationship, the order in which dependencies can be quickly resolved, or the commands that

can be done simultaneously. However, when the instructions are saved to memory, they maintain

the correct order. This is because the system accurately adjusts their sequence in the reorder buffer.

2.2 Speculative execution

Speculative execution is also one of the characteristics of modern processors that improve

program speed. Speculative execution means the system predicts which branch of the statement is

more likely to be taken based on past execution history or other factors.

For example, if a specific conditional statement is usually ’True,’ the system executes it as

if it had been determined to be ’True’ first. At this point, if the result for the branch is ’True,’

we can keep the first executed instruction, which results in the profit for the speed. However, if

the result of the branch is ’False,’ the instruction that was executed in advance must be discarded

unconditionally, which means loss. However, since the system predicts the most probable way of

the branch, we usually gain the profit rather than the loss.

2.3 Cache structure

A cache is a memory that aims to reduce the bottleneck caused by the speed difference between

a relatively fast CPU and a slow main memory. For example, when a CPU loads data from the main

memory, it will store frequently used data in the cache for better performance since the cache can
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quickly hand the data to the CPU than the main memory. The next time it is needed, it loads it from

the cache, not the main memory. These activities have the effect of improving the overall system

speed. However, while the cache has the advantage of speeding up the system, on the contrary,

it has the disadvantage of being very expensive: the larger the cache capacity, the exponentially

greater the cost.

Figure 2.1: Cpu and caches interconnections concepts for single-core system

The cache typically has an L1 and L2 cache. Categorized by speed and size, we can see that

the L1 cache is closest to the CPU, and the L2 cache is closest to the main memory if we look at

Figure 2.1. On the other hand, in Figure 2.2, we see a multi-core system where the L1 cache is

used as a private cache that only that CPU core can use. The L2 cache is a shared cache that other

cores can share. Here, the L2 cache is commonly called the last-level cache(LLC).

2.4 Spectre and meltdown

Meltdown[11] and Spectre[12] take advantage of security vulnerabilities found in modern com-

puter processors. They exploit a feature called speculative execution. Speculative execution is a

performance optimization technique in which the processor tries to predict which instructions will
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Figure 2.2: Cpu and caches interconnections concepts for multi-core system

be run next and starts processing them before it is certain they are needed. This helps the processor

perform better by reducing because the system runs the predicted instructions in advance.

The Meltdown attack allows an attacker to access the user system’s protected memory and re-

veal sensitive information like passwords[11]. To access the operating system, Meltdown uses the

fact that during speculative execution, the processor does not fully isolate between user applica-

tions and the kernel memory. Therefore, Meltdown temporarily makes a transient attack even if

the user side and operating system do not allow to do it.

Spectre exploits the speculative execution feature in processors like Meltdown but in a different

method. Spectre is a type of vulnerability that breaks the boundaries between applications. It lets

terrible actors trick good software into revealing secrets. It allows harmful software to reach into

other programs and take the information it is not supposed to[12].

2.5 Microarchitectural side-channel attacks

Microarchitectural side-channel attacks exploit the physical design and implementation of mi-

croprocessors to extract sensitive information[8, 9] By measuring the timing or power consumption

of internal components; attackers can deduce confidential data such as passwords or cryptographic

keys. Examples of microarchitectural side-channel attacks include cache attacks, branch predictor

attacks, and timing attacks.
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Defending against these attacks can be difficult because they do not rely on software vulnera-

bilities. Instead, hardware and software countermeasures are necessary to protect against microar-

chitectural side-channel attacks. These countermeasures include cache partitioning, instruction

randomization, and timing noise generation. It is essential to stay up-to-date with the latest re-

search and to consider the potential for microarchitectural side-channel attacks when designing

secure systems.

2.6 Example of possible attack scenario

Figure 2.3: Possible attack scenario for cache side-channel attack reprinted from [1]

With the background of a cache side-channel attack, let us illustrate a potential attack scenario

as depicted in Figure 2.3[1]. First, mis-speculative execution comes into play due to mistraining.

Suppose there is a simple function running on a victim’s computer. This function is repeatedly

executed, producing a valid result every time. This consistent behavior trains the victim computer’s

processor to anticipate a similar outcome the next time this function is run. Next, when we use the

same function intending to access a secret array, the victim computer’s processor predicts this is

a valid request due to its prior mistraining. It pre-emptively fetches the secret data from the array

into the cache block. Lastly, an attacker can take advantage of this situation. They can steal the
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secret data by analyzing the timing differences in cache changes. In this way, the attacker exploits

the speculative execution feature of modern processors to carry out a cache side-channel attack.

2.7 Invisispec

InvisiSpec[8] is a hardware mitigation technique designed to secure against cache side-channel

attacks of security vulnerability that allows attackers to access sensitive information. The basic

principle of InvisiSpec works by making changes to offending cache side channels invisible to

other processes.

The main idea behind InvisiSpec is the ’Redoing’ for the cache changes, which means de-

laying the update of the cache state until the speculative memory access is confirmed to be non-

speculative. This is achieved by storing the speculative loads in an additional buffer called the In-

visible Speculative Buffer (ISB). Once the speculative execution is confirmed to be non-speculative,

the data from the ISB is committed to the cache, making it visible to other processes. However, it

may cause performance overhead since speculative execution is an essential optimization technique

in modern processors.

2.8 Cleanupspec

CleanUpSpec[9] is another proposed hardware technique to protect against speculative exe-

cution side-channel attacks, such as Spectre and Meltdown. However, this method reduces the

performance overhead of previous mitigation approaches like InvisiSpec.

The idea behind CleanUpSpec is to allow speculative memory accesses to proceed as usual

but then "Undoing," which means cleaning up any potentially observable information after the

speculation is resolved against attackers. This undoing process ensures that sensitive information

isn’t leaked through side channels because the system deletes any information which can be visible

during cache changes due to speculative execution.

2.9 CacheRewinder

CacheRewinder[10] is also a hardware-based defense mechanism against cache side-channel

attacks. Like Cleanupspec and ReViCe, CacheRewinder prevents secrets from being leaked due
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to speculative execution, one of the modern processors’ characteristics, through the "Undoing" 

method. CacheRewinder uses the existing space, the write-back buffer, as a temporary storage 

space to restore the changes in the cache that have been changed by speculative execution. In other 

words, in addition to the existing function of handling write-back messages, it also saves blocks 

evicted from the cache due to speculative execution when speculation fails.

2.10 ReViCe: Reusing victim cache to prevent speculative cache leakage

2.10.1 ReViCe motivation

The ReViCe[1] is a hardware technique to mitigate speculation-based cache side-channel at-

tacks, which are well known for the Spectre and Meltdown[1, 12, 11]. Those cache side-channel 

attacks steal the information by using the timing of cache changes[6, 7]. Simply speaking, Attack-

ers can take information using this vulnerability because the speed of fetching information from 

memory and the cache is different, so attackers can know which information is in the cache that 

stores the more recent data than the memory.

The cache side-channel attack, which intercepts data using cache change, can be solved by 

Redo and Undo methods. Redo and Undo both approaches ensure that micro-architecture updates 

are only exposed outside of the transient execution at Visibility Point (VP)[8] when primary oper-

ations cannot change the instructions. In the case of Redo, it chooses a method to delay the timing 

of cache updates by restarting in the right direction after the branch update. Therefore, as much as 

the time is delayed, overhead occurs as much. On the other hand, Undo uses the method of cancel-

ing the work, which is already done if necessary when updating first and then branch resolution[9]. 

Therefore, Undo can solve the performance overhead problem that Redo had previously. ReViCe 

uses Undo’s method to solve cache side-channel attacks with low-performance overhead.

2.10.2 ReViCe design

ReViCe uses hardware techniques to prevent cache side-channel attacks. It uses a victim cache, 

which stores evicted cache lines, and the cache replacement policy, which prevents victim cache 

eviction from causing a side-channel leak. The main idea of ReViCe design is allowing speculative
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loads to update caches early but keep any replaced line in the victim cache to isolate those changes

against the attackers. In case of speculation miss, replaced lines from the victim cache are used to

restore the caches, thereby preventing any speculative-based cache attacks[1].

To be detailed, when a load is initially issued on a queue, if that load hits the cache, it will

remain as it is, and there will be no change. However, if a cache is missed, the cache state will

change as the existing cache line is replaced with the current one. If the speculative load is correct,

it is safe that the cache state has changed. However, in the opposite case, if the speculative is

incorrect, the attacker can recognize the cache state differently from before and steal the secret.

ReViCe stores all changes due to speculative load in the victim cache if the speculative is wrong to

prevent this. Therefore, if the speculation is correct, we can keep the cache change as it is, and in

the opposite case, we can execute the Undo task to return the status where all saved cache changes.

2.10.3 ReViCe operation

To implement ReViCe design, it runs through the following detailed steps:

1) only loads can speculatively update the cache among the fetched instructions. Therefore,

ReViCe adds a flag to each load instruction, whether speculative or not. If the load is speculative,

the flag’s value is 1, and loads that are not being given a value of 0 as the flag value.

2) In the case of a speculative load with a flag value of 1, the case differs depending on whether

it is a cache hit or a miss. If a cache hit happens, the cache state does not change so that data

can be delivered immediately, as usual, without any security flaws. However, the case of a cache

miss is different. This is because the state of the cache changes depending on the speculative load.

ReViCe finds the victim cache line in case of a cache miss, which will be replaced according to

the cache replacement policy. Since the speculative load changes the cache state, the replaced

cache line is sent to the victim cache. Otherwise, in the case of non-speculative instructions with

a Flag value of 0, they are executed as they are without any unique action because they are not

speculative instructions. to compensate for security vulnerabilities. These algorithms can be seen

in more detail through the graph in Figure 2.4[1].

3) Blocks sent to the victim cache by speculative have the same hardware structure as Fig-
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Figure 2.4: ReViCe flow for the speculative load reprinted from [1]

ure 2.5[1]. A VTag identifies each line in the victim cache. Along with this, each line has Restora-

tion Bit(R) and STag. In the case of the R bit, if it has a value of 1, it is ready to go back to the

cache, and its destination is the tag included in the STag. Since ReViCe uses the Undo method

to cancel the action to the previous state at the time before the speculative is mispredicted, the

destination(STag) of each line in the victim cache is the speculative load tag that sent the VTag to

the victim cache.

Figure 2.5: Hardware extended victim cache block reprinted from [1]
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2.11 Write-back buffer

When the CPU processes data, it is first written to the cache before going to memory. Unlike

the write-through method, which is recorded in memory simultaneously when writing to the cache,

the write-back method updates only the cache without updating the memory. In terms of this, the

write-back buffer is the buffer that stores the cache changes before writing the memory back.

After being temporarily stored in the cache, the write-back method writes data to the main or

auxiliary memory only when the cache replacement policy replaces the cache block. This protocol

allows the write-back method to be fast by writing to the main or auxiliary memory only when

necessary. However, since the cache is updated and the memory is not updated immediately, there

could be a situation in which the cache and memory have different values.

2.12 Deadlock

• Deadlock prevention, Deadlock prevention is a proactive approach to ensure that the system

is deadlock-free. For a deadlock to occur, four prerequisite conditions are required[13]. 1.

mutual exclusion, 2. hold and wait, 3. no preemption, and 4. circular wait. Since the above

four conditions must co-occur for the deadlock, deadlock prevention uses these conditions

to prevent deadlock from occurring. The system can prevent deadlocks from occurring. By

negating one of these conditions.

1. Mutual Exclusion: To make deadlock happens, at least one resource must be non-

sharable. This is because if all resources are sharable, deadlocks will not occur. After

all, there will be no limits on the situation processors can share resources. However,

this condition cannot be eliminated because, in modern processors, there will always

be the case with limited resources.

2. Hold and Wait: It is the situation processor that holds at least one resource and waits

for additional resources allocated and used by other processes which other processors

hold. To prevent this circular waits, a process should request all its required resources at

once, or a process can only request new resources when it is not holding any. However,
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it would be impractical for most applications in the real world due to the dynamic na-

ture of requesting resources. Moreover, the starvation situation that processors, which

require multiple popular resources, may not run forever can happen.

3. No Preemption: It means that the resources which were already allocated to other pro-

cesses can only be forcibly taken away once they are used up. If we allow preemption,

it would be critical since preemption can occur at any point during the execution of

the critical section. Then, the system should roll back to a safe state and restart, which

severely makes performance overheads.

4. Circular Wait: It is when processors are circularly waiting for resources. For example,

when processor A needs resource A’, but A’ is occupied by processor B. At the same

time, processor B needs resource B. However, if it is already occupied by processor

A, it is in a situation where each resource is circularly occupied by the other, and the

program does not operate. This situation can be solved by setting the order among

each processor. However, establishing ordering can be difficult, especially in a natural

system with hundreds or thousands of resources and locks.

• Deadlock Avoidance: Deadlock avoidance is an algorithm in which the system knows each

process’s requirements and allocates its resources. A representative algorithm is Banker’s

algorithm. It automatically considers requests and checks whether it is safe for the system

and also needs to handle future resources required to prevent the deadlock.

• Deadlock detection: Deadlock detection periodically checks whether the system is in a dead-

lock situation. When the system enters the deadlock state, it does not proceed further, and

the exact part is executed cyclically. To solve this problem, Detecting this cycle is called

deadlock detection. There are various methods, but one popular way is the system breaking

the cyclic connection by setting the order between processors or the messages when a certain

threshold is reached.
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2.13 Gem5 simulation

The gem5 is an open-source simulator for researching computer processors[2]. In addition, it is

a platform for studying computer architecture, encompassing System-level and Micro-architectures.

The simulator is used in academia and industry and initially went through 15 years of development

at the University of Michigan and the GEMS project in Wisconsin. 2011 the GEMS and m5

projects merged, creating the current gem5.

The gem5 has several features: It has an event-driven memory system. To see the impact of the

memories right away, it provides an event-driven memory system, including caches, crossbars, and

more. It supports homogeneous and heterogeneous multi-cores. From the number of cores to the

stats of the cache to the topology, multi-core systems in many forms can be arbitrarily set up as the

researcher wants. The simulator can elastically track the performance of the CPU. For example,

this simulator allows researchers to analyze and compare the performance of the cache layer and

main memory quickly and accurately. The gem5 is an open-source simulator, as mentioned earlier.

For the various analyses and comparisons required for the study, we were free to modify the various

pieces of code in Gem5 without copyright issues.

2.13.1 Garnet network

Garnet is an interconnection network model implemented within the gem5 simulation framework[14].

Garnet is designed to simulate on-chip networks for providing a cycle-accurate micro-architectural

implementation of an on-chip network router. Garnet is a network method that communicates be-

tween cores, caches, and memory controllers. Using it, we can change various network topologies

and understand the impact of the changed network. After all, we can get various traffic patterns

that affect system performance through Garnet.

2.14 SPEC benchmarks

The SPEC CPU 2017 benchmark package contains SPEC’s next-generation, industry-standardized,

CPU-intensive suites for measuring and comparing compute-intensive performance, stressing a

system’s processor, memory subsystem, and compiler. SPEC created these benchmarks to allow
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researchers to compare and measure the compute-intensive performance of the hardware across

hardware using workloads developed in their applications.

Table 2.1: SPEC cpu 2017 benchmark suites

Suites Purpose of Uses
SPEC speed To analyze the time for a computer to complete a single task
SPEC rate To analyze the throughput and work per unit of time

Depending on the purpose, this benchmark is divided into ’Speed’ and ’Rate’ suites. The

former compares and analyzes the time it takes for a single computer to complete a task. The latter

is intended to analyze the amount of throughput and work per unit of time.

Table 2.2: SPEC cpu 2017 benchmark that we used

Benchmarks Application Area
perlbench Perl interpreter
gcc GNU C compiler
mcf Route planning
cactuBSSN Physics: relativity
xalancbmk XML to HTML conversion via XSLT
x264 Video compression
Leela Artificial Intelligence: Monte Carlo tree search (Go)
nab Molecular dynamics
exchange2 Artificial Intelligence: recursive solution generator (Sudoku)
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3. REALISTIC BUFFER SIZE

3.1 Background and motivation

We always strive to find the middle ground between cost and performance. As a representative

example, we consider the correlation between memory price and performance when choosing a

computer. The more efficient memory we use with more cost, the better performance we can

achieve. Furthermore, if a situation arises in which unnecessary memory is used, it would be an

extremely inefficient choice. Consequently, we are constantly thinking and researching diligently

to find the optimal balance that can yield maximum efficiency by using only as much memory as

needed in real life.

ReViCe’s current buffer size is unrealistic and needs optimization. Seeing Figure 3.1, ReViCe

uses the Garnet network for experiments in Gem5 simulation to analyze the impact of changes in

network topologies. As the original version of ReViCe uses Garnet’s message traffic pattern itself,

it follows the basic settings of the network. The problem is that the basic configuration of buffer

size is infinite, which makes it difficult to obtain realistic results. For example, It is impossible

for this situation where numerous messages are in a particular buffer because of a bottleneck to

happen in the real world. However, that situation can happen if the size of the buffer is infinite. To

address this issue, we aim to determine an appropriate buffer size to make ReViCe more realistic

and naturally cause stalls due to message concentration when the buffer size reaches the limit.

3.2 Methodology

3.2.1 Current situation

ReViCe, utilizing the Garnet network’s basic configurations, operates with an infinite buffer

size to manage messages. However, this unrealistic setting overlooks potential bottlenecks in net-

work areas, significantly impacting overall performance and causing delays and congestion. The

current setup must address these issues to assess performance under real-world conditions.

Obtaining accurate performance measurements requires revising buffer size settings and incor-
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Figure 3.1: Gem5 garnet network[2]

porating constraints reflecting actual limitations. This process involves researching and simulating

network conditions, identifying bottlenecks, and modifying the system’s configuration. By making

these adjustments, ReViCe’s performance can be effectively evaluated, aiding users in optimizing

their network configurations with a better understanding of its capabilities and limitations.

3.2.2 Required end state

Consequently, our objective is to identify the most optimal buffer size. As previously stated, we

strive for maximum efficiency with minimal cost, which can guide our buffer size determination.

For instance, incrementally increasing the buffer size from its minimum value can help us pinpoint

the size at which resource stalls no longer occur in each network segment depicted in Figure 3.1.

By discovering this balance, we can minimize both cost and performance trade-offs. To sum up,

we can say the proper size of the buffer is when it does not show any stalls, but the no performance

degradation due to the buffer size.
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3.3 Experiment configuration

Table 3.1: Parameters of the simulated architecture[1]

Parameter Value
Architecture 8 ARM cores for PARSEC, 1 X86 core for SPEC & PoC
Core 2GHz, Out-of-Order, no SMT,

32 Load Queue, 32 Store Queue entries, 192 ROB entries,
Tournament branch predictor, 4096 BTB entries, 16 RAS entries

L1-I Cache (Private) 32KB, 64B line, 4-way, 1-cycle round-trip lat, 1 port
L1-D Cache (Private) 64KB, 64B line, 8-way, 1-cycle round-trip lat, 3 Rd/Wr ports
L2 Cache (Shared) inclusive, Per core: 2 MB bank, 64B line, 16-way,

8 cycles RT local latency, 16 cycles RT remote latency (max),
Cache Coherence Directory based MESI
Cache Replacement Pseudo LRU
Network 4x2 MESH, 128 link width, one cycle latency per hop
DRAM Built-in memory model in Gem5
Victim Cache 64B lines, fully associative, 16 blocks in L1-D & L2 for PARSEC,

32, 64 blocks in L1-D & L2 for CPU2017, respectively.
buffer size 8, 12, 14, 16, 32, and 64 entries

We implemented a comprehensive series of experiments focusing on the incremental expansion

of the buffer size. Our initial approach involved adjusting the number of entries within the buffer

and exploring various values, including 8, 12, 14, 16, 32, and 64. This step-by-step progression

allowed us to closely examine the impact of each modification on the system’s performance. While

we are increasing the size of the buffer, we will find the size which is the maximum efficiency with

minimal cost.

As shown in Table 3.1[1], the table provides a detailed overview of the parameters employed in

our simulated architecture, which is the same as the previous ReViCe model[1] except for the buffer

size. By meticulously analyzing the data obtained from these experiments, we aim to identify the

optimal buffer size that balances efficiency and resource utilization.
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3.3.1 Result of experiment

Figures 3.2, 3.3, and 3.4. show the relationship between the number of resource stalls and

buffer size. We observed that resource stalls ceased to occur after increasing the buffer from the

buffer size to sixteen entries. Moreover, beyond the sixteen entries threshold, further performance

improvements were not detected, as shown in Figures 3.5, 3.6, and 3.7.

Figure 3.2: Number of resource stalls happen in 8 buffer entries

Figure 3.3: Number of resource stalls happen in 12 buffer entries

Figure 3.4: Number of resource stalls happen in 14 buffer entries
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Figure 3.5: Performance comparison in 16 buffer entries

Figure 3.6: Performance comparison in 32 buffer entries

Figure 3.7: Performance comparison in 64 buffer entries

3.4 Summary and evaluation

Our thorough experimentation revealed that a buffer size of sixteen entries effectively elimi-

nated stalls within the Garnet network while it achieves no performance degradation. This optimal

value presents a more practical approach than the original unlimited buffer size implemented in Re-

ViCe, ensuring that the system adheres to the constraints imposed by limited memory resources.

As a result, our experiment demonstrates that a suitable finite buffer size can be identified

through methodical testing, with a value of sixteen entries proving ideal for both the Garnet net-

work and the ReViCe experiment. By employing this optimized buffer size, ReViCe can more

21



accurately simulate real-world scenarios, thereby enhancing the precision and reliability of its re-

sults.
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4. COMPARATIVES STUDY WITH CACHEREWINDER

4.1 Motivation

As discussed in the Background section, numerous defense strategies against transient attacks

target cache side channels. In this situation, a qualitative and quantitative comparison is essential to

evaluate these methods effectively. One Undo method, CacheRewinder, has asserted its superiority

over ReViCe. However, in this chapter, we will investigate the validity of this claim and identify

any potential advantages ReViCe has over CacheRewinder.

4.2 Background

4.2.1 Purpose of CacheRewinder

CacheRewinder offers a hardware-based defense mechanism against transient execution at-

tacks that leak sensitive data through cache timing side channels [10]. Like other undo schemes,

CacheRewinder keeps confidential information by revoking cache updates made during speculative

executions and restoring the original cache state. A highlighted idea in CacheRewinder is using un-

derused write-back buffer space as temporary storage for cache blocks evicted during speculative

executions. The advantage, which they claimed, effectively protects against transient execution

attacks while minimizing performance overhead and storage costs.

4.2.2 Using underutilized write-back buffer

To implement Undo methods, a designated space is required to store cache lines evicted due

to speculative loads. CacheRewinder utilizes the relatively underused write-back buffer structure

in computer architecture. This can be possible because their research claims the average number

of occupied entries in the write-back buffer is under one [10]. However, to accommodate cache

information within the write-back buffer, it was essential to modify the write-back buffer from its

original queue data structure to a cache structure.
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4.2.3 Extended write-back buffer in CacheRewinder

Because CacheRewinder uses underused space, which is a write-back buffer, negating the need

for additional data storage. However, the write-back buffer must shift significantly from the simple

FIFO queue structure to a more complex version to accommodate the victim cache function, which

stores lines evicted from the cache. This change injects complexity into the architectural design.

The extended write-back buffer must include two distinct functionalities: maintaining a ’Stag’

that identifies evicted lines and a ’V tag’ that signals a line’s return to the cache. Consequently, the

hardware cost of the extended buffer exceeds that of the original write-back buffer by more than

twice because it requires two tags per entry. The following equations (4.1 and 4.2) illustrate this

cost differential, making it clear that while CacheRewinder repurposes underutilized space, it will

lead to imposing notable challenges and hardware costs. Their extended write-back buffer incurs

twice the hardware area cost than before, as shown in equations 4.1 and 4.2 above.

Original write-back buffer size = Tag size ∗ log2 Number of blocks ∗ 2 (4.1)

Victim cache size = Tag size ∗ log2 Number of blocks ∗ 2 ∗ 2 (4.2)

4.3 Methodology

4.3.1 Implementing CacheRewinder

Now, we will perform a qualitative and quantitative comparison between ReViCe and CacheRewinder

as they described. First, we will follow the configuration of the experiment as CacheRewinder

claimed. Next, we mimic the CacheRewinder, which can do two functions to occupy a space simul-

taneously. The write-back buffer in CacheRewinder can perform two functions simultaneously[10].

1) Firstly, it can handle write-back messages, and 2) secondly, it can save lines evicted from the

cache by speculative loads. Specifically, we implemented it to experimentally create a system

from ReViCe where two functionalities verify each other. The Write-back queue and Victim cache

check the size of each other and ensure that the sum of the two entries does not exceed a specific
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limit, similar to how it occurs within a combined one space.

4.3.2 Experiment configuration

We use the configuration detailed in Table 4.1 for our experiment. This configuration does

not include the hardware cost implications of CacheRewinder’s extended version of the write-back

buffer, a crucial aspect we uncovered in our study. This is because we experimented with this

setup to recreate the CacheRewinder environment, as they argue accurately. By doing this, we

aim to compare CacheRewinder and ReViCe quantitatively. We describe the practical differences

between these two defensive designs.

Table 4.1: Configuration for comparison

ReViCe CacheRewinder
Write-back entries Victim cache entries Extended Write-back buffer

4 entries 4 entries 8 entries

4.4 Experiment results and evaluation

Our experiment replicated the setup detailed in Table 4.1, except for CacheRewinder’s ad-

ditional hardware elements. Table 4.2 reveals that without any defensive scheme, our baseline

model experienced 6.62% overhead with Specter and 7.22% with Meltdown when using ReViCe.

Contrastingly, CacheRewinder displayed 6.60% and 7.18% overhead for Spectre and Meltdown,

respectively, revealing it to be marginally more efficient than ReViCe, with a 0.02% reduced over-

head in both cases.

However, this slight improvement of 0.02% does not consider other potential factors that could

impact performance. The observed benefits are small and may not be worth the effort needed to

repurpose existing space. This suggests that such modifications to the system are not significantly

meaningful. Going forward, focusing efforts on other aspects of system optimization might be

more beneficial.
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Table 4.2: Overhead comparison with baseline in ReViCe and CacheRewinder

Base Spectre Meltdown
ReViCe 1 1.0662 1.0722

CacheRewinder 1 1.0660 1.0718
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5. OPTIMIZING REVICE

5.1 Motivation

In the previous chapter, we looked at CacheRewinder and compared its performance with Re-

ViCe, as claimed by CacheRewinder. CacheRewinder uses a more complex structure, which takes

up more hardware space. This information could help to compare CacheRewinder and ReViCe’s

performance better and to optimize ReViCe based on this comparison.

Suppose we can find the right balance in the size of the write-back buffer and victim cache

and discover the proper ratio between them. In that case, we can cut unnecessary memory use and

allocate more space where needed. This experiment could make ReViCe operate more efficiently.

So, in this chapter, we will also look at how to find a better, balanced design for ReViCe.

5.2 Background

In the previous chapter, we discovered that the extended write-back buffer has double the hard-

ware cost of the original write-back buffer. Using this fact, we can find out which one has more

advantages under the same conditions through a simple equation.

WBsize + V Csize ∗ 2 = EWBsize ∗ 2 (5.1)

Equation 5.1 compares the memory usage between ReViCe and CacheRewinder. The left side

represents the memory used by ReViCe, where WBsize denotes the size of the original write-back

buffer, and V Csize represents the number of entries in the victim cache. Since the victim cache

requires double space to store and handle tags than the original write-back buffer, we calculate the

total memory usage showing WBsize + V Csize ∗ 2.

On the other hand, the right side of Equation 5.1 represents CacheRewinder’s memory usage.

The write-back buffer of CacheRewinder serves as both the write-back operation and the victim

cache. Therefore CacheRewinder only has one integrated Extended Write-back buffer(EWB) de-

noted as EWBsize in the equation, which is the sum of WBsize, and V Csize while ReViCe has
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those separately. However, like the calculation of the victim cache, we need to put double times

more hardware cost for EWB.

Simply, while the original write-back buffer size is 2, we can get the size of the extended

version of the write-back buffer, and the victim cache size is 1 with a fair comparison. By this

relationship, ReViCe can have more capacity under the same conditions under Equation 5.1. Be-

cause CacheRewinder uses more hardware area budget, ReViCe can add more entries as much as

Cacherewinder uses.

5.3 Experiment methodology

For an equivalent comparison between ReViCe and CacheRewinder, we set all simulation con-

figurations the same without the write-back buffer and victim cache entries. Using the calculated

ratio in the previous section, we can make the table the following Table 5.1. As shown in ex-

periment 1, when cache Rewinder uses one integrated space with eight entries, ReViCe can have

fourteen entries for the write-back buffer and one entry in the victim cache simultaneously. ReViCe

has more space for the simulation because it saves the hardware area cost, not an EWB.

Table 5.1: Configuration for the simulation comparison

ReViCe CacheRewinder
Write-back Victim Cache Extended Write-back buffer

Experiment 1 14 1 8
Experiment 2 10 3 8
Experiment 3 4 6 8

5.4 Result and evaluation

We implemented experiments using various ReViCe configurations under the same hardware

cost conditions, as shown in Table 5.1. The optimal performance was achieved when the speed of

CacheRewinder was set to 1, the write-back buffer held four entries, and the victim cache contained

seven entries in ReViCe, as depicted in Figure 5.1. Upon analyzing Figure 5.1, it is clear that
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Figure 5.1: Performance comparison between CacheRewinder and ReViCe

increasing the number of victim caches improved performance more than expanding the write-

back buffer. However, performance does not improve at certain points along with victim cache

size since the secure design does not need extra spaces. As a result, it shows the best performance

when we use ReViCe with four write-back buffer entries and six victim cache entries among four

configurations. Based on the results, enhancing performance by minimizing unused capacity and

giving space to boost structures is more reasonable than complicating the system’s architecture by

overhauling underused space.

5.5 Proof of concept

To know why proper cache size is needed for guaranteeing the performance, first, we set the

size of the victim cache as one to see what is happening. As shown in Figure 5.2, when we set

the victim cache size as one, numerous stalls happen because we limit its size of it. Due to this,

many stalls happen, which makes performance overhead severe to the benchmark simulations.

Therefore, based on the experiment results in the Figure 5.2, we know that the proper amount of

victim cached is necessary.

29



Figure 5.2: Number of stalls happen when limiting the victim cache
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6. IMPLEMENT DEADLOCK FREE

6.1 Motivation

During the experiments, we suffered several deadlock issues during the Gem5 simulation re-

lated to the secure design integrity. To see how much deadlock frequently happens, we do a simple

simulation. In the ReViCe, we set the algorithm which detects if a message is stalled at some point

in the process and does not proceed anymore. Figure 6.1 is the latency graph representing how

many cycles are needed to resolve the stalled messages.

As shown in Figure 6.1, 96.95% of the total stalled messages were resolved within around 2.8

cycles. However, 3.05% stalled messages hit the threshold, which we set as 800 cycles. Those

unresolved messages caused performance degradation and possible deadlock issues furthermore.

Therefore, we aim to implement a deadlock-free system to guarantee stability.

Figure 6.1: Stall frequency graph when we set deadlock threshold as 400,000 tick
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6.2 Background

6.2.1 Generalization of typical deadlocks in real world

The following Figure 6.2 is the typical deadlocks we have experienced several times during the

simulation. To be detailed processed, 1) Speculative Load A issued from the mandatory queue. 2)

SLD A evicts Message B from the cache to the victim cache. 3) Expose(message for branch result

true) or undo(message for branch false) A, which can resolve the SLD A, is stalled because the

cache and victim cache is full and not available to be replaced, therefore expose or undo message

can not be processed, and is stalled. 4) Message B is waiting for SLD A resolution to be replaced.

5) Simultaneously, SLD A is waiting for its resolution message to expose or undo A. This circular

hold-and-wait situation makes the deadlocks happen.

Figure 6.2: Typical deadlock description
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6.3 Methodology

6.3.1 Scheme for deadlock freedom

We decide to take two steps to solve the previous section’s deadlock. Firstly, the system must

be able to detect deadlocks. Secondly, the system should be able to solve the problem once a

deadlock is detected. We will explore these two steps considering three main ways to deal with

deadlock: avoidance, prevention, and recovery[15, 13], which we have explored in the background

chapter.

6.3.2 Deadlock detection

We employ a threshold, established in Figure 6.1, to detect deadlock situations. We have

integrated an algorithm that identifies messages not processed within a specific cycle. If a message

remains unresolved beyond 800 cycles, we consider it a deadlock situation, indicating abnormal

program progression. Therefore we focus on these target messages when a deadlock happens to

solve the situation.

6.3.3 Deadlock avoidance

The first scheme we can consider as our deadlock-free algorithm is deadlock avoidance. Dead-

lock avoidance ensures that the system does not enter an unsafe state by requiring information

about existing resources, available resources, and resource requests, as well as knowledge of future

process resource requests. Based on this information, we can allocate requests to the available re-

sources using the banker’s algorithm, one method for implementing deadlock avoidance. However,

it is unsuitable for dynamic simulation in the real world due to its reliance on static information.

That means we should allocate all the resources to the processor, which is impossible to implement

in the existing system.

6.3.4 Deadlock recovery

The second scheme we have looked into is the deadlock recovery scheme. Deadlock recovery

solves the problem by restarting the system from scratch after a deadlock or the designated points
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that were safe to implement and the system saved as backup. However, it could be better for our

purposes. Because 1) if we restart the whole system, it will cause colossal system performance

overhead, and we can not guarantee that the same deadlock will not happen again. Therefore,

it could be an endless loop. 2) Moreover, when we save the backup points while the system is

running, we need to figure out which points are safe points to promise deadlock free to us. Due to

the above two reasons, we do not choose deadlock recovery as our scheme.

6.3.5 Deadlock prevention

Last, a deadlock-free scheme is deadlock prevention. As we mentioned earlier in the back-

ground, Among the four prerequisites for the deadlock issue, we can handle the hold-and-wait

situation, as shown in Figure 6.2, which is the typical deadlock pattern in simulation. After we

detect the deadlock situation, we add additional code to break the circular dependencies between

messages. When circular waits are detected, we forcibly send the undo message for speculative

load A in Figure 6.2. These sent messages will break the number four hold-and-waits relationship

in the Figure, and also, the numbers three and five will be resolved in a sequence.

6.4 Results and evaluation

6.4.1 Experiment results

In our experiment, we aimed to test the efficiency of our deadlock prevention method. We set

the victim cache size to just one to create frequent deadlock situations. After fast-forwarding by

ten billion steps, we ran one billion instructions to concentrate on crucial areas. As Figure 6.3 indi-

cates, our deadlock-free algorithm was employed roughly 327,239 times per billion instructions on

average. Even when unexpected stalls were frequent, we encountered no further deadlock issues

during numerous simulations, demonstrating the effectiveness of our method.

6.4.2 Summary and evaluations

We explored the prevalent deadlock issue in system simulations, leading to an in-depth analysis

of three critical deadlock-handling strategies: avoidance, recovery, and prevention. We found

deadlock avoidance and recovery to be impractical for dynamic real-world simulations. Avoidance
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Figure 6.3: Number of times the ReViCe uses deadlock freedom when limiting the victim cache

was limiting due to its reliance on static information, while recovery posed risks of significant

performance overhead and the potential for an endless deadlock loop.

In contrast, with the above simple method, we implement the deadlock prevention scheme to

our secure design to ensure the system’s integrity. We successfully implemented a deadlock pre-

vention scheme, focusing on the ’hold-and-wait’ scenario, the typical deadlock pattern in simula-

tion. This approach effectively disrupted the cyclical dependencies, preventing deadlock situations

and ensuring system integrity.
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7. CONCLUSIONS

7.1 Evaluation of results

In this thesis, our focus was on enhancing security design against cache-side channel attacks.

Moreover, the results of our efforts were valuable. We improve ReViCe to be a practical, trust-

worthy strategy with a strong basis. First, we brought our design to the realities by setting the

finite size of the buffer to reflect better how it functions in the real world. Second, during the

comparative studies, we compared our approach to other undo-based models and identified areas

for improvement based on this comparison. We also proposed the best configuration for optimiz-

ing the ReViCe to realize that ReViCe is a superior approach to other ’undo’ based methods of

defending against cache side-channel attacks. Last but not least, we introduced and applied a new

’deadlock freedom’ algorithm to strengthen the defense capabilities and the design integrity.
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8. Future work

8.1 Finding better performance

While our system is efficient, there is always room for further improvements. Future studies

could explore more configuration possibilities for ReViCe to enhance its performance. For in-

stance, expanding the victim cache is more effective than increasing the write-back buffer. We

could investigate other existing buffers or architectures that might work with the victim cache to

boost overall performance.

8.2 Better deadlock freedom algorithm

The deadlock freedom algorithm in this thesis can be improved through further development.

Future research could enhance the algorithm’s capability to predict and prevent potential deadlock

situations. Currently, we use a certain threshold to identify possible deadlock issues. However, it

can be refined by finding better parameters or other ways to get possible deadlock issue alerts.
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