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ABSTRACT

The Persistent Space Surveillance (PSS) strategy is designed to continuously detect targets

and overcome the previously studied Periodic Close Encounter (PCE) problem; i.e. the periodic

surveillance of targets. This study addresses the traditional need to monitor military-threatening

targets and repair or check the status of commercially expensive satellites, but also the modern need

for space traffic management and the removal of space debris. In this study, persistent surveillance

is defined as the need to keep observation distance below a certain threshold (i.e., distance from the

target) while the target orbits the Earth. In addition, the optimal solution needs to maintain a proper

monitoring distance despite the effects of perturbation, and eliminate the risk of Earth-impacting

or hyperbolic trajectories. The proposed technique satisfies the following three constraints needed

to be sufficiently close and compatible with the target’s orbit: orbit shape, orbit orientation, and

observation distance. The Genetic Algorithm (GA) is used to optimize orbital elements that satisfy

the three constraints. To apply the proposed model to the numerical examples, propagation is

performed using the Theory of Functional Connection (TFC), which has been verified in other

studies. All of the above processes are verified by simulating the existing Low Earth Orbit (LEO),

Geostationary Orbit (GEO), and Highly Elliptical Orbit (HEO) satellites as targets.
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1. INTRODUCTION

Nations all around the world are starting to fight for control in the new space area. Because

of this, the count of satellites in orbit and the amount of space debris is growing fast [2]. In

simpler terms, the skill to find and follow targets in space is getting more and more important.

Watching targets in space is needed for rendezvous, removal of space debris [3], and space traffic

management [4]. As a result, finding or watching targets has become a very important field to

study. The latest studies in pursuing target finding and watching have paid attention to many areas,

including advanced tracking techniques [5], on-board autonomous systems [6], and collaborative

monitoring approaches [7].

Advanced tracking techniques : Researchers have been developing sophisticated tracking algo-

rithms that can accurately predict and determine the position and motion of space targets. These al-

gorithms employ various approaches such as machine learning, data fusion, and statistical methods

to enhance the accuracy and reliability of target tracking, even in congested space environments.

On-board autonomous systems: Another area of research concentrates on equipping chaser

satellites with on-board autonomous capabilities. These systems enable the chaser to make real-

time decisions regarding orbital adjustments, target identification, and collision avoidance without

relying heavily on ground-based support. Such autonomous capabilities not only enhance the

resilience and efficiency of target monitoring but also reduce the operational costs associated with

ground station support.

Collaborative monitoring approaches: Some recent studies have explored the potential of uti-

lizing multiple satellites to collaboratively monitor targets in space. This approach involves co-

ordinating the actions of several chaser satellites, allowing them to share information and tasks,

and thereby improving the overall target tracking performance. Collaborative monitoring can also

help distribute the operational workload among multiple satellites, reducing the risks and costs

associated with individual satellite failures or malfunctions.

1



In conclusion, recent research on advanced tracking methods, on-board autonomous systems,

and cooperative monitoring strategies has led to significant advancements in the field of chasing

target detection and monitoring. These advancements could increase the effectiveness and de-

pendability of satellite rendezvous operations, the cleanup of space debris, and the management of

space traffic, ultimately enhancing the security and sustainability of the rapidly developing space

environment.

This includes research on the challenge of periodically tracking targets or Periodic Close En-

counters (PCE). PCE occurs when two satellites cross paths in space on a periodic basis. Cloc-

chiatti and Mortari were the first to study the problem. [1]. Figure 1.1 depicts the PCE problem,

where the chaser, which is in orbit "1" transfers to the PCE orbit "3". The target of orbit "2" is

periodically met by the PCE orbit "3" which the chaser achieves.

Figure 1.1: Geometry and Definitions of a 2-impulse PCE mission (adapted from : [1])

2



The PCE problem presents unique challenges in terms of orbital maneuvering, fuel efficiency,

and the reliability of tracking systems. For the chaser satellite to maintain periodic encounters

with the target, it must perform complex orbital transfers and adjustments. These maneuvers can

be resource-intensive, both in terms of fuel consumption and the computational power needed to

optimize the chaser’s trajectory. Additionally, ensuring the accuracy and reliability of tracking

systems is critical to avoid collisions or misidentification of targets. To address these challenges,

researchers have explored various strategies, including optimizing orbital transfer maneuvers, uti-

lizing advanced tracking algorithms, and improving the efficiency of propulsion systems. These

efforts aim to minimize the chaser’s fuel consumption, reduce the reliance on ground stations, and

enhance the overall performance of the PCE-based tracking systems.

According to the original PCE theory [8], a potential PCE needs to be:

1. sufficiently close in terms of ∆vtot to orbit "1",

2. compatible (or resonant) with orbit "2", and

3. encounter the target spacecraft with the prescribed distance and observation time.

To satisfy the specified criteria above, the PCE theory uses the Genetic Algorithm (GA) to

locate an n-impulse PCE orbit. In prior research, the n-impulse PCE orbit was determined by using

constraint (Minimum encounter distance, Minimum dwell time, Time constraints, and Illumination

requirements) satisfaction to optimize results using GA. Several other studies have demonstrated

that GA is also suitable for solving orbital mechanics problems like space rendezvous [9], Earth-

surveillance problems [10, 11], and trajectory optimization problems [12, 13].

There is research on target tracking, but the majority of solutions require a large number of

orbital manipulations and rely heavily on ground stations. In addition, the PCE method can only

conduct periodic checks on the target satellite. The research in this study explores Persistent Space

Surveillance (PSS) where targets can be tracked continually by using a new set of constraints to

locate the orbit. In contrast to a PCE orbit, which can only be periodically monitored, PSS utilizes

a chaser which is designed to consistently monitor its targets. The geometry depicted in Figure 1.2

defines PSS.

3



Figure 1.2: PSS Geometry and Definitions

PSS orbits are a novel approach to address the limitations of traditional target tracking methods.

The PSS orbit aims to provide a more efficient and effective means of continuous monitoring

for satellites and other space objects, which is crucial for maintaining the safety and integrity of

space operations. One of the key features of PSS orbits is the use of a chaser satellite, which is

designed to closely follow and monitor the target satellite in real-time. This is achieved through a

carefully designed trajectory that optimizes the relative motion between the chaser and the target,

ensuring that the chaser satellite maintains a consistent line of sight and remains within a close

distance from the target. The PSS orbit relies on a new set of constraints to maintain the chaser’s

proximity to the target. These constraints account for various factors, such as the gravitational

effects of the Earth, the Moon, and the Sun, as well as the atmospheric drag and solar radiation

pressure. By considering these factors, the PSS orbit is designed to be more stable and robust

against perturbations, ensuring that the chaser satellite can maintain its position relative to the

target without the need for frequent orbital adjustments. In addition, the PSS orbit reduces the

dependence on ground stations for tracking and maintaining the chaser’s position. By utilizing on-

board sensors and advanced algorithms, the chaser can autonomously maintain its orbit and make
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necessary adjustments when required, reducing the need for continuous ground station support.

This not only makes the PSS orbit more cost-effective but also increases its resilience in the face

of communication disruptions or other operational challenges. Furthermore, the PSS orbit offers

a high degree of flexibility and adaptability, making it suitable for various mission scenarios. For

example, it can be used for tracking non-cooperative targets, such as space debris or malfunctioning

satellites, as well as cooperative targets that require continuous monitoring, such as servicing or

refueling missions. In summary, PSS orbit represents a significant advancement in satellite tracking

and monitoring capabilities. By utilizing a chaser satellite and a new set of constraints, the PSS

orbit provides continuous, real-time tracking of target satellites without relying heavily on ground

stations or frequent orbital adjustments. This innovative approach not only improves the efficiency

and effectiveness of space operations but also contributes to the long-term sustainability and safety

of the space environment.

This research uses two primary methods for PSS. The application of these methods enhances

the capability to establish PSS orbits and increases the accuracy of orbit propagation :

1. Genetic Algorithm (GA)

2. Theory of Functional Connection (TFC)

Firstly, the GA is employed to find the optimal solution that satisfies all three constraints (orbit

shape, orbit orientation, and observation distance) necessary for determining the PSS orbital ele-

ments of the chaser satellite. In order to establish a PSS orbit, the orbital elements of the chaser

and target satellites must be similar. The semi-major axis (a) and semi-minor axis (b) define the

orbit shape, so the chaser’s a and b values must be comparable to those of the target. However,

to ensure continuous monitoring, the orbital periods of the chaser and target must be identical,

leading to equal a values for both satellites, as shown in Equation (1.1).

T = 2π

√
a3

µ
(1.1)
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The inclination (i), right ascension of the ascending node (Ω), and argument of periapsis (ω)

determine the orientation of the chaser’s orbit and should also have values similar to those of

the target. This can be represented by an equation for the orbit’s principal axis. Lastly, the true

anomaly (ϕ) determines the chaser’s position, which can be calculated by selecting an observation

distance from the target as a constraint. In essence, the PSS orbit is established by selecting the

aforementioned chaser orbital elements as GA genes and optimizing them within the range that

satisfies the specified constraints.

The second step involves conducting orbit propagation using the TFC. Previous research has

shown that the solutions for linear and nonlinear differential equations obtained through TFC are

more accurate than those derived from general integrators. In this study, orbit propagation is per-

formed using TFC, solving the differential equation with nonlinear least squares, and expressing

the perturbed orbit propagation equation as follows:

r̈(t) = − µ

r3(t)
r(t) + ap(t, r, ṙ) (1.2)

By solving the perturbed multi revolution Lambert problem with TFC, this research aims to

achieve better control over orbits for space surveillance and more precise trajectory adjustments in

response to perturbations. This innovative approach contributes to the effectiveness and accuracy

of Persistent Space Surveillance, addressing critical challenges in the field of space engineering.
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2. PERSISTENT SPACE SURVEILLANCE*

2.1 Motivation

Bae and Mortari pioneered the study of the PSS problem, aiming to enable continuous monitor-

ing of space targets—an achievement that was not possible with the previously studied PCE prob-

lem. The PSS orbit optimally satisfies the given constraints, ensuring that the target and chaser

satellites do not collide while providing uninterrupted observation of the target. This capability

offers significant military and commercial benefits.

In the context of military operations, PSS emerges as a superior space intelligence warfare tool,

as it enables the continuous monitoring of potential threats. This advantage allows for timely elim-

ination of hostile targets in emergency situations, significantly enhancing the strategic capabilities

of the military in space. On the commercial front, PSS can be employed for various purposes,

such as repairing or inspecting high-cost satellites, as well as facilitating rendezvous operations for

spacecraft resupply missions. This continuous monitoring capability not only extends the lifespan

of valuable space assets but also improves overall mission safety and efficiency.

Furthermore, the Low Earth Orbit (LEO) region is becoming increasingly congested, with

numerous nations actively launching satellites, leading to a proliferation of space debris. With

more than 8,000 satellites already in LEO and over 20,000 planned launches in the next decade,

effective space traffic management and debris removal are critical to preventing satellite collisions.

By leveraging the PSS problem, it is possible to address these concerns and maintain the safety

and sustainability of the space environment.

In summary, the PSS problem offers a range of advantages in both military and commercial

applications, including enhanced space intelligence warfare capabilities, satellite maintenance and

inspection, and efficient rendezvous operations. Moreover, PSS plays a crucial role in addressing

*Parts of this section have been reprinted from 1) H. Johnston, D. Mortari, Orbit propagation via the theory of
functional connections, Proceedings of the 2019 AAS/AIAA Astrodynamics Specialist Conference, Portland, ME,
USA, pp. 11–15, 2019 : [14] and 2) F. Criscola, D. Canales, D. Mortari, Solution of the Perturbed Lambert’s Problem
Using the Theory of Functional Connections, 33rd AAS/AIAA Astrodynamics Specialist Conference, Big Sky (MT),
2023 : [15]

7



the challenges of space traffic management and debris removal in the increasingly congested LEO

region.

2.2 GA and Constraints

The GA is a powerful heuristic optimization technique that draws inspiration from the prin-

ciples of natural selection and genetics. The algorithm operates by generating a population of

potential solutions and iteratively selecting the fittest individuals to produce offspring. These off-

spring inherit the most desirable traits from their parents, and then undergo genetic operations such

as mutation and crossover to form new individuals. As the process repeats, the population evolves,

converging towards an increasingly optimized solution.

GA has been successfully applied to a diverse range of optimization problems, including fea-

ture selection, image processing, financial forecasting, and many more. The algorithm’s widespread

popularity is attributable to its ability to handle intricate, high-dimensional search spaces and to

efficiently identify globally optimal solutions.

In this study, GA is employed to achieve Persistent Space Surveillance by optimizing three

constraints: orbit shape, orbit orientation, and observation distance. By utilizing GA, the initial

PSS orbital elements of the chaser satellite can be optimized. The initial position and velocity vec-

tor are then derived by converting the optimized initial PSS orbital elements. This iterative process

enables the chaser satellite to maintain optimal proximity to the target, satisfying the necessary

constraints while continually monitoring the target. The procedures involved in this optimization

process are depicted in Figure 2.1.

Incorporating GA into the PSS problem allows for the efficient and accurate optimization of

the chaser satellite’s orbit, ensuring the effective monitoring of targets in space. This approach

demonstrates the robustness of GA in solving complex optimization problems within the realm of

space engineering.
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Figure 2.1: Genetic Algorithm flow chart

2.2.1 Orbit shape

In order to determine the chaser’s PSS orbit, it is essential to identify an orbit that closely aligns

with the target’s orbit. Continuous monitoring without collisions necessitates that the orbits be as

similar as possible, ideally identical. To achieve the most precise orbit selection, the approximate

shape of all orbits can be inferred from the values of the semi-major axis (a) and semi-minor axis

(b). Finding a chaser’s a and b in close proximity to the target’s orbit shape is crucial to ensure

that the PSS orbit maintains constant surveillance of the target. This requirement can be expressed

using the following equation:

(at − ac)2 + (bt − bc)2 ≤ δβ2 (2.1)
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Equation (2.1) represents a circle equation with a radius of δβ centered on the target’s a and

b values in a two-dimensional plane. The chaser’s a and b serve as variables representing the

location, while x and y denote the respective axes. The closer the chaser’s orbital shape is to the

target’s, the nearer the values of ac and bc will be to the circle’s center. To establish the appropriate

PSS orbit shape, the constraints of δβ must first be defined, after which the values of ac and bc can

be optimized.

Figure 2.2: Orbit shape constraint

Nonetheless, for the chaser to maintain continuous monitoring of the target, both satellites must

have the same time period, as indicated in Equation (1.1), which necessitates that both a elements

be equal. Consequently, only the value of bc needs to be optimized to define the orbit’s shape. This

optimization process ensures that the chaser’s orbit is accurately aligned with the target’s orbit,

enabling effective and continuous surveillance in a PSS configuration.
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2.2.2 Orbit orientation

Even if the orbit shape is comparable, continuous monitoring is impossible if the direction of

the principal axis differs significantly between the chaser and the target. The principal axis defines

the rotational direction, and the principal angle represents the amount of rotation around this axis

from the initial attitude to the final attitude. To achieve a PSS orbit, the principal axis must not

deviate considerably from the target’s principal axis. The (φ) shown in the Equation (2.2) signifies

the principal angle, which is the difference, or distance, between the axes of the two orbits.

φ = cos−1
(

1

2
[tr(C T

c Ct)− 1]

)
< φtol (2.2)

where Cc is the coordinate transforming matrix of the chaser and Ct is the coordinate trans-

forming matrix of the target.

C =


cosω sinω 0

− sinω cosω 0

0 0 1




1 0 0

0 cos i sin i

0 − sin i cos i




cos Ω sin Ω 0

− sin Ω cos Ω 0

0 0 1



These matrices are made up of the argument of periapsis, inclination, right ascension of the

ascending node of the chaser and target respectively. By setting the tolerance of the principal

angle, the range of values for the above three elements can be determined. Of course, the lower the

tolerance of the principal angle, the more similar the orientations of the two orbits are. Through

this constraint, the three orbital elements can be obtained as the GA output. A GA can then

be employed to optimize the chaser’s orbit orientation, ensuring that the chaser’s orbit is closely

aligned with the target’s orbit in both shape and orientation. This alignment is crucial for enabling

continuous monitoring of the target in a PSS configuration.
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Figure 2.3: Euler’s principal rotation

2.2.3 Observation distance

The observation distance is a critical parameter for establishing and optimizing the initial true

anomaly (ϕc) of the PSS orbit. The difference between the position vectors of the target and chaser

must be maintained within a specified range, ensuring that the distance is neither too close (risking

collision) nor too far (compromising observation capabilities). The minimum observation distance

serves as a safety buffer to prevent collisions between the two satellites, while the maximum ob-

servation distance is determined by the observation system’s capabilities.

dmin ≤
∣∣rt − r̂c∣∣2 ≤ dmax (2.3)

To satisfy the constraint expressed in Equation (2.3), the ϕc can be represented by Equation (2.4),

in which α denotes the maximum angle between the target and chaser (i.e., the maximum true

anomaly difference).
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ϕt − α ≤ ϕc ≤ ϕt + α (2.4)

where,

sinα =
dmax

rt

To prevent collisions, it is essential to consider the angle occupied by dmin within the ϕc range.

However, since dmin is typically a very small value (e.g., dmax = 10km, dmin = 10m), its impact on

the overallϕc range is negligible, and thus not accounted for in this analysis. By carefully selecting

the ϕc, the PSS orbit can ensure continuous monitoring of the target satellite while maintaining a

safe and effective observation distance throughout the mission.

Figure 2.4: Observation distance
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2.3 Theory of Functional Connections

Differential equations play a crucial role in physics, assisting in the comprehension of natural

laws. These are particularly vital in space engineering, where precise solutions are needed for tasks

such as modifying a satellite’s location and following its path in space. Throughout time, various

strategies have been devised to solve these equations, each with its own advantages. However,

a technique known as the Theory of Functional Connections (TFC) [16] has demonstrated to be

particularly efficient. This document will elucidate how this strategy operates, its notable features,

and its relevance in space engineering. The TFC-based methods, detailed in previous research

[17, 18], have demonstrated remarkable effectiveness in dealing with differential equations. In

contrast to traditional methodologies, TFC-based methods possess several notable features:

1. Exceptional machine-level accuracy

2. Superior computational speed

3. Robust solutions that maintain a low condition number

1) Exceptional machine-level accuracy: The answers obtained using TFC exhibit extraordinary

precision, reaching a level of detail in line with what contemporary computing devices can deliver.

This heightened degree of precision guarantees that the outcomes are dependable and can be uti-

lized for additional scrutiny and implementation. 2) Superior computational speed: Another asset

of TFC techniques is their enhanced speed regarding calculations. Relative to other strategies,

such as the well-recognized Runge-Kutta, TFC techniques are much more swift. 3) Robustness

and stability: TFC answers remain steady and exhibit minimal fluctuations with slight alterations

in input. This renders them more resilient against errors in computations or input, which is ex-

ceedingly critical for precise depiction of satellite trajectories. Collectively, these features render

TFC techniques highly effective for resolving issues involving differential equations. These perks

ensure that the solutions are reliable and perform well, even under rigorous testing, particularly in

the demanding field of space engineering.
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TFC is a well-known theory and its features show that it’s a really good way to solve problems

with differential equations, especially in making models of satellite motion in space engineering.

This paper will look into how this method works, how it’s been used in real situations, and how it

could help make better solutions in space engineering.

Figure 2.5: TFC algorithm flow chart

Johnston’s study [14] gives a thorough explanation of a model for predicting changes in satellite

orbits using TFC. This model is very useful for understanding and predicting how satellites move,

especially when their orbits change slightly. Figure 2.5 shows a flow chart that outlines Johnston’s

study, making it easier to understand how TFC is used to model and analyze satellite motion. We’ll

talk more about Johnston’s study below.
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2.3.1 Background on the TFC

2.3.1.1 The origin of functional interpolation

The roots of functional interpolation are closely linked with "Lagrange interpolation". Equation

(2.5) illustrates the Lagrange interpolation formula, showing a line directly crossing two points,

(x1, y1) and (x2, y2).

y(x) =
x− x2
x1 − x2

y1 +
x− x1
x2 − x1

y2 (2.5)

Taking a cue from Equation (2.5), functional interpolation is a calculation that can depict any line

crossing through two points, and this is demonstrated in Equation (2.6).

y(x, g(x)) = g(x) +
x− x2
x1 − x2

(y1 − g(x1)) +
x− x1
x2 − x1

(y2 − g(x2)) (2.6)

The g(x) appearing in this formula is a free function, meaning it can represent any kind of

equation. Consequently, it can represent any line passing through the two points (x1, g(x1)) and

(x2, g(x2)). The detailed derivation process will be explained below. Equation (2.6) is generalized,

it is as follows.

y(x, g(x)) = g(x) +
n∑
k=1

(yk − g(xk))
∏
i 6=k

x− xi
xk − xi

(2.7)

In other words, the above equation includes constraints that pass through n points and is called a

constrained expression. Two well-known types of constrained expressions are Initial Value Prob-

lem (IVP) and Boundary Value Problem (BVP), which are explained in detail below.
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2.3.1.2 The η constrained expression for Initial value problem

Equation (2.7) can be transformed as follows. Here, η is an expression related to x and g(x)

that includes each constraint, and s(x) is the support function.

y(x, g(x)) = g(x) +
n∑
j=1

ηj(x, g(x))sj(x) (2.8)

To solve the Initial Value Problem (IVP), when two constraints are given, Equation (2.8) can be

represented as follows.

y(x, g(x)) = g(x) + η1s1(x) + η2s2(x) subject to :


y(x1) = y1

ẏ(x1) = ẏ1

(2.9)

When the given constraints are applied, the η constrained expression can be represented as follows.

y1 = g(x1) + η1s1(x1) + η2s2(x1)

ẏ1 = ġ(x1) + η1ṡ1(x1) + η2ṡ2(x1)

Assuming that the support function as follows,

s1(x) = 1, s2(x) = x

The constrained expression can be represented as follows,

y1 = g(x1) + η1 + η2x1 (2.10)

ẏ1 = ġ(x1) + η2 (2.11)

To obtain η1 and η2, they are expressed in matrix form as follow,
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y1 − g(x1)

ẏ1 − ġ(x1)

 =

 1 x1

0 1


η1η2


When the above matrix is calculated, η1 and η2 are as follows.

η1 = y1 − g(x1)− x1(ẏ1 − ġ(x1))

η2 = ẏ1 − ġ(x1)

By substituting η1 and η2 into Equations (2.10) and (2.11), we can obtain the following constrained

expression.

y(x, g(x)) = g(x) + (y1 − g(x1)) + (x− x1)(ẏ1 − ġ(x1)) (2.12)

In other words, Equation (2.12) is a constrained expression related to the Initial Value Problem

(IVP), and it can represent all equations that satisfy the initial value constraints mentioned in

Equation (2.9).

2.3.1.3 The η constrained expression for Boundary value problem

Similar to the Initial Value Problem (IVP), the η constrained expression for the Boundary Value

Problem (BVP) can also be represented as follows,

y(x, g(x)) = g(x) + η1s1(x) + η2s2(x) subject to :


y(x1) = y1

y(x2) = y2

(2.13)
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When the given two constraints are substituted into Equation (2.13), it is expressed as follows,

y1 = g(x1) + η1s1(x1) + η2s2(x1)

y2 = g(x2) + η1s1(x2) + η2s2(x2)

Assuming that the support function as follows,

s1(x) = 1, s2(x) = x

We obtain the constrained expression in the following form.

y1 = g(x1) + η1 + η2x1 (2.14)

y2 = g(x2) + η1 + η2x2 (2.15)

By transforming η1 and η2 into matrix form,

y1 − g(x1)

y2 − g(x2)

 =

 1 x1

1 x2


η1η2


We can obtain the values of η1 and η2 as shown below.

η1 =
1

x2 − x1
[x2(y1 − g(x1))− x1(y2 − g(x2))]

η2 =
1

x2 − x1
[−(y1 − g(x1)) + (y2 − g(x2))]

By substituting η1 and η2 into Equations (2.14) and (2.15), we can obtain the constrained expression

for the BVP that satisfies the two constraints mentioned in Equation (2.13).

y(x, g(x)) = g(x) +
x− x2
x1 − x2

(y1 − g(x1)) +
x− x1
x2 − x1

(y2 − g(x2))
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2.3.1.4 Linear differential equations

This section discusses how to solve linear differential equations using the TFC. For this, we use

the Initial Value Problem (IVP) as an example. Equation (2.16), used as an example, represents a

second-order differential equation and its initial values.

f(x, y, ẏ, ÿ) = 0 subject to :


y(x1) = y1

ẏ(x1) = ẏ1

(2.16)

To solve Equation (2.16), we need to substitute the constrained expression mentioned in Equation

(2.12) according to the form of the differential equation. Since the above formula is a second-order

differential equation, the constrained expressions can be represented as follows.

y(x, g(x)) = g(x) + (y1 − g(x1)) + (x− x1)(ẏ1 − ġ(x1))

ẏ(x, g(x)) = ġ(x)− ġ(x1) + ẏ1

ÿ(x, g(x)) = g̈(x)

Moreover, to solve a differential equation using TFC, we need to use a “Basis function” (e.g.,

Chebyshev, Legendre orthogonal polynomials). For this, we need to discretize the domain and

represent it as collocation points. Here, x should be mapped to the domain ω ∈ [−1, 1].

ω + 1

2
=

x− x0
xf − x0

→ dω
dx

=
2

xf − x0
= c (2.17)

To discretize, we can use the following equation.

ωk = − cos
(k − 1)π

n− 1
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ẏ and ÿ, when expressed as derivatives with respect to ω, can be represented as follows, and the

value of c is indicated in Equation (2.17).

ẏ =
dy
dx

=
dy
dω
· dω

dx
= y′c

ÿ =
d(y′c)

dx
=

dy′

dω
· dω

dx
= y′′c2

In other words, if we express the constrained expression that changes the domain regarding x to

the domain regarding ω, it can be represented as follows.

y(ω, g(ω)) = g(ω) + (y1 − g(ω1)) + (ω − ω1)(y
′
1 − g′(ω1))

y′(ω, g(ω)) = c(g′(ω)− g′(ω1)) + y′1

y′′(ω, g(ω)) = c2g′′(ω)

g(ω) can be represented as follows. This is to solve the basis function in the form of least squares.

Here, ξ is an unknown value, which can be obtained by solving the least squares.

g(ω) = ξTh(ω) (2.18)

g′(ω) = ξTh′(ω) (2.19)

g′′(ω) = ξTh′′(ω) (2.20)

g(ω) is represented in the form of a basis function and least squares. In this context, the free func-

tion must be linearly independent from the support functions. In other words, since we assumed

the support function as x and 1 in this section, the free function must be at least a quadratic term.

This is because if it is not independent of the support function, the free function will be eliminated

along with the support function during the calculation. For this reason, when applying the basis
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function below, we include from L2, excluding L0 and L1 in the calculations.

ξTh(ω) =



L2(ω1) L3(ω1) . . . Lm(ω1)

L2(ω2) L3(ω2) . . . Lm(ω2)

...
...

...
...

L2(ωn) L3(ωn) . . . Lm(ωn)





ξ2

ξ3
...

ξm


=



y1

y2
...

yn


= g(ω)

When we substitute Equation (2.18 – 20) into the constrained expression, it becomes as follows.

y(ω, g(ω)) = ξT(h− h0 − ωh′0) + y1 + ωy′1 (2.21)

y′(ω, g(ω)) = ξT(h′ − h′0) + y′1 (2.22)

y′′(ω, g(ω)) = ξTh′′ (2.23)

After substituting Equation (2.21 – 23) into Equation (2.16), we express the left-hand side as ξTh,

and the right-hand side as the other terms.

f1(ξ
Th, ξTh′, ξTh′′) = f2(ω)

Then, by using the least squares in the form below,

Aξ =



a2(ω1) a3(ω1) . . . am(ω1)

a2(ω2) a3(ω2) . . . am(ω2)

...
...

...
...

a2(ωn) a3(ωn) . . . am(ωn)





ξ2

ξ3
...

ξm


=



b1

b2
...

bn


= b

we can obtain the unknown value as follows, and by substituting it into the differential equation

and calculating, we can get the solution.

ξ = (ATA)−1ATb (2.24)
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2.3.1.5 Nonlinear differential equations

This section discusses how to solve nonlinear differential equations using the TFC. To solve

a nonlinear differential equation, we convert the equation into a residual form and then use the

Newton method to find the unknown value, ξ. First, we convert the given equation into a residual

form and then substitute the constrained expression in the same way as mentioned above to make

it into the form shown below.

L(x, y, ẏ, ÿ) = 0

L(ω, y, cy′, c2y′′) = 0

L(ω, g, cg′, c2g′′) = 0

L(ω, ξTh, cξTh′, c2ξTh′′) = 0

Equation (2.25) is the Newton method, and at this time, the initial guess for ξ can use the ξ

obtained by solving the linear differential equation. Also, the Newton method is set to stop when

the difference (ξk+1 − ξk) is less than a user-specified tolerance, ε.

0 ≈ Lk +
dL
dξ

∣∣∣
k
(ξk+1 − ξk) (2.25)

where,

dL
dξ

=
∂L
∂y′′
· ∂y

′′

∂ξ
+
∂L
∂y′
· ∂y

′

∂ξ
+
∂L
∂y
· ∂y
∂ξ

(2.26)

Equation (2.26) is an application of the multivariable chain rule. Here, L represents the residual

form, y, y′, y′′ represent the first and second derivatives of y respectively, and ξ represents the

parameters we are trying to optimize. This equation reflects the fact that L depends on y, y′, y′′,

and y, y′, y′′ all depend on ξ. Therefore, this equation shows a method for computing the total
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derivative of L with respect to ξ.

Ak(ξk+1 − ξk) ≈ bk

If we transform Equation (2.25) for easier viewing, it becomes as above.

Here, Ak =
dL
dξ

, bk = −Lk. If we repeat the least squares until
∣∣ξk+1 − ξk

∣∣
2

< ε, we can obtain the

solution.

2.3.1.6 System of 3 equations in 3 unknowns

To solve m equations containing m variables through TFC, the following method is required.

For example, to solve the Two-body problem, it needs to simultaneously solve three equations

related to the Cartesian coordinates, namely x, y, and z. Equation (2.27) is the Two-body equation

converted into a residual form.

L = r̈r3 + µr = 0 (2.27)

When Equation (2.27) is solved into three equations for x, y, and z, it appears as follows.

L1 = ẍ(x2 + y2 + z2)3/2 + µx = 0

L2 = ÿ(x2 + y2 + z2)3/2 + µy = 0

L3 = z̈(x2 + y2 + z2)3/2 + µz = 0

Also, each of the initial unknown constants can be represented as follows.

ξ0 =


ξx0

ξy0

ξz0
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When represented as Equation (2.25), it appears as follows.

0 ≈ L1(ξx0) +
dL1

dξ

∣∣∣
0
(ξ1 − ξ0) = L1(ξx0) +

{
∂L1
∂ξx

∂L1
∂ξy

∂L1
∂ξz

}
0

(ξ1 − ξ0)

0 ≈ L2(ξy0) +
dL2

dξ

∣∣∣
0
(ξ1 − ξ0) = L2(ξy0) +

{
∂L2
∂ξx

∂L2
∂ξy

∂L2
∂ξz

}
0

(ξ1 − ξ0)

0 ≈ L3(ξz0) +
dL3

dξ

∣∣∣
0
(ξ1 − ξ0) = L3(ξz0) +

{
∂L3
∂ξx

∂L3
∂ξy

∂L3
∂ξz

}
0

(ξ1 − ξ0)

Each of the above equations is included in the calculation formula of the Jacobian matrix,

J0(ξ1 − ξ0) =


∂L1
∂ξx

∂L1
∂ξy

∂L1
∂ξz

∂L2
∂ξx

∂L2
∂ξy

∂L2
∂ξz

∂L3
∂ξx

∂L3
∂ξy

∂L3
∂ξz


0


ξx1 − ξx0

ξy1 − ξy0

ξz1 − ξz0

 = −


L1

L2

L3


0

= −L0

And it can be represented using the method of least squares as shown below,

J0(ξ1 − ξ0) = −L0

Using ξ0, the initial guess obtained from the process of solving a linear differential equation,

ξ1 = ξ0 − J−10 L0

The solution is obtained by iterating until it falls below the tolerance set by the user.

ξk+1 = ξk − J−1k Lk
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2.3.2 Perturbed orbit propagation using TFC

2.3.2.1 Solving unperturbed orbit propagation

As previously noted, the effectiveness of TFC was clearly demonstrated in Johnston’s study

[14]. That research evaluated TFC’s performance by comparing it with MATLAB’s numerical

propagator, ode113. But the study at hand takes a different approach, investigating how well

TFC performs when compared with Python’s solve_ivp function.

Python’s SciPy library includes a helpful function, solve_ivp, which is an effective tool

for solving ordinary differential equations (ODEs). It works by performing a process known as

“integration” over a specified time period. To put it simply, solve_ivp uses special tech-

niques to find an approximate solution to the ODEs. Typically, it employs the "RK45" method,

which efficiently finds a solution without overly straining computer resources. However, the prob-

lem’s specifics might demand the use of alternative methods like "RK23", "Radau", "BDF", and

"LSODA".

Table 2.1 showcases all the different methods compatible with the solve_ivp function in

Python’s SciPy library. It’s essential to note that the chosen method should match the problem’s

specific requirements, like the required accuracy of the solution, available computational resources,

and whether the system is “stiff” or “non-stiff”.

This study is not simply a reiteration of what’s been done before but instead expands the scope

of understanding of TFC by testing it in a novel way. This experiment isn’t only aimed at gaining

deeper insights about TFC, but also gauging its performance against a diverse range of tools. The

rationale behind choosing solve_ivp for this comparison is because of its widespread use in

Python for solving ODEs. Comparing TFC straight up with solve_ivp can help us understand

how TFC works better and show us where it might do a better job than the usual methods.

Furthermore, this broader perspective on TFC offers a chance to more fully appreciate its po-

tential and applicability. It’s not just about proving that TFC can hold its own against established

techniques, but also about exploring where and how it can offer new possibilities and advantages.
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The evaluation provides an opportunity to potentially uncover unique strengths and promising av-

enues for future exploration and application of TFC.

Method Description

RK45 Default method. It’s a Runge-Kutta method of order 5(4) and a good all-around

choice for most problems.

RK23 This is also a Runge-Kutta method but of order 3(2). It’s less accurate and requires

fewer computational resources than “RK45”.

Radau This is an implicit Runge-Kutta method of the Radau IIA family of order 5. It’s best

suited for stiff systems, and performs well on problems requiring high accuracy.

BDF This method is an implicit multi-step method suited for stiff systems,

especially when the problem involves long-term integration.

LSODA This method switches between “stiff” and “non-stiff” solvers as needed, making it

versatile for a variety of problems. “LSODA” stands for “Livermore Solver for

Ordinary Differential equations with Automatic method switching”.

Table 2.1: Methods of “solve_ivp” function in Python’s SciPy library

In this section, the performance of TFC and solve_ivp is compared using unperturbed orbit

propagation. Under perturbation conditions, a true solution does not exist, thus making it im-

possible to compare the performance of these two tools. However, under unperturbed conditions,

comparison becomes possible. This is due to the theoretical identical nature of the initial satellite

data and the data following one full orbit rotation.
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Monte Carlo test setting

This experiment is about propagating the Two-body problem equation, using both TFC and

solve_ivp methods.

r̈(t) = − µ

r3(t)
r(t) subject to :


r(t0) = r0

v(t0) = v0

(2.28)

The accuracy of each technique is determined by comparing the initial position & velocity vector

with the final position & velocity vector after propagating the satellite for one orbit.

Position Error =
∣∣r0 − r̂f ∣∣2 (2.29)

Velocity Error =
∣∣v0 − v̂f ∣∣2 (2.30)

Additionally, a Monte Carlo test is performed, which entails carrying out 10,000 tests and exam-

ining the outcomes. For this task, 10,000 sets of orbital elements are randomly generated based on

the conditions outlined in Table 2.2. Essentially, this means creating 10,000 orbits at random.

Orbit elements Range

rp : Perigee (km) RE + 500 ; RE + 5000

ra : Apogee (km) rp + 10 ; rp + 5000

i : Inclination (rad) 0 ; π

ω : Argument of periapsis (rad) 0 ; 2π

Ω : Right ascension of the ascending node (rad) 0 ; 2π

φ : True anomaly (rad) 0 ; 2π

Table 2.2: Randomly generated orbit elements
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Accuracy results

Figure 2.6: Position Error

Looking at Figure 2.6, the x-axis is the error between the initial position of the orbit and the

position after one orbit, measured in millimeters. The y-axis is the occurrence of each result.

The orange histogram bars present the outcomes for TFC, while the blue bars depict results from

solve_ivp. Overall, it looks like TFC is a lot more accurate than solve_ivp. However, it

also shows a wider spread, and a very small number of tests even show less accuracy. The reason

is that Runge-kutta (RK45) is an integrator with variable (optimized) step while TFC is not. TFC

can also distribute the discretization points in an optimized way, that is, by following the change

in dynamics. This has not been implemented in these Monte Carlo tests. Nevertheless, TFC seems

to be a lot more accurate than solve_ivp, which mostly uses the Runge_Kutta method. If TFC

were to use an optimized way similar to solve_ivp, it could probably get even better results.
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Figure 2.7: Velocity Error

In Figure 2.7, the x-axis shows the difference between the initial and final velocity of the orbit,

measured in millimeters per second. The y-axis counts how often each result happens. Orange

bars in the graph show TFC’s results, and blue bars show results from solve_ivp. Generally,

TFC is more exact than solve_ivp, similar to what we saw in Figure 2.6. Likewise, there’s

more variety in TFC’s results, and a tiny number of tests are less exact. Another interesting point

is that each operator shows about 1000 times more accuracy compared to the results in Figure 2.6.

This is because the velocity vector’s values are much lower than those of the position vector. This

could suggest that position vectors with lower numerical values (like Low Earth Orbit satellites)

may have higher accuracy than those with higher values (like Geostationary Orbit satellites). The

wide spread of TFC results is due to differences in each satellite orbit’s eccentricity, suggesting

that accuracy might decrease as eccentricity increases.
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Computational results

Figure 2.8: Runtime comparison

Figure 2.8 shows the runtime results for the experiment above. The x-axis shows the time it

takes to propagate one sample, or one orbit, and the y-axis shows the occurrence. According to the

results, it takes an average of about 2 seconds for TFC to propagate one orbit, while it takes about

3 seconds for solve_ivp. This means there’s a speed difference of about 1.5 times. This speed

difference is clearly noticeable in a Monte Carlo test that runs 10,000 times. In other words, TFC

is much faster than solve_ivp, and this advantage is clearly seen, especially in environments

where many tests need to be run.
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2.3.2.2 Differential equation for perturbed orbit propagation

The differential equation for perturbed orbit propagation is typically formulated as:

r̈(t) = − µ

r3(t)
r(t) + ap(r, rm) subject to :


r(t0) = r0

ṙ(t0) = ṙ0

(2.31)

where ap(r, rm) is the perturbing acceleration. For instance, using the third body perturbation

model for the Moon described by Vallado [19].

ap = −µm
r3m

[
r −

[
3
rTrm
r2m
− 15

2

(
rTrm
r2m

)2
]
rm

]

2.3.2.3 Deriving the constrained expressions

To get the IVP constrained expression for an orbit propagation that has to follow ri(0) = r0i

and vi(0) = v0i ( for i = 1, 2, 3 ), this formula is used:

ri(t) = gi(t) + η1i + η2it

Applying these constraints forms a set of equations which can be presented as follows:

r0i − g0iv0i − ġ0i

 =

 1 0

0 1


η1iη2i


The solution for η coefficients is found from these equations, which gives the final form of the

constrained expression:

ri(t) = gi(t) + r0i − g0i + (v0i − ġ0i)t

32



By defining the free function gi(t) as basis function,

gi(t) = ξT
ih(x(t))

The constrained expression and its derivatives as functions of ξi are,

ri(t) = ξT
i (h− h0 − tḣ0) + r0i + tv0i

vi(t) = ξT
i (ḣ− ḣ0) + v0i

ai(t) = ξT
i ḧ

2.3.2.4 Perturbed orbit propagation using the TFC method

The process of incorporating the problem’s constraints into a constrained expression allows

transforming the main differential equation provided by Equation (2.31) into a residual form. This

residual form comes in the following form where,

Li =

(
3∑
j=1

r2j

)3/2

(r̈i − api) + µri = 0, i = 1, 2, 3. (2.32)

The Jacobian is expressed as follows using the given residual form.

∂Li
∂ξj

=
d

dξi

(
3∑
j=1

r2j

)3/2

(r̈i − api) +

(
3∑
j=1

r2j

)3/2 [
− dapi

dξj

]

After the domain has been discretized, the Jacobian terms combine to form N × m matrices,

where N is the total number of points and m is the total number of basis functions. The Li terms

are N × 1. Finally, by combining these terms into an enhanced matrix and the residual forms into
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an augmented vector,

J =


∂L1
∂ξ1

∂L1
∂ξ2

∂L1
∂ξ3

∂L2
∂ξ1

∂L2
∂ξ2

∂L2
∂ξ3

∂L3
∂ξ1

∂L3
∂ξ2

∂L3
∂ξ3


(3N×3m)

, L =


L1

L2

L3


(3N×1)

Using a nonlinear least squares approach, the update equation for the ξi terms is provided by,


ξ1

ξ2

ξ3


k+1

=


ξ1

ξ2

ξ3


k

− (J T
kJk)

−1 J T
kLk

where k defines the current step in the nonlinear least squares method. This section details the

process of solving the differential equation associated with perturbed orbit propagation. What’s

left is to find the initial guess, ξ0. At this point, initial guess depends on the problem, but there is

no problem as it converges even if it’s applied 0.

34



2.3.3 Perturbed multi revolution Lambert problem using TFC

The orbit propagation mentioned above is an Initial Value Problem (IVP) that solves orbital

differential equation with initial conditions. On the other hand, the Lambert problem is a way of

finding the solution of the fundamental orbital differential equation given the position vectors r1

and r2 at different times t1 and t2. That is, the Lambert problem is a Boundary Value Problem

(BVP) that solves differential equations including boundary conditions. The Lambert problem is

basically a problem related to two position vectors and orbital flight time, which can be interpreted

and used in three ways as follows.

1. orbit determination : position vectors r1 and r2 and flight time ∆T are interpreted as obser-

vations of an unknown spacecraft and used to determine the orbit of the spacecraft,

2. orbit transfer : the position vector r1 is used to interpret the current orbit, r2 as the position in

the final orbit, and the flight time ∆T as variables, and to change the orbit of the spacecraft,

3. rendezvous : the position vector r1 is interpreted as the current position of the interceptor,

r2 as the position of the target spacecraft, and ∆T as the flight time, and is used for intercept

or rendezvous problems.

Figure 2.9: Lambert problem to solve 3 distinct problems
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2.3.3.1 Deriving the constrained expressions

The perturbed Lambert problem consists of the following Boundary Value Problme (BVP):

r̈ = − µ
r3
r + ap(r, ṙ) subject to :

{
r(0) = r0

r(∆T ) = rf

(2.33)

In this equation, ap is the perturbed acceleration, r0 and rf are the initial and final position vectors

of the Lambert arc, and ∆T indicates the Time of Flight (ToF). Based on Criscola’s study [15],

the TFC is utilized to resolve the Lambert problem by expressing the position vector, r(t), with a

model that overcomes the Cartesian coordinates issues with these variables: p(t), ϑ(t), and h(t).

They define the spacecraft’s position in the Lambert arc as a function of time, as follows:

r(t) = p(t)[cosϑ(t)r̂0 + sinϑ(t)t̂0] + h(t)ĥ0 (2.34)

where,

r̂0 =
r0
|r0|

, r̂f =
rf
|rf |

, ĥ0 =
r̂0 × r̂f
|r̂0 × r̂f |

, and t̂0 = ĥ0 × r̂0. (2.35)

Specifically, [r̂0,t̂0,ĥ0] form the three directions of an orthogonal reference frame which is defined

as long as the cross product r̂0 × r̂f exists, i.e., r̂0 and r̂f are not parallel. The variable p(t) is

the projection of the radius vector on the [r̂0,t̂0] plane, ϑ(t) is a parametric angle with no inherent

physical meaning (besides satisfying the bounds), and h(t) denotes the orthogonal projection of

the position vector with respect to the [r̂0,t̂0] plane. This formal representation to represent the

evolution of the radius vector is particularly apt when adopted by TFC. The first two derivatives of
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r(t) are:

ṙ(t) = [ṗ cosϑ− pϑ̇ sinϑ]r̂0 + [ṗ sinϑ+ pϑ̇ cosϑ]t̂0 + ḣĥ0 (2.36)

r̈(t) = [(p̈− pϑ̇2) cosϑ− (2ṗϑ̇+ pϑ̈) sinϑ]r̂0 + [(p̈− pϑ̇2) sinϑ+ (2ṗϑ̇+ pϑ̈) cosϑ]t̂0 + ḧĥ0

(2.37)

Figure 2.10: Three directions of an orthogonal reference frame

As a result, the position, velocity, and acceleration of the spacecraft are determined solely

with the three functionals across the entirety of the Lambert arc. The boundary constraints of the

variables are, 
p(0) = r0,

ϑ(0) = 0

h(0) = 0

and


p(∆T ) = rf

ϑ(∆T ) = ϑr + 2kπ

h(∆T ) = 0

(2.38)
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where,

r̂T
0r̂f = cosϑr, k : the number of revolutions (2.39)

Additionally, the three functionals, p(t), ϑ(t), and h(t), oscillate with the following approximate

mean frequency :

ω ≈ 2kπ + ϑr
∆T

(2.40)

These expected orbital oscillations are captured / absorbed by including in a vector of basis func-

tions the following additional term:

b(t) = A cosωt+B sinωt (2.41)

s(t) =


h(z)

cosωt

sinωt



T

(2.42)

where s(z) is the basis functions vector containing h(z), which corresponds to a set of orthogonal

polynomials of degreem, and the harmonic function presented in Equation (2.41). The vector h(z)

can be a set of polynomials, e.g. Legendre, Chebyshev, etc. This study chooses Legendre orthog-

onal polynomials to represent the basis function. The vector in Equation (2.42) is used to define a

trio of free functions gi(z), which are in turn used to form the functionals. Necessarily, there must

be three independent free functions to represent p(t), ϑ(t), and h(t). These three functions, gp(z),

gϑ(z), and gh(z), are expressed as follows :

gp(z) = ξT
ps(z), gϑ(z) = ξT

ϑs(z), and gh(z) = ξT
hs(z). (2.43)
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and,


ġp = ξT

pṡ, ġϑ = ξT
ϑṡ, ġh = ξT

hṡ

g̈p = ξT
ps̈, g̈ϑ = ξT

ϑs̈, g̈h = ξT
hs̈

(2.44)

where,

ṡ =


ch′

−ω sin(ωt)

ω cos(ωt)



T

and s̈ =


c2h′′

−ω2 cos(ωt)

ω2 sin(ωt)



T

(2.45)

Note that ξp, ξϑ, and ξh are the three unknown coefficient vectors associated to p(t), ϑ(t), and h(t).

The variable z corresponds to the domain basis functions, represented in the form of collocation

points due to the presence of the orthogonal polynomials in h(z). A linear mapping is introduced

between z and the time t,

z(t) =
2

∆T
t− 1 ∈ [−1,+1] → t(z) =

∆T

2
(z + 1) ∈ [0,∆T ] (2.46)

from which a mapping constant c is determined as follows:

ġ =
dg
dt

=
dg
dz
· dz

dt
= g′c = g′

2

∆T
and

dkg
dtk

=
dkg
dzk

ck (2.47)

In order to carry out this work, the approach takes advantage of the three constrained expressions

p(t), ϑ(t), and h(t). These are functionals that always satisfy the boundary constraints given in

Equation (2.38). They represent the whole set of functions satisfying the boundary constraints.

This is obtained by spanning all possible expressions of the free functions. The bounds given in
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Equation (2.38) allow TFC to derive the following expressions :


p(t, gp) = gp(z) +

∆T − t
∆T

[p0 − gp(−1)] +
t

∆T
[p(∆T )− gp(+1)]

ϑ(t, gϑ) = gϑ(z)− ∆T − t
∆T

gϑ(−1) +
t

∆T
[ϑr + 2kπ − gϑ(+1)]

h(t, gh) = gh(z)− ∆T − t
∆T

gh(−1)− t

∆T
gh(+1)

(2.48)

whose time derivatives, setting c = 2 / ∆T , are,


ṗ(t, gp) = cg′p(z) +

1

∆T
[p0 − gp(−1)] +

1

∆T
[p(∆T )− gp(+1)]

ϑ̇(t, gϑ) = cg′ϑ(z) +
1

∆T
gϑ(−1) +

1

∆T
[ϑr + 2kπ − gϑ(+1)]

ḣ(t, gh) = cg′h(z) +
1

∆T
gh(−1)− 1

∆T
gh(+1)

(2.49)

where g′p(z), g′ϑ(z), and g′h(z), indicate the first derivatives with respect to the basis functions

variable, z. The second derivativeds are,

p̈(t, gp) = c2g′′p(z), ϑ̈(t, gϑ) = c2g′′ϑ(z), and ḧ(t, gh) = c2g′′h(z) (2.50)

where ḟ=
df
dt

and f ′=
df
dz

. It is important to remove the constant and linear terms in h(z) given

that they have been already used to derive the constrained expressions in the above equations. The

set of Equation (2.48) constitute the TFC constrained expressions. It is trivial to verify that thesse

equations satisfy the boundary constraints for any expression of the free functions gp(z), gϑ(z),

and gh(z). Section 2.3.1 describes the theory to derive the constrained expressions associated to

a given set of constraints. These constraints are defined in terms of points, derivatives, integrals,

limits, and any linear combination of them in uni-variate and multi-variate cases. The complete

formulation has now been developed, and so the goal becomes to solve for ξp, ξϑ, and ξh. The

problem is an iterative one that is solved via least-squares.
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2.3.3.2 Nonlinear least-squares solution

The solution of the Lambert problem is represented by the trajectory described by r(t) satisfy-

ing the BVP defined by r(0) = r0 and r(T ) = rf , of the differential equation,

L = r̈ +
µ

r3
r − ap(r, ṙ) = 0 (2.51)

Using Equation (2.34), (2.36), (2.37), and Equation (2.48) - (2.50), this problem is solved by

estimating the unknown coefficients vectors, ξp, ξϑ, and ξh, by nonlinear least-squares. Therefore,

linearization around an estimated solution is obtained as follows for every coordinate



0 ≈ Lxk +

[
∂Lx
∂ξp

,
∂Lx
∂ξϑ

,
∂Lx
∂ξh

]
k


ξp

ξϑ

ξh


k

= Lxk + Jxkξk

0 ≈ Lyk +

[
∂Ly
∂ξp

,
∂Ly
∂ξϑ

,
∂Ly
∂ξh

]
k


ξp

ξϑ

ξh


k

= Lyk + Jxkξk

0 ≈ Lzk +

[
∂Lz
∂ξp

,
∂Lz
∂ξϑ

,
∂Lz
∂ξh

]
k


ξp

ξϑ

ξh


k

= Lzk + Jxkξk

(2.52)

from which the nonlinear least-squares solution is solved via an iterative process :

ξk+1 = ξk − (J T
kJk)

−1 J T
kLk (2.53)

Note that, in the above formulation, k represents the current iteration, ξk is a vector that in-

cludes ξp, ξϑ, and ξh, and Jk is the Jacobian matrix of the system. Such a matrix requires the eval-

uation of the partial derivatives with respect to the three unknown vectors of coefficients. Starting
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with the partial derivatives of the functionals with respect to ξp, ξϑ, and ξh,

∂p

∂ξp
=

∂ϑ

∂ξϑ
=

∂h

∂ξh
= s− ∆T − t

∆T
s0 −

t

∆T
sf (2.54)

∂ṗ

∂ξp
=

∂ϑ̇

∂ξϑ
=

∂ḣ

∂ξh
= ṡ+

s0
∆T
− sf

∆T
(2.55)

∂p̈

∂ξp
=

∂ϑ̈

∂ξϑ
=

∂ḧ

∂ξh
= s̈ (2.56)

which are used in the derivatives of r and r,

∂r

∂ξp
=

p√
p2 + h2

∂p

∂ξp
(2.57)

∂r

∂ξh
=

h√
p2 + h2

∂h

∂ξp
(2.58)

∂r

∂ξp
=

∂p

∂ξp
(r̂0 cosϑ+ t̂0 sinϑ) (2.59)

∂r

∂ξϑ
= p

∂ϑ

∂ξϑ
(−r̂0 sinϑ+ t̂0 cosϑ) (2.60)

∂r

∂ξh
=

∂h

∂ξh
ĥ0 (2.61)

Finally, the partials that correspond to the acceleration of the spaceraft are :

∂r̈

∂ξp
=

[(
∂p̈

∂ξp
− ∂p

∂ξp
ϑ̇2

)
cosϑ−

(
2
∂ṗ

∂ξp
ϑ̇+

∂p

∂ξp
ϑ̈

)
sinϑ

]
r̂0 (2.62)

+

[(
∂p̈

∂ξp
− ∂p

∂ξp
ϑ̇2

)
sinϑ−

(
2
∂ṗ

∂ξp
ϑ̇+

∂p

∂ξp
ϑ̈

)
cosϑ

]
t̂0 (2.63)
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∂r̈

∂ξϑ
=

[
−2pϑ̇

∂ϑ̇

∂ξϑ
cosϑ−

(
2ṗ

∂ϑ̇

∂ξϑ
+ p

∂ϑ̈

∂ξϑ

)
sinϑ

]
r̂0 (2.64)

+

[
−2pϑ̇

∂ϑ̇

∂ξϑ
sinϑ−

(
2ṗ

∂ϑ̇

∂ξϑ
+ p

∂ϑ̈

∂ξϑ

)
cosϑ

]
t̂0 (2.65)

− ∂ϑ

∂ξϑ

[(
p̈− pϑ̇2

)
sinϑ+

(
2ṗϑ̇+ pϑ̈

)
cosϑ

]
r̂0 (2.66)

+
∂ϑ

∂ξϑ

[(
p̈− pϑ̇2

)
cosϑ−

(
2ṗϑ̇+ pϑ̈

)
sinϑ

]
t̂0 (2.67)

∂r̈

∂ξh
=

∂ḧ

∂ξh
ĥ0 (2.68)

Thus, the Jacobian is finally computed with the above results:

∂L
∂ξp

=
∂r̈

∂ξp
− 3µ

r

r4
∂r

∂ξp
+
µ

r3
∂r

∂ξp
(2.69)
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∂ξϑ
− 3µ

r

r4�
�
�∂r
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r3
∂r

∂ξϑ
(2.70)

∂L
∂ξh

=
∂r̈

∂ξh
− 3µ

r

r4
∂r

∂ξh
+
µ

r3
∂r

∂ξh
(2.71)

where
∂r

∂ξϑ
= 0 because r2 = p2 + h2. That is, r does not depend on ξϑ. Note that Equation (2.69)

- (2.71) have missing partials of ap(r, ṙ). This is due to the fact that the perturbation applied in

this investigation are merely constant and random stresses added to the equations of motion in

order to prove flexibility of convergence. Future work includes expanding upon the formulation to

include perturbations that are time and position dependent. Once the formulation is completed, the

equations must be evaluated iteratively due to the indirect and direct dependence on ξp, ξϑ, and ξh.
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2.3.3.3 Initial guess

In this investigation, the initial guess for ξp0, ξϑ0, and ξh0 to start the nonlinear iterative process

is defined in two distinct ways :

1. If no prior knowledge is known about the particular problem, setting ξp0 = ξϑ0 = ξh0 = 0.

This means that the nonlinear iterative approach begins with an initial trajectory that linearly

changes the values of p(t), ϑ(t), and h(t), from their initial values to their final values.

2. If prior knowledge to the problem is known, and the ToF is desired to be varied or perturba-

tions are added, then the initial known trajectory using the constrained expressions. These

equations provide the guarantee that the boundary conditions are analytically satisfied.

Given an initial guess for ξp, ξϑ, and ξh is obtained, the nonlinear least-squares problem is solved.

2.3.3.4 Final solution : computation of the initial velocity

The solution of the perturbed / unperturbed Lambert problem is determined by the velocity at

the initial position, ṙ0. Equation (2.36) evaluated at initial time is :

ṙ0 = ṗ0r̂0 + p0ϑ̇0t̂0 + ḣ0ĥ0 (2.72)

where
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p0 = r0

ṗ0 = cg′p(−1) +
1

∆T
[rf − r0 + gp(−1)− gp(+1)]

ϑ̇0 = cg′ϑ(−1) +
1

∆T
[gϑ(−1) + ϑr + 2kπ − gϑ(+1)]

ḣ0 = cg′h(−1) +
1

∆T
[gh(−1)− gh(+1)]

(2.73)

Given this initial velocity, it is possible to propagate the resulting Lambert arc with traditional orbit

integrators.
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3. NUMERICAL EXAMPLES

This section demonstrates several numerical examples of PSS orbits based on constraints (orbit

shape, orbit orientation, and observation distance). The LEO satellite (ECHO-1), GEO satellite

(COSMOS-2350), and HEO satellite (FALCON) were used as examples to confirm the difference

in PSS orbit based on orbital altitude; the Two Line Elements (TLE) of the three satellites are listed

below.

1. Echo-1 (SatID : 00049), a satellite in LEO, whose TLE are

1 00053U 60009E 21027.13978946 -.00000093 00000-0 -70004-4 0 9992

2 00053 47.2764 289.1802 0100430 22.0030 338.5028 12.17252257695817

2. Cosmos-2350 (SatID : 25315), a satellite in GEO, whose TLE are

1 25315U 98025A 21026.52501575 -.00000120 00000-0 00000-0 0 9995

2 25315 13.2193 18.0058 0005455 68.2888 306.1394 1.00259395 83289

3. Falcon (SatID : 55684), a satellite in HEO, whose TLE are

1 55684U 23022B 23079.04434928 .00014710 00000+0 26348-2 0 9999

2 55684 27.1322 43.3082 7580232 180.5463 177.6030 1.92960517 555

And converting a given TLE into orbital elements is as follows.

a (km) b (km) i (deg) Ω (deg) ω (deg) ϕ (deg)

Echo-1 (LEO) 7982.66 7982.26 47.27 289.18 22.00 -0.80

Cosmos-2350 (GEO) 42168.20 42168.19 13.21 18.00 68.28880 -1.73

Falcon (HEO) 27253.53 17775.50 27.13 43.30 180.54 2.79

Table 3.1: Orbital elements of LEO, GEO, and HEO satellites
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The success of GA depends on the proper selection of its parameters. In this regard, the five key

parameters to consider are shown in Table 3.2. The number of generations specifies the number

of iterations during which the algorithm runs. The number of parents determines the number of

individuals that are selected to create the next generation. The number of chromosomes defines

the number of solutions that coexist in each generation, while the number of genes represents the

number of variables in each chromosome that define the solution space. Finally, the mutation

percent is the probability that each gene mutates during the evolution process.

GA Parameter Value

Number of generations 50

Number of parents 10

Number of chromosome 18

Number of genes 5

Mutation percent 20

TFC Parameter Value

Number of points (N) 200

Number of basis functions (m) 60

Convergence criteria (ε) 10−13

Table 3.2: Input GA & TFC parameters for Monte Carlo test

The number of points of discretization and the number of basis functions are both important

TFC parameters that affect the accuracy and computational complexity of numerical methods such

as least squares. Discretization refers to the process of approximating a continuous function with a

set of discrete points. The number of points of discretization refers to the number of discrete points

used to represent the continuous function. Basis functions are used to represent the approximation

of a function in terms of a linear combination of a set of functions. The number of basis functions

refers to the number of functions used to represent the approximation. A higher number of these

typically results in a more accurate approximation, but also increases the computational complexity

of the method. The convergence criteria refers to a small positive number that is used to determine

when the iteration has converged to a solution. It is used as the stopping criterion for the TFC

nonlinear least square. The values of the TFC parameters used in this test are shown in Table 3.2.
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3.1 Monte Carlo Test

For the LEO, GEO, and HEO cases without perturbations, we first do a Monte Carlo test. In

order to determine the PSS orbit, it is necessary to confirm the parameter ranges for the constraints

(orbit shape, orbit orientation, and observation distance). There are two steps to the Monte Carlo

test. In the first stage, 10,000 random constraint values, specifically the orbit shape parameter and

orbit orientation parameter, are assigned to investigate the observation percentage within the range

of these two variables. (In essence, each variable is randomly selected 10,000 times within the

range values presented in Table 3.3.) The percentage of an orbit cycle that the chaser can observe

the target is referred to as the observation percentage. It stands for the proportion of time that

the distance between the two satellites is within the parameters for observational distance. (Note

that the parameters for the observation distance, dmax and dmin, are fixed at 10 km and 0.01 km,

respectively, for all tests.)

First Test LEO GEO HEO

Ntrial 10,000 10,000 10,000

δβ (km) 0–100 0–1 0–100

φ (deg) 0–1 0–0.3 0–1

Second Test LEO GEO HEO

Ntrial 10,000 10,000 10,000

δβ (km) 0–5 0–0.05 0–1

φ (deg) 0–0.05 0–0.0005 0–0.01

Table 3.3: Input test parameters for Monte Carlo test

The second stage involves identifying the zone where the observation percentage exhibits

100%, which corresponds to the range of the two parameters that yield a 100% result, based on

the findings from the first stage. This test is conducted by adjusting the parameter range for each

orbit and subsequently carrying out an additional 10,000 tests to obtain the results. The adjusted

parameter ranges are depicted in Table 3.3.
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3.1.1 Examples #1 : Echo-1, a satellite in LEO

Figure 3.1: 2D interpolation contour plot for LEO observation percentage
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Figure 3.1 illustrates the results for LEO using a 2D interpolation contour plot to display the

outcomes based on the two parameters. The first plot represents the results of the initial Monte

Carlo test, while the second plot shows the results of the subsequent Monte Carlo test. Upon

examining the first plot, it can be observed that lower values for both parameters correspond to

higher observation results, whereas higher values for both parameters yield lower observation re-

sults. Additionally, it is evident that the φ (orbit orientation parameter) has a more significant

impact on the observation results than the δβ (orbit shape parameter). The second test was carried

out with further adjustments to the parameter ranges, based on the findings from the first test. Ex-

amining the second plot, clusters of yellow shapes can be seen, indicating that within this range,

the observation results reach 100%. In conclusion, the LEO example demonstrates that the optimal

observation results can be obtained within the range of δβ (0–5 km) and φ (0–0.05 deg).

Figure 3.2: Monte Carlo test histogram for obs distance mean values (LEO)

Figure 3.2 presents the results of the second test in the form of a histogram. The x-axis rep-

resents the mean value of observation distance between the chaser and the target during one orbit

cycle, while the y-axis displays the occurrences of the Monte Carlo test results. The red dashed
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line indicates the mean value of all the results, and the orange dashed line represents the standard

deviation. Consequently, the overall mean value for this test is approximately 5 km, and the major-

ity of the results fall within the observation distance range of 0.01–10 km. This implies that most

of the Monte Carlo test outcomes satisfy the 100% observation result criterion.

Figure 3.3: Monte Carlo test plot for Mean & STD values (LEO)

Figure 3.3 depicts a plot of the mean value of the distance between the two satellites and the

standard deviation for each sample in the Monte Carlo test. One observation that can be derived

from this plot is that the distance between the chaser and the target during one orbit cycle remains

relatively consistent and does not deviate significantly from the mean value. This characteristic

can be attributed to the near-zero eccentricity of the LEO.
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3.1.2 Examples #2 : Cosmos-2350, a satellite in GEO

Figure 3.4: 2D interpolation contour plot for GEO observation percentage
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Aside from two parameter ranges, which are the same as the previous LEO tests, Figure 3.4

illustrates the results obtained for GEO. It can be deduced that the parameter ranges must be sig-

nificantly smaller in the GEO case because of the GEO’s noticeably larger size compared to LEO.

Examining the first plot, similar to the LEO results, it can be observed that lower values of the two

parameters correspond to higher observation outcomes, while higher values of the parameters re-

sult in lower observation outcomes. Likewise, it is evident that the φ (orbit orientation parameter)

value has a greater impact on the observation outcome compared to the δβ (orbit shape parame-

ter) value, consistent with the LEO findings. The second test is conducted by adjusting the two

parameter ranges to lower values, based on the results of the first test. It is clear that the parameter

range values are much smaller for GEO compared to LEO. In the second plot, similarly, clusters of

yellow shapes can be observed, which indicate that within this range, a 100% observation outcome

is achieved. The optimal observation results in GEO are found to be within the parameter ranges

of δβ (0–0.05 km) and φ (0–0.0005 degree), it can be concluded.

Figure 3.5: Monte Carlo test histogram for obs distance mean values (GEO)

Figure 3.5 illustrates the results of the second Monte Carlo test for the GEO in the form of a
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histogram. Similar to the LEO results, the overall average value is approximately 5 km, and the

majority of the results fall within the observation distance range of 0.01–10 km. This again implies

that most of the test outcomes satisfy the 100% observation result criterion.

Figure 3.6: Monte Carlo test plot for Mean & STD values (GEO)

Figure 3.6 presents the mean value and standard deviation results for each sample in the GEO

Monte Carlo test. When compared to the LEO results, there are no significant differences except

for slightly higher values. Similarly, the GEO test demonstrates that the distance between the

chaser and the target during one orbit cycle remains relatively consistent and does not deviate

significantly from the mean value. This is also due to the near-zero eccentricity of GEO, similar to

LEO.
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3.1.3 Examples #3 : Falcon, a satellite in HEO

Figure 3.7: 2D interpolation contour plot for HEO observation percentage
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Figure 3.7 presents the results for HEO. Unlike LEO and GEO, HEO is characterized by a sig-

nificantly high eccentricity. Consistent with the LEO and GEO findings, lower values of the two

parameters yield higher observation outcomes, and the φ (orbit orientation parameter) value has a

greater impact on the observation outcome compared to the δβ (orbit shape parameter) value. The

two parameter ranges are changed to lower values for the second test. Clusters of yellow shapes

can be seen on the second plot, indicating that within this range, a 100% observation outcome is

attained. There is a small variation from the first two findings, though. As the φ value approaches

0, the observation outcome becomes considerably lower. This phenomenon occurs because the

observation distance between the chaser and the target decreases significantly, increasing the like-

lihood of collision. Understanding the impact of these parameters in HEO is crucial for optimizing

observation performance and minimizing the risk of collisions, which is essential for the safe and

efficient operation of satellites in highly elliptical orbits.

Figure 3.8: Monte Carlo test histogram for obs distance mean values (HEO)

Figure 3.8 displays the results of the second Monte Carlo test for HEO in the form of a his-

togram. With an average observation distance value of around 1 km, it can be inferred that the
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HEO results have been optimized to be closer to the target compared to the LEO and GEO results.

Nevertheless, the majority of the results still fall within the observation distance range of 0.01–10

km, which implies that the outcomes satisfy the 100% observation result criterion.

Figure 3.9: Monte Carlo test plot for Mean & STD values (HEO)

Figure 3.9 presents the mean value and standard deviation results for each sample in the HEO

Monte Carlo test. As previously mentioned, it can be confirmed once again that the optimization

has been achieved to maintain an average distance of approximately 1 km from the target. Unlike

the LEO and GEO results, a larger standard deviation value can be observed relative to the mean

value. This is due to the higher eccentricity of HEO, which sets it apart from LEO and GEO.
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3.2 Sample Test

In this study, we obtained 10,000 datasets for each of the Low Earth Orbit (LEO), Geostationary

Earth Orbit (GEO), and Highly Elliptical Orbit (HEO) examples through Monte Carlo simulations.

We aim to examine the relative distance between the chaser and target spacecraft over one orbital

period by extracting four samples from each example. The criterion for selecting these samples

is to randomly choose four instances where the average relative distance between the chaser and

target over one orbital period lies between 10 and 100 meters from the pool of 10,000 datasets

in each example. The sample data for each example can be found in Table 3.4. Additionally, we

incorporate the effects of third-body perturbations to investigate their impact on each orbit. In this

context, the third body is assumed to be the Moon, while the lunar orbital motion is not considered.

This is because the change in the Moon’s position over the duration of one orbital period for each

example does not significantly influence the experimental results.

LEO Scenario I–IV Orbit shape Orbit orientation Observation distance
(Echo-1) δβ (km) φ (deg) dmax, dmin (km)

I 4.83343 0.01694 10, 0.01
II 1.01045 0.0006 10, 0.01
III 0.11282 0.00353 10, 0.01
IV 0.03542 0.00019 10, 0.01

GEO Scenario I–IV Orbit shape Orbit orientation Observation distance
(Cosmos-2350) δβ (km) φ (deg) dmax, dmin (km)

I 0.04189 0.00035 10, 0.01
II 0.03459 0.0003 10, 0.01
III 0.02162 0.00022 10, 0.01
IV 0.00939 0.00045 10, 0.01

HEO Scenario I–IV Orbit shape Orbit orientation Observation distance
(Falcon) δβ (km) φ (deg) dmax, dmin (km)

I 0.70717 0.00034 10, 0.01
II 0.63895 0.00009 10, 0.01
III 0.40296 0.00004 10, 0.01
IV 0.21765 0.00074 10, 0.01

Table 3.4: Constraints for each scenario
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3.2.1 Examples #1 : Echo-1, a satellite in LEO

Figure 3.10: Observable distance with third body (Moon) perturbations in LEO

Figure 3.10 presents a plot of the relative distance between two satellites over one orbital pe-

riod, taking into consideration the Moon’s perturbation effects on the orbits, based on four scenar-

ios extracted from a LEO example. The x-axis of the plot represents the time duration of one orbit

of Echo-1, while the y-axis illustrates the relative distance in meters between the two satellites,

namely the chaser and target satellites. For the Monte Carlo test, only samples with average rela-

tive distances ranging from 10 to 100 meters were randomly selected. However, it is important to

note that some discrepancies, as seen in Scenario I, may occur. This is attributed to the fact that the

GA was executed again, taking into account the perturbation effects. On the other hand, Scenarios

II through IV demonstrate that the observed distances are consistently maintained within the 10 to

100 meter range, and it can be concluded that 100% observation is possible for all scenarios during
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one orbital period. In spite of perturbations, the stability of the relative distance between the two

satellites is also seen. This can be explained by the lower altitude of LEO compared to other orbits,

which makes the satellites only little affected by the Moon’s gravitational pull.

Scenario I
Position (km) Rx = 4251.69000592 Ry = −6321.70327886 Rz = 2099.30266777
Velocity (km/s) Vx = 3.41585014 Vy = 3.92198011 Vz = 4.88852825

Scenario II
Position (km) Rx = 4251.753816 Ry = −6321.73178791 Rz = 2099.32382177
Velocity (km/s) Vx = 3.41580696 Vy = 3.92195867 Vz = 4.88849368

Scenario III
Position (km) Rx = 4251.76064 Ry = −6321.72851888 Rz = 2099.30962918
Velocity (km/s) Vx = 3.41580828 Vy = 3.92195735 Vz = 4.88849736

Scenario IV
Position (km) Rx = 4251.76462759 Ry = −6321.74191929 Rz = 2099.32930621
Velocity (km/s) Vx = 3.41579639 Vy = 3.92195271 Vz = 4.88848576

Target (Echo-1)
Position (km) Rx = 4251.78804498 Ry = −6321.76187171 Rz = 2099.34099662
Velocity (km/s) Vx = 3.41577373 Vy = 3.92194092 Vz = 4.88846971

Table 3.5: Initial position & velocity vectors in LEO

Table 3.5 presents the results of the initial position vectors and initial velocity vectors for each

scenario. It can be observed that all the obtained values are in close proximity to the target’s initial

values. This indicates that by propagating the initial values of these scenarios, it is possible to

satisfy the requirements for the PSS orbit.
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Figure 3.11: 3D view of PSS orbit to ECHO-1 in LEO

In conclusion, the analysis presented in Figure 3.10 and Table 3.5 demonstrates the importance

of considering Moon perturbations when evaluating the relative distances between satellites in

LEO. The results show that, despite some discrepancies, the majority of the scenarios maintain

the observed distances within the desired range of 10 to 100 meters, enabling 100% observation

during one orbital period. The stability of the relative distance between the two satellites, even in

the presence of perturbations, highlights the resilience of LEO orbits due to their lower altitude,

which results in satellites experiencing only minor effects from the Moon’s gravitational forces.

Furthermore, the close proximity of the initial position and velocity vectors to the target’s initial

values indicates the potential for achieving the requirements of the PSS orbit by propagating these

initial values.
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3.2.2 Examples #2 : Cosmos-2350, a satellite in GEO

Figure 3.12: Observable distance with third body (Moon) perturbations in GEO

Figure 3.12 depicts a plot of the relative distance between two satellites over one orbital period,

considering the Moon’s perturbation effects on the orbits, based on four scenarios extracted from

a GEO example. The x-axis of the plot signifies the time duration of one orbit of Cosmos-2350,

while the y-axis represents the relative distance in kilometers between the two satellites, namely

the chaser and target satellites. The green line indicates the observable range where the chaser

can monitor the target, whereas the red line represents the unobservable range. The observation

percentage for each scenario during one orbital period is displayed in Table 3.6. Similar to the

LEO example, only samples with average relative distances ranging from 10 to 100 meters were

randomly selected in the Monte Carlo test. However, some discrepancies in the results are evi-

dent. This is due to the re-execution of the GA while considering the perturbation effects. The
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Scenario Observation percentage
(%)

I 47.49
II 94.80
III 73.31
IV 98.53

Table 3.6: Observation percentage for each scenario in GEO

GEO’s higher altitude compared to LEO results in a greater influence from the Moon’s gravita-

tional forces. As a result, after one orbital period, the impact of Moon perturbations causes the

distance between the two satellites to quickly rise, as seen in all cases. These results highlight the

necessity of taking perturbations into account when calculating satellite-relative distances, partic-

ularly in higher-altitude orbits like GEO.

Scenario I
Position (km) Rx = 4318.93720574 Ry = 40973.90459632 Rz = 8840.11256105
Velocity (km/s) Vx = −3.05273857 Vy = 0.26129291 Vz = 0.28004449

Scenario II
Position (km) Rx = 4316.29558763 Ry = 40978.29072781 Rz = 8841.1433572
Velocity (km/s) Vx = −3.05245631 Vy = 0.26105819 Vz = 0.27996538

Scenario III
Position (km) Rx = 4317.32723074 Ry = 40976.36419284 Rz = 8840.74775681
Velocity (km/s) Vx = −3.05258147 Vy = 0.26115216 Vz = 0.27999679

Scenario IV
Position (km) Rx = 4316.16191924 Ry = 40978.15795131 Rz = 8841.40438042
Velocity (km/s) Vx = −3.05246356 Vy = 0.26104756 Vz = 0.27996685

Target (Cosmos-2350)
Position (km) Rx = 4314.51562913 Ry = 40980.80869905 Rz = 8841.78544129
Velocity (km/s) Vx = −3.05229728 Vy = 0.26090416 Vz = 0.27991828

Table 3.7: Initial position & velocity vectors in GEO
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Table 3.7 displays the outcomes for both initial position vectors and initial velocity vectors

across various scenarios. A close alignment between all the derived values and the target’s initial

values is evident.

Figure 3.13: 3D view of PSS orbit to COSMOS-2350 in GEO

In summary, the analysis presented in Figure 3.12 and Table 3.7 highlights the significance

of considering Moon perturbations when examining the relative distances between satellites in

higher-altitude orbits such as GEO. Despite some discrepancies, the close alignment of the initial

position and velocity vectors with the target’s initial values indicates the potential for meeting the

requirements of the PSS orbit by propagating these values. The rapid increase in the distance

between the two satellites after one orbital period, as a result of Moon perturbations, emphasizes

the importance of factoring in these effects when analyzing satellite-relative distances in GEO.
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3.2.3 Examples #3 : Falcon, a satellite in HEO

Figure 3.14: Observable distance with third body (Moon) perturbations in HEO

Figure 3.14 presents a plot of the relative distance between two satellites over one orbital pe-

riod, taking into account the Moon’s perturbation effects on the orbits, based on four scenarios

extracted from a HEO example. The observation percentage for each scenario during one orbital

period is displayed in Table 3.8. As with the LEO and GEO examples, only samples with average

relative distances ranging from 10 to 100 meters were randomly selected in the Monte Carlo test.

However, unlike the LEO and GEO examples, the relative distances between the two satellites are

not consistently maintained. HEO orbits have a high eccentricity, resulting in significant velocity

differences when the satellite is closer to Earth compared to when it is farther away. These fac-

tors contribute to the susceptibility of HEO orbits to the influence of Moon perturbations. Upon

examining the results of Scenarios I to III, red lines can be observed, which can be interpreted
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Scenario Observation percentage
(%)

I 94.56
II 80.88
III 18.31
IV 100

Table 3.8: Observation percentage for each scenario in HEO

as instances where the relative distance between the two satellites dropped below the minimum

observation distance of 10 meters, leading to potential collisions. This further emphasizes the

importance of considering the unique characteristics of different orbits and the impact of Moon

perturbations on satellite-relative distances for efficient space mission planning and satellite de-

sign.

Scenario I
Position (km) Rx = −4558.4164869 Ry = −4767.05735843 Rz = −175.33095614
Velocity (km/s) Vx = 6.56580509 Vy = −6.40558939 Vz = −4.69638582

ScenarioII
Position (km) Rx = −4558.40392023 Ry = −4767.07533844 Rz = −175.33908559
Velocity (km/s) Vx = 6.56581682 Vy = −6.40557503 Vz = −4.69638019

Scenario III
Position (km) Rx = −4558.38258604 Ry = −4767.11065221 Rz = −175.35788301
Velocity (km/s) Vx = 6.56583951 Vy = −6.40554229 Vz = −4.69637114

Scenario IV
Position (km) Rx = −4558.40065543 Ry = −4767.07007372 Rz = −175.32665345
Velocity (km/s) Vx = 6.56581284 Vy = −6.40558007 Vz = −4.69639133

Target (Falcon)
Position (km) Rx = −4558.382533 Ry = −4767.11799905 Rz = −175.36225963
Velocity (km/s) Vx = 6.5658416 Vy = −6.40553472 Vz = −4.69636804

Table 3.9: Initial position & velocity vectors in HEO
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Table 3.9 showcases the results for both initial position vectors and initial velocity vectors

across various scenarios. A close alignment between all the derived values and the target’s initial

values is evident. This suggests that by propagating the initial values from these scenarios, the PSS

orbit’s conditions can be successfully met.

Figure 3.15: 3D view of PSS orbit to FALCON in HEO

The HEO example demonstrates the varying behavior of satellite-relative distances in compar-

ison to LEO and GEO examples, highlighting the importance of considering orbital eccentricity

and the influence of Moon perturbations on satellite behavior. Ultimately, this study emphasizes

the importance of comprehensive analysis and accurate initial value determination in achieving

mission objectives and efficiently utilizing PSS orbits for space engineering applications.
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3.3 n-Impulse Persistent Space Surveillance Orbit

In this chapter, we aim to conduct experiments assuming the transition from the current orbit to

another without perturbations. In other words, it could be said that this is an experiment to achieve

the PSS orbit through an orbit transfer. The main goal of this is to more practically use the findings

regarding the PSS orbit. We believe that our experiment’s findings will lead to more real-world

solutions to issues like clearing space of debris and spacecraft rendezvous.

The core problem we address involves reaching the PSS orbit through n-impulse from the

chaser spacecraft. The key is to maneuver with the least amount of fuel possible, achieved through

the utilization of a GA. Further explanation on this approach can be found in the PCE research

conducted by Clocchiattis [1]. The distinguishing feature of our study compared to Clocchiattis’s

is that while their research targeted finding the PCE orbit through n-impulse, our study focuses

on achieving the PSS orbit. In designing the experiment, we select one of the three satellite TLEs

mentioned earlier as the chaser, and another one as the target. The experimental design consists of

three scenarios, each of which is conducted with varying impulses (as depicted in Table 3.10).

Scenario Example n-impulse
I LEO (Echo-1)→ GEO (Cosmos-2350) 5
II LEO (Echo-1)→ HEO (Falcon) 4
III HEO (Falcon)→ GEO (Cosmos-2350) 3

Table 3.10: Scenario for n-impulse

The successful transition from one orbit to another, specifically to a PSS orbit, represents a

significant advancement in space exploration. This could potentially provide us with the ability to

optimize and manage satellite trajectories more efficiently. Additionally, the use of GA reduce fuel

consumption. It might open the door for better and more effective maneuvering techniques, which

would greatly increase the cost-effectiveness of both scientific and commercial space missions.
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3.3.1 Examples #1 : 5-impulses from LEO (Echo-1) to GEO (Cosmos-2350)

Figure 3.16: 5-impulses PSS orbit

The results displayed in Figure 3.16 represent the achievement of the PSS orbit through a 5-

impulses orbit transfer from LEO with Echo-1 to GEO with Cosmos-2350. The blue dots, which

appear overlaid with the red dots, represent the chaser satellite, Echo-1, and the blue line illustrates

its trajectory. Similarly, the red dots (which appear overlaid with the blue dots) represent the target

satellite, Cosmos-2350, and the red line traces its trajectory.
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Figure 3.17: Distance between chaser and target (from LEO to GEO)

The outcomes in Figure 3.17 show that it is possible to calculate the relative distance between

the chaser and the target. The plot on the left represents the relative distance during three revo-

lutions (or three periods) of the target around the Earth, while the plot on the right illustrates the

relative distance following the chaser’s proximity to the target (i.e., immediately after achieving the

PSS orbit). Observing the relative distance after achieving the PSS orbit, it can be noted that the

distance throughout the entire section is less than 10km, indicating that it is observable. However,

as time progresses, the distance is seen to gradually narrow, implying a closer approach. De-

pending on the direction of the problem we wish to apply, this can be adjusted through additional

impulses.

Moreover, Table 3.11 presents detailed information at each impulse stage. It shows the time

and position vector at each impulse point, along with the subsequent velocity vector determined

by the amount of fuel used. In other words, it can be inferred that the chaser approaches the target

using a minimum amount of fuel (Total ∆v = 5.3765 km/s) over the course of five impulses, and

achieves the PSS orbit using the final impulse at the position of the initial encounter with the target.
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Impulse 1 |∆v1| = 0.9013 km/s Time = 3219 sec
Position (km) Rx = −3073.1390 Ry = 7433.5708 Rz = −498.4336
∆v (km/s) ∆vx = −0.74243771 ∆vy = −0.3188351 ∆vz = −0.39936084
Velocity (km/s) Vx = −5.02582412 Vy = −2.41054436 Vz = −5.52403852

Impulse 2 |∆v2| = 0.6356 km/s Time = 26823 sec
Position (km) Rx = −6723.0586 Ry = −1453.2412 Rz = −6816.9354
∆v (km/s) ∆vx = −0.04284056 ∆vy = −0.2719486 ∆vz = −0.5729612
Velocity (km/s) Vx = 0.64167716 Vy = −6.78282266 Vz = −2.03134288

Impulse 3 |∆v3| = 1.2446 km/s Time = 38485 sec
Position (km) Rx = 948.7371 Ry = 8016.2030 Rz = 3988.6705
∆v (km/s) ∆vx = −1.18211592 ∆vy = −0.38412085 ∆vz = 0.06434305
Velocity (km/s) Vx = −6.85098483 Vy = 0.7658522 Vz = −4.7632754

Impulse 4 |∆v4| = 2.3195 km/s Time = 51598 sec
Position (km) Rx = 9501.7957 Ry = −32093.7709 Rz = −6112.5128
∆v (km/s) ∆vx = 1.6457271 ∆vy = 1.13774507 ∆vz = −1.17368843
Velocity (km/s) Vx = 3.5079447 Vy = 0.70413153 Vz = 0.02865225

Impulse 5 |∆v5| = 0.2753 km/s Time = 77337 sec
Position (km) Rx = 28596.2227 Ry = 30598.1357 Rz = 4759.1705
∆v (km/s) ∆vx = −0.19060618 ∆vy = 0.03865562 ∆vz = 0.19491166
Velocity (km/s) Vx = −2.24991289 Vy = 2.00614418 Vz = 0.61154057

Target (Cosmos-2350)
Position (km) Rx = 28596.2533 Ry = 30598.1685 Rz = 4759.1756
Velocity (km/s) Vx = −2.2499087 Vy = 2.00614395 Vz = 0.61154021

Table 3.11: The information of each impulse (from LEO to GEO)
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3.3.2 Examples #2 : 4-impulses from LEO (Echo-1) to HEO (Falcon)

Figure 3.18: 4-impulses PSS orbit

The results shown in Figure 3.18 demonstrate the achievement of the PSS orbit through a 4-

impulses orbit transfer from LEO with Echo-1 to HEO with Falcon. By examining the results in

Figure 3.19, we can observe the relative distance between the chaser and the target. After achieving

the PSS orbit, the relative distance indicates less than 10km in some sections, presenting a slightly

different result compared to the first example. This variation is due to the orbit characteristics of

the HEO. The speed of an HEO satellite is fast when it is close to Earth and slow when it is further

away, thus leading to the observed pattern in relative distance. Also, Table 3.12 provides detailed

information at each impulse stage. It can be confirmed that the chaser approaches the target using

a minimal amount of fuel (Total ∆v = 5.5236 km/s) over the course of 4-impulses, achieving the

PSS orbit using the final impulse at the position of the initial encounter with the target.
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Figure 3.19: Distance between chaser and target (from LEO to HEO)

Impulse 1 |∆v1| = 1.2663 km/s Time = 12981 sec
Position (km) Rx = −1410.2144 Ry = −6800.2025 Rz = −3861.3247
∆v (km/s) ∆vx = 1.1935191 ∆vy = −0.3363606 ∆vz = −0.25700177
Velocity (km/s) Vx = 6.15881989 Vy = −3.53014315 Vz = 3.68479273

Impulse 2 |∆v2| = 0.8385 km/s Time = 23983 sec
Position (km) Rx = −3856.9711 Ry = −4864.0070 Rz = −5113.5174
∆v (km/s) ∆vx = 0.7388613 ∆vy = −0.30378155 ∆vz = 0.25483467
Velocity (km/s) Vx = 6.01158464 Vy = −5.80367199 Vz = 2.42682585

Impulse 3 |∆v3| = 3.2429 km/s Time = 39661 sec
Position (km) Rx = −2661.9535 Ry = 21898.8134 Rz = 6930.3380
∆v (km/s) ∆vx = −0.41878513 ∆vy = −2.55623787 ∆vz = 1.95113139
Velocity (km/s) Vx = −2.64723063 Vy = −3.61736569 Vz = −0.27890955

Impulse 4 |∆v4| = 0.1758 km/s Time = 63418 sec
Position (km) Rx = 36941.0468 Ry = 28974.8429 Rz = −2180.1239
∆v (km/s) ∆vx = 0.08433895 ∆vy = −0.12608582 ∆vz = 0.0889722
Velocity (km/s) Vx = −0.38285021 Vy = 1.33742811 Vz = 0.63327669

Target (Falcon)
Position (km) Rx = 36941.0467 Ry = 28974.8429 Rz = −2180.1239
Velocity (km/s) Vx = −0.38285021 Vy = 1.33742811 Vz = 0.63327669

Table 3.12: The information of each impulse (from LEO to HEO)
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3.3.3 Examples #3 : 3-impulses from HEO (Falcon) to GEO (Cosmos-2350)

Figure 3.20: 3-impulses PSS orbit

The results displayed in Figure 3.20 represent the achievement of the PSS orbit through a 3-

impulses orbit transfer from HEO with Falcon to GEO with Cosmos-2350. Looking at the results

in Figure 3.21, we can determine the relative distance between the chaser and the target. After

achieving the PSS orbit, the relative distance throughout the entire section is less than 10km, and

similar to the first example, we can observe that the distance gradually decreases over time. For

consistent observation, the relative distance must maintain a certain range; thus, this issue can be

addressed as future work. Also, Table 3.13 provides detailed information at each impulse stage.

Consistently, it can be confirmed that the chaser approaches the target using a minimum amount of

fuel (Total ∆v = 3.1470 km/s) over the course of three impulses and achieves the PSS orbit using

the final impulse at the position of the first encounter with the target.
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Figure 3.21: Distance between chaser and target (from HEO to GEO)

Impulse 1 |∆v1| = 0.6179 km/s Time = 14042 sec
Position (km) Rx = 37083.9520 Ry = 21666.8390 Rz = −4955.4068
∆v (km/s) ∆vx = −0.27171912 ∆vy = 0.54118044 ∆vz = 0.12333019
Velocity (km/s) Vx = 0.0801171 Vy = 2.37815288 Vz = 0.68464445

Impulse 2 |∆v2| = 0.8221 km/s Time = 30257 sec
Position (km) Rx = 21193.7215 Ry = 44789.5200 Rz = 6833.6512
∆v (km/s) ∆vx = −0.44719415 ∆vy = −0.46781232 ∆vz = −0.507007
Velocity (km/s) Vx = −2.19460529 Vy = −0.0813905 Vz = 0.14625894

Impulse 3 |∆v3| = 1.7069 km/s Time = 65458 sec
Position (km) Rx = 42021.9464 Ry = −1147.2777 Rz = −3307.5865
∆v (km/s) ∆vx = −1.49297784 ∆vy = 0.74612908 ∆vz = 0.35782932
Velocity (km/s) Vx = 0.13220866 Vy = 2.99985167 Vz = 0.66056383

Target (Cosmos-2350)
Position (km) Rx = 42021.9481 Ry = −1147.2777 Rz = −3307.5867
Velocity (km/s) Vx = 0.13221286 Vy = 2.99985143 Vz = 0.66056347

Table 3.13: The information of each impulse (from HEO to GEO)
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4. DISCUSSION

Comparison between TFC and solve_ivp

In this research, a comparison was drawn between the performances of TFC and solve_ivp

in the propagation of unperturbed orbits. An initial selection of 10,000 random orbits provided the

basis for propagation over one time period. Findings revealed differences in both the initial and

final position vectors and the initial and final velocities.

The experiment focused on the propagation of the Two-body problem equation, deploying

both TFC and solve_ivp methods. The efficacy of each approach was gauged by contrasting

the initial position and velocity vector with the final position and velocity vector post-orbit.

Results demonstrated that TFC displayed more precision than solve_ivp. However, a

broader array of outcomes and a handful of less accurate results were observed. Such results

could stem from the adaptability of solve_ivp, which can modify its methodology for each

random orbit, as opposed to TFC’s largely fixed approach. Interestingly, if TFC was to incorporate

a more adaptive strategy, akin to solve_ivp, outcomes could potentially improve further.

The experiments also exhibited an intriguing discrepancy between the accuracy of position

and velocity vectors. Operators showed approximately 1000 times more accuracy with velocity

vectors. This might be due to the lower numerical values of velocity vectors compared to position

vectors, suggesting that orbits with lower numerical position vectors could have higher accuracy.

Further investigation showed a difference in runtime between TFC and solve_ivp, with

TFC completing tasks in approximately two-thirds the time taken by solve_ivp. This efficiency

was especially noticeable in the Monte Carlo test, where TFC’s speed proved a clear advantage,

underscoring its suitability for environments requiring multiple test runs.

In conclusion, while both TFC and solve_ivp have their respective strengths and weak-

nesses, TFC demonstrated an edge in terms of accuracy and speed in this series of tests. However,

room for potential improvement in TFC’s adaptability suggests a dynamic future for the propaga-

tion of unperturbed orbits.
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Monte Carlo Test for PSS orbit

This study focused on a Monte Carlo test for Low Earth Orbit (LEO), Geostationary Orbit

(GEO), and Highly Elliptical Orbit (HEO) examples. It sought to ascertain the range of param-

eter values for orbit shape, orbit orientation, and observation distance constraints to discover the

possible satellite-to-satellite Persistent Space Surveillance (PSS) orbit. The test took place in two

stages, with 10,000 random constraint values assigned in the first stage to assess the observation

percentage within the range of two variables: orbit shape and orbit orientation parameters.

Lower values of both parameters linked to higher observation results, suggesting an inverse

relationship between parameter values and observation results. Notably, the orbit orientation pa-

rameter appeared to have a more profound impact on observation results than the orbit shape pa-

rameter. Upon modifying parameter ranges based on first test results, the second test revealed

zones where observation results reached 100%, confirming successful findings.

Observation results for GEO were consistent with those of LEO, with the same inverse rela-

tionship between parameter values and observation results. However, given the significantly larger

size of GEO compared to LEO, it was inferred that parameter ranges had to be smaller in the GEO

case. Interestingly, GEO results confirmed the importance of the orbit orientation parameter over

the orbit shape parameter, as seen in LEO findings.

Results for HEO showed similarity to both LEO and GEO findings, with lower parameter

values resulting in higher observation outcomes. However, as the orbit orientation parameter ap-

proached zero, observation outcomes diminished significantly, likely due to a decrease in obser-

vation distance and a subsequent increase in collision risk. This insight emphasizes the need to

optimize observation performance and minimize collision risks for satellite operations in highly

elliptical orbits.

On average, all three cases showed most of the Monte Carlo test results falling within the obser-

vation distance range of 0.01–10 km, satisfying the 100% observation result criterion. Histogram

results revealed that most outcomes fell within the distance parameters, highlighting consistency

and reliability in the testing process.
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This research not only demonstrates the relative importance of different parameters in achiev-

ing optimal observation outcomes but also provides valuable insights into the unique characteristics

of different orbital types. While LEO and GEO exhibit near-zero eccentricity, HEO is character-

ized by significantly higher eccentricity, which underscores the need for specialized strategies for

different orbit types. Overall, the findings provide a robust basis for future work in satellite-to-

satellite observation optimization.

Sample Test for PSS orbit

This research study has meticulously examined the relative distances between a target space-

craft and a chaser over one orbital period. The datasets were created for each of the Low Earth

Orbit (LEO), Geostationary Earth Orbit (GEO), and Highly Elliptical Orbit (HEO) instances, and

the effect of third-body perturbations was incorporated to add real-world applicability.

For LEO, despite occasional discrepancies, it was found that most scenarios could maintain

the observed distances between satellites within the desired range of 10 to 100 meters, allowing

full observation during one orbital period. This consistent behavior and resilience of LEO orbits

were attributed to their lower altitude. The analysis showed that the minor effects of the Moon’s

gravitational forces have no significant influence on the relative distance between satellites in LEO

orbits.

However, for GEO, due to its higher altitude compared to LEO, the impact of the Moon’s

gravitational forces is more pronounced. Consequently, there was a rapid increase in the distance

between the satellites after one orbital period, emphasizing the need for accounting for perturba-

tions when dealing with higher altitude orbits like GEO.

When it came to HEO, the dynamics changed. The high eccentricity of these orbits caused

significant velocity differences when the satellite is closer to or farther from Earth, making them

more susceptible to the Moon’s perturbations. In some scenarios, the relative distance between

satellites fell below the minimum observation distance, hinting at potential collision risks. This

underlines the necessity of considering the unique characteristics of different orbits for efficient
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space mission planning.

The initial position vectors and initial velocity vectors were found to be closely aligned with

the target’s initial values in all the orbit examples. This implies the possibility of satisfying the

Persistent Space Surveillance (PSS) orbit requirements by propagating these initial values.

In conclusion, understanding the effect of third-body perturbations, especially from the Moon,

on the relative distances between satellites in different orbits is critical. The varied behaviors of

satellites in LEO, GEO, and HEO orbits highlight the importance of comprehensive analysis and

accurate initial value determination for the successful execution of space missions. This research

underlines the significance of these factors for efficient space mission planning and satellite design,

particularly in the context of PSS orbits.

n-impulses PSS orbit

This chapter sets out to investigate the transition from a current orbit to another orbit. This

has important implications for practical applications in space engineering, such as spacecraft ren-

dezvous and space debris removal.

A crucial problem discussed is reaching the PSS orbit from a chaser spacecraft using the small-

est number of impulses, known as n-impulses. To minimize fuel usage, a Genetic Algorithm (GA)

is applied, as outlined in the PCE research by Clocchiattis. However, this research distinguishes

itself by focusing on achieving the PSS orbit, rather than the PCE orbit.

The process involved the selection of two satellites, with one acting as the chaser and the other

as the target. The experiment was designed with three different scenarios, each using a varying

number of impulses. This was done to find the optimal number of impulses for the transition.

The results of these experiments have potential far-reaching benefits. Achieving a successful

orbit transfer, specifically to a PSS orbit, represents a significant step forward in space exploration.

This could lead to more efficient trajectory optimization and management for satellites. Addition-

ally, using a GA to minimize fuel consumption could revolutionize sustainable space travel by

making maneuvers more cost-effective, a critical consideration for both scientific and commercial
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space missions.

This experiment featured three different orbit transitions: from LEO to GEO, from LEO to

HEO, and from HEO to GEO. In all three scenarios, the experiments resulted in the chaser satel-

lite successfully reaching the PSS orbit with the target satellite. The relative distance between the

chaser and the target was observed after achieving the PSS orbit. In most cases, the distance re-

mained within an observable range of less than 10km, suggesting that the chaser could continually

monitor the target.

However, it was noted that over time, the distance between the two satellites gradually de-

creased. This could be adjusted with additional impulses, depending on the direction of the prob-

lem at hand. Moreover, detailed information about the impulses was recorded, including the time

and position vector at each impulse point, along with the resulting velocity vector. This demon-

strated that the chaser approached the target using a minimal amount of fuel over the course of

several impulses, ultimately achieving the PSS orbit at the point of the initial encounter with the

target.

Overall, the results underscore the feasibility of achieving the PSS orbit through an n-impulse

orbit transfer. Furthermore, they highlight the importance of using GAs in minimizing fuel con-

sumption. This could greatly enhance the sustainability and efficiency of future space missions,

ultimately leading to significant advancements in the field of space exploration.
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5. CONCLUSIONS

In recent years, research into tracking targets in space has grown in importance due to its

significant commercial and military applications, especially considering the increasing number of

satellites orbiting Earth. Among these challenges associated with target-chaser dynamics, Periodic

Close Encounter (PCE) problems have been extensively studied to understand how to periodically

encounter targets. The question of how to transition to a PCE orbit was also explored and confirmed

in this research.

We extended the scope of this research by augmenting the PCE problem to facilitate persistent

surveillance. Persistent Space Surveillance (PSS) orbits, which continuously track targets while

mitigating the risk of collision, were introduced. The investigation of these PSS orbits was con-

ducted in two phases. Initially, Genetic Algorithm (GA) was employed with three constraints to

obtain optimal orbital elements proximate to the target’s orbit. Subsequently, the results were ver-

ified through Theory of Functional Connections (TFC) propagation based on the orbital elements

influenced by third-body perturbations.

The findings of this study confirm that persistent surveillance of a target over multiple orbit

cycles is not feasible due to the influence of perturbations. Therefore, future research related to

PSS orbits will need to address the challenge of perturbation effects by applying impulses on the

objects, considering the additional costs incurred.

The concept of n-impulses PSS orbit introduced and tested in this study contributes not only

to our understanding of PCE and PSS orbits but also provides a practical approach for achieving

PSS orbits with minimal fuel consumption. This n-impulses PSS orbit approach could potentially

enhance the efficiency and feasibility of maintaining persistent surveillance of a target in the space

environment, thereby significantly advancing the field of space tracking and surveillance.

In conclusion, this study is expected to lay a solid foundation for the developmental trajectory

of tracking and maintaining surveillance of objects in space, thereby contributing to the broader

endeavour of space exploration and satellite tracking.
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