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ABSTRACT 

 

Intrusion Detection Systems (IDS) play a vital role in detecting and thwarting 

harmful activities on the network. While traditional machine learning techniques have 

been employed in IDS, recent advancements in deep learning offer promising results for 

enhancing their performance. This study compares the effectiveness of various deep 

learning models applied to the CICIDS 2017 dataset, focusing on the impact of different 

sampling techniques on improving IDS efficiency and accuracy. 

We evaluated seven deep learning models, including CNN Simple, CNN Deep, 

ANN, DNN, LSTM, GRU, and a hybrid model that we named CLAttNet, which combines 

Convolution, LSTM, and Attention mechanisms. The name CLAttNet was chosen for the 

sake of convenience in this study. We also investigated the impact of sampling techniques, 

such as No Resampling, Selective Oversampling, Selective Undersampling, Combined 

Sampling (SMOTE+Selective Undersampling), and SMOTE, on the performance of each 

model. 

We assessed the models using a 5-fold cross-validation method, looking at 

Precision, Recall, Accuracy, F1-Score, ROC-AUC and Precision-Recall Curve AUC. Our 

findings demonstrate the potential of deep learning models to improve IDS performance 

by showing that the CLAttNet model consistently outperforms the other models, 

delivering the F1-Score (0.99288). Additionally, Our experiment demonstrates that the 

SMOTE sampling method is a highly effective sampling strategy that improves the 
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performance of most models, increasing IDS efficiency and accuracy, except for some 

models. 

This study advances the field by showcasing how deep learning models and 

sampling strategies can improve IDS performance. The results provide a strong basis for 

further investigation to create deep learning-based IDS solutions that are more effective, 

precise, and scalable. The applications of our research indicate that employing CLAttNet 

can increase the performance of the IDS, hence boosting the ability to defend against the 

constantly changing environment of cyber threats. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Background and Motivation 

The exponential rise of the internet and digital technologies has led to an escalated 

frequency and complexity of cyber threats. [1] These threats imperil the integrity of 

information systems and networks, inflicting substantial monetary and reputational losses 

on individuals, corporations, and governments. Consequently, intrusion detection systems 

(IDS) have become indispensable for tracking and pinpointing malicious activities within 

network traffic. However, conventional signature-based IDSs struggle with identifying 

new and unidentified attacks, underscoring the need for more innovative and flexible 

intrusion detection methods. [1], [2] 

Deep learning and machine learning techniques have come to the fore as robust 

solutions to the challenges faced by traditional IDS. Their ability to discern known and 

previously unseen threats stems from their capacity to learn from extensive datasets, 

recognizing patterns and correlations indicative of cyber threats. [3] Recent studies 

suggest deep learning models can detect intrusion with impressive accuracy rates and 

minimal false alarms. However, considerable scope still exists for enhancing these models' 

performance, utility, and adaptability. 

The CICIDS 2017 dataset, with its comprehensiveness, meticulous annotations, 

and diverse attack patterns, makes for an excellent resource for assessing the efficacy of 

machine learning and deep learning models in intrusion detection scenarios. [4] This 
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research aims to evaluate and compare various deep learning models and sampling 

techniques to identify the most promising strategies for detecting and classifying 

cyberattacks within the CICIDS 2017 dataset. [4] Through this endeavor, we aim to 

develop more accurate and efficient IDS, thereby fortifying networks and information 

systems against the onslaught of cyber threats. 

 

1.2 Research Objectives 

 

The primary purpose of this study revolves around exploring the efficiency of 

various deep learning models and sampling methods in intrusion detection, utilizing the 

CICIDS 2017 dataset. To fulfill this purpose, we focus on these specific research aims: 

1. We aim to conduct an extensive analysis of the CICIDS 2017 dataset, which 

includes understanding the different types of attacks, their implications in the real 

world, and the crucial features linked to each attack type. 

2. Our study focuses on implementing and evaluating seven distinct deep learning 

models (namely CNN-Simple, CNN-Deep, ANN, DNN, LSTM, GRU, and 

CLAttNet) for intrusion detection. We aim to compare their performance 

concerning accuracy, recall, and other pertinent metrics. 

3. We strive to scrutinize the effects of different sampling methods (No Resampling, 

Selective Oversampling, Selective Undersampling, Combined Sampling, and 

SMOTE) on the effectiveness of deep learning models for intrusion detection, 

particularly considering the challenge of imbalanced data. 
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4. Lastly, we seek to pinpoint the shortcomings of current deep learning models for 

intrusion detection, proposing potential enhancements and future research 

directions to boost their proficiency and precision. 

By fulfilling these research aims, we aspire to contribute to the development of 

more efficient and versatile intrusion detection systems, thereby strengthening the 

protection of our information systems and networks against a myriad of cyber threats. 

 

1.3 Organization of the Paper 

This paper is organized into the following chapters: 

- Chapter I - Introduction: This chapter provides background information and 

motivation for the research, outlines the research objectives. 

- Chapter II - Literature Review: We summarize existing research that we 

consulted to gain knowledge for our study, including machine learning and deep 

learning models, sampling techniques, and model performance evaluation 

measures. 

- Chapter III - CICIDS 2017 Dataset: We will describe how the CICIDS 2017 

dataset was generated and its attack labels. We will also describe the preprocessing 

required to apply this dataset to the deep learning model we will run. 

- Chapter IV - Methodology: Describe the general experimental methodology. 

This includes the structure of the deep learning model, the sampling technique 

applied, the model performance evaluation measures, and the experimental 

environment settings. 
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- Chapter V - Results and Discussion: We analyze the experimental results from 

various angles here. Along with the results of the Cross-Validation and Test Set, 

each model's most optimized sampling method will also be shown. 

- Chapter VI - Conclusion: This is the concluding section of the study. We 

summarize our findings from our experiments and discuss future research 

directions. 

Additionally, the paper includes a list of references and appendices that provide 

supplementary information related to the study. 
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CHAPTER II  

LITERATURE REVIEW 

 

2.1 Intrusion Detection System (IDS) 

 

Figure 1 IDS Classification Taxonomy Reprinted from [6, Fig 4] 

 

2.1.1 IDS Overview 

IDS is an abbreviation for intrusion detection system. [2] When someone gains 

illegal access to data stored on a computer or network system, its integrity, confidentiality, 

or availability may be jeopardized. [5] While a detection system is a security measure for 

identifying such criminal activities. IDS is a type of security technology that constantly 

monitors host and network traffic for irregularities that can violate security policy and 

endanger the confidentiality, integrity, and availability of data. [3], [5] The host or network 

administrators will get notifications from the IDS regarding any identified malicious 

activities. [3], [5] 
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IDS can be classified according to the deployment and detection methods, and the 

specific classification is given in Figure 1. IDS is again split into host-based and network-

based IDS according to the deployment method. Additionally, the detection method's IDS 

is split into two categories: Signature-based and Detection-based IDS. [3], [6] 

 

2.1.2 Deployment Method Classification 

From the perspective of deployment-based IDS, IDS is further split into host-

based-IDS (HIDS) and network-based-IDS (NIDS). [3] On the single information host, 

HIDS is installed. It is responsible for monitoring all activity on this one host and scanning 

for any infractions of security guidelines or suspicious activity. [3] The most significant 

disadvantage is that it must be installed on every host that needs intrusion protection, 

which adds extra processing costs to every node and lowers the IDS's overall performance. 

[3] In contrast, NIDS is set up on the network to protect each device and the entire network 

against intrusions. [3] Continuous network traffic monitoring by the NIDS will look for 

any potential security violations. [3] 

 

2.1.3 Detection Method Classification 

From a detection IDS standpoint, SIDS and AIDS are subdivided. [3]  SIDS is 

centered on creating a signature for attack patterns. [3] These signatures are maintained in 

the signature database and used to identify attacks. [3] Due to signatures, known attacks 

may be detected efficiently. With signature patterns, this approach can identify new 

threats. A massive signature database is kept and examined with data packets for potential 
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intrusions, which is resource intensive. AIDS, often dubbed "behavior-based IDS," defines 

typical conduct. Any variation from this usual profile is abnormal. [6] AIDS can identify 

unknown and new assaults and customizes its typical activity profile for different networks 

and apps. [6] The significant FAR (False Alarm Rate) makes distinguishing between 

normal and aberrant incursion characteristics difficult. [3], [6] 

 

2.1.4 Signature-based Detection 

Misuse detection, also known as signature-based detection, looks for potential 

incidents by comparing signatures to observed events. [3] A signature is a pattern that is 

associated with a recognized threat. It has the potential to be very effective in identifying 

known risks, but it is largely ineffective at identifying unidentified threats. Signature-

based solutions require assistance to track and comprehend the status of complex 

communications as well as a deeper comprehension of numerous network or application 

protocols. [3] 

 

2.1.5 Anomaly-based Detection 

To find significant deviations, anomaly-based detection contrasts definitions of 

what behavior is normal against observed events. [3] Many behavioral characteristics, 

such as the volume of emails a user writes, are the subject of profiles. A length of time, 

commonly referred to as a training period, is used to build an initial profile (usually days, 

but occasionally weeks). Anomaly-based IDS products usually produce a substantial 

number of false positives since harmless behavior regularly deviates greatly from profiles, 
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especially in environments that are more diverse or dynamic. Despite being vulnerable to 

evasion efforts from attackers, dynamic profiles do not have this issue. Small-scale 

malicious activity may be infrequently performed by an attacker before the frequency and 

volume of the activity gradually rise. [3] 

 

2.2 Machine Learning and Deep Learning Techniques for IDS 

In recent years, various machine learning and deep learning techniques have been 

applied to intrusion detection systems (IDS) to improve their detection capabilities. [3] 

This section briefly describes some of the most common techniques and their potential 

impacts on IDS dataset analysis. 

- Naïve Bayes: Naïve Bayes is a probabilistic classifier based on Bayes' theorem. It 

has been widely used in IDS due to its simplicity and efficiency. Studies have 

shown that Naïve Bayes can perform well on IDS datasets, especially in detecting 

specific types of attacks with high accuracy. [3] 

 

 

Figure 2 Support Vector Machine (SVM) 
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- Support Vector Machines (SVM): SVM is a high-dimensional space efficient 

supervised learning technique. [7]IDS has used it to classify network traffic as 

usual or malicious. [3] The algorithm's ability to handle large feature sets makes it 

suitable for IDS dataset analysis. [3], [7] 

- K-Nearest Neighbors(kNNs): A straightforward machine learning technique 

called kNNs is employed in intrusion detection systems to categorize unlabeled 

observations by contrasting their features with those of tagged samples. [3], [8] It 

can identify the category of an observation based on the category that receives the 

most votes from the nearest samples. It is a straightforward method for 

classification tasks. [3], [8] 

- Decision Tree (DT): In intrusion detection systems, classification systems or 

prediction algorithms are constructed up using the machine learning technique 

known as a decision tree. [3], [9] It can handle large, complex datasets without 

parameters by dividing data into branches. A dataset that has been divided into 

training and validation sets can be used to train the algorithm and choose the ideal 

tree size. It is a flexible tool for accurate and efficient detection of intrusion 

attempts. [3], [9] 
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Figure 3 Decision Tree (DT) Reprinted from [48, Fig 1] 

 

- Artificial Neural Networks (ANN): ANN is a computational model inspired by 

the structure and functioning of biological neural networks. [10] ANN models have 

been employed in IDS to capture complex patterns and relationships in network 

traffic data, leading to improved detection performance. [10], [11] 

- Deep Neural Networks (DNN): DNNs are multilayer ANNs with more complex 

architectures, allowing for better representation learning. [10] DNNs have been 

applied to IDS to capture intricate relationships in network traffic data and improve 

detection accuracy. [10] 
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Figure 4 Convolutional Neural Networks (CNN) 

 

- Convolutional Neural Networks (CNN): Originally designed for image 

processing, CNNs have been widely adapted for IDS datasets to detect patterns in 

network traffic. [12] Some studies suggest that CNNs can effectively recognize 

patterns in network traffic data, making them a promising technique for IDS. [12] 

- Long Short-Term Memory (LSTM): LSTM is a type of recurrent neural network 

(RNN) designed to address the vanishing gradient problem in RNNs. [13] LSTM 

models have been used in IDS to capture temporal dependencies in network traffic 

data, which can lead to better detection of attack patterns over time. [13] 

- Gated Recurrent Units (GRU): GRU is another type of RNN that aims to solve 

the vanishing gradient problem. [14] Like LSTM, GRU models have been 

employed in IDS to capture temporal patterns in network traffic data, potentially 

improving detection performance. [14] 

 

This study focuses on deep learning techniques, specifically CNN, ANN, DNN, 

LSTM, and GRU models. While the fundamental principles and characteristics of these 

models are briefly described here, we will further discuss their impact on IDS dataset 
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analysis, including their performance on the CICIDS 2017 dataset, in the subsequent 

sections of the paper. [3], [4] 

 

2.3 Sampling Techniques for Imbalanced Data 

Handling imbalanced data is crucial in intrusion detection systems (IDS), as it can 

significantly impact the performance of machine learning and deep learning models. [1] 

This section will offer a quick summary of the common sampling procedures used to 

address imbalanced data. Then, we will focus on the theoretical background of these 

techniques and their general application. [15] 

1. No Resampling: This approach involves using the original dataset without any 

modifications. This strategy preserves the original data distribution, however it 

may not be the best choice for datasets that are imbalanced because it could 

produce biased models that perform poorly for minority classes. [2] 

2. Oversampling: Oversampling includes adding additional samples to minority 

classes in order to achieve a balanced distribution of classes. This can be done by 

randomly duplicating instances from the minority class or generating synthetic 

instances. The Synthetic Minority Oversampling Technique (SMOTE) is a typical 

oversampling method that produces synthetic instances by interpolating between 

existing minority class instances and their nearest neighbors. [15], [16] 

3. Undersampling: Undersampling involves decreasing the number of instances in 

majority classes to balance the class distribution. This can be done by randomly 

removing instances from the majority class or using more sophisticated techniques, 
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such as Tomek Links or Neighborhood Cleaning Rule, which consider the 

distribution and relationship between instances. [15], [17] 

4. Combined Resampling: This approach involves a combination of Oversampling 

and Undersampling techniques. It aims to balance the class distribution while 

maintaining sufficient data for model training. Combined resampling can help 

create more robust models that perform well on both majority and minority classes. 

[18] 

5. Adaptive Sampling: Adaptive sampling techniques, such as Adaptive Synthetic 

Sampling (ADASYN), dynamically adjust the sampling strategy based on the 

learning difficulty of each instance. These methods are designed to generate more 

synthetic instances for minority classes that are harder to learn, thus helping the 

model perform better on such instances. [15] 

 

2.4 Performance Metrics for Model Evaluation 

Model evaluation requires various performance metrics to be considered. In this part, 

we will present an overview of popular performance indicators used to evaluate machine 

learning models. 

1. Accuracy: The ratio of cases that were successfully categorized to all instances is 

known as accuracy. Although it is a widely used metric, it may not be suitable for 

unbalanced datasets since it can be deceiving when the dominant class is the 

majority. [19] 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
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2. Precision: Precision is defined as the ratio of true positives (properly identified 

positive cases) to the sum of true positives and false positives (instances incorrectly 

classified as positive). If its accuracy is high, the model is effective in avoiding 

false positives. [19] 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

3. Recall (Sensitivity): Recall is the ratio of true positives to the sum of true and false 

negatives (instances incorrectly classified as unfavorable). High recall indicates 

that the model detects positive occurrences effectively. Recall is important in some 

applications, such as Intrusion Detection Systems, since it underlines the model's 

capacity to identify hostile actions, even if some false positives occur. [19] 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4. F1-Score: This performance measurement metric is the harmonic mean of 

Precision and Recall. The ratio of true positives to the sum of true and false 

negatives is referred to as recall (instances incorrectly classified as unfavorable). 

A high recall indicates that the model is able to recognize positive occurrences. It 

is beneficial for imbalanced datasets where the minority class is of interest. [19] 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

5. Confusion Matrix: A confusion matrix is a table that displays the number of 

TP(True Positives), FP(False Positives), TN(True Negatives), and FN(False 

Negatives) for each class. It offers a thorough look at the model’s performance and 

can be used to pinpoint particular areas that need work. [20] 
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6. ROC (Receiver Operating Characteristic) Curve: For various decision 

thresholds, the ROC curve shows the true positive rate (recall) versus the false 

positive rate. The model’s capacity to distinguish between positive and negative 

examples is indicated by the area under the ROC curve (AUC-ROC). AUC-ROC 

values of 1.0 and 0.5 are equivalent to perfect models and random guessing, 

respectively. [21] 

7. Precision-Recall Curve: It is a valuable evaluation tool in machine learning, 

especially for imbalanced datasets. It describes the trade-off between two essential 

metrics for classification tasks: precision and recall. The curve provides a 

comprehensive view of model performance by plotting precision against recall for 

various threshold settings. It is beneficial in domains such as information retrieval, 

natural language processing, and bioinformatics, where precision and recall are 

more critical than mere accuracy. [21] 

These performance metrics will serve as a foundation for understanding how the 

models are evaluated and compared in this study’s experimental and analysis sections. 
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CHAPTER III  

CICIDS 2017 DATASET 

3.1 Overview of the Dataset 

The CICIDS 2017 dataset was created to overcome the shortcomings of obsolete 

and unreliable datasets while assessing anomaly-based intrusion detection systems. This 

dataset comprises up-to-date and realistic benign traffic and common attack scenarios, 

providing a reliable benchmark for researchers and practitioners. [4], [22] 

The data gathering period they’ve had covered five days, from July 3 to July 7, 

2017, with the first day consisting just of good traffic and the following days including a 

variety of attacks, including Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web 

Attack, Infiltration, Botnet, and DdoS. [4], [22] 

The dataset was built by simulating essential human interactions and background 

traffic using a B-Profile system. The network traffic is comprised of 25 users’ HTTP, 

HTTPS, FTP, SSH, and email connections. The dataset is shown as labeled flows 

according to timestamps, source and destination IP addresses, ports, protocols, and attack 

types. CICFlowMeter was used to analyze network traffic. [4], [22] 

 

 Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, “Toward Generating a 

New Intrusion Detection Dataset and Intrusion Traffic Characterization”, 4th International 

Conference on Information Systems Security and Privacy (ICISSP), Portugal, January 

2018 
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The publicly accessible dataset comprises of CSV files appropriate for machine 

learning and deep learning, annotated network flows, and pcap files with entire packet 

contents. 

 

3.2 Attack Types and Scenarios 

3.2.1 Description of Each Attack Types 

Table 1 CICIDS 2017 Initial Label Distribution 
Label Entries 

Benign 2,271,320 

DoS Hulk 230,124 

Port Scan 158,804 

DdoS 128,025 

DoS GoldenEye 10,293 

FTP-Patator 7,935 

SSH-Patator 5,897 

DoS Slowloris 5,796 

DoS Slowhttptest 5,499 

Bot 1,956 

Web Attack: Brute Force 1,507 

Web Attack: XSS 652 

Infiltration 36 

Web Attack: SQL Injection 21 

Heartbleed 11 

 

In the CICIDS 2017 dataset, various attack types are represented, providing a 

comprehensive and diverse evaluation platform. The descriptions of each attack type and 

its related label are provided below: [4], [22] 

• DoS Hulk: A Denial-of-Service (DoS) attack designed to overwhelm web servers 

by generating a high volume of unique and seemingly legitimate traffic, eventually 

exhausting the server’s resources, and rendering it unresponsive. [4] 
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• PortScan: This attack scans a range of IP addresses and ports to identify open 

ports and running services, which can then be exploited by attackers to gain 

unauthorized access or launch further attacks. [4] 

• DDoS: Distributed Denial-of-Service, or DDoS attacks, represent a concerted 

effort by multiple systems aiming at a singular target system. The intent is to 

inundate the target with excessive demands, thereby exhausting its resources and 

creating a service disruption for its authentic users. [4] 

• DoS GoldenEye: A DoS attack that exploits vulnerabilities in the HTTP protocol 

by sending numerous partial requests, effectively exhausting a server’s resources, 

and causing it to become unresponsive. [4] 

• FTP-Patator: A brute force attack targeting File Transfer Protocol (FTP) services, 

attempting multiple username and password combinations to gain unauthorized 

access. [4] 

• SSH-Patator: Like FTP-Patator, this attack focuses on Secure Shell (SSH) 

services, attempting multiple username and password combinations to gain 

unauthorized access. [4] 

• DoS Slowloris: A Slowloris attack is a type of DoS assault that gradually transmits 

incomplete HTTP requests, slowly exhausting a server’s resources until it can no 

longer respond. [4] 

• DoS Slowhttptest: A variant of Slowloris, this DoS attack sends partial HTTP 

requests slowly to exhaust server resources and render it unresponsive. [4] 
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• Bot: A botnet attack involves a network of compromised systems controlled by a 

central entity (botmaster) that carries out various malicious activities, such as 

DdoS attacks, spamming, or data theft. [4] 

• Web Attack: Brute Force: This attack targets web applications by attempting 

numerous username and password combinations to gain unauthorized access to 

sensitive data or administrative privileges. [4] 

• Web Attack: XSS (Cross-Site Scripting): An attack that injects malicious scripts 

into legitimate websites, enabling attackers to steal sensitive user data, deface 

websites, or redirect users to malicious sites. [4] 

• Infiltration: An attack in which a malicious actor gains unauthorized access to a 

network or system and remains undetected to perform reconnaissance, exfiltrate 

data, or launch further attacks. [4] 

• Web Attack: SQL Injection: An assault on web applications that takes advantage 

of database systems by introducing harmful SQL instructions, thereby enabling 

unsanctioned access, data leakage, or data corruption. [4] 

• Heartbleed: A critical vulnerability in the OpenSSL cryptographic software 

library allows an attacker to read the memory of systems using vulnerable versions 

of OpenSSL and potentially steal sensitive information, such as user credentials or 

encryption keys. [4] 

3.2.2 Real-world Scenarios of Attacks 

Considering my background as a military officer (Army Major) in the South 

Korean Army, where I previously worked in the cyber security department of the Defense 
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Counterintelligence Command, I am familiar with various attack types and real-life 

scenarios. The Defense Counterintelligence Command works closely with South Korea’s 

Cyber Command, which is responsible for formulating cyber security policies within the 

Ministry of National Defense, investigating security incidents, and conducting regular 

security checks. In this section, I will present real-world attack scenarios specifically 

related to the South Korean military, considering my experience as a South Korean 

military officer. [23] 

 

Scenario 1: Compromised Internal Network 

In 2016, the South Korean military faced a substantial cyber attack that 

compromised its internal network. Based on this incident, let us consider a scenario where 

an attacker injects malicious code into the military’s internal network by exploiting a 

vulnerability in the network’s security system. This attack could lead to unauthorized 

access and exfiltration of sensitive military information. [23] 

In this case, the attacker might use a combination of the following attack types: 

• PortScan: To identify open ports and running services within the military’s 

network infrastructure. 

• Infiltration: To gain unauthorized access and remain undetected in the network. 

• Web Attack: SQL Injection: To manipulate database systems and exfiltrate 

sensitive data. 

 

Scenario 2: DdoS Attack on Military Communication Systems 
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In this scenario, an attacker launches a large-scale DdoS attack targeting the 

military’s communication systems, aiming to disrupt communication between various 

units and cause chaos during a critical operation. This attack could employ the following 

attack types:[23] 

• DoS Hulk: To overwhelm the military’s web servers and render them 

unresponsive. 

• DoS GoldenEye: To exploit HTTP protocol vulnerabilities and exhaust server 

resources. 

• Bot: To use a botnet to carry out a massive DDoS attack on the communication 

systems. 

 

Scenario 3: Spear-phishing Campaign 

A spear-phishing campaign targets high-ranking military officials with well-

crafted and seemingly legitimate emails containing malicious attachments or links. These 

emails aim to trick the officials into providing their login credentials or downloading 

malware that grants unauthorized access to sensitive information. The attacker could use 

the following attack types:[24] 

• Web Attack: Brute Force: To attempt multiple username and password 

combinations to gain unauthorized access. 

• Web Attack: XSS (Cross-Site Scripting): To insert harmful scripts into 

trustworthy websites, allowing the attacker to steal user information or reroute 

visitors to dangerous domains. 
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These real-world scenarios, while fictional, are based on my experience as a South 

Korean military officer and emphasize the importance of understanding various attack 

types and being prepared to defend against them. We can better secure our military 

networks and systems against potential threats by studying these attack types and their 

real-world applications. 

 

3.3 Data Preprocessing and Feature Selection 

This section elaborates on the data preprocessing and feature selection methods 

applied to the CICIDS 2017 dataset. These processes are essential for assuring the 

accuracy of the input data, lowering dimensionality, and improving the performance of 

the machine learning models on the supplied dataset. 

3.3.1 Data Preprocessing 

In order to make raw data ready for analysis, it must first be cleaned, transformed, 

and organized. For example, for the CICIDS 2017 dataset, we performed the following 

preprocessing steps: 

1. Data Consolidation: The CICIDS 2017 dataset is initially provided in multiple 

CSV files. We combined these files into a single pandas data frame to facilitate 

further analysis and processing. 

2. Column Naming: The dataset consists of numerous features, each representing a 

different aspect of network traffic. We assigned appropriate column names to these 

features, ensuring the dataset was organized and easily understandable. 
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3. Duplicate Columns: In some cases, the dataset may contain duplicate columns, 

which can negatively impact the performance of machine learning models. We 

identified and removed any such duplicate columns from the dataset. 

4. Handling Missing Values: The presence of missing or infinite values in the 

dataset can lead to biased or inaccurate results. We replaced infinite values with 

NaN and dropped rows containing missing values to maintain data integrity. 

5. Reducing Imbalanced Classes: The CICIDS 2017 dataset suffers from class 

imbalance, with some minor classes having very few samples. We addressed this 

issue by removing classes such as Heartbleed, Web Attack – SQL Injection, and 

Infiltration, which had insufficient samples. [15] 

6. Renaming Labels: We simplified the labels for Web Attack – Brute Force and 

Web Attack – XSS by renaming them to Brute Force and XSS, respectively. This 

change made the dataset more consistent and easier to work with. 

7. Saving Processed Dataset: After completing the preprocessing steps, we saved 

the resulting dataset into a new CSV file for further analysis and used in the 

subsequent stages of our study. 
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Table 2 CICIDS 2017 Label Distribution after Preprocessing 
Label Entries 

Benign 2,271,320 

DoS Hulk 230,124 

Port Scan 158,804 

DdoS 128,025 

DoS GoldenEye 10,293 

FTP-Patator 7,935 

SSH-Patator 5,897 

DoS Slowloris 5,796 

DoS Slowhttptest 5,499 

Bot 1,956 

Brute Force 1,507 

XSS 652 

 

3.3.2 Feature Selection for CICIDS 2017 

Feature selection selects a subset of the most relevant features significantly 

contributing to the model’s performance. [25] By applying feature selection techniques to 

the CICIDS 2017 dataset, we aimed to reduce overfitting, improve accuracy, and minimize 

training time. [26] The following feature selection techniques were used: 

1. Splitting the dataset: Using stratified sampling, we divided the CICIDS 2017 

dataset into training, testing, and validation sets. This method ensures that each 

subset’s class distribution is maintained, providing a more accurate representation 

of the overall dataset. 

2. Removing Constant Features: Features with only a single unique value do not 

contribute meaningful information to the model and can hinder its performance. 

We identified and removed such features from the CICIDS 2017 dataset. [15] 
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3. Data Normalization: We applied MinMaxScaler to normalize the feature values 

in the CICIDS 2017 dataset, transforming them to a range of [0, 1]. This step 

ensures that features with different scales do not disproportionately impact the 

performance of the machine-learning models. [27], [28] 

 

Figure 5 Feature Scores & Cumulative Feature Scores 

 

4. SelectKBest: We employed the SelectKBest method, utilizing the chi-squared (χ2) 

statistical test to rank the features in the CICIDS 2017 dataset based on their 

importance. [29] As illustrated in Figure 9, which presents the Feature Scores & 

Cumulative Feature Scores, we observed that the top 40 features account for 99% 

of the cumulative importance. This observation suggests that the first 40 features 

exert a substantial impact on the model’s performance, whereas features ranked 

beyond the 40th position contribute minimally. [30] Consequently, we opted to 

select the top 40 features using SelectKBest as a dimensionality reduction 

technique, thereby enabling our machine learning models to concentrate on the 

most pertinent features. [31] 
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After applying these preprocessing and feature selection techniques to the CICIDS 

2017 dataset, the resulting datasets were ready for training and evaluating machine 

learning models.  
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CHAPTER IV  

METHODOLOGY 

In this chapter, we present the methodology employed in our study, focusing on 

deep learning models used for intrusion detection using the CICIDS 2017 dataset. In 

addition, we go over how to sample, evaluate models, and set up experiments. 

4.1 Deep Learning Models 

In our study, we employ a variety of deep learning models, including 

Convolutional Neural Networks (CNN), Artificial Neural Networks (ANN), Deep Neural 

Networks (DNN), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and 

CLAttNet (Convolutional + LSTM + Attention). These models were chosen to explore 

different architectures and techniques to identify the best-performing model for the 

intrusion detection task. 

To ensure a fair and consistent comparison between the models, all were subjected 

to the same evaluation metrics, resampling methods, and cross-validation strategy. 

Furthermore, to maintain consistency, the hyperparameters defining the internal structure 

of each model were determined and fixed arbitrarily for this experiment by us. The specific 

architectural configurations, such as the number of layers and neurons in each layer, were 

chosen based on commonly accepted configurations in the field. It is important to note 

that these hyperparameters were not explicitly optimized for the intrusion detection task 

but were chosen as a starting point for this study. 

We split the dataset into an 80:20 ratio. Then, we apply five different resampling 

techniques to the 80% portion of the dataset to address class imbalance: No Resampling, 
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Selective Oversampling, Selective Undersampling, Combined Sampling (SMOTE + 

Undersampling), and SMOTE (Synthetic Minority Over-sampling Technique). 

For each resampled dataset, we utilize 5-fold cross-validation to assess and adjust 

the model's performance. After completing each fold, we evaluate the model's 

performance using the untouched 20% of the data, which serves as our test set. This 

process helps to provide an honest assessment of the model's performance on unseen data.   

4.1.1 Convolutional Neural Networks (CNN) 

This section explores using Convolutional Neural Networks (CNNs) for intrusion 

detection tasks, particularly for the CICIDS 2017 dataset. Two distinct CNN architectures 

were examined: the simpler CNN model (CNN-Simple) and the deeper CNN model 

(CNN-Deep). The performance of these two models is compared to gain insights into the 

advantages of a simpler versus a more profound architecture. [10], [12]. 

• CNN-Simple Model: 

 

Figure 6 CNN Simple Model 
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Figure 10 illustrates the CNN-Simple model, which comprises an input layer, two 

1D convolutional layers, batch normalization layers, max pooling layers, a flatten layer, a 

dense layer, a dropout layer, and an output layer. The simple architecture aims to learn 

features from the data while minimizing computational complexity efficiently.  

• CNN-Deep Model: 

 

Figure 7 CNN Deep Model 

 

On the other hand, Figure 11 displays the CNN-Deep model, which has a more 

intricate structure with additional layers and units. The model consists of an input layer, 

three 1D convolutional layers, batch normalization layers, max pooling layers, a flatten 

layer, two dense layers, two dropout layers, and an output layer. The more profound 

architecture captures more complex patterns in the data, potentially leading to improved 

performance. The Adam optimizer, categorical cross-entropy loss, and recall and accuracy 

measures are used to create the models. 
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We experimented with both CNN-Simple and CNN-Deep models to investigate 

which architecture is more effective for the CICIDS 2017 dataset. By comparing the 

performance of these two models, we can gain insights into the benefits of a simpler versus 

a more profound architecture for intrusion detection tasks. 

4.1.2 Artificial Neural Networks (ANN) 

Artificial neural networks (ANNs) are machine learning models that discover links 

and patterns in data by interacting with other nodes or neurons that are interconnected. 

ANNs can be applied to intrusion detection systems (IDS) to identify patterns indicating 

intrusions or malicious activities. In this study, we designed an ANN model with the 

architecture depicted in Figure 12[10]: 

 

Figure 8 ANN Model 
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The categorical cross-entropy loss, accuracy, and recall metrics are included in the 

ANN model’s construction. This model aims to efficiently learn features from the data 

and detect intrusion patterns with a relatively simple architecture. 

4.1.3 Deep Neural Networks (DNN) 

Deep Neural Networks (DNNs) are an advancement of Artificial Neural Networks 

(ANNs), possessing multiple hidden layers.[33] This multi-layered structure enhances 

their capacity to encapsulate complex representations, boosting their performance across 

various tasks. DNNs, like ANNs, can also be employed for intrusion detection tasks by 

identifying patterns indicative of intrusions or malicious activities. In this study, we 

designed a DNN model with the architecture illustrated in Figure 13: 

 

Figure 9 DNN Model 

 

The DNN model is compiled with the Adam optimizer, categorical cross-entropy loss, 

and accuracy and Recall metrics. The more profound architecture of the DNN model 
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allows for better performance on intrusion detection tasks by capturing more complex 

patterns in the data. 

4.1.4 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM), a specialized form of recurrent neural network 

(RNN), was devised to solve the pervasive problem of vanishing gradients often 

encountered in conventional RNNs. [13] LSTMs are particularly helpful for time series 

analysis and tasks involving natural language processing because they can capture long-

term dependencies in sequential data. [13] In the context of intrusion detection systems 

(IDS), LSTMs can analyze temporal patterns and detect malicious activities over time. We 

designed an LSTM model with the architecture shown in Figure 14: 

 

Figure 10 LSTM Model 
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The LSTM model is compiled with the Adam optimizer, categorical cross-entropy loss, 

and accuracy and Recall metrics. The LSTM model can effectively detect intrusion 

patterns that unfold over time by capturing long-term dependencies in the data. 

 

4.1.5 Gated Recurrent Units (GRU) 

Another sort of RNN that tackles the vanishing gradient issue and is computationally 

more effective than LSTMs is the gated recurrent unit (GRU) [14]. GRUs may capture 

long-term dependencies in sequential data, just like LSTMs, making them appropriate for 

comparable tasks [14]. In this study, we designed a GRU model for intrusion detection 

with the architecture depicted in Figure 15: 

 

Figure 11 GRU Model 

 

The GRU model is compiled with the Adam optimizer, categorical cross-entropy loss, 

and accuracy and Recall metrics. 
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4.1.6 CLAttNet (Convolutional + LSTM + Attention)  

The CLAttNet model is a relatively recent hybrid deep learning architecture utilized 

in various domains but is now being applied to the Intrusion Detection System (IDS) field. 

We has informally coined the term “CLAttNet” to represent the integration of three well-

known deep learning components in this research: Convolutional Neural Networks (CNN), 

Long Short-Term Memory (LSTM), and Attention mechanisms [13], [34]. The unique 

combination of these three elements in the IDS domain is a novel approach to improving 

intrusion detection performance. The CLAttNet model’s architecture consists of the 

following layers depicted in Figure 16:  

 

Figure 12 Hybrid Model 

 

The Attention mechanism is particularly captivating because it empowers the model 

to prioritize specific sections of the input data most pertinent to the task. It does this by 

learning to assign weights to each input element based on their importance for the current 
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prediction. This ability to capture more context and dependencies between features can 

lead to better performance in intrusion detection. [35] 

In the context of IDS, the CLAttNet model aims to capitalize on the strengths of its 

three core components: 

1. CNN layers: Efficient at extracting local and spatial features from input data, 

making them suitable for detecting patterns in network traffic data. 

2. LSTM layer: Capable of capturing long-term dependencies in sequential data, 

which can help detect malicious activities that span multiple time steps. [13] 

3. Attention layer: This enables the model to emphasize relevant features and filter 

out less critical information, resulting in better decision-making during intrusion 

detection. [35] 

The Adam optimizer, categorical cross-entropy loss, accuracy, and recall measures are 

used to create the model. As a result, the CLAttNet model is expected to provide enhanced 

intrusion detection performance compared to models that use a single type of architecture 

because it combines these three powerful techniques. 

It is crucial to note that CLAttNet is not an officially recognized name but rather an 

informal designation given by the author to reflect the integration of CNN, LSTM, and 

Attention mechanisms. While this model has been experimented with in other fields, its 

application in the IDS domain is novel, and its effectiveness in detecting intrusions 

remains to be explored through experimentation. Nevertheless, integrating these three 

components offers promising potential for improved performance in intrusion detection 

systems. 
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4.2 Sampling Techniques Applied to the CICIDS 2017 Dataset 

In this section, we discuss applying various sampling techniques to the CICIDS 2017 

dataset, aiming to address the challenges of imbalanced data. [36] The performance of the 

intrusion detection models will be compared across these different sampling methods to 

evaluate their effectiveness. 

1. No Resampling: The original CICIDS 2017 dataset is used without any 

modifications. By utilizing the raw dataset, we can establish a baseline for model 

performance and compare the effects of the other sampling techniques. 

2. Selective Oversampling: Instances from minority classes in the CICIDS 2017 

dataset are selectively oversampled to balance the class distribution. 

RandomOverSampler from the imbalanced-learn library is used for this purpose. 

This technique aims to improve the model’s performance on underrepresented 

classes while maintaining the integrity of the majority classes. 

3. Selective Undersampling: Instances from the majority classes in the CICIDS 

2017 dataset are selectively undersampled to balance the class distribution. 

RandomUnderSampler from the imbalanced-learn library is used for this purpose. 

This technique helps reduce the potential bias toward majority classes by creating 

a more balanced dataset for model training. 

4. Combined Resampling: This approach involves a combination of SMOTE and 

undersampling applied to the CICIDS 2017 dataset. SMOTE oversamples 

minority classes while RandomUnderSampler undersamples majority classes. The 
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combined resampling aims to provide a more balanced dataset that facilitates the 

development of robust IDS models. 

5. SMOTE for Minority Classes: The Synthetic Minority Over-sampling 

Technique (SMOTE) is applied selectively to specific minority classes in the 

CICIDS 2017 dataset, such as ‘Bot,’ ‘Brute Force,’ and ‘XSS.’[37] Using the 

imbalanced-learn library, synthetic instances are generated for these minority 

classes to improve the model’s performance on them without affecting the majority 

classes. [38] 

The impact of these sampling techniques on the performance of IDS models will be 

analyzed in the subsequent sections of this study. By comparing the results, we aim to 

identify the most effective approach for handling imbalanced data in the CICIDS 2017 

dataset and improving the overall performance of intrusion detection systems. 

 

4.3 Model Evaluation  

In this section, we describe the methods used to evaluate the performance of the 

proposed models in detecting intrusion activities. Various evaluation techniques ensure a 

comprehensive assessment of the models’ performance, including cross-validation, test 

set evaluation, performance metrics, confusion matrix, ROC and Precision-Recall Curves. 

4.3.1 Cross-Validation 

As it reduces the risk of overfitting and gives a more accurate estimate of the 

generalization abilities of machine learning models, cross-validation is a widely used and 

crucial technique for evaluating the performance of these models. [39] When a model 



 

 

38 

becomes overly attuned to the training data, it can mistakenly incorporate noise or random 

variances. Over-optimization can hinder the model’s effectiveness when faced with new, 

unseen data. This is known as overfitting. Cross-validation addresses this issue by training 

and validating the models on different subsets of the data, ensuring that a specific data 

partition does not bias their performance. [28], [39] 

The K-fold cross-validation method randomly partitions the dataset into K equal-

sized subsets. During each iteration, the model is trained on K-1 subsets and then validated 

on the subset not used for training. This cycle is repeated K times, each subset serving as 

the validation set once. The performance metrics from all iterations are then averaged to 

yield a more reliable assessment of the model’s capabilities. A cross-validation is a 

valuable tool for gauging a model’s ability to generalize to unseen data by using multiple 

training and validation subsets. [39] 

In this study, we employ 5-fold cross-validation to assess the performance of the 

proposed models in detecting intrusion activities. The choice of 5 folds was made not only 

to strike a balance between computational efficiency and the reliability of the performance 

estimates but also as a fixed experimental setup for the scope of this particular research. It 

should be noted that future research may consider varying the number of folds in cross-

validation, depending on the specific requirements and objectives of the study, to explore 

further the impact of different fold numbers on model performance and optimization. 

During the cross-validation process, we focus on the models’ ability to classify 

instances accurately, minimize false positives, and detect intrusion activities confidently. 

The performance metrics obtained from the cross-validation process, such as precision, 
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recall, accuracy, and F-score, provide valuable insights into the models’ capabilities and 

help us identify the most effective model for intrusion detection. [39] 

4.3.2 Performance Metrics 

In this part, we delve into the method employed to calculate the critical performance 

metrics – precision, recall, accuracy, and F1-Score, for assessing our IDS model [19]. 

These metrics are essential in gauging our model’s efficacy in detecting malicious 

activities and generalizing these findings to real-world circumstances. Here is the step-by-

step process we used: 

1. True Positives (TP), False Positives (FP), True Negatives (TN), and False 

Negatives (FN): We initiate our process by quantifying the true positives, false 

positives, true negatives, and false negatives in our test set. These numbers are 

foundational in computing the performance metrics and evaluating our model’s 

proficiency in correctly classifying instances. [19] 

2. Accuracy: Accuracy is the ratio of correctly identified instances (TP and TN) to 

all cases in the test set. Although it assesses the overall performance of our model 

in classifying network traffic instances, other metrics might be more suitable for 

imbalanced datasets. [19] 

3. Precision: Precision is computed as the True Positives (TP) ratio to the True 

Positives and False Positives (FP) sum. It provides insight into our model’s 

proficiency in minimizing false alarms, or in other words, preventing the 

mislabeling of regular traffic as malicious. For IDS, it is vital to minimize false 
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positives to prevent system administrators from being overwhelmed by false 

alarms. [19] 

4. Recall (Sensitivity): Recall is determined by the proportion of TP against the sum 

of TP and FN. Observing a high recall score signifies that our model is adept at 

pinpointing malicious activities within the network traffic. We stress the 

importance of recall as it directly relates to the model’s ability to detect threats and 

safeguard the network from potential intrusions. [19] 

5. F1-score: The F1-score represents a balanced average of precision and recall, 

which helps to address their inherent trade-off. Particularly in datasets with an 

imbalance, such as ours, where the focus is on the minority class (malicious 

traffic), the F1-score provides an all-inclusive evaluation of how well the model 

performs. We compute the F1-score to ensure our model effectively detects 

malicious activities while minimizing false alarms. [19] 

By measuring our model’s performance using these metrics, we can assess its ability 

to detect and classify network intrusions. In addition, the test set evaluation results further 

offer valuable insights into the model’s real-world applicability, contributing to the 

continual enhancement of our IDS. 

4.3.4 Confusion Matrix, ROC and Precision-Recall Curves 

We take this opportunity to detail the methodology for creating the confusion matrix, 

ROC and Precision-Recall curves, vital tools for visualizing and understanding our IDS 

model’s performance on the test set. These visual aids allow us to pinpoint areas of 
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enhancement and better grasp the trade-offs between true positive and false positive rates. 

[40] 

1. Confusion Matrix: To construct the confusion matrix, we initially compute the 

count of accurate positive (TP), accurate negative (TN), inaccurate positive (FP), 

and inaccurate negative (FN) predictions from our model’s assessment of the test 

set. [40] We then arrange these figures in a 12 x 12 matrix, with rows representing 

actual classes (regular and malicious) and columns representing predicted classes. 

[20] This matrix offers a detailed overview of our model’s performance, 

emphasizing its capability to differentiate between normal and malicious network 

traffic. By inspecting the confusion matrix, we can pinpoint specific issues with 

our model and devise targeted improvement plans. 

2. ROC Curves: In order to generate the ROC curves for our intrusion detection 

system, we first determine both the true positive rate (often called recall or 

sensitivity) and the false positive rate at various decision thresholds. [21] We then 

plot TPR against FPR for each threshold, creating a curve that visualizes the trade-

offs between correctly identifying malicious instances (TPR) and incorrectly 

classifying regular instances as malicious (FPR). [41] By examining the ROC 

curve, we can pinpoint the optimal decision threshold that maximizes our model’s 

intrusion detection capability while minimizing false alarms. 

3. Area Under the ROC Curve (AUC-ROC): In order to gauge the effectiveness 

of our IDS model, we calculate the area under the Receiver Operating 

Characteristic curve, also known as AUC-ROC. [21] The values of AUC-ROC 
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span between 0 and 1, with 1 signifying an optimal classifier, while a score of 0.5 

is suggestive of a model with a performance level equivalent to that of random 

guessing. [40] By comparing the AUC-ROC values of different models or 

configurations, we can identify the most effective method for detecting network 

intrusions in our experimental setup. 

4. Precision-Recall Curves: To generate Precision-Recall curves for the Intrusion 

Detection System (IDS) applied to the CICIDS 2017 dataset, we first determine 

precision and recall at various decision thresholds [21]. Precision refers to 

correctly identified infestations out of all instances classified as infestations, and 

recall refers to correctly identified infestations out of all actual infestations. We 

then plot precision against recall for each threshold to generate a curve visualizing 

the balance between accurately detecting malicious activity (accuracy) and 

comprehensively identifying all intrusions (recall) [21]. 

5. Area Under the Precision-Recall Curve (AP): To evaluate the effectiveness of an 

IDS model, the area under the Precision-Recall curve, often referred to as AUC-

PR, can be calculated and utilized [21]. This plot looks similar to ROC-AUC, but 

is substantially different. AP values range from 0 to 1, with 1 representing an 

optimal model [21]. We explored the most efficient approach to detect network 

intrusion by comparing AP values for each label for different deep-learning models 

and sampling methods. 

By leveraging these visualization techniques and performance metrics, we 

comprehensively understand our IDS model’s performance on the test set. This 
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information aids us in optimizing the model and addressing its shortcomings, ensuring it 

effectively detects and classifies network intrusions in real-world scenarios. 

 

4.4 Experiment Setup 

In this section, we describe the experiment setup, including the virtual 

environment, programming language, libraries, and their respective versions for 

implementing and evaluating our IDS model. 

4.4.1 Google Colab Virtual Environment 

All of our tests were performed using Google Colaboratory (Colab), a platform in 

the cloud that offers a Jupyter Notebook environment for creating and running Python 

programs. Google Colab offers a convenient and accessible way to work with data and run 

machine learning experiments. It requires no local installation and can be accessed from 

any device with an internet connection. 

To ensure a smooth and uninterrupted experimental process, we subscribed to 

Colab Pro Plus, which provides additional benefits such as faster GPUs, longer runtimes, 

and priority resource access. In addition, this subscription enabled us to allocate the 

necessary computational resources for training and evaluating our deep-learning models 

more efficiently. 

4.4.2 Python and Libraries 

Our entire codebase for this study was implemented in Python 3.9.16 (Dec 7, 

2022), a popular programming language widely used in machine learning and data science. 
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We chose Python due to its extensive ecosystem of libraries and tools, which significantly 

facilitate the implementation and evaluation of machine learning models. 

For building and training our IDS model, we utilized the following libraries and 

their respective versions: 

1. TensorFlow: An open-source machine learning framework developed by Google 

for building and training our deep learning model. 

2. NumPy: A Python numerical computing library used to efficiently manage 

massive multidimensional arrays and matrices. 

3. Pandas: a library for handling and processing structured data, like the network 

traffic dataset utilized in our study. Pandas provides DataFrame objects, which are 

two-dimensional, size-mutable, and heterogeneous tabular data structures with 

labeled axes. This differs from NumPy’s arrays, as DataFrames allow more 

flexibility in handling data with other data types and offer advanced indexing 

capabilities. 

4. Scikit-learn (sklearn): A machine learning library that provides data 

preprocessing, model evaluation, and performance metric calculation tools. 

5. Matplotlib: A Python plotting toolkit for producing animated, interactive, and 

static visualizations of the outcomes and performance data of our studies. 

By leveraging the capabilities of Google Colab, Python 3.9.16, TensorFlow, and other 

essential libraries, we were able to effectively implement and evaluate our IDS model, 

obtaining valuable insights into its performance and potential areas for improvement. 
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CHAPTER V  

RESULTS AND DISCUSSION 

In this chapter, we present a comprehensive analysis of the performance of various 

deep learning models for intrusion detection. We evaluated the models using five sampling 

techniques: No Sampling, Selective Oversampling, Selective Undersampling, SMOTE, 

and Combined Sampling (SMOTE + Selective Undersampling). The models used in this 

study include CNN-Simple, CNN-Deep, ANN, DNN, LSTM, GRU, and CLAttNet. We 

assessed their performance based on precision, recall, accuracy, and F-score using 5-fold 

cross-validation. In addition, we derived and analyzed the ROC-AUC and Precision-

Recall Curve AUC scores for each model to compare the performance of each model in 

detail. 

5.1 Results by Sampling Technique 

The cross-validation results for each model across the five sampling techniques 

are presented in Tables 3 to 7. We calculated the mean of the performance metrics for each 

model to compare their performance. 

5.1.1 No Sampling Technique 

Table 3 Model Performance with No sampling technique in 5-fold CV 

Model Precision Recall F1-Score Accuracy 
CNN-S 0.9864 0.9865 0.98592 0.9865 
CNN-D 0.95501 0.95466 0.95252 0.95466 

ANN 0.98251 0.98085 0.98075 0.98085 
DNN 0.98326 0.98169 0.98164 0.98169 
LSTM 0.98598 0.98544 0.98507 0.98544 
GRU 0.98429 0.98349 0.98314 0.98349 

CLAttNet 0.98561 0.98587 0.98551 0.98587 
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In the No Sampling Technique setting, the CNN-Simple model demonstrated the 

highest F1-Score (0.98592), followed by the CLAttNet, LSTM, GRU, DNN, ANN, and 

CNN-Deep models. The CNN-Deep model showed the lowest F1-Score(0.95252). The 

detailed cross-validation results can be found in Table 3.  

 

Figure 13 ROC-AUC Score by Label in No Resampling 

 

Figure 17 above compares the ROC-AUC scores for each model in the No 

Resampling Technique by the label. In this result, as in comparing the F1-Score, it can be 

seen that the CNN-Deep model has the lowest score. 
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Figure 14  Precision Recall-AUC Score by Label in No Resampling 

 

Similarly, Figure 18 compares the AUC scores of the Precision-Recall Curve by 

the model in No Resampling. Again, it can be seen that the CNN-Deep model shows the 

lowest score as in the previous results. 

This result shows that the too-complicated model might have yet to effectively 

capture the underlying patterns and features that differentiate the classes. 

5.1.2 Selective Oversampling 

Table 4 Model Performance with Selective Oversampling in 5-fold CV 

Model Precision Recall F1-Score Accuracy 
CNN-S 0.96571 0.96316 0.96257 0.96316 
CNN-D 0.96699 0.96413 0.9632 0.96413 

ANN 0.9845 0.98092 0.9819 0.98092 
DNN 0.9845 0.98025 0.98149 0.98025 
LSTM 0.98852 0.98515 0.98609 0.98515 
GRU 0.98816 0.98533 0.98623 0.98533 

CLAttNet 0.97694 0.97453 0.975 0.97453 

 

With Selective Oversampling, the GRU model achieved the highest F1-Score 

(0.98623). The LSTM, ANN, DNN, CLAttNet, CNN-Deep and CNN-Simple models 
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followed in descending order. The detailed cross-validation results can be found in Table 

4. The CNN-Simple model, which showed the best performance in No Resampling, shows 

the lowest score(0.96257) this time. Furthermore, similarly, the CNN-Deep model also 

shows relatively poor performance. 

 

Figure 15 ROC-AUC Score by Label in Selective Oversampling 

 

 

Figure 16 Precision Recall-AUC Score by Label in Selective Oversampling 
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Figure 19 shows that the CNN-Deep and CNN-Simple models show relatively 

poor scores compared to other models, similar to the F1-Score result. Moreover, this 

shows the same aspect in the AUC Score of the Precision-Recall Curve in Figure 20. 

5.1.3 Selective Undersampling 

Table 5 Model Performance with Selective Undersampling in 5-fold CV 

Model Precision Recall F1-Score Accuracy 
CNN-S 0.93996 0.84085 0.8747 0.84085 
CNN-D 0.92263 0.7663 0.81333 0.7663 

ANN 0.91464 0.75074 0.79658 0.75074 
DNN 0.91406 0.74846 0.79484 0.74846 
LSTM 0.92704 0.77343 0.82175 0.77343 
GRU 0.91984 0.74989 0.80007 0.74989 

CLAttNet 0.94367 0.87027 0.89516 0.87027 

 

Overall, all models show poor performance in the Selective Undersampling 

Technique compared to other sampling methods. Since it shows an average of 15% or 

lower scores than other samplings, this sampling does not significantly improve model 

performance. However, we confirmed that the CLAttNet and CNN-Simple models scored 

close to 90% (0.89516 / 0.8747) among the poor performances of other models. 

 

Figure 17 ROC-AUC Score by Label in Selective Undersampling 
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In Figure 21 and Figure 22, we can see the overall low-scoring models. 

Furthermore, in the two figures, it can also be found that the CLAttNet and CNN-Simple 

models show relatively good scores. 

 

Figure 18 Precision Recall-AUC Score by Label in Selective Underampling 

 

5.1.4 SMOTE 

Table 6 Model Performance with SMOTE in 5-fold CV 

Model Precision Recall F1-Score Accuracy 
CNN-S 0.98144 0.97994 0.97998 0.97994 
CNN-D 0.98776 0.98592 0.98594 0.98592 

ANN 0.98325 0.97936 0.98045 0.97936 
DNN 0.98457 0.98097 0.98199 0.98097 
LSTM 0.98852 0.98633 0.98687 0.98633 
GRU 0.98598 0.98274 0.98355 0.98274 

CLAttNet 0.99391 0.9926 0.99288 0.9926 

 

In the SMOTE setting, the CLAttNet model performed the best in terms of F1-

Score (0.99288). The LSTM, CNN-Deep, GRU, DNN, ANN, and CNN-Simple models 

followed in descending order. The detailed cross-validation results can be found in Table 
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6. This result indicates that generating synthetic examples of the minority classes using 

SMOTE can significantly improve the performance of deep learning models for intrusion 

detection, particularly for the CLAttNet model in this case. 

The model that showed the poorest performance in SMOTE sampling was the 

CNN-Simple model (0.97998), which performed well in the previous sampling technique. 

However, it is difficult to see this as a significant result because there is no significant 

difference from other models. 

 

Figure 19 ROC-AUC Score by Label in SMOTE 

 

As with the F1-Score result, in Figure 23 and Figure 24, we can see that 

CLAttNet shows the best score. However, other models show similar scores. In other 

words, it is difficult to distinguish clearly from the graph that the CNN-Simple model 

performs poorly. 



 

 

52 

 

Figure 20 Precision Recall-AUC Score by Label in SMOTE 

 

5.1.5 Combined Sampling(SMOTE + Selective Undersampling) 

Table 7 Model Performance with Combined Sampling in 5-fold CV 

Model Precision Recall F1-Score Accuracy 
CNN-S 0.93856 0.85166 0.88143 0.85166 
CNN-D 0.91433 0.6323 0.70605 0.6323 

ANN 0.93479 0.82329 0.8606 0.82329 
DNN 0.93267 0.8224 0.85853 0.8224 
LSTM 0.94985 0.8414 0.88225 0.8414 
GRU 0.94825 0.83114 0.87493 0.83114 

CLAttNet 0.94356 0.8659 0.89388 0.8659 

 

Even with the combined sampling technique, we can confirm that the models show 

poor overall performance. For example, compared to the No Resampling Technique, 

which did not apply the sampling technique, it was confirmed that the performance was 

lowered by as much as 0.25 (CNN-Deep: 0.95252  0.70605). Moreover, even in the 

case of CLAttNet, which has the best performance in this technique, the score was about 

0.09 lower than that of No Resampling.(0.98551  0.89388) 
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Figure 21 ROC-AUC Score by Label in Combined Sampling 

 

 

Figure 22 Precision Recall-AUC Score by Label in Combined Sampling 

 

Figure 25 and Figure 26 show the performance of the two models by comparing 

the AUC scores for each label in terms of ROC and Precision-Recall Curve. Among them, 

Figure 26 clearly shows the overall low performance of the models. 
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5.2 Best Sampling Technique for Each Deep Learning Model Based on F1-Score 

In this section, we present the best sampling method for each deep learning model 

according to their F1-Scores. We will include the label classification report, ROC graphs, 

and Confusion Matrices for each combination, accompanied by an interpretation and 

explanation of the results. 

Table 8 Best Sampling Technique and F1-Score for Each model 

 Best Sampling F1-Score 2nd Sampling F1-Score 
F1-Score of 

No Resampling 

CNN - S No Sampling 
0.98592  

( - ) 
SMOTE 

0.97998  

(▼0.00594) 
0.98592 

CNN - D SMOTE 
0.98594 

(▲0.03342) 
Oversampling 

0.96320  

(▲0.01068) 
0.95252 

ANN Oversampling 
0.98190  

(▲0.00115) 
No Sampling 

0.98075 

( - ) 
0.98075 

DNN SMOTE 
0.98199  

(▲0.00035) 
No Sampling 

0.98164 

( - ) 
0.98164 

LSTM SMOTE 
0.98687  

(▲0.00180) 
Oversampling 

0.98609  

(▲0.00102) 
0.98507 

GRU SMOTE 
0.98355  

(▲0.00041) 
Oversampling 

0.98623  

(▲0.00309) 
0.98314 

CLAttNet SMOTE 
0.99288  

(▲0.00737) 
No Sampling 

0.98551 

( - ) 
0.98551 

5454545454 

5.2.1 CNN - Simple with No Sampling (F1-Score: 0.98592) 

Referring to Table 12, the CNN Simple model shows the highest F1-

Score(0.98592) when no sampling technique is applied. In addition, Table 13 shows the 

label classification report of the CNN Simple model in No Sampling, among which Bot 

(0.47237), Brute Force (0.12042), and XSS (0) show low F1-Scores. The reason for this 

is that the number of instances of the corresponding label is tiny.  

In particular, the fact that the F1-Score is zero(0) even though the Precision of XSS 

is one(1) implies why we should not use performance metrics such as Precision and Recall 

alone when evaluating model performance. Instead, F1-Score means the harmonic average 
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of Precision and Recall, and by using it, we can understand the model's performance in a 

more balanced way. 

Table 9 CNN Simple with No Sampling Label Classification Report  

Label Precision Recall F1-Score Support 

BENIGN 0.99016 0.99356 0.99186 2271320 

Bot 0.98699 0.31049 0.47237 1955 

Brute Force 0.91509 0.06445 0.12042 1505 

DDoS 0.99575 0.98911 0.99242 128025 

DoS GoldenEye 0.9949 0.96552 0.97999 10295 

DoS Hulk 0.96927 0.97525 0.97225 230125 

DoS Slowhttptest 0.94998 0.87709 0.91208 5500 

DoS slowloris 0.99129 0.92355 0.95623 5795 

FTP-Patator 0.99634 0.99509 0.99571 7935 

PortScan 0.95246 0.9425 0.94745 158805 

SSH-Patator 0.93488 0.58881 0.72255 5900 

XSS 1 0 0 650  
    

accuracy   0.9865 2827810 

macro avg 0.97309 0.71879 0.75528 2827810 

weighted avg 0.9864 0.9865 0.98592 2827810 

 

The model's performance across all classes is effectively demonstrated by the 

Confusion Matrix (Figure 27), which exhibits accurate classification with minimal 

misclassifications. The Figure 27 also shows that this model classifies almost all XSS 

labels as Benign.  
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Figure 23 CNN - S Confusion Matrix 

 

In addition, as depicted in the Receiver Operating Characteristic (ROC) graph 

(Figure 28), the model maintains high True Positive Rates (TPR) for all classes while 

successfully minimizing the False Positive Rates (FPR). 
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Figure 24 CNN - S ROC Curve 

 

Moreover, Figure 28 is the ROC curve for each label of this model, and Figure 29 

shows the Precision-Recall curve for each label. In the ROC curve, most of the labels show 

good performance. Even Bot, Brute Force, and XSS labels show that the AUC is over 0.98, 

confirming the results far from the performance judged by the F1-Score. However, in 

Figure 29, as in the previous performance evaluation results, it can be seen that labels with 

low F1-Scores still show low Precision-Recall Curve AUC scores. 

 

In other words, it is strongly assumed that the model's performance will be more 

balanced when comprehensively considering F1-Score and Precision-Recall Curve. 
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Figure 25 CNN - S Precision-Recall Curve 

 

5.2.2 CNN-Deep with SMOTE (F1-Score: 0.98594) 

Referring to Table 12, the CNN Deep model shows the highest F1-Score (0.98594) 

when the SMOTE technique is applied, which is a result showing a performance 

improvement of about 0.03342 higher than when no sampling was used. In addition, Table 

14 shows the label classification report of the CNN Deep model in SMOTE, among which 

Bot (0.20468), Brute Force (0), and XSS (0.14105) show low F1-Scores. The reason for 

this is that the number of instances of the corresponding label is tiny, which is the same 

reason as before.  
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In particular, the fact that the F1-Score is zero(0) even though the Precision of 

Brute Force is one(1) implies why we should not use performance metrics such as 

Precision and Recall alone when evaluating model performance.  

 

Table 10 CNN - D Label Classification Report 

Label Precision Recall F1-Score Support 

BENIGN 0.98956 0.99469 0.99212 2271320 

Bot 0.99554 0.11407 0.20468 1955 

Brute Force 1 0 0 1505 

DDoS 0.99819 0.98016 0.9891 128025 

DoS GoldenEye 0.98871 0.9017 0.9432 10295 

DoS Hulk 0.96926 0.95727 0.96323 230125 

DoS Slowhttptest 0.75256 0.52091 0.61567 5500 

DoS slowloris 0.98663 0.63676 0.77399 5795 

FTP-Patator 0.99058 0.88784 0.9364 7935 

PortScan 0.99156 0.98503 0.98828 158805 

SSH-Patator 0.99931 0.49102 0.65848 5900 

XSS 0.07727 0.80769 0.14105 650  

    
accuracy 

  0.98592 2827810 

macro avg 0.89493 0.68976 0.68385 2827810 

weighted avg 0.98776 0.98592 0.98594 2827810 

 

The model's performance across all classes is effectively demonstrated by the 

Confusion Matrix (Figure 30), which exhibits accurate classification with minimal 

misclassifications. In the case of Brute Force, where the Precision was 1, but the F1-Score 

was 0, looking at Figure 30, it can be seen that all classifications were classified with 

labels other than Brute Force.  
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Figure 26 CNN - D Confusion Matrix 

 

The Confusion Matrix (Figure 30) supports the model's performance across all 

classes, showing effective classification with minimal misclassifications. The Receiver 

Operating Characteristic (ROC) graph (Figure 31) also demonstrates high True Positive 

Rates (TPR) for all classes while maintaining low False Positive Rates (FPR). 

Moreover, Figure 31 is the ROC curve of this model, but like the previous results, 

it does not correctly reflect the performance of the model. However, looking at Figure 32, 

it can be seen that the AUC score of the Precision-Recall Curve shows the performance of 

the model and the F1-Score. 
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Figure 27 CNN - D ROC Curve 

 

In particular, Figure 32 shows that the score of Brute Force, whose F1-Score was 

0, is 0.0640, which is close to 0, contrary to the ROC AUC score of Figure 31, which is 

0.9952. In addition, it can be confirmed that the three labels with the lowest scores in 

Figure 32 show the same results when comparing the performance of the model with the 

F1-Score metric: Bot (0.2936), Brute Force (0.0640), and XSS (0.2239). 
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Figure 28 CNN - D Precision-Recall Curve 

 

5.2.3 ANN with Selective Oversampling (F1-Score: 0.9819) 

Referring to Table 12, the ANN model shows the highest F1-Score (0.9819) when 

the Selective Oversampling technique is applied, which is a result showing a slight 

performance improvement of about 0.00115 higher than when no sampling was used. In 

addition, Table 15 shows the label classification report of the ANN model in Selective 

Oversampling, among which Bot (0.47054), Brute Force (0.05178), and XSS (0.1674) 

show low F1-Scores. The reason for this is that the number of instances of the 

corresponding label is tiny, which is the same reason as before.  
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Table 11 ANN Label Classification Report 

Label Precision Recall F1-Score Support 

BENIGN 0.99662 0.9811 0.9888 2271320 

Bot 0.95171 0.31253 0.47054 1955 

Brute Force 1 0.02658 0.05178 1505 

DDoS 0.99883 0.98358 0.99115 128025 

DoS GoldenEye 0.98984 0.94628 0.96757 10295 

DoS Hulk 0.96151 0.99563 0.97827 230125 

DoS Slowhttptest 0.96344 0.97255 0.96797 5500 

DoS slowloris 0.98985 0.89215 0.93846 5795 

FTP-Patator 0.96924 0.99672 0.98279 7935 

PortScan 0.84321 0.97943 0.90623 158805 

SSH-Patator 0.83844 0.91915 0.87694 5900 

XSS 0.09134 1 0.1674 650  

    
accuracy 

  0.98092 2827810 

macro avg 0.88284 0.83381 0.77399 2827810 

weighted avg 0.9845 0.98092 0.9819 2827810 

 

 

Figure 29 ANN Confusion Matrix 
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The model's performance across all classes is effectively demonstrated by the 

Confusion Matrix (Figure 33), which exhibits accurate classification with minimal 

misclassifications. The Confusion Matrix supports the model's performance across all 

classes, showing effective classification with minimal misclassifications. The Receiver 

Operating Characteristic (ROC) graph (Figure 34) also demonstrates high True Positive 

Rates (TPR) for all classes while maintaining low False Positive Rates (FPR). 

Moreover, Figure 34 is the ROC curve of this model, but like the previous results, 

it does not correctly reflect the performance of the model. However, looking at Figure 35, 

it can be seen that the AUC score of the Precision-Recall Curve shows the performance of 

the model and the F1-Score. 

 

Figure 30 ANN ROC Curve 
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Figure 31 ANN Precision-Recall Curve 

 

In particular, Figure 35 shows that the score of Brute Force, whose F1-Score was 

0.05178, is 0.1178, contrary to the ROC AUC score of Figure 34, which is 0.9961. In 

addition, it can be confirmed that the three labels with the lowest scores in Figure 35 show 

the same results when comparing the performance of the model with the F1-Score metric: 

Bot (0.5378), Brute Force (0.1178), and XSS (0.3806). 

 

5.2.4 DNN with SMOTE (F1-Score: 0.98199) 

Referring to Table 12, the DNN model shows the highest F1-Score (0.98199) when 

the SMOTE is applied, which is a result showing a slight performance improvement of 

about 0.00035 higher than when no sampling was used. In addition, Table 16 shows the 
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label classification report of the DNN model in SMOTE, among which Bot (0.428), Brute 

Force (0.04291), and XSS (0.15482) show low F1-Scores. The reason for this is that the 

number of instances of the corresponding label is tiny, which is the same reason as before.  

Table 12 DNN Label Classification Report 

Label Precision Recall F1-Score Support 

BENIGN 0.99549 0.98221 0.98881 2271320 

Bot 0.98165 0.27366 0.428 1955 

Brute Force 1 0.02193 0.04291 1505 

DDoS 0.99831 0.98385 0.99103 128025 

DoS GoldenEye 0.98978 0.95017 0.96957 10295 

DoS Hulk 0.97097 0.98964 0.98022 230125 

DoS Slowhttptest 0.96696 0.96327 0.96512 5500 

DoS slowloris 0.98618 0.91113 0.94717 5795 

FTP-Patator 0.97702 0.9966 0.98671 7935 

PortScan 0.84658 0.9729 0.90535 158805 

SSH-Patator 0.83721 0.91525 0.87449 5900 

XSS 0.0839 1 0.15482 650  

    
accuracy 

  0.98097 2827810 

macro avg 0.88617 0.83005 0.76952 2827810 

weighted avg 0.98457 0.98097 0.98199 2827810 

 

The model's performance across all classes is effectively demonstrated by the 

Confusion Matrix (Figure 36), which exhibits accurate classification with minimal 

misclassifications. The Confusion Matrix supports the model's performance across all 

classes, showing effective classification with minimal misclassifications. The Receiver 

Operating Characteristic (ROC) graph (Figure 37) also demonstrates high True Positive 

Rates (TPR) for all classes while maintaining low False Positive Rates (FPR). 
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Figure 32 DNN Confusion Matrix 

 

 

Figure 33 DNN ROC Curve 
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Moreover, Figure 37 is the ROC curve of this model, but like the previous results, 

it does not correctly reflect the performance of the model. However, looking at Figure 38, 

it can be seen that the AUC score of the Precision-Recall Curve shows the performance of 

the model and the F1-Score. 

 

Figure 34 DNN Precision-Recall Curve 

 

In particular, Figure 38 shows that the score of Brute Force, whose F1-Score was 

0.04291, is 0.1344, contrary to the ROC AUC score of Figure 37, which is 0.9954. In 

addition, it can be confirmed that the three labels with the lowest scores in Figure 38 show 

the same results when comparing the performance of the model with the F1-Score metric: 

Bot (0.5447), Brute Force (0.1344), and XSS (0.3771). 
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5.2.5 LSTM with SMOTE (F1-Score: 0.98687) 

Referring to Table 12, the LSTM model shows the highest F1-Score (0.98687) 

when the SMOTE is applied, which is a result showing a slight performance improvement 

of about 0.00180 higher than when no sampling was used. In addition, Table 17 shows the 

label classification report of the LSTM model in SMOTE, among which Bot (0.50143), 

Brute Force (0.0728), and XSS (0.20734) show low F1-Scores. However, when 

experimenting with the LSTM model, it can be confirmed that the classification score for 

the Bot label, which previously had a low score, appears as 0.50143, which is more than 

half. 

Table 13 LSTM Label Classification Report 

Label Precision Recall F1-Score Support 

BENIGN 0.99771 0.98674 0.99219 2271320 

Bot 0.83353 0.35857 0.50143 1955 

Brute Force 0.93443 0.03787 0.0728 1505 

DDoS 0.99784 0.98585 0.99181 128025 

DoS GoldenEye 0.98534 0.9594 0.97219 10295 

DoS Hulk 0.96576 0.99262 0.97901 230125 

DoS Slowhttptest 0.9641 0.98618 0.97501 5500 

DoS slowloris 0.98758 0.96083 0.97402 5795 

FTP-Patator 0.99484 0.99672 0.99578 7935 

PortScan 0.89684 0.99534 0.94353 158805 

SSH-Patator 0.7847 0.85864 0.82001 5900 

XSS 0.11566 1 0.20734 650  

    
accuracy 

  0.98633 2827810 

macro avg 0.87153 0.84323 0.78543 2827810 

weighted avg 0.98852 0.98633 0.98687 2827810 

 

The model's performance across all classes is effectively demonstrated by the 

Confusion Matrix (Figure 40), which exhibits accurate classification with minimal 
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misclassifications. The Confusion Matrix supports the model's performance across all 

classes, showing effective classification with minimal misclassifications.  

 

Figure 35 LSTM Confusion Matrix 

 

The Receiver Operating Characteristic (ROC) graph (Figure 41) also demonstrates 

high True Positive Rates (TPR) for all classes while maintaining low False Positive Rates 

(FPR).  

Moreover, Figure 41 is the ROC curve of this model, but like the previous results, 

it does not correctly reflect the performance of the model. However, looking at Figure 38, 

it can be seen that the AUC score of the Precision-Recall Curve shows the performance of 

the model and the F1-Score. 

 



 

 

71 

 

Figure 36 LSTM ROC Curve 

 

 

Figure 372 LSTM Precision-Recall Curve 
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In particular, Figure 42 shows that the score of Brute Force, whose F1-Score was 

0.0728, is 0.0921, contrary to the ROC AUC score of Figure 41, which is 0.9924. In 

addition, it can be confirmed that the three labels with the lowest scores in Figure 42 show 

the same results when comparing the performance of the model with the F1-Score metric: 

Bot (0.5665), Brute Force (0.0921), and XSS (0.3605). 

 

5.2.6 GRU with SMOTE (F1-Score: 0.98355) 

Referring to Table 12, the GRU model shows the highest F1-Score (0.98355) when 

the SMOTE is applied, which is a result showing a slight performance improvement of 

about 0.00041 higher than when no sampling was used. In addition, Table 18 shows the 

label classification report of the GRU model in SMOTE, among which Bot (0.51059), 

Brute Force (0.06174), and XSS (0.17253) show low F1-Scores. However, when 

experimenting with the GRU model like LSTM, it can be confirmed that the classification 

score for the Bot label, which previously had a low score, appears as 0.51059, which is 

more than half. 
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Table 14 GRU Label Classification Report 

Label Precision Recall F1-Score Support 

BENIGN 0.99739 0.98301 0.99015 2271320 

Bot 0.76931 0.3821 0.51059 1955 

Brute Force 0.96 0.03189 0.06174 1505 

DDoS 0.99811 0.98452 0.99127 128025 

DoS GoldenEye 0.98786 0.94823 0.96764 10295 

DoS Hulk 0.96461 0.99255 0.97838 230125 

DoS Slowhttptest 0.96664 0.98509 0.97578 5500 

DoS slowloris 0.99048 0.95168 0.97069 5795 

FTP-Patator 0.99522 0.99685 0.99603 7935 

PortScan 0.85386 0.99684 0.91983 158805 

SSH-Patator 0.89613 0.58492 0.70782 5900 

XSS 0.09441 1 0.17253 650  

    
accuracy 

  0.98274 2827810 

macro avg 0.87283 0.81981 0.7702 2827810 

weighted avg 0.98598 0.98274 0.98355 2827810 

 

 

Figure 38 GRU Confusion Matrix 
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The model's performance across all classes is effectively demonstrated by the 

Confusion Matrix (Figure 42), which exhibits accurate classification with minimal 

misclassifications. The Confusion Matrix supports the model's performance across all 

classes, showing effective classification with minimal misclassifications.  

 

Figure 39 GRU ROC Curve 

 

The Receiver Operating Characteristic (ROC) graph (Figure 43) also demonstrates 

high True Positive Rates (TPR) for all classes while maintaining low False Positive Rates 

(FPR).  

Moreover, Figure 43 is the ROC curve of this model, but like the previous results, 

it does not correctly reflect the performance of the model. However, looking at Figure 44, 
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it can be seen that the AUC score of the Precision-Recall Curve shows the performance of 

the model and the F1-Score. 

 

Figure 404 LSTM Precision-Recall Curve 

 

In particular, Figure 44 shows that the score of Brute Force, whose F1-Score was 

0.06174, is 0.0894, contrary to the ROC AUC score of Figure 43, which is 0.9934. In 

addition, it can be confirmed that the three labels with the lowest scores in Figure 44 show 

the same results when comparing the performance of the model with the F1-Score metric: 

Bot (0.5572), Brute Force (0.0894), and XSS (0.3541). 
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5.2.7 CLAttNet with SMOTE (F1-Score: 0.99288) 

In Table 12, the CLAttNet model showed the highest F1-Score (0.99288) when 

SMOTE was applied, showing a slight performance improvement of about 0.00737 higher 

than when sampling was not used. Moreover, it has the highest performance score among 

all other models.  

In addition, Table 19 shows the label classification report of the CLAttNet model 

in SMOTE, among which Bot (0.50683), Brute Force (0.16888), and XSS (0.23147) show 

low F1-Scores. However, when experimenting with the CLAttNet model like LSTM and 

GRU, it can be confirmed that the classification score for the Bot label, which previously 

had a low score, appears as 0.50683, which is more than half. 

Table 15 CLAttNet Label Classification Report 

Label Precision Recall F1-Score Support 

BENIGN 0.99773 0.99453 0.99612 2271320 

Bot 0.98091 0.34169 0.50683 1955 

Brute Force 0.91503 0.09302 0.16888 1505 

DDoS 0.99478 0.99502 0.9949 128025 

DoS GoldenEye 0.99114 0.96668 0.97876 10295 

DoS Hulk 0.98121 0.9893 0.98524 230125 

DoS Slowhttptest 0.90318 0.86836 0.88543 5500 

DoS slowloris 0.99119 0.95168 0.97104 5795 

FTP-Patator 0.98714 0.9966 0.99185 7935 

PortScan 0.97046 0.99725 0.98368 158805 

SSH-Patator 0.8539 0.84102 0.84741 5900 

XSS 0.13094 0.99692 0.23147 650  

    
accuracy 

  0.9926 2827810 

macro avg 0.89147 0.83601 0.79513 2827810 

weighted avg 0.99391 0.9926 0.99288 2827810 
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The model's performance across all classes is effectively demonstrated by the 

Confusion Matrix (Figure 44), which exhibits accurate classification with minimal 

misclassifications. The Confusion Matrix supports the model's performance across all 

classes, showing effective classification with minimal misclassifications.  

 

Figure 41 CLAttNet Confusion Matrix 

 

The Receiver Operating Characteristic (ROC) graph (Figure 43) also demonstrates 

high True Positive Rates (TPR) for all classes while maintaining low False Positive Rates 

(FPR).  

Moreover, Figure 45 is the ROC curve of this model, but like the previous results, 

it does not correctly reflect the performance of the model. However, looking at Figure 46, 

it can be seen that the AUC score of the Precision-Recall Curve shows the performance of 

the model and the F1-Score. 
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Figure 42 CLAttNet ROC Curve 

 

 

Figure 436 CLAttNet Precision-Recall Curve 
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In particular, Figure 46 shows that the score of Brute Force, whose F1-Score was 

0.16888, is 0.2826, contrary to the ROC AUC score of Figure 45, which is 0.9990, almost 

perfect score. In addition, it can be confirmed that the three labels with the lowest scores 

in Figure 46 show the same results when comparing the performance of the model with 

the F1-Score metric: Bot (0.5811), Brute Force (0.2826), and XSS (0.3289). 

 

5.3 Limitations and Future Work 

This work has shed light on how different deep learning models and sampling 

strategies might improve intrusion detection systems using the CICIDS 2017 dataset. The 

important findings must be balanced, however, by acknowledging and addressing some 

limitations. 

5.3.1 Hyperparameter Optimization and Experimental Conditions 

One of the main limitations of this study is the constraint on hyperparameter 

optimization due to the experimental environment. The experiments were conducted using 

Google Colab Pro Plus, which imposes a maximum runtime limit of 24 hours. As a result, 

some more complex models, such as the CLAttNet, could not be fully optimized 

concerning their hyperparameters, as the time required for 5-fold cross-validation and 

GridSearchCV exceeded the allotted time. 

To overcome this limitation, future research should aim to secure better 

experimental environments that allow for more extensive hyperparameter optimization. 

This would enable a more comprehensive comparison of the deep learning models, 

considering their performance with default settings and their potential for improvement 
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through fine-tuning. Additionally, the availability of more powerful computer resources 

would enable researchers to use more exact search methods, such random search and 

Bayesian optimization, which would result in hyperparameter setups with higher efficacy. 

In addition, hyperparameter optimization should be extended to other models in the study, 

further enhancing the overall comparison and ensuring that each model is evaluated at its 

best possible performance. This would involve fine-tuning each model's architecture and 

considering other hyperparameters, such as the learning rate, weight initialization, and 

optimization algorithms, among others. 

5.3.2 Feature Selection and Engineering 

The limited number of traits that were employed in the experiments for the study 

is another drawback. Using the SelectKBest approach, the number of features was limited 

to 40 due to the restrictions of the experimental setting. Because of this strategy, some 

models might not have been able to properly capture the complexity of the dataset and 

perform at their best. [29]  

The number of features utilized for each model should be varied in future study, 

and other feature selection and feature engineering strategies should be tested. [25], [29] 

This would make it possible to gain a deeper knowledge of how various feature sets affect 

each deep learning model's performance and perhaps find new combinations that improve 

intrusion detection systems' precision and effectiveness. In addition, more complex feature 

selection methods, such as Recursive Feature Elimination (RFE) or feature significance 

analysis based on tree-based models, could be employed to comprehend the relationships 

between features and their effects on prediction accuracy. [42]  
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Future study might also look into semi-supervised or unsupervised feature learning 

techniques like autoencoders or variational autoencoders, which can be used to find hidden 

patterns in the data and provide more useful feature representations. By providing more 

robust features that are resistant to noise and irrelevant data, this could improve the 

performance of deep learning models for intrusion detection. 

5.3.3 Extension and Generalization 

The CICIDS 2017 dataset served as the foundation for this study's conclusions. It 

is crucial to validate and generalize these findings across numerous datasets and realistic 

circumstances, even though they offer insightful information about the effectiveness of 

various deep learning models and sampling approaches for intrusion detection. In order to 

ensure the models' resilience and flexibility, future research should examine the efficiency 

of these models and methodologies on different datasets, such as the NSL-KDD or the 

more recent CSE-CIC-IDS2018 dataset. [43], [44]  

Additionally, investigating how these models operate in other network 

environments, such as IoT networks, cloud-based systems, or industrial control systems, 

can offer insightful information about their suitability and ability to address the particular 

problems faced by these environments. [45] The ultimate goal of this would be to create 

an intrusion detection system that is more reliable and flexible and can effectively address 

the constantly changing landscape of cyber threats. 

5.3.4 Ensemble and Hybrid Models 

In this study, the CLAttNet model, which integrates the LSTM, Convolution, and 

Attention processes, performed better than other models. This result raises the possibility 
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of investigating other ensemble and hybrid models that integrate the benefits of several 

deep learning architectures. [46] Future studies might look into the creation of novel 

hybrid models that combine several deep learning methods, such as CNNs and GRUs or 

other recurrent architectures with attention mechanisms. [32]  

Stacking, bagging, and boosting are examples of ensemble approaches that can 

improve the efficiency of intrusion detection systems. The accuracy of ensemble 

techniques, which aggregate the results of multiple models, can be improved while 

reducing the impact of each model's shortcomings. However, this strategy would 

necessitate the creation of effective and efficient methods for model variety and 

combination, as well as rigorous testing to identify the best ensemble configurations for 

intrusion detection. 

5.3.5 Real-Time Intrusion Detection and Scalability 

While the precision, recall, accuracy, and F-score performance of deep learning 

models were the main emphasis of this study, it is equally critical to take into account the 

scalability and real-time application of these models in actual IDS installations. [45] The 

appropriateness of each model for real-time intrusion detection in diverse network 

contexts should be assessed in future study by taking into account each model's computing 

efficiency, latency, and resource requirements. [47]  

Additionally, the scalability of these models should be evaluated in terms of their 

propensity to adjust and function well as network traffic volume and attack complexity 

rise. [47] This could entail examining methods for parallelizing, distributed learning, and 

model compression, as well as looking at the potential of online learning and incremental 
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learning strategies to allow the models to be continuously improved as new data becomes 

available. [32]  

In conclusion, utilizing the CICIDS 2017 dataset, our study has shed important 

light on how different deep learning models and sampling strategies perform when used 

to improve intrusion detection systems. The results lay a strong platform for future studies 

aimed at creating deep learning-based IDS systems that are more effective, precise, and 

scalable. Future research can support ongoing efforts to defend our digital world against 

the constantly changing panorama of cyber threats by addressing the constraints and 

investigating the potential directions for improvement described in this section. 



 

 

84 

CHAPTER VI  

CONCLUSIONS 

Our study aimed to evaluate the performance of different deep learning models 

and sampling techniques for intrusion detection using the CICIDS 2017 dataset. We 

performed a comprehensive analysis based on Precision, Recall, F-score, Accuracy, ROC-

AUC, and Precision-Recall Curve AUC and compared the results. 

Studies have shown that the CLAttNet model combined with the SMOTE 

sampling technique consistently outperforms the other models in terms of F1-Score. 

Utilizing convolution, LSTM, and attention processes, this model has shown excellent 

capabilities in detecting cyber threats. Moreover, rather than comparing performance 

measurement metrics such as Precision, Recall, and Accuracy alone, we found that the F1-

Score, the harmonic average of Precision and Recall, was more suitable for performance 

measurement. In addition, the performance of each model was further confirmed through 

the analysis of the ROC curve and the Precision-Recall curve. It was also confirmed in the 

process that the Precision-Recall Curve reflects model performance better than the ROC 

Curve. 

It is also worth noting that the SMOTE sampling technique consistently improved 

performance in most models except CNN-Simple and ANN. Furthermore, applying 

SMOTE to each model improved its performance, highlighting its effectiveness as a 

sampling technique. 
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However, our study has the following limitations. Further studies are needed in the 

future, focusing on optimizing hyperparameters, exploring alternative feature selection 

techniques, validating results using different data sets and real-world examples, exploring 

other ensemble and hybrid models, and evaluating the scalability and real-time 

applicability of IDS deployments. 

In conclusion, our study based on the CICIDS 2017 dataset provides valuable 

insights into the performance of different deep-learning models and sampling techniques 

for intrusion detection. Including ROC and Precision-Recall curves in the analysis 

improves the comprehensiveness of the results. Our work highlights the effectiveness of 

the SMOTE sampling technique in achieving performance improvements for most 

models. It serves as the basis for future efforts to develop more accurate, accurate, and 

scalable deep learning-based IDS systems that will ultimately serve as a basis for 

evolving cyberspace.
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APPENDIX A 

SOURCE CODE – PREPROCESSING & SAMPLING 

A.1 Import Modules and Initial Preprocessing 

import os 

import glob 

import time 

 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

from sklearn import metrics 

from sklearn import preprocessing 

from sklearn.cluster import KMeans 

from sklearn.decomposition import PCA 

from sklearn.ensemble import RandomForestClassifier, 

RandomForestRegressor 

from sklearn.feature_selection import SelectKBest, chi2, 

mutual_info_classif 

from sklearn.metrics import (accuracy_score, completeness_score, 

confusion_matrix,  

                             homogeneity_score, 

precision_recall_fscore_support as score, v_measure_score) 

from sklearn.model_selection import train_test_split, KFold, 

StratifiedKFold 

from sklearn.preprocessing import MinMaxScaler 

 

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import (Input, Conv1D, MaxPooling1D, 

LSTM,  

                                      Flatten, Dense, Dropout, 

Multiply, Activation, BatchNormalization, TimeDistributed) 

from tensorflow.keras.layers import BatchNormalization 

 

from sklearn.metrics import precision_recall_fscore_support, 

accuracy_score, classification_report, confusion_matrix, roc_curve, 

auc, roc_auc_score 

from sklearn.preprocessing import LabelEncoder 

from imblearn.over_sampling import RandomOverSampler 
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from imblearn.under_sampling import RandomUnderSampler 

from imblearn.over_sampling import SMOTE 

from imblearn.pipeline import Pipeline 

 

# Initialize an empty list to store DataFrames 

dataframes = [] 

 

# Iterate through files in the specified directory 

for dirname, _, filenames in os.walk('/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/MLcsv/'): 

    for i, filename in enumerate(filenames): 

        # Print the file path 

        print(os.path.join(dirname, filename)) 

 

        # Read CSV file and append it to the list of DataFrames 

        dataframes.append(pd.read_csv(os.path.join(dirname, 

filename))) 

 

# Concatenate all DataFrames in the list 

dataset = pd.concat(dataframes) 

 

# Clean up memory by deleting the list of DataFrames 

del dataframes 

 

# Remove duplicate columns 

dataset = dataset.loc[:, ~dataset.columns.duplicated()] 

 

# Replace infinite values with NaN 

dataset = dataset.replace([np.inf, -np.inf], np.nan) 

 

# Drop rows with missing values 

dataset = dataset.dropna() 

 

A.2 Remove unimportant columns 

dataset = dataset.applymap(lambda x: np.nan if x in ['Heartbleed', 

'Web Attack � Sql Injection', 'Infiltration'] else x) 

dataset = dataset.dropna() 

dataset['Label'] = dataset['Label'].replace({'Web Attack � Brute 

Force': 'Brute Force', 'Web Attack � XSS': 'XSS'}) 
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A.3 Save and Load the dataset 

dataset.to_csv("dataset.csv", index=False) 

dataset = pd.read_csv("/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/dataset.csv") 

 

A.4 Split the dataset 

# xs=feature vectors, ys=labels 

xs = dataset.drop('Label', axis=1) 

ys = dataset['Label'] 

 

# split dataset - stratified 

X_train, X_test, y_train, y_test = train_test_split(xs, ys, 

test_size=0.2, random_state=0, stratify=ys) 

 

# Remove columns with only identical values 

column_names = np.array(list(X_train)) 

to_drop = [x for x in column_names if 

len(X_train.groupby([x]).size().unique()) == 1] 

X_train = X_train.drop(to_drop, axis=1) 

X_test = X_test.drop(to_drop, axis=1) 

 

A.5 Normalization of features 

min_max_scaler = MinMaxScaler().fit(X_train) 

X_train = min_max_scaler.transform(X_train) 

X_test = min_max_scaler.transform(X_test) 

 

A.6 Feature Selection using SelectKBest 

kbest = SelectKBest(score_func=chi2, k=40).fit(X_train, y_train) 

X_train = kbest.transform(X_train) 

X_test = kbest.transform(X_test) 
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A.7 Sampling 

# Instantiate a LabelEncoder for label transformation 

label_encoder = LabelEncoder() 

 

# Perform label encoding 

y_train_encoded = label_encoder.fit_transform(y_train) 

 

# Resampling strategies 

 

# 1. No Resampling - original data 

X_train_no_resampling = X_train 

y_train_no_resampling = y_train_encoded 

 

# 2. Selective Oversampling - increase minority class 

oversampler = RandomOverSampler(sampling_strategy='minority') 

X_train_selective_oversampling, y_train_selective_oversampling = 

oversampler.fit_resample(X_train, y_train_encoded) 

 

# 3. Selective Undersampling - decrease majority class 

undersampler = RandomUnderSampler(sampling_strategy='majority') 

X_train_selective_undersampling, y_train_selective_undersampling = 

undersampler.fit_resample(X_train, y_train_encoded) 

 

# 4. Combined Resampling - combination of SMOTE and 

RandomUnderSampler 

resample_steps = Pipeline([ 

    ('oversampling', SMOTE(sampling_strategy='minority')), 

    ('undersampling', 

RandomUnderSampler(sampling_strategy='majority')) 

]) 

 

# Implement the resampling pipeline on the training data 

X_train_combined, y_train_combined = 

resample_steps.fit_resample(X_train, y_train_encoded) 

 

# 5. SMOTE Resampling (Standard) - Synthetic Minority Over-sampling 

Technique 

smote_resampler = SMOTE(sampling_strategy='minority', 

random_state=42) 

X_train_smote, y_train_smote = 

smote_resampler.fit_resample(X_train, y_train_encoded) 
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# Save the result 

np.savez('/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/X_train_no_resampling.npz', 

X_train_no_resampling) 

np.savez('/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/y_train_no_resampling.npz', 

y_train_no_resampling) 

 

np.savez('/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/X_train_selective_oversampling.npz', 

X_train_selective_oversampling) 

np.savez('/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/y_train_selective_oversampling.npz', 

y_train_selective_oversampling) 

 

np.savez('/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/X_train_selective_undersampling.npz', 

X_train_selective_undersampling) 

np.savez('/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/y_train_selective_undersampling.npz', 

y_train_selective_undersampling) 

 

np.savez('/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/X_train_combined.npz', X_train_combined) 

np.savez('/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/y_train_combined.npz', y_train_combined) 

 

np.savez('/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/X_train_smote.npz', X_train_smote) 

np.savez('/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/y_train_smote.npz', y_train_smote) 

 

A.8 Reshaping Data for Deep Learning Models 

from sklearn.preprocessing import LabelEncoder 

from tensorflow.keras.utils import to_categorical 

 

# Load resampled data from earlier 

resampling_methods = ['no_resampling', 'selective_oversampling', 

'selective_undersampling', 'combined', 'smote'] 



99 

 

 

X_train_resampled = {} 

y_train_resampled = {} 

 

y_train_encoded = {} 

y_train_onehot = {} 

 

for method in resampling_methods: 

    data = np.load(f'/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/X_train_{method}.npz') 

    X_train_resampled[method] = data['arr_0'] 

 

    data = np.load(f'/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/y_train_{method}.npz') 

    y_train_resampled[method] = data['arr_0'] 

 

# Apply label encoding and one-hot encoding for labels 

encoder = LabelEncoder() 

 

for method in resampling_methods: 

    y_train_encoded[method] = 

encoder.fit_transform(y_train_resampled[method]) 

    y_train_onehot[method] = 

to_categorical(y_train_encoded[method]) 

 

# Convert class labels to a list of strings 

label_names = encoder.classes_ 

 

# Adjust one-hot encoding to y_test 

y_test_encoded = encoder.fit_transform(y_test) 

y_test_onehot = to_categorical(y_test_encoded) 

 

# Adjust input data shape for ANN and DNN 

X_train_ann_dnn = {} 

X_test_ann_dnn = X_test.reshape(X_test.shape[0], X_test.shape[1]) 

 

for method in resampling_methods: 

    X_train_ann_dnn[method] = 

X_train_resampled[method].reshape(X_train_resampled[method].shape[0

], X_train_resampled[method].shape[1]) 

 

# Adjust input data shape for CNN 
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X_train_cnn = {} 

X_test_cnn = X_test.reshape(X_test.shape[0], X_test.shape[1], 1) 

 

for method in resampling_methods: 

    X_train_cnn[method] = 

X_train_resampled[method].reshape(X_train_resampled[method].shape[0

], X_train_resampled[method].shape[1], 1) 

 

# Adjust input data shape for LSTM and GRU 

X_train_lstm_gru = {} 

X_test_lstm_gru = X_test.reshape(X_test.shape[0], 1, 

X_test.shape[1]) 

 

for method in resampling_methods: 

    X_train_lstm_gru[method] = 

X_train_resampled[method].reshape(X_train_resampled[method].shape[0

], 1, X_train_resampled[method].shape[1]) 
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APPENDIX B 

SOURCE CODE – DEEP LEARNING MODEL  

B.1 CNN-Simple & Deep 

B.1.1 Create the Models 

output_dir = '/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/Results/' 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Input, Conv1D, MaxPooling1D, 

Flatten, Dense, Dropout 

from tensorflow.keras.layers import BatchNormalization 

from sklearn.model_selection import KFold 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import classification_report, 

confusion_matrix, roc_curve, auc, roc_auc_score 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pandas as pd 

import os 

from sklearn.metrics import precision_recall_fscore_support 

 

# Define the CNN model 

def create_cnn_simple_model(input_shape, num_classes): 

    inputs = Input(shape=input_shape) 

 

    x = Conv1D(32, 3, activation='relu')(inputs) 

    x = BatchNormalization()(x) 

    x = MaxPooling1D(pool_size=2)(x) 

    x = Conv1D(64, 3, activation='relu')(x) 

    x = BatchNormalization()(x) 

    x = MaxPooling1D(pool_size=2)(x) 

    x = Flatten()(x) 

    x = Dense(128, activation='relu')(x) 

    x = Dropout(0.5)(x) 

 

    output_label = Dense(num_classes, activation='softmax', 

name='output_label')(x) 
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    model = Model(inputs=inputs, outputs=output_label) 

 

    model.compile(optimizer='adam', 

loss=tf.keras.losses.CategoricalCrossentropy(), 

metrics=[tf.keras.metrics.Recall(), 'accuracy']) 

 

    return model 

 

# Define the CNN model 

def create_cnn_deep_model(input_shape, num_classes): 

    inputs = Input(shape=input_shape) 

 

    x = Conv1D(64, 3, activation='relu')(inputs) 

    x = BatchNormalization()(x) 

    x = MaxPooling1D(pool_size=2)(x) 

     

    x = Conv1D(128, 3, activation='relu')(x) 

    x = BatchNormalization()(x) 

    x = MaxPooling1D(pool_size=2)(x) 

     

    x = Conv1D(256, 3, activation='relu')(x) 

    x = BatchNormalization()(x) 

    x = MaxPooling1D(pool_size=2)(x) 

 

    x = Flatten()(x) 

    x = Dense(256, activation='relu')(x) 

    x = Dropout(0.5)(x) 

     

    x = Dense(128, activation='relu')(x) 

    x = Dropout(0.5)(x) 

 

    output_label = Dense(num_classes, activation='softmax', 

name='output_label')(x) 

 

    model = Model(inputs=inputs, outputs=output_label) 

    model.compile(optimizer='adam', 

loss=tf.keras.losses.CategoricalCrossentropy(), 

metrics=[tf.keras.metrics.Recall(), 'accuracy']) 

 

    return model 
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def create_cnn_model(input_shape, num_classes, model_type): 

    if model_type == 'simple': 

        return create_cnn_simple_model(input_shape, num_classes) 

    elif model_type == 'deep': 

        return create_cnn_deep_model(input_shape, num_classes) 

    else: 

        raise ValueError('Invalid model type') 

 

B.1.2 Cross Validation and Save Results 

def evaluate_and_save_results(model, X_test, y_test_encoded, 

y_test_onehot, method, label_names, fold_number, output_dir, 

fold_results, roc_auc_scores, ap_scores, num_classes): 

    # Evaluate the model 

    y_pred = model.predict(X_test) 

    y_pred_classes = np.argmax(y_pred, axis=1) 

    y_test_onehot = to_categorical(y_test_encoded, 

num_classes=num_classes)  # Convert to one-hot encoding 

 

    y_pred = model.predict(X_test) 

 

    # Use the integer-encoded labels for generating the 

classification report 

    report = classification_report(y_test_encoded, y_pred_classes, 

target_names=label_names, zero_division=1, digits=5) 

 

    # Save the classification report and confusion matrix 

    output_method_dir = 

f"{output_dir}/{model_type}/{method}_fold_{fold_number}/" 

    os.makedirs(output_method_dir, exist_ok=True) 

 

    with 

open(f'{output_method_dir}report_{method}_fold_{fold_number}.txt', 

'w') as f: 

        f.write(report) 

 

    # Plot and save confusion matrix 

    plot_confusion_matrix(y_test_encoded, y_pred_classes, 

label_names, output_method_dir, f"{method}_fold_{fold_number}") 

 

    # Calculate FPR, TPR and AUC for each class 
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    y_test_roc = np.zeros((len(y_test_encoded), num_classes)) 

    for i, label in enumerate(label_names): 

        y_test_roc[:, i] = (y_test_encoded == i).astype(int) 

 

    # Calculate ROC AUC and AP for each class 

    fpr = dict() 

    tpr = dict() 

    roc_auc = dict() 

    precision = dict() 

    recall = dict() 

    average_precision = dict() 

 

    for i, label in enumerate(label_names): 

        y_test_binary = np.where(y_test_encoded == i, 1, 0) 

        y_pred_binary = y_pred[:, i] 

        fpr[i], tpr[i], _ = roc_curve(y_test_binary, y_pred_binary) 

        roc_auc[i] = auc(fpr[i], tpr[i]) 

        precision[i], recall[i], _ = 

precision_recall_curve(y_test_binary, y_pred_binary) 

        average_precision[i] = 

average_precision_score(y_test_binary, y_pred_binary) 

 

    # Save the scores 

    for i, label in enumerate(label_names): 

        if label not in roc_auc_scores: 

            roc_auc_scores[label] = [] 

        if label not in ap_scores: 

            ap_scores[label] = [] 

        roc_auc_scores[label].append(roc_auc[i]) 

        ap_scores[label].append(average_precision[i]) 

 

    # Plot and save ROC curve 

    plot_roc_curve(y_test_roc, y_pred, label_names, 

output_method_dir, f"{method}_fold_{fold_number}") 

 

    # Plot and save Precision-Recall curve 

    plot_pr_curve(y_test_onehot, y_pred, label_names, 

output_method_dir, f"{method}_fold_{fold_number}") 

 

    # Update fold_results with the scores 
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    precision, recall, fscore, _ = 

precision_recall_fscore_support(y_test_encoded, y_pred_classes, 

average='weighted', zero_division=1) 

    accuracy = accuracy_score(y_test_encoded, y_pred_classes) 

    fold_results['precision'].append(precision) 

    fold_results['recall'].append(recall) 

    fold_results['fscore'].append(fscore) 

    fold_results['accuracy'].append(accuracy) 

 

    # Save the results after each fold 

    fold_results_df = pd.DataFrame(fold_results) 

    fold_results_df.to_csv(f'{output_method_dir}fold_results.csv', 

index=False) 

 

  

def evaluate_model_with_cross_validation(X, y, y_encoded, X_test, 

y_test_encoded, input_shape, num_classes, label_names, n_splits=5, 

model_type='simple'): 

    # Perform cross-validation 

    cv = KFold(n_splits=n_splits, shuffle=True, random_state=42) 

    fold_number = 0 

    fold_results = {'recall': [], 'precision': [], 'accuracy': [], 

'fscore': []} 

    roc_auc_scores = {} 

    ap_scores = {} 

 

    # Lists to store prediction results and true labels across all 

folds 

    y_preds = [] 

    y_trues = [] 

 

    for train_index, val_index in cv.split(X, y_encoded): 

        X_train, X_validate = X[train_index], X[val_index] 

        y_train, y_validate = y[train_index], y[val_index] 

        y_train_encoded, y_validate_encoded = 

y_encoded[train_index], y_encoded[val_index] 

 

        # Create a new model for each fold 

        model = create_cnn_model(input_shape, num_classes, 

model_type) 
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        model.fit(X_train, y_train, validation_data=(X_validate, 

y_validate), epochs=20, batch_size=64, verbose=1, workers=8, 

use_multiprocessing=True) 

 

        # Evaluate and save results 

        output_dir = '/content/drive/MyDrive/ML-

DL/Research/CICIDS2017/Results/' 

        evaluate_and_save_results(model, X_test, y_test_encoded, 

y_test_onehot, method, label_names, fold_number, output_dir, 

fold_results, roc_auc_scores, ap_scores, num_classes) 

         

        # Store predictions and true labels 

        y_pred = model.predict(X_test) 

        y_preds.append(y_pred) 

        y_trues.append(y_test_encoded) 

 

        fold_number += 1 

 

    # Concatenate all predictions and true labels 

    y_preds = np.concatenate(y_preds, axis=0) 

    y_trues = np.concatenate(y_trues, axis=0) 

 

    # Generate final report and confusion matrix 

    y_pred_classes = np.argmax(y_preds, axis=1) 

    report = classification_report(y_trues, y_pred_classes, 

target_names=label_names, zero_division=1, digits=5) 

 

    output_final_dir = 

f"{output_dir}/{model_type}/{method}_final_results/" 

    os.makedirs(output_final_dir, exist_ok=True) 

     

    with open(f'{output_final_dir}final_report.txt', 'w') as f: 

        f.write(report) 

 

    plot_confusion_matrix(y_trues, y_pred_classes, label_names, 

output_final_dir, 'final') 

     

    # Calculate FPR, TPR and AUC for each class 

    y_test_roc = np.zeros((len(y_trues), num_classes)) 

 

    for i, label in enumerate(label_names): 

        y_test_roc[:, i] = (y_trues == i).astype(int) 
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    plot_roc_curve(y_test_roc, y_preds, label_names, 

output_final_dir, 'final') 

 

    # Calculate precision, recall for each class 

    precision = dict() 

    recall = dict() 

    average_precision = dict() 

    for i, label in enumerate(label_names): 

        precision[i], recall[i], _ = 

precision_recall_curve(y_test_roc[:, i], y_preds[:, i]) 

        average_precision[i] = 

average_precision_score(y_test_roc[:, i], y_preds[:, i]) 

 

    plot_pr_curve(y_test_roc, y_preds, label_names, 

output_final_dir, 'final') 

 

    # Calculate ROC AUC and AP for the final results 

    final_fpr = dict() 

    final_tpr = dict() 

    final_roc_auc = dict() 

    final_precision = dict() 

    final_recall = dict() 

    final_average_precision = dict() 

 

    y_test_roc = np.zeros((len(y_trues), len(label_names))) 

    for i, label in enumerate(label_names): 

        y_test_roc[:, i] = (y_trues == i).astype(int) 

 

    for i, label in enumerate(label_names): 

        final_fpr[i], final_tpr[i], _ = roc_curve(y_test_roc[:, i], 

y_preds[:, i]) 

        final_roc_auc[i] = auc(final_fpr[i], final_tpr[i]) 

        final_precision[i], final_recall[i], _ = 

precision_recall_curve(y_test_roc[:, i], y_preds[:, i]) 

        final_average_precision[i] = 

average_precision_score(y_test_roc[:, i], y_preds[:, i]) 

 

    save_scores_to_csv(final_roc_auc, output_dir, 

f"{model_type}_{method}_final_roc_auc_scores.csv") 

    save_scores_to_csv(final_average_precision, output_dir, 

f"{model_type}_{method}_final_ap_scores.csv") 
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    # Compute the mean and standard deviation of the scores 

    mean_results = {metric: np.mean(values) for metric, values in 

fold_results.items()} 

    std_results = {metric: np.std(values) for metric, values in 

fold_results.items()} 

 

    save_scores_to_csv(roc_auc_scores, output_dir, 

f"{model_type}_{method}_roc_auc_scores.csv") 

    save_scores_to_csv(ap_scores, output_dir, 

f"{model_type}_{method}_ap_scores.csv") 

 

    return mean_results, std_results 

 

B.1.3 Plot Function Code  

from sklearn.model_selection import StratifiedKFold 

from sklearn.metrics import precision_recall_fscore_support, 

accuracy_score 

import numpy as np 

import os 

import time 

from sklearn.metrics import classification_report, 

confusion_matrix, roc_curve, auc, roc_auc_score 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pandas as pd 

import csv 

from sklearn.metrics import precision_recall_curve, 

average_precision_score 

 

def plot_confusion_matrix(y_true, y_pred, label_names, output_dir, 

suffix): 

    cm = confusion_matrix(y_true, y_pred) 

    cm_df = pd.DataFrame(cm, index=label_names, 

columns=label_names) 

 

    plt.figure(figsize=(12, 8)) 

    sns.set(font_scale=1.2) 

    ax = sns.heatmap(cm_df, annot=True, fmt='g', cmap='Blues', 

cbar_kws={'label': 'Count'}) 
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    ax.set_xlabel('Predicted') 

    ax.set_ylabel('True') 

    ax.set_xticklabels(ax.get_xticklabels(), rotation=45, 

horizontalalignment='right') 

    plt.savefig(f'{output_dir}confusion_matrix_{suffix}.png', 

bbox_inches='tight') 

 

def plot_roc_curve(y_test_roc, y_pred, label_names, output_dir, 

suffix): 

    fpr = dict() 

    tpr = dict() 

    roc_auc = dict() 

    for i, label in enumerate(label_names): 

        fpr[i], tpr[i], _ = roc_curve(y_test_roc[:, i], y_pred[:, 

i]) 

        roc_auc[i] = auc(fpr[i], tpr[i]) 

 

    plt.figure(figsize=(8, 8)) 

    for i, label in enumerate(label_names): 

        plt.plot(fpr[i], tpr[i], label='%s (AUC = %0.4f)' % (label, 

roc_auc[i])) 

    plt.plot([0, 1], [0, 1], 'k--') 

    plt.xlim([0.0, 1.0]) 

    plt.ylim([0.0, 1.05]) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

    plt.title('Receiver Operating Characteristic (ROC) Curve') 

    plt.legend(loc="lower right") 

    plt.savefig(f'{output_dir}roc_curve_{suffix}.png', 

bbox_inches='tight') 

 

def plot_pr_curve(y_true, y_pred, label_names, output_dir, suffix): 

    precision = dict() 

    recall = dict() 

    average_precision = dict() 

    for i, label in enumerate(label_names): 

        precision[i], recall[i], _ = 

precision_recall_curve(y_true[:, i], y_pred[:, i]) 

        average_precision[i] = average_precision_score(y_true[:, 

i], y_pred[:, i]) 

 

    plt.figure(figsize=(8, 8)) 
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    for i, label in enumerate(label_names): 

        plt.plot(recall[i], precision[i], label='%s (AP = %0.4f)' % 

(label, average_precision[i])) 

    plt.xlim([0.0, 1.05]) 

    plt.ylim([0.0, 1.0]) 

    plt.xlabel('Recall') 

    plt.ylabel('Precision') 

    plt.title('Precision-Recall Curve') 

    plt.legend(loc="lower right") 

    plt.savefig(f'{output_dir}pr_curve_{suffix}.png', 

bbox_inches='tight') 

 

def save_scores_to_csv(scores, output_dir, file_name): 

    # Convert scalar scores to lists 

    scores = {k: [v] for k, v in scores.items()} 

    df = pd.DataFrame(scores) 

    df.to_csv(os.path.join(output_dir, file_name)) 

 

 

While each model does require its own optimized Cross Validation and Test Set 

code for proper execution, we will primarily focus on documenting the 'Create the Model' 

section for subsequent models. This decision is made to avoid redundancy, as the Cross 

Validation and Test Set codes are generally similar in structure across different models. 

Therefore, we aim to reduce repetition while maintaining essential information for each 

model's implementation. 

B.2 ANN & DNN 

# Define the ANN model 

def create_ann_model(input_shape, num_classes): 

    inputs = Input(shape=input_shape) 

 

    x = Flatten()(inputs) 

    x = Dense(128, activation='relu')(x) 

    x = Dropout(0.5)(x) 
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    output_label = Dense(num_classes, activation='softmax', 

name='output_label')(x) 

 

    model = Model(inputs=inputs, outputs=output_label) 

 

    model.compile(optimizer='adam', 

loss='categorical_crossentropy', metrics=['accuracy', 

tf.keras.metrics.Recall()]) 

 

    return model 

 

# Define the DNN model 

def create_dnn_model(input_shape, num_classes): 

    inputs = Input(shape=input_shape) 

 

    x = Flatten()(inputs) 

    x = Dense(256, activation='relu')(x) 

    x = Dropout(0.5)(x) 

    x = Dense(128, activation='relu')(x) 

    x = Dropout(0.5)(x) 

 

    output_label = Dense(num_classes, activation='softmax', 

name='output_label')(x) 

 

    model = Model(inputs=inputs, outputs=output_label) 

 

    model.compile(optimizer='adam', 

loss='categorical_crossentropy', metrics=['accuracy', 

tf.keras.metrics.Recall()]) 

 

    return model 

 

B.3 LSTM & GRU 

# Define the LSTM model 

def create_lstm_model(input_shape, num_classes): 

    inputs = Input(shape=input_shape) 

 

    x = LSTM(128)(inputs) 

    x = Dropout(0.5)(x) 
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    output_label = Dense(num_classes, activation='softmax', 

name='output_label')(x) 

 

    model = Model(inputs=inputs, outputs=output_label) 

 

    model.compile(optimizer='adam', 

loss='categorical_crossentropy', metrics=['accuracy', 

tf.keras.metrics.Recall()]) 

 

    return model 

 

# Define the GRU model 

def create_gru_model(input_shape, num_classes): 

    inputs = Input(shape=input_shape) 

 

    x = GRU(128)(inputs) 

    x = Dropout(0.5)(x) 

 

    output_label = Dense(num_classes, activation='softmax', 

name='output_label')(x) 

 

    model = Model(inputs=inputs, outputs=output_label) 

 

    model.compile(optimizer='adam', 

loss='categorical_crossentropy', metrics=['accuracy', 

tf.keras.metrics.Recall()]) 

 

    return model 

 

B.4 CLAttNet 

# Attention layer 

class Attention(tf.keras.layers.Layer): 

    def __init__(self, **kwargs): 

        super(Attention, self).__init__(**kwargs) 

 

    def build(self, input_shape): 

        self.W = self.add_weight(shape=(input_shape[-1], 

input_shape[-1]), initializer='random_normal', trainable=True) 

        self.b = self.add_weight(shape=(input_shape[-1],), 

initializer='zeros', trainable=True) 
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        super(Attention, self).build(input_shape) 

 

    def call(self, x): 

        q = tf.nn.tanh(tf.linalg.matmul(x, self.W) + self.b) 

        a = tf.nn.softmax(q, axis=1) 

        return Multiply()([x, a]) 

 

    def compute_output_shape(self, input_shape): 

        return input_shape 

 

def create_hybrid_model(input_shape, num_classes): 

    inputs = Input(shape=input_shape) 

 

    # CNN Layers 

    x = Conv1D(32, 3, activation='relu')(inputs) 

    x = BatchNormalization()(x) 

    x = MaxPooling1D(pool_size=2)(x) 

    x = Conv1D(64, 3, activation='relu')(x) 

    x = BatchNormalization()(x) 

    x = MaxPooling1D(pool_size=2)(x) 

 

    # LSTM Layer 

    x = LSTM(128, return_sequences=True)(x) 

 

    # Attention Layer 

    x = Attention()(x) 

    x = TimeDistributed(Flatten())(x) 

 

    # Dense Layers 

    x = Flatten()(x) 

    x = Dense(128, activation='relu')(x) 

    x = Dropout(0.5)(x) 

 

    output_label = Dense(num_classes, activation='softmax', 

name='output_label')(x) 

 

    model = Model(inputs=inputs, outputs=output_label) 

    model.compile(optimizer='adam', 

loss='categorical_crossentropy', metrics=['accuracy', 

tf.keras.metrics.Recall()]) 

 

    return model 
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