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ABSTRACT

In the thesis, a new methodology is presented to investigate the impact of electric vehicles on

the power system. The goal is to assess the benefits of using electric vehicles as a power source

to enhance the grid’s reliability and resilience during extreme weather conditions. The proposed

methodology involves modeling electric vehicle charging load and discharging capacity in time

series data obtained from the travel demand model in Texas A&M Transportation Institute, map-

ping electric vehicle charging load and discharging capacity to the power system, and simulating

and solving the optimal power flow in Powerworld with extreme weather situations. The research

focuses on the case study of the winter storm Uri, which occurred in February 2021 in Texas, af-

fecting a significant part of the United States. The studied grid is a synthetic 7000-bus electric grid

on the Texas footprint to mimic the Electric Reliability Council of Texas system without revealing

any confidential data. The result demonstrates that utilizing electric vehicles as a power source can

help avoid power outages as well as the necessity of load shedding in extreme weather cases.
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NOMENCLATURE

EIA Energy Information Administration

EVs Electric Vehicles

ERCOT Electric Reliability Council of Texas

FERC Federal Energy Regulatory Commission

ESS Energy Storage System

LIB Lithium-ion Battery

LD Light-Duty

V2G Vehicle-to-Grid

EPRI Electric Power Research Institute

TDM Travel Demand Model

TTI Texas A&M Transportation Institute

UC Unit Commitment

OPF Optimal Power Flow

KCL Kirchhoff’s Current Law

MILP Mixed-Integer Linear Programming

DC-OPF Direct Current Optimal Power

AC-OPF Alternating Current Optimal Power Flow

BNSM Bayesian Network Statistic Model

CEII Critical Energy/Electric Infrastructure Information

GDV Geographical Data View

P.U Per Unit

SCOPF Security-Constrained Optimal Power Flow
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1. INTRODUCTION

1.1 Motivation

According to a report from the EIA [1], in 2020, electricity users in the United States experi-

enced over eight hours of power interruptions on average. This is the highest recorded figure since

the commencement of data collection on electricity dependability in 2013. Power interruptions

can arise due to various factors, such as weather, vegetation growth patterns, and the practices of

utility companies. As depicted in Figure 1.1, the duration of power interruptions during major

events, such as snowstorms, wildfires, and hurricanes, is considerably longer than without major

events.

Figure 1.1: U.S. average duration of total annual electric power interruptions (2013-2020) [1].

For example, the Texas winter storm Uri, which occurred on February 15-17, 2021, caused ex-

tensive damage to the ERCOT and affected hundreds of thousands of customers. The unexpected

low temperatures during the storm led to a surge in demand for heating, putting a strain on the

electrical grid. According to the FERC report [7], some generator turbines froze, and there was a
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shortage of natural gas reserves, resulting in a generation outage of 41,400MW. To prevent a com-

plete blackout of the ERCOT grid and maintain the optimization problem solvable, load shedding

of 10,500MW was necessary. Figure 1.2 shows the impact of the winter storm on system frequency

between 1 am and 2 am on Feb 15, 2021. This frequency disturbance was a contributing factor to

the need for load shedding.

Figure 1.2: The ERCOT grid frequency on the morning of February 15, 2021 [2].

In order to maintain a stable power system, it is crucial to ensure that there is enough generation

capacity to meet the demand and losses at all times. Failure to do so can result in a drop in

system frequency, which can ultimately lead to voltage collapse and even a blackout of the entire

system. To prevent this situation, load shedding may be necessary for situations where the available

generation capacity is insufficient or the line capacities are unable to handle the required power

transfer. Ensuring a reliable and resilient power grid, particularly in extreme weather events, is a

top priority for power system operators and planners. However, severe weather events can pose

significant challenges to the power system, as they can disrupt the normal load and operation

conditions.

Although ESS is one potential solution to this problem, its installation costs can be prohibitively
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expensive. As shown in Figure 1.3, a 60-MW ESS with a 2-hour duration costs $857 per kW,

resulting in a total cost of $51,400,000 as calculated in Table (1.1). To prevent load shedding of

10,500 MW, as illustrated in Figure 1.2, the cost of an ESS would be a staggering $8,995,000,000

from Table (1.1) .

Figure 1.3: 2021 U.S. LIB storage costs for durations of 2-10 hours in $/kW [3].

Utilizing EV batteries as a power source for the grid is another viable solution. According to

a 2020 report by Canalys [4], global EV sales reached 3.1 million units, marking a 39% increase

from the previous year. This trend is expected to continue, with projected sales of 30 million EVs

by 2028, and EVs predicted to account for nearly 50% of new passenger car sales by 2030. Despite

the challenges faced by the global passenger car industry in 2020, as shown in Figure 1.4, EVs have

become increasingly popular [4]. Additionally, the White House has announced a target for 50%

3



Table 1.1: U.S. LIB storage costs.

Type
ESS-Size

(kW)
ESS-Cost

($/kW)
Total Costs

($)
ESS-60MWh / 2hours 60,000 857 51,400,000

ESS-10500MW / 2hours 10,500,000 857 8,995,000,000

Figure 1.4: Global passenger car sales [4].

market share of light-duty EVs by 2030 in the United States [8].

According to a 2018 system planning report by ERCOT in Texas [6], the penetration of EVs

in Texas is projected to reach over 3.2 million by 2033, with the total energy capacity of EV

energy storage estimated at approximately 208 GWh based on EV type, including that light-duty

EVs (passenger cars) is approximately 60 GWh, Medium-duty EVs (buses) is approximately 28

GWh, and heavy-duty EVs (trucks) is approximately 120 GWh. As shown in Table 1.2, EVs can

typically store between 20 and 600 kWh of energy in their batteries. Based on Equation (1.1), the

penetration of EVs in Texas is expected to reach 15% by 2033 [9].
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Table 1.2: EV penetration in Texas by 2033 from ERCOT report [6].

Type Number of Vehicles
Per Vehicle Charging

(kWh)
Total Energy Capacity

(GWh)
Light-duty / Cars 3,000,000 20 60

Medium-duty / Buses 80,000 350 28
Heavy-duty / Trucks 200,000 600 120

Total 3,280,000 20 - 600 208

It is evident that having additional energy storage capacity or EVs capable of injecting power

into the grid could have prevented the need for extreme mitigation measures, such as load shedding,

during the power failure that occurred in Texas in February 2021. This study aims to explore how

EVs can help minimize the impact of power outages in such events.

EV penetration (15%) = EV (3, 280, 000) / Total of Cars(22, 000, 000) (1.1)

1.2 Review

In general, as renewable resources become more prevalent and are subject to weather fluctua-

tions, coupled with the rise in extreme weather events, largely due to global warming, there is an

inclination to rely more on battery storage to enhance the reliability and resilience of the power

grid [10]. However, given that energy storage is a relatively expensive power source, it is benefi-

cial to leverage the capabilities of EVs in emergency situations. The bi-directional use of EVs can

diminish the need for expensive stationary distributed energy storage.

The utilization of V2G technology as a research field has been proposed for many years to

leverage the capacity of EVs as a power source. It can be advantageous to preserve the energy

produced by renewable resources in EV batteries and to supply electricity to the grid in case of

emergencies [11]. The benefits and drawbacks of the V2G system are discussed in references such

as [12]. Reference [13] addresses the technical challenges of bidirectional charging. Furthermore,

reference [14] reviews the role of EVs as mobile energy storage devices to improve power sys-

tem resilience. Both utilities and EV owners can benefit from V2G as demonstrated in reference

5



[15]. EV owners are remunerated for using the energy stored in their idle vehicles when power

transactions are carried out. Reference [16] investigates the effects of V2G on electric grid fre-

quency management, revealing that transient stability has also become a focus in V2G technology,

indicating that EVs could potentially provide effective frequency control.

On the other hand, some studies, such as [17], suggest that companies are hesitant to adopt

V2G technology due to concerns about reduced battery life and increased driver anxiety about

depleting their charge. However, as EV battery technology continues to improve, these issues are

becoming less significant. In fact, in 2022, Ford became one of the pioneers in implementing bi-

directional EV chargers and launched its own affordable bi-directional home charging station [18].

Furthermore, EPRI has initiated a project to evaluate the feasibility of integrating V2G technology

with mainstream car manufacturers such as Fiat Chrysler Automobiles and Honda Motor, both of

which offer cars with bidirectional power conversion systems [12].

1.3 Objective

The purpose of this study is to examine the impact of EVs on the grid and demonstrate the

benefits of utilizing them as a power source to enhance the reliability and resilience of the power

grid in severe weather conditions. The research is based on a case study of the winter storm Uri

that occurred in Texas in February 2021, which affected a large area of the United States. To

simulate the ERCOT system without revealing confidential data, a synthetic 7000-bus grid on the

Texas footprint is used. The study aims to map EV charging load and EV discharging capacity

to the existing electric grid using the Voronoi polygons with nodes located centrally within their

respective service areas. The results will be used to solve optimal power flow during the 2021

winter storm Uri case with a comparison between the base load case and the EV 15% penetration

load case. The objectives of this thesis can be summarized as follows:

• Modeling EV charging load - The data of EV charging load is performed by using the 2020

regional Travel Demand Model from TTI in the Houston and Austin area.

• Mapping EV charging load to Transmission system - the charging load is mapped to the

6



electrical grid models based on their latitudes, longitudes, and geographical coordinates of

substations and buses in the grid by using Voronoi polygons.

• Load Time Series - The geographic coordinates of each bus are used to determine a unique

electricity consumption profile at that location. An iterative aggregation approach is taken to

integrate publicly available building- and facility-level load time series to the bus level.

• Vehicle to Grid Modeling - The possibility of connecting EVs to the grid is modeled as EV

discharging capacity at the end-of-trip locations of EV fleets where the vehicles are parked

and in idle mode.

• Simulate and Solve optimal power flow - The hourly required demand to charge EVs in

specific locations and times of the day is calculated based on travel patterns and then added

to the hourly load of the studied grid over the Texas footprint.

7



2. BACKGROUND*

2.1 System Elements

Before explaining the proposed methodology to solve OPF in the power system, it is important

to define what system elements will be used in the simulations and what purposes they serve.

These are the elements used:

• Generators: Maximum generation in the 7000-bus Synthetic grid is 104.9GW. Natural gas

generation is 56.5GW, Wind power generation is 25.7GW, Coal power generation is 14.4GW,

and Nuclear power generation is 4.7GW. During the Texas winter storm Uri, the maximum

generation is 63.5GW at 1 am on February 15, 2021, because some generators were frozen

and a shortage of natural gas which is a total of 41.4GW.

• Loads: Maximum loads in the 7000-bus Synthetic grid is 74.7GW. During the Texas winter

storm Uri, the highest load is 65.9GW at 1 am in February 15th, 2021.

• Substations: Substations in the 7000-bus Synthetic grid are 4,894.

• Buses: Buses in the 7000-bus Synthetic grid are 6,717.

• EV charging load: the demands are 1.5GW. The transportation data from TTI is distributed

24 hours a day and converted to EV charging load. The demand is assumed to EV 15%

penetration by 2033 from the 2018 ERCOT LTSA Report.

• EV discharging capacity: The capacity is 6GW. The transportation data from TTI is dis-

tributed 24 hours a day and converted to EV discharging capacity as a power source. The

capacity is assumed EV 15% penetration by 2033 from the 2018 ERCOT LTSA Report.

*©2023 IEEE. Reprinted with permission from J.K. Jung et al., Spatiotemporal impact of electric vehicles in
mitigating damages from destructive storms, 2023 IEEE Texas Power and Energy Conference, February 2023
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This work proposed a method to simulate EV charging load and discharging capacity in the

7000-bus synthetic grid in Texas and solve for the optimal power flow in steady-state power sys-

tems in harsh weather cases. The core of the solution process is the power flow equations that

describe the steady-state behavior of the power system.

2.2 Electric System Formulation

2.2.1 Unit Commitment

The problem of UC involves determining whether a power generation unit should operate or not

within specific time intervals [19, 20, 21]. In the context of DC-OPF, binary variables have been

suggested in the literature to model the on/off status of generation units [22]. Incorporating UC into

DC-OPF results in a MILP problem that can be computationally demanding, especially for larger

cases, due to the non-linear increase in the size of the optimization problem with the number of

variables [23]. In order to incorporate the constraints on reactive power and create a more realistic

model, this research proposes the utilization of AC-OPF. Nevertheless, using AC-OPF would cause

an increase in the computational cost of the problem, since it is non-linear and non-convex. As the

industrial electrical grids are often large in size and voltage/reactive power control settings are

included in the problem, including binary variables in the AC-OPF optimization problem would

make it NP-Hard and even more computationally demanding [24, 25].

2.2.2 Direct Inclusion of Weather Data

In our previous research [26], we proposed a method for connecting weather stations to electric

grid generators. This approach involved integrating time-dependent weather data, such as wind

speed, cloud coverage percentage, and temperature, directly into the OPF model to obtain real-

time generator capacities, especially for renewable generators, based on the prevailing weather

conditions. The renewable generator models were extracted from [27]. These models and input

data were then utilized in a time-step simulation to update the actual capacities of generators and

determine the output generation of renewable resources based on their availability [26].
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2.2.3 Bus Admittance Matrix

In ac circuits, impedance is used in Equation (2.1). The initial step in solving the Power Flow

Equation (2.2) is to construct an admittance matrix, commonly known as the Ybus. The Ybus is

necessary for power flow calculation, as it forms a crucial part of the relationship between the bus

voltages (V ) and the bus currents (I) in Equation (2.3). By applying KCL at each bus in the system,

the Ybus is derived to establish the relationship between the bus current injections, bus voltages, and

branch impedances and admittances.

Z = R + jX (2.1)

Y =
1

R + jX
=

R

R2 +X2
+ j(

−X

R2 +X2
) = G+ jB (2.2)

I = Ybus V (2.3)

2.2.4 Power Balance Equations

According to KCL, the current injection (Ii) at each bus (i) in an n-bus system must be equiv-

alent to the current flowing into the network. This relationship can be expressed as I = Ybus V,

which is used in both Equation (2.4) and Equation (2.5).

Ii = IGi − IDi =
n∑

k=1

= Iik = Yik Vk (2.4)

Si = Vi I
∗
i = Vi

n∑
k=1

Y ∗
ik V

∗
k =

n∑
k=1

|Vi| |Vk|(cos θik + j sin θik)(Gik − jBik) (2.5)

2.2.5 AC-OPF

To determine the steady-state outcomes that minimize the generation cost from Equation (2.6)

in a power system, the AC-OPF method, as outlined in [19], is utilized. The coefficients (a, b, and

10



c) that represent the quadratic cost curve elements of generators are used to define Fc(PG):

min
PG

Fc(PG) =

|G|∑
g=1

[ag + bgPG,g + cgP
2
G,g] (2.6)

In order to maintain a power balance in a system, the power balancing equations, such as Equa-

tion (2.7) and Equation (2.8), must be fulfilled. Furthermore, additional operational constraints

from Equation (2.9) to Equation (2.12) specified in [19] must also be taken into account.

PG,(g∈g(i)) − PD,i = |Vi|
|N |∑
k=1

|Vk|(GY
ikcosθik +BY

iksinθik) (2.7)

QG,(g∈g(i)) −QD,i = |Vi|
|N |∑
k=1

|Vk|(GY
iksinθik −BY

ikcosθik) (2.8)

Pmin,g ≤ PG,g ≤ Pmax,g ∀g ∈ G (2.9)

Qmin,g ≤ QG,g ≤ Qmax,g ∀g ∈ G (2.10)

Vmin,i ≤ |Vi| ≤ Vmax,i ∀i ∈ N (2.11)

P 2
e +Q2

e ≤ S2
max,e ∀e ∈ E (2.12)

The variables |Vi| and |θi| in the equations represent the magnitude and phase angle of the

voltage at the i-th bus, respectively. The parameter θik denotes the voltage angle difference between

the i-th and k-th buses. The system is modeled as a collection of buses, represented by the set N ,

with real and reactive power demands at the i-th bus denoted as PD,i and QD,i, respectively. The

real and reactive power outputs of the g-th generator are represented as PG,g and QG,g, respectively.

The set of all generators in the system is denoted by G. The real and reactive components of the

11



Y-bus matrix are represented by GY
ik and BY

ik, respectively. The generator operating limits, in terms

of real and reactive power, are defined by (Pmin,g, Pmax,g) and (Qmin,g, Qmax,g), respectively. The

bus voltage limits are constrained by (Vmin,i, Vmax,i). The power flow to each bus e is constrained

by the thermal limit Smax,e, which is connected to the flow of real and reactive power in Equation

(2.12). The power flowing into each bus is determined by the power equations in Equation (2.13)

and Equation (2.14).

Pe = |Vi|2GY
ik − |Vi||Vk|(GY

ikcosθik +BY
iksinθik) (2.13)

Qe = −|Vi|2BY
ik − |Vi||Vk|(BY

ikcosθik −GY
iksinθik) (2.14)

2.3 Modeling EVs in the Electrical Grid

2.3.1 EV Charging Demand Modeling

The first step of the algorithm involves computing EV charging demands. In the study, such as

[28] and [29], they describe and elaborate on various charging scenarios for the integrated modeling

of EVs. The spatiotemporal charging demand serves as a bridge between the transportation and

electrical grids. To generate a realistic charging pattern, we developed a strategy that incorporates

the original travel model for trip origins and destinations, an EV’s dynamic model for energy

consumption, and surveys on travel and charging behavior. The simulation of EV charging used

the TDM and travel studies from [30]. TDM provides information on both the departure and arrival

locations (start and end-travel nodes) and also provides data on total distances, operating time, and

fuel consumption in the regional transportation network throughout a day in 2020. The network

was created using urban traffic simulation techniques [31], and the Mobiliti simulator [32] was

employed to generate the traffic dynamics.

The model used in the study predicts the power consumption of EVs during travel by generating

travel paths based on inputs such as the transportation system and travel needs. A subset of these

paths is randomly selected for EV travel based on a predetermined market share for EVs. To

12



analyze the impact of different transportation-related factors on energy consumption, an activity-

based EV model is utilized. In the next step, a parametric simulation inference technique is used

to estimate the power usage of EVs based on their in-transit operation conditions. To describe the

powertrain of the vehicle, a BNSM is employed, which utilizes prior industry experience and can

be improved using an information-based approach. The modeling and verification of this approach

are discussed in detail in [33].

To simulate EV usage in the region, the study used a list of trips and specified a percentage

of penetration for various types of EVs, such as those with a 100, 200, or 300-mile range. The

range of each EV in the network was chosen based on expected market penetration from EV sales

data [34]. Of the overall EV fleet, those with ranges of 100, 200, and 300 miles accounted for

25%, 13%, and 52%, respectively. The model starts by simulating the state of charge of each

EV at the beginning of its trip, taking into account the energy usage patterns specific to the EV’s

range. It then determines whether the EV needs to recharge during the trip based on available

energy. If the model predicts that the trip will be the EV’s last for the day, it assigns home charging

demand accordingly. To estimate the energy usage rate per mile for each driving, the model uses

the driving length and velocity information obtained from the travel itineraries and fits it to the EV

models. By modeling the recharging needs, the driving in road usage is converted into charging

demands. Finally, to account for uncertainties in the model, a Monte Carlo simulation strategy is

employed in Equation (2.15). In this equation, X̂ represents the estimated value of the variable of

interest, which is calculated by taking the average of the function f(Xi) evaluated at each of the N

random samples Xi. The Monte Carlo simulation involves generating a large number of random

samples from the probability distribution of the uncertain input variables and using these samples

to estimate the distribution of the output variable.

X̂ =
1

N

N∑
i=1

f(Xi) (2.15)
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2.3.2 Mapping EV Charging Demand to the Electrical Grid

The second step of the algorithm involves mapping EV charging demand onto the electrical

grid using a Voronoi diagram. The mathematical concept enables a specific space to be divided

into sections based on proximity to a set of input points. Each section in the Voronoi diagram is

defined by a set of points that are closer to a specific input point than to any other input point.

In more precise terms, the Voronoi diagram can be understood as the aggregation of all Voronoi

regions. The Voronoi region for a point s in the set (S) is defined in Equation (2.16). The final

Voronoi diagram can be expressed as Equation (2.17).

V or(s) = p : distance(s, p) ≤ distance(s′, p),∀s′ ∈ S (2.16)

V or(S) = ∪s∈SV or(s) (2.17)

EV charging demand loads are mapped to the electrical grid using Voronoi diagrams, which

enable transmission-level mapping to substations. The substation is designated as the seed point,

and the Voronoi polygon determines the service area. The location and time series of EV charging

demand loads are derived from the results of transportation studies and simulations. To incorporate

this information in power system simulation, the geographic coordinates, latitudes, and longitudes

of the grid’s substations and buses are utilized. The mapping of EV charging demand loads to

electric grid substations is detailed in [35].

2.3.3 Load Time Series

In the third step of the algorithm, Load Time Series is created by following the approach out-

lined in [36] and [37]. The method generates 24-hour time series load data for each bus over a

year by considering the load data for each time step and utilizing the physical locations of each bus

to develop a unique power usage profile for the region. Next, an iterative aggregation technique

is employed to combine freely available building-level and facility-level load time data with the
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buses. The process combines the location prototype building and facility load data for each node in

the system, including residential, commercial, and industrial loads. To validate the synthetic load

data generated at each time step, the time series of an authentic power system in [37] is applied.

After the EV charging demand loads are linked to their corresponding substations in the trans-

mission system, the EV load time series is depicted as loads at the bus level within its designated

substations. These newly incorporated loads are also taken into account while updating the syn-

thetic load data at the bus level.

2.3.4 Vehicle to Grid Modeling

In the last step of the algorithm, the focus is on modeling the connection of EVs to the electrical

grid by considering them as a power source such as energy storage while they are in idle mode and

parked at the end-of-trip locations. The start and end-travel nodes of the travel path are obtained

from TDM and if the distance traveled is less than 40 miles, it is assumed that the EVs are not

depleted and can serve as a power source. The parking locations of EV fleets are then mapped

to the transmission-level substations of the electrical grid model using Voronoi diagrams. EV

discharging capacities that are in idle mode are assigned to the substations connected to the end-

travel nodes of the EV fleets. These capacities are then integrated into the electrical grid model as

generators, such as energy storage.

2.4 Case Study

2.4.1 Grid Model

This study utilized publicly available data to create a synthetic but realistic grid that covers the

geographical region of Texas in the United States. To ensure confidentiality and protect CEII, the

grid was developed using U.S. Census statistics [38] and EIA data on generators [39]. The grid’s

creation process, including the assignment of substations, transmission lines, and reactive power

control devices, is explained in detail in [40]. The synthetic grid was created and validated using

metrics that resemble those of actual grids, providing realistic data sets [41, 42]. Geographical data

for system components played a critical role in the creation of these synthetic grids. The synthetic
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Table 2.1: Texas synthetic grid statistics.

Parameter Numerical value
Buses 6,717

Generators 731
Loads 5,095

Switched shunts 634
Substations 4,894

Transmission lines 7,173
Maximum load (MW) 74,667

Maximum generation (MW) 104,914

grid, which covers the ERCOT geographical territory, contains 7000 buses, as shown in Figure 2.1,

with 345 kV transmission lines displayed in bold green, 138 kV lines in black, and 69 kV lines in

light green [43]. The grid’s data set is publicly accessible.

In accordance with the approach introduced in [44, 45], Figure 2.2 illustrates a GDV of the load

substations, along with the primary parameters of the scenario and the highest load are presented

in Table 2.1. The magnitude of the oval shape corresponds to the size of the power stations.

2.4.2 Transportation Data

We restricted our transportation data to the geographical areas of Austin and Houston in Texas,

US, as the data for Dallas was unavailable at the time of the study. Future research will update

the simulation with Dallas transportation data for improvement. As indicated in Fig. 2.3, Dallas,

Austin, and Houston have the highest number of EV registrations in Texas [46]. In addition, Fig.

2.2 shows that these cities have the highest electricity demand, which is directly related to the

population distribution in Texas. Therefore, these cities are prime locations for utilizing EVs as

a power source for emergency situations such as the Texas winter storm Uri. The EV charging

scenarios were designed to replicate the natural charging patterns of drivers and fleets, and to

model the anticipated EV 15% penetration rate by 2033 [6].
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Figure 2.1: The one-line diagram of transmission lines of the studied grid over Texas footprint.
Reprinted with permission from [5].
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Figure 2.2: Geographical data view of load substations in peak loads in the Texas case study.
Reprinted with permission from [5].
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Figure 2.3: Texas electric vehicle registration mapping. Reprinted with permission from [5].

19



Table 2.2: Two scenarios in the PowerWorld.

Case Generation V2G Batteries Total Load V2G Load Total
The Base Case 63.5GW - 63.5GW 65.9GW - 65.9GW
The V2G Case 63.5GW 6.0GW 69.5GW 65.9GW 1.5GW 67.4GW

2.4.3 Simulation Scenarios

The scenarios explored in this study focus on February 15, 2021, and include weather and

load data. Hourly load data was generated at the bus level and adjusted based on [7]. The study

employed weather models based on [26] and gathered hourly temperature, wind speed, wind direc-

tion, cloud coverage percentage, and dew point measurements from Texas weather stations, which

were then incorporated into optimal power flow models to update the output and actual capacities

of generators, particularly renewable generators.

Two scenarios that are studied in the study in Table 2.2 include :

• The Base case: Texas load on February 15, 2021

• The V2G case: Texas load with the addition of the required EV charging demand with EV

15% penetration as well as V2G discharging capacities
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3. SUMMARY AND RESULTS*

3.1 Summary

The simulations in the study were conducted using Powerworld, Python, and MATLAB, which

were installed on a machine with an Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz and 64GB of

RAM. In the base case simulation, which incorporated load and weather impacts but did not involve

any EVs, the simulation arose a convergence issue due to voltage collapses on February 15, 2021.

Specifically, there were low voltage issues below 0.9 p.u in 165 buses in the North of Texas, while

high voltage problems above 1.1 p.u were observed in 1747 buses in the West of Texas. Overall,

1912 buses experienced severe voltage violations due to generation shortages compared to the load.

In general, if generation is lower than load in a real electrical grid, it would go blackout. However,

Powerworld showed only the voltage collapse because the slack bus provided unlimited real and

reactive power in the electrical grid. For this reason, to prevent a statewide blackout, ERCOT

enforced load shedding several times in this situation.

3.2 Results

Figure 3.1 illustrates a voltage contour map of buses in the case study, based on the voltage

strategy proposed in [47]. Notably, since the generation capacities were insufficient to meet the

load and loss of the electrical grid, it came to a voltage collapse. However, after implementing the

impact of EVs by mapping EV charging load and discharging capacity on the electrical grid, the

generation capabilities from EV discharging capacities increased by around 6 GW, offsetting the

additional 1.5 GW of demand from EV charging demand. As a result, the AC-OPF was solved,

and there were no major voltage convergence issue. Figure 3.2 presents the voltage contour map

of buses after including the effect of EVs with V2G discharging capacity. It is worth noting that

this scenario assumes only 15% penetration of the overall cars in Texas with V2G capabilities.

*©2023 IEEE. Reprinted with permission from J.K. Jung et al., Spatiotemporal impact of electric vehicles in
mitigating damages from destructive storms, 2023 IEEE Texas Power and Energy Conference, February 2023
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Figure 3.1: Voltage magnitude on February 15, 2021, with the base case. Reprinted with permis-
sion from [5].
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Figure 3.2: Voltage magnitude on February 15, 2021, with EV15% penetration. Reprinted with
permission from [5].
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4. CONCLUSION AND FUTURE WORK*

4.1 Conclusion

The study calculates the hourly demand required to charge EVs based on travel patterns and

incorporates it into the hourly load of the Texas grid. The research investigates the potential use

of EVs as a power source during severe weather events. To achieve this, the V2G discharging

capabilities are added to the electrical grid when EVs are parked and in idle mode based on their

end-of-travel coordinates and the short previous travel duration. The study assumes that 15%

penetration of light-duty cars in two Texas cities, such as Austin and Houston are EVs with EV

charging demand and discharging capabilities, and weather measurements, such as wind speed,

cloud coverage, and temperatures, from a winter storm called Uri on February 15, 2021, in Texas,

are included as input. Based on specific generator models, the capacities of generators and outputs

of renewable generators are updated as output, and an AC-OPF is solved for a scenario with V2G

technologies. Simulation results show that although the base case experiences a convergence issue

and voltage collapse due to high load and less available generation, the addition of 15% penetration

of EVs with V2 capabilities to the electrical grid overcomes these issues. These results demonstrate

the potential advantage of utilizing EVs as a power source to enhance power grid stability and

resilience during emergencies and the possibility of preventing losses of millions of dollars.

4.2 Future Work

This study plans to expand its research on the integration of EV charging demand and dis-

charging capabilities in additional regions, in Dallas, and to include Austin and Houston in future

simulations. To improve the realistic as well as accuracy of the simulations, the study aims to

implement SCOPF in Powerworld to the next step of research. In addition, future studies will also

consider the integration of medium- and heavy-duty EVs in the electrical grid in similar scenarios.

*©2023 IEEE. Reprinted with permission from J.K. Jung et al., Spatiotemporal impact of electric vehicles in
mitigating damages from destructive storms, 2023 IEEE Texas Power and Energy Conference, February 2023
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