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ABSTRACT

Information design in an incomplete information game involves a designer that influences play-

ers’ actions through signals generated from a designed probability distribution to optimize its ob-

jective function. For quadratic objective functions, if players have quadratic payoffs that depend on

players’ actions and an unknown payoff-relevant state, and signals on the state that follow a Gaus-

sian distribution conditional on the state realization (LQG game), the information design problem

is a semi-definite program (SDP). The doctoral research is pursued in three thrusts: analytical

and numerical characterization of optimal information design to maximize social welfare and the

agreement among players’ action in LQG games, analysis of individual information preferences

of agents in LQG network games, and robust optimal information design in LQG games under

perturbed utilities.

Firstly, it is shown that full information disclosure maximizes social welfare under common

payoff state, under homogeneous payoff dependencies, or under public signals. When the objec-

tive is to maximize agreement among players’ actions, no information disclosure is optimal. Under

joint objective, full information optimality condition on weight of agreement is determined for pub-

lic information structures and common payoffs. In the second thrust, conditions for which rational

agents are expected to benefit from full information are characterized in general network games. In

star networks, the central agent benefits more than a peripheral agent from full information unless

the competition is strong and the number of peripheral agents is small enough. Numerical simu-

lations of ex-post preferences showed that a risk-averse central agent may prefer no information

under strong competition. In the third thrust, we consider the setting where the designer has partial

information about players’ payoffs. We develop robust convex programs considering the worst-

case realization of players’ payoffs under general perturbations. We obtain optimality conditions

of no and full information disclosure based on uncertainty set radius and perturbation shifts un-

der ellipsoid uncertainty. Numerical experiments show that the designer is inclined to reveal less

informative signals as its uncertainty about the game increases.
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NOMENCLATURE

BNE Bayesian Nash Equilibrium

BCE Bayesian Correlated Equilibrium

LQG Linear-Quadratic-Gaussian

SDP Semidefinite Program

α-BNE α-approximate Bayesian Nash Equilibrium

α-BCE α-approximate Bayesian Correlated Equilibrium

G Incomplete information game

BNE(G) Set of BNE strategies in an incomplete information game G

γ Payoff state vector

γi Payoff state of agent i

ψ Prior distribution on payoff state

n Number of agents

a Action profile

ai Action of agent i

s Strategy profile

si Strategy of agent i

ωi Signal for agent i

ui Utility function of agent i

ζ Information structure

φ Action distribution

λ Weight on agreement objective

[λ]i ith eigenvalue of a matrix
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β Common off-diagonal element of H in homogeneous LQG
games

ρ Uncertainty set radius

ε Matrix of shifts over payoff coeffıcents matrix H

η Matrix of linear coefficients over payoff coeffıcents matrixH
in objective coefficients matrix F

νi ith perturbation vector

ξ Weight of consensus term in the Beauty contest game

δi Risk reduction coefficient of agent i

ri Risk of infection for agent i

Uε Space of utility functions parameterized by constant ε > 0

Gε Set of games with utilities u ∈ Uε

Z Feasible set over information structures

C(Z) Set of equilibrium action distributions

N Set of agents

Γ Set of payoff state vectors

A Set of action profiles

Ai Set of actions of agent i

Ωi Set of signals for agent i

Vi ith uncertainty set

Yi ith set of indices over H corresponding to ith BCE constraint

H Utility coefficients matrix

F Objective coefficients matrix

FC Agreement objective coefficient matrix

F SW Social welfare objective coefficient matrix

X Covariance matrix of actions and payoff state
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X∗ Optimal covariance matrix of actions and payoff state

Ri Coefficient matrix for ith BCE constraint

• Frobenius product

� Hadamard product

Pm Set of m×m symmetric matrices

Pm
+ Set of m×m symmetric positive semi-definite matrices

tr(·) Trace of a matrix

1 Column vector of all ones

O Zero matrix

Ai,j ith row and jth column of matrix A

[A]i,j i, jth submatrix of A

||·||F Frobenius matrix norm

viii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. INTRODUCTION AND LITERATURE REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Information Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Mathematical Framework for the Information Design Problem . . . . . . . . . . . . . . . 4

1.2 Linear-Quadratic-Gaussian Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 A SDP Formulation of Information Design Problem given Quadratic Design Ob-

jectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Summary of Chapter 2: Welfare and Agreement Maximization in LQG Games . . . . . . 13

1.4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Summary of Chapter 3: Information Preferences of Individual Agents in LQG
Network Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Summary of Chapter 4: Robust Information Design in LQG Games . . . . . . . . . . . . . . . . . . 17
1.6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2. MAXIMIZING SOCIAL WELFARE AND AGREEMENT VIA INFORMATION
DESIGN IN LINEAR-QUADRATIC-GAUSSIAN GAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Design objectives in Matrix Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Results on Social Welfare Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Common Payoff State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



2.3.2 Homogeneous LQG games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Public information structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Maximizing Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Maximizing Welfare vs. Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. INFORMATION PREFERENCES OF INDIVIDUAL AGENTS IN LINEAR-QUADRATIC-
GAUSSIAN NETWORK GAMES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Information Design in LQG Network Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Social Welfare Maximization via Information Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Ex-ante Information Structure Preferences of Agents based on Network Structure . . . 33

3.4.1 Information Structure Preferences under Star Network . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Ex-post Information Structure Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4. ROBUST OPTIMIZATION APPROACH TO INFORMATION DESIGN IN LINEAR-
QUADRATIC-GAUSSIAN GAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Generic Robust Information Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Linear-Quadratic-Gaussian (LQG) Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 From signal to action distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Robust Information Design under Finite Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Robust Welfare Maximizing Information Design under Ellipsoid Uncertainty . . . . . . . . 49
4.5 Robust Information Design under Interval and Conic Uncertanties . . . . . . . . . . . . . . . . . . . . 52

4.5.1 Robust Model under Interval Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.2 Robust Model under Conic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Optimality conditions for no and full information disclosures. . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.1 Optimality of no information disclosure under general information structures 58
4.6.2 Public information structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

APPENDIX A. APPENDIX TO MAXIMIZING SOCIAL WELFARE AND AGREEMENT
VIA INFORMATION DESIGN IN LINEAR-QUADRATIC-GAUSSIAN GAMES. . . . . . . . 73

A.1 Coefficients matrix of the agreement objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

APPENDIX B. APPENDIX TO INFORMATION PREFERENCES OF INDIVIDUAL
AGENTS IN LINEAR-QUADRATIC-GAUSSIAN NETWORK GAMES . . . . . . . . . . . . . . . . . . 77

x



B.1 BNE under Public Information and Common Value Payoff States . . . . . . . . . . . . . . . . . . . . 77

APPENDIX C. APPENDIX TO ROBUST OPTIMIZATION APPROACH TO
INFORMATION DESIGN IN LINEAR-QUADRATIC-GAUSSIAN GAMES . . . . . . . . . . . . . 79

C.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.2 Eigenvalue Bounds for Symmetric Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xi



LIST OF FIGURES

FIGURE Page

1.1 Information designer sends optimally designed signals on the risks of infection
from an emerging infectious disease to the population with individuals who are
susceptible (blue), infected (green) or recovered (magenta), so that they follow the
recommended health measures, e.g. social distancing or masking that reduce the
risk of an outbreak. An individual’s infection or disease transmission risk is deter-
mined by its contacts (shown by black edges). For instance agent 1 (susceptible)
has one infected neighbor (agent 5) that it can contract the disease from. See also
Example 3.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 An information designer sends a signal ωi drawn from information structure ζ(ω|γ)
to each player i who takes action ai in a game with other players under payoff state
γi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Agents play a network game with individual payoffs that depend on their neigh-
bors’ actions and an unknown payoff state γ. An information designer sends a
signal wi drawn from information structure ζ(ω|γ) to each agent i. Agent i takes
an equilibrium action ai based on the received signal ωi to maximize its expected
utility (©2022 IEEE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Percentage difference between optimal objective value (1.16) and objective value
of full information disclosure versus correlation between payoff states. We con-
sider a game with asymmetric payoffs given by Hi,i = 4 for i ∈ N , and Hi,j =
1+ cUi,j for i ∈ N , and j ∈ N \{i} where Ui,j ∈ [−1, 1] is a uniformly distributed
random variable‘ for i, j ∈ N , and c ∈ [0, 1] is a constant determining the magni-
tude of the asymmetry. The suboptimality of full information disclosure increases
with growing asymmetry and decreasing correlation (©2023 IEEE). . . . . . . . . . . . . . . . . . . 24

2.2 Comparison of the social welfare values under full information and no informa-
tion disclosure. We consider homogeneous games with −1

n−1
< h < 1. We let

var(γ)i,j = 0.2 for i ∈ N and j ∈ N \ {i} as we vary var(γi) for all i ∈ N . As
var(γi) increases, the value of full information disclosure increases compared to no
information disclosure (©2023 IEEE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xii



2.3 Objective values for optimal, full, no information disclosure under varying weights
λ ∈ [0, 1]. Optimal information disclosure is obtained by solving (1.16)-(1.18)
under general information structures. The game payoff coefficients H is as in (2.7)
with h ∈ {0.25, 0.75}. Let var(γ) be such that var(γ)i,i = 4 for i ∈ N and
var(γ)i,j = 1 for i ∈ N and j ∈ N \ {i}. Full information disclosure is preferred
over no information disclosure for larger weight values λ than the λ threshold given
in Proposition 11 (dashed line) (©2023 IEEE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Contour plot of ∂Vi(β,n)
∂β

for central (a) and peripheral (b) agents under homoge-
neous payoff matrix H where Hii = 1 and Hij = β, for (i, j) ∈ E , and β ∈ R.
∂Vi(β,n)

∂β
< 0 for the central agent and ∂Vi(β,n)

∂β
> 0 for a peripheral agent (©2022

IEEE).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 We plot (3.11) for number of agents from 3 to 20. We also plot positive definiteness
condition we impose on β, i.e., (n−1)β < 1. Indeed, the positive definiteness line
(1/(n − 1)) crosses below the lower bound in (3.11) at n > 9, indicating that the
central agent benefits more than a peripheral agent from information disclosure
(©2022 IEEE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Ex-post information preference estimates of central and peripheral agents in sub-
modular games on a star network with n = 4. Lines show seven realized µ val-
ues generated from µ ∼ ψ(µ0 = 1, 0.32). Dashed lines indicate µ < µ0. Solid
lines indicate µ > µ0. For each µ and β value, 1000 γ values are generated from
ψ(µ, 0.12). We estimate ∆ui(a, γ) by averaging the values over γ realizations. For
large β values, full information disclosure may not be preferred by the central agent
when µ < µ0 (©2022 IEEE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Ex-post information preference estimates of central and peripheral agents in su-
permodular games on a star network with n = 4. Lines show seven realized µ
values generated from µ ∼ ψ(µ0 = 1, 0.32). Dashed lines indicate µ < µ0. Solid
lines indicate µ > µ0. For each µ and β value, 1000 γ values are generated from
ψ(µ, 0.12). We estimate ∆ui(a, γ) by averaging the values over γ realizations. For
large |β| values, full information disclosure is not preferred by the central agent
when µ < µ0 (©2022 IEEE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Contour plots of (a) normalized Frobenius matrix norm distance ||Xoptimal −Xno||F
between optimal covariance matrix and no information disclosure covariance ma-
trix and (b) optimal objective value with respect to uncertainty ball radius ρ and
diagonal shift ε1 to coefficient matrix H under a symmetric supermodular game
with social welfare objective. Optimal solution, that is partial information disclo-
sure, approaches to no information disclosure as ρ and ε1 increase. . . . . . . . . . . . . . . . . . . . . 64

xiii



4.2 Contour plots of (a) normalized Frobenius matrix norm distance ||Xoptimal −Xno||F
between optimal covariance matrix and no information disclosure covariance ma-
trix and (b) optimal objective value with respect to uncertainty ball radius ρ and
off-diagonal shift ε2 to coefficient matrixH under a symmetric supermodular game
with social welfare objective. Optimal solution, that is partial information disclo-
sure, approaches to no information disclosure as ρ and ε2 increase. . . . . . . . . . . . . . . . . . . . . 65

xiv



1. INTRODUCTION AND LITERATURE REVIEW

The chapter starts with the introduction to general information design problem in non-cooperative

incomplete information games. It continues with a section on linear-quadratic-Gaussian (LQG)

games which are the underlying game structure in the research performed. Following these def-

initions, we present the SDP formulation of the information design problem in LQG games. We

conclude the section with an overview of our results in the thesis, and contributions to the litera-

ture1.

1.1 The Information Design Problem

Information design originated from Bayesian persuasion framework which involves a sender,

i.e. information designer and a single receiver, i.e. agent. The goal is to maximize sender’s

objective by persuading a rational agent regarding a payoff state affecting receiver’s utility via

revealing credible information [1]. In multi-agent systems, the information designer optimizes

a system level objective, such as social welfare, by selecting an information structure, and the

corresponding induced rational behavior of multiple agents to overcome undesirable or inefficient

outcomes [2, 3]. In general, the designer’s problem is computationally intractable as it involves

identifying the “best” distribution over the space of distributions that induces desirable rational

behavior [4]. Thus, the current approaches make structural assumptions about the state/action

space, the system designer’s objective, and the game payoffs in order to attain analytical results [5].

To further illustrate the information design problem, we consider an example from pandemic

control (see Fig. 1.1). Consider a public health institute, e.g., Centers for Disease Control and

Prevention (CDC) or a local health department, that determines the fidelity of information revealed

about the unknown risks of an emerging infectious disease, in order to eliminate or reduce the

risks of an outbreak. The agents in the population can be in susceptible, infected, and recovered

1Part of this chapter is reprinted with permission from F. Sezer, H. Khazaei, and C. Eksin, “Maximizing social
welfare and agreement via information design in linear-quadratic-gaussian games,” IEEE Transactions on Automatic
Control, pp. 1–8, 2023, ©2023 IEEE and F. Sezer and C. Eksin, “Information preferences of individual agents in
linear-quadratic-gaussian network games,” IEEE Control Systems Letters, vol. 6, pp. 3235–3240, 2022, ©2022 IEEE.
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Agent 1

Agent 2Agent 3

Agent 4Agent 5

Agent 6

Information
Designer

Figure 1.1: Information designer sends optimally designed signals on the risks of infection from an
emerging infectious disease to the population with individuals who are susceptible (blue), infected
(green) or recovered (magenta), so that they follow the recommended health measures, e.g. social
distancing or masking that reduce the risk of an outbreak. An individual’s infection or disease
transmission risk is determined by its contacts (shown by black edges). For instance agent 1
(susceptible) has one infected neighbor (agent 5) that it can contract the disease from. See also
Example 3.

states. A susceptible agent determines its level of adherence to recommended preventative health

measures based on its assessment of risks of an infection, and costs of the measures. For instance,

both susceptible agents (agent 1 and 4) have a single infected contact (agent 5 and 6) that they can

contract the disease from (shown by black lines in Fig. 1.1). An infectious agent pits the risks

associated with transmitting the disease to other agents against the costs of taking the isolation

measures. For instance, both infected agents (agent 5 and 6) have one susceptible and one recov-

ered contact. The higher is the number of susceptible contacts, the stronger is the risk for disease

transmission. A local health department (designer) has more information about the potential risks

associated with an emerging infectious disease. Its goal is to induce actions that will reduce the

disease transmission in the population by sending signals on infection risk or campaigning for cer-

tain actions, e.g., social distancing, or masking indoors. In this setting, the health department has

to reveal credible information based on the actual (realized) severity of the infectious disease.

Information design assumes at least a single designer under commitment assumption and mul-

tiple agents who play a game with each other. Commitment assumption refers to fixing informa-
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tion structure before realization of payoff state. There are also simpler models where a sender

tries to persuade a single receiver. Based on the commitment assumption, there are two types of

sender-receiver models. The older model called "Cheap Talk" [6, 7] does not assume commitment

whereas the newer model called Bayesian persuasion [1] assumes commitment. Information de-

sign is closer in the sense of commitment to Bayesian persuasion. Commitment assumption brings

truthful communication of realized signal from the sender to the receiver. This removes the strate-

gic environment which exists in Cheap Talk i.e the sender and the receiver do not play a game with

each other in Bayesian persuasion. Commitment assumption causes sender’s utility to be weakly

higher under Bayesian persuasion compared to under any other strategic communication games

where commitment does not exist [1].

Information design in operations gained importance recently, see [5] for a detailed review. On

further development of information design methodology, [8] presents equilibrium existence results

when there are competing information designers, and [9] develops approximation algorithms for

persuasion under limited communication. In revenue maximization, [10] studies optimal signalling

mechanism in second price auctions. Value of personalized information provisioning compared to

public information is studied by [11]. [12] presents results on optimal information policy in time-

locked sales. In queuing systems, [13] considers a designer who gives information on state of the

queue to customers to maximize expected revenue. [14] considers information design in queues

where customers make a payment to learn the signal regarding the state of the queue. In public

health management, informing the public about approaching health emergencies such as epidemics

[15] and workplace occupancy control, i.e., in person vs remote via informing about infection

risk parameter [16] is studied. In platform management, nudging suppliers to use platform is

studied by [17]. [18] studies an e-commerce platform as a designer who studies joint promotion

and information policy in e-commerce platforms. In network settings, [19] considers a social

network where it recommends to engage or not to engage with a post to a user with the objective

of minimizing misinformation. This work focuses on public information structures and identifies

which networks are more amenable to persuasion.
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Information Designer (ζ)

Player 1 (a1, γ1)

ω1

Player 2 (a2, γ2)

ω2

. . . Player n (an, γn)

ωn

Figure 1.2: An information designer sends a signal ωi drawn from information structure ζ(ω|γ) to
each player i who takes action ai in a game with other players under payoff state γi.

In this thesis, we study information design linear-quadratic-Gaussian (LQG) games. In an

LQG game, players have quadratic payoff functions, and the state and the signals come from a

Gaussian distribution. Under certain assumptions, the optimal strategy in LQG games defined

by the Bayesian Nash equilibrium (BNE) is unique and linear in the signals received [20]. The

linearity of BNE strategies allow the information design problem to be a semi-definite program

(SDP) when the information designer’s objective is a quadratic function of the players’ actions and

the payoff-relevant states [21].

Next, we provide the mathematical notation and preliminaries that our results build on.

1.1.1 Mathematical Framework for the Information Design Problem

A non-cooperative incomplete information game involves a set of n players belonging to the

set N , each of which selects actions ai ∈ Ai to maximize the expectation of its payoff function

ui(a, γ) where a ≡ (ai)i∈N ∈ A and γ ≡ (γi)i∈N ∈ Γ correspond to an action profile and an

unknown payoff state, respectively. Players form expectations about their payoffs based on their

signals/types ωi about the state given a common prior ψ. We represent the incomplete information

game by the tuple G := {N ,A, {ui}i∈N , {ωi}i∈N}.

A strategy of player i maps each possible value of the private signal ωi ∈ Ωi to an action

si(ωi) ∈ Ai, i.e., si : Ωi → Ai. A strategy profile s = (si)i∈N is a BNE with information structure

ζ , if it satisfies

Eζ [ui(si(ωi), s−i, γ)|ωi] ≥ Eζ [ui(a
′
i, s−i, γ)|ωi], (1.1)
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for all a′i ∈ Ai, ωi ∈ Ωi, i ∈ N where s−i = (sj(ωj))j 6=i is the equilibrium strategy of all the

players except i, and Eζ is the expectation operator with respect to the signal distribution ζ and the

prior on the payoff state ψ. The above definition ensures that no player has a unilateral profitable

deviation from a BNE strategy to another action at any signal realization given the information

structure ζ .

An information designer optimizes the expected value of a design objective f(a, γ), e.g., social

welfare, by deciding on an information structure ζ from a set of signal generating distributions Z ,

i.e.,

max
ζ∈Z

Eζ [f(s, γ)] (1.2)

where s is a BNE strategy profile for the game G under the information structure of the game

ζ . The information structure of the game ζ(ω|γ) is the conditional distribution of ω ≡ (ωi)i∈N

given γ. That is, an information structure comprises signal transmission rules and the probability

distribution from which signals are generated. Signals transmitted to players convey information

about payoff relevant states.

Information design follows the given timeline (Fig. 1.2):

1. Designer selects ζ ∈ Z and notifies all players.

2. Payoff state γ is realized.

3. Players observe signals {ωi}i∈N drawn from ζ(ω|γ).

4. Players act according to BNE under ζ.

The information designer’s problem in (1.2) is intractable for general incomplete information

games with continuous actions because it is a linear program with an infinite number of variables

[21]. We focus on LQG games that admit a tractable SDP formulation for (1.2) when f(·) is

quadratic and signals come from a Gaussian distribution.
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1.2 Linear-Quadratic-Gaussian Games

In an LQG game, player i’s payoff function is quadratic,

ui(a, γ) = −Hi,ia
2
i − 2

∑
j 6=i

Hi,jaiaj + 2γiai + di(a−i, γ), (1.3)

where Hi,j for i ∈ N , j ∈ N are real-valued coefficients with Hi,i > 0, di(a−i, γ) is an arbitrary

function of the opponents’ actions a−i ≡ {aj}j 6=i and state γ, and we have a ∈ A ≡ Rn, and

γ ∈ Γ ≡ Rn. We collect the payoff function coefficients in a matrix H = [Hi,j] ∈ Rn×n. We note

that the function is quadratic in player i’s action but it need not be quadratic in others’ actions and

payoff state as per the term di(a−i, γ). Indeed, this term cannot be controlled by player i, i.e., it

does not affect its strategy. Here, we focus on scalar actions, i.e., ai ∈ R.

Remark 1. The results in the dissertation can be extended to cover the case where ai ∈ Rmi for

mi ∈ N, as long as ui(a, γ) remains quadratic in actions.

Payoff state γ follows a normal distribution ψ(µ,Σ) with mean µ ∈ Rn and covariance matrix

Σ. Player i receives a private signal ωi ∈ R. We assume the joint distribution over the random

variables (ω, γ) is normal; thus, ζ is assumed to be a normal distribution. Next, we provide three

examples of games with quadratic payoffs.

Example 1 (Cournot competition). Firms determine the production quantities for their goods (ai)

facing a marginal cost of production (γi) [22]. The price is a function of the production quantities,

pi(a) = ϑ−$ai − %
∑

j 6=i aj with positive constants ϑ, $ and %. The payoff function of the firm i

is its profit given by its revenue aipi(a) minus the cost of production γiai,

ui(a, γ) = aipi(a)− γiai. (1.4)

Example 2 (Beauty Contest Game). Payoff function of player i is given by

ui(a, γ) = −(1− ξ)(ai − γ)2 − ξ(ai − ā−i)2, (1.5)
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where ξ ∈ [0, 1] and ā−i =
∑

j 6=i aj/(n − 1) represents the average action of other players.

The first term in (1.5) denotes the players’ urge for taking actions close to the payoff state γ, i.e

estimation . The second term accounts for players’ tendency towards taking actions in compliance

with the rest of the population i.e consensus. The constant ξ gauges the importance between the

two terms. The payoff captures settings where the valuation of a good, e.g., stock, depends not just

on the performance of the company but also on what other players think about its value [23].

Example 3 (Social Distancing Game). Action of agent i, ai ∈ R+ ∪ {0} is the amount of social

distancing the agent exerts to avoid the risk of contracting an infectious disease. The risk of

infection depends on unknown disease specific parameters, e.g., severity, infection rate, and the

social distancing actions individuals in contact with agent i. We define the payoff function of

player i as follows,

ui(a, γ) = −Hi,ia
2
i − (1− δiai)ri(a, γ) (1.6)

where the risk of infection is

ri = γ − 2
∑
i 6=j

Hi,jaj, (1.7)

0 < δi < 1 is the risk reduction coefficient. In the definition of risk ri (1.7), γ denotes the risk rate

of the disease such as infection rate or severity, and Hi,j determines the contacts of agent i and the

intensity of the contacts. First term in (1.6) represents cost of social distancing to agent i. Second

term in (1.6) denotes the overall risk of infection that scales with agent i’s social distancing efforts.

We continue with the description of BCE under LQG games. The following result by [20] states

a sufficient condition for having an unique BNE strategy, and provides a set of linear equations to

determine the coefficients of the linear BNE strategy in LQG games.

Proposition 1 (Theorem 5, [20]). Suppose that H + HT and the variance of the private signals

var(ωi) are positive definite for each i ∈ N . Then LQG game has a unique Bayesian Nash equi-

librium given by

si(ωi) = āi + bTi (ωi − Eζ [ωi]) for i ∈ N, (1.8)
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where b1, ....bn are determined by the following systems of linear equations:

∑
j∈N

Hi,jcov(ωi, ωj)bj = cov(ωi, γi) for i ∈ N, (1.9)

and cov(·, ·) represents the covariance between two random variables.

Assumptions of Proposition 1 guarantee the existence and uniqueness of a linear strategy (1.8)

that satisfy (1.1) with coefficients obtained by solving (1.9). We assume the sufficient conditions

above, i.e., the existence of an unique BNE, throughout the dissertation.

An action distribution represents the probability of observing an action profile a ∈ A when

agents follow a strategy profile s under ζ . The action distribution φ is defined as a sum over

information structures ζ:

φ(a|γ) =
∑

ω:s(ω)=a

ζ(ω|γ) (1.10)

A Bayesian correlated equilibrium (BCE) is an action distribution in which no individual would

profit by unilaterally deviating from selecting actions according to the given action distribution.

The formal definition follows.

Definition 1. An action distribution φ under ζ is a BCE if and only if it satisfies

Eφ[ui((ai, a−i), γ)|ai] ≥ Eφ[ui((a
′
i, a−i), γ)|ai] (1.11)

for all ai, a′i ∈ Ai and i ∈ N where Eφ[·|ai] is the conditional expectation with respect to the

action distribution φ and information structure ζ given action ai ∈ Ai.

An equilibrium action distribution φ, corresponding to a BNE strategy profile s under ζ , i.e.,

φ(a|γ) =
∑

ω:s(ω)=a ζ(ω|γ), satisfies (1.11) as stated in the following result.

Proposition 2 (Corollary 2, [2]). An equilibrium action distribution is a BCE under any infor-

mation structure. If a BCE corresponds to an equilibrium action distribution, a corresponding

information structure exists.
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Using Propositions 1 and 2, we can derive a necessary and sufficient condition for an action distri-

bution comprised of jointly normally distributed action profile and payoff state.

Proposition 3 (Proposition 3, [21]). An action distribution φ comprised of jointly normally dis-

tributed action profile and a payoff state is a BCE if and only if the following conditions hold

Eφ[a] = a (1.12)

∑
j∈N

Hi,jcov(ai, aj) = cov(ai, γi). (1.13)

Solution of (1.8) and (1.9) by bi = 1 and ai = Eζ [ωi] constitute a necessary and sufficient

condition for a BCE by Proposition 1. Conditions (1.12) and (1.13) correspond to this solution;

thus, Proposition 3 is established.

1.3 A SDP Formulation of Information Design Problem given Quadratic Design Objectives

In this section, we provide preliminary results on the information design problem in LQG

games. The first result represents the problem in (1.2) as a SDP with the decision variable

X :=

 var(a) cov(a, γ)

cov(γ, a) var(γ)

 (1.14)

and objective coefficients matrix

F :=

[F ]1,1 [F ]1,2

[F ]1,2 [F ]2,2

 (1.15)

where [F ]i,j indicates the n× n block matrix for i, j ∈ {1, 2}.

Proposition 4 (Section 3.2, [21]). If the objective function f(a, γ) is quadratic in its arguments,

and the payoff matrix H is such that H + HT is positive definite, then the information design
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problem in (1.2) can be restated as the following SDP,

max
X∈P 2n

+

F •X (1.16)

s.t. Rk •X = 0 ∀ k ∈ {1, .., n}, (1.17)

Mk,l •X = cov(γk, γl), ∀ k, l ∈ N with k ≤ l (1.18)

where Rk ∈ P 2n and Mk,l ∈ P 2n are defined as

[Rk]i,j =



Hk,k if i = j = k,

Hk,j/2 if i = k, 1 ≤ j ≤ n, j 6= k,

−1/2 if i = k, j = n+ k,

Hk,i/2 if j = k, 1 ≤ i ≤ n, i 6= k

−1/2 if j = k, i = n+ k,

0 otherwise,

and

[Mk,l]i,j =



1/2 if k < l, i = n+ k, j = n+ l,

1/2 if k < l, i = n+ l, j = n+ k,

1 if k = l, i = n+ k, j = n+ l,

0 otherwise,

This result, due to [21], represents the original information design problem (1.2) as the maxi-

mization of a linear function of a positive semi-definite matrix X subject to linear constraints. The

result leverages the fact there is a unique BNE that is a linear function of the signals whose coef-

ficients can be obtained by solving a set of linear equations in an LQG game with payoff matrix

H where H + HT ∈ P n
+ [20]. The linear strategies allow a mapping from strategies to signals,

which then means selecting the best distribution over the signals is equivalent to selecting the best
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distribution over the actions subject to the BNE constraints. Accordingly, the selection of the in-

formation structure in (1.2) reduces to determining the covariance between the realized actions and

payoff states in (1.16). Note that we can assume [F ]2,2 is a zero matrix On×n, because var(γ) is

given by nature, and cannot be altered by choosing an information structure. Again by leveraging

the linear mapping of strategies from signal space to action space, one can express the BNE equa-

tions with the set of linear constraints in (1.17). The set of constraints in (1.18) assigns the given

covariance matrix of the payoff states to the corresponding sub-matrix in X , i.e., it is equivalent

to [X]2,2 = var(γ). We note that we assume the conditions in Proposition 4 hold throughout all

chapters.

Next, we consider an important special case.

Definition 2 (Public Information Structure). A public information structure has ω1 = .... = ωn

with probability one. The set of public information structures is a subset of the general information

structures.

In the public information design problem, all players receive the same signal, and it is common

knowledge that they will receive the same signal. We define two important feasible solutions to

(1.16) - (1.18) (no and full information disclosure), [21].

Definition 3 (No information disclosure). No information disclosure refers to the case when there

is no informative signal sent to the players. In this case, the equilibrium action profile is given by

a = H−1µ. The induced decision variable and the objective value is respectively given by

X =

O O

O var(γ)

 and F •X = 0. (1.19)

Definition 4 (Full information disclosure). The signals sent to the players reveal all elements of

payoff state γ under full information disclosure. Equilibrium action profile is given by a = H−1γ.
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The induced decision variable

X =

H−1var(γ)(H−1)T H−1var(γ)

var(γ)(H−1)T var(γ)

 (1.20)

and the objective value is F • X = FH • var(γ) where FH = (H−1)T ([F ]1,1 + [F ]1,2H +

HT [F ]2,1)H−1

The information structure is public when all players receive a common signal. Otherwise,

when the players receive individual signals, the signal structure is private. Another distinction

is based on the fidelity of information carried by the signals. A signal can carry no, partial, or

full information. No information disclosure does not improve the prior information of the players

about the payoff relevant state, while signals reveal the payoff relevant state under full information

disclosure. A partial information disclosure is when the signals carry some information, but do not

fully reveal the payoff relevant state to the players.

Next result states the conditions for the optimality of full information disclosure solution when

we consider the set of public information structures.

Proposition 5 (Proposition 6-7, [21]). Let var(γ) = DDT such that D is an n× k matrix of rank

k where k is the rank of var(γ) and FH is as given in (4.73).

• Assume DTFHD 6= O is negative semi-definite. Then, no information disclosure is optimal

in the set of public information structures.

• Assume DTFHD 6= O is positive semi-definite. Then, full information disclosure is optimal

in the set of public information structures.

Remark 2. The SDP formulation of the information design problem in (1.2) poses the problem

as the determination of a distribution over actions not signals. A natural question is: how can

the designer use the solution X and φ instead of the distribution over signals ζ? As per the

information design timeline, when X is decided and γ is realized, the designer can draw the
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suggested actions from φ(a|γ) which has a Gaussian distribution. These suggested actions can be

used as coordinating signals instead of the private signals ωi.

In next sections, we continue with a motivation for the models and results in the upcoming

chapters, and an overview of related literature and the results included in this thesis.

1.4 Summary of Chapter 2: Welfare and Agreement Maximization in LQG Games

In this chapter, we focus on the maximization of welfare and agreement. Welfare refers to

sum of all agents’ utilities. Maximization of welfare bring alignment between the designer and

agents, in the sense that information disclosure is optimal. The level of information disclosure

depends on the symmetry between agents. Total symmetry among payoff states, signals or payoff

coefficients of agents make full information optimal disclosure policy. As the symmetry reduces,

partial information becomes optimal solution.

Agreement objective is the sum of squared differences between agent’s actions and mean ac-

tions. This objective is misaligned with agent’s utilities because of the nature of the objective and

utilities as functions. In this case, no information disclosure is optimal in general. The results

appeared in [24].

1.4.1 Contributions

Building on the SDP formulation of the information design problem, we analyze optimal in-

formation structures when the system level objective is to maximize social welfare (Section 2.3),

maximize agreement among players’ actions (Section 2.4), or a weighted combination of these two

objectives (Section 2.5).

In this thrust, we provide analytical and computational insights about the value of information

and optimal information structures by focusing on particular objectives for the designer (social

welfare and agreement). Our contributions are fourfold:

1) Given the social welfare design objective, we show that full information disclosure is optimal

if there is a common payoff state (Proposition 7), when the dependency of payoffs on others’ ac-

tions is homogeneous (Theorem 1), or if we only consider the set of public signals (Proposition
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8). These results follow the intuition that the designer would like to reveal as much information as

possible when the payoffs of players are aligned with the system-level objective [3].

2) When the objective is to maximize the agreement between players’ actions, we show that no in-

formation disclosure is optimal for any LQG game (Proposition 9). That is, by hiding information,

players’ actions are closer to each other.

3) If the information designer maximizes social welfare and agreement, we identify a critical

weight on the agreement term of the objective based on game payoffs below which full infor-

mation disclosure is preferred to no information disclosure (Propositions 10 and 11). That is, the

benefit of revealing information outweighs the increase in disagreement.

4) Numerical solutions to the SDP formulation reveal optimal private signal distributions that out-

perform both full and no information disclosure schemes. These contributions mentioned above

build on the SDP formulation of the information design problem that considers generic quadratic

design objectives in LQG games [21], but are distinct in that they provide specific insights about

the practically-relevant social welfare and agreement design objectives.

1.4.2 Related literature

Other intervention mechanisms, besides information design, include providing financial in-

centives in the form of taxes and rewards [25], system utility design [26], and nudging or player

control during learning dynamics [27–30]. In contrast to these approaches, the information design

framework manages the uncertainties of players so that their expected payoffs align with the ob-

jective of a system designer. That is, the system designer does not control agents directly, rather

it determines the information revealed to the players, so that players’ evaluation of their payoffs

lead to better outcomes from the system designer’s perspective. In this sense, there is a limit to the

system designer’s capability to achieve its goal. This limit determines the value of information.
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Figure 1.3: Agents play a network game with individual payoffs that depend on their neighbors’
actions and an unknown payoff state γ. An information designer sends a signal wi drawn from
information structure ζ(ω|γ) to each agent i. Agent i takes an equilibrium action ai based on the
received signal ωi to maximize its expected utility (©2022 IEEE).

1.5 Summary of Chapter 3: Information Preferences of Individual Agents in LQG Network

Games

In Chapter 2, we show that full information disclosure is the optimal solution to social welfare

maximization under public information structures and/or common payoff states (see Propositions

7-8). While full information disclosure may be optimal from the system designer’s perspective, its

effect on individual player’s payoff is not clear. In Chapter 3, we analyze the effect of such infor-

mation disclosure policy on the payoffs of individual agents and its dependence on the centrality

of the agents in network games. The results appeared in [31].

1.5.1 Contributions

We identify sufficient conditions for the individual preference of informative signals based

on the payoff coefficients prior to realization of the state (ex-ante) in Theorem 2. We leverage

this result, and identify that both central and peripheral agents in a star network structure prefer

information disclosure ex-ante for homogeneous LQG games (Proposition 12). In computing the

benefit of information disclosure to individual agents, we find that a peripheral agent can benefit
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more than the central agent under full information disclosure if competition is strong and number

of agents is small (Proposition 13). In sum, the incentives of the agents and the system designer

are in congruence ex-ante given the conditions considered.

We find that joint incentives of individual agents and the system designer can cease to exist

ex-post, i.e., after the realization of the payoff state. In contrast to Proposition 12, the central agent

prefers no information disclosure ex-post if realization of the payoff state is lower than expected.

In the context of Bertrand competition among firms in networked markets, these results imply

that central firms may not benefit from information disclosure when the competition among firms

is strong. Ex-post analysis is not useful because agents do not observe the realized payoff state

when taking actions, but they observe signals generated by the information designer based on the

realized state. Still, the ex-post analysis of incentives imply that a risk averse central agent can

prefer uninformative signals ex-ante. These results extend prior knowledge on the information

design problem [3, 21] by providing a characterization of the benefit of informative signals on

players’ payoffs and its dependence on centrality of the players in network games with incomplete

information.

1.5.2 Related Literature

Prior studies in network games with quadratic payoffs focus on computation and character-

ization of equilibria, and analyze the changes to the equilibria or social welfare when network

topology is modified via adding/removing links or nodes [32–36]. In contrast, Chapter 3 considers

the effects of information design on individual payoffs when the design objective is to maximize

social welfare.

Among the papers that consider network games, a standard thread of research is on developing

dynamics that reach a Nash equilibrium in complete information network games with quadratic or

other types of utilities—see [37] for a recent extensive review on this topic. Another thread focuses

on characterizing the Nash equilibrium, showing its relation to network centrality metrics in order

to identify key players in the game [32,35]. These research threads are also extended to incomplete

information network games [33, 34, 38]. There are two sources for uncertainty considered in these
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works: network and utility. Network uncertainty refers to players not knowing their neighbors,

while the payoff uncertainty considers an unknown payoff relevant state, same as the setting in this

chapter. Again the equilibrium computation or characterization is the main focus of these studies.

In terms of design/intervention in network games, studies either focus on seeding, i.e., con-

trolling a given number players, [39, 40], on taxation/subsidy schemes [25], or on changing the

network structure to maximize a system level objective. Orthogonal to these works, the interven-

tion mechanism considered in this thrust is information design [3,5,24]. That is, a designer chooses

the level of information revealed to the players in an incomplete information network game so that

social welfare is maximized. In addition, this chapter analyzes the potential gains of information

design to the players based on their centrality. This thrust tries to answer the question "which play-

ers benefit the most and how much from optimal information design in incomplete information

network games?" We also note that the result in Theorem 2 provides a condition for an agent i to

benefit from full information disclosure for general networks. The ensuing results (Proposition 12

and 13) exemplify some of the consequences of this general result for star networks.

1.6 Summary of Chapter 4: Robust Information Design in LQG Games

In Chapter 4, we propose a robust optimization approach to the information design problem

considering the fact that the designer cannot exactly know the game players are in. Indeed, while

the designer may be knowledgeable about the payoff relevant random state, it may have uncertainty

about the payoff coefficients of the players. For instance, in the pandemic control example above

while the public health department may have near-certain information about the potential risks of

a disease or intervention, it may not know how the society weights the risks and benefits in their

decision-making. Here, we assume the designer has partial knowledge about players’ utilities, and

wants to perform information design over the payoff relevant states. The results appeared in [41].

1.6.1 Contributions

When the payoffs of the players are unknown, the designer cannot be sure of the rational

behavior under a chosen information structure. We formulate this problem as a robust optimization
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problem where the designer chooses the “best” optimal information structure for the worst possible

realization of the payoffs. That is, we do not make any assumptions on the distribution of the

players’ payoff coefficients.

Specifically, we assume the players have linear-quadratic payoffs with coefficients unknown

by the designer. We further assume that the payoff relevant states and signals generated by the

designer come from a Gaussian distribution. In this setting, we show that the robust information

design problem can be formulated as a tractable SDP given ellipsoid (Theorem 4), interval (The-

orem 5) and general cone perturbations (Theorem 6) on the payoff coefficients–see Section 4.4.

Using the tractable SDP formulation under ellipsoid perturbations, we establish the optimality of

canonical information disclosure settings, namely no and full information disclosure, given the set

of general (Theorem 7) and public (Theorem 8 and 9) information structures.

1.6.2 Related Literature

It is worth noting that there are existing works in the framework of Bayesian persuasion and

information design that consider robustness in a different sense than our framework. Both [42]

and [43] consider the Bayesian persuasion setting with a sender and a receiver agents, where the

nature may send additional information to the receiver, and aim to find the sender’s optimal infor-

mation structures. These works assume the receiver’s payoff is known by the sender, but consider

robustness against the side information provided by the nature to the receiver.

In another Bayesian persuasion setting, [44] considers the situation where the sender does not

know the prior distribution on payoff state and the sender learns it over repeated interactions.

The goal of the sender is to minimize regret with respect to the setting where the sender knows

the prior distribution on payoff state. Their main result proves that for any persuasion setting

satisfying certain regularity conditions, their proposed algorithm achievesO(
√
T log T ) regret with

high probability under the horizon length T . In contrast, here we consider a one-shot (static)

problem, and we assume the prior distribution on the payoff state is known by the designer.

In [45], an adversarial approach is taken for the setting where the sender does not know the

utility of the receiver. That is, the robustness is against the unknown receiver utilities similar to
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ours. They show that the sender can achieve a low regret under the assumption that it knows the

receiver’s ordinal preferences over the states of nature upon adoption. However, they formulate

the problem as regret minimizing, whereas we formulate the problem using robust optimization.

The difference is that we assume the designer knows the perturbed payoff functions, but it does

not know the amount of perturbation. Lastly, robustness against the receiver’s error prone (non-

Bayesian probabilistic inference over payoff state) calculations is considered in [46]. In our case,

we assume the receiving agents are capable of updating their expected payoffs without error.

Besides the mentioned distinctions between our framework and [42–46], we focus on the multi-

player setting, i.e., information design, and assume an incomplete information game among the

players.
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2. MAXIMIZING SOCIAL WELFARE AND AGREEMENT VIA INFORMATION

DESIGN IN LINEAR-QUADRATIC-GAUSSIAN GAMES

2.1 Introduction

We focus on identification of optimal solutions for welfare maximization and agreement objec-

tives. We analytically derive optimal information structure to welfare maximization under common

payoff states, homogeneous games and public information structure settings. We numerically study

sensitivity of optimal information structure to asymmetry in payoff states and in interaction terms.

We continue with derivation of analytical optimal solution to information design problem under

agreement objective. We conclude with analysis of joint welfare maximization and agreement

objective under public information structures and common payoff states settings. The results in

this chapter appear in [24] 1.

2.2 Objectives

We start with formal definitions of social welfare and agreement design objectives.

Definition 5 (Social Welfare). Social welfare is the sum of individual utility functions,

f(a, γ) =
n∑
i=1

ui(a, γ). (2.1)

Social welfare is a common design objective used in congestion [25, 47], global [23] or public

goods games [15].

Definition 6 (Agreement). The information designer would like players to agree by minimizing the

deviation of players’ actions from the mean action, i.e., by maximizing

f(a, γ) = −
n∑
i=1

(ai − ā)2, where ā =
1

n

n∑
i=1

ai, (2.2)

1Part of this chapter is reprinted with permission from F. Sezer, H. Khazaei, and C. Eksin, “Maximizing social
welfare and agreement via information design in linear-quadratic-gaussian games,” IEEE Transactions on Automatic
Control, pp. 1–8, 2023, ©2023 IEEE.
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where we assume ai ∈ Ai ≡ R. The objective is suitable in settings where consensus is desir-

able but not exactly attainable. For instance, this objective can be used in reducing consumption

variability in demand response [48], or coordinated autonomous movement [38].

2.2.1 Design objectives in Matrix Form

We focus on two specific quadratic design objectives: social welfare (2.1) and agreement (2.2).

According to Proposition 1, we can express the information design problem in (1.2) for these

objectives as in (1.16). The following are the objective coefficients matrices

FW =

−H I

I O

 , and FC =

 1
n
11T − I O

O O

 , (2.3)

corresponding to (2.1) and (2.2), respectively. We obtain FW by substituting the quadratic payoffs

(1.3) in (2.1), and taking the expectation. See Lemma 2 in the appendix for the derivation of FC .

2.3 Results on Social Welfare Maximization

Our first result shows that full information disclosure will be preferred to no information dis-

closure in social welfare maximization.

Proposition 6. Assume H is symmetric. Then, full information disclosure never performs worse

than no information disclosure for maximizing social welfare objective.

Proof. No information disclosure has the objective value F •X = 0 regardless of F as per Defini-

tion 3. Objective value of full information disclosure is FW •X = FW
H • var(γ) as per Definition

4. Given (2.3), FW
H = H−1. We have FW

H = H−1 � 0 because eigenvalues of H−1 is equal to

reciprocals of eigenvalues ofH which are positive becauseH is positive definite by the assumption

that H + HT � 0 and H is symmetric. The result follows from the fact that FW
H • var(γ) ≥ 0

given var(γ) � 0.

The result implies that no information disclosure cannot be an optimal information structure for

social welfare maximization given symmetric payoff coefficients, since it cannot do better than full
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information disclosure. Next, we show that full information disclosure maximizes social welfare

for some important special cases.

2.3.1 Common Payoff State

We consider a scenario in which the payoff states are identical for all the players.

Proposition 7. Assume H is symmetric and γi = γj, ∀ i, j ∈ N . Then, full information disclosure

(X in (1.20)) is optimal for social welfare maximization.

Proof. The objective function f(·) with coefficients matrix FW in (2.3) is such that FW
i,n+j = 0

∀ i, j ∈ N with i 6= j. Moreover, we have FW
n+i,n+j = 0, ∀ i, j ∈ N . Therefore,

FW •X =
n∑
i=1

n∑
j=1

FW
i,j cov(ai, aj) + 2

n∑
i=1

FW
i,n+icov(ai, γi). (2.4)

Using the BNE condition in (1.17), which is equivalent to

∑
j∈N

Hi,jcov(ai, aj) = cov(ai, γi), ∀ i, j ∈ N, (2.5)

for the corresponding terms in (2.4), we obtain

FW •X =
n∑
i=1

n∑
j=1

(FW
i,j + 2FW

i,n+iHi,j)cov(ai, aj). (2.6)

We can express FW •X = E •var(a) where we define E := [FW ]1,1 +[FW ]2,1 ◦H+[FW ]1,2 ◦HT

using (2.6).

Substituting FW (2.3) in E, we get E = HT . Since H is symmetric, we have E = H .

We have that if E = κH for some constant κ > 0, then full information disclosure is optimal

under common payoff states (Proposition 9 in [21]). In our setting, the condition holds with κ =

1.

Proposition 7 establishes that full information disclosure is the optimal information structure

among all possible information structures if the payoff state is common and H is symmetric.
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In the following example, we analyze the discrepancy between the optimal objective value

obtained by solving the SDP in (1.16)-(1.18) and full information disclosure, as we gradually relax

the assumptions of Proposition 7. In particular, we allow partially correlated payoff states, and

asymmetric game coefficients H .

Example (Asymmetric payoffs and correlated payoff states):

Figure 2.1 shows that full information disclosure becomes increasingly suboptimal as asym-

metry grows and correlation between payoff states decreases.

Note that when Corr(γi, γj) = 1, there is a common payoff state and full information dis-

closure is optimal for symmetric H . If we consider the beauty contest game with symmetric H

and a single stock, full information disclosure on the stock price, i.e, payoff state, is optimal for

maximizing social welfare by Proposition 7. If we deviate from common payoff state assumption,

this means that stock price is not the same for players when they buy the stock. If we deviate from

the symmetry assumption, it means the effect of a player i’s action on j’s payoff is different than

the effect of player j’s action on i’s payoff. In these scenarios, full information disclosure is no

longer optimal.

2.3.2 Homogeneous LQG games

We consider the following payoff matrix H:

Hi,j =


1 if i = j; ∀ i, j ∈ N

h if i 6= j; ∀ i, j ∈ N
(2.7)

in which the off-diagonal terms are identical. For the Cournot competition (1.4), we have a homo-

geneous payoff matrix with h = %
2$

when cost is common, i.e., when γi = γj for all i, j ∈ N . For

the beauty contest game (1.5), we have an homogeneous payoff matrix with h = − ξ
n−1

.

Theorem 1. AssumeH is given in (2.7), and tr(var(γ)) ≥ 2
∑n

i=1

∑
j∈N\{i} cov(γi, γj). If− 1

n−1
<

h < 1, then full information disclosure is optimal for the social welfare maximization objective

under general information structures.
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Figure 2.1: Percentage difference between optimal objective value (1.16) and objective value of
full information disclosure versus correlation between payoff states. We consider a game with
asymmetric payoffs given by Hi,i = 4 for i ∈ N , and Hi,j = 1 + cUi,j for i ∈ N , and j ∈ N \ {i}
where Ui,j ∈ [−1, 1] is a uniformly distributed random variable‘ for i, j ∈ N , and c ∈ [0, 1] is
a constant determining the magnitude of the asymmetry. The suboptimality of full information
disclosure increases with growing asymmetry and decreasing correlation (©2023 IEEE).

Proof. See Appendix A.2 for the proof.

Theorem 1 shows that full information disclosure is optimal when the effects of others’ actions

on payoffs are homogeneous and belong to the given region. We note that the LQG game is

submodular if h > 0, and it is supermodular if h < 0. In a submodular game, an increase in a

player’s action reduces the incentive for other players to increase their actions. In a supermodular

game, the effect is reversed, i.e., increasing a player’s action increases the incentive for other

players to increase their actions—see [49] for formal definitions. Accordingly, social welfare

maximization objective is aligned with the incentives of players, when the game is submodular.

In contrast, when we have a supermodular game, the optimality of full information disclosure is

optimal as long as the effect of another players’ actions on a player’s action is small, i.e., h > −1
n−1

.
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Figure 2.2: Comparison of the social welfare values under full information and no information
disclosure. We consider homogeneous games with −1

n−1
< h < 1. We let var(γ)i,j = 0.2 for i ∈ N

and j ∈ N \{i} as we vary var(γi) for all i ∈ N . As var(γi) increases, the value of full information
disclosure increases compared to no information disclosure (©2023 IEEE).

We note that the condition h > −1
n−1

stems from the requirement that H needs to be positive

definite. Considering the beauty contest game in stock markets with h = −β
n−1

< 0, the information

disclosure is always optimal because β < 1. In Cournot competition, full information disclosure

is optimal as long as %
2$

< 1 according to Theorem 1.

A sufficient condition for optimality of full information disclosure in Theorem 1 is the diagonal

dominance of the covariance matrix of the payoff state. In the following numerical example, we

identify that the full information disclosure remains optimal even when the diagonal dominance

assumption does not hold in homogeneous LQG games.

Example (Relaxing the diagonal dominance of var(γ)):

We consider a submodular game among n = 4 players with homogeneous payoff coefficients

with h ranging from −0.3 to 0.8 (see Fig. 2.2).

When we compare the social welfare value under full information disclosure solution (1.20)
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with the optimal solution to the information design problem in (1.16)-(1.18), we find that they are

identical for all values of var(γi) ∈ [0.4, 0.48]. In this interval of var(γi), the diagonal dominance

assumption is not satisfied. This suggests that full information disclosure remains optimal even

when the diagonal assumption is not satisfied. Fig. 2.2 also shows that as the dependence of the

payoffs on other players’ actions, i.e., |h|, increases, objective value for full information disclosure

increases. This means the value of revealing information increases as competition increases.

2.3.3 Public information structures

Next, we show that full information disclosure maximizes social welfare under public signals.

Proposition 8. Assume H is symmetric and consider the set of public information structures as

the feasible set. Then, full information disclosure maximizes social welfare (2.1).

Proof. From Definition 4 and FW in (2.3), we have

FW
H = (H−1)T (−H + IH +HT I)H−1 = H−1.

H−1 is positive definite because eigenvalues of H−1 are equal to reciprocals of eigenvalues of

H which are positive. Therefore, KTFW
H K 6= 0 is positive definite for any matrix K. The result

follows from Proposition 5.

Together with the previous results in this section, Proposition 8 implies that for full information

disclosure to be suboptimal in welfare maximization, the payoff has to include individual payoff

states or asymmetric payoff matrix, and the designer has to consider private signals.

2.4 Maximizing Agreement

We show that no information disclosure is an optimal information structure that maximizes

agreement objective (2.2).

Proposition 9. No information disclosure is a maximizer of the objective function in (2.2) under

general information structures.
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Proof. The objective coefficients matrix FC has n − 1 eigenvalues with value −1 and n + 1

eigenvalues with value of 0. Thus, FC is negative semi-definite. The decision matrix X is positive

semi-definite. We deduce that FC •X ≤ 0. Objective value of no information disclosure is 0 by

(1.19); thus, no information disclosure is optimal.

Proposition 9 implies that the information designer achieves the maximum similarity between

players’ actions by revealing uninformative signals to the players. Broadly, hiding information

from players is optimal when there is a conflict between the utility functions of the players and

the information designer’s objective. We compare this with the objective value attained by full

information disclosure to provide further intuition for this result. Given FC , we have that FC•X =

FC
H • var(γ) where FC

H = (H−1)T [FC
1,1]H−1. We know that var(γ) is positive definite, and FC

H is

negative semi-definite because [FC ]1,1 is negative semi-definite as per the proof of the Proposition.

Thus, we have that full information disclosure can never be better than no information disclosure

for the agreement objective.

In the context of Cournot competition, we can envision a market regulator that wants to reduce

the variability in quantities produced by each firm. The result above states that the designer can

achieve minimum variability by not revealing information about the marginal cost of production.

Remark 3. Agreement objective is an example of misaligned objectives between the designer and

agents. In this case, obfuscating information is preferred by the designer [3]. Therefore, optimality

of no information disclosure complies with this insight.

In Cheap Talk [7], obfuscating information corresponds to a meaningless case because the

point is lying and changing receiver’s perception on the private information about the bias the

sender has. When no information is given to the receiver about its type, Cheap Talk does not even

occur. In contrast, information design focuses on selecting the level of information given to agents

so that the designer objective is maximized. In this sense, no information carries a meaning in

information design.

Another insight on optimality of no information disclosure for agreement objective comes from

concavity of the objective function. In Remark 1 and Section 3 of [1], it is indicated that the
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sender does not benefit from persuasion under concave sender utility i.e no disclosure is optimal

for concave sender objectives.

2.5 Maximizing Welfare vs. Agreement

We consider an information design problem in which the designer aims to maximize social

welfare and agreement at the same time by considering a weighted combination of (2.1) and (2.2).

The objective coefficients matrix is given by

F :=((1− λ)FW + λFC)=

λ[FC ]1,1 − (1− λ)H (1− λ)I

(1− λ)I O

 , (2.8)

for weight λ ∈ [0, 1].

The constant λ quantifies the importance of agreement. On one hand full information disclo-

sure is optimal when the design objective is social welfare under common payoff state, homoge-

neous games, or public signals. On the other hand, no information disclosure is optimal when

the objective is to maximize agreement. In the following results we show that full information

disclosure remains preferred under public information structures and common payoff states given

homogeneous games, if social welfare term gets a large enough weight relative to the agreement

term.

Proposition 10. Assume H has the form in (2.7) with h ∈ (0, 1), and common payoff states

γi = γj, ∀ i, j ∈ N . If λ < 1−h
2−h for λ ∈ (0, 1), full information never performs worse than no

information for information design problem with objective coefficients in (2.8).

Proof. Following identical steps to Proposition 7, we obtain the matrix E = [F ]1,1 + [F ]2,1 ◦H +

[F ]1,2 ◦ HT that provides F • X = E • var(a). Substituting in the coefficients from (2.8), we

simplify E = λ[FC ]1,1 + (1− λ)H .

First eigenvalue of E is equal to [(n − 1)h + 1](1 − λ). The rest of the eigenvalues of E are

equal to−λ+ (1−λ)(1−h). E is positive definite because both eigenvalues are greater than zero

when λ < 1−h
2−h .
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If E is positive definite, then the objective value E • X11 = E • var(a) ≥ 0. Thus, full

information performs better or the same compared to no information disclosure.

Proposition 11. Assume H has the form in (2.7) with h ∈ (0, 1). If λ < 1−h
2−h for λ ∈ (0, 1), then

full information disclosure is optimal for the information design problem with objective coefficients

given in (2.8) under the feasible set of public information structures.

Proof. We know F •X = FH • var(γ) where FH is given in Definition 4. Substituting in for the

sub-matrices in (2.8), we have FH = (H−1)TEH−1, where E = λ[FC ]1,1 + (1 − λ)H is as in

Proposition 10. We know from the proof of Proposition 10 that E is positive definite for λ < 1−h
2−h .

Thus, full information disclosure is optimal for public information structures by the fact that FH is

positive semi-definite and by Proposition 5.

(a) h = 0.25 (b) h = 0.75

Figure 2.3: Objective values for optimal, full, no information disclosure under varying weights
λ ∈ [0, 1]. Optimal information disclosure is obtained by solving (1.16)-(1.18) under general
information structures. The game payoff coefficients H is as in (2.7) with h ∈ {0.25, 0.75}. Let
var(γ) be such that var(γ)i,i = 4 for i ∈ N and var(γ)i,j = 1 for i ∈ N and j ∈ N \ {i}. Full
information disclosure is preferred over no information disclosure for larger weight values λ than
the λ threshold given in Proposition 11 (dashed line) (©2023 IEEE).

Propositions 10 and 11 specify the threshold for λ below which social welfare dominates the
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agreement term so that no information disclosure can no longer be optimal. It is worth noting that

the λ threshold for the superiority of full information disclosure are identical in both results because

we can reduce the objective function evaluation in Proposition 10 and the optimality condition in

Proposition 11 to positive definiteness evaluation of E. According to the threshold λ < 1−h
2−h , the

region in which no information disclosure is not optimal increases to λ ∈ (0, 0.5) as h→ 0+. The

region in which no information disclosure is not optimal shrinks to λ = 0 as h→ 1.

That is, as the dependence of players’ payoffs on others’ actions increases, no information

disclosure can no longer be ruled out as sub-optimal, unless social welfare maximization is the

objective of the designer, i.e., λ = 0.

Next, we assess the tightness of the threshold for λ, and the optimality of no and full informa-

tion disclosures for the class of general information structures in a numerical example.

Numerical example: Fig. 2.3 shows that the region for the weight λ where full information infor-

mation disclosure is preferable by the information designer over no information disclosure under

public information structures is larger than the region given by the condition λ < 1−h
2−h . The gap

between the analytical threshold (dashed line) and the numerical threshold (shown by ∗) for λ de-

creases as h increases. Fig. 2.3 also shows the optimal value achieved by solving the information

design problem under general information structures. We observe that general information struc-

tures that send partial signals to players perform better than no and full information disclosure for

λ ∈ (0, 1).

As mentioned in Section 2.3.2, Cournot competition is submodular. Fig. 2.3 indicates that as

h = %
2$

decreases, i.e., the value of information disclosure increases. In other words, in settings

where competition is fierce, hiding information is preferred when agreement is a design factor.
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3. INFORMATION PREFERENCES OF INDIVIDUAL AGENTS IN

LINEAR-QUADRATIC-GAUSSIAN NETWORK GAMES

3.1 Introduction

The information design problem ensures that optimal solutions satisfy equilibrium constraints

so that agents will be in obedience to optimal information structures in expectation. Because

rationality is defined as maximization of expected utility, agents will comply to the proscribed

equilibrium actions to them in any information structure which satisfies equilibrium constraints.

However, agents could obtain different utility values under different information structures.

This raises the question that what affects agents’ preferences towards information structure. In this

chapter, this question is answered in the context of LQG network games under the consideration

of agents’ position in the network for analytical and numerical studies and of their level of risk

aversion in numerical studies. The results in this chapter appear in [31] 1.

3.2 Information Design in LQG Network Games

We consider LQG network games where the nodes are the players N , and edges E determine

the payoff dependencies, i.e., if (i, j) /∈ E then Hij = 0, otherwise Hij ∈ R for (i, j) ∈ E . Next,

we provide an example.

Example 4 (Bertrand Competition in Networked Markets). Firms determine the price for their

goods (ai) facing a marginal cost of production (γi). Firms compete over markets that are con-

nected [50]. The demand is a function of the price of all the firms, qi = ϑ−$ai + %
∑

j 6=i aj with

positive constants ϑ, $ and %.

Firm i’s profit is its revenue qiai minus the cost of production γiqi,

ui(a, γ) = qiai − γiqi. (3.1)

1Part of this chapter is reprinted with permission from F. Sezer and C. Eksin, “Information preferences of individual
agents in linear-quadratic-gaussian network games,” IEEE Control Systems Letters, vol. 6, pp. 3235–3240, 2022,
©2022 IEEE.
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Nodes of networks correspond to a firm in Bertrand competition. If two nodes share an edge, they

compete over the same market. For a star network, the central node can be a multinational firm

competing with local competitors (peripheral nodes).

3.3 Social Welfare Maximization via Information Design

Social welfare is the sum of agents’ (quadratic) utilities:

f(a,γ) =
n∑
i=1

(−Hiia
2
i − 2

∑
j 6=i

Hijaiaj + 2γiai + di(a−i,γ)). (3.2)

Given quadratic utilities and Gaussian information structure, the information design problem

(1.2) is transformed to the maximization of a linear function of a positive semi-definite covariance

matrix (X = cov(a,γ)) subject to linear constraints stemming from the BNE condition in (1.1).

That is, the information design problem is a semi-definite program (SDP) given in (1.16)-(1.18).

Using this SDP formulation, it is shown in Chapter 2 that full information disclosure, i.e.,

signals that reveal the payoff state, is an optimal strategy for the information designer under com-

mon payoff states (Proposition 7 in chapter 2) and public information structures (Proposition 8 in

chapter 2).

We interpret the results in Propositions 7-8 for network games where Hij = 0 if (i, j) /∈ E .

According to Proposition 7, full information disclosure is optimal given a common payoff state

and symmetric H . A common payoff state corresponds to a common marginal cost for firms in

Bertrand competition. This result implies that each firm should receive a fully informed signal on

the marginal cost to maximize the social welfare.

Proposition 8 implies that if H is diagonally dominant, then full information disclosure is

optimal for public signal structures. In the context of Bertrand competition, this result implies that

if firms receive the same signal on the cost of their production, it is preferable to reveal the realized

cost of production.

Next, we analyze the ex-ante information structure preferences of individual agents based on

their position in the network.
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3.4 Ex-ante Information Structure Preferences of Agents based on Network Structure

When there is a common payoff state γ, i.e., γi = γ, for i ∈ N and public signals ωi = ω̄

for i ∈ N , individual equilibrium actions under full and no information disclosure are given by

ai = γ[H−11]i and ai = µ[H−11]i, respectively for i ∈ N where 1 ∈ Rn is a vector of ones and

[·]i represents the ith element of a vector—see Appendix B.1 for the derivation. In this section, we

treat the actions as random variables where we assume γ ∼ ψ(µ, σ2) and µ ∼ ψ(µ0, σ
2
0).

Theorem 2. Consider an LQG network game with common payoff state γ and public information

structures. Define

Vi(H) := [H−11]i

(
2−Hii[H

−11]i − 2
∑
j 6=i

Hij[H
−11]j

)
. (3.3)

If Vi(H) > 0, then full information disclosure is preferable by agent i ∈ N over no information

disclosure.

Proof. If agent i’s expected utility given full information disclosure is larger than its expected

utility at no information disclosure, then full information disclosure is preferable. We start with

computing agent i’s expected utility under full information disclosure by plugging in the equilib-

rium action profile a = γH−11 (see Lemma 3 in appendix B.1) into (1.3):

E[ui(a, γ)] = E[γ2][H−11]i

(
2−Hii[H

−11]i − 2
∑
j 6=i

Hij[H
−11]j

)
+ E[di(a−i, γ)] (3.4)

Next, we plug in the equilibrium action profile for no information disclosure a = µH−11 (see

Lemma 3) into (1.3):

E[ui(a, γ)] = [H−11]i

(
E[µ2](−Hii[H

−11]i − 2
∑
j 6=i

Hij[H
−11]j) + 2E[γµ]

)
+ E[di(a−i, γ)]

(3.5)

We subtract (3.5) from (3.4) to obtain the difference between expected utilities under full in-
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formation and no information:

E[∆ui(a, γ)] = [H−11]i

(
E[γ2 − µ2](−Hii[H

−11]i − 2
∑
j 6=i

Hij[H
−11]j) + 2E[γ2 − γµ]

)
(3.6)

= σ2[H−11]i

(
2−Hii[H

−11]i − 2
∑
j 6=i

Hij[H
−11]j

)
. (3.7)

To get the second equality, we use E[µ2]− µ2
0 = σ2

0 , E[γ2] = σ2 + σ2
0 + µ2

0 and E[γµ] = σ2
0 + µ2

0

given that γ ∼ ψ(µ, σ2) and µ ∼ ψ(µ0, σ
2
0). If E[∆ui(a, γ)] > 0, full information is preferred.

The condition E[∆ui(a, γ)] > 0 is equivalent to Vi(H) > 0 by the fact that σ2 > 0.

3.4.1 Information Structure Preferences under Star Network

We showcase Theorem 2 by applying to LQG games over star networks. A star network is

comprised of a central agent (i = 1) and n−1 peripheral agents (j ∈ N\{1}). We derive conditions

for information structure preferences of both the central and peripheral agents in homogeneous

games.

Definition 7 (Homogeneous LQG games). An LQG network game with a payoff coefficients matrix

where Hii = 1 and Hij = β, for (i, j) ∈ E , and β ∈ R is homogeneous.

Proposition 12. If the LQG game is homogeneous and (n − 1) |β| < 1, then full information

disclosure is preferred over no information disclosure by both the central and peripheral agents in

the star network.

Proof. We can compute [H−11]i in close form for star networks,

[H−11]i =
|Ni|β − 1

(n− 1)β2 − 1
for i ∈ N , (3.8)

where Ni : {j : (i, j) ∈ E} denotes the neighbors of agent i, and |Ni| denotes its cardinality.

We check the condition Vi(H) > 0 for the central agent, say i = 1, by substituting in (3.8),
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|N1| = n− 1 and |Nj| = 1 for j ∈ N \ {1},

(n− 1)β − 1

(n− 1)β2 − 1

(
2− (n− 1)β − 1 + 2(n− 1)β(β − 1)

(n− 1)β2 − 1

)
> 0. (3.9)

We simplify (3.9) to get ((n−1)β−1)((n−1)β−3) > 0. Given that (n−1)β < 1, the inequality

is always true. Thus, full information disclosure is always preferable to no information disclosure

by the central agent.

Now we consider peripheral agents j ∈ N \ {1}. We check the condition Vi(H) > 0 for a

peripheral agent by substituting in (3.8), |N1| = n− 1, and |Nj| = 1 for j ∈ N \ {1}:

β − 1

(n− 1)β2 − 1

(
2− β(β − 1) + 2((n− 1)β − 1)

(n− 1)β2 − 1

)
> 0. (3.10)

(3.10) simplifies to (β − 1)2 > 0 which is always satisfied. This means E[∆ui(a, γ)] is always

positive. Therefore, full information disclosure is always preferable over no information disclosure

by the peripheral agents.

This result shows that all agents regardless of their position in the star network are expected

to benefit from information disclosure. We analyze the change in the value of information as a

function of competition and number of players in homogeneous games in Fig. 3.1. We note that

for homogeneous games Vi(H) = Vi(β, n), and Vi(β, n) is given by (3.9) and (3.10), respectively

for central and peripheral agents. We observe that Vi(β, n) is a decreasing function for the central

agent while it is an increasing function for a peripheral agent with respect to β. Also, ∂Vi(β,n)
∂β

decreases further as β decreases or the number of agents increases for the central agent. In contrast,

∂Vi(β,n)
∂β

is not affected much by a change in the value of β for a peripheral agent.

Next, we identify the region for β where the expected benefit of the information disclosure to

a peripheral agent is higher than that of the central agent.
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(a) Central agent (b) Peripheral agent

Figure 3.1: Contour plot of ∂Vi(β,n)
∂β

for central (a) and peripheral (b) agents under homogeneous

payoff matrix H where Hii = 1 and Hij = β, for (i, j) ∈ E , and β ∈ R. ∂Vi(β,n)
∂β

< 0 for the

central agent and ∂Vi(β,n)
∂β

> 0 for a peripheral agent (©2022 IEEE).

Figure 3.2: We plot (3.11) for number of agents from 3 to 20. We also plot positive definiteness
condition we impose on β, i.e., (n − 1)β < 1. Indeed, the positive definiteness line (1/(n − 1))
crosses below the lower bound in (3.11) at n > 9, indicating that the central agent benefits more
than a peripheral agent from information disclosure (©2022 IEEE).
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Proposition 13. If the LQG game is homogeneous and

2(n− 1)−
√
ν(n)

n(n− 2)
< β <

2(n− 1) +
√
ν(n)

n(n− 2)
(3.11)

where ν(n) = n2 − 2n + 4, then the gain of a peripheral agent from information disclosure is

higher than the gain of the central agent. For β values outside interval (3.11), the gain of the

central agent is higher than that of a peripheral agent.

Proof. We consider the difference between E[∆u1(a, γ)] in (3.9), i.e., central agent’s benefit from

information disclosure, and E[∆uj(a, γ)] in (3.10) for j ∈ N \ {1}, i.e., a peripheral agent’s

benefit, to get

E[∆u1(a, γ)]− E[∆uj(a, γ)] =
((n− 1)β − 1)((n− 1)β − 3)− (β − 1)2

((n− 1)β2 − 1)2
> 0. (3.12)

We remove the positive valued denominator, and simplify the numerator to get

n(n− 2)β2 − 4(n− 1)β + 3 > 0. (3.13)

Solving quadratic inequality (3.13) indicates that when β is in the range given in (3.11),E[∆u1(a, γ)]−

E[∆uj(a, γ)] < 0. Thus, a peripheral agent benefits more than the central agent from full infor-

mation disclosure. The second part of the result follows from the fact that we have E[∆u1(a, γ)]−

E[∆uj(a, γ)] > 0 for β values outside the interval (3.11).

In Fig. 3.2, we plot the upper and lower bound values in (3.11) as a function of n. We observe

the bounds get closer as n increases. When we contrast these bounds with the bound for positive-

definiteness, i.e., β < 1/(n− 1), we observe that the upper bound is not realized for any β value.

For n > 9, the positive definiteness condition implies that the lower bound cannot be exceeded.

Thus, the central agent always benefits more than a peripheral agent for n > 9.
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3.5 Ex-post Information Structure Preferences

Depending upon the realizations of µ and γ, agents may prefer no information disclosure ex-

post. We can say an agent prefers full information disclosure over no information disclosure if its

change in the utility function from information disclosure ∆ui(a, γ) > 0, upon realization of µ

and γ. We express ∆ui(a, γ) as following by removing the expectation operator in (3.6),

∆ui(a, γ) = (γ − µ)[H−11]i

(
(γ + µ)(−Hii[H

−11]i − 2
∑
j 6=i

Hij[H
−11]j) + 2γ

)
. (3.14)

We estimate (3.14) numerically via Monte Carlo simulation for homogeneous submodular (β < 0)

and supermodular (β > 0) games. In submodular games, agents’ actions are strategic substitutes,

i.e., when agent j increases its action agent i’s incentive to increase its action decreases ( ∂2ui
∂ai∂aj

<

0). In supermodular games, agents’ actions complement each other, i.e., when agent j increases its

action, agent i’s incentive to increase its action increases ( ∂2ui
∂ai∂aj

> 0)—see [35, Section 3]. The

Bertrand competition with payoffs in (3.1) is an example of a supermodular game.

We compute ∆ui(a, γ) for submodular and supermodular games in Figs. 3.3 and 3.4, respec-

tively. In particular, we generate µ values from ψ(µ0 = 1, 0.32), and γ values from ψ(µ, 0.12)

where ψ denotes the normal distribution. We estimate ∆ui(a, γ) for every combination of β and µ

value by averaging over realizations of γ.

In both types of games, the average change in utility function over realizations of µ is positive

indicating that information disclosure is preferable and confirming Proposition 12. The value of

information decreases on average for both central and peripheral agents in both types of games as

submodularity parameter 1
|β| increases. This is reasonable because the dependence of the payoffs

on others’ actions reduces as |β| decreases. In both of the games, central agent prefers no infor-

mation disclosure ex-post when realized µ is less than µ0 and the absolute value of submodularity

parameter is low (Figs. 3.3(a) and 3.4(a)). Otherwise, the central agent prefers full information

disclosure ex-post. This indicates a risk-averse central agent may prefer no information disclosure

ex-ante. For instance, a multinational company in a Bertrand competition with local firms may
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(a) Central agent (b) Peripheral agent

Figure 3.3: Ex-post information preference estimates of central and peripheral agents in submod-
ular games on a star network with n = 4. Lines show seven realized µ values generated from
µ ∼ ψ(µ0 = 1, 0.32). Dashed lines indicate µ < µ0. Solid lines indicate µ > µ0. For each µ
and β value, 1000 γ values are generated from ψ(µ, 0.12). We estimate ∆ui(a, γ) by averaging the
values over γ realizations. For large β values, full information disclosure may not be preferred by
the central agent when µ < µ0 (©2022 IEEE).

(a) Central agent (b) Peripheral agent

Figure 3.4: Ex-post information preference estimates of central and peripheral agents in super-
modular games on a star network with n = 4. Lines show seven realized µ values generated from
µ ∼ ψ(µ0 = 1, 0.32). Dashed lines indicate µ < µ0. Solid lines indicate µ > µ0. For each µ
and β value, 1000 γ values are generated from ψ(µ, 0.12). We estimate ∆ui(a, γ) by averaging the
values over γ realizations. For large |β| values, full information disclosure is not preferred by the
central agent when µ < µ0 (©2022 IEEE).
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prefer that information remains hidden when the production costs are high and competition is stiff.

In contrast, a peripheral agent always prefers full information disclosure regardless of the realized

µ values (Figs. 3.3(b) and 3.4(b)).
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4. ROBUST OPTIMIZATION APPROACH TO INFORMATION DESIGN IN

LINEAR-QUADRATIC-GAUSSIAN GAMES

4.1 Introduction

Information design rests on the strong assumption that the designer knows agents’ utilities in

full. This assumption ignores the privacy of and possible errors in utilities. To overcome this issue

in various settings, this chapter develops robust optimization models to perform information design

when there are uncertain utilities. Robust optimization models are built for utilities under ellipsoid,

interval and conic perturbations.

Robust optimality conditions for full and no information disclosures are derived for LQG

games under ellipsoid perturbations. Numerical studies analyze the relation between optimal in-

formation structure and the level of uncertainty for LQG games under ellipsoid perturbations with

welfare design objective. The results in this chapter appear in [41].

4.2 Generic Robust Information Design Problem

An incomplete information game involves a set of n players belonging to the setN := {1, . . . , n},

each of which selects actions ai ∈ Ai to maximize the expectation of its individual payoff function

uθi (a, γ) where a ≡ (ai)i∈N ∈ A is the action profile, γ ≡ (γi)i∈N ∈ Γ is the payoff state vector,

and θ ∈ Θ is a payoff parameter. Players know the payoff parameter θ, but they do not know the

payoff state γ. Player i forms expectation about the payoff state γ based on the prior on the state

ψ and its signal/type ωi ∈ Ωi.

The information designer does not know the payoff parameter θ, but is more informed about

the payoff state γ than the players. Specifically, given θ an information designer aims to maximize

a system level objective function f θ : A×Γ→ R, e.g., social welfare, that depends on the actions

of the players (a), and the state realization (γ) by deciding on an information structure ζ belonging

to the set of probability distributions over the signals Z . That is, ζ is a conditional probability on

the signals {ωi}i∈N given the payoff state vector γ, i.e., (P (ω
∣∣ γ)) belonging to the space of all
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such conditional probability distributions Z . The information structure determines the fidelity of

signals {ωi}i∈N that will be revealed to the players given a realization of the payoff state vector γ.

We represent the incomplete information game given θ ∈ Θ and a prior ψ on the state γ by the

tuple Gθ := {N ,A,Γ, {uθi }i∈N , {ωi}i∈N , ζ, ψ}. We use GΘ := {Gθ : θ ∈ Θ} to refer to the set of

possible games.

A strategy of player i maps each possible value of the private signal ωi ∈ Ωi to an action

si(ωi) ∈ Ai, i.e., si : Ωi → Ai. A strategy profile s = (si)i∈N is a Bayesian Nash equilibrium

(BNE) with information structure ζ of the game Gθ, if it satisfies the following inequality

Eζ [u
θ
i (si(ωi), s−i, γ)|ωi] ≥ Eζ [uθi (a′i, s−i, γ)|ωi], (4.1)

for all a′i ∈ Ai, ωi ∈ Ωi, i ∈ N , and s−i = (sj(ωj))j 6=i is the equilibrium strategy of all the players

except player i, and Eζ is the expectation operator with respect to the distribution ζ and the prior

ψ. We denote the set of BNE strategies in a game Gθ with BNE(Gθ).

In this paper, the designer does not make any distributional assumptions on the payoff param-

eter θ, and aims to select the best signal distribution for the worst case scenario, i.e.,

min
θ∈Θ

max
ζ∈Z

Eζ [f
θ(s, γ)] s.t. s ∈ BNE(Gθ). (4.2)

The outer optimization problem in (4.2) evaluates to the designer’s objective under the worst possi-

ble payoff parameter realization, and BNE actions given a signal distribution ζ . The designer wants

to do the best it can to maximize the system objective assuming the realization of the worst-case

scenario.

We denote the optimal solution to (4.2) by ζ∗. Given the robust optimal information structure

ζ∗, the information design timeline is given in the following:

1. Designer notifies players about ζ∗

2. Realization of the payoff parameter θ and payoff state γ, and with subsequent draw of signals

wi, ∀i ∈ N from ζ∗(ω, γ)
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3. Players take action according to BNE strategies under information structure ζ∗ in game Gθ.

The generic robust information design problem in (4.2) is not tractable in general. We also note

that the information design problem is not a Stackelberg (leader-follower) game, since the players

are not strategic against the designer’s strategy and objective [1].

In the following we make assumptions on the payoff structure and the signal distribution to

attain a tractable formulation.

4.2.1 Linear-Quadratic-Gaussian (LQG) Games

An LQG game corresponds to an incomplete information game with quadratic payoff functions

and Gaussian information structures. Specifically, each player i ∈ N decides on his action ai ∈

Ai ≡ R according to a payoff function

uθi (a, γ) = −Hi,ia
2
i − 2

∑
j 6=i

Hi,jaiaj + 2γiai + di(a−i, γ) (4.3)

where A ≡ Rn and Γ ≡ Rn that is a quadratic function of player i’s action, and is bilinear with

respect to ai and aj , and ai and γ. The term di(a−i, γ) is an arbitrary function of the opponents’

actions a−i ≡ (aj)j 6=i and payoff state γ. We collect the coefficients of the quadratic payoff

function in a matrix H = [Hi,j]n×n. The payoff parameter θ, unknown to the designer in (4.3), is

the coefficients matrix H , i.e. θ ≡ H .

Payoff state γ follows a Gaussian distribution, i.e., γ ∼ ψ(µ,Σ) where ψ is a multivariate

normal probability distribution with mean µ ∈ Rn and covariance matrix Σ. Each player i ∈ N

receives a private signal ωi ∈ Ωi ≡ R. We define the information structure of the game ζ(ω|γ)

as the conditional distribution of ω ≡ (ωi)i∈N given γ. We assume the joint distribution over the

random variables (ω, γ) is Gaussian; thus, ζ is a Gaussian distribution.

Next we state the main structural assumption on the unknown payoff parameter H of the LQG

game.
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Assumption 1. We assume the following affine perturbation structure on the payoff matrix H ,

Hi,j = [H0]i,j + vi,jεi,j, ∀i, j ∈ N (4.4)

where H0 is the nominal payoff matrix, vi,j ∈ R, is an element of the unknown perturbation matrix

v ∈ Rn×n which covers a given closed and convex perturbation set V such that 0 ∈ V and εi,j is

the constant shift.

We note that while the actual payoff parametersH are unknown to the designer, they are known

by the players. The designer only knows the nominal payoff matrix H0, potentially obtained from

past data.

4.2.2 From signal to action distributions

We will reformulate the problem in (4.2) in order to obtain a tractable formulation. The re-

formulation will first entail changing the design variables from signals to actions. We define the

distribution of actions induced by the information structure under a given strategy profile as fol-

lows.

Definition 8 (Action distribution). An action distribution is the probability of observing an action

profile a ∈ A when players follow a strategy profile s under ζ , which can be computed as

φ(a|γ) =
∑

ω:s(ω)=a

ζ(ω|γ). (4.5)

According to the definition, the probability of observing the action profile a is the sum of

the conditional probabilities of all signal profiles ω under ζ that induce action profile a given the

strategy profile s.

Definition 9 (Equilibrium action distribution set). The set of equilibrium action distributions in-

duced by BNE strategies under an information structure ζ ∈ Z for game Gθ is

Cθ(ζ) = {φ : φ satisfies (4.5) for s ∈ BNE(Gθ) given ζ ∈ Z}. (4.6)
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We begin by stating the BNE condition in (4.1) by a set of linear constraints for LQG games

given the payoff matrix H .

Lemma 1. Define the covariance matrix X ∈ P 2n
+ as follows:

X :=

 var(a) cov(a, γ)

cov(γ, a) var(γ)

 . (4.7)

For a given payoff matrix H such that H +HT is positive definite, the BNE condition in (4.1) can

be written as the following set of equality constraints,

∑
j∈N

Hi,jXi,j −Xi,n+i = 0, i ∈ N (4.8)

where Xi,j = cov(ai, aj) for i ≤ n, and j ≤ n, and Xi,n+i = cov(ai, γi).

Proof. See Appendix C.1.

The condition in (4.8) ensures that X is a Bayesian correlated equilibrium (BCE)—see [3] for

a definition. When θ is known, we can state the designer’s maximization problem in (4.2) as the

determination of an action distribution subject to the constraint that actions belong to Cθ(ζ), i.e.,

maxφ∈Cθ(ζ) Eφ[f(a, γ)]. Indeed, we can state the design problem as a SDP using X in (4.7) as the

decision variable, subject to the BCE constraints in (4.8)—see [21]. In such a case, the players

would not benefit from deviating from the recommended actions because they would satisfy the

obedience condition as per the revelation principle, see [3, Proposition 1]. However, this principle

does not apply in the setting where θ is chosen adversarially. Next, we address this issue in the

finite scenario and ellipsoid, interval and conic perturbations settings.

4.3 Robust Information Design under Finite Scenarios

In the following, we express the robust information design problem under a finite set of scenar-

ios as a mixed integer SDP.
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Theorem 3 (Finite-case). Suppose Assumption 1 holds, and assume the design objective coeffi-

cients do not depend on H . Let the design objective f θ(a, γ) be quadratic in its arguments with

the coefficients stored in matrix F ∈ R2n×2n, i.e., f θ(a, γ) = [a γ]TF [a γ]. Consider a finite per-

turbation vector with C scenarios, and let vc ∈ Rn×n refer to perturbation vectors corresponding

to one of the scenarios c ∈ C = {1, . . . , C}. We relax the robust information design problem in

(4.2) as the following mixed-integer SDP:

min
yc∈{0,1},c∈C

max
X∈P 2n

+

F •X (4.9)

s.t.
C∑
c=1

yc = 1, (4.10)

yc(R0,l •X +
∑

(i,j)∈Yl

[vc]i,jεi,jXi,j) = 0, ∀l ∈ N , c ∈ C (4.11)

Mk,l •X = cov(γk, γl), ∀k, l ∈ N with k ≤ l, (4.12)

where X is defined in (4.7), R0,l ∈ P 2n, l ∈ N is given as:

[R0,l]i,j =



[H0]l,l if i = j = l,

[H0]l,j/2 if i = l, 1 ≤ j ≤ n, j 6= l,

−1/2 if i = l, j = n+ l,

[H0]i,l/2 if j = l, 1 ≤ i ≤ n, i 6= l

−1/2 if j = l, i = n+ l,

0 otherwise,

(4.13)
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and Mk,l ∈ P 2n is given as:

[Mk,l]i,j =



1/2 if k < l, i = n+ k, j = n+ l,

1/2 if k < l, i = n+ l, j = n+ k,

1 if k = l, i = n+ k, j = n+ l,

0 otherwise,

(4.14)

and Yl refer to the elements of the perturbation vector with

Yl := {{i, j} : i = j = l ∨ i = l, 1 ≤ j ≤ n, j 6= l ∨ j = l, 1 ≤ i ≤ n, i 6= l}. (4.15)

Proof. We can express the expected objective using the Frobenius product as follows,

Eφ[f(a, γ)] = Eφ
[ [
aT , γT

]
F

a
γ

 ] = F •X (4.16)

where F =

[F ]1,1 [F ]1,2

[F ]1,2 [F ]2,2

 ∈ P 2n, and note that [F ]i,j denotes the i, jth n× n submatrix.

Let c∗ be the worst-case scenario from the perspective of the designer. The designer chooses

X∗ that maximizes its objective F • X subject to rational behavior of players in the worst case

scenario. As per Lemma 1, we have

∑
j∈N

Hi,jX
∗
i,j −X∗i,n+i = 0, ∀i ∈ N (4.17)

∑
j∈N

([H0]i,j + [vc∗ ]i,jεi,j)X
∗
i,j −X∗i,n+i = 0,∀i ∈ N . (4.18)

We rewrite (4.18) in terms of matrices R0,l,∀l ∈ N as in (4.13) and X as in (4.7) to obtain (4.11).

Minimization over yc, {1, 2, .., C} enforces the constraint c∗ among the set of constraints in (4.11)

to be selected. Constraint (4.12) corresponds to the assignment of var(γ) to [X]2,2. Constraint
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(4.12) is not affected by perturbations to H.

According to the formulation in (4.9)-(4.12), the solution entails finding the covariance matrix

X that maximizes F•X for the worst possible scenario. That is, the solutionX does not necessarily

satisfy the BCE constraints for every scenario. We note that an alternative equivalent formulation

can entail C covariance matrices, i.e., X1, . . . , XC , and leave out the integer variables {yc}c=1,...,C .

We use the scenario-based formulation (4.9)-(4.12) to motivate the tractable robust design for-

mulations under ellipsoid uncertainty set. For illustration purposes, consider C = 2 scenarios.

Assume c = 1 is the worst case scenario, i.e., y1 = 1 and y2 = 0. In such a case, X∗ will sat-

isfy the BNE condition (4.18) for c = 1 exactly, while the BCE condition will be approximately

satisfied for c = 2. Specifically, we have

∑
j∈N

([H0]i,j + [v2]i,jεi,j)X
∗
i,j −X∗i,n+i =

∑
j∈N

([H0]i,j + [v2]i,jεi,j + [v1]i,jεi,j − [v1]i,jεi,j)X
∗
i,j −X∗i,n+i (4.19)

=
∑
j∈N

([v2]i,jεi,j − [v1]i,jεi,j)X
∗
i,j > 0, ∀i ∈ N . (4.20)

We can interpret this relation as the optimal solution X∗ being an approximate BNE for the good

scenario c = 2.

Remark 4. The standard robust optimization problem in (4.2) requires thatX∗ is feasible for every

θ ∈ Θ. The formulation for this problem would entail getting rid of the integer variables from the

formulation in (4.9)-(4.12), i.e., yc = 1 for each (4.11) and removing (4.10). This formulation may

restrict the feasibility region drastically, as is often the issue with robust optimization problems

with equality constraints [51].

48



4.4 Robust Welfare Maximizing Information Design under Ellipsoid Uncertainty

We assume the following ellipsoidal structural form for the perturbation vectors in (4.4) that

affect the BCE constraints, for l ∈ N ,

Vl = Ballρ = {v : ||vl||2 ≤ ρ, vl = {[vl]i,j}{i,j}∈Yl}, (4.21)

where Yl is given in (4.15). Under convex continuous uncertainty sets as the one above, the number

of scenarios C is infinite. Thus, the formulation in Theorem 3 where we enforce BCE constraints

in (4.8) exactly for the worst-case scenario, and annul the other cases using integer variables may

not be viable. Moreover, enforcing the BCE constraints in (4.8) for all perturbations v ∈ Vl may

limit the solution space drastically [51]. Instead, here we relax the BCE constraint in (4.8) as

follows

|
∑
j∈N

Hi,jXi,j −Xi,n+i| ≤ α, i ∈ N (4.22)

where α ≥ 0 is a finite constant. This relaxation guarantees an approximate tractable solution

to the information design problem in which the designer aims to maximize social welfare under

ellipsoidal perturbations.

Theorem 4. Consider the social welfare in (2.1) as the designer’s objective f θ(a, γ). Assume H

is given by (4.4) and perturbation vectors vl,∀l ∈ N exhibit ellipsoid uncertainty (4.21). Then the

robust information design problem in (1.2) can be approximated by the following convex problem
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for α ≥ 0:

max
X∈P 2n

+ ,t
t (4.23)

s.t. F0 •X −
n2ρ

2n− 1

√√√√ n∑
i=1

n∑
j=1

(εi,jXi,j)2 ≥ t, (4.24)

R0,l •X + ρ

√ ∑
(i,j)∈Yl

(εi,jXi,j)2 ≤ α, ∀l ∈ N (4.25)

−R0,l •X + ρ

√ ∑
(i,j)∈Yl

(εi,jXi,j)2 ≤ α, ∀l ∈ N (4.26)

Mk,l •X = cov(γk, γl), ∀k, l ∈ N with k ≤ l, (4.27)

where F0 =

−H0 I

I O

 ∈ R2n×2n, and the matrices R0,l and Mk,l are as defined in (4.13) and

(4.14), respectively. Moreover, the optimal objective value for (1.2) is equal to (4.23)-(4.27) with

α = 0.

Proof. We can express the social welfare objective in (5) in the form F •X with F =

−H I

I O

–

see [24]. We start by writing the social welfare objective as a constraint F •X ≥ t under ellipsoid

uncertainty:

F •X = F0 •X +
n∑
i=1

n∑
j=1

vi,jεi,jXi,j ≥ t (4.28)

where t represents the designer’s objective value. In the above summation, all elements of the

perturbation matrix v are involved. Given the assumption of ellipsoid perturbations in (4.21), it

is guaranteed that v is within a ball of radius n2ρ
2n−1

, i.e. v ∈Ball n2ρ
2n−1

. We can write (4.28) as a

minimization problem that aims to find the worst case scenario:

min
||v||≤ n2ρ

2n−1

n∑
i=1

n∑
j=1

vi,jεi,jXi,j ≤ F0 •X − t (4.29)

Solution to (4.29) is the tractable robust constraint given in (4.24) [51, Section 1.3]. Next, we
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substitute H in (4.4) into (4.22) to get,

|
∑
j∈N

([H0]ij + vijεij)Xi,j −Xi,n+i| ≤ α ∀i ∈ N , v ∈ Vl (4.30)

We can rewrite (4.30) in terms of matrices R0,l,∀l ∈ N and X as in (4.7):

|R0,l •X +
∑

(i,j)∈Yl

vi,jεi,jXi,j| ≤ α, ∀l ∈ N . (4.31)

We split the absolute value into two linear constraints (positive and negative sides). When we write

the maximization problem over the uncertain constraint (4.31) for the positive side, we have

max
||vl||≤ρ

∑
(i,j)∈Yl

vi,jεi,jXi,j ≤ α−R0,l •X, ∀l ∈ N (4.32)

where Yl is given by (4.15). Solution to (4.32) give us the tractable constraint (4.25) [51, Section

1.3]. Repeating the same steps for the negative side yields (4.26).

Constraint (4.27) enforces assignment of known covariance matrix of payoff states, cov(γ) to

the respective place in X .

When α = 0, the formulation in (4.23)-(4.27) is equivalent to (4.2). It is easy to check that no

information disclosure Xno =

O O

O var(γ)

 is a feasible solution even when α = 0—see [21] for

the derivation of Xno derivation. As noted, this formulation may be too restrictive. When α > 0,

the incentive compatibility of the solution X∗ is compromised, but the set of feasible solutions

increases.

Given an optimal solution X∗, the designer can draw actions from a Gaussian distribution with

mean 0 and covariance matrix X∗, and send these values to the players as signals.
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4.5 Robust Information Design under Interval and Conic Uncertanties

We consider robust information design problem (4.2) under interval and conic uncertainties.

We develop robust convex programs for the information design problem (4.2). In this section, we

assume that F does not depend upon H. The extension to that case is similar to welfare maximiza-

tion objective in ellipsoid uncertainty (see Theorem 4).

4.5.1 Robust Model under Interval Uncertainty

Interval uncertainty is defined by the box perturbation sets Vl,∀l ∈ N :

Vl = Box1 ≡ {vl ∈ R2n−1 : ||vl||∞ ≤ 1}, ∀l ∈ N . (4.33)

Theorem 5. Assume H is given by (4.4) and perturbation vectors vl,∀l ∈ N exhibit interval

uncertainty (4.33) over constraint (4.22) and F does not depend on H. Then robust information

design model is given as the following convex program:

max
X∈P 2n

+

F •X (4.34)

s.t. R0,l •X +
∑

(i,j)∈Yl

ui,j ≤ α, ∀l ∈ N (4.35)

−R0,l •X +
∑

(i,j)∈Yl

uij ≤ α, ∀l ∈ N (4.36)

− ui,j ≤ εi,jXi,j ≤ ui,j, ∀i, j ∈ N (4.37)

Mk,l •X = cov(γk, γl), ∀k, l ∈ N with k ≤ l, (4.38)

where ui,j,∀i, j ∈ N denotes bounds on εi,jXi,j,∀i, j ∈ N .

Proof. The proof is the same as the proof of Theorem 4 up to (4.31). Now we write the perturbation

maximization problem over the uncertain constraint (4.31) under interval uncertainty (see Example
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1.3.2 in [51]):

max
−1≤vij≤1, ∀(i,j)∈Yl

∑
(i,j)∈Yl

vi,jεi,jXi,j ≤ α−R0,l •X, ∀l ∈ N (4.39)

max
−1≤vij≤1, ∀(i,j)∈Yl

∑
(i,j)∈Yl

vijεijXij ≤ α +R0,l •X, ∀l ∈ N (4.40)

Solutions to (4.39)-(4.40) give us the robust constraints which include absolute value terms:

R0,l •X +
∑

(i,j)∈Yl

|εi,jXi,j| ≤ α (4.41)

−R0,l •X +
∑

(i,j)∈Yl

|εijXij| ≤ α (4.42)

We linearize absolute value terms in (4.41)-(4.42) and obtain tractable robust constraints (4.35)-

(4.37).

4.5.2 Robust Model under Conic Uncertainty

Consider the perturbation sets Vl,∀l ∈ N given by a conic representation:

Vl = {vl ∈ R2n−1 : ∃πl ∈ RK : Plvl +Qlπl + pl ∈K l}, ∀l ∈ N (4.43)

whereK l is a closed convex pointed cone in RN with a nonempty interior, Pl, Ql are given matrices

and pl is a given vector. We assume that this representation is strictly feasible if K l is not a

polyhedral cone:

∃(vl, πl) : Plvl +Qlπl + pl ∈ intK l. (4.44)

Theorem 6. Assume H is given by (4.4) and perturbation vectors vl,∀l ∈ N exhibit conic uncer-

tainty (4.43) over constraint (4.22) and F does not depend on H . Then robust information design
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model is given as the following convex program:

max
X∈P 2n

+ ,yl∈RN
F •X (4.45)

s.t. pTl yl +R0,l •X ≤ α, ∀l ∈ N (4.46)

pTl yl −R0,l •X ≤ α, ∀l ∈ N (4.47)

QT
l yl = 0, ∀l ∈ N (4.48)

(P T
l yl)i,j + εi,jXi,j = 0, ∀(i, j) ∈ Yl,∀l ∈ N (4.49)

yl ∈K l∗, ∀l ∈ N (4.50)

Mk,l •X = cov(γk, γl), ∀k, l ∈ N with k ≤ l, (4.51)

whereK l∗ = {yl : yTl z ∈K l} is the cone dual toK l.

Proof. The proof is the same as the proof of Theorem 4 up to (4.31). We will show the equivalency

of (4.31) to (4.46)-(4.50) in robust sense i.e under worst case perturbations (see Theorem 1.3.4

in [51]).

We start with the claim that X is feasible to (4.31). This is equivalent to following:

sup
vl∈Vl
{R0,l •X − α +

∑
(ij)∈Yl

vi,jεi,jXi,j} ≤ 0, ∀l ∈ N (4.52)

sup
vl∈Vl
{−R0,l •X − α +

∑
(ij)∈Yl

vijεijXij} ≤ 0, ∀l ∈ N (4.53)

We take unaffected terms in (4.52)-(4.53) out of supremum and put to right hand side:

sup
vl∈Vl
{
∑

(ij)∈Yl

vi,jεi,jXi,j} ≤ −R0,l •X + α, ∀l ∈ N (4.54)

sup
vl∈Vl
{
∑

(ij)∈Yl

vijεijXij} ≤ R0,l •X + α, ∀l ∈ N (4.55)
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We substitute conic uncertainty set definition (4.43) into (4.54)-(4.55) for Vl,∀l ∈ N :

max
vl,κl
{
∑

(i,j)∈Yl

vi,jεi,jXi,j : Plvl +Qlκl + pl ∈K l} ≤ −R0,l •X + α, ∀l ∈ N (4.56)

max
vl,θl
{
∑

(ij)∈Yl

vijεijXij : Plvl +Qlθl + pl ∈K l} ≤ R0,l •X + α, ∀l ∈ N (4.57)

Conditions (4.56)-(4.57) indicate that X is feasible for (4.31) if and only if the optimal values in

the following conic perturbation maximization problems

max
vl,κl
{
∑

(i,j)∈Yl

vi,jεi,jXi,j : Plvl +Qlκl + pl ∈K l}, ∀l ∈ N (4.58)

max
vl,θl
{
∑

(ij)∈Yl

vijεijXij : Plvl +Qlθl + pl ∈K l}, ∀l ∈ N (4.59)

are less than or equal to −R0,l •X +α for (4.58) and R0,l •X +α for (4.59). We need to consider

two cases: K is not a polyhedral cone (4.44) andK is a polyhedral cone.

When K is not a polyhedral cone, conic programs (4.58)-(4.59) are strictly feasible. Strong

duality property of conic duality theorem states that if either primal or dual problems is strictly

feasible and bounded, then the other problem is solvable and optimal value of primal objective is

equal to optimal value of dual objective (Theorem A.2.1, [51]).

Strict feasibility of primal problem is satisfied because K is not a polyhedral cone. Bound

property of primal problems is evident in (4.56)-(4.57) . Therefore, via strong duality property of

conic duality, the optimal value in (4.58) is ≤ −R0,l • X + α and the optimal value in (4.59) is

≤ R0,l •X + α if and only if the optimal value in the conic dual program to the (4.58)-(4.59)

min
yl
{pTl yl : QT

l yl = 0, (P T
l yl)i,j + εi,jXi,j = 0, yl ∈K l∗,∀(i, j) ∈ Yl,∀l ∈ N} (4.60)

is obtained and the optimal value is less than or equal to min{R0,l •X + α,−R0,l •X + α}.

WhenK is a polyhedral cone, LP duality theorem leads us to the same conclusion: the optimal

value in (4.58) is≤ −R0,l•X+α and the optimal value in (4.59) is≤ R0,l•X+α if and only if the
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optimal value in (4.60) is attained and is less than or equal to min{R0,l•X+α,−R0,l•X+α}.

We continue with an example for conic perturbation sets.

Example 5 (Budgeted Uncertainty). We consider the case where Vl is the intersection of ||·||∞−

and ||·||1− balls:

Vl = {vl ∈ R2n−1 : ||v||∞ ≤ 1, ||v||1 ≤ ρ}, ∀l ∈ N (4.61)

where ρ, 1 ≤ ρ ≤ 2n− 1, is a given uncertainty budget.

We now write (4.61) in terms of (4.43):

Vl = {vl ∈ R2n−1 : Pl,1vl + pl,1 ∈K l,1, Pl,2vl + pl,2 ∈K l,2}, ∀l ∈ N . (4.62)

where

• Pl,1vl ≡ [vl, 0], pl,1 = [02n−1×1, 1] and K l,1 = {[νl; tl] ∈ R2n−1 × R : tl ≥ ||νl||∞}, from

whichK l,1,∗ = {νl; tl] ∈ R2n−1 × R : tl ≥ ||νl||1}, ∀l ∈ N

• Pl,2vl ≡ [vl, 0], pl,2 = [02n−1×1, ρ] and K l,2 = K l,1,∗ = {νl; tl] ∈ R2n−1 × R : tl ≥ ||νl||1}

from whichK l,2,∗ = K l,1, ∀l ∈ N .

Setting y1
l = [νl, τ1,l], y

2
l = [wl, τ2,l] with one-dimensional τl and 2n−1-dimensional νl, wl, sys-

tem (4.46)-(4.50) transforms into the following system of constraints in variables τ1, τ2, ν, w,X :

τ1,l + ρτ2,l +R0,l •X ≤ α, ∀l ∈ N (4.63)

τ1,l + ρτ2,l −R0,l •X ≤ α, ∀l ∈ N (4.64)

(νl + wl)i,j = −εi,jXi,j, ∀i, j ∈ N , ∀l ∈ N (4.65)

||νl||1 ≤ τ1,l, ∀l ∈ N (4.66)

||wl||∞ ≤ τ2,l, ∀l ∈ N (4.67)

56



We can eliminate τ variables to obtain a simpler model in variables X,w, ν :

∑
(i,j)∈Yl

|[νl]i,j|+ ρ max
(i,j)∈Yl

|[wl]ij|+R0,l •X ≤ α, ∀l ∈ N (4.68)

∑
(i,j)∈Yl

|[νl]ij|+ ρ max
(ij)∈Yl

|[wl]ij| −R0,l •X ≤ α, ∀l ∈ N (4.69)

[νl]i,j + [wl]i,j = −εi,jXi,j, ∀i, j ∈ N . (4.70)

4.6 Optimality conditions for no and full information disclosures

We aim to obtain optimality conditions for canonical information structures under ellipsoid

perturbations (4.21). We consider two canonical solutions to the information design problem,

namely no and full information disclosure (see [21]). The equilibrium action profile under no

information disclosure is a = H−1E[γ] . The corresponding solution matrix X and the associated

design objective value is given as follows,

X =

O O

O var(γ)

 and F •X = 0. (4.71)

Solution matrix X for no information disclosure given in (4.71) is positive semi-definite and it

satisfies the BCE condition in (4.25)-(4.26) at all times because when we substitute X in (4.71)

into (4.25)-(4.26), we obtain 0 ≤ α which is always true. We have (4.27) satisfied, because

[X]2,2 = var(γ). Thus, no information disclosure is a feasible solution.

The equilibrium action profile under full information disclosure is a = H−1γ. The correspond-

ing solution matrix X and the design objective value is given as follows,

X =

H−1var(γ)(H−1)T H−1var(γ)

var(γ)(H−1)T var(γ)

 and F •X = FH • var(γ) (4.72)
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where

FH = (H−1)T ([F ]1,1 + [F ]1,2H +HT [F ]2,1)H−1, (4.73)

and [F ]i,j denotes the i, jth n × n submatrix. We also define the perturbed version of FH as

following:

[F0]H = (H−1
0 )T ([F0]1,1 + [F0]1,2H0 +HT

0 [F0]2,1)H−1
0 . (4.74)

X in (4.72) is positive semi-definite. We also have that for large enough α, X in (4.72) will

satisfy (4.25)-(4.26). In the following analysis, we assume that we have a large enough α to ensure

feasibility of full information disclosure.

4.6.1 Optimality of no information disclosure under general information structures

We consider general information structures, in which each player can receive private signals

generated from different signal fidelities.

Theorem 7. Let F0 and F be symmetric matrices with dimensions 2n× 2n for which we have

[F0]1,1 = η �H0 and [F ]1,1 = η �H (4.75)

where � is the Hadamard product, η is a n × n constant coefficient matrix and H is as given in

(4.4) under ellipsoid perturbations (4.21). Let [λ0]j and [λ]j denote the jth largest eigenvalues of

F0 and F , respectively. If F0 is negative definite with the largest eigenvalue

|[λ0]2n| ≥ max(ηDεD, ηOεO)
n2ρ

2n− 1
, (4.76)

where we define ηD := maxi=j(|ηi,j|), ηO := maxi 6=j(|ηi,j|), εD := maxi=j(εi,j), and εO :=

maxi 6=j(εi,j), then no information disclosure is an optimal solution to the SDP defined by (4.75)

and (4.25)-(4.27) jointly.
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Proof. Consider Frobenius matrix norm ||·||F of the difference between F0 and F ,

||F0 − F ||F ≤

(∑
i

(ηDεDvi,i)
2 + 2

∑
i

∑
j

(ηOεOvi,j)
2

) 1
2

(4.77)

≤

(
max((ηDεD)2, (ηOεO)2)(

∑
i

v2
i,i + 2

∑
i

∑
j

v2
i,j)

) 1
2

(4.78)

≤ max(ηDεD, ηOεO)
n2ρ

2n− 1
. (4.79)

We obtain (4.78) by taking the largest multiplier among ηDεD and ηOεO. We attain (4.79) by using

the ellipsoid perturbations in (4.21). By Lemma 4 in Appendix C and (4.79), we have that

max
j
|[λ]j − [λ0]j| ≤ max(ηDεD, ηOεO)

n2ρ

2n− 1
. (4.80)

Given that all the eigenvalues of F0 are negative, (4.76) and (4.80) together imply that [λ]i ≤

0, i = 1, .., 2n. This means F is negative definite. Thus, no information disclosure is an optimal

solution that achieves the objective value zero.

In the above result, we assume that the payoff matrix and perturbations only affect F11, as is

the case in social welfare maximization (2.3). Given this assumption, we show that no information

disclosure is the optimal solution to the program given by (4.75) and (4.25)-(4.27) jointly, if the

perturbed objective coefficients matrix F0 is symmetric negative definite with the magnitude of the

largest eigenvalue ([λ0]2n < 0) greater than a constant (max(ηDεD, ηP εO) n2ρ
2n−1

), that depends on

the perturbation set radius ρ and the maximum of the product between the payoff coefficients and

off-diagonal or diagonal shifts. That is, if the perturbed coefficient matrix is negative definite with

sufficiently negative eigenvalue, then no information disclosure is guaranteed to be optimal. We

note that there can be cases where no information disclosure is optimal even when the conditions

of Theorem 7 are not satisfied. Moreover, if the perturbation radius of H is large enough, F0 can

be indefinite or positive definite even if F is negative definite. In these cases, one needs to solve

the SDP given by (4.75) and (4.25)-(4.27) jointly to determine the optimal information structure.
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4.6.2 Public information structures

We restrict our attention to public information structures where each player receives the same

signal. In this context, Proposition 5 provides conditions for the optimality of no and full infor-

mation disclosures based on the known perturbed matrix [F0]H . In the following results, we use

Proposition 5 to find sufficient conditions for the optimality of no and full information disclosures

based on the perturbed matrix F0 and the perturbation set structure.

Theorem 8. Let F0 and F be symmetric matrices with dimensions 2n × 2n for which (4.75)

is valid. Let [λ0]j and [λ]j denote the jth largest eigenvalues of [F0]1,1 + 2ςH0, ς ∈ [0, 1] and

[F ]1,1 + 2ςH, ς ∈ [0, 1], respectively. Assume [F0]1,2 = [F0]2,1 = [F ]1,2 = [F ]2,1 = ςI for

ς ∈ [0, 1]. If [F0]1,1 is negative definite and the largest eigenvalue of [F0]1,1 + 2ςH0 is bounded as

follows

|[λ0]2n| ≥ max((ηD + 2ς)εD, (ηO + 2ς)εO)
n2ρ

2n− 1
, λ ∈ [0, 1], (4.81)

where εO, εD and ηO, ηD are as defined in Theorem 7, then no information disclosure is the optimal

solution to the SDP defined by (4.75) and (4.25)-(4.27) jointly under public information structures.

Proof. We start with (4.73) to calculate [F ]H and [F0]H . We plug ςI, ς ∈ [0, 1] into (4.73) for

[F0]1,2, [F0]2,1, [F ]1,2 and [F ]2,1. Then,

[F ]H = (H−1)T ([F ]1,1 + 2ςH)H−1 and [F0]H = (H−1
0 )T ([F0]1,1 + 2ςH0)H−1

0 . (4.82)
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It is enough to show that [F ]1,1 + 2ςH is negative definite. By (4.75) and (4.4),

||[F0]1,1 + 2ςH0 − [F ]1,1 − 2ςH||F = ||[F0]1,1 − [F ]1,1 + 2ςvε||F (4.83)

≤

(∑
i

((ηD + 2ς)εDvi,i)
2 + 2

∑
i

∑
j

((ηO + 2ς)εOvi,j)
2

) 1
2

(4.84)

≤

(
max((ηD + 2ς)εD)2, ((ηO + 2ς)εO)2)(

∑
i

v2
i,i + 2

∑
i

∑
j

v2
i,j)

) 1
2

(4.85)

≤ max((ηD + 2ς)εD, (ηO + 2ς)εO)
n2ρ

2n− 1
. (4.86)

We obtain (4.85) by taking the largest multiplier among ηDεD and ηOεO. We attain (4.86) by using

the ellipsoid perturbations in (4.21). By Lemma 4 in Appendix C and (4.86), we have that

max
j
|[λ]j − [λ0]j| ≤ max((ηD + 2ς)εD, (ηO + 2ς)εO)

n2ρ

2n− 1
. (4.87)

Given that all eigenvalues of [F0]1,1 + 2ςH0 are negative, (4.81) and (4.87) together imply that

[λ]i ≤ 0, i = 1, .., 2n. This means [F ]1,1 + 2ςH is negative definite, and no information disclosure

is optimal via Proposition 5.

We continue with a result identifying when full information disclosure is optimal under public

information structures.

Theorem 9. Let F0 and F be 2n× 2n symmetric matrices for which (4.75) is valid. Let [λ0]j and

[λ]j denote the jth largest eigenvalues of [F0]1,1 + 2ςH0 and [F ]1,1 + 2ςH , respectively for some

ς ∈ [0, 1]. Assume [F0]1,2 = [F0]2,1 = [F ]1,2 = [F ]2,1 = ςI for ς ∈ [0, 1]. If [F0]11 is positive

definite, and the smallest eigenvalue of [F0]1,1 + 2ςH0 is such that

[λ0]1 ≥ max((ηD + 2ς)εD, (ηO + 2ς)εO)
n2ρ

2n− 1
, ς ∈ [0, 1] (4.88)

where εO, εD and ηO, ηD are as defined in Theorem 7, then full information disclosure is the optimal

solution to the SDP defined by (4.75) and (4.25)-(4.27) jointly under public information structures.
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Proof. The proof is similar to Theorem 8’s proof, and thus is omitted.

When there is no uncertainty on H , the perturbation set radius ρ is zero. In such a case,

Theorem 8 and 9 recover the result in Proposition 5. However, if there is uncertainty regarding

H , then (4.81) and (4.88) are sufficient conditions to claim no and full information disclosure,

respectively, are optimal solutions in conjunction with definiteness conditions on F0. In general,

adding additional constraints on a feasible set makes an optimal solution worse or does not improve

it. This implies that we cannot prove the optimality of no or full information disclosure for some

objective functions for which they can be deemed optimal if there was no uncertainty.

We note that the coefficients of the social welfare objective in (2.3) satisfy the assumed structure

in Theorems 8 and 9 with ς = 1, and [F0]1,1 = −H0. So, we can check the eigenvalues of

[F0]1,1 + 2ςH0 = H0 to determine the optimality of no or full information disclosure in welfare

maximization. In the following, we obtain the conditions that the payoff coefficients in Cournot

competition and the beauty contest games need to satisfy.

Example 6 (Welfare maximization during Cournot competition). We seek the condition that guar-

antees full information disclosure is the robust optimal public information structure under welfare

maximization for the Cournot competition with payoffs in (1.4). For n players, withHi,i = 1 for all

i, andHi,j = %
2$

for all i 6= j, we have the following eigenvalue repeated n−1 times [λ]j = 1− %
2$

for j = 1, . . . , n, and [λ]n = (n− 1) %
2$

+ 1. The minimum eigenvalue of H is equal to 1− %
2$
. We

also know ηD = ηO = 1 for the welfare maximization objective. Then the condition (4.88) reduces

to the following condition on the payoff constants in (1.4),

%

2$
≤ 1− 3n2ρ

2n− 1
max(εD, εO). (4.89)

Since the payoff constants % and$ are positive, the optimality condition in (4.89) will only be true

for small enough n and ρ given % and $.

Example 7 (Welfare maximization during the Beauty contest). We look for the condition that

guarantees full information disclosure is the robust optimal public information structure under
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welfare maximization for the beauty contest with payoffs in (1.5). For n players, with Hi,i = 1

for all i and Hi,j = −ξ
n−1

for all i 6= j, we have the following smallest eigenvalue [λ]1 = 1 − ξ,

and the largest eigenvalue repeated n − 1 times [λ]j = 1 + ξ
n−1

for j = 2, . . . , n. We also know

ηD = ηO = 1 for the welfare maximization objective. Then the condition (4.88) reduces to the

following condition on the payoff constants in (1.5),

ξ ≤ 1− 3n2ρ

2n− 1
max(εD, εO). (4.90)

Cournot competition is a submodular game (Hi,j = %
2$
≥ 0) while the Beauty contest is

a supermodular game (Hi,j = −ξ
n−1
≤ 0). The direction of the competition, i.e., Hi,j renders

different optimality conditions for full information disclosure given by (4.89) and (4.90). We can

consider (4.89) as 1 − Hi,j ≥ 3n2ρ
2n−1

max(εD, εO) whereas (4.90) has the form 1 + (n − 1)Hi,j ≥
3n2ρ
2n−1

max(εD, εO). Therefore when |Hi,j| = | %2$ | = |
−ξ
n−1
|, optimality condition for full information

disclosure is more restrictive under the beauty contest than under the Cournot competition.

4.7 Numerical Experiments

We consider a designer that wants to maximize the social welfare of n = 5 players. The

designer knows the perturbed payoff coefficients as follows

[H0]i,j =


5 if i = j; i, j ∈ {1, 2, .., 5}

−1 if i 6= j; i, j ∈ {1, 2, .., 5}.
(4.91)

The variance of the unknown payoff state γ is given as follows

var(γ)i,j =


5, if i = j; i, j ∈ {1, 2, ., 5}

0.5, if i 6= j; i, j ∈ {1, 2, ., 5}.
(4.92)

We consider ellipsoid perturbations with ρ ∈ {0.7, 1, 1.3, .., 3.4} and let α = 0.1. Given the setup,

we solve the robust convex program (4.23)-(4.27) in order to obtain the robust optimal information
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design Xoptimal.

We analyze the effects of constant shifts εi,j by assuming the diagonal elements and off-

diagonal elements of shift matrix are homogeneous, i.e., εi,i = ε1 and εi,j = ε2 for all i, j =

1, . . . , n for constants ε1 and ε2.

In order to systematically analyze the effects of the shifts, we fix the off-diagonal shifts to a

small value ε2 = 0.001, and vary the diagonal shift ε1 ∈ {0.03, 0.04, 0.05, .., 0.12}. Fig. 4.1 (a)

shows that as the uncertainty ball radius ρ and diagonal shift ε1 increases, the optimal information

structure remains a partial information disclosure but gets closer to the no information disclosure.

Fig. 4.1 (b) confirms the same result by also showing a decrease in optimal social welfare under

increasing uncertainty.

(a) ||Xoptimal −Xno||F (b) Optimal objective value

Figure 4.1: Contour plots of (a) normalized Frobenius matrix norm distance ||Xoptimal −Xno||F
between optimal covariance matrix and no information disclosure covariance matrix and (b) op-
timal objective value with respect to uncertainty ball radius ρ and diagonal shift ε1 to coefficient
matrix H under a symmetric supermodular game with social welfare objective. Optimal solution,
that is partial information disclosure, approaches to no information disclosure as ρ and ε1 increase.

Next, we consider the same setup but with a small diagonal shift ε1 = 0.001 and larger off-

diagonal shifts ε2 ∈ {0.03, 0.04, 0.05, .., 0.12}. As expected, we see a similar trend in fig. 4.2(a)

to fig. 4.1 (a) where the optimal information structure approaches no information disclosure as the
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uncertainty in the system increases. This trend toward no information disclosure is faster when ε2

increases than when ε1 increases. This is expected as the off-diagonal shifts appear in more of the

terms in (4.23)-(4.27).

(a) ||Xoptimal −Xno||F (b) Optimal objective value

Figure 4.2: Contour plots of (a) normalized Frobenius matrix norm distance ||Xoptimal −Xno||F
between optimal covariance matrix and no information disclosure covariance matrix and (b) opti-
mal objective value with respect to uncertainty ball radius ρ and off-diagonal shift ε2 to coefficient
matrix H under a symmetric supermodular game with social welfare objective. Optimal solution,
that is partial information disclosure, approaches to no information disclosure as ρ and ε2 increase.

We can discuss figures 4.1 and 4.2 in terms of the Beauty contest which is a supermodular

game. If we consider the common goods in the Beauty contest game as a stock, we see that a

social welfare maximizing information designer i.e the company whose stock is traded releases

less information about stock price γ when uncertainty about payoff coefficient matrix H increases.
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5. SUMMARY AND CONCLUSIONS

5.1 Summary

The overarching theme in the dissertation was the determination of optimal information struc-

tures for a given objective under equilibrium constraints. The focus was on linear-quadratic-

Gaussian games due to tractability purposes.

Chapter 2 laid out analytical and numerical study of the welfare and agreement maximization

in the various contexts of homogeneous games, public information structures and common payoff

states. Second chapter is concluded with a study of joint maximization problem of the welfare and

agreement.

In Chapter 3, reverse perspective, that is agents’ point of view, is analyzed in comparison

to designer perspective which is welfare maximization. The relation between agents’ preference

towards an information structure and their positions in the network is studied. Numerical studies

are conducted to understand distributional robustness of agents’ preferences.

In Chapter 4, the main topic was perturbation aware information design. Private nature of

agents’ information is encoded via partially known utilities under uncertainty sets over utility pa-

rameters. The designer’s problem under uncertain utilities is addressed with the development of

tractable robust optimization models from intractable semi-infinite programs under ellipsoid, in-

terval and general cone uncertainties. Numerical studies are carried out to understand the effects

of uncertainty level on optimal information structure and optimal welfare.

5.2 Conclusions

The context of research was information design in linear-quadratic-Gaussian games. Analysis

of optimal information structures for the objectives of maximizing social welfare and agreement

formed the first part of research. It was found out that full information disclosure optimizes social

welfare under three configurations: common payoffs, homogeneous games, and public information

structures. The study showed that agreement maximizing information structure is no information
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disclosure. In homogeneous games, a bound on the strategic interaction coefficient is determined

which signifies where full information disclosure becomes sub-optimal in the contexts of public

information structures and common payoff states.

Moreover, agents’ preferences toward given information structures was analyzed in the context

of LQG network games. A full information preference condition based on network information

is provided. Using this general result, it is found that all agents in a star network prefer full

information over no information. A peripheral agent benefits more than the central agent from

full information disclosure if competition is strong and the number of agents is small. The value

of information for the central agent decreases if strategic interaction coefficient increases. In line

with this result, ex-post benefit estimates shows that a risk averse central agent could prefer no

information disclosure ex-ante. In contrast, full information disclosure is distributionally robust

against uncertain payoff mean for peripheral agents.

Furthermore, robust information design problem under perturbed utilities is considered. For

finite scenarios case, a mixed integer SDP is developed. In the harder case of continuous per-

turbation sets, semi-infinite nature of problem is overcome through the development of convex

programs in the cases of ellipsoid, interval and general cone perturbation sets. Incorporation of

perturbed objectives into convex programs as tractable constraints is demonstrated on social wel-

fare objective under ellipsoid perturbations. Perturbation aware full and no information structure

optimality conditions are developed and discussed through the beauty contest and Cournot com-

petition games. Numerical studies showed that increasing uncertainty moves optimal information

structure towards no information disclosure and reduces optimal welfare.
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APPENDIX A

APPENDIX TO MAXIMIZING SOCIAL WELFARE AND AGREEMENT VIA

INFORMATION DESIGN IN LINEAR-QUADRATIC-GAUSSIAN GAMES

A.1 Coefficients matrix of the agreement objective

Lemma 2 (Agreement Objective). The expected value of f(a, γ) for (1.16) can be written as

FC •X where FC is given in (2.3).

Proof. By expanding and regrouping the terms in (2.2),

E[−
n∑
i=1

(ai − ā)2] =
n∑
i=1

1− n
n

E[a2
i ] +

2

n

n∑
i=1

n∑
j=1

E[aiaj]. (A.1)

Because E[ai] is constant for all i ∈ N , we can write (A.1) as FC • X using the definition of

var(a).

A.2 Proof of Theorem 1

We verify that the full information disclosure solution satisfies the KKT conditions. We denote

the dual variables associated with constraints (1.17), (1.18) andX ∈ P 2n
+ by ν ∈ Rn, µ ∈ Rn(n+1)/2

and Γ, respectively. Primal feasibility conditions in (1.17)-(1.18) are satisfied by full information

disclosure. Next we respectively state the rest of the KKT conditions, i.e., dual feasibility, first

order optimality and complementary slackness condition,

Γ ∈ P 2n
+ , (A.2)

FW +
n∑
k=1

νkRk +
n∑
k=1

k∑
l=1

µ(n−1)k+lMk,l + Γ = 0, (A.3)

X • Γ = 0. (A.4)
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LetX ∈ P 2n
+ denote the full information disclosure solution as given in (1.20) to the social welfare

maximization problem (2.1) with coefficients FW . We check whether the above KKT conditions

are satisfied by X . We look for a uniform dual variable ν, i.e., νk = ν,∀ k ∈ N where ν ∈

R, that satisfies (A.3). We define Ξ = −
∑n

k=1

∑k
l=1 µ(n−1)k+lMk,l in matrix form and assume

Ξ = µI, µ > 0 i.e uniformity over µ̄(n−1)k+1. We can express the dual variable Γ using (A.3) and

substituting in (2.3) for FW ,

Γ =

(1− ν)H (ν
2
− 1)I

(ν
2
− 1)I Ξ.

 (A.5)

We use Schur complement to analyze the positive definiteness of Γ in (A.5). A strict version

of dual feasibility condition Γ � 0 is satisfied if and only if Ξ is positive definite and Schur

complement

Γ/Ξ = (1− λ)H −
(ν

2
− 1)2I

µ
. (A.6)

of block matrix Ξ of matrix Γ is positive definite. Sum of each row of Γ/Ξ is equal to (1 − ν) −

(ν
2
− 1)2/µ+ (n− 1)(1− ν)h. This is the first eigenvalue of Γ/Ξ. Rest of the eigenvalues of Γ/Ξ

are equal to (1− ν)(1 + h)− (ν/2−1)2

µ
. We have all of the eigenvalues of Γ/Ξ positive and Ξ � 0,

when

µ > max{
(ν

2
− 1)2

(1− ν)(1 + h)
, 0}. (A.7)

Hence, if µ satisfies (A.7), then Γ is positive definite.

Next, we show that there exists ν ∈ R and µ as in (A.7) satisfying (A.4). We can express the

inverse of H in (2.7) as follows for n ≥ 3

H−1
i,j =


(n−2)h+1

−(n−1)h2+(n−2)h+1
if i = j; i, j ∈ N

−h
−(n−1)h2+(n−2)h+1

if i 6= j; i, j ∈ N
(A.8)

When X = X is given by (1.20) and Γ is as in (A.5), we obtain the following equation by com-
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puting the Frobenius product terms within (A.4) corresponding to each of the four sub-matrices,

X • Γ = n2(1− ν)2 ∗ (τ + hφ) + 2
(ν − 2)[((2− n)h− 1)τ + hφ]

(n− 1)h2 − (n− 2)h− 1
+ µτ = 0, (A.9)

where we let τ = tr(var(γ)) and φ = 2
∑n

i=1

∑
j∈N\{i} cov(γi, γj) to simplify the exposition.

Next we show that there exists at least one real root of (A.9) ν ∈ R and µ as in (A.7). If there

is a real root, there exists a ν ∈ R satisfying the KKT conditions.

First, we consider the case µ =
( ν
2
−1)2

(1−ν)(1+h)
+ ε, ε > 0. In this case, (A.9) becomes

X • Γ = n2(1− ν)2(τ + hφ) + (
(ν

2
− 1)2

(1− ν)(1 + h)
+ ε)τ +

2(ν − 2)[((2− n)h− 1)τ + hφ]

(n− 1)h2 − (n− 2)h− 1
= 0.

(A.10)

When we equalize the denominators, (A.10) becomes a cubic equation in ν. The cubic equation

with real coefficients always has at least one real root.

Secondly, we consider the case µ = ε, ε > 0. In this case, (A.9) is a quadratic function of ν

aν2 + bν + c = 0, (A.11)

where we define the constants a , b and c as

a = n2(τ + hφ) (A.12)

b = −2n2(τ + hφ) + 2
((2− n)h− 1)τ + hφ

(n− 1)h2 + (2− n)h− 1
(A.13)

c = n2(τ + hφ) +
−4((2− n)h− 1)τ − 4hφ

(n− 1)h2 + (2− n)h− 1
+ ετ (A.14)

We want to show b2−4ac > 0, so that there exists a real root. Note that (n−1)h2−(n−2)h−1 < 0

for −1
n−1

< h < 1.

Also, by our assumption τ ≥ hφ. We can deduce that the discriminant (b2 − 4ac) is positive,
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i.e.,

b2 − 4ac =
8n2(τ + hφ)[((2− n)h− 1)τ + hφ]

(n− 1)h2 + (2− n)h− 1
+ 4

(
((2− n)h− 1)τ + hφ

(n− 1)h2 + (2− n)h− 1

)2

+ n2(τ + hφ)ετ > 0. (A.15)

Therefore the roots of (A.11) are real. We also need to show at least one of the roots of (A.11) (νr)

is such that νr > 1 so that µ = ε as per (A.7). We consider the larger root,

νr = 1− ((2− n)h− 1)τ + hφ

n2(τ + hφ)[(n− 1)h2 + (2− n)h− 1]
+

√
b2 − 4ac

2a
> 1. (A.16)

We know a > 0. Also, it can be deduced that the third term in (A.16) is greater than the absolute

value of the second term in (A.16). Thus, νr > 1.
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APPENDIX B

APPENDIX TO INFORMATION PREFERENCES OF INDIVIDUAL

AGENTS IN LINEAR-QUADRATIC-GAUSSIAN NETWORK GAMES

B.1 BNE under Public Information and Common Value Payoff States

The expectation of the payoff state γ given two Gaussian signals (prior µ and public signal ω̄)

as follows

E[γ|ωi = ω̄] = (1− ξi)µ+ ξiω̄ (B.1)

where ξi(ν) = var(γ)
var(γ)+var(ω̄)

, and ν is the covariance matrix of the distribution ζ(ω|γ).

Lemma 3. Bayesian Nash equilibrium of LQG network game given public signals ω̄ and common

payoff state γ can be represented by the following function

a∗i (ω̄) = E[γ|ω̄][H−11]i ∀i ∈ N , (B.2)

where 1 ∈ Rn is a vector of ones, and [·]i indicates the ith element of a vector.

Proof. First order condition of the expectation of the utility function in (1.3) with respect to ai

yields

∂E[ui|{ωi = ω̄}]
∂ai

= −Hiia
∗
i (ω̄)−

∑
i 6=j

HijE[a∗j |{ωi = ω̄}] + E[γ|{ωi = ω̄}] = 0,∀i ∈ N (B.3)

We incorporate (B.1) into (B.3):

Hiia
∗
i (ω̄) = −

∑
i 6=j

HijE[a∗j |ω̄] + (1− ξi)µ+ ξiω̄ = 0,∀i ∈ N (B.4)

We assume agent i ∈ N ’s strategy is linear in its information a∗i (ω̄) = αi1ω̄+αi2µwith coefficients
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αi1 and αi2. We substitute linear actions in (B.4) to get

Hii(αi1ω̄ + αi2µ) = −
∑
i 6=j

Hij(αj1ω̄ + αj2µ) + (1− ξi)µ+ ξiω̄ = 0,∀i ∈ N (B.5)

We solve for the action coefficients α1 = [α11, . . . , αn1] ∈ Rn and α2 = [α12, . . . , αn2] ∈ Rn :

α1 = 1 − α2 = H−1ξ where ξ = [ξ1, . . . , ξn] and ξi is as in (B.1). Thus, a∗(ω̄) = H−1ξ1ω̄ +

(I−H−1)ξ1µ where I is the identity matrix. (B.2) follows from rearranging terms in a∗ and using

(B.1).
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APPENDIX C

APPENDIX TO ROBUST OPTIMIZATION APPROACH TO

INFORMATION DESIGN IN LINEAR-QUADRATIC-GAUSSIAN GAMES

C.1 Proof of Lemma 1

We start with writing the first order condition equivalent to (4.1) for a given θ ≡ H:

Eζ

[
∂

∂ai
uθi (s(ω), γ)|ωi

]
= −2Hi,isi(ωi)− 2

∑
i 6=j

Hi,jEζ [sj|ωi] + 2Eζ [γi|ωi] = 0 (C.1)

We solve (C.1) for the best response si(ωi), ∀i ∈ N :

Hi,isi(ωi) = −
∑
i 6=j

Hi,jEζ [sj|ωi] + Eζ [γi|ωi], i ∈ N (C.2)

We look for an equilibrium strategy of the form given below:

si(ωi) = āi + bTi (ωi − Eζ [ωi]), ∀i ∈ N , (C.3)

where āi and bTi ,∀i ∈ N are constants and constant vectors, respectively. We plug (C.3) into the

first order condition (C.2):

∑
j∈N

Hi,jE[āj + bTj (ωj − Eζ [ωj])|ωi = ω̄i] = E[γi|ωi = ω̄i],∀ω̄i ∈ R, i ∈ N .

Via conditional expectation rule over multivariate normal distribution, we obtain following:

∑
j∈N

Hi,j(b
T
j cov(ωj, ωi)var(ωi)

−1(ω̄i − Eζ [ωi]) + āj)

= E[γi] + cov(ωi, γi)
Tvar(ωi)

−1(ω̄i − Eζ [ωi]),∀ω̄i ∈ R, i ∈ N . (C.4)
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Vectors bi, i ∈ N and constants āi, i ∈ N are determined by following set equations when we

separate (C.4) into respective parts: For i ∈ N

∑
j∈N

Hi,jb
T
j cov(ωj, ωi)var(ωi)

−1 = cov(ωi, γi)
Tvar(ωi)

−1, (C.5)

∑
j∈N

Hi,j āj = E[γi], ∀i ∈ N . (C.6)

We divide both sides of (C.5) by var(ωi)−1 and obtain the following set of equations:

∑
j∈N

Hi,jb
T
j cov(ωj, ωi) = cov(ωi, γi), ∀i ∈ N (C.7)

For scalar signals ωi ∈ R, if we let bi = 1 and āi = Eζ [ωi] for i ∈ N , then we have ai = ωi by

(C.3). Moreover, the set of equations in (C.7) is equivalent to (4.8).

C.2 Eigenvalue Bounds for Symmetric Matrices

Lemma 4 (Theorem 8.1, [52]). Let G = [gi,j] and Ĝ = [ĝi,j] be two symmetric matrices with

eigenvalues [λ]1 ≤ [λ]2 ≤ · · ·[λ]n and [λ̂]1 ≤ [λ̂]2 ≤ · · ·[λ̂]n, respectively. Then,

max
j

∣∣∣[λj]− [λ̂]j

∣∣∣ ≤ ∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣
F

(C.8)

where ||·||F denotes Frobenius matrix norm.
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