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ABSTRACT 

Mechanical wave transmission through a material interacts with the propagation of 

mechanical discontinuity in the material. Machine learning can be used to monitor the propagation 

of embedded discontinuities by analyzing the resultant waveforms recorded by a multipoint sensor 

system placed on the surface of the material. Our study accomplishes a first-of-its-kind monitoring 

of mechanical discontinuity propagation by using data-driven model to process the multipoint 

waveform measurements resulting from a single impulse source. While conventional data-driven 

methods, especially supervised learning, rely primarily on statistical correlation/association and 

lack domain knowledge and causality. The primary objective of this work is to discover new 

geophysical causal signatures relevant to the multipoint waveform measures caused by mechanical 

discontinuity propagation inside a solid material. The use of causal signatures also led to the 

development of a novel knowledge-driven model that creates a versatile and resilient data system 

for both linear and physical crack propagation samples. The newly discovered causal signatures 

confirm that the statistical correlations/associations and conventional feature rankings are not 

statistically significant indicators of causality. The new developments presented in this work, 

especially the causal-based knowledge-driven model, have both theoretical and practical 

implications that can improve fracture monitoring, prediction, and early warning. In near future, 

similar knowledge-driven approaches will gain traction in mainstream applications of data 

analytics to overcome the drawbacks of current machine learning approaches such as lack of 

generalizability and explainability.  
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CHAPTER I 

INTRODUCTION 

1.1 Mechanical Discontinuity  

The term “discontinuity” applies to any distinct break or interruption in the integrity of a 

material (ISRM, 1978). From a geophysical standpoint, discontinuity is a collective term that refers 

to mechanical separation or interface, such as joints, fractures, bedding planes, rock cleavage, 

foliation, faults and so on (Osogba et al., 2020). Discontinuities may appear in all sizes from as 

small as micro-cracks at centimeter scale to joints on the order of meters to faults on the scale of 

10's of meters to kilometers as shown in Figure 1-1 (Bakku, 2015). They are common geological 

phenomena with varying lengths, frequencies and orientations found in all types of rocks (igneous, 

sedimentary and metamorphic).  

 
Figure 1-1. Examples of rock with different scale mechanical discontinuities. a. well-developed 

joint sets on flagstones at St. Mary’s Chapel, Caithness, Scotland (Reprinted from Mike Norton); 

b. extensional fault around Moab fault, Utah, USA (Reprinted from Herve Conge); c. fractured 7 
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folded gyprock in the Permian, New Mexico, USA (Reprinted from James St. John); d. cracked 

rock sample (Reprinted from Kless Gyzen). 

 

Discontinuities play an essential role as a potential transport pathway and dramatically affect the 

material's bulk mechanical, physical, and chemical behavior (IIIman, 2014). In this study, we will refer to 

discontinuities as cracks/fractures. Many economically significant petroleum, geothermal, and water 

reservoirs form in fractured rocks. In petroleum field operations, fractures/discontinuities are often categorized 

as natural fractures, drilling-induced and hydraulic fractures induced by injection fluid. Proper 

characterization and understanding of fracture properties and their impact on various recovery mechanisms 

are essential at any reservoir development stage (Bogatkov & Babadagli, 2010). In this study, the following 

section mainly focus on various tools and techniques for detecting and characterizing natural fractures in the 

subsurface.  

 

1.2 Fracture Characterization Techniques and Tools 

 Subsurface characterization, fracture detection, petroleum exploration and drilling operation have 

always been challenges to petroleum engineering. Characterization of subsurface fractures is critical for 

understanding the overall reservoir performance, forecasting and optimizing fossil/geothermal energy 

production (Al-Bazzaz, et al., 2009; Ameen et al., 2012; Liu, et al., 2015). Subsurface discontinuities can 

generally categorize into three types: (1) large-scale discontinuity (e.g. fault) associated with surface-based 

low-frequency measurements, (2) intermediate-scale discontinuity (e.g. fracture) associated with surface-to-

borehole and borehole-to-borehole intermediate-frequency measurements, and (3) small-scale discontinuity 

(e.g. crack) associated with core-scale and microscale high-frequency measurements (Council, 1996). Many 

measurement techniques are available for describing mechanical discontinuities at different scales.  

 Outcrops allow detailed fracture surveys from vast and inaccessible areas by visual 

observation (Olariu et al., 2008; Casini et al., 2016). Although precise, this technique consists of 
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walking along faults, fractures, exposed contacts between formations, and other significant 

stratigraphic markers, is labor and time intensive and needs to be improved by the limited amount 

of data obtained (Maerten et al., 2001). A seismic survey is another critical technology to identify 

and study the naturally fractured reservoir from pre-stack and post-stack seismic data (Hart et al., 

2002; Bakku, 2015). However, seismic-based approaches are challenged in identifying small-scale 

and microfractures and are strongly influenced by the frequency band (Hu et al., 2022). 

Conventional or image logging is also applied to characterize beddings, joints, and faults from 

meter to kilometer scale (Khoshbakht et al., 2009; Aghli et al., 2016; Lai et al., 2017). 

Resistivity/dielectric imaging is another technique used to quantitate the discontinuities, such as 

bedding or fractures at centimeter to meter scale for the near-wellbore regions. Conventional 

logging techniques provide in-situ measurements of the formation at reservoir conditions. 

However, they are always affected by the wellbore condition and may not be the most suitable for 

reservoir evaluation (Martinez et al., 2002). Image-based interpretation as a new high-resolution 

approach is restricted and limited by the high cost and low availability of image data observed in 

less than ten per cent of all wells (Tokhmechi, 2009). The core study is the most common and 

intuitive method for identifying small-scale fractures in boreholes. The use of cores, on the other 

hand, is relatively expensive, and the recovery rate in the fracture zone is low. Characterizing 

fractured reservoirs in the subsurface poses many challenges: different mechanical properties of 

geological formations, complicated field operations and minimal, expensive subsurface data, while 

laboratory experiments are much more accessible and could be controlled and repeated (Kosari et 

al., 2015). 

In laboratory-scale experiments, non-destructive testing (NDT) identifies and characterizes 

damage or defects on the surface and within a material without cutting or altering the material 
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(Dwivedi et al., 2018). To date, numerous NDT techniques can be broadly categorized into five 

groups: 1) visual inspection (Adams, et al., 1978); 2) acoustic wave-based techniques (e.g. 

Acoustic Emission) and Ultrasonic testing (Scruby, 1987; Arumugam et al., 2011); 3) optical 

techniques (Gunasekaran et al., 1985), 4) imaging-based techniques (e.g. X-ray radiography) (Bull 

et al., 2013; Wu et al., 2017; Garcea et al., 2018); and 5) electromagnetic techniques (Wang et al., 

2020). The elastic waves obtained through the material are expected to offer potential advantages 

over conventional techniques for mechanical discontinuities detection (Ibrahim, 2014). In 

particular, direct NDT techniques such as ultrasonic inspections and acoustic emission have a long 

history of development and has been applied in numerous areas, including material sciences, 

medical sciences and engineering fields as excellent diagnostic tools for identifying microcracks 

(Carpinteri et al., 2007). Even though acoustic emission testing allows for real-time damage 

detection and localization, this NDT technique is still qualitative. It does not provide quantitative 

characteristics such as the dimensions of discontinuities. (Dong & Ansari, 2011; Duchene et al., 

2018; Du et al., 2020). Moreover, methods that probe deep into the subsurface using low-frequency 

waves cannot spatially resolve fracture locations (Council, 1996). On the other hand, ultrasonic-

wave testing operates in the reflection, transmission and backscattering of elastic waves in the 

material systems (Ibrahim, 2014). It keeps the transducer and receiver off the surface, which is 

particularly beneficial when complex geometries do not allow contact (Gholizadeh, 2016). 

From the upper literature analysis, most techniques are limited to expensive data 

acquisition and processing when mapping fractures at the needed scales and resolution. Machine 

learning (ML) is the application of algorithms, statistical methods, software, and computational 

systems to develop data-driven models that can perform specific tasks by learning from patterns 

and trends in real/simulated data to improve efficiency, efficacy, and productivity. ML algorithms 
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have been exploring, extracting, and recovering of subsurface energy resources, primarily in 

hydrocarbon E&P industry and potentially in geothermal energy. More ML studies have also been 

carried out to provide fast and accurate multiscale fracture modelling to improve the subsurface 

characterization of reservoirs. The following section briefly describes existing ML applications to 

build automation, intelligent and innovative systems to solve challenges faced by traditional 

fracture characterization and detection approaches.   

1.3 Fracture Characterization with Machine Learning   

With the development of computational power and big data technology, there has been a 

rapid increase in sensor deployment, data acquisition, data storage, and data processing for 

purposes geothermal/fossil energy development and exploration. This has promoted large-scale 

deployment of data-driven methods, ML and data analytics workflows to find and extract energy 

and material resources from the subsurface earth. Subsurface data ranges from nano-scale to 

kilometer-scale passive as well as active measurements in the form of physical fluid/solid samples, 

images, 3D scans, time-series data, waveforms, and depth-based multi-modal signals representing 

various physical phenomena, ranging from transport, chemical, mechanical, electrical, and thermal 

properties, to name a few. Integration of such varied data sources being acquired at varying scales, 

rates, resolutions, and volumes mandates robust ML methods to better characterize and engineer 

the subsurface earth.  

2D and 3D scanning seismic images interpretation is usually combined with ML algorithms 

to provide high-resolution structural models of the subsurface (Hale, 2012; Hale, 2013; Chehrazi 

et al., 2013; Xiong et al., 2018; Cunha et al., 2020). In particular, the artificial neural network 

(ANN) method has received the most attention in subsurface geological exploration. The biggest 

challenge is the computational cost and errors when processing large amounts of digital seismic 
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data. Over recent years, conventional logging data has also been extensively integrated with ML 

to predict fractures in reservoir formations near the wellbore (Zazoun, 2013; Aleardi, 2015; 

Talebkeikhah et al., 2021). Although conventional petrophysical data can contribute to identifying 

fractured zones and even quantifying fracture density, those logs were only recorded at limited 

depth intervals along a good path due to the acquiring data budget. Additionally, different logging 

data exhibited distinctive responses with closed or open fractures (Talebkeikhah et al., 2021).   

Reid and Harrison first presented an automated tracing of rock mass discontinuities from 

digital images in 1997(Reid & Harrison, 1997). After that, imaging tools such as computed 

tomography (CT) scanning, scanning electron microscope (SEM), charge-coupled device (CCD) 

camera and X-ray imaging were widely used to investigate structural features of reservoir rocks 

directly. In recent years, advanced regression algorithms and deep-learning tools have been used 

to improve the identification and characterization of microfractures (Lemy & Hadjigeorgiou, 2003; 

Wang et al., 2007; Tian & Daigle, 2018). Application studies include automated fracture trace map 

extraction (Huang et al., 2018; Chen et al., 2021), fracture parameter (e.g. density, permeability) 

prediction (Rajabi et al., 2021), porous structure reconstruction (Wang et al., 2018; Kamrava et al., 

2019). However, imaging based-ML approach has two limitations. First, commonly occurring 

interfering objects such as shadows, stripes, scratches, materials filling fractures, and nearby 

vegetation on the rock images can be misclassified (Byun et al., 2021). Secondly, ML model 

performance could be more reliable for a small set of training images and is not guaranteed for 

new types of images.  

Fractures significantly impact wave propagation through a medium, so careful analysis of 

waves in fractured media must be considered, especially in fracture characterization (Cho et al., 

2018). Recent advances in machine learning methods have allowed us to process high-dimensional 



 

 

7 

 

 

 

wave datasets for enhanced detection of anomalies and processes with high granularity at multiple 

scales (Misra et al., 2020; Chakravarty et al., 2021). 

1.4 Organization of the Dissertation   

Very little was found in the literature on whether simulated wave data could help to 

understand the crack-bearing materials better. This study will apply supervised learning, such as 

classification and regression algorithms, for fracture network characterization combined with 

multipoint wave-transmission measurements around the materials. The laboratory experiments 

inspired our 2D numerical models of material containing discontinuities (Bhoumick et al., 2018), 

wherein multiple sonic sources and receivers are placed around porous cylindrical rock samples to 

quantify the distribution of embedded cracks. The following section will integrate wave 

simulation, ML and cutting-edge causal techniques to solve the following questions based on the 

claims mentioned earlier.  

Chapter 1 introduces discontinuity, different scales, and existing traditional approaches for 

fracture characterization. The motivations of the research and a brief literature review about 

machine learning applications with seismic interpretation, conventional logging, image-based and 

wave data in subsurface characterization are addressed. 

Chapter 2 focuses on characterizing discontinuity orientation, dispersion, and spatial 

distribution in formation by processing different-waves travel-time detected at multiple locations 

with different data-driven methods. The primary purpose of classification algorithms is to visualize 

the fracture system by learning from the current training travel time and evidence. The developed 

models can then be applied to any new travel time dataset to predict the crack information.  

Chapter 3 aims to visualize linear discontinuity propagation in 2D materials of any 

composition, velocity, density, porosity, and size. By examining the elastic waveforms captured 



 

 

8 

 

 

 

by a multipoint wave-transmission sensor system positioned on the material's surface, the 

suggested data-driven approach enables the tracking of embedded discontinuities across three key 

stages: initial, intermediate, and final. The optimized sensor system configuration is also carried 

out to maintain model accuracy with a limited number of sensors and their corresponding 

placements.  

Chapter 4 analyses the causal inference techniques to find the causal signatures of crack 

propagation (the cause) from a feature space, including time-domain and frequency-domain 

features captured from waveforms recorded by the nine sensors (the effect). By leveraging the 

causal signatures, the new proposed knowledge-driven model, which is guided by domain 

knowledge and causal inference, can provide robust and efficient insights for understanding crack 

propagation, as discussed in Chapter 5. Generating causal hypotheses in the statement is heavily 

reliant on domain knowledge. Finally, Chapter 6 summarizes the study's conclusions and outlines 

future research directions in this field. 
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CHAPTER II 

CHARACTERIZING OPEN OR CLOSED MECHANICAL DISCONTINUITIES NETWORK BASED 

ON MULTIPOINT, MULTIMODAL TRAVEL-TIME MEASUREMENTS WITH DATA-DRIVEN 

CLASSIFICATION 

2.1 Fracture Definition and Classification  

Fracture is any planar or sub-planar discontinuity that is narrow in one dimension compared to the 

other two and forms due to external (e.g. tectonic) or internal (thermal or residual) stress. Depending on the 

relative displacement of discontinuity surface, all tectonic fractures fall into two mechanical types; shear 

fractures and extension fractures. Different kinds of fractures exhibit different geometry, mechanical effects, 

and flow properties (Council, 1996). Shear fracture refers to the shear slip surface with relative parallel 

movements (e.g. faults). Extension fracture shows perpendicular displacement or in other words moving 

outward from the fracture plane (e.g. joints, fissures). Extension fracture, also known as open fracture, is 

commonly filled with gas, fluids, magma, and minerals. Mineral-filled extension fractures are named veins, 

while magma-filled fractures are assigned to dikes. The mineral fillings always have different permeabilities 

than the host rock, and vein bridges may keep fractures open. The mineral fillings can provide information 

about the properties of the fluids flowing in the fractures, the original porosity, and the physical and chemical 

conditions during precipitation (Council, 1996).  

Rock fracture mechanics is a promising outgrowth of rock mechanics and fracture 

mechanics which has been widely applied to hydraulic fracturing, mechanical fragmentation, rock 

slope analysis, geophysics, earthquake mechanics, hot dry rock geothermal energy extraction and 

 

* Part of this chapter is reprinted with permission from “Characterization of mechanical discontinuities 

based on data-driven classification of compressional-wave travel times.” By Hao Li, Copyright 2021 
International Journal of Rock Mechanics and Mining Sciences, 143, 104793. 



 

 

10 

 

 

 

many other practical problems (Chang et al., 2002). In the field of fracture mechanics, it is common 

to classify the crack planar into three different loading types termed mode I, II, and III as illustrated 

in Figure 2-1. The displacement mode on fractures is an essential parameter for rock fracture 

characterization. Mode I represents the tensile opening mode where tensile stress is normal to the 

plane of the crack. Mode II is sliding mode stands for the shear stress acting parallel to the plane 

of the crack.  Mode III also involves shear stress but tearing mode acting parallel to the crack plane. 

 
Figure 2-1. Fracture modes classified in study of fracture mechanics. Opening or tensile mode 

(Mode I), sliding mode (Mode II), and tearing mode (Mode III) (Reprinted from David S. 

Kammer, (Kammer, 2014)) 

 

Fractures combining these modes (mixed-mode fractures) are also possible (Ayatollahi & 

Aliha, 2007; Richard et al., 2014). While this alternate classification can be beneficial in analyzing 

fractures in engineering fields, it is restrictive in our applications because of the complex 

geological structures. Identifying the propagation directions and the mechanical condition at their 

fronts is often tricky. 

2.1.1 Discrete Fracture Network 

The broadly defined fractures seldom occur alone, instead, they occur as part of fracture 

zones or complex fracture networks. The discrete fracture network (DFN) provides a 

computational paradigm model for describing fracture population (and other discrete features such 

https://www.researchgate.net/profile/David-Kammer?_sg%5B0%5D=iw4HlL6W95HHWdq_6Uhhn5IgZU1Ovy1Z97gemAwfVMBEnuaxVANyh3Wp8G6IWwXJKQ0Ma8I.WUtODGu0uIIpvo8LRp72UvmKuc9snSXiClLj6xYJPzMn0eMmgZ9tnwk2l88v3EmjZ_c2uX6F2d9QOEomjZ_bVg&_sg%5B1%5D=80-p439vUbhXGosy_RIoto-e2riQlnYYf70SV0DjorE4C7EKA3lvMdRW9981U1KcZ-dQt0Y.veki9gsvacxUqS2ba1voeU5qqbFbkq3rODjtTMxRE38PaXhbUMa5hUZ0m_gJayolbHuh8mC3qtikc36AI8oRIw
https://www.researchgate.net/profile/David-Kammer?_sg%5B0%5D=iw4HlL6W95HHWdq_6Uhhn5IgZU1Ovy1Z97gemAwfVMBEnuaxVANyh3Wp8G6IWwXJKQ0Ma8I.WUtODGu0uIIpvo8LRp72UvmKuc9snSXiClLj6xYJPzMn0eMmgZ9tnwk2l88v3EmjZ_c2uX6F2d9QOEomjZ_bVg&_sg%5B1%5D=80-p439vUbhXGosy_RIoto-e2riQlnYYf70SV0DjorE4C7EKA3lvMdRW9981U1KcZ-dQt0Y.veki9gsvacxUqS2ba1voeU5qqbFbkq3rODjtTMxRE38PaXhbUMa5hUZ0m_gJayolbHuh8mC3qtikc36AI8oRIw
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as faults, breccia layers, and dikes) embedded inside a rock mass viewed as a set of discrete finite 

cracks (Dershowitz & Doe, 1988; Dershowitz et al., 2003). The technique was created and 

discussed by different studies from around 1980s for both 2D and 3D problems (Long et al., 1982; 

Robinson, 1984; Smith & Schwartz, 1984; Andersson & Dverstorp, 1987), and was continuously 

developed afterwards with many applications in reservoir engineering and other geoscience and 

geoengineering fields. By default, the discrete fractures are line segments in the 2D model or planar 

disks in the 3D model. The properties of individual or discrete fractures are explicitly described in 

a DFN model, which is distinguished from the matrix. The permeability of fractured zone is usually 

more extensive than matrix; as a result, the fluid will flow mainly through the fracture network 

when the fractures are connected (Li & Lee, 2008; Cottrell & Dershowitz, 2012). The construction 

of a spatial model that describes how fractures are distributed and the inter-relationship between 

fractures, stratigraphy, lithology, and structure is the key to DFN modelling (Li & Lee, 2008).  

2.2 Workflow 

2.2.1 Key Fundamental Questions to be Answered 

This chapter aims to answer the following questions:  

• How to characterize spatial properties of the crack clusters by jointly analyzing multipoint 

measurements of p-wave, s-wave, and pressure-diffusion travel times?  

• Can fracture characterization in crack-bearing materials be adequately achieved using 

wave arrival time from the fast-marching method? 

• How do different fracture types, such as open or closed fractures, impact the understanding 

of fracture clusters inside the material?  
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• Based on the experimental configurations, which sensor location is the most important for 

fracture characterization? How many sensors are required to ensure the workflow 

performance?  

 

2.2.2 Description of Workflow  

 

Wave propagation and diffusive transport phenomena could work as evidence of the 

mechanical discontinuities in the material. This work proposes a 2D crack-bearing material 

characterization approach by processing wave travel-time using different data-driven classification 

techniques for the low efficiency of the existing fracture simulation methods. We utilize 

classification models to predict discontinuities orientation, dispersion, and spatial distribution 

prediction by learning from the different-waves simulation models. Figure 2-2 shows the basic 

workflow for this study. A good starting point is accurately identifying the current fracture system created by 

a discrete fracture network (DFN) with open or closed discontinuities.  
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Figure 2-2. Workflow for crack-bearing materials characterization by learning patterns from 

simulated the propagation of the wave/diffusion front. 

 

The DFN model is established on understanding and representing the two factors: fracture 

system geometry and properties of individual fractures. Each crack-bearing model is embedded 

with 100 fractures of randomized length, orientation, and dispersion in this work. The crack cluster 

embedded in the crack-bearing material is generated using the DFN method. Crack length is 

selected randomly from an exponential distribution of 0.3mm - 3mm. Crack orientation is sampled 

randomly from the von Mises distribution, and crack locations are modelled using the intensity 

function. Then, use the fast-marching method (FMM) to simulate the propagation of the 

wave/diffusion front from a single source through the 2D crack-bearing material to multiple 

receivers placed around the crack-bearing material. The wave source and 28 sensors are around a 



 

 

14 

 

 

 

2D squared crack-bearing material. Next, simulated travel time can be divided into training and 

testing datasets. A training set is implemented in a dataset to build a model, while a test (or 

validation) set is to validate the built model. Notably, data points in the training set are excluded 

from the validation set. Our tests use 70% of the data as training data. Cross-validation approaches 

split the original training data into one or more training subsets to balance the response variances. 

The remaining 30% of data is working as testing data to evaluate the classification models. 

In the end, the data-driven classifiers are applied to explore the possibility of using 

wavefront travel time for characterizing specific statistical attributes of the crack-bearing systems. 

The existence of cracks influences the propagation of the waves/pressure diffusion, resulting in 

different arrival times. Supervised learning, like classification models, will learn the wave 

propagation patterns across the training samples to facilitate the characterization of crack-bearing 

materials.  

2.3 Simulation Model Description  

2.3.1 Fast Marching Method (FMM) for First Arrival Simulation   

FMM is a front-tracking method created by James Sethian for solving boundary value 

problems of the Eikonal equation (Sethian, 1996). Eikonal equation characterizes the evolution of 

a closed surface as a function of time with specified velocity on the given surface, expressed as:  

 𝐟(𝐱)|𝛁𝐮(𝐱)| = 𝟏  for 𝐱 ∈  𝛀 (1) 

 𝐮(𝐱) = 𝟎  for 𝐱 ∈  𝛛𝛀 (2) 

where u(x) represents the travel time of the front wave to reach the location x, f(x) stands 

for the speed at x known as velocity function, Ω is the open set with well-behaved boundary, ∂Ω 

is the boundary, and x is the coordinate system. As described, this equation is a non-linear partial 

differential equation to solve the wave propagation problems. In this paper, we use FMM to 
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approximate the solution to the Eikonal equation. Scikit-fmm is a python extension module that 

implements the fast-marching method used in our program. This package only works for regular 

Cartesian grids, but grid cells may have a different (uniform) length in each dimension. 

For pressure diffusion propagate front, the Eikonal equation is described based on 

diffusivity.  

 √𝛂(𝐱)|𝛁𝛕(𝐱)| = 𝟏 (3) 

where, the diffusivity 𝛂(𝐱) defined as:  

 𝛂(𝐱) =  
𝐤(𝐱)

𝛟(𝐱)𝛍𝐂𝐭 
 (4) 

Eq. 3 tells that the pressure “front” propagates in the reservoir with a velocity given by the square root of 

diffusivity. For homogeneous reservoirs,  𝛕(𝐱) is related to physical time through a simple expression of the 

form  t(x) =
τ(x)2 

c
 where the constant c depends on the specific flow geometry. For linear, radial, and 

spherical flows, c is 1⁄4 2, 4, and 6, respectively (Kim et al., 2009). 

2.3.2 Transmitter-receiver configuration 

The 2D numerical models of crack-bearing material implemented in this study are inspired 

by the laboratory experiments conducted at the Integrated Core Characterization Center 

(Bhoumick et al., 2018). In those studies, they placed multiple sonic wave sources and receivers 

around a cylindrical rock sample to comprehensively describe the inside fracture and its 

morphology (Bhoumick et al., 2018). The 2D simulation models and the position of the sonic 

sensors in this study are similar to the real-world experiment with 1 sonic source and 28 receivers. 

The wave source is in the middle of the left boundary. The 28 receivers are equally spaced on the 

remaining three boundaries. Each boundary has ten sensors. The travel time of the front wave from 

FMM simulation at 28 sensors will be recorded as the initial dataset for fracture characterization.  
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Designed squared material has a dimension of 150mm  150 mm discretized by 500  500 

grids. The majority of petroleum reserves in the world are found in ancient sandstones, which have 

porosity and permeability (Weimer & Tillman, 1982). Therefore, we assume the matrix is 

sandstone with 20% porosity. The velocity set of wave/diffusion is set based on the behavior of 

the porous sandstone physical ground. The present chapter aims to learn more about the fracture 

system using P-wave, S-wave, and pressure diffusion propagating through sandstone samples. 

Without considering the water saturation and pressure effect in the field, we assume the 

compressional wave velocity is 3760 m/s. The shear wave velocity values in a porous material will 

always be less than the compressional wave, assumed as 2300 m/s in our case (Hamada & Joseph, 

2020). In our cases, the shear wave is assumed to be 2300m/s. Then, our approach draws on the 

solution to the diffusive-pressure equation that mimics pressure front propagation phenomena. 

Fracture systems embedded in the materials models is generated by DFN with different 

statistical parameters to create different groups of models. Each DFN model is embedded with 100 

fractures of randomized length, orientation, and dispersion, representing different fracture systems. 

This work has considered two different cracks; one type is designed as an open fracture with air. 

Another type is cemented fracture filled with 0% porosity limestone. Each crack length is 

randomly picked from an exponential distribution of 0.3mm-3mm. Crack orientation is sampled 

randomly with the Von Mises distribution. The Von Mises distribution, called the circular normal 

distribution, is a continuous probability distribution ranging from 0 to 2π (Mardia & Zemroch, 

1975). It is similar to the normal distribution, except coordinates are placed on a circular plane. 

The detailed information is explained in the following section 2.4.  
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2.3.3 Variable transport properties of mechanical discontinuity 

In physics, the transport phenomenon involves the movement of various entities, such as 

mass, momentum, or energy, through a medium, fluid, or concrete, under nonuniform conditions 

existing within the medium. The wave energy and pressure difference between the matrix and the 

mechanical discontinuities drives the transportation through pores media in our study. The travel 

time of the wavefront is expected to capture the character of the mechanical discontinuities. 

However, real-world rock discontinuities are more complicated to simulate. In this study, we use 

a simple numerical model that assumes the open cracks are filled with air; closed ones are 

cemented by 0% porosity limestone to generate the required travel-time dataset. 

In total, we generate multi-modal include compressional wave, shear wave and pressure 

diffusion to simulate the wave front arrival time. Longitudinal or compression waves are defined 

as waves where the particle motion is in the same direction in which the wave is propagating 

(Watson, 2015). For embedded open discontinuities, the compressional wave is traveling through 

the air. The travel time calculation uses 340 m/s as the fracture velocity, which has a large contrast 

compared to the matrix velocity of 3760 m/s. For cemented fractures, compression wave traveling 

faster in limestone than sandstone is 6860m/s.  

The shear and compressional waves respond differently to reservoir fluids and pressure 

(Zhang, 2019). The shear wave travels slower than P-wave because they do not change the volume 

of the material during propagation. An important distinguishing characteristic of an S-wave is its 

inability to propagate through fluid or gas because they cannot transmit the shear stress. In our 

experiments, the open discontinuities are filled with air that is not able to propagate S-wave. We 

set the S-wave velocity as a small value, 1m/s. However, S-wave travels around 4200m/s through 
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limestone for embedded closed discontinuities, which is about 1.6 times slower than compressional 

wave (Greenberg & Castana, 1992).   

Diffusion waves have high frequency-dependent attenuation and slow velocity of 

propagation (Silin et al., 2003). In fluid-saturated rocks, the pressure diffusion mechanism can 

explain the high attenuation of low-frequency signals (Silin et al., 2003). Diffusivity is an 

important parameter indicative of diffusion mobility. It described diffusion velocity related to 

porous media permeability, porosity, compressibility, and fluid viscosity as described in Eq.4. The 

main difference between fracture and matrix in that equation is permeability. For closed 

discontinuities, the crack permeability is lower than the matrix. On the contrary, open crack is 

more porous than the sandstone matrix. 

2.4 Description of DFN Model Experiments  

This study will include three different tasks with various 2D DFN model setup: (1) identify 

the crack dispersion with dominated orientation; (2) identify the dominant crack orientation with 

different fracture dispersion; (3) identify the crack spatial distribution. The numerical models for 

each task using various mechanical discontinuities systems. The orientation of 100 embedding 

fractures in the model are drawn from von Mises distribution with specified mode (µ) and 

dispersion (κ), on the interval [-π, π]. The von Mises distribution was proposed and named for 

Richard von Mises in 1918 (von Mises, 1918; von Mises, 1964).  Its probability density function 

is defined as:  

 p(θ) =  
1

2πI0(κ)
exp(κ cos(θ − μ)) (5) 

where θ  is the orientation samples, μ is the distribution location parameter and κ is shape 

parameter, and I0(κ) is the modified Bessel function of order 0. 
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 In(κ) =  
1

π
∫ exp(κcosθ) cos(nθ) dθ

π

0

  (6) 

In other words, the mode μ is the mean orientation of the distribution. In general, it can be any real 

number. κ can be better understand as the “concentration” which is reciprocal to crack dispersion. 

1

κ
 is comparable to the variance in normal distribution. High concentrations imply low variance 

and vice-versa. Values for κ must be non-negative real numbers. If κ =  0 , the distribution 

is uniform; if values for κ are large, the distribution becomes a normal distribution.  

2.4.1. Identification of Crack Dispersion   

The first task is the identification of crack dispersion. We built three crack-bearing models 

with distinct κ value around the dominant crack orientation set as vertical in our case. The 

simulation models are presented in Figure 2-3. The wave source is in the middle of the left 

boundary (Orange Spot in Figure 2-3), and the remaining three boundaries have 28 receives (Blue 

Square in Figure 2-3) equally located. When the dispersion factor is set to 0, the crack orientations 

are equally distributed in all directions. As a comparison, when dispersion factor is set to 1000, 

orientations are nearly aligned with the direction of the dominant orientation. For each case, 5000 

samples are generated for multiple front wave travel time simulation. The entire dataset comprises 

15,000 samples, such that each sample has 28 features and 1 target for only compressional wave. 

https://www.statisticshowto.com/probability-and-statistics/variance/
https://www.statisticshowto.com/real-valued-function/#reals
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/uniform-distribution/
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Figure 2-3. Experiment configuration for the identification of crack dispersion factor, κ. (a) First 

column is κ = 0, fracture orientation is totally random (b) κ = 500, orientation changing range is 

50 degree (c) κ = 1000, cracks are almost parallel to the dominant orientation which is vertical.   

 

Our input dataset is a large table with 28*3 columns representing different wave arrival 

time from different sensor records and the rows standing for the sample numbers. This table can 

be further simplified by feature engineering to avoid overfitting. The outputs are labeled as 0, 1, 

2, which stand for κ value equal to 0, 500, and 1000. In supervised learning, the target labels are 

known for the training dataset but not for the test.  Label not only has a meaning of describing the 

input but also the expecting output from the classifiers.  

2.4.2. Identification of Dominant Crack Orientation   

Task 2 and 3 design data-driven workflow to identify four dominant crack orientations of 

0° , 45° , 90° and 135° . This task contains 4 different types of crack clusters that differ in 

orientation with fixed dispersion around the dominant orientation. To compare the effects of 

dispersion on this task, we set one experiment at dispersion equal to 10, and another experiment at 



 

 

21 

 

 

 

dispersion equal to 50. Figure 2-4 shows the experimental configurations for different dominant 

crack orientations with dispersion factor. For each dominant orientation and dispersion factor 

combination, 5000 samples’ travel time is recorded as the model dataset. It took around 2 hours 

on a Dell workstation with a 3.5GHz Intel Xeon CPU and 32GB RAM. The front wave travel 

times at different sensors are features of a data-driven model. Four orientations are labeled as 0, 1, 

2, 3 as our targets. In other words, a target value of 0, 1, 2, and 3 represents crack orientation of 

0°, 45°, 90° and 135°. 

 
Figure 2-4. Experiment configuration for orientation identification with specific dispersion. The 

first row is κ = 10; The second row is κ = 50. Four columns represent different orientations, θ: 

(a) θ = 0o, (b) θ = 45o, (c) θ = 90o, (d) θ = 135o 

 

2.4.3. Identification of Crack Cluster Spatial Distribution   

The final task is to identify four spatial distribution types shows in Figure 2-5. The spatial 

distribution classification of mechanical discontinuities in the formation is creating using intensity 

functions.  
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Figure 2-5. Experiment configuration for four distinct spatial distribution classification include 

random intensity function, linear probability function, single gaussian function and double 

gaussian function. 

 

These functions describe the crack occurrence probability in the investigated material. In 

the spatial distribution classification, type 1 is a random distribution created using a constant 

intensity function, which means that cracks have an equal probability of occurring in the material. 

Type 2 is the linear distribution followed by the linear probability function that related to y axis: 

 𝛌(𝐱, 𝐲) = 𝐲  (7) 

In Figure 2-5, the upper plot in column (b) shows the possibility of crack acceptance increasing 

linearly from upper to lower boundary (color goes from blue to red in plot). Therefore, the cracks 

are more concentrated at the bottom part of the material.  

Then, gaussian function is applied on the crack-bearing material as intensity function:  

 𝛌(𝐱, 𝐲) = 𝐜 ∗ 𝐞𝐱𝐩(−𝐝∗(𝐱−𝐱𝐨)𝟐+(𝐲−𝐲𝐨)𝟐))
 (8) 

where 𝐱o and 𝐲𝐨 is the center of the Gaussian distribution both set to 250, d controls the variance 

of the distribution is set to 0.00005, and c controls the minimum value of the intensity function 
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equal to 1 in our case. The acceptance probability is high at the center of the crack-bearing material. 

When adding two Gaussian crack clusters in the material referred as the bimodal distribution. 

Similarly, the dataset contains 20,000 samples, with 4 targets stand for spatial distribution. 

2.4.4 Data description – P-wave, S-wave, Pressure Diffusion 

Data collection and preparation are the foundation step for the development of machine learning 

models. Data visualization is the graphical representation using charts, graphs, maps or even tables to see and 

understand trends, outliers, and patterns in data. Visualization plots can better support further formal 

statistical/machine learning tests by allowing researchers to interact with the data points directly without 

aggregating them.  

 
Figure 2-6. Compressional wave arrival time for four types of spatial distribution. x-axis is the 

sensor number, while y-axis is the wave arrival time in μs. 
 

In this study, our input data is the multimodal wave front arrival time recorded by sensors around the 

squared materials. Figure 2-6 is compressional wave arrival time for task 4 with four different intensity 



 

 

24 

 

 

 

functions from section 2.4.4. All the simulated arrival time in the plots is generated assuming closed fracture 

with 0% porosity limestone. Each box plot display 5000 samples’ sensor arrival time at different locations. It 

includes five important lines: minimum, first quartile (Q1), median, third quartile (Q3), and maximum. The 

outliers are shown as individual points. Sensor 1 to 10 is located on the upper boundary, while sensor 19 to 

28 are placed on the bottom boundary. The remaining sensors are opposite to the source boundary which 

exhibit distinct distribution due to the longer reaching distances. The upper and lower corresponding receivers 

have the same distance to the source. Therefore, their recording arrival time are very similar. Figure 2-7 reveal 

the shear front wave reaching time as supplementary information for the mechanical body wave. As 

comparison, they cannot move through any type of material and travel much slower than the speed of P-wave. 

Hence, it takes longer for the S-wave to reach the receiver.  

 
Figure 2-7. Shear wave arrival time for four types of spatial distribution. x-axis is the sensor 

number, while y-axis is the wave arrival time in μs. 
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Diffusion waves have been known about since the mid-19th century (Mandelis, 2000). 

Technologies based on diffusion waves have already improved biomedical diagnostics and the 

fabrication of optical and electronic devices (Volpert & Petovskii, 2009). Diffusion waves have 

also spawned novel high-precision analytical techniques. The previous plots showed the crack 

effect of mechanical waves arrival time. Furthermore, we add pressure diffusion front as another 

set of features in Figure 2-8. In total, 28 sensors recorded 3 set of front time including the P-wave, 

S-wave and pressure diffusion. The feature number expended to 84.  

 
Figure 2-8. Pressure diffusion front arrival time for four types of spatial distribution. x-axis is the 

sensor number, while y-axis is the wave arrival time in μs. 
 

Good data collection is the key to the reliable classification performance of crack 

characterization. The front wave travel-time measured by multiple sensors placed around the 

material serves as our input data for machine learning. For each task, dataset will be divided into 
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training and testing data to be applied in data-driven models. Before training the model, we should 

transfer our data to be fed into a machine learning model. The preprocessing in this work deals 

with features on the same scale by using the standardization approach.  

2.5 Data-Driven Classification Models  

Supervised learning computes a function that maps available inputs (features) to available 

outputs/targets (Osisanwo et al., 2017). Subsequently, the computed function can be use used to 

generate output for any new input. To that end, supervised learning has to find/extract hidden 

statistical patterns in the data during the training phase and then test the efficacy of the learning 

and functional mapping during the testing phase. Ongoing research in supervised machine learning 

focus on improving the prediction accuracy, minimizing the prediction errors, and enhancing the 

computational efficiency (Schmidt et al., 2019). Regression and classification are two categories 

of supervised learning. Regression is a task to predict a continuous output based on available inputs. 

However, classification predicts a class or category based on available inputs. The main goal of a 

classification problem is to identify the category/class in which new data will fall. Instead of 

traditional two-class, tasks in this study are multi-class problems including at least three classes. 

Seven classifiers are selected for crack characterization, namely K-nearest neighbor (KNN), 

Random Forest (RF), Gradient Boosting, Naïve Bayes, Support Vector Machine (SVM), Multi-

layer Perceptron (MLP), and Voting classifiers. 

2.5.1 Data-Driven Classification Algorithms  

The  KNN algorithm is non-parametric method introduced by Fix and Hodges for pattern 

classification that has since become known the k-nearest neighbor rule (Fix & Hodges, 1951). It 

can be applied for both classification and regression problems. KNN classification should be one 

of the first choices for a classification study when reliable parametric estimates of probability 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
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densities are unknown or difficult to determine (Peterson, 2009). KNN is based on feature 

similarity that does not require any assumptions on the underlying data distribution. It first finds k 

number of training samples that are nearest to a new, unlabeled sample, which is then assigned a 

label based on the label of the majority of neighbors. By changing the value of k, the complexity 

of the KNN model can be changed. Small k values lead to complex models that are sensitive to 

noise (Liu & Zhang, 2012). The larger k will lead to smoother classification boundaries. KNN 

becomes computationally expensive when the size or dimensionality of the data increases because 

of the need to calculate distances. Therefore, the performance of KNN depends highly on the input 

dataset.  

Decision tree is a practical, fast, and robust supervised learning method. It uses a greedy 

algorithm to iteratively partition feature space by randomly selecting a feature and a corresponding 

threshold value so as to achieve largest reduction in the impurity/entropy of the dataset leading to 

information gain (Su & Zhang, 2006). Each partition is a decision based on a condition. The goal 

of the decision tree is to separate the samples depending on their groups. Therefore, a decision tree 

is a collection of decisions used to identify the group/class that a sample belongs to. It is primarily 

designed for classification but can also be used for regression by changing the loss function from 

impurity/entropy to residual error. However, decision tree tends to be non-unique with high 

variance (Trabelsi et al., 2019). RF is an improvement machine learning algorithm introduced by 

Leo Breiman which combines the output of multiple decision trees to reach a single result 

(Breiman, 2001). It is an ensemble/collection of decision trees, suitable for both classification and 

regression. It is a bagging technique where several decision trees are trained and deployed in 

parallel. Each tree is trained on a subset of dataset using a subset of features (also referred as 

bootstrapping). Consequently, each tree is distinct having various levels of complexity. Finally, 
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the results from each tree in the random forest is aggregated based on a majority voting scheme 

for classification problem. The use of hundreds of decision tree in the random forest reduces the 

variance/uncertainty in prediction without incurring large errors due to bias. Examples of 

subsurface applications that use random forest as a learning algorithm include subsurface data 

analysis (Zahedi et al., 2018), fault detection (Marins et al., 2021), and production forecasting (Xue 

et al., 2021).  

Boosting algorithms use several weak learners in series to build a strong learner. A weaker 

learner refers to model that perform slightly better than random guess (e.g. a shallow decision tree, 

also referred as a stump). Boosting algorithms are excellent supervised learning with a solid 

theoretical basis and great success applications in a wide range of practical applications including 

subsurface data analysis (Zhou et al., 2019; Zhong et al., 2020). They are highly customizable that 

take advantage of regularization methods, and generally improve the performance of the algorithm 

by reducing overfitting. Adaboost is the first boosting method designed for classification problem 

(Freund & Schapire, 1996). Each subsequent learner improves upon the performance of the 

previous learner by assigning higher weights to samples that were misclassified by the previous 

learner (Schwenk & Bengio, 1998). The final prediction of the model is the weighted average of 

all the weak learners, with more weight given to the weak learners exhibiting better performance 

as compared to the rest. Gradient Boosting (GB) is similar to AdaBoost; however, each subsequent 

learner in the ensemble improves on the performance of the previous learner based on gradient 

descent optimization to minimize the overall error of the strong learner. Weak learners train on the 

pseudo-residual errors of all the previous learners to focus on samples where the ensemble is 

performing poorly (Natekin & Knoll, 2013).  
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Naïve Bayes is designed based on Bayes’ theorem with strong independence assumptions 

between the features. Particularly, studies show that naive Bayes works best in two cases: 

completely independent features as expected and functionally dependent features, while reaching 

its worst performance between these extreme (Rish, 2001). Despite its unrealistic independence 

assumption, it is surprisingly effective in practice since its classification decision may often be 

correct even if its probability estimates are inaccurate (Murphy, 2006; Berrar, 2018). 

Support Vector Machine (SVM) is designed to find a hyperplane that leads to the widest 

possible margin separating two distinct groups (Drucker et al., 1997). It is primarily used for 

classification and can also be used for regression. SVM is popular because of its 

excellent generalization performance. SVM finds the best separation between specific samples 

(known as support vectors) from different groups that are closest to each other; thereby, finding 

the widest separation between the two distinct groups in the dataset. In addition to 

performing linear classification, SVMs can efficiently perform a non-linear classification using 

the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces. SVM 

method has been successfully applied to several different applications, such as reservoir 

characterization (Wong, et al., 2005; Anifowose et al., 2015), automated lithology classification 

(Bressan et al., 2020), natural fracture identification (Leal et al., 2016) and subsurface properties 

prediction (Akande et al., 2015).  

The perceptron is the oldest neural network created by Frank Rosenblatt in 1958. It has a 

single neuron and is the simplest form of a neural network. Multi-layer Perceptron (MLP) is a 

widely used feedforward ANN (Mirjalili et al., 2014). This is the simple neural network 

architecture comprising at least three layers of nonlinearly activating nodes: input layer, hidden 

layer, and output layer. Input layer does not contain any neuron, it directly takes in the feature 

https://www.sciencedirect.com/topics/computer-science/generalization-performance
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
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values of a sample. The number of neurons in the output layer depends on the number of 

classes/targets. An arbitrary number of hidden layers between those two layers are the true 

computational engine of the MLP (Nicholson, 2019). Learning occurs in the perceptron by 

changing connection weights after processing a batch of samples. The weights are adjusted based 

on the amount of error in the model predictions compared to the actual targets. More information 

about deep neural networks for subsurface characterization is presented by Misra and He (2019) 

and He and Misra (2019). 

Individual classification models are recently challenged by combined pattern recognition 

systems, which often show better performance. However, combine many same classifiers 

sometimes does not contribute to anything but the increased complexity of a system. On the other 

hand, different but much poorer performing classifiers are unlikely to bring any benefits in the 

combined model (Ruta & Gabrys, 2005). In voting classifier, the optimal set of classifiers is first 

selected and then combined by a specific fusion method. The voting classifier comes with a variety 

of voting options, such as hard and soft voting.  

 
Figure 2-9. The ensemble voting classifier applies three base models to complete two-class 

classification problem (0 and 1). Hard voting (left side) obtains final prediction result using the 

most votes from base models. Soft voting (right side) focus on the probabilities for each class 

from the base models.   
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Hard voting considers all the prediction results made by different classifiers with majority 

vote. The majority voting is computed differently when the weights assigned to the different 

classifiers are equal or otherwise. Soft voting entails the probabilities of prediction classes from 

each model and picking the highest average probability. Then the label with the greatest sum of 

weighted probabilities wins the vote. In this study, we use the hard voting of nine selected 

classifiers including Gaussian Naive Bayes, KNN, SVM, decision tree, RF, Adaboost, MLP, GB, 

and bagging classifier from scikit-learn. The prediction of each classifier is weighted to make the 

prediction more accurate.  

2.5.2 Data-Driven Classification Metrics  

There are several classification metrics used to measure the performance of the classifiers 

such as accuracy, precision, recall and F-1 score. Accuracy is the proportion of correct predictions 

among the total number of predictions (Eq. 9).  

 Accuracy =  
TP + TN

TP + FP + TN + FN
 (9) 

Where TP is True Positive, TN is True Negative, FP is False Positive, FN is False Negative. 

Precision is the measure of reliability of the assigned positive class. It is the fraction of samples 

that are true positives out of all the samples that are assigned the positive class expressed in Eq.10. 

Similarly, recall is the ratio of true positives to the sum of true positive and false negative. High 

precision and recall mean the model has good identification ability. 

 Precision =  
TP

TP + FP
 (10) 

 Recall =  
TP

TP + FN
 (11) 
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F1 score is a harmonic average of calculated precision and recall ensuring a balance between 

precision and recall. The range of these metrics is from 0 to 1, such that 1 represents perfect model 

prediction and lower values denote worse predictions.  

 F − 1 Score =  
2 ∗ Recall ∗ Precision

Recall + Precision
 (12) 

 

2.5.3 Hyperparameter Tuning and Cross-Validation 

It is very straightforward to build a data-driven model that is perfectly adapted to the data 

set at hand. However, the generalizability of the model is always a problem when dealing with 

new and unseen data. Ideally, we would evaluate the generalization ability of a model using new 

data that originate from the same population as the data that we used to build the model (Simon, 

2003). Neither overfitted nor underfitted model are expected to generalize well, the major 

challenge is to find the right balance between over- and underfitting.  

Hyperparameters are parameters of algorithms that control the learning process and model 

performance. Hyperparameter tuning is the process of maximizing the model performance by 

tweaking the parameters of the model. It prevents the model from underfitting and overfitting 

issues. Grid search is arguably the most basic hyperparameter tuning method. With this technique, 

we evaluate each model for each possible combination of all of the hyperparameter values provided 

and then select the architecture which produces the best results. Table 1 shows hyperparameters 

range used for selected classifiers. The greatest challenge for this process is computationally 

expensive and time-consuming.  

Table 1. Hyperparameter Tunning Ranges for Classifiers 

Algorithms Hyperparameters Range  

Random Forest  
n-estimators [50, 100, 150, 200, 300] 

max_depth  [3, 4, 5, 6, 7, 8] 
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K-Nearest Neighbor n_neighbors [5, 10, 15, 20, 30, 40] 

Gradient Boosting 

n-estimators [10, 30, 60, 90, 100, 150] 

max_depth  [3, 4, 5, 6, 7, 8] 

learning_rate [0.01, 0.05, 0.1, 1] 

Neural Network  
hidden_layer_size 

[(100,100), (100,100,100), 

(100,100,100,100)] 

learning_rate ["constant", "invscaling", "adaptive"] 

 

Cross-validation is another robust statistical method used to prevent models from 

overfitting by training on subsets of the available input data and evaluating them on the 

complementary subset of the data (Berrar, 2019).  In standard K-fold cross-validation, we need to 

partition the complete data into k folds. Then, we iteratively train the algorithm on k-1 folds while 

using the remaining holdout fold as the test set. In this work, all the classifiers are tuned by 

performing a grid search with 5-fold cross-validation. 

2.6 Model performance and Conclusions 

2.6.1 Model performance for open discontinuities 

First, the numerical experiment is conducted to classify three diverse crack dispersion: 0, 

500, 1000, with dominated orientation. The orientation for three dispersions is set as vertical 

(Orientation = 0°). The dataset includes 15,000 samples, 5000 for each dispersion. Each sample 

target is either 0, 1, or 2, depending on the dispersion of the crack cluster. The average accuracy 

of seven classifiers from Figure 2-10 is around 0.96 for open discontinuities. The best classifiers 

are gradient boosting and voting classifiers, which give the same precision, around 0.98. Next, 

four different dominant orientations in the model are the same as the previous cases, and 

orientations 0°, 45°, 90° and 135° are labeled as 0, 1, 2, 3. The large dataset has 20,000 rows and 

84 columns, standing for the features from three different waves. The classifiers’ accuracy is 0.95 

and 0.99 for dispersion equal to 10 and 50, respectively. The last case identifies different crack 
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spatial distributions: random, linear, single gaussian and double gaussian. No significant 

differences were found after added the pressure diffusion to P-wave and S-wave. 

 
Figure 2-10. Classification accuracy for seven classifiers on four experiments with 

compressional wave, shear wave and pressure diffusion (P + S wave + pressure diffusion) for 

open mechanical discontinuities.  

 

 

The overall accuracy is remaining around 0.85 shows in Figure 2-10. Precision, recall, and 

F-1 score are around 0.92 indicating great model achievement. Table 2 illustrates precision, recall, 

and F1 score for both low and high dispersion are good enough. Precision, recall, and F-1 score 

can even reach 1 at higher dispersion cases, which means the performance of this task is perfect 

for determining the dominant orientation.  

 

Table 2. Evaluation metrics (precision, recall and F-1 score) from experiments with 

compressional wave, shear wave and pressure diffusion for open mechanical discontinuities. 

Open cracks Precision  Recall F-1 Score 

Dispersion   0.98 0.99 0.99 

Orientation (𝛋 = 𝟏𝟎) 0.99 0.99 0.99 
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Orientation (𝛋 = 𝟓𝟎) 1.00 1.00 1.00 

Spatial Distribution 0.92 0.92 0.92 

 

2.6.2 Model performance for cemented discontinuities 

As we mentioned, the embedded closed mechanical discontinuities are filled by limestone. 

For cemented cracks, we will also discuss four tasks: 1) Dispersion identification, 2) Dominant 

crack orientation identification for two dispersion (10 and 50), and 3) Crack spatial distribution 

identification.  

 
Figure 2-11. Classification accuracy for seven classifiers on four experiments with 

compressional wave, shear wave and pressure diffusion (P + S wave + pressure diffusion) for 

cemented mechanical discontinuities. 

 

According to Figure 2-11, both lower and higher dispersion cases for orientation classifier 

can achieve 1.00 when using 84 features in the model. Other metrics such as precision, recall, and 

F-1 score are also reach 1.00 as shown in Table 3. To classify the spatial distribution of crack 

clusters, the worst model is from Naïve Bayes, which is around 0.67. The other models performed 
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well with an accuracy in the range of 0.87 to 0.95. Further statistical tests revealed precision, recall, 

and F-1 score is around 0.93.   

Table 3. Evaluation metrics (precision, recall and F-1 score) from experiments with 

compressional wave, shear wave and pressure diffusion for cemented mechanical discontinuities  

Open cracks Precision  Recall F-1 Score 

Dispersion   0.97 0.97 0.97 

Orientation (𝛋 = 𝟏𝟎) 1.00 1.00 1.00 

Orientation (𝛋 = 𝟓𝟎) 1.00 1.00 1.00 

Spatial Distribution 0.93 0.93 0.93 

 

In general, gradient boosting and voting classifiers are the top two models among the 

selected seven algorithms. Consequently, the travel time recorded by the 28 sensors for materials 

containing high-velocity discontinuities (i.e., cemented crack) will have higher information 

content for purposes of the characterization of mechanical discontinuities. 

 

2.6.3 Feature Reduction and Feature Importance Techniques  

The performance of data-driven techniques is highly dependent on the data quality, 

quantity, and pre-processing steps. However, raw data is often sparse as a consequence of the curse 

of dimensionality, and analyzing the data is usually computationally intractable. In our case, as the 

number of features increases by adding wave information, the model becomes more 

complex. Feature reduction is commonly applied as a preprocessing step to overcome the curse of 

dimensionality. In general, avoiding overfitting is a significant motivation for performing feature 

reduction. Otherwise, removing redundant features also helps to save computation time. Feature 

selection approaches can be divided into filter and wrapper approaches (Kira & Rendell, 

1992). Filter methods are often univariate, considering each attribute individually without 

considering feature interactions and providing scores to each feature. Filter methods use scoring 

methods, like the correlation between the feature and the target variable.  
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In our study, we combine chi-square statistic and mutual information approach from the 

filter method for feature selection. The Chi-Square statistic is commonly used for testing 

relationships on categorical variables. Mutual information is a different case to measure a 

relationship between two random variables that are sampled simultaneously. In detail, our work 

only uses the features in which both chi-square and mutual information scores are higher than 0.2. 

Consider that the cases for distinguishing crack dominate orientation accuracy have already 

reached 1.00; we only apply this technique to classify dispersion and spatial distribution to reduce 

the overfitting and improve model performance. The reduction features create a new training and 

test dataset with new feature numbers. The number of features selected changes case by case. The 

new dataset was retrained and tested by the new test samples. Finally, the model performance is 

reduced by dimensionality reduction from the evaluation metrics like model accuracy and F-1 

score. That means all features are highly related to the classification performance.  

In machine learning and pattern recognition, a feature is an individual measurable property 

or characteristic of an observed phenomenon (Bishop, 2006). Features could be powerful, relevant, 

weakly relevant, or irrelevant (Bootou, 2010). As we discussed, all the features in our model are 

not deductible. Then we perform a feature importance analysis that aims to provide insight into 

the relative importance of each feature in determining the outcome. The results of feature 

importance analysis can be used to optimize the model by removing irrelevant or redundant 

features or by giving more weight to the most essential features. There are several methods for 

feature importance analysis in machine learning, including permutation feature importance, mean 

decrease impurity, and feature importance based on tree-based models.  

https://en.wikipedia.org/wiki/Pattern_recognition
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Figure 2-12.  Feature importance analysis for dominant crack orientation task. The middle 

sensors located in each boundary are more crucial than the side sensors. Moreover, the sensors 

located opposite to the source are the most important as they contain more information about the 

material. 

 

The basic idea behind permutation feature importance is to randomly shuffle the values of 

each feature individually and measure the impact of the shuffling on the model's performance. The 

features are ranked in order of their impact on the prediction performance, with the most important 

feature being the one that causes the largest decrease in accuracy when its values are randomly 

shuffled. Figure 2-12 presents the feature importance of each sensor when identify the dominant 

crack orientation. It reveals that the middle sensors locate in each boundary, including sensors 6, 

14, 15 and 23 are more important than other sensors. The sensors in the middle of each boundary 

are more reliable and informative for identifying the dominant crack orientation. In contrast, the 

sensors located at the edges of the boundary are further away from the crack and may be affected 

by other factors, such as noise or measurement errors. 
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2.6.4 Conclusions and Discussion  

This study presented a noninvasive material characterization method that analyzes the 

compressional wave travel time detected at multiple receivers (i.e., multipoint measurements). 

FMM simulation is implemented to simulate the wave front travel time from the sonic wave and 

pressure diffusion propagation in designed 2D numerical models with open or cemented 

discontinuities. The arrival times detected by 28 receivers along the material boundaries are used 

as input datasets to train and test selected seven data-driven methods. As a result, the proposed 

source-sensor configuration and the data-driven workflow can characterize the dominant 

orientation, dispersion around the dominant orientation, and the spatial distribution of the cracks. 

Classification models exhibit the best classification performance in classifying dominant crack 

orientations. A combination of compressional wave and shear wave is enough to capture the crack 

information in the material; however, the pressure diffusion can optimize the machine learning 

algorithms more. Regarding classifiers accuracy, voting and gradient boosting classifier 

outperform other models in this study, whereas Naïve Bayes methods exhibit the lowest 

performance. It is to be noted that the workflow performs better on embedded closed discontinuity 

characterization performs than open discontinuity characterization. Moreover, adding more 

features to the data-driven model will reduce the difference between the open and closed cracks. 

In the end, neither reducing feature dimensionality nor adding sensor numbers can improve the 

algorithms in this study.  
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CHAPTER III 

VISUALIZING MECHANICAL DISCONTINUITIES USING A DATA-DRIVEN REGRESSION 

3.1 Introduction 

The fracture process involves two stages, i.e., crack initiation and propagation. The 

propagation of a crack that results in a fracture provides information about the mode of that 

fracture. It has become critical to understand the location of the fracture and the extent to which it 

stimulates a reservoir to plan future drilling and completions. Many experiments have been 

devoted to studying the crack initiation, propagation path, and eventual coalescence of the pre-

existing cracks inside natural rocks or rock-like materials under tensile and compressive loadings 

(Wong & Chau, 1998; Sahouryeh et al., 2002; Haeri et al., 2014).  

In the last chapter, we developed a classifier-based workflow to categorically characterize 

specific bulk properties of the embedded crack clusters, such as orientation, dispersion, and spatial 

distribution, by processing multipoint compressional- and shear-wave arrival/travel times (Misra 

& Li, 2019; Li et al., 2021). However, in the previous works, we did not account for the mode 

conversion, reflection, and attenuation of the wave propagation and ignored a large amount of the 

signal behind the first arrival during the analysis. As a replacement for traditional analysis of 

experimental data, in this work, the combination of machine learning, synthetic data generation 

using k-Wave simulator, and single-source based multipoint wave-transmission measurements is 

an effective tool for visualizing/locating the discontinuity. Multiple waveforms are simultaneously 

processed using a data-driven workflow to non-invasively visualize the propagation of mechanical 

 

* Part of this chapter is reprinted with permission from “A generalized machine learning workflow to 

visualize mechanical discontinuity.” By Rui Liu, Copyright 2022 Journal of Petroleum Science and 
Engineering, 210, 109963.  



 

 

41 

 

 

 

discontinuity through three stages, namely initial, intermediate, and final. Data-driven regression 

models are used to monitor of the propagation of a mechanical discontinuity by jointly processing 

the multiple waveforms measured by the multipoint sensor system.  

 

3.2 Workflow  

3.2.1 Key Fundamental Questions to be Answered  

This chapter aims to answer the following questions:  

• How can the entire waveform obtained from K-wave simulation be utilized to enhance the 

characterization of mechanical discontinuity propagation in laboratory scale rock samples? 

• How to detect and locate crack propagation pathway by analyzing the multipoint wave-

transmission measurements irrespective of the variations in material composition, density, 

porosity, and size?   

• What is the best strategy for locating the crack propagation pathway by analyzing time-

series signal using different feature reduction techniques and data-driven regression 

model? 

3.2.2 Description of Workflow 

The primary purpose in our study is achieve robust monitoring of the propagation of 

mechanical discontinuity in a material by processing multiple waveforms resulting from wave 

transmission through the material due to a single, impulse source (Liu & Misra, 2022). Figure 3-

1 elaborates the data-driven workflow used in this study. The two main components of the 

workflow include: 1) wave-transmission data generation using k-Wave; 2) supervised learning to 

estimate the location, orientation, and length of the discontinuity as it propagates in the material 

through the three stages. Section 3.3 describes the simulation of elastic wave propagation through 
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a material with a propagating mechanical discontinuity. Physics-based open-source k-Wave 

toolbox is used to simulate wave propagation in a 2D material that undergoes three stages of 

propagation/growth of a mechanical discontinuity. To better simulate the experimental data, the 

effects of sensor sampling rate and precision of the sensors will also be discussed later. Multipoint 

waveforms corresponding to each stage of crack growth are recorded by 9 receivers placed around 

the 2D rectangular material. Each waveform is recorded for 25 microseconds, and discretized into 

2500-time steps.  

 

Figure 3-1. Brief overview of the data-driven workflow implemented in this study, which 

includes simulation of wave propagation, and data-driven regression. Data is simulated to train 

the regressors to monitor the crack propagation. Feature extraction and data-preprocessing 

performed on the simulated data prior to training the regressors to reliably monitor the crack 

propagation.  

 

Overall, we generated a large dataset for 10,000 materials, each undergoing three stages of 

crack growth with varying lengths, orientations, and locations of cracks. To overcome the curse of 
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dimensionality, the regression analysis will start with the selection of feature reduction techniques. 

In Section 3.4, we evaluate the performance of various feature reduction techniques and determine 

the best feature set to accurately monitor the location, orientation, and length of the crack as it 

evolves through the three stages of crack propagation. The selected feature sets are divided into 

training and test sets. The training dataset is used to build the data-driven models, while the test 

dataset is used to evaluate the generalization of the trained data-driven models. Moreover, during 

the data preprocessing, involving feature extraction and dimensionality reduction, ensuring that 

there is no information leakage between the training and testing datasets. The performance of the 

regressors is evaluated by the root mean square error (RMSE) between the actual and predicted 

properties of the crack embedded in the material. This metric helps compare the capabilities of the 

traditional regression models against neural network based regressors. 

3.3 Elastic Wave Simulation Model  

Many established elastic wave models are developed on low-order finite difference or finite element 

schemes that require a large number of grid points per wavelength to prevent numerical dispersion (Treeby et 

al., 2014). K-Wave is an open-source MATLAB toolbox for time-domain acoustic and ultrasound 

simulations in complex materials (Treeby & Cox, 2010). This toolbox can handle the propagation of elastic 

waves based on two coupled first-order equations describing the stresses and particle velocities within the 

material. Moreover, the effects of wave propagation, such as attenuation, dispersion, and multiple modes of 

propagation, have been considered in k-wave simulation.  

3.3.1 K-wave Simulation  

This study uses it as an accurate and computationally efficient model for simulating elastic 

wave propagation. In an elastic medium, the propagation of compressional and shear waves can 
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be described using Hooke’s law and an expression for the conservation of momentum. For 

viscoelastic materials in which damping or absorption is present, Hooke’s law is extended such 

that the stress-strain relation exhibits time-dependent behavior (Treeby & Cox, 2014). The 

classical Kelvin-Voigt model of viscoelasticity gives a time-dependent relationship which can be 

written as equation (13) using Einstein summation notation for an isotropic medium. 

 σij = λδijεkk + 2μεij + χδij

∂

∂t
εkk + 2η

∂

∂t
εij (13) 

Here σ is the stress tensor, ε is the dimensionless strain tensor, λ and µ are the Lame parameters 

related to the shear and compressional sound speeds by following equations.  

  μ = cs
2ρo,    λ + 2μ = cp

2ρo (14) 

ρ0 is the mass density. χ and η are the compressional and shear viscosity coefficients. 

Equation (13) can be rewritten as a function of the particle velocity vi as equation (15).  

 

∂σij

∂t
= λδij

∂vk

∂xk
+ μ (

∂vi

∂xj
+  

∂vj

∂xi
) +  χδij

∂2vk

∂xk ∂t

+  η (
∂2vi

∂xj ∂t
+ 

∂2vj

∂xi ∂t
)  

(15) 

where vi =
∂ui

∂t
. To model the propagation of elastic waves, this is combined with an equation 

expressing the conservation of momentum. Written as a function of stress and particle velocity, 

this is given by: 

 
∂vi

∂t
=  

1

ρo
 
∂σij

∂xij
 (16) 

Elastic wave propagation on the basis of two coupled first-order equations specifying the 

stress and particle velocity induced within the medium (Treeby & Cox, 2010). A computationally 

efficient model for elastic wave propagation in absorbing media can be constructed based on the 
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explicit solution of the coupled equations given in Eqs. (13)- (15) using the Fourier pseudospectral 

method (Liu, 1999; Caputo et al., 2011). 

3.3.2 K-wave Simulation Steps 

First, the computational grid is defined using the function makeGrid, which defines the 

same size matrix as the computing grid. This takes the number and spacing of the grid points in 

each Cartesian direction and returns an object of the kWaveGrid class. If the Cartesian coordinates 

do not precisely fit the coordinates of grid points, the output values are generated by interpolation 

(Treeby et al., 2014).  

After the computational grid, the medium properties are defined. For a homogeneous 

medium, these are given as single scalar values in SI units. For a heterogeneous medium, these are 

defined as matrices of the same size as the computational grid. Material properties can be stated 

by variable shear and compressional wave velocities and mass density with no restriction on their 

distribution or values. There is no restriction on the distribution or values of the material properties. 

However, a large gap between matrix and crack material properties in our case may lead to 

unstable, non-convergent simulation. The time step and grid size need to be adjusted to balance 

the model accuracy and computational cost.  

In k-wave numerical models with Fourier pseudospectral, the calculation of spatial 

gradients using the fast Fourier transform (FFT) implies a phenomenon called wave wrapping. It 

is displayed as waves leaving one side of the domain reappear on the other side. To solve this 

problem, a split-field perfectly matched layer (PML) is developed to absorb the waves at the 

boundaries of domain for free-space simulation (Berenger, 1994). Thus, using PML facilitates 

infinite domain simulations without increasing the size. By default, it is exerted on a 20 grid-point-
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thick layer. For accurate simulation, it is crucial that all the source and sensor do not lie within this 

layer. In addition, wave propagation effects, such as attenuation, dispersion, and multiple 

propagation modes, have been largely considered in k-wave simulations. By changing the 

absorption and thickness of the PML, we could control the reflections and wave wrapping from 

the boundaries. The absorption within the layer is set by ‘PMLAlpha’ in Nepers per grid point, 

default is 2. When the absorption parameters (medium.alpha_coeff and medium.alpha_power) are 

defined, k-Wave considers the medium as an absorbing material. Nevertheless, high absorption 

values will need smaller time steps to remain stable. 

Next, the locations of the source and sensors are defined on the surface of the material. The 

numerical models of material containing discontinuities are inspired by the laboratory experiments 

conducted at the Integrated Core Characterization Center (Bhoumick et al., 2018; Misra & Li, 

2019). In those studies, they placed source and multiple sensors/receivers around the porous 

cylindrical rock to observe the distribution of fractures inside the samples. The source and sensor 

locations are defined as a set of Cartesian coordinates within the computational grids. If the 

Cartesian coordinates do not precisely fit the coordinates of grid points, the output values are 

generated by interpolation (Treeby et al., 2014). Three types of sources are currently accepted in 

K-wave modeling: initial pressure distribution, time-varying velocity or stress sources. In our 

study, the initial pressure source is situated at the midpoint of the material’s left boundary with 

nine sensors surrounding the 2D homogeneous material.  

Finally, simulation time step is defined by user with kgrid.t_array (0:dt:t_end) or within 

simulation function (makeTime). The time array must be evenly spaced and monotonically 

increasing (Treeby et al., 2014). A good discussion is required on Courant-Friedrichs-Lewy (CFL) 
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condition to balance the computational time and stability. It depends on the maximum speed of 

sound in the medium and the speed of sound used inside the k-space operator (Mast et al., 2001). 

Once the input structures are defined, the propagation of the wave field is then computed in 

simulation function. After each iteration, the pressure changes at the sensor points are stored. Other 

parameters can also be retrieved by defining them in sensor.record. K-wave simulation has been 

experimentally validated in many studies (Mallat, 1989; Firouzi et al., 2012; Martin et al., 2019). 

The visualization of the propagation wavefield and the status bar show that the compression and 

shear components of the frame are updated every 10 time steps (Treeby et al., 2014). 

3.3.3 Experimental Design  

There are no restrictions on the values of the material and crack properties. However, a 

large contrast between matrix and crack material properties may lead to unstable, non-convergent 

simulation. Material length and breadth are randomly discretized anywhere between 200 and 360 

grids with a grid size of 0.3 mm. As shown in Figure 3-2, the random samples in stage 3 can be 

either square or rectangular.  
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Figure 3-2. Designed Material samples in different size under stage 3 after random crack growth. 

The red triangle in the left boundary is the impulse source, while the black dots around the 

material are the 9 sensors. Each sensor records a 25-𝜇s waveform due to the impulse generated 

by the source.  

 

 

The red triangle in center of the left boundary is the pressure, impulse source. The black 

dots around the other three boundaries are the 9 sensors. The sensors on the upper side are marked 

as sensors 1, 3, and 5. Sensors 2, 4, and 6 are placed on the lower border. The right border has 

sensors 7, 8, 9. Quartz, calcite, dolomite and clay are chosen as the mineral constituent of the 

material with variable porosity and corresponding density, velocity and other elastic properties. K 

wave simulation generated 10,000 samples with different percentages of quartz, calcite, dolomite 

and clay. The crack locations, orientations and lengths are generated randomly using the Latin 

hypercube sampling (LHS) method having a width of 0.6mm (3 grids). The orientation and 

location of the first stage can be anywhere inside the material. For the second stage of crack 

propagation, the crack can extend any length within the material. In addition, the direction of the 

propagation during the second stage will be a constant value limited to an angle smaller than 60-
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degrees relative to the direction of the crack in the first stage. Similarly, the crack extension in the 

third stage is also at an angle smaller than 60-degrees relative to the direction of propagation during 

the second stage. The discontinuities of varying length, orientation, and location are all considered 

to be filled with fluid with a density of around 800-1200 kg/m3. Material and crack properties are 

defined using the density, compressional and shear wave velocity. The elastic waves (body waves) 

are recorded at different sensors around the crack-bearing materials for 25 μs in three stages. 

3.4 Data Generation and Preprocessing  

3.4.1 Sampling Rate and Precision   

The first two rows in Figure 3-3 show the waveforms captured for three stages from two 

random samples. The different colors of the waveforms represent the different sensors around the 

material. Notably, wave arrival times from 9 sensors in the second row are closer, which indicates 

a smaller sample compared to the upper sample. But, for both large and small samples, 25 μs is 

sufficient for sensors to capture the reflections from the boundaries. The sample rate (or sampling 

rate) of a sensor is the number of samples measured per second. The units for sample rate are 

samples per second (SPS) or Hertz. The precision of the sensor represents the resolution of the 

sensor. Sensor sampling rate and precision are configurable to match the experimental objectives.  
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Figure 3-3. First two rows are elastic waveforms captured by 9 sensors around the material from 

two random samples. The waveforms change with crack propagation through three stages. 

Different colors of the waveform indicate waveforms recorded by different sensors. The last row 

is the resampling waveform from realistic sensor with sampling rate of 2MHz and precision of 

0.001pa.  

 

 

In our simulation, 2500 points were captured in 25 μs, which stands for a sampling rate of 

100MHz. This is to satisfy the stability of the simulation, however, the physics of the sensor and 

the process under investigation limit the sampling rate and precision of the sensor. Therefore, we 

resample the simulated data to 2MHz which much closely match the real experimental conditions. 

The precision of the sensor represents the resolution of the sensor. A resolution of 0.001pa means 

that the sensor can detect changes in pressure of 0.001pa. In Figure 3-3, the third row displays the 

waveform from sensor-realistic simulation computer resampling with a sampling rate of 2MHz 

and precision of 0.001pa. A lower sampling rate and precision may lose parts of the information 
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in the waveform. Nevertheless, it is necessary for the reliability of the subsequent prediction model 

and the further applications of this work.   

3.5 Data-Driven Regression Models  

Regression analysis can discover relationships between features and continuous-valued 

multiple targets. Features need to be extracted from raw data and dimensionally reduced prior to 

training the regression model. After feature extraction, the dataset corresponding to each stage of 

crack growth can be visualized as a table/matrix with 10,000 sample instances as rows, N features 

as columns, and T continuous-valued targets as columns. The total sample is divided into training 

and testing dataset.  Using the training data, regression model is built as a function of some input 

parameters. Testing dataset needs to be unseen new data but follow a similar distribution with 

training data to ensure the generalization performance of the regressor. Validation set is a subset 

of training data held back from training that is used to monitor and evaluate the model accuracy. 

Grid search is the most basic approach used for searching any possible combination of 

hyperparameter space provided, evaluating each model, and selecting the architecture which 

produces the best results. In addition, K-fold cross validation uses different portions of the data to 

valuate regressor and access how model perform for an independent test dataset. Finally, multiple 

continuous-valued targets are the x and y coordinates that define each stage of the crack, i.e., eight 

target values (four x coordinates and four y coordinates that define the crack propagation from the 

initial to intermediate then to final stage).  

3.5.1 Feature Reduction Techniques  

Feature selection/extraction is a critical step in data analysis and machine learning for 

reducing computational costs, reducing uncertainty due to noise, and improving model 

generalization (Bolón-Canedo et al., 2015). Designing the optimal dimensionality reduction 
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workflow for specific predictive modelling requires extensive numerical testing. Principal 

component analysis (PCA) is a popular multivariate statistical technique which maps data onto a 

linear subspace and reduces the dimensionality of the variable space by representing it with few 

orthogonal vectors (Abdi & Williams, 2010). Similar to PCA, Truncated support vector 

decomposition (SVD) is a matrix factorization technique suited for linear dimensionality 

reduction. However, it operates on sample vectors directly instead of on a covariance matrix. 

Moreover, Isomap and locally linear embedding (LLE) are well-known manifold approximation 

algorithms for nonlinear dimensionality reduction (Chakravarty & Misra, 2021). Isomap attempts 

to preserve local topology on all scales, mapping nearby points close and distant points far away 

from each other (De Silva & Tenenbaum, 2002). LLE does the same basic thing as Isomap, except 

that small neighborhoods are stitched together in a different way (Ventura, 2008).  

Random projection includes Gaussian random projection (GRP) and sparse random 

projection (SRP) can also reduce the dimensionality by projecting the original input space on a 

randomly generated matrix. Finally, we also extract twenty optimal statistical features from each 

waveform per sensor per stage of crack growth. This led to 20×9×3 equal to 540 features. The 20 

statistical parameters extracted from each waveform include measurements of shape (skewness, 

kurtosis), central tendency (mean, medium), position (percentile, zero crossing), impurity 

(entropy) and other statistical parameters. The detailed list of all 20 statistical parameterization-

based features and their definitions are elaborated in Appendix A. Similar statistical 

parameterizations have been used by Foster et al. (2021) to assist machine learning methods.  

3.5.2 Data-Driven Regression Algorithms  

In this study, we use RF, KNN, GB and neural network (NN) to perform the desired 

regression to relate the features extracted from the waveforms measured during the three stages of 
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crack propagation to the location, orientation, and length of crack during each propagation stage. 

KNN is a non-parametric machine learning method that approximates the association between 

features and targets by averaging the targets of the K nearest neighbors in the feature space. It is a 

lazy algorithm that needs all the training data during the testing and deployment phases (Song et 

al., 2017). KNN delivers a simple, flexible and adequate model for nonlinear problems but is 

computationally expensive and requires feature scaling.  

An RF regression is a bagging technique that constructs several decision trees and 

aggregates the predictions of all the trees to generate the final prediction. A RF regressor works 

with data having a numeric or continuous output. Each tree makes its prediction and then takes an 

average to provide a final prediction result for the forest. The idea of boosting is to add new learners 

to the ensemble sequentially. The weak learner improves the inadequacy of the model generated 

by the prior sequence to enhance the model’s capability. In this technique, a set of simple learners 

(decision trees) are combined into a stronger learner by using gradient descent optimization of a 

loss function (Friedman, 2001; Friedman, 2002). Random forest trains and deploys the trees in 

parallel, whereas gradient boosting trains and deploys the trees in series. However, gradient 

boosting is susceptible to overfitting. Pruning a decision tree of gradient boosting helps to prevent 

overfitting and thus optimize model performance. Shallow decision trees are commonly used as 

base learners due to their simplicity and robustness in practice (Quinlan, 1996).  

NN is a set of computational units that perform linear algebraic summation followed by a 

sigmoid-based activation. NN has a complex node system with adaptive solid learning capabilities. 

It is often applied to supervised learning problems that train feature-target pairs and learn to map 

the correlation between those features and targets. Single layer NN has three components: input 

layer, hidden layer, and output layer. Data is fed to the input layer, and predictions are made on 
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the output layer, also called the visible layer. There can be one or more non-linear layers, referred 

to as hidden layers, between the input and the output layer. Each layer of the neural network has 

multiple nodes as computational units (Misra & He, 2019). Nodes, or neurons, are the 

computational units put into each layer that constitutes the neural network. A node on one layer 

can be fully or partially connected to the nodes on the next layer. A single-layer network can be 

extended to a multiple-layer network by adding hidden layers. A multilayer perceptron (MLP) is 

a specific neural network with multiple hidden layers. It is often applied to supervised learning 

problems that train feature-target pairs and learn to map the statistical correlation between those 

features and targets. Neural networks are susceptible to overfitting and hard to design optimally. 

No unique rule has been found for determining the best configuration for the network structure 

(i.e., the number of hidden layers, number of input nodes, type of activation function, and number 

of nodes in each hidden layer).  

 
Figure 3-4. Generalization performances of the four regression methods for the seven different 

feature extraction techniques. Neural network and gradient boosting enable the best monitoring 

of crack propagation. Statistical parameterization and principal component analysis-based 

features enable the best monitoring of crack propagation. 
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Hyperparameter tuning is applied with grid search to optimize the trained regressors for 

the best performance on the test data. Figure 3-4 compares the testing performances of RF, KNN, 

GB and NN for the seven different feature extraction methods discussed in the previous subsection. 

The numbers labelled in the figure are provided to assess the performance of the regressors, in 

terms of R-squared, which provides a measure of how well the predictions replicate the crack 

properties in the testing samples as a proportion of the total variations in crack properties. The 

performances presented indicate that neural networks and gradient boosting are more accurate than 

KNN and random forest for the prediction problem under investigation. Regarding the feature 

extraction techniques, features obtained through statistical parameterization and those obtained 

using principal component analysis led to more accurate regression performance as compared to 

the remaining five techniques. For most of the feature extraction techniques, KNN has the lowest 

performance. Topology-based feature extraction led to lower regression performance, where 

Isomap had the lowest performance and LLE had a slightly higher performance than Isomap.  

 

3.6 Results  

3.6.1 Prediction Results    

The train-test split is a technique to evaluate model performance by randomly splitting the 

original dataset into two subsets. In this section, we will explore the influence of different train-

test split percentages on the evaluation of regression models. Random selection is necessary to 

ensure both training and testing datasets are representative samples of observations. A rule-of-

thumb for machine learning is dividing 80% of the samples into a training set and the remaining 

20% as a testing dataset. Furthermore, we also build a model with 50:50 split proportion. With 

more testing datasets, the evaluation metric will have enough points to reflect the real model 
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performance. From another perspective, if the training set is insufficient, the model may suffer 

high variance as a result. Figure 3-5 demonstrate how training and testing split affects the 

regression model error in 20% testing samples and 50% testing samples with the optimal 

regression model after hyperparameter tuning with cross validation. Violin plot is a hybrid of box 

plot and kernel density plot shows distribution of numeric data for one or more groups. Figure 3-

5(a) is a split violin plot that compares the 20% testing dataset error distribution (blue part) and 

50% testing dataset error distribution (orange part). The calculation of the error is calculated as the 

expression:  

 

Error =  
absolute grid error in x dimension

Nx 

+  
absolute grid error in y dimension

Ny
 

 

(17) 

 

Figure 3-5. Violin plots for error distribution of regression model and sensor optimization. (a) 

Split violins for on 20% (2000 samples) testing and 50% (5000 samples) testing dataset. (b) 

Sensor optimization with three cases: (1) 9 sensors: three sensors uniformly distributed on each 

side except for the side where the source is located. (2) one sensor at the top (sensor3) and the 

bottom (sensor5) border and three sensors at the opposite boundary (sensor 7,8,9) to the source. 

(3). Only sensor 7,8,9 at the opposite border to the source.  

 

The white middle point is the median which inside the black box represents the interquartile 

range. The thin black line is 1.5 times the interquartile range. The peaks, valleys, and tails of the 
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density curve can be compared to find where two groups are similar or different in a split violin. A 

wider section of the violin part means a higher probability that data fall in that range. Skinner’s 

shape represents a lower probability. By comparison, most of the errors from the two models are 

smaller than 0.25. However, the left side of the violin has a broader peak and fewer outliers 

corresponding to a more stable and accurate model performance.  

An optimization of sensors placement optimization is carried out to minimize the number 

of sensors without losing any information for the regression model. In the original model, we have 

9 sensors located in three boundaries except for the boundary where the source is placed. Then, 

we test the regression model with one sensor at the middle of the top (sensor 3) and the bottom 

(sensor 4) boundary and all three sensors (sensor 7, 8, 9) at the opposite boundary. We further 

reduce sensor numbers to only three sensors on the opposite border, as they contain more 

information from feature importance analysis (Liu & Misra, 2022). Figure 3-5(b) displays the 

violin plots for three sensor conditions. It is apparent that 5 sensors could have similar results with 

9 sensors for different material sizes in 2000 testing set. However, the further reduction will affect 

the detection results. It suggests that for future work, one sensor in the top and bottom boundary, 

and three sensors at the opposite boundary will be sufficient for the discontinuity boundary for 

both large and small materials.  

The performance of the regression models is evaluated using root mean squared error 

(RMSE), which is the standard deviation of the residuals (prediction errors). Compared to mean 

absolute error, RMSE is preferred when large errors are particularly undesirable. Figure 3-6 is a 

boxplot displaying the distribution of RMSE of the predictions obtained using the data-driven 

regressors.  
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Figure 3-6. Box plot of root mean squared errors for various regression methods for the task of 

monitoring the crack propagation. Distribution of RMSE for predictions of crack path when 

monitoring the crack propagation for the 4000 testing samples. 

 

The boxplot includes five important vertical lines: minimum, first quartile (Q1), median, 

third quartile (Q3), and maximum. In the boxplot, the outliers are shown as individual points. It is 

apparent from boxplots that 75% of errors in the neural-network predictions are lower than 2.5mm. 

The other three prediction models also perform well with a maximum error of less than 10mm. All 

in all, the neural network regressor performs the best both in terms of accuracy and computational 

cost.  

To visualize the predicted results, we get some random samples in stage 3 presented in 

Figure 3-7. The red line segments represent the known crack path as the crack propagated from 

stage 1 to stage 3, while the blue line segments are the neural network model estimations based on 

the data-driven processing of the multipoint waveform data. The known and the predicted crack 

paths show a striking similarity. Notably, the proposed model can precisely estimate the location, 

orientation, and length of the crack as the crack grows. Alternatively, the data-driven boosting 

algorithm model for crack growth is a useful supplement to the existing methods. The accuracy of 

this model could meet the requirement of discontinuity detection.  
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Figure 3-7. Data-driven approach monitoring of crack propagation from initial to final stages by 

processing multipoint waveforms recorded in 9 sensors. Regression performance visualization 

for 6 samples from 20% (2000 samples) testing dataset.   

 

3.6.2 Feature Importance Analysis   

Feature ranking is the process of sorting the importance of features. We could use the 

permutation-importance testing and the SHAP (Shapley Additive explanations) impact for feature 

ranking. This ranking informs which feature has the highest importance for the desired monitoring 

of the crack propagation pathway. Permutation-based feature ranking is defined as the reduction 

in the model’s prediction performance on the testing dataset when a specific feature is randomly 

shuffled (Breiman, 2001) while preserving the originality of all other features. When the 

permutation is repeated, the results might vary.  

SHAP or Shapley value is computed using a method from coalitional game theory 

(Shapely, 1971; Shapely, 1988). While the Shapley value was originally used to quantify the 
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contribution of each player to the game, and later developed to quantify the contribution of each 

feature to the prediction of the model. SHAP values determine the importance of feature by 

comparing the results of different combinations of the feature. For example, if we have three 

features (A, B, C) in the dataset, we could have  23 (∅; A; B; C; AB; AC; BC; ABC)  possible 

combinations to predict the target. Each different combination trains a unique prediction model. 

Thus, we will have 23 models and corresponding predictions. Then shapely value is the average 

marginal contribution of an instance of feature among all possible coalitions. To evaluate the 

contribution of A, we could calculate the marginal contribution for subsets with/without A and 

summarized by weighted average.  

 
Shap (A) = w1 ∗ MCA,{A} + w2 ∗ MCB,{A,B} + w3 ∗ MCC,{A,C}+ w4

∗ MC{B,C},{A,B,C} 

(18) 

where MC is the marginal contribution measured by the difference of two outcomes with two 

subsets. w1, w2, w3, w4 are weights (w1 + w2 + w3 + w4 = 1).  

SHAP Explainer can provide an explanation for many different ML algorithms, such as 

tree-based models with TreeExplainer, linear models with LinearExplainer, and neural network 

models with KernalExplainer. The superiority of SHAP value over permutation feature importance 

is that tree-based SHAP is fast implementation with positive and negative impacts. The idea behind 

SHAP feature ranking is that simple features with large absolute SHAP value are important. 

Figure 3-8 shows the results obtained from given global or local importance of statistical features 

in testing dataset.  
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Figure 3-8. Feature importance with SHAP: (a) The summary plot combines feature importance 

with feature effects. (b) Waterfall plot with SHAP values for a random sample in testing dataset. 

(c) Diagram of sensor location. Top table group top 20 important features according to their 

causality. 

 

Figure 3-8(a) sorts the global importance by the sum of SHAP value per feature across all 

samples in the testing set with the neural network-based explainer. This summary plot combines 

feature importance from the most important at the top to the least important at the bottom with 

feature effects. The top features in feature ranking contain significant helpful information for 

prediction. It consists of several sample points with vertical positions showing the feature name, 

horizontal positions showing the impact on the model output, and color indicating the feature 

values from low (blue) to high (pink). Many overlapping points are jittered in the y-axis direction, 

hinting at the distribution of SHAP value for each feature. In contrast to the mutual information 

non-linear correlation, the top three features importance to the target became the index of wave 

peak, the sum value of all signal points and standard deviation. If compared from a sensor 

perspective, it is notable that S7, S8, S9 contain more information on the problem of crack 
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detection in terms of both mutual information correlation and feature ranking. As the sensor 

locations are labelled in Figure 3-8(c), they are the sensors located at the opposite boundary from 

the pressure source. This provides a great overview of the model, but we might want to delve into 

a single sample. As presents in Figure 3-8(b), the waterfall plot gives the importance of features 

based on a randomly selected sample. This ranking varies sample by sample to local feature 

importance.  

3.6.3 Conclusion and Discussion  

An important objective of this paper is to develop a generalized machine learning workflow 

that can successfully visualize mechanical discontinuity by accurately predicting the location, 

orientation and length of a mechanical discontinuity embedded in a material of any composition, 

velocity, density, porosity, and size. The study is based on the hypothesis that the use of robust 

signal processing followed by machine learning can identify small differences and minute patterns 

in the waveforms recorded at multiple locations due to the presence of mechanical discontinuity; 

following that, machine learning can use those differences/patterns to predict the location, 

orientation, and length of the embedded discontinuity.  

To that end, the designed workflow successfully monitored the propagation of mechanical 

discontinuity by processing multipoint sensor measurements of waveforms resulting from the 

interaction of a wave transmission with the mechanical discontinuity. The data-driven workflow 

can successfully predict the location, orientation, and size of mechanical discontinuities by 

identifying small differences and minute patterns in the waveform in 0.003s per sample. The 

monitoring of the three stages of evolution of the mechanical discontinuity has a median RMSE 

lower than 2.5mm in the material. A neural network (NN) based regression model significantly 

outperforms all other regression models. 
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CHAPTER IV 

DISCOVERING THE CAUSAL SIGNATURES FOR THE EVALUATION AND IDENTIFICATION 

OF MECHANICAL DISCONTINUITIES 

4.1 Causal Inference  

In the eighteenth century, philosopher David Hume pointed out the conceptions of 

causality in terms of repeated “conjunctions” of events (Hume, 1751). Hume claimed that the 

labelling of causality relies on the empirical regularities involving previous phenomena (Eagleman 

& Holcombe, 2002). In other words, we cannot confirm the inevitability between cause and effect; 

instead, we can only understand the repeated connection between cause and effect through 

observations. Judea Pearl (Pearl, 1998; Pearl, 2009) provided a comprehensive causation study 

with significant applications in the fields of statistics, artificial intelligence, economics, cognitive 

science and health science. In fact, there are several well-established and operational causal models 

in many fields that accurately reflect our intuitive understanding of cause and effect and can be 

described in precise mathematical terms. 

4.1.1 Cause and Effect     

The departure of cause and effect analysis is given by famous statistician professor Donald 

Rubin (1974, 1977, 1978, 1980). Now, cause and effect (or causality) is known as the relationship 

between events, where an occurrence of an event (e.g. change in a property) causes an occurrence 

of another event, such that the cause precedes the effect. It is important to note that the later event 

may have multiple causes in the past and may lead to multiple effects in the future. The essence of 

 
* Part of this chapter is reprinted with permission from “Monitoring the propagation of mechanical 
discontinuity using data-driven causal discovery and supervised learning.” By Rui Liu, Copyright 2022 
Mechanical Systems and Signal Processing, 170, 108791. 
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the cause-effect relationship is the generation or determination of one event by another event. 

Donald Rubin proposed a potential outcome framework, also called Rubin causal model, to 

understand causal mechanisms (Rubin, 2005). The inability to simultaneously know the potential 

outcome/effect and observed outcome/effect is the fundamental problem of causal discovery. To 

overcome this problem, we need to design a treatment group and a control group to compare the 

differences in outcomes with and without the cause. In general, treatments are applied to the 

samples in the treatment group, while no treatments are applied to the samples in the control group. 

The treatment serves as the cause. The presence and absence of treatment cause varying 

effects/outcomes. Individual treatment effect (ITE) estimation aims to compare the different 

outcomes with and without the treatment of a specific unit. The average treatment effect (ATE) 

measures the average difference between the outcomes for the treatment group and the outcomes 

for the control group. ATE enables the quantification of causal relationships when performing 

data-driven causal discovery. It is expressed as:  

 ATE =  E[Y1 − Y0] (19) 

where E is expected value, Y0 is outcome wound occur for individual if they are not treated and 

Y1 is outcome wound occur for individual if they are treated. By definition, we estimate the ATE 

by a comparable set of differences in outcome with and without treatment.  

Another metric, ATT is the causal effect of the treatment for individuals in the treatment group, 

defined as:  

 ATT = E([Y1 − Y0]|T = 1) (20) 

Where, T = 1 means treatment group. The way can distinguish between the two is that ATE is the 

average causal effects in the population under consideration. ATT, on the other hand, is the average 

causal effect for the treatment group only. In other words, ATT is pre-post difference in the 
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treatment group. They are not good or bad, which to use just depends on what your problem is. 

For example, ATT tells us what the effect with different drug treatment is, while ATE tells us what 

the effects of people taking or not taking the drugs are. Medical studies typically use ATT because 

they often only care about the causal effect of administering a drug for various patients. 

Additionally, in reality, we do not always have both control and treatment groups. In this example, 

if a person takes the medication, then the result of that person not taking the medication does not 

exist. Therefore, in non-experimental studies, causal discover is fraught with uncertainties. Causal 

relations could only establish by careful attention to all relevant variables and should involve active 

manipulation as final confirmation.  

Confounding variables (or confounders) are often defined as extraneous/irrelevant 

variables whose presence affects the variables under study, leading to an erroneous obscuring or 

emphasizing of their relationship (MacKinnon et al., 2000). Since confounders obscure the real 

effect of a treatment on the outcome, the confounders need to be eliminated as much as possible 

(Jager et al., 2008). There are various ways to exclude or limit the influence of confounders, which 

include randomization, restriction and matching. To give a simple example, Figure 4-1 is a causal 

graph tries to find out if taking medication affects the disease. The fundamental problem in causal 

inference is that one outcome is observed factual outcome, while another compared outcome is 

always counterfactual outcome in the same unit (Holland, 1986). That is why we need to have a 

treatment group and a control group for comparison. The treatment group was those who took the 

drug, while the control group was those who did not. Next, by comparing the disease changes in 

two group we could get treatment effect. However, individuals in two groups are always differed 

on other variables. In this case, people who decide to take the drug are older than people in control 

group. Age may affect both the disease status and whether they remember to take their medication. 



 

 

66 

 

 

 

Therefore, the effects from the confounding variable (age) are also accounted for when calculating 

ATE, which led to a spurious effect. There might be a correlation between taking medicine and 

disease either because of the causal path or the confounding correlation path through age/gender. 

Note that if the variable differed between the treatment and control group, but had no association 

with the outcome, then that parameter would not be considered a confounder. Causal inference is 

a practical technique to eliminate the different qualities/confounders between the two populations 

and make them comparable with different statistical methods.  

 

Figure 4-1. Causal diagram to measure whether the drug will cure the disease. Treatment group 

subject receives a specific drug and those in the control group do not receive drug. The orange 

and blue number under individual is age. Then the age or unknowledge gender as difference 

between treatment and control group which also influence the outcome are confounders need to 

consider for causal analysis.   

 

4.1.2 Causal Inference Toolbox     

We are witnessing a highly accelerated phase of progress in artificial intelligence and 

machine learning. they have significantly progressed in many complex tasks from different areas. 

Supervised learning is good at training to learn a very accurate mapping from inputs to outputs, 

whether they are images, sentences, signals, etc., from large amounts of labelled data. However, 
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current machine learning algorithms have fundamental limitations. It should be noted that an 

acknowledgement of supervised learning’s shortcomings does not in any way diminish its success. 

Firstly, the trained machine learning may perform poorly in a new environment. In real-world tasks, 

the testing set is often distributed differently than the training data. Secondly, most machine 

learning algorithms, especially deep learning remain ‘black boxes’ that are unable to explain their 

predictions and recommendations. Prediction models are purely focused on correlation features, 

while correlated things may not even relate (Niles, 1922; Duesberg, 1998). Correlation based 

methods can lead astray. In addition, intelligence outcomes should not solely rely on data but also 

incorporate domain knowledge. Suppose the learning direction is a cause-and-effect relationship, 

all input features are potential effects/causes of the label in supervised learning, and it is possible 

to reach the next AI state. Intrinsically, causality facilitates prediction because finding causal 

relationships is crucial for building explainable machine learning models. Causality suggests the 

primary mechanism of a process being modelled by the data-driven model. However, the current 

evaluation of data-driven models and machine learning algorithms are primarily focused on the 

statistical correlation between the features and targets rather than potential causality.  

In recent years, several studies have examined the connection between machine learning 

and causality (Scholkopf, 2019; Guo et al., 2020; Moraffah et al., 2020). Causality research can 

generally be divided into two main branches: causal discovery and causal inference (Nogueira et 

al., 2022). Actually, these two tasks are antipodal. The former focuses on estimating causal 

relationship between variables directly from observational data without making any assumptions. 

The latter assumes the causal relationships at the beginning and then aims to quantify the causal 

impact deriving from a change of a cause over an outcome of interest. The causal graph is a 
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directed acyclic graph (DAG) that depicts the causal-effect relationships between variables with 

the hypothesis. Despite the availability of various frameworks and methods for causal inference in 

numerous toolboxes, most of them suffer from a lack of robust validation and reliable 

implementations. Causal inference is a framework used to address causal conclusions by using a 

particular model. There are two popular models used for causal inference. One is the potential 

outcome framework, also known as Rubin causal model (RCM). Another one is structure causal 

model (SCM) proposed by Professor Judea Pearl in 1995 (Pearl, 1995). RCM and SCM are in fact 

strongly equivalent. However, when it comes to event-based causality, SCM is considered the most 

well-established and widely used model. Hence, this paper will introduce the SCM according to 

its development concept.  

Table 4. Python toolbox for causal analysis with pros and cons 

 

Table 4 presents an overview of well-documented computational tools for performing 

causal inference in Python. Each library provides various statistical methods for causal analysis 

with its advantages and disadvantages as well as the scope of application. There are multiple 
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Python packages that implement various statistical and econometric methods within the causal 

inference framework. Causal inference may seem tricky, but almost all methods follow four key 

steps: 1). Model a causal inference problem using assumptions. Researchers need to create an 

underlying causal graphical model for each problem. 2). Identify an expression for the causal effect 

under these assumptions. 3). Estimate the expression using statistical methods such as propensity 

score-based approach or double machine learning. 4). Finally, verify the validity of the estimate 

using a variety of robustness checks. Causal discovery, CausalNex and DoWhy can provide graphs 

through analysis to describe and visualize causality of the dataset. However, it is hard to validate 

the provided causal graph/causal structure. In this situation, the combination of DoWhy and 

EconML is a powerful and comprehensive solution that covers numerous algorithms, model 

validations, and interpretation techniques (Zhao & Liu, 2023).  

4.1.3 Methodology     

Generally speaking, causal models are mathematical models representing causal 

relationships within a given system or population (Hitchcock, 2020). Many algorithms for 

estimating causal effects have been developed in recent years. We review a non-exhaustive list in 

Table 5 of causal inference methodologies from EconML and DoWhy, discussing their advantages 

and disadvantages. Drawing causal inferences in observational data without randomization is 

challenging due to the different qualities/confounders between the two populations. The rough 

idea is to do some "balancing" of the samples from the treatment and control groups for reasonable 

comparability. 
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Table 5. Summary of the pros and cons used to control confounding in observational studies 

 

Propensity score analysis describes a family of statistical techniques that are effective for 

accessing treatment effects (Guo & Fraser, 2014). The propensity score is a balancing score which 

estimates the conditional probability of receiving the treatment, given the observed covariates 

(Rosenbaum & Rubin, 1983). Formally, defining the propensity score as: 

 e(w)  = P(T = 1|W = w) (21) 

Where, e(w) is the propensity score, T is the treatment, W is the confounders. Propensity score 

can be calculated from logistic regression. There are two popular strategies that use propensity 

scores-based model to reduce selection bias between treatment and control group: matching and 

inverse propensity weighting (IPW) (Xu et al., 2010). Propensity scoring matching (PSM) is a 

statistical matching technique the balance the potential covariates in the treatment and control 

group (Caliendo & Kopeinig, 2008). Matching the similar propensity score can significantly 

reduce the observation number, particularly if the sample pool is already small. PSM matching 

may seem appealing at the first glance, but there have been numerous debates and studies 
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highlighting the potential pitfalls associated with PSM. They believe PSM can match very different 

observations just because they have similar propensity scores. IPW includes sample weight defined 

as the inverse of the propensity. Inverse-probability weighting removes confounding variables by 

creating a “pseudo-population” with weighting. Specially, the weights are defined as w1 =  
1

e(w)
 

for treatment group, w0 =  
1

1−e(w)
 for control group. Although propensity score analysis may be 

used to assemble comparable study groups, the quality of the propensity score model depends on 

the quality and size of the available data and how the model was built (Haukoos & Lewis, 2015).  

Double Machine Learning (DML) is a method for understanding the causal effect without 

being unduly influenced by the covariates. This idea has been introduced and developed by 

Chernozhukov et al. in a series of papers (Chernozhukov et al., 2016; Chernozhukov et al., 2017; 

Chernozhukov et al., 2018). It provided a general framework to estimate estimating causal effects 

with confidence intervals using machine learning techniques. With the known DAG in Figure 4-

2, we could define the following partially governing equations. Here for better explanation and 

interpretation, we only use one confounder and assume a linear model in this DAG. 

 
Figure 4-2. Example represented as a DAG: T is the treatment indicator, Y is the outcome, 

and W is a confounder. 

 

 Y = θoT + go(W) + U, E[U|T, W] = 0 (22) 

 T = mo(W) + V, E[V|W] = 0 (23) 
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Where, Y is the outcome, T is the treatment, W is confounder, and U and V are disturbances. In 

equation 22, θo is the average causal effect that we would like to estimate. Nuisances functions 

go(W) and mo(W)keep tracking the influence from confounder. The confounding factors affect 

the treatment via function mo(W)and the outcome variable via function go(W). A naïve approach 

to estimate θo is construct regression estimator for function Y −  go(W) = θoT + U. However, 

regularization bias occurs between θo and predicted θô without considering the effect of W on T. 

 θô = (
1

N
∑ Ti

2

i∈N

)

−1
1

N
Ti(Yi − go(W)) (24) 

 

√N(θô − θ) = (
1

N
∑ Ti

2

N

i=1

)

−1

1

√N
∑ TiUi

N

i=1

+ (
1

N
∑ Ti

2

N

i=1

)

−1

1

√N
∑ Ti(go(Wi) − go(Wi)) ̂

N

i=1

 

(25) 

Inspired from the Frisch-Waugh-Lovell Theorem (FWL Theorem) which shows how to 

decompose a regression of y on a set of variables X into two pieces. This theorem states that, given 

the linear model Y = β₀ + β₁T + β₂W + U, the two following approaches for estimating β₁ yield 

the same result: a). linear regression of Y on T and W. b). three-step procedure: 1) regress T on 

W; 2) regress Y on W; 3) regress the residuals from 2 on the residuals from 1 for getting β₁ (all 

regressions using Ordinary Least Squares, OLS). Therefore, back to our example, DML can be 

done in two stages. Stage 1 includes outcome equation and treatment equation. Outcome equation 

fits a model to predict Y from X to get the predicted Ŷ. Treatment Equation fits a model to predict 

T from X to get the predicted T̂. Stage 2 performs a regression model on the residuals which could 

partial out W with a regression model to predict Y −  Ŷ on T − T̂. Chernozhukov et al. show that 

https://arxiv.org/pdf/1608.00060.pdf
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combining these two algorithms removes regularization bias during the training of the ML 

algorithms. The pros and cons have been listed in Table 4.  

 Doubly Robust Learning (DRL) is a method for estimating treatment effects when the 

treatment is categorical. It consists of several variants depending on what type of estimation 

algorithm is chosen for the final stage, including forestDRLearner, linearDRLearner, 

sparselinearDRLearner and so on (Buhlmann & Van De Geer, 2011). It simplifies the problem to 

two regression tasks: 1) predicting the outcome from the treatment and controls, 2) predicting the 

treatment from the controls. Then the method combines these two predictive models in a final 

stage estimation to create a model of the heterogeneous treatment effect. It can also be used if our 

goal is to understand the effect of each of the treatments on the outcome as a function of a set of 

observable characteristics of the treated samples, also known as the conditional average treatment 

effect (CATE). This estimator performs automatic featurization and can fit non-linear models. 

4.2 Workflow  

4.2.1 Key Fundamental Questions to be Answered  

This chapter aims to answer the following questions:  

• How to discover generalizable and scalable causal signatures of crack propagation by 

analyzing the multipoint wave-transmission measurements using causal inference 

approach?  

Terminology: Generalizable and scalable refers to discovered causal signatures can be applied to 

any composition, velocity, density, porosity, and size of material. Physically relevant means 

discovered signatures are get from the real-world inspired measurements with limited sampling 

rate and precision.    
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4.2.2 Description of Workflow  

In its broadest and most straightforward sense, signatures are any information that unique, 

recognizable, and valuable. They come from raw data that can then be translated into knowledge. 

A good signature allows us to perceive, predict, and react appropriately to changing situations 

(Smith & Peterson, 2012). The most critical step is characterizing measures, signals, and properties 

in or of complex systems to detect or attribute change. Difficulties lie in extracting relevant 

information from a complex environment cluttered with numerous irrelevant phenomena that 

obscure meaningful signatures or in mining new information from existing data or instrument 

signals. The objective of this study is to identify the causal signatures of crack propagation by 

analyzing multipoint wave-transmission measurements from simulation tools (Liu & Misra, 2022). 

Figure 4-3 shows the whole workflow which includes two main parts: crack propagation model 

and causal signature discovery. The crack propagation model collects multipoint wave-

transmission measurement data from simulation model.  
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Figure 4-3. Workflow for identifying causal signatures of crack propagation using multipoint 

wave-transmission measurements. The workflow includes waveform data collection, feature 

space generation, causal problem definition, validation, and discussion. 

 

This study includes two case studies: random linear crack propagation and crack path from 

the simulation model. Each crack path is then transferred to the K-wave simulator for elastic wave 

simulation. Then, causal signature discovery will involve developing large feature spaces, 

implementing methods to extract causal relationships between variables, identifying key variables 

that contribute to crack propagation by using causal inference, and testing the generalizability of 

the identified causal signatures. The workflow provides a structured approach to understanding the 

underlying mechanisms of crack propagation and can aid in designing systems for fracture 

propagation identification. 
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4.3 Causal Signature Discovery for Three-stage Linear Crack Propagation  

4.3.1 Causal Signature Discovery with Binary Treatment 

Our study aims to identify specific signatures in the recorded multipoint waveforms that 

have strong causal relationships with crack propagation. For our dataset, samples with crack 

propagation from stage 1 to stage 3 longer than 8mm are considered the treatment group (T=1). 

Conversely, other samples with crack extensions shorter than 8mm constitute the control 

group(T=0). The scaled statistical-parametrization-based features (The features used here are the 

same with the regression features listed in Appendix A) derived from the corresponding multipoint 

waveforms constitute the effects for a sample in the control or treatment group. The changes 

observed in these features between stage 1 and 3 can be attributes to the propagation of the crack.   

Pre-processing of the data is required to ensure that all the features in the control and treatment 

groups have the same range. This step ensures that the ATE values, which quantify the causality 

corresponding to various effects, are comparable between the 20 highest-causality features. Here, 

we use the DoWhy toolkit to evaluate the causal relationship between the crack propagation and 

the signatures in the multipoint waveforms. In step one, DoWhy creates an underlying causal 

graphical model for a given problem, including confounders and instrumental variables with causal 

hypotheses. Figure 4-4 lays out the causal graph in our case, where the cause is the crack 

propagation and effects are statistical parameters change derived from the multipoint waveform 

measurements. Other variables such as crack location, orientation and background properties are 

known confounders that influence cause and effect. 
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Figure 4-4. Simplified causal graph analysis of our dataset reveals certain confounders that 

influence the effects of crack propagation on the statistical-parameterization-based features 

extracted from the multipoint waveforms.    

 

With a given cause and effect, DoWhy automatically considers the rest of the variables as 

potential confounders. Next, we use supported identification criteria (back-door criterion, front-

door criterion, instrumental variables, and mediation) to recognize the causal and effect based on 

the given model. Identification can be achieved with graph-based criteria and do-calculus without 

access to the data. Then, we compute the target estimand (ATE/ATT) identified in the previous 

step with a statistical estimator. To model non-linear data, it also provides machine learning-based 

methods like gradient boosting tree to learn the relationship between the outcome and confounders, 

and the treatment and confounders, and then finally compares the residual variation between the 

outcome and treatment (Sharma & Kiciman, 2019). Finally, the key benefit of using DoWhy is 

that they offer multiple refutation methods to check the robust of estimate. The common refutation 

methods could check how sensitive is the causal estimate when replace the true treatment variables 

with a simulated dataset close to given variables. Or if the effect goes to zero when we replace the 
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true treatment with an independent random variable. The most important part of this work is 

illustrating whether instability/changes in our statistical features derived from the multipoint 

waveform measurements stem from crack propagation. Each statistical feature has 9 corresponding 

ATE calculated for the 9 waveforms recorded by the 9 sensors placed on the surface of the material. 

Any feature that fails the refutation test is assigned a value of zero, which means no causation is 

found. The causal effect can be positive or negative. Positive causation means the change in the 

effect variable is in the same direction as the change in the cause. By calculating the average of 

the absolute ATEs for statistical features, it is possible to compare their causal intensity and 

determine the signatures of crack propagation.  

The most obvious observation from the causal analysis is that the number of zero-crossing, 

negative-turning, and positive turning are the top three features affected by crack propagation. 

A zero-crossing occurs when the sign of the signal changes. Positive/negative turning is the 

number of positive/negative turning points for the entire 25-µs waveform. These three signal 

features are the hallmark signatures in seismic waveforms of crack propagation. This indicates 

anomalous fluctuations in the seismic waveform signaling crack growth in the material. In 

addition, significant changes in high-order moments such as variance, skewness and kurtosis are 

also caused by crack propagation in the material based on the bar plots in Appendix B. It was 

originally thought that the index of peaks and dips in the waveform, as well as their amplitude, 

would change dramatically due to the effects of crack growth. However, the observed causal 

estimate from maximum and minimum index in this study were negligible. Here, we report the 

impact of crack propagation on the elastic waveform, which does not affect the wave shape or crest 

but triggers unstable fluctuations near the zero point. In terms of sensors, we notice that the signal 

from sensor 8, located on the opposite side of the source, was most sensitive to the changes in 
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fracture length. This is highly consistent with the findings in the feature ranking. One unanticipated 

finding was that sensor 2 and sensor 1 became the other key spots in the causal study replacing 

sensor 7 and sensor 9 from feature ranking and correlation ranking.   

4.3.2 Causal Signature Discovery with Continuous Treatment  

In this study, the cause is crack propagation from stage 1 to stage 3 represented by fracture 

area fraction (FAF). The biggest difference from the previous section is that the treatment here is 

of continuous value. As two red lines shown in Figure 4-5, samples with FAF change above 0.55 

from stage 1 to stage 3 belong to the treatment group. Those with FAF changes less than 0.45 are 

the control group.  

 
Figure 4-5. Simplified causal graph analysis for continuous treatment that influence the effects of 

crack propagation on the statistical-parameterization-based features extracted from the 

multipoint waveforms in three bands.   

 

Our mean goal is to find the true effect of crack propagation in new extended effect space, 

including time-domain and frequency-domain features in Table 6. In the end, the high causality 

parameters are defined as the signatures of crack propagation. It means that in future when we 
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notice an abrupt change in that parameter. It indicates that there is a high probability of crack 

propagation within the material. There are 12-time domain features, including statistical features 

of the elastic signal from different sensors such as mean, standard deviation, skewness, kurtosis, 

RMS energy, zero crossing number, the maximum signal index, minimum signal index, peak 

numbers, positive turning, negative turning, complexity-invariant distance (CID). Features are 

captured from a python package named Time Series Feature Extraction Library (TSFEL) and 

librosa. They are open-source libraries designed to support fast exploratory data analysis and 

feature extraction on signal data. Most of them are straightforward, we will only explain the RMS 

energy, CID and zero crossing in detail. RMS energy is the root-mean-square value of a signal that 

relates to the average amplitude of the waveform. CID is a shape-based complexity estimation in 

time series signal involves the Euclidean distance calculated as (Batista & Keogh, 2011): 

 𝐶𝐼𝐷 =  √∑(𝑥𝑖 − 𝑥𝑖−1)2

𝑛−1

𝑖=1

 (26) 

 

 

Table 6. Time-Domain and Frequency-Domain Feature Space for Signature Discovery 

  
 

A more complex time series has more peaks and valleys. Zero crossing computes the 

number of zero points of the time series signal. It corresponds to the total number of signals that 



 

 

81 

 

 

 

change from positive to negative or vice versa, as shown in Figure 4-6. Zero crossing points are 

the red dots that fall on the red zero line. Positive turning records the inflection point where the 

signal value rises, and negative turning shows the point where the signal value falls. They are 

represented by the green and yellow dots in the figure below. These characteristics reflect the 

fluctuations of the signal.  

 
Figure 4-6. Zero crossing, positive turning and negative turning detection. The main figure is a 

random signal from one sensor. Red line is the zero-points reference line. The upper right part is 

zoomed-in plot from 5 𝜇𝑠 to 10 𝜇𝑠. Zero crossing compute the number of zero point of the signal 

as marked red dots. The green points are negative turning where signal value decrease. The 

yellow points are positive turning where signal will rise in the next part.  

 

The short-time Fourier transform (STFT) is a Fourier-related transform that provides the 

frequency contents over time. It evaluates the Fourier transform in the short time windows used 

for time-frequency analysis (Durak & Arikan, 2003). Let us discuss, in short, these features 

generated from the frequency domain. 

1. Spectral Flatness: Spectral flatness is a metric used in signal processing to quantify how much 

noise-like the signal is (Dubnov, 2004). A high spectral flatness (closer to 1.0) indicates the 
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spectrum is similar to white noise. Low spectral flatness (near 0.0) indicates that the spectral power 

is concentrated in a relatively small frequency band.  

2. Spectral Centroid: Spectral centroid measures spectral position and shape. It indicates at which 

frequency the energy of a spectrum is centered upon (Klapuri & Davy, 2007). A high value of 

spectral centroid implies more signal energy is concentrated in higher frequencies.  

3. Spectral Roll-off: Spectral roll-off computes the roll-off frequency of a spectrum. It is the 

frequency below which a specified percentage of the total spectral energy, e.g. 85%, lies in librose. 

4. Spectral Bandwidth: Spectral bandwidth is defined as the width of the wavelength range 

(Klapuri & Davy, 2007).  

In signal processing, a signal/waveform is viewed as a function of time. Breaking the 

waveform into several segments helps to detect the effect of crack propagation at different time 

periods. As Figure 4-5 shows, the whole waveform per stage could be divided into three bands. 

The initial band is from 5𝜇𝑠 to 10𝜇𝑠. The intermediate band contains information from 10𝜇𝑠 to 

15𝜇𝑠. Then the last band is from 15𝜇𝑠 to 22𝜇𝑠. We remove part of the waiting period at the 

beginning and part of reflection at the end. For each band, there are 9 corresponding ATE for each 

feature, which come from the 9 waveforms recorded by 9 sensors placed around the material. The 

cause is FVF change, while the effect is the features change through propagation from stage1 to 

stage3. We will search for the most substantial causal effects in each feature space based on ATEs 

as causal signatures of crack propagation. The detailed ATEs from three bands are displayed as 

bar plots in Appendix C. The grey line around our estimate is constructed 95% confidence interval 

calculated by the bootstrap resampling method with 100 simulations. The causal effect could be 

positive or negative.  Positive causation means the effect variable changes in the same direction as 

the cause. Causal intensity for different features is compared by averaging the ATES from 9 
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sensors. The determined causal signatures are defined as the FracTag that signifies an early alert 

for crack propagation.  

In band 1, RMS energy, standard deviation, and CID show high causality from sensor 1 to 

sensor 4 as this part contain more information about the sensors near the source. One unanticipated 

finding was that the sensor 8, located opposite to the source, have higher causality for shape-based 

features such as maximum amplitude index, positive turning, negative turning and zero crossing. 

Compared to band 1, features from band 2 have stronger causality. Positive turning, negative 

turning and zero crossing rates have strong positive causality. That means as the FVF increase in 

the material, the frustration of the signal also increases. For band 3, we notice the stronger causality 

from frequency domain features in the last row compared to the earlier time bands, especially 

spectral centroid. In summary, in the early time of crack growth, crack propagation has the most 

significant influence on the maximum index. The median and late time of the propagation need to 

focus on monitoring the change of positive turning, negative turning, and zero crossing for crack 

detection.  

In terms of sensors, the signal from sensor 8, located on the opposite side of the source, has 

the highest causality with crack propagation. What is interesting about the ATEs in band 2, sensor 

results could be divided into two groups, sensors 1 to 4 which are closer to the source are always 

have the same tend. Then sensor 5 to sensor 9 are relatively far from the source may have different 

performances from the first group. RMS energy, standard deviation, peak number, CID, and 

spectral centroid show positive causality for sensors 1 to 4, but negative causality for sensors 5 to 

9. Maximum amplitude index causality is exactly the opposite. The maximum index of sensor 1 to 
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4 reveals a significant negative effect on the variation of FAF, while sensors 5 to 9 have a positive 

response.   

4.4 Causal Signature Discovery for Crack Growth from HOSS Simulation   

4.4.1 Introduction   

The mechanical behavior and fracture toughness of brittle materials may be affected by the 

pre-existing cracks and micromechanical behavior of the cracks (Kato & Nishioka, 2005). In 

a crack propagation process of a brittle material such as pre-cracked rock specimens, usually two 

types of cracks are observed originating from the tips of pre-existing discontinuities – wing cracks 

and secondary cracks (Shen et al., 1995; Wong et al., 2001). Figure 4-7 displays the wing cracks 

and secondary cracks generally observed in previous investigations with a single pre-existing 

fracture or two pre-existing parallel fractures loaded in uniaxial compression. Wing cracks usually 

appear first, which are produced due to tension. In those cases, it is noted that wing cracks initiate 

at an angle to the pre-existing flaw and tend to propagate in a curved path from the initial flaw tip 

towards the maximum loading direction (Cao et al., 2015).  



 

 

85 

 

 

 

 
Figure 4-7. Crack types observed in pre-existing cracked material under compression. (a) Single 

initial crack with wing crack and secondary crack. (b) Two parallel cracks with internal wing 

crack, external wing crack and secondary crack.  

 

Whereas secondary cracks appear later and are responsible, in most cases, initiated by shear 

stress. In multiple flaw systems under uniaxial loading, internal wing cracks and secondary cracks 

also occur and eventually lead to coalescence (Cao et al., 2015). Coalescence may occur in the 

bridge area due to the propagation of wing cracks emanating from the tips of the pre-existing 

cracks. The bridge area can be defined as the area in-between the two pre-existing cracks can be 

investigated in Figure 4-7 (b). Afterwards, if the wing cracks grow to a critical length to the 

top/bottom of the material, the specimen begins to fail. Many studies have experimentally shown 

that wing cracks are responsible for crack coalescence and the final crack propagating paths (Haeri 

et al., 2014). 

Compression tests are the natural complement to the tension test, which is used to 

understand the mechanical behavior and properties of rocks. It has been widely applied to 

petroleum industries, rock drilling, tunnel design and the design of waste depositories (Isah et al., 
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2020). Uniaxial compression test (UCT) is a destructive test developed by the America Society of 

Testing and Materials (ASTM) and then extended to comprise confined testing and different state 

of stress and temperatures in the laboratory (ASTM, 1986). During UCT, the specimen is loaded 

axially to failure, and then stress, the axial and lateral deformation could be recorded with special 

equipment through an electronic system. The failure load and testing data can be used to calculate 

the failure stress and determine the elastic constants of the rocks (i.e. Young’s modulus, Poisson’s 

ratio). UCT can also be combined with acoustic emission (AE) module to monitor the response of 

the specimen from the initial to the final failure, which corresponds to the change of stress-strain 

curve under uniaxial loading (Wu & Huang, 2020). However, the rock mass properties are highly 

affected by other factors, including pre-existing crack and equipment setup. Then numerical tools 

are needed to describe material deformation (i.e., fracture and fragmentation, etc.), in-situ stress, 

and in-situ geologic structures (i.e., faults, joints, etc.) under user-prescribed boundary conditions.  

4.4.2 HOSS Simulation Description  

The conventional computational approaches generally use continuum-based methods and 

rely on several assumptions that have limitations when dealing with discontinuous processes, such 

as fracture and resolution of particle-particle interactions (Bui et al., 2014). At Los Alamos 

National Laboratory (LANL) researchers developed a hybrid multi-physics software called Hybrid 

Optimization Software Suite (HOSS). It integrated computational fluid dynamics (CFD), finite-

discrete element methodologies (FDEM), finite element analysis (FEA) and discrete element 

method (DEM) into a single simulation platform with the latest technology to overcome these 

limitations through a hybrid continuum-discontinued approach. HOSS is designed for solving 

complex problems in many engineering applications, including oil and gas retrieval and processing, 

construction, mining, defense and materials development and analysis (Moore et al., 2018; 
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Schwarzer et al., 2019; Wang et al., 2021). Current application spaces range from hydraulic 

fracturing to hypervelocity impact (bolides), earthquake rupture, even other more specialized 

applications such as underground test containment, nuclear weapons effects (cratering, pyroclastic 

flow, etc.), high explosive performance, and weapons penetration are also considered. Numerous 

experiments have been devoted to validating the results obtained by HOSS including crack 

initiation, propagation path, and eventual coalescence of the pre-existing cracks under tensile and 

compressive loadings (Knight et al., 2020). 

 
Figure 4-8. General workflow for a HOSS simulation  

 

In the present work, the crack propagation and coalescence process of rock-like specimens 

under uniaxial compression will be numerically studied in the HOSS platform and K-wave 

simulation. HOSS is also compatible with other software like Cubit to aid in model generation and 

post-processing visualization. Figure 4-8 is the typical workflow for a HOSS simulation. The first 

step is model geometry and mesh generation which can be complete using any Computer-aided 

https://www.sciencedirect.com/topics/engineering/propagation-path
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Design (CAD) meshing tool with Abaqus ‘.inp’ extension. The recommended meshing tool is 

Cubit created by Sandia National Laboratories. Users creates journal file to define important 

entities and different material properties to specified regions in geometry model. Next, using the 

HOSS mesh translator, the ‘.inp’ file can be automatically converted to a format readable by the 

HOSS executable. The default options always produce two new files ‘mesh.inp’ and 

‘MPSDomains.input’ for further manipulation. On the other hand, important parameters of 

simulation including material size, time step, bulk density, Young’s Modulus, Poisson’s Ratio and 

boundary conditions are written in the ‘xxx.input’ and ‘bc.input’ files. The material constants used 

in the simulation assume base SI units (i.e., m, kg, s, etc.). The elastic properties are used to 

calculate the Munjiza constants implemented in HOSS. After preparation of four separate files: 

‘xxx.input’, ‘MPIDomains.input’, ‘xxx.input’ and ‘bc.input’, it is time to run the HOSS executable 

with established input deck. Finally, the results of the simulation (.pvtu file) can be viewed using 

multi-platform post-processing software Paraview. All damaged elements throughout the model 

will be visible.  

The problem of interest for this work is the crack propagation and coalescence in 2D pre-

cracked samples under pure compression load. HOSS considers two primary modes of failure in 

2D: Mode I, which is opening mode due to tensile load, and Mode II, which is sliding crack growth 

because of shear loading (Hunter et al., 2019).  At each time step, the HOSS simulation outputs a 

2-way tensor (matrix) representing the position of current cracks and a 3-way tensor representing 

the entire stress field (Wang et al., 2021). The damage channel denotes the position of the cracks, 

in which 0 represents undamaged material and 1 represents completely damaged crack. The sample 

may completely fail at the end and cannot carry any load later. 
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Figure 4-9. HOSS simulation setup for the problem of interest. (a) Schematic view of HOSS 

simulations which explains the setup of initial parallel cracks. All other geometry, loading, and 

material parameters were kept the same for all simulations. (b) One simulation sample with b =
5mm, α = 10°, β = 30°.  

 

In this study, the material sample is seeded with 2 cracks that mimic initial defects in the 

material at the beginning of each simulation. Figure 4-9 presents the initial pre-existing cracks 

setup in the rectangular 2D material with dimension of 120mm  60 mm. In the schematic view 

(Figure 4-9 (a)), α is the inclination angle of pre-existing flaw measured from the horizontal 

plane, β is the inclination angle of the rock bridge and b is the length of the rock bridge. In HOSS 

simulation, the pre-existing discrete fractures in the rock media can be explicitly modelled and 

influenced both solid and fluid domains during the testing. To impose this loading condition, the 

bottom platen of the sample is kept fixed while the top platen is moved with a constant speed of 

0.1 m/s. The material is assumed to be elastically isotropic for all cases. The material is assumed 

to be elastically isotropic in all simulations and the material parameters for the concrete sample 

are the density of 2650 𝑘𝑔/𝑚3, Young’s modulus of 55 𝐺𝑃𝑎, and Poisson’s ratio of 0.15.  
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Due to the limitation of computational cost, this study only contains 1000 samples running 

for 35 𝑚𝑠 divided into 35-time steps. The initial cracks of each simulation are generated with the 

different combinations of b, α and β that are randomly selected from a given range. Hence, the 

crack network evolution will be different for every simulation, yet the overall material response 

should be nominally the same. Figure 4-9 (b) shows the initial setup of a random simulation 

sample with 𝑏 = 5𝑚𝑚, 𝛼 = 10°, 𝛽 = 30°. The high-fidelity model from HOSS simulates fracture 

and fragmentation processes in designed 2D systems, providing accurate fracture growth leading 

to material failure. However, running such simulations requires large memory available and may 

be computationally prohibitive.  

Figure 4-10 demonstrates the crack propagation and coalescence for two randomly picked 

samples for five equally spatial time steps. The first sample is generated with the inclination angle 

other pre-existing flaw 𝛼 = 20°, the inclination angle of the rock bridge 𝛽 = 90° and the length 

of the rock bridge b is 8𝑚𝑚. The second row displays the fracture graph for another sample with 

two relatively further pre-existing flaws. In the last time step, the rock material breaks as a myriad 

of fragments are created. More crack growth examples with diverse initial cracks setup can be 

found in Appendix D. 
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Figure 4-10. HOSS simulation samples of fracture coalescence and propagation with five 

different time steps. Sample 1 the pre-existing cracks generated with b = 8mm, α = 20°, β =
90°. Sample 2 the pre-existing cracks generated with b = 14mm, α = 20°, β = 90°. 

 

4.4.3 Dataset Description and Waveform Generation   

As a result, initial cracks inside the laboratory-scale samples propagate and coalesce with 

hundreds to thousands of incipient microcracks due to the compression loading, which can easily 

result in terabytes of data. In total, our dataset is around 500 GB and composed of 1060 high-

fidelity HOSS simulations, each containing 35 time-steps to simulate the detailed fracture 

propagation process. To simplify the problem, we narrow our discussion with several critical 

criteria: 1) first and large crack number increase (>30) in the defined sliding time window; 2) 

Inside the time window, the crack number cannot be higher than 300. The time window selected 

is three points with 2-time steps, which is 0.2ms. Figure 4-11 (a) gives an example of crack 

number change in 35-time steps and how the sliding time window works to select the target crack 
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growth window. It indicates the material has broken after time step 24, and there is no recorded 

crack number after that point. In this case, the time window selected is 16-18, satisfying all the 

setting condition. After the criteria filtering with the time window, the sample number was reduced 

from 1060 to 937.  Each sample has one pair of crack graphs illustrating the crack evolution over 

a time window. Figure 4-11 (b) draws the crack points in Python for the start and end points within 

the selected time window.  

 
Figure 4-11. Sliding time window to capture the target crack growth with defined criteria: 1) 

First and large crack number change (>30) 2) Crack number < 300 within the crack window to 

reduce the complexity. 

  

Figure 4-12 presents four typical types of crack change within the selected time window 

for different samples. Categories (a) and (c) are similar, including the process for initial crack 

propagation and coalescence, but coalescence in the rock bridge is not yet accomplished. The 

apparent difference is their shape. Class (b) is purely crack extension from both sides of initial 

parallel flaws. Type (c) is crack propagation and completed coalescence. While class (d) focuses 

on the coalescence between the pre-existing cracks. For these four types, no rule regarding the 

range of variation in the crack number was figured out. That means the crack number changes are 
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random and independent of the shape. Failure paths are generally perpendicular to the loading 

direction, and crack propagation is mainly along the vertical direction. 

 
Figure 4-12. Summarized 4 typical types of crack change within the selected time window for 

different samples. (a). crack propagation and coalescence (not completed); (b) crack propagation; 

(c) crack propagation and coalescence; (d) crack coalescence.  

 

 

These are chosen with the goals to validate the causal inference methods, also highlight 

which causal features stand out and can be used as a generalizable indicator for crack propagation. 

We found that applying a causal model to discover signatures of crack growth in materials can be 

done by engineering the features that can be generalized to a wide array of problems. Therefore, 

we add source and sensor around the material to capture the waveforms that can be used to generate 

feature space for causal analysis. Similar to Chapter 4, we combine the source and sensor 

configuration and K-wave simulation to learn the crack information as non-destructive testing. 

However, the top boundary of the upper platen moves at a speed of 0.1 m/s and is not ideal for 
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accommodating sensors. In Figure 4-13, there is a pressure source placed in the middle of the left 

side of the material. Then there are 3 sensors at the fixed bottom layer, marked as sensors 1, 2 and 

3. To capture sufficient information, the other 5 sensors are placed at the opposite border of the 

source. It is an assumption that we ignore the position change of these five sensors in the time 

window of 0.2ms. This actual deformation is around 0.2mm.  

 
Figure 4-13. Source and sensor configuration and captured waveforms ate the start and end of the 

time window (0.2ms).  

 

The crack graph and the waveform received at the start of the time window are titled ‘Time 1’. 

Sensor 6, in brown color, is the first arrival waveform due to its shorter distance, which was 

postponed in time 2 after the crack graph became complex. The amplitude of sensor 2(orange) and 

sensor 3(green) are strongly influenced by crack propagation.  Therefore, we believe that the 

parameter changes of the waveforms, such as the peak position and peak amplitude within the time 

window, can be used as an indicator of crack growth. 
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4.4.4 Causal Signature Discovery  

The purpose of this section is to identify causal signatures from the recorded multipoint 

waveforms, but the crack propagation and coalescence are more realistic and physically informed 

instead of random linear extension compared to the previous section 4.3. This section presents a 

causal inference scheme to discover new signatures from complex fracture systems to detect the 

fracture changes in the rock. Discovered signatures are generated from a need of understanding 

the response of waveforms during crack propagation and coalescence, then could further expand 

as the mission broadened in future including the detection and prediction of fractures. 

Transforming raw data for useful analysis is a critical step. Time series data is passed as inputs to 

the extraction method and then quickly transferred into features for further predictive modelling 

with ease. There are many open-source python packages designed to support the process of fast 

exploratory data analysis and automated feature extraction on time series sensor data (Naul et al., 

2016; Christ et al., 2018; Barandas et al., 2020). Available features in all libraries can be grouped 

into three categories according to the domain where they are calculated: temporal, statistical and 

spectral domain. Different existing related packages may be combined to integrate a more 

thorough analysis.  
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Table 7. New Time-Domain and Frequency-Domain Feature Space for Signature Discovery 

 
 

 

Table 7 is the searching feature space computed from recorded waveforms as the signature 

candidates consist of 30 features from the time-domain and frequency-domain. The first 10 

features from time-domain (red color) are exactly the same as those in section 4.3.  In this work, 

tsfresh, tsfel and librosa are implemented to choose the desired feature space. Thirty features are 

generated from the signal with different sampling rates of 20MHz, 10MHz, and 5MHz, to ensure 

the generalizable discovered causal signature.  
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Figure 4-14. Treatment (T = 1) and control (T = 0) group for causal inference. Treatment group 

has crack number increase higher than 70 grids while control group has crack number change 

smaller than 70 grids.  

 

In causal inference, binary treatment refers to a treatment that has only two possible values 

or levels. Conversely, continuous treatment indicates that any treatment value can be taken within 

a specific range. To conduct binary treatment study, two groups are created: a treatment group 

(T=1) and a control group (T=0) shown in Figure 4-14. The treatment group is the group of 

individuals or units that receive the intervention being studied. The control group, on the other 

hand, is a group of individuals or units comparable to the treatment group in all relevant aspects 

except that they do not receive intervention. The control group serves as a baseline against which 

the treatment group is compared. In this study, treatment group was defined as having a crack 

number increase of over 70 grids (408 samples), while the control group was described as having 
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a change in the number of cracks less than 70 grids (529 samples). By comparing the waveform 

parameters of different sensors in the treatment group, which experiences crack propagation, to 

those of the control group, researchers can determine the average treatment effect (ATE) of crack 

propagation on the waveform parameters. 

 
Figure 4-15. The average of eight Average Treatment Effects (ATE) for binary treatment from 

different sensors at a sampling rate equal to 10 MHz calculated by propensity score weighting. 

 

A positive ATE means that the treatment had a positive effect on the outcome, meaning 

that the outcome for the treatment group was higher than that of the control group. It's worth noting 

that ATE only measures the average effect of treatment on the outcome, and there may be 

individual variation within each group. Figure 4-15 illustrates the top 5 positive and negative ATE 

from propensity score analysis for the signal with a 10 MHz sampling rate. ATE for each parameter 

inside the figure is the average ATE from 8 sensors representing different locations around the 

specimen.  
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The top three parameters most influenced by crack propagation are reoccur number, the 

sum of reoccur values, and variation coefficient of the waveforms. Reoccur number returns the 

sum of all values that are present in the time series more than once (reoccur_number 

([2,2,2,2,1,1,1,4]) = 2×4+3×1 =11). In comparison, the sum of reoccurring values summed up all 

reoccurring values (sum_reoccur ([2,2,2,2,1,1,1,4]) = 2+1 =3). The variation coefficient is the ratio 

of the standard deviation to the mean which measures the extent of variability in relation to the 

mean of the waveforms. When the coefficient of variation is high, it indicates that there is greater 

variability or dispersion of the data points around the mean value. Spectral spread and kurtosis 

also exhibit a strong causal relationship with high ATE. In signal processing, spectral spread refers 

to a measure that characterizes the distribution of frequencies present in a signal's spectrum. It 

provides information about the extent or dispersion of the frequency components in the signal. A 

higher spectral spread value suggests that the frequency components of the signal are spread over 

a wider range, indicating a broader distribution of frequencies. On the other hand, a lower spectral 

spread value indicates a narrower concentration of frequencies. Kurtosis is a statistical measure 

that quantifies the shape of a probability distribution. It provides information about the tails and 

the peakedness or flatness of a distribution compared to the normal distribution. In the context of 

time series signal, the combination of those parameters describes the degree of variability or 

fluctuations in the signal over time. 
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Figure 4-16. Average Treatment Effect (ATE) ranking for binary treatment with a 95% 

confidence interval using bootstrap sampling. The parameters in orange color are the ranking of 

the top 5 negative ATE, while blue colors are the top 5 positive ATE parameters.     

 

Instead of focusing on the average ATE of all sensors, Figure 4-16 demonstrates the 

overall top parameters for different sensors. In this case, reoccur number, the sum of reoccur 

values, and the variation coefficient of the waveforms occurs twice in the top 5 positive and 

negative ranking ATE parameters. Most of them originate from sensors 4, 5, 6, and 7, which are 

positioned on the boundary opposite to the source. The gray bars are 95% confidence intervals 

computed from the bootstrap sampling, that provides a range of values within which a population 

parameter (i.e., mean or median) is likely to fall. Bootstrap sampling is a powerful non-parametric 

statistical method used to estimate the population parameters without making any assumptions 

about the underlying population distribution. It is calculated by repeatedly resampling a dataset 

with replacement to create multiple new datasets of the same size as the original.  
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Continuous treatment is often used for causal inference because it allows for a more 

nuanced analysis of the effect of the intervention. In contrast to binary treatment, continuous 

treatment can vary in intensity or duration. By analyzing the effects of continuous treatment, 

researchers can gain a better understanding of the propagation-waveform parameters relationship 

between the treatment and the outcome of interest. In this study, each sample will have a varying 

amount of crack propagation as the continuous treatment. However, the methods used to estimate 

the treatment effect may differ depending on whether treatment is binary or continuous. DML is a 

flexible and robust approach that can handle a wide range of treatment and outcome types, 

including continuous treatments. Specifically, DML uses two separate machine learning 

algorithms, one for estimating the treatment assignment and the other for estimating the outcome. 

These algorithms are then combined to estimate the causal effect of the treatment. Similar to binary 

treatment outcomes, Figure 4-17 reveals the number of recurrences, the total sum of recurrence 

values, and the coefficient of variation of the sensor waveforms are among the top ranking ATE 

parameters from DML of the waveforms at a 10 MHz sampling rate. The difference with binary 

treatment is that their causal effect exists in the direction of a positive effect. A positive causal 

effect is an effect that occurs when an independent variable causes a change in a dependent variable, 

resulting in a positive outcome. In other words, when crack propagation increase, it leads to an 

increment in the dependent variables captured from the waveforms.  
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Figure 4-17. The average of eight Average Treatment Effects (ATE) for continuous treatment 

from different sensors at a sampling rate equal to 10 MHz calculated by double machine 

learning.  

 

For detailed parameters with sensor information, these three causal signatures are present 

not only in the top 5 positive ATEs but also in the top 5 negative ATEs as shown in Figure 4-18. 

The wider confidence interval for the continuous treatment indicates that there is a large 

uncertainty in the true value of the ATE. This may be caused by small sample size, high variability 

in the data or other factors. It's important to note that a large confidence interval does not 

necessarily mean that the sample estimate is inaccurate or unreliable. Instead, it reflects the degree 

of uncertainty in the estimate and highlights the need for caution when interpreting the results. 
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Figure 4-18. Average Treatment Effect (ATE) ranking for continuous treatment with a 95% 

confidence interval using bootstrap sampling. The parameters in orange color are the ranking of 

the top 5 negative ATE, while blue colors are the top 5 positive ATE parameters.     

 

4.5 Conclusions and Discussion    

This research challenges current data-driven models and starts the evaluation of causal 

models which integrate domain expertise into machine learning pipelines. The idea is that the latent 

causal-effect relationship behind the problem we are learning cannot be ignored in machine 

learning. We present causal network to infer causal structure from elastic waveform data. The 

generated network defines events as nodes and connects each event with directed arrows. The main 

motivation here is to illustrate their ability to untangle and explain causal relationships between 

crack propagation and various statistical features of the designed fracture system. The causal 

relationship is further tested to ensure that propagation causality signatures are not an artefact of 

the estimation method. By analyzing the multipoint wave-transmission measurements, we 

formalize the generalizable, physical-related causal signatures of crack propagation. The causal 
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signature of crack propagation refers to the waveform parameters which change significantly 

during the process of crack growth in the material. Here generalizable means the causal signatures 

can be considered applicable for sensors at different location around the materials with diverse 

sampling rates. Identified causal signatures can be used to advance scientific knowledge by 

revealing previously unknown relationships between crack propagation and elastic waveforms. 

Causal signatures are useful tools for quantifying the variability of the time-series waveforms and 

can provide important information about the crack propagation inside the sample. 

For simulated three stages of linear propagation, fluctuations in the waveform such as 

positive turning, negative turning and zero crossing are being discovered as the effect of crack 

propagation. The physical meaning of positive turning, negative turning and zero crossing in time 

series signal are moments of change in the trend direction and sign, respectively. These features 

can be used to detect trend reversals and extract useful information about the underlying wave 

volatility. The greatest weakness in this part is that the crack expansion is totally stochastic and 

linear, without any solid mechanics and physical modelling. As an improvement, section 4.4 

leveraged both causal inference and state-of-the-art simulation solutions to identify the causal 

signatures of realistic crack propagation, including recurrence values, total sum of recurrence 

values, and coefficient of variation. These parameters provide valuable insights into the repeating 

patterns and structures present in time series waveforms and are closely related to the complexity 

and similarity of each data point. 

However, it is important to note that causal signatures are not always definitive, and that 

more research may be needed to confirm causal relationships and develop effective interventions. 

Another limitation of identified causal signatures is that they may not fully capture all the 

underlying dynamics or interactions between variables. Nonetheless, they can provide important 
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insights into the causal factors that influence outcomes, and help researchers and practitioners 

develop more effective strategies for understanding crack propagation. It also leads to the 

emergence of novel research inquiries, hypotheses, and theories.  
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CHAPTER V 

UTILIZING THE KNOWLEDGE-DRIVEN MODEL FOR THE EVALUATION OF MECHANICAL 

DISCONTINUITIES 

The boom of big data and machine learning has been demonstrated in many fields, which 

somehow resulted in the vague even erroneous understanding that the huge amount of precious 

domain knowledge accumulated to date no longer seems to matter. Machine learning and causal 

inference are two techniques that emerged and developed separately. In this work, we are 

pioneering to propose the knowledge-driven model to illustrate that domain knowledge, especially 

causal relation cannot be ignored in machine learning tasks. A knowledge-driven model is a type 

of model that relies on prior knowledge or expertise to design the model’s structure, select 

appropriate features, and determine algorithms to make accurate predictions. In the following parts, 

we will show how machine learning can benefit from the tools of causal inference with expert 

knowledge.  

5.1 Introduction  

The data-driven model is a type of approach to problem-solving or decision-making that 

relies heavily on analyzing large sets of data to identify patterns, insights, and predictions. It is 

often contrasted with more traditional models that rely on intuition, experience, and qualitative 

analysis. Data-driven model workflow can be customized to specific data/problem which can 

improve the relevance and effectiveness for better recommendations and decisions. However, data-

driven model has its own limitations such as lack of generalizability and explainability. It may face 

 
* Part of this chapter is reprinted with permission from “Monitoring the propagation of mechanical 
discontinuity using data-driven causal discovery and supervised learning.” By Rui Liu, Copyright 2022 
Mechanical Systems and Signal Processing, 170, 108791. 
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problems when the training condition is significantly different with the testing situation. The model 

we created to map from features to target in one environment may output incorrect values of the 

target for the features in another environment because the correlations are different. On the other 

hand, many data-driven models are black boxes, meaning that it is difficult to understand how they 

make decisions or what features are driving their predictions. This can make it challenging to 

diagnose problems or understand why the model is making certain predictions. 

Knowledge is reflected from data collection to algorithm implementation in data-driven, 

while the value of domain knowledge in data analysis has been overlooked for a long time.  Despite 

its exploratory nature, this study offers some insight into a knowledge driven model to combine 

causal inference and machine learning. A knowledge-driven model is a useful tool for capturing 

and utilizing human expertise and knowledge in decision-making processes, particularly in 

domains data may be limited or unreliable. Integrating expert knowledge with causal inference 

into machine learning can significantly reduce data demands, improve the stability and robustness 

of machine learning, and build interpretable machine learning systems (Deng, 2020). Compared 

to correlation, causal relationships are invariant, meaning that it is true across different 

circumstances and environments. From another perspective, causality is an important and growing 

aspect of interpretability in machine learning. The idea of causality has been developed and studied 

in many disciplines ranging from philosophy to economics, and even science, to conquer the 

instability issue in simple machine learning techniques (Hicks, 1980; Shoemaker, 1980; Detto et 

al., 2012). The intersection of causal inference and machine learning is a rapidly expanding area 

of research. However, no quantitative evaluation of influences in discontinuity growth has yet been 

given in rock mechanics.  
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For these reasons, the main objective of this study was to investigate the causal signatures 

of crack propagation and their impact on prediction. The causal network quantitatively 

characterizes the interconnection between crack propagation and the elastic waveform parameters. 

This could be done using domain knowledge or by using causal discovery algorithms. By using 

discovered causal signatures, we could incorporate causal knowledge into the model and build an 

adaptable and robust data system for both linear and physically related crack propagation samples. 

In future, causality signatures can also be served as early warning systems for the crack 

propagation in given material, or even field in the future. 

5.2 Key Fundamental Questions to be Answered   

This chapter aims to answer the following questions:  

• Can the signatures discovered using causal inference and traditional feature extraction 

methods improve the detection, location, and monitoring of fractures propagating in the 

subsurface earth?  

• How to utilize discovered causal signatures of crack propagation by analyzing the 

multipoint wave-transmission measurements using knowledge-driven model?  

 

5.3 Association, Correlation and Causation  

Association, correlation, and causation are three concepts that commonly used in statistics 

and research. Association refers to the presence of a relationship between two variables, where a 

change in one variable is related to a change in the other variable. There are several methods to 

quantify the association between variables. Mutual information calculates the amount of 

information shared between two variables to detect any kind of dependency, whether linear or non-

linear. F-test is another statistical test used to compare the variances of two or more groups. It can 
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be used indirectly to access the association between two variables through regression analysis. If 

the F-test is significant, it suggests a strong association between parameters.  

Correlation, on the other hand, represents the strength of the linear or monotonic 

association between the variables as measured by the correlation coefficient. The Pearson 

correlation coefficient is used to analyze the linear relationship between two continuous variables, 

while the Spearman correlation coefficient is used to analyze the monotonic relationship between 

two variables, which may be continuous or ordinal (Cohen et al., 2009; De Winter et al., 2016). 

However, it is important to note all correlations are associations, but not all associations are 

correlations.  

Causation describes the relationship between two variables in which one of them is the 

cause of a change in the other variable.  To establish causality, it is necessary to demonstrate that 

changes in one variable directly causes a change in another variable and that relationship is not 

due to other factors or variables (Confounder). Additionally, causation involves understanding the 

underlying mechanisms and processes that contribute to a particular outcome.  

Scikit-Learn is a comprehensive machine learning library in Python that provides a variety 

of feature selection methods, including mutual information, F-test, and correlation coefficients. 

They are popular methods to identify the most relevant association or correlation features and 

improve the accuracy and efficiency of prediction applications. However, none of prevailing 

machine learning library or tool could provide causality-based feature selection. This section aims 

to clarify the distinctions between these concepts, which are often confused or misused in practice. 

Furthermore, this section emphasizes the significance of establishing causality in research, an 

aspect that has often been disregarded in various studies.  
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Correlation and causality can be deceptively similar and can simultaneously exist. 

However, correlation is not the same as causation (Duesberg, 1989; Conn, 2017). It is easier to 

find correlations compared to proving causality. Correlations can be easily quantified in terms of 

statistical or mathematical formulations that is applied on the data. As compared to correlation, a 

quantification of causality allows us to make better predictions about the future, explain the past, 

and intervene to change the outcomes. A correlation between x and y measures association and 

can be interchanged between the two. When x is correlated to y, y is automatically correlated to x. 

On the contrary, when “x causes y”, we cannot say that “y causes x”.  
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Figure 5-1. Exploring the Causation-Correlation Relationship: Evidence from (a) and (b) 

demonstrating causation does not imply correlation, while (c) and (d) show Pearson and 

Spearman correlation do not imply causation either. 

 

Figure 5-1 illustrates a comparison between the causal signatures of simulated crack 

propagation using HOSS and the correlation coefficients captured through Pearson and Spearman 

correlation. The Pearson correlation measures the strength and direction of the linear relationship 

between continuous variables, while the Spearman correlation assesses the monotonic relationship 

between variables without assuming a specific functional form and can handle ordinal or interval 

scale variables. The choice between the two depends on the nature of the variables and the research 
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question at hand. The values presented here have been normalized to the range of (-1, 1) for the 

purpose of facilitating comparison.  

The baseline for comparing their correlation coefficients in Figure 5-1(a) and (b) is the top 

five positive and negative causal variables from binary and continuous treatment. It shows 

causation does not imply any correlation. But there is also another possibility that the sample size 

is small, leading to insufficient statistical power to detect a correlation. In this case, it is necessary 

to increase the sample size to increase the likelihood of finding a correlation. In contrast, Figure 

5-1(c) and (d) use high Pearson correlation and high Spearman correlation parameters as the base 

variables to demonstrate correlation and do not imply any causation. This suggests that the 

presence of a correlation between two variables does not necessarily mean that one variable causes 

the other.  

Similarly, Figure 5-2 compares the causal signatures of simulated crack propagation using 

HOSS and the association calculated from F-test and Mutual information. The values presented 

have been normalized to the range of (0, 1) due to non-negative association metrics. The subplots 

(a) and (b) indicate that the top five highly causal features exhibit a strong association (>0.5) as 

revealed by either the F-test or mutual information analysis.  
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Figure 5-2. Exploring the Causation-Association Relationship. Evidence from (a) and (b) 

demonstrating that causation implies association, wherein strong causation leads to high 

association. In contrast, (c) and (d) show that F-test and mutual information do not necessarily 

imply causation. 

 

Causation implies association because a causal relationship between two variables requires 

that there be an association or correlation between them. In other words, if one variable causes a 

change in the other variable, then the two variables must be related in some way. However, it is 

important to note that association does not necessarily imply causation because two variables are 

associated does not mean that one causes the other shown from (c) and (d). Therefore, it is 

important to be cautious when interpreting association/correlation and to avoid making causal 
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inferences based solely on association/correlation. Additional research and analysis, including 

experimental or quasi-experimental designs, are necessary to establish causality between two 

variables. 

5.4 Knowledge-driven Model for Three-stage Linear Crack Propagation 

In this work, we propose the use of a knowledge-driven causal-inference model to visualize 

three-stage linear crack propagation by analyzing causal signatures searched from more than 500 

time/frequency domain features across 10,000 samples. Incorporating causal inference into a 

knowledge-driven model as pre-processing step could help to improve the accuracy of the mode, 

by ensuring that the ultimate decision-making or forecasting is based on valid causal relationships 

between variables. 

Figure 5-3 compares the difference between data driven and knowledge driven model steps 

in this work. A data driven model can be decomposed into different steps, including data collection, 

feature engineering, data preprocessing, modeling, and predicting. On the other hand, knowledge 

driven model is start with a causal statement to define the treatment, effect and the potential 

confounders. Domain knowledge plays a significant role in causal hypothesis generation. The 

causal graph is a directed acyclic graph (DAG) of causal-effect relationships between variables. 

Constructing a useful causal model requires not only domain knowledge but also causal inference. 

In our study, causal inference could be treated as a tool to discover the FracMarker, which is causal 

signatures of crack propagation. FracMarkers are used to bridge machine learning and causal 

inference as new features for machine learning.  
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Figure 5-3. The comparison of data driven model and knowledge driven model. Two model 

usually share the same input data, which is the waveform in our case. Data driven model includes 

data collection, feature extraction, data preprocessing, modeling and crack prediction. 

Knowledge driven model contains causal graph, causal inference, a followed causal machine 

learning and final prediction.  

 

In data driven model setting, we are focus on the useful features for prediction. As such, 

we tend to select features based on the prediction performance. Machine learning should not only 

make decisions but also provide a means of how predictions were made. In contrast, causal 

inference is constructing features based on the domain knowledge and statistical relations. Causal 

inference is a tool to break the black boxes in machine learning. Future studies on the causal 

inference are therefore recommended. When a machine learning algorithm relies heavily on 

correlations for prediction, its performance maybe poor on new data in different environment. 

Correlational pattern machine learning is insufficient for robust and reliable prediction. To be 

confident of our predictions and gap-fill the scenario difference between training and test, the 

invariant causal relationship is needed. This section displays causal insights could improve pure 
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correlation predictions. The box plot for all features, causal features and correlation features 

prediction results can be compared in Figure 5-4(a). Box plots visually show the distribution of 

error from testing set with five important lines, the minimum, first quartile, median, third quantile, 

and the maximum. The two lines outside the box are 1.5 times the interquartile range (IQR). 

Outliers fall on the upper side as individual points.  

 
Figure 5-4. Summary of prediction error from all features, causal features, and correlation 

features. (a). Box plots compare the prediction performance from all features, causal features, 

and correlation features. (b). Split violin plot further compares the error distribution of causal 

features and correlation features.  

 

In Figure 5-4(a), the left box is the prediction result with all features extracted from 9 

waveforms which perform best (20features*9sensors*3stages). The middle box is the prediction 

result with our strongest causal signature, zero crossing from 9 waveforms in three stages 

(1feature*9sensors*3stages). Then 27 high correlation features from mutual information ranking 

are used to generate the right box plot. It is apparent that all features could get the best prediction 

due to the large feature set. A split violin plot, as shown in Figure 5-4(b) is used as a handy tool 

in data visualization to compare the error distribution from causal features and correlation features. 

Comparatively speaking, causal features provide better prediction with lower computational costs.     
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5.5 Knowledge-driven Model for HOSS Crack Propagation Simulation 

HOSS software from the LANL used advanced numerical methods to simulate fluid flow 

and geomechanical properties, which is critical for accurately predicting the fracture propagation 

process. By simulating these complex physics, HOSS can provide valuable insights into the 

behavior of fractures and how they interact with the surrounding rock. HOSS has been extensively 

tested and validated against laboratory experiments, field data, and other simulation tools. This 

testing has demonstrated that HOSS can accurately predict crack growth and other key parameters. 

By incorporating information into the HOSS simulation, we could improve the accuracy of the 

fracture propagation with complex patterns with the rock-like specimens. The combination of 

HOSS and knowledge-driven model has the potential to quantitate the fracture propagation process 

and optimize stimulation design for improved production and efficiency.  

The feature selection methods used in data-driven models with scikit-learn are largely 

based on statistical tests such as mutual information, F-test, and correlation coefficient to identify 

associated or correlated features. In addition, researchers may use feature importance methods to 

determine the relative importance of each feature in making predictions. The most frequently used 

approach is permutation importance, which involves randomly shuffling the values of each feature 

and measuring the resulting decrease in model performance. Features that result in a greater 

decrease in performance are considered to be more important. In contrast, knowledge-driven 

models focus on using domain knowledge and prior information to identify the causal features that 

are likely to have a causal influence on the outcome variable. Causal features provide a more 
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accurate and interpretable representation of the underlying causal relationships, which can be 

critical for making informed decisions and interventions in complex systems. 

In this section, we predict the crack propagation number in the given time window with all 

features, association features, correlation features and causation features to compare the 

performance from data-driven and knowledge-driven models. In the training process, the dataset 

has been split into training and validation sets, and setting the random seed ensures that the same 

samples are selected for each run. The 10 box plots in Figure 5-5(a) consist of 10 box plots that 

show the mean absolute error (MAE) of a prediction model in millimeters, with each plot 

corresponding to a different random seed on the testing set. The feature sets in the plot include all 

features, top 3 causal features and 3 top-ranking features from eight sensors using the scikit-learn 

feature selection methods such as F-test and mutual information. 

 
Figure 5-5. The performance of a model was evaluated using all available features, three causal 

features, and three features selected through methods such as F-test and mutual information. Box 
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plots in (a) illustrate the distribution of mean absolute error (MAE) for each feature set. In (b), a 

colormap displays the ranking of the results from 10 different train-test splits. 

 

In a box plot, a rectangular box is drawn with the bottom and top of the box representing 

the first and third quartiles (Q1 and Q3), respectively. The median value is marked by a line inside 

the box. The red stars inside are the mean points. All results were obtained using a random forest 

algorithm that underwent grid search and hyperparameter tuning to prevent overfitting. 

Nevertheless, due to the limited sample size in our case, the model's performance in predicting 

changes in crack propagation length is not satisfactory. Figure 5-5(b) presents a colormap that 

illustrates the ranking of eight different models based on ten train-test splits. Based on the 

observations, the quality of the feature used to train the model can greatly affect the prediction 

performance. Certain feature sets may lead to challenges in interpreting the results of the model, 

as well as lower generalization performance. In addition, although causal features may not always 

yield the best results, they tend to perform comparatively better on the distribution of box plots 

compared to other feature sets.  
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Figure 5-6. The performance of a model was evaluated using different combination of correlation 

features, association features and causation features. Box plots in (a) illustrate the distribution of 

mean absolute error (MAE) for each feature set. In (b), a colormap displays the ranking of the 

results from 10 different train-test splits. 

 

We then merged the association, correlation, and causation features to examine whether 

incorporating causation features could enhance the prediction performance. Figure 5-6 compares 

eight predictions from the combinations of association, correlation, and causation features in bar 

plots and colormap. The top four feature sets comprise the top 10 features selected from 

combinations of correlation, association, and causation. The number in the following parentheses 

indicate the feature number fed into the model without any overlap. With causation features, model 

would include 24 features instead of 18 features of association and correlation. Two of them consist 

of only 3 sensors (sensor 5,6,7) which are located opposite to the source and considered more 

important. In contrast, the lower four feature sets follow a similar pattern, analyzing the top 5 

features. When considering only correlation and association features, there are 9 features used. 
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However, if causation features are included in the model, the feature size increases to 11. A 

noticeable improvement in prediction model performance is observed in the box plots when high 

causation features are included in the model. In other words, adding causation features can improve 

the prediction model performance because causation implies a directional relationship between the 

variables, rather than just a correlation or association between them. According to the colormap, 

models that include causation features tend to rank higher. 

 

5.6 Conclusions and Discussion  

This work questions current data-driven models and initiates a study of knowledge-driven 

models that incorporate domain expertise into machine learning pipelines. Overall, both data- and 

knowledge-driven methods could provide robust estimation for the propagation of an embedded 

mechanical discontinuity in porous materials with different sizes and matrix properties. 

Generalized machine learning workflow could precisely predict the crack location, size and 

orientation through different linear growth stages, namely initial, intermediate, and final stages. 

However, current machine learning strategies ignore the latent causal-effect relationship 

underlying the problem. Therefore, this study suggests the new knowledge-driven causal model to 

emphasis latent causal network behind various statistical features of designed fracture system. In 

contrast to the traditional data-driven approach, knowledge-driven causal model illustrates their 

ability in untangling and explaining invariant causal relationships rather than simple correlation. 

The most significant finding is that waveform fluctuations such as positive turning, negative 

turning, and zero crossing have been identified as geophysical signatures of crack propagation 

which could applied to recognize cracks/fractures at different stages during propagation by 

analyzing signals from multipoint sensor system placed on the surface of the material. For more 



 

 

122 

 

 

 

complex physical related fracture propagation, reoccur number, the sum of reoccur values, and 

variation coefficient of the waveforms are causal signatures that highly influenced by the crack 

length change. Causal-related features could provide a deeper understanding of the underlying 

mechanisms that drive the relationships between variables, leading to better models with improved 

accuracy. We believe causality is the key component attempts to overcome the black boxes of 

machine learning. In near future, similar knowledge-driven causal discovery will be valuable area 

in the development of artificial intelligent. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK  

This study provides a comprehensive approach to understanding the characterization and 

propagation of fractures in materials by analyzing the multipoint waveform measurements. The 

chapters presented in this work are interconnected, Chapter 2 highlights the use of classification 

algorithms to visualize discontinuity orientation, dispersion, and spatial distribution in formation 

by using waveforms arrival times. Chapter 3 expands on this by incorporating whole waveform 

data to monitor linear discontinuity propagation in 2D materials through three stages with a data-

driven approach. Chapter 4 analyzes causal inference techniques to identify the causal signatures 

of crack propagation from a feature space for linear propagation and physical-based crack 

propagation. The identification of causal signatures of crack propagation has numerous 

applications in materials science, hydraulic fracturing, and engineering. By understanding the 

causal relationships between the crack propagation process and waveform measurements, 

engineers can develop more effective strategies for controlling crack growth and improving the 

durability of materials. 

Finally, in Chapter 5, we propose the knowledge-driven causal model to take advantage of 

specific domain knowledge when processing the input data. The knowledge-driven method 

provides a valuable approach for understanding and predicting crack propagation behavior in 

materials. By leveraging domain knowledge and causal inference techniques, this method can 

provide insights into the underlying physical processes driving crack growth and help to identify 

key factors that influence crack propagation. On the other hand, knowledge-driven models that use 

causal features can be more robust to changes in the data or the environment, as they are based on 

fundamental causal relationships rather than just correlations/associations. 
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The identification of causal signatures of crack propagation using causal inference 

techniques is a complex and challenging task. One of the main challenges is the need to accurately 

measure and analyze a wide range of statistical and physical parameters from waveforms, to 

identify the key factors driving by crack growth. Additionally, observations made from one or two 

flaws may provide a limited understanding of a much more complex behavior of the rock mass 

due to the large number of possible interactions among the discontinuities. Further investigations 

are necessary to validate the discovered geophysical signatures in field application.  
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APPENDIX A  

FEATURE SET BASED ON STATISTICAL PARAMETERIZATIONS  

1) Mean: the average pressure of points in waveform.  

2) Median: the median pressure of points in waveform. 

3) Variance: measures variability from the average or mean.  

4) Standard deviation: measures the dispersion of dataset relative to its mean, the square root 

of variance. 

5) Skewness: calculate with the adjusted Fisher-Pearson standardized moment coefficient G1. 

6) Kurtosis: calculated with the adjusted Fisher-Pearson standardized moment coefficient G2. 

7) Energy: absolute energy of the time series which is the sum over the squared values.  

8) Maximum amplitude index of the signal: index of signal maximum point.  

9) Minimum amplitude index of the signal: index of signal minimum point. 

10) 10th Percentiles: measures to indicate the value below 10 percentage of observations in a 

group of observations fall. 

11) 90th Percentiles: measures to indicate the value below 90 percentage of observations in a 

group of observations fall. 

12) Zero crossing: number of crossings of x on zero.   

13) Number of peaks: number of peaks of at least support n in the time series x. 

14) Longest period above mean: returns the length of the longest consecutive subsequence in x 

that is bigger than the mean of x.   

15) Variance coefficient: returns the variation coefficient (standard error / mean, give relative 

value of variation around mean) of x.  

16) Sum Value: the sum value over the time series values.  

17) Autocorrelation: the autocorrelation of the specified lag.  

18) Mean value of second derivation: returns the mean value of a central approximation of the 

second derivative.  

19) Positive turning: number of positive turning points of the signal. 

20) Negative turning: number of negative turning points of the signal. 
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APPENDIX B  

AVERAGE CAUSAL EFFECTS FROM BINARY TREATMENT 

 
Figure B-1. Detail ATE bar plot for 20 statistical features compute from 9 elastic waves captured 

by different sensors around material.  
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APPENDIX C  

AVERAGE CAUSAL EFFECTS FROM CONTINUOUS TREATMENT 

Band 1:  

 

 
Figure C-1. Band 1 ATE bar plot for the 16 statistical-parameterization based features computed 

from the 9 waveforms captured by 9 sensors placed around the surface of the material. All zeros 

mean that no causal relationship was found between the feature and the target and the feature 

failed the refutation test. A positive ATE means the crack propagation has a positive impact on 

the feature. The gray line around our estimate is 95% confidence interval calculated from 

bootstrap method with 100 simulations. 
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Band 2:  

 

 
Figure C-2. Band 2 ATE bar plot for the 16 statistical-parameterization based features computed 

from the 9 waveforms captured by 9 sensors placed around the surface of the material. All zeros 

mean that no causal relationship was found between the feature and the target and the feature 

failed the refutation test. A positive ATE means the crack propagation has a positive impact on 

the feature. The gray line around our estimate is 95% confidence interval calculated from 

bootstrap method with 100 simulations. 
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Band 3:  

 

 
Figure C-3. Band 3 ATE bar plot for the 16 statistical-parameterization based features computed 

from the 9 waveforms captured by 9 sensors placed around the surface of the material. All zeros 

mean that no causal relationship was found between the feature and the target and the feature 

failed the refutation test. A positive ATE means the crack propagation has a positive impact on 

the feature. The gray line around our estimate is 95% confidence interval calculated from 

bootstrap method with 100 simulations. 
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APPENDIX D  

HOSS SIMULATION SAMPLES  

 

 

Figure D-1. HOSS simulation samples of fracture coalescence and propagation with five time 

steps. 
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Figure D-2. HOSS simulation samples of fracture coalescence and propagation with five 

different time steps. 
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APPENDIX E  

FEATURE SPACE FOR CAUSAL DISCOVERY   

1) Mean: the average pressure of points in time series x.  

2) Skewness: calculate with the adjusted Fisher-Pearson standardized moment coefficient G1. 

3) Kurtosis: calculated with the adjusted Fisher-Pearson standardized moment coefficient G2. 

4) Standard deviation: measures the dispersion of dataset relative to its mean, the square root 

of variance. 

5) Number of peaks: number of peaks of at least support n in the time series x. 

6) Maximum amplitude index of the signal: index of signal maximum point.  

7) Minimum amplitude index of the signal: index of signal minimum point. 

8) Zero crossing: number of crossings of x on zero.   

9) Positive turning: number of positive turning points of the signal. 

10) Negative turning: number of negative turning points of the signal. 

11) Longest period above mean: returns the length of the longest consecutive subsequence in 

x that is bigger than the mean of x.   

12) Longest period below mean: returns the length of the longest consecutive subsequence in 

x that is smaller than the mean of x.   

13) Entropy: calculate and return Shannon sample entropy of time series x.  

14) Autocorrelation: the autocorrelation of the specified lag.  

15) Nonlinearity:  computed nonlinearity coefficient using a modification of the statistic with 

Teräsvirta’s nonlinearity test. 

16) Flat spots: computed by dividing the sample space of a time series into ten equal-sized 

intervals, and computing the maximum run length within any single interval. 

17) Peak to peak distance: computes the peak to peak distance. 

18) Median crossing: number of crossings of x on median value.   

19) Variation coefficient: returns the variation coefficient (standard error / mean, give relative 

value of variation around mean) of time series x.  

20) Sum of reoccurring points: returns the sum of all points that are present in the signal more 

than once.  

21) Sum of reoccurring values: returns the sum of all values that are present in the signal more 

than once. 

22) Mean changes: returns the meaning over the differences between subsequent time series x. 

23) Count above mean: Returns the percentage of values in x that are higher than mean.  

24) Count below mean: Returns the percentage of values in x that are smaller than mean.  

25) Spectral centroid: measures the center of mass of the spectrum. 
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26) Maximum Frequency: computes maximum frequency of the signal. 

27) Spectral kurtosis:  measures the flatness of a distribution around mean value. 

28) Spectral skewness: measures the asymmetry of a distribution around its mean value. 

29) Spectral positive turning: computes number of positive turning points of the FFT 

magnitude signal. 

30) Spectral spread: measures the spread of the spectrum around its mean value. 


