
LEARNING UNDER IMPLICIT BIAS AND DATA BIAS

A Dissertation

by

JIANGYUAN LI

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Raymond K. W. Wong
Committee Members, Debdeep Pati

Xianyang Zhang
Kurt K. Zhang

Head of Department, Brani Vidakovic

August 2023

Major Subject: Statistics

Copyright 2023 Jiangyuan Li

ABSTRACT

Modern machine learning tasks often involve the training of over-parameterized models and the

challenge of addressing data bias. However, despite recent advances, there remains a significant

knowledge gap in these areas. This thesis aims to push the boundaries of our understanding by

exploring the implicit bias of neural network training and proposing strategies for mitigating data

bias in matrix completion.

In the first result, we study the implicit regularization of gradient descent on a diagonally linear

neural network with general depth-N under a realistic setting of noise and correlated designs. We

characterize the impact of depth and early stopping and show that for a general depth parameterN ,

gradient descent with early stopping achieves minimax optimal sparse recovery with sufficiently

small initialization and step size. In particular, we show that increasing depth enlarges the scale

of working initialization and the early-stopping window so that this implicit sparse regularization

effect is more likely to take place.

Continuing our exploration of implicit bias, our second main result introduces a novel neural

reparametrization known as the “diagonally grouped linear neural network”. This reparametriza-

tion exhibits a fascinating property wherein gradient descent, operating on the squared regression

loss without explicit regularization, biases towards solutions with a group sparsity structure. In

contrast to many existing works in understanding implicit regularization, we prove that our train-

ing trajectory cannot be simulated by mirror descent. Compared to existing bounds for implicit

sparse regularization using diagonal linear networks, our analysis with the new reparameterization

shows improved sample complexity in the general noise setting.

In our third result, we propose a pseudolikelihood approach for matrix completion with in-

formative missing. We focus on a flexible and generally applicable missing mechanism, which

contains both ignorable and nonignorable missing as special cases. We show that the regularized

pairwise pseudolikelihood estimator can recover the low-rank matrix up to a constant shift and

scaling while effectively mitigating the impact of data bias.

ii

DEDICATION

To my parents and beloved ones.

iii

ACKNOWLEDGMENTS

First and foremost, I want to express my deepest gratitude to my advisor Raymond K. W. Wong

for his guidance and support throughout my doctoral study. Without his exceptional mentorship,

the accomplishments presented in this thesis would not have been possible. His enthusiasm, pa-

tience and faith in my abilities served as a constant source of inspiration for me to strive towards

becoming a better version of myself. Not only did he teach me how to do good research, but he also

taught me how to face the ups and downs in life. The lessons I learned from him will undoubtedly

continue to benefit me for the remainder of my life.

I would also like to extend my thanks to Debdeep Pati and Xianyang Zhang, whose profound

knowledge of statistics and machine learning has greatly influenced the quality and depth of this

thesis. Their insightful comments and feedback have played a significant role in enhancing the

overall work.

Furthermore, I am deeply grateful to Kurt K. Zhang, Jianhua Z. Huang, and Yu Ding for their

guidance during the initial two years of my graduate study. Their support and encouragement, es-

pecially the days I spent working in Dr. Zhang’s Lab as a research assistant, have been instrumental

in fostering my achievements in interdisciplinary statistical research.

I would like to express my sincere appreciation to Simon Foucart for introducing me to the

captivating world of mathematical data science. His knowledge and guidance have been invaluable

in shaping my research pursuits. I would also like to thank my long-term collaborators, Chinmay

Hegde, Thanh V. Nguyen, and KC Gary Chan, for their invaluable contributions and collaborative

efforts. Their insights and expertise have greatly enriched the outcomes of this thesis.

To my beloved parents and friends, I want to express my gratitude for their unconditional

love and unwavering support. Life becomes more vibrant and meaningful with your presence.

Additionally, I extend my thanks to the dedicated staff in the Department of Statistics for creating

a pleasant and nurturing environment during my graduate study.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This was supported by a dissertation committee consisting of Professors Raymond K. W. Wong

(advisor), Debdeep Pati and Xianyang Zhang of the Department of Statistics and Professor Kurt

K. Zhang of the Department of Nutrition.

All the research work of the dissertation was completed by the student as the first author.

Funding Sources

Graduate study was supported by a teaching assistantship from the Department of Statistics at

Texas A&M University.

v

NOMENCLATURE

GD Gradient Descent

GF Gradient Flow

PGD Projected Gradient Descent

NN Neural Network

LNN Linear Neural Network

CNN Convolutional Neural Network

LCNN Linear Convolutional Neural Network

DLNN Diagonal Linear Neural Network

DGLNN Diagonally Grouped Linear Neural Network

SNR Signal-to-Noise Ratio

RIP Restricted Isometry Property

SDP Semidefinite Programming

NP Non-deterministic Polynomial-time

KKT Karush-Kuhn-Tucker

IRMAE Implicit Rank Minimizing Auto Encoder

GAE Grouped Auto Encoder

MAR Missing at Random

MCAR Missing Completely at Random

MNAR Missing Not at Random

MSE Mean Squared Error

MAE Mean Absolute Error

SVD Singular Value Decomposition

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES. xii

1. INTRODUCTION. 1

2. IMPLICIT REGULARIZATION FOR SPARSITY . 4

2.1 Introduction. 4
2.2 Setup . 7
2.3 Main Results. 10
2.4 Proof Ingredients . 15

2.4.1 A Simplified Analysis . 15
2.4.2 Proof Sketch . 16

2.5 Simulation Study . 18
2.6 Conclusions and Future Work . 20
2.7 Implicit Regularization for Dictionary Sparsity . 21

3. IMPLICIT REGULARIZATION FOR GROUP SPARSITY . 25

3.1 Introduction. 25
3.2 Setup . 29
3.3 Analysis of Gradient Flow . 31

3.3.1 First Attempt: Mirror Flow . 31
3.3.2 Layer Balancing and Gradient Flow . 33

3.4 Gradient Descent with Weight Normalization . 34
3.5 Simulation Study . 38
3.6 Discussion . 40

vii

4. MATRIX COMPLETION WITH INFORMATIVE MISSING . 41

4.1 Introduction. 41
4.2 Preliminaries . 43
4.3 Main Results. 45
4.4 Numerical Experiments . 48

5. SUMMARY . 52

REFERENCES . 54

APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER II . 68

A.1 Proof for Non-negative Signals . 68
A.1.1 Setup . 68
A.1.2 The Key Propositions . 70
A.1.3 Technical Lemmas. 72
A.1.4 Proof for Non-negative Signals . 73

A.2 Multiplicative Update Sequences with General Order N . 77
A.2.1 Error Growth. 77
A.2.2 Understanding 1-d Case . 79

A.2.2.1 Basic Setting . 79
A.2.2.2 Dealing with Bounded Errors bt . 87

A.2.3 Dealing with Negative Targets . 93
A.3 Proof of Propositions and Technical Lemmas . 96

A.3.1 Proof of Proposition 1 . 96
A.3.2 Proof of Proposition 2 . 98
A.3.3 Proof of Technical Lemmas . 99

A.4 Proof of Theorems in Chapter 2.3 . 100
A.4.1 Proof of Theorem 1. 100
A.4.2 Proof of Corollary 1 . 103
A.4.3 Proof of Theorem 2. 103
A.4.4 Proof of Remark 2 . 105

A.5 Experiments on MNIST . 105

APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER III . 107

B.1 Geometric properties of the parametrization. 107
B.2 Proof for Analysis of Gradient Flow . 109
B.3 Analysis of gradient descent . 116

B.3.1 Monotonic updates . 117
B.3.2 Updates with bounded perturbations . 117
B.3.3 Analysis of perturbations. 122
B.3.4 Error analysis outside the support . 128

B.4 Proof of Theorems in Chapter 3.4 . 129
B.4.1 Proof of Theorem 5. 129

viii

B.4.2 Proof for Corollary 2 . 132
B.4.3 Convergence for algorithm 2. 132

B.5 More numerical results. 135
B.5.1 Stability issue of Algorithm 1 and standard GD . 135
B.5.2 Autoencoder with grouping layer . 136
B.5.3 Experiments with Gaussian measurements. 139

APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER IV . 141

C.1 Proof of Theorem 7 . 141
C.2 Proof of Corollary 7 . 144
C.3 Useful lemmas. 144

ix

LIST OF FIGURES

FIGURE Page

2.1 The coordinate path with the same initialization α = 0.005 and step size η = 0.01
for N = 2, 3, 4. Reprinted with permission from [1]. 14

2.2 Coordinates paths for different choice of N = 2, 3, 5 with αN = 10−6 and η =
1/(5N2). Reprinted with permission from [1]. 19

2.3 The effect of N on the initialization αN with η = 1/(5N2). Reprinted with per-
mission from [1]. Reprinted with permission from [1]. 19

2.4 log-`2 error of N = 2, 3, 4 with the fixed step size η = 0.01. Reprinted with
permission from [1]. 20

2.5 Coordinates paths for N = 2, 3, 5. The entries of w? on the support S are now
[1, 2, 3, 4]. The initialization is αN = 10−4 and the step size is η = 10−3 for all N . . . 20

2.6 log-`2 error of N = 2, 3, 4 for a ridge regression setting. The ridge regression
solution is selected by 5-fold cross validation. Reprinted with permission from [1]. . 21

2.7 Implicit regularization for dictionary sparsity. 23

2.8 Learning to denoise.. 24

3.1 An illustration of the two architectures for standard and group sparse regulariza-
tion. Reprinted with permission from [2]. 27

3.2 Convergence of Algorithm 1. The entries on the support are all 10. Reprinted with
permission from [2]. 38

3.3 Convergence of Algorithm 2. The entries on the support are from 5 to 13. Reprinted
with permission from [2]. 39

3.4 Comparison with reparameterization using standard sparsity. n = 100, p = 500.
Reprinted with permission from [2]. 39

3.5 Degenerate case when each group size is 1. The log `2-error plot is repeated 30
times, and the mean is depicted. The shaded area indicates the region between the
25th and 75th percentiles. Reprinted with permission from [2]. 40

4.1 Observation bias. 50

x

4.2 The recovered entries are left skewed from other methods. 51

A.1 Experiments with different choice depth parameter N . Reprinted with permission
from [1]. 106

B.1 Numerical instability of algorithm 1. Reprinted with permission from [2].. 135

B.2 Gradient descent without weight normalization. Reprinted with permission from [2].136

B.3 Implicit rank-minimizing autoencoder. Reprinted with permission from [2]. 137

B.4 Implicit rank-minimizing autoencoder with grouping layers. Reprinted with per-
mission from [2]. 137

B.5 Linear interpolations between data points on the MNIST dataset. GAE4/8 stands
for grouped autoencoder with 4/8 groups. Reprinted with permission from [2]. 138

B.6 Convergence of algorithm 2 with Gaussian measurements. Reprinted with permis-
sion from [2]. 139

B.7 Comparisons with proximal gradient descent and iterative regularization. Reprinted
with permission from [2]. 140

xi

LIST OF TABLES

TABLE Page

2.1 Comparisons with closely related recent work. GF/GD: gradient flow/descent, re-
spectively. Reprinted with permission from [1]. 6

3.1 Comparisons to related work on implicit and explicit regularization. Here, GD
stands for gradient descent, (D)LNN/CNN for (diagonal) linear/convolutional neu-
ral network, and DGLNN for diagonally grouped linear neural network. Reprinted
with permission from [2]. 26

4.1 Test root mean squared errors (TRMSE), test mean absolute errors (TMAE). 50

B.1 Number of parameters of hidden layers in latent space. Reprinted with permission
from [2]. 139

B.2 Comparisons of MSE (mean squared error) on test set. Reprinted with permission
from [2]. 140

xii

1. INTRODUCTION

In this thesis, we study the learning algorithms under implicit bias and data bias. The recent

advancement of applications of large-scale models and big data has brought new challenges in un-

derstanding the generalization performance of over-parametrized models and mitigating data bias.

In the first line of contributions, we study the implicit bias of gradient descent in training linear

neural networks and show that it can exhibit (group) sparsity. In the second line of contributions,

we propose a pseudolikelihood approach for matrix completion with informative missing.

Deep neural networks [3] are emerging as the dominant choice across several domains, from

natural language processing [4, 5], to computer vision [6, 7] and reinforcement learning [8]. Be-

sides that, it has shown promise to be applied in much more tasks such as signal processing [9, 10],

time series [11, 12, 13], medical analysis [14, 15, 16] and mathematical physics [17, 18]. Large-

scale neural networks are the keys to accomplishing more and more difficult tasks.

The large size of deep neural networks not only requires significant memory and computation

costs [19, 20] but also makes them prone to overfitting. One particular characteristic of these

architectures is that they generalize well on unseen data despite being over-parametrized [21]. The

training of deep neural works relies on gradient descent and its variants, entailing many tricks

and hands-on experiences [22]. The efficiency and accuracy would be highly dependent on the

optimization algorithms [23, 24, 25]. One consensus in learning theory suggests that one should

use a model, just expressive enough to avoid overfitting [26]. The idea goes back to the Ocacam’s

Razor philosophical principle, which states that the model is trained to perform well on the training

data, but should be as simple as possible.

Instead of having a small number of parameters, simplicity in neural networks usually refers

to minimizing a certain measure of complexity by adding a regularization term to the objective

function. For example, weight decay [27] has been commonly used to prevent overfitting. How-

ever, over-parametrized neural networks seem to generalize well even when trained without ex-

plicit regularization [21]. Therefore, the implicit regularization/bias provided by gradient descent

1

optimization is widely believed to be one of the keys to deep neural networks’ generalization abil-

ity [28]. Characterizing such bias has been a subject of extensive research. Many recent theoretical

efforts have revisited traditional, well-understood problems such as linear regression [29, 1, 30],

matrix factorization [31, 32, 33] and tensor decomposition [34, 35], from the perspective of neural

network training. For nonlinear models with squared error loss, [36] and [37] study the implicit

bias of gradient descent in wide depth-2 ReLU networks with input dimension 1. Other works

[38, 39, 40] show that gradient descent biases the solution towards the max-margin (or minimum

`2-norm) solutions over separable data. Many recent theoretical efforts have revisited traditional,

well-understood problems such as linear regression [29, 1, 30], matrix factorization [31, 32, 33]

and tensor decomposition [34, 35], from the perspective of neural network training. For nonlinear

models with squared error loss, [36] and [37] study the implicit bias of gradient descent in wide

depth-2 ReLU networks with input dimension 1. Other works [38, 39, 40] show that gradient de-

scent biases the solution towards the max-margin (or minimum `2-norm) solutions over separable

data.

In Chapter 2 [1] and Chapter 3 [2], we focus on the implicit bias of gradient descent in linear

regression, which amounts to linear neural networks. We extend the existing results to general

depth N and study how depth affects the gradient dynamics as well as implicit bias. Moreover,

we prove a new type of implicit regularization for structured sparsity in linear neural networks.

In contrast to many existing works, we show that the training trajectory cannot be simulated by

mirror descent. We analyze the gradient dynamics of the corresponding regression problem in the

general noise setting and obtain minimax-optimal error rates.

Data bias in machine learning refers to the presence of errors caused by the observed distribu-

tion that does not accurately represent the underlying true distribution. When a dataset is biased,

it fails to reflect the intended use case of a model, leading to skewed outcomes, reduced accuracy,

and analytical errors. The impact of biased algorithms extends beyond model accuracy and can

raise concerns related to ethics, fairness, and inclusion. The goal during machine learning model

development is to reduce both data bias and data variance as much as possible in order to get the

2

most accurate outputs. Extensive research has been conducted on learning algorithms that address

data bias, including transfer learning [41] and fairness [42].

In Chaper 4, we investigate a contemporary problem in high-dimensional missing data under

the influence of data bias. Specifically, we focus on matrix completion with informative miss-

ing, where the observed entries are biased. The problem of matrix completion arises in vari-

ous domains, such as collaborative filtering, multi-class learning, system identification, global

positioning, and computer vision. For instance, in computer vision, missing pixels may be en-

countered in digital images, while collaborative filtering involves predicting user preferences by

gathering information from multiple users. Despite notable advancements in the field over the

past two decades [43, 44, 45], most existing research on matrix completion primarily addresses

scenarios where the missing probability is not dependent on the value. We propose a penalized

pairwise pseudolikelihood approach for matrix completion with informative missing. We demon-

strate that our method effectively handles data bias under a flexible and widely applicable assump-

tion [46, 47, 48]. The efficacy of our method is validated via numerical experiments.

3

2. IMPLICIT REGULARIZATION FOR SPARSITY*

2.1 Introduction

Motivation. Central to recent research in learning theory is the insight that the choice of

optimization algorithms plays an important role in model generalization [21, 23, 49]. A widely

adopted view is that (stochastic) gradient descent — the most popular optimization algorithm in

machine learning — exhibits some implicit form of regularization. Indeed for example, in the

classical under-determined least squares setting, gradient descent (with small step size) starting

from the origin converges to the model with minimum Euclidean norm. Similar implicit biases

are also observed in deep neural network training in which the networks typically have many

more parameters than the sample size. There, gradient descent without explicit regularization finds

solutions that not only interpolate the training data points but also generalize well on test sets

[23, 50, 51, 52, 53].

This insight, combined with the empirical success stories of deep learning, has sparked signif-

icant interest among theoretical researchers to rigorously understand implicit regularization. The

majority of theoretical results focus on well-understood problems such as regression with lin-

ear models [54, 55, 56, 29, 30, 57] and matrix factorization [58, 31, 32, 33], and show that the

parametrization (or architecture) of the model plays a crucial role. For the latter, Gunasekar et

al. [31] conjectured that gradient descent on factorized matrix representations converges to the so-

lution with minimum nuclear norm. The conjecture was partially proved by Li et al. [32] under

the Restricted Isometry Property (RIP) and the absence of noise. Arora et al. [33] further show

the same nuclear-norm implicit bias using depth-N linear networks (i.e., the matrix variable is

factorized into N components).

Parallel work on nonlinear models and classification [51, 55] has shown that gradient descent

biases the solution towards the max-margin/minimum `2-norm solutions over separable data. The

*Reprinted with permission from [1]. This is a joint work with Thanh V. Nguyen, Chinmay Hegde and Raymond
K. W. Wong. Copyright 2021 by the authors.

4

scale of initialization in gradient descent leads to two learning regimes (dubbed “kernel” and

“rich”) in linear networks [59], shallow ReLU networks [36] and deep linear classifiers [60]. Li et

al. [61] showed that depth-2 network requires an exponentially small initialization, whereas depth-

N network (N ≥ 3) only requires a polynomial small initialization, to obtain low-rank solution in

matrix factorisation. Woodworth et al. [59] obtained a similar result for high dimensional sparse

regression.

The trend in the large majority of the above works has been to capture implicit regularization

of gradient descent using some type of norm with respect to the working parametrization [59,

62, 63, 64]. On the other hand, progress on understanding the trajectory of gradient descent has

been somewhat more modest. [29, 30] study the sparse regression problem using quadratic and

Hadamard parametrization respectively and show that gradient descent with small initialization

and careful early stopping achieves minimax optimal rates for sparse recovery. Unlike [32, 59] that

study noiseless settings and require no early stopping, [29, 30] mathematically characterize the role

of early stopping and empirically show that it may be necessary to prevent gradient descent from

over-fitting to the noise. These works suggest that the inductive bias endowed by gradient descent

may be influenced not only by the choice of parametrization, but also algorithmic choices such

as initialization, learning rate, and the number of iterations. However, our understanding of such

gradient dynamics is incomplete, particularly in the context of deep architectures; see Table 2.1

for some comparisons.

Contributions. Our focus in this work is the implicit regularization of (standard) gradient

descent for high dimensional sparse regression, namely implicit sparse regularization. Let us

assume a ground-truth sparse linear model and suppose we observe n noisy samples (xi, yi), such

that y = Xw∗ + ξ; a more formal setup is given in Section 2.2. Using the samples, we consider

gradient descent on a squared loss ‖Xw−y‖2 with no explicit sparsity regularization. Instead, we

write the parameter vector w in the form w = uN −vN with N ≥ 2. Now, the regression function

f(x,u,v) = 〈x,uN −vN〉 can be viewed as a depth-N diagonal linear network [59]. Minimizing

the (now non-convex) loss over u and v with gradient descent is then analogous to training this

5

depth-N network.

Our main contributions are the following. We characterize the impact of both the depth and

early stopping for this non-convex optimization problem. Along the way, we also generalize the

results of [29] for N > 2. We show that under a general depth parameter N and an incoherence

assumption on the design matrix, gradient descent with early stopping achieves minimax optimal

recovery with sufficiently small initialization w0 and step size η. The choice of step size is of

order O(1/N2). Moreover, the upper bound of the initialization, as well as the early-stopping

window, increase with N , suggesting that depth leads to a more accessible generalizable solution

on gradient trajectories.

Table 2.1: Comparisons with closely related recent work. GF/GD: gradient flow/descent, respec-
tively. Reprinted with permission from [1].

Design Matrix In Noise Depth Early Stopping GD vs. GF Remark

Vaskevicius et al. (2020) [29] RIP 3 N = 2 3 GD recovery
Gissin et al. (2020) [57] uncorrelated 7 N = 2, N > 2 7 GF interpolation

Woodworth et al. (2020) [59] 7 7 N = 2, N > 2 7 GF interpolation
This work µ-coherence 3 N > 2 3 GD recovery

Techniques. At a high level, our work continues the line of work on implicit bias initiated in

[29, 30, 59] and extends it to the deep setting. Table 2.1 highlights key differences between our

work and [29, 57, 59]. Specifically, Woodworth et al. [59] study the interpolation given by the

gradient flow of the squared-error loss function. Vaskevicius et al. [29] analyze the finite gradient

descent and characterize the implicit sparse regularization on the recovery of true parameters with

N = 2. Lastly, Gissin et al. [57] discover the incremental learning dynamic of gradient flow for

general N but in an idealistic model setting where u � 0,v = 0, ξ = 0, uncorrelated design and

with infinitely many samples.

At first glance, one could attempt a straightforward extension of the proof techniques in [29]

to general settings of N > 2. However, this turns out to be very challenging. Consider even

the simplified case where the true model w? is non-negative, the design matrix is unitary (i.e.,

6

n−1XTX = I), and the noise is absent (ξ = 0); this is the setting studied in [57]. For each entry

wi of w, the tth iterate of gradient descent over the depth-N reparametrized model is given by:

wi,t+1 = wi,t

(
1 + w

1− 2
N

i,t (w?i − wi,t)
)N

,

which is no longer a simple multiplicative update. As pointed out in [57] (see their Appendix

C), the recurrence relation is not analytically solvable due to the presence of the (pesky) term

w
1− 2

N
i,t when N > 2. Moreover, this extra term w

1− 2
N

i,t leads to widely divergent growth rates

of weights with different magnitudes, which further complicates analytical bounds. To resolve

this and rigorously analyze the dynamics for N > 2, we rely on a novel first order, continuous

approximation to study growth rates without requiring additional assumptions on gradient flow,

and carefully bound the approximation error due to finite step size; see Section 2.4.

2.2 Setup

Sparse regression/recovery. Let w? ∈ Rp be a p-dimensional sparse vector with k non-zero

entries. Assume that we observe n data points (xi, yi) ∈ Rp × R such that yi = 〈xi,w?〉 + ξi for

i = 1, . . . , n, where ξ = (ξ1, . . . , ξn) is the noise vector. We do not assume any particular scaling

between the number of observations n and the dimension p. Due to the sparsity of w?, however,

we allow n� p.

The linear model can be expressed in the matrix-vector form:

y = Xw? + ξ, (2.1)

with the n × p design matrix X = [x>1 , . . . ,x
>
n]>, where xi denotes the ith row of X. We also

denote X = [X1, . . . ,Xp], where Xi denotes the ith column of X.

The goal of sparse regression is to estimate the unknown, sparse vector w? from the observa-

tions. Over the past two decades, this problem has been a topic of active research in statistics and

signal processing [65]. A common approach to sparse regression is penalized least squares with

7

sparsity-induced regularization such as `0 or `1 penalties/constraints, leading to several well-known

estimators [65, 66, 67] and algorithms [68, 69]. Multiple estimators enjoy optimal statistical and

algorithmic recovery guarantees under some conditions of the design matrix X (e.g., RIP [70]) and

the noise ξ.

We deviate from the standard penalized least squares formulation and instead learn w∗ via a

polynomial parametrization:

w = uN − vN , u,v ∈ Rp,

where N ≥ 2 and zN = [zN1 , . . . , z
N
p]> for any z = [z1, . . . , zN]> ∈ Rp. The regression function

f(x,u,v) = 〈x,uN − vN〉 induced by such a parametrization is equivalent to a N -layer diagonal

linear network [59] with 2p hidden neurons and the diagonal weight matrix shared across all layers.

Given the data {X,y} observed in (2.1), we analyze gradient descent with respect to the new

parameters u and v over the mean squared error loss without explicit regularization:

L(u,v) =
1

n

∥∥X(uN − vN)− y
∥∥2

2
, u,v ∈ Rp.

Even though the loss function yields the same value for the two parametrizations, L(u,v) is

non-convex in u and v. Unlike several recent studies in implicit regularization for matrix factor-

ization and regression [32, 59, 57], we consider the noisy setting, which is more realistic and leads

to more insights into the bias induced during the optimization. Because of noise, the loss evaluated

at the ground truth (i.e., any u,v such that w? = uN−vN) is not necessarily zero or even minimal.

Gradient descent. The standard gradient descent update over L(u,v) reads as:

u0 = v0 = α1,

(ut+1,vt+1) = (ut,vt)− η
∂L(ut,vt)

∂(ut,vt)
, t = 0, 1, (2.2)

Here, η > 0 is the step size and α > 0 is the initialization of u,v. In general, we analyze

the algorithm presented in (2.2), and at each step t, we can estimate the signal of interest by

8

simply calculating wt = uNt − vNt . We consider constant initialization for simplicity sake. Our

results apply for random initialization concentrating on a small positive region with a probabilistic

statement.

Vaskevicius et al. [29] establish the implicit sparse regularization of gradient descent forN = 2

and show minimax optimal recovery, provided sufficiently small α and early stopping. Our work

aims to generalize that result to N > 2 and characterize the role of N in convergence.

Notation. We define S = {i ∈ {1, . . . , p} : w?i 6= 0} and Sc = {1, . . . , p}\S. The largest and

smallest absolute value on the support is denoted as w?max = maxi∈S |w?i | and w?min = mini∈S |w?i |.

We use 1 to denote the vector of all ones and 1S denotes the vector whose elements on S are all

one and 0 otherwise. Also, � denotes coordinate-wise multiplication. We denote st = 1S � wt

and et = 1Sc �wt meaning the signal part and error part at each time step t. We use ∧ and ∨ to

denote the pointwise maximum and minimum. The coordinate-wise inequalities are denoted as <.

We denote inequalities up to multiplicative absolute constants by ., which means that they do not

depend on any parameters of the problem.

Definition 1. Let X ∈ Rn×p be a matrix with `2-normalized columns X1, . . . ,Xp, i.e., ‖Xi‖2 = 1

for all i. The coherence µ = µ(X) of the matrix X is defined as

µ := max
1≤i 6=j≤p

|〈Xi,Xj〉|.

The matrix X is said to be satisfying µ-incoherence.

The coherence is a measure for the suitability of the measurement matrix in compressive sens-

ing [71, 72]. In general, the smaller the coherence, the better the recovery algorithms perform.

There are multiple ways to construct a sensing matrix with low-incoherence. One of them is

based on the fact that sub-Gaussian matrices satisfy low-incoherence property with high proba-

bility [73, 74]. In contrast to the coherence, the Restricted Isometry Property (RIP) is a powerful

performance measure for guaranteeing sparse recovery and has been widely used in many contexts.

However, verifying the RIP for deterministically constructed design matrices is NP-hard. On the

9

other hand, coherence is a computationally tractable measure and its use in sparse regression is by

now classical [74, 75]. Therefore, in contrast with previous results [29] (which assumes RIP), the

assumptions made in our main theorems are verifiable in polynomial time.

2.3 Main Results

We now introduce several quantities that are relevant for our main results. First, the condition

number r := w?max/w
?
min plays an important role when we work on the incoherence property of

the design matrix. Next, we require an upper bound on the initialization α, which depends on the

following terms:

Φ(w?max, w
?
min, ε, N) :=

(
1

8

)2/(N−2)

∧
(

(w?max)(N−2)/N

log w?max

ε

)2/(N−2)

∧
(

(w?min)(N−2)/N

log
w?min

ε

)4/(N−2)

,

Ψ(w?min, N) := (2− 2
N−2
N)

1
N−2 (w?min)

1
N ∧ 2

3
N (2

1
N − 1)

1
N−2 (w?min)

1
N .

Finally, define

ζ :=
1

5
w?min ∨

200

n

∥∥XTξ
∥∥
∞ ∨ 200ε.

We are now ready to state the main theorem:

Theorem 1. Suppose that k ≥ 1 and X/
√
n satisfies µ-incoherence with µ . 1/kr. Take any

precision ε > 0, and let the initialization be such that

0 < α ≤
(

ε

p+ 1

)4/N

∧ Φ(w?max, w
?
min, ε, N) ∧Ψ(w?min, N). (2.3)

For any iteration t that satisfies

Tl(w
?, α,N, η, ζ, ε) ≤ t ≤ Tu(w

?, α,N, η, ζ, ε), (2.4)

where Tl(·) and Tu(·) are given in (A.13) of the Appendix, the gradient descent algorithm (2.2)

10

with step size η ≤ αN

8N2(w?max)(3N−2)/N yields the iterate wt with the following property:

|wt,i − w?i | .



∥∥ 1
n
XTξ

∥∥
∞ ∨ ε if i ∈ S and w?min .

∥∥ 1
n
XTξ

∥∥
∞ ∨ ε,∣∣ 1

n
(XTξ)i

∣∣ ∨ kµ∥∥ 1
n
XTξ � 1S

∥∥
∞ ∨ ε if i ∈ S and w?min &

∥∥ 1
n
XTξ

∥∥
∞ ∨ ε,

αN/4 if i /∈ S.
(2.5)

In the special case w? = 0, if α ≤
(

ε
p+1

)4/N

, η ≤ 1
N(N−1)ζα(N−2)/2 and t ≤ Tu(w

?, α,N, η, ζ, ε),

then we have |wt,i − w?i | ≤ αN/4,∀i.

Theorem 1 states the convergence of the gradient descent algorithm (2.2) in `∞-norm. The

exact formula of Tl(·) and Tu(·) is omitted here due to the space limitation. We ensure that Tu(·) >

Tl(·) so that there indeed exists some epochs to early stop at. The error bound on the signal is

invariant to the choice of N ≥ 2, and the overall bound generalizes that of [29] for N = 2. We

also establish the convergence result in `2-norm in the following corollary:

Corollary 1. Suppose the noise vector ξ has independent σ2-sub-Gaussian entries and

ε = 2

√
σ2 log(2p)

n
.

Under the assumptions of Theorem 1, the gradient descent algorithm (2.2) would produce iterate

wt satisfying ‖wt −w?‖2
2 . (kσ2 log p)/n with probability at least 1− 1/(8p3).

Note that the error bound we obtain is minimax-optimal, which is the same as [29] in the

N = 2 case. However, with some calculation, the sample complexity we obtain here is n & k2r2,

while the sample complexity in [29] is n & k2 log2 r log p/k. Although neither our work nor [29]

achieved the optimal sample complexity k log p/k, the goal of this work is to understand how the

depth parameter affects implicit sparse regularization.

Let us now discuss the implications of Theorem 1 and the role of initialization and early stop-

ping:

11

(a) Requirement on initialization. To roughly understand the role of initialization and the

effect of N , we look at the non-negative case where w? < 0 and w = uN . This simplifies

our discussion while still capturing the essential insight of the general setting. At each step, the

“update” on w can be translated from the corresponding gradient update of u = w1/N as

w0 = αN1,

wt+1 = wt �
(

1 − 2Nη

n

(
XTX(wt −w∗)−XTξ

)
�w

(N−2)/N
t

)N
.

(2.6)

In order to guarantee the convergence, we require the initialization α to be sufficiently small

so the error outside the support can be controlled. On the other hand, too small initialization

slows down the convergence of the signal. Interestingly, the choice of N affects the allowable

initialization α that results in guarantees on the entries inside and outside the support.

Specifically, the role of N is played by the term w
(N−2)/N
t in (2.6), which simply disappears

as N = 2. Since this term only affects the update of wt+1 entry-wise, we only look at a particular

entry wt of wt. Let wt represent an entry outside the support. For N > 2, the term w
(N−2)/N
t is

increasingly small as N increases and wt < 1. Therefore, with a small initialization, it remains

true that wt < 1 for the early iterations. Intuitively, this suggests that the requirement on the

upper bound of the initialization would become looser when N gets larger. This indeed aligns with

the behavior of the upper bound we derive in our theoretical results. Since α = w
1/N
0 increases

naturally with N , we fix w0 = αN instead of α to mimic the same initialization in terms of w0, for

the following comparison.

We formalize this insight in Theorem 8 in Appendix A.1 and show the convergence of (2.6)

under the special, non-negative case. Note that, in terms of initialization requirement, the only

difference from Theorem 1 is that we no longer require the term Ψ(w?min, N) in (2.3).

Remark 1. We investigate how the depth N influences the requirement on initialization due to the

change on gradient dynamics. We rewrite Φ(w?max, w
?
min, ε, N) in terms of w0 = αN , and therefore

12

the upper bound for w0 under the simplified setting of non-negative signals (Theorem 8) is

w0 ≤
(

1

8

)2N/(N−2)

∧
(

(w?max)(N−2)/N

log w?max

ε

)2N/(N−2)

∧
(

(w?min)(N−2)/N

log
w?min

ε

)4N/(N−2)

.

We start by analyzing each term in the upper bound. First, we notice that
(

1
8

)2N/(N−2) is increasing

with respect to N . For the second term,

(
(w?max)(N−2)/N

log w?max

ε

)2N/(N−2)

=
(w?max)2

(log w?max

ε
)2N/(N−2)

,

the denominator gets smaller as N increases when we pick the error tolerance parameter ε small.

Therefore, we get that the second term is getting larger as N increases. The last term

(
(w?min)(N−2)/N

log
w?min

ε

)4N/(N−2)

follows a similar argument. We see that it is possible to pick a larger initialization w0 = αN for

larger N . We will demonstrate that below in our experiments.

(b) Early stopping. Early stopping is shown to be crucial, if not necessary, for implicit sparse

regularization [29, 30]. Interestingly, [57, 59] studied the similar depth-N polynomial parametriza-

tion but did not realize the need of early stopping due to an oversimplification in the model. We

will discuss this in details in Section 2.4.1. We are able to explicitly characterize the window of

the number of iterations that are sufficient to guarantee the optimal result. In particular, we get a

lower bound of the window size for early stopping to get a sense of how it changes with different

N .

Theorem 2 (Informal). Define the early stopping window size as

Tu(w
?, α,N, η, ζ, ε)− Tl(w?, α,N, η, ζ, ε),

13

the difference between the upper bound and lower bound of the number of iterations in (2.4) of

Theorem 1. Fixing α and η for all N , the early stopping window size is increasing with N under

mild conditions.

We defer the formal argument and proof of Theorem 2 to Appendix A.4.3. We note that the

window we obtain in Theorem 1 is not necessarily the largest window that allows the guarantee,

and hence the early stopping window size can be effectively regarded a lower bound of that derived

from the largest window. We note that a precise characterization of the largest window is difficult.

Although we only show that this lower bound increases withN , we see that the conclusion matches

empirically with the largest window. We show the coordinate path in Figure 2.1. The black line

indicates the early stopping window for different N = 2, 3, 4. The blue line is the coordinate path

for each entry on the support. The red line indicates the absolute value of the largest entry on the

coordinate path outside the support. We use the orange line to indicate the requirement outside the

support for early stopping. We can see that as N increases, the early stopping window increases

and the error bound captures the time point that needs stopping quite accurately. The experimental

details and more experiments about early stopping is presented in Section 2.5.

0 1000 2000 3000
0.0

0.5

1.0

1.5

w
t,
i

N=2, window size=528

i ∈ S
||et||∞
error bound

0 10000 20000 30000 40000 50000
0.0

0.5

1.0

1.5

w
t,
i

N=3, window size=19178

i ∈ S
||et||∞
error bound

0 1 2 3
×106

0.0

0.5

1.0

1.5

w
t,
i

N=4, window size=1485677

i ∈ S
||et||∞
error bound

Number of iterations t

Figure 2.1: The coordinate path with the same initialization α = 0.005 and step size η = 0.01 for
N = 2, 3, 4. Reprinted with permission from [1].

14

Remark 2. Similar to Theorem 2, we look at how initialization scale affects the early stopping win-

dow for any fixedN > 2. With η fixed, the early stopping window is increasing as the initialization

α decreases.

We defer the detailed calculation to Section A.4.4. This generalizes the finding that vanishing

initialization increases the gap between the phase transition times in [58] from N = 2 to any

N > 2.

2.4 Proof Ingredients

The goal of this work is to understand how generalization and gradient dynamics change with

differentN > 2. ForN = 2, gradient descent yields both statistically and computationally optimal

recovery under the RIP assumption [29]. The matrix formulation of the same type of parametriza-

tion is considered in the setting of low-rank matrix recovery, and exact recovery can be achieved

in the noiseless setting [31, 32]. The key proof ingredient is to reduce the convergence analysis

to one-dimensional iterates and differentiate the convergence on the support from the error outside

the support. Before we get into that, we conduct a simplified gradient flow analysis.

2.4.1 A Simplified Analysis

Consider a simplified problem where the target signal w? is non-negative, n−1XTX = I and

the noise is absent. We omit the reparametrization of vN like before and the gradient descent

updates on u will be independent for each coordinate. The gradient flow dynamics of w = uN is

derived as
∂wi
∂t

=
∂wi
∂ui

∂ui
∂t

= −∂wi
∂ui

∂L
∂ui

= 2N2(w?i − wi)w
2− 2

N
i , (2.7)

for all i ∈ {1, 2, . . . , p}. Notice that wi increases monotonically and converges to w?i if w?i is

positive or otherwise keeps decreasing and converges to 0 if w?i = 0. As such, we can easily

distinguish the support and non-support. In fact, gradient flow with dynamics as in (2.7) would

exhibit a behavior of “incremental learning” — the entries are learned separately, one at a time

[57]. However, with the presence of noise and perturbation arising from correlated designs, the

gradient flow may end up over-fitting the noise. Therefore, early stopping as well as the choice of

15

step size is crucial for obtaining the desired solution [29]. We use (2.7) to obtain a gradient descent

update:

wi,t+1 = wi,t(1 + 2N2η(w?i − wi,t)w
1− 2

N
i,t). (2.8)

The gradient descent with N = 2 is analyzed in [29]. However, when N > 2, the presence

of w
1− 2

N
i,t imposes an asymmetrical effect on the gradient dynamics. The difficulty of analyzing

such gradient descent (2.8) is pointed out in [57]. More specifically, the recurrence relation is

not solvable. However, gradient descent updates still share similar dynamics with the idealized

gradient flow in (2.7). Inspired by this effect, we are able to show that the entries inside the support

and those outside the support are learned separately with a practical optimization algorithm shown

in (2.2) and (2.12). As a result, we are able to explore how the depth N affects the choice of step

size and early stopping criterion.

2.4.2 Proof Sketch

Growth rate of gradient descent. We adopt the same decomposition as illustrated in [29], and

define the following error sequences:

bt =
1

n
XTXet −

1

n
XTξ, pt =

(
1

n
XTX− I

)
(st −w?) , (2.9)

where et and st stand for error and signal accordingly, and the definitions can be found in (A.1)

in Appendix. We can then write the updates on st and et as

st+1 = st � (1 − 2Nη(st −w? + pt + bt)� s
(N−2)/N
t)N ,

et+1 = et � (1 − 2Nη(pt + bt)� e
(N−2)/N
t)N .

(2.10)

To illustrate the idea, we think of the one-dimensional updates {st}t≥0 and {et}t≥0, ignore the

error perturbations pt and bt in the signal updates {st}t≥0, and treat ‖pt + bt‖∞ ≤ B in the error

updates {et}t≥0.

st+1 = st(1− 2Nη(st − w?)s(N−2)/N
t)N , et+1 = et(1− 2NηBe

(N−2)/N
t)N . (2.11)

16

We use the continuous approximation to study the discrete updates. Therefore, we can borrow

many insights from the analysis about gradient flow to overcome the difficulties caused by w
1− 2

N
i,t

as pointed out in equation (2.8). With a proper choice of step size η, the number of iterations Tl for

st converging to w? is derived as

Tl ≤
Tl−1∑
t=0

st+1 − st
2N2η(w? − st)s(2N−2)/N

t

≤ 1

N2ηw?

∫ w?

αN

1

s(2N−2)/N
ds+O

(
w? − αN
α2N−2

)
.

The number of iterations Tu for et staying below some threshold αN/4 is derived as

Tu ≥
Tu−1∑
t=0

et+1 − et
4N2ηBe

(2N−2)/N
t

≥ 1

4N2ηB

∫ αN/4

αN

1

e(2N−2)/N
de.

With our choice of coherence µ in Theorem 1, we are able to control B to be small so that Tl is

smaller than Tu. This means the entries on the support converge to the true signal while the entries

outside the support stay around 0, and we are able to distinguish signals and errors.

Dealing with negative targets. We now illustrate the idea about how to generalize the result

about non-negative signals to general signals. The exact gradient descent updates on u and v are

given by:

ut+1 = ut �
(

1− 2Nη

(
1

n
XT(X(wt −w?)− ξ)� uN−2

t

))
,

vt+1 = vt �
(

1 + 2Nη

(
1

n
XT(X(wt −w?)− ξ)� vN−2

t

))
.

(2.12)

The basic idea is to show that when w?i is positive, v?i remains small up to the early stopping

criterion, and when w?i is negative, u?i remains small up to the early stopping criterion. We turn to

studying the gradient flow of such dynamics. Write r(t) = 1
n
XT(X(w(t)−w?)− ξ. It is easy to

verify that the gradient flow has a solution:

u(t) =

(
α2−N1 + 2N(N − 2)η

∫ t

0

r(υ)dυ

) 1
2−N

,

v(t) =

(
α2−N1 − 2N(N − 2)η

∫ t

0

r(υ)dυ

) 1
2−N

.

17

We may observe some symmetry here, when ui,t is large, vi,t must be small. For the case wi > 0, to

ensure the increasing of ui,t and decreasing of vi,t as we desire, the initialization needs to be smaller

than wi, which leads to the extra constraint on initialization Ψ(w?min, ε) with order of O(w?min) as

defined before. It remains to build the connection between gradient flow and gradient descent,

where again we uses the continuous approximation as before. The detailed derivation is presented

in Appendix A.2.3.

2.5 Simulation Study

We conduct a series of simulation experiments to further illuminate our theoretical findings.

Our simulation setup is described as follows. The entries of X are sampled as i.i.d. Rademacher

random variables and the entries of the noise vector ξ are i.i.d. N(0, σ2) random variables. We

let w? = γ1S . The values for the simulation parameters are: n = 500, p = 3000, k = 5, γ = 1,

σ = 0.5 unless otherwise specified. For `2-plots each simulation is repeated 30 times, and the

median `2 error is depicted. The shaded area indicates the region between 25th and 75th percentiles

pointwisely.

Convergence results. We start by showing that the general choice of N leads to the sparse

recovery, similar to N = 2 in [29], as shown in our main theorem. We choose different values

of N to illustrate the convergence of the algorithm. The result on simulated data is shown in

Figure 2.2, and we defer the result on MNIST to Appendix A.5. Note that the ranges in the x-axes

of these figures differ due to different choice of N and η. We observe that as N increases, the

number of iterations increases significantly. This is due to the term uN−2 and vN−2 in (2.12), and

the step size η ≈ 1
N2 . With a very small initialization, it takes a large number of iterations to escape

from the small region (close to 0).

Larger initialization. As discussed in Remark 1, the upper bound on initialization gets larger

with larger N . We intentionally pick a relatively large αN = 2× 10−3 where the algorithm fails to

converge for N = 2. With the same initialization, the recovery manifests as N increases (Figure

2.3).

Early stopping window size. Apart from the coordinate path shown in Figure 2.1, we obtain

18

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

1.25

1.50
w
t,
i

N=2

i ∈ S
||et||∞

0 500 1000 1500
0.00

0.25

0.50

0.75

1.00

1.25

1.50

w
t,
i

N=3

i ∈ S
||et||∞

0 10000 20000 30000
0.00

0.25

0.50

0.75

1.00

1.25

1.50

w
t,
i

N=5

i ∈ S
||et||∞

Number of iterations t

Figure 2.2: Coordinates paths for different choice of N = 2, 3, 5 with αN = 10−6 and η =
1/(5N2). Reprinted with permission from [1].

0 200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

1.25

1.50

w
t,
i

N=2

i ∈ S
||et||∞

0 500 1000 1500 2000
0.00

0.25

0.50

0.75

1.00

1.25

1.50

w
t,
i

N=3

i ∈ S
||et||∞

0 1000 2000 3000 4000 5000
0.00

0.25

0.50

0.75

1.00

1.25

1.50

w
t,
i

N=10

i ∈ S
||et||∞

Number of iterations t

Figure 2.3: The effect of N on the initialization αN with η = 1/(5N2). Reprinted with permission
from [1]. Reprinted with permission from [1].

multiple runs and plot the log-`2 error (the logarithm of the `2-error) of the recovered signals to

further confirm the increase of early stopping window, as shown in Section 2.3. Note that for both

Figures 2.1 and 2.4, we set n = 100 and p = 200. Since αN would decrease quickly withN , which

would cause the algorithm takes a large number of iterations to escape from the small region. We

fix αN = 10−5 instead of fixing α for Figure 2.4.

Incremental learning dynamics. The dynamics of incremental learning for different N is

discussed in [57]. The distinct phases of learning are also observed in sparse recovery (Figure

2.5), though we do not provide a theoretical justification. Larger values of N would lead to more

distinct learning phases for entries with different magnitudes under the same initialization αN and

step size η.

Kernel regime. As pointed out in [59], the scale of initialization determines whether the

19

0 1000 2000 3000

−8

−6

−4

−2

0

2

lo
g

2
||w

t
−

w
?
||2 2

N=2, window size=410

0 2000 4000 6000 8000 10000

−8

−6

−4

−2

0

2

lo
g

2
||w

t
−

w
?
||2 2

N=3, window size=3096

0 5000 10000 15000 20000 25000

−8

−6

−4

−2

0

2

lo
g

2
||w

t
−

w
?
||2 2

N=4, window size=8062

Number of iterations t

Figure 2.4: log-`2 error ofN = 2, 3, 4 with the fixed step size η = 0.01. Reprinted with permission
from [1].

0 500 1000 1500 2000 2500
0

1

2

3

4

5

w
t,
i

N=2

i ∈ S
||et||∞

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

w
t,
i

N=3

i ∈ S
||et||∞

0 2500 5000 7500 10000 12500 15000
0

1

2

3

4

5

w
t,
i

N=5

i ∈ S
||et||∞

Number of iterations t

Figure 2.5: Coordinates paths for N = 2, 3, 5. The entries of w? on the support S are now
[1, 2, 3, 4]. The initialization is αN = 10−4 and the step size is η = 10−3 for all N .

gradient dynamics obey the “kernel” or “rich” regimes for diagonal linear networks. We have

carefully analyzed and demonstrated the sparse recovery problem with small initialization, which

corresponds to the “rich” regime. To explore the "kernel" regime in a more practical setting, we

set n = 500, p = 100, and the entries of w? are i.i.d. N (0, 1) random variables. The noise level is

σ = 25, and the initialization and step size is set as αN = 1000 and η = 10−7 for all N . Note that

we are not working in the case n � p as [59]. We still observe that the gradient dynamics with

large initialization (Figure 2.6) can be connected to ridge regression if early stopping is deployed.

2.6 Conclusions and Future Work

In this work, we extend the implicit regularization results in [29] fromN = 2 to generalN > 2,

and further study how gradient dynamics and early stopping is affected by different choice N . We

20

0 1000 2000 3000 4000 5000
5.5

6.0

6.5

7.0

7.5

8.0
lo

g
2
||w

t
−

w
?
||2 2

N=2

ridge

least square

0 50 100 150 200 250 300
5.5

6.0

6.5

7.0

7.5

8.0

lo
g

2
||w

t
−

w
?
||2 2

N=3

ridge

least square

0 20 40 60 80 100
5.5

6.0

6.5

7.0

7.5

8.0

lo
g

2
||w

t
−

w
?
||2 2

N=4

ridge

least square

Number of iterations t

Figure 2.6: log-`2 error of N = 2, 3, 4 for a ridge regression setting. The ridge regression solution
is selected by 5-fold cross validation. Reprinted with permission from [1].

show that the error bound is invariant with different choices of N and yields the minimax optimal

rate. The step size is of order O(1/N2). The initialization and early stopping window gets larger

when increasing N due to the changes on gradient dynamics. The incremental learning dynam-

ics and kernel regime of such parametrizations are empirically shown, however not theoretically

justified, which is left for future work.

The convergence result can be further improved by relaxing the requirement on the incoher-

ence of design matrix from µ . 1
kw?max/w

?
min

to µ . 1
k log(w?max/w

?
min)

, similar to [29]. Overall, we

believe that such an analysis and associated techniques could be applied for studying other, deeper

nonlinear models in more practical settings.

2.7 Implicit Regularization for Dictionary Sparsity

Another type of structured sparsity is called Dictionary sparsity, which means Dw? ∈ Rm is

sparse for some linear transformation D ∈ Rm×p. Such model includes many well-known sparse

formulations as special cases including fused lasso [76] and total variation, where for fused lasso,

the linear transformation reads

D =



1 −1 0 . . . 0 0

0 1 −1 . . . 0 0

...
...

... . . .
...

...

0 0 0 . . . 1 −1


∈ R(p−1)×p.

21

When rank(D) = r < p, we construct an additional matrix A ∈ R(p−r)×p such that

D̃ =

D

A

 ∈ R(m+p−r)×p, rank(D̃) = p.

Let us denote θ = Dw ∈ Rm, γ = Aw ∈ Rp−r and D+ ∈ Rp×(m+p−r) is the Moore-Penrose

inverse of D̃. Therefore,

D+

θ
γ

 = D+D̃w = w.

We use D1 denotes the first m rows of D+ and D2 denotes the remaining p − r rows. Therefore,

we aim to solve

min
θ,γ

∥∥∥∥∥∥∥y −XD+

θ
γ


∥∥∥∥∥∥∥

2

2

= ‖y −X(D1θ + D2γ)‖2
2 . (2.13)

One can see the relationship between θ̂ and γ̂:

γ̂ = (D>2 X>XD2)−D>2 X>(y −XD1θ̂).

Denoting P = XD2(D>2 X>XD2)−D>2 X>, we rewrite (2.13) as

min
θ
‖(I−P)y − (I−P)XD1θ‖2

2 .

Since we are interested in a sparse solution on θ, we apply the power transformation

θ = u◦N − v◦N , N ≥ 2,

and define the loss,

L(u,v) =
∥∥(I−P)y − (I−P)XD1(u◦N − v◦N)

∥∥2

2
. (2.14)

22

Original Noisy Reparametrization

Original Noisy Reparametrization

Figure 2.7: Implicit regularization for dictionary sparsity.

The proposed algorithm is to run gradient descent on L(u,v) and apply early stopping. When

rank(D) = p, it falls into an easy case where D is invertible. The additional matrix A is not

needed, and the loss function (2.14) can be directly derived from (2.13) without projection.

We demonstrate the practical usage via image denoising. The image is added with Gaussian

noise first. We apply the reparametrization (2.14) at each pixel and run gradient descent without

any explicit regularization. The results are shown in Figure 2.7, where the result is similar to

the total-variation (L1) denoising [77]. The proposed algorithm exhibits a learning-to-denoise

phenomenon, as shown in Figure 2.8, where the major feature is learned first and then minor

features are learned, at the end the tiny details are discarded as noise.

23

epoch = 0 epoch = 100 epoch = 500 epoch = 1000

epoch = 1500 epoch = 2000 epoch = 3000 epoch = 10000

Figure 2.8: Learning to denoise.

24

3. IMPLICIT REGULARIZATION FOR GROUP SPARSITY*

3.1 Introduction

Motivation. A salient feature of modern deep neural networks is that they are highly overpa-

rameterized with many more parameters than available training examples. Surprisingly, however,

deep neural networks trained with gradient descent can generalize quite well in practice, even

without explicit regularization. One hypothesis is that the dynamics of gradient descent-based

training itself induce some form of implicit regularization, biasing toward solutions with low-

complexity [23, 50]. Recent research in deep learning theory has validated the hypothesis of such

implicit regularization effects. A large body of work, which we survey below, has considered

certain (restricted) families of linear neural networks and established two types of implicit regular-

ization — standard sparse regularization and `2-norm regularization — depending on how gradient

descent is initialized.

On the other hand, the role of network architecture, or the way the model is parameterized in

implicit regularization, is less well-understood. Does there exist a parameterization that promotes

implicit regularization of gradient descent towards richer structures beyond standard sparsity?

In this work, we analyze a simple, prototypical hierarchical architecture for which gradient

descent induces group sparse regularization. Our finding — that finer, structured biases can be

induced via gradient dynamics — highlights the richness of co-designing neural networks along

with optimization methods for producing more sophisticated regularization effects.

Outside of implicit regularization, several other works study the inductive bias of network ar-

chitectures under explicit `2 regularization on model weights [81, 82]. For multichannel linear

convolutional networks, [79] show that `2-norm minimization of weights leads to a norm regular-

izer on predictors, where the norm is given by a semidefinite program (SDP). The representation

cost in predictor space induced by explicit `2 regularization on (various different versions of) linear

*Reprinted with permission from [2]. This is a joint work with Thanh V. Nguyen, Chinmay Hegde and Raymond
K. W. Wong. Copyright 2023 by the authors.

25

NNs Noise Implicit vs. Explicit Regularization

[29] DLNN 3 Implicit (GD) Sparsity
[78] LNN 7 Explicit (`2-penalty) (Group) Quasi-norm
[79] LCNN 7 Explicit (`2-penalty) Norm induced by SDP
[80] DLNN 7 Implicit `2-norm

This work DGLNN 3 Implicit (GD) Structured sparsity

Table 3.1: Comparisons to related work on implicit and explicit regularization. Here, GD stands for
gradient descent, (D)LNN/CNN for (diagonal) linear/convolutional neural network, and DGLNN
for diagonally grouped linear neural network. Reprinted with permission from [2].

neural networks is studied in [78], which demonstrates several interesting (induced) regularizers

on the linear predictors such as `p quasi-norms and group quasi-norms. However, these results are

silent on the behavior of gradient descent-based training without explicit regularization. In light of

the above results, we ask the following question:

Beyond `2-norm, sparsity and low-rankness, can gradient descent induce other forms

of implicit regularization?

Our contributions. In this work, we rigorously show that a diagonally-grouped linear neural

network (see Figure 3.1b) trained by gradient descent with (proper/partial) weight normalization

induces group-sparse regularization: a form of structured regularization that, to the best of our

knowledge, has not been provably established in previous work.

One major approach to understanding implicit regularization of gradient descent is based on

its equivalence to a mirror descent (on a different objective function) e.g., [83, 59]. However, we

show that, for the diagonally-grouped linear network architecture, the gradient dynamics is beyond

mirror descent. We then analyze the convergence of gradient flow with early stopping under or-

thogonal design with possibly noisy observations, and show that the obtained solution exhibits an

implicit regularization effect towards structured (specifically, group) sparsity. In addition, we show

that weight normalization can deal with instability related to the choices of learning rates and ini-

tialization. With weight normalization, we are able to obtain a similar implicit regularization result

26

but in more general settings: orthogonal/non-orthogonal designs with possibly noisy observations.

Also, the obtained solution can achieve minimax-optimal error rates.

Overall, compared to existing analysis of diagonal linear networks, our model design — that in-

duces structured sparsity — exhibits provably improved sample complexity. In the degenerate case

of size-one groups, our bounds coincide with previous results, and our approach can be interpreted

as a new algorithm for sparse linear regression.

(a) Diagonal linear NN (DLNN). (b) Diagonally grouped linear NN (DGLNN).

Figure 3.1: An illustration of the two architectures for standard and group sparse regularization.
Reprinted with permission from [2].

Our techniques. Our approach is built upon the power reparameterization trick, which has

been shown to promote model sparsity [84]. Raising the parameters of a linear model element-

wisely to the N -th power (N > 1) results in that parameters of smaller magnitude receive smaller

gradient updates, while parameters of larger magnitude receive larger updates. In essence, this

leads to a “rich get richer” phenomenon in gradient-based training. In [57] and [85], the authors

analyze the gradient dynamics on a toy example, and call this “incremental learning”. Concretely,

for a linear predictor w ∈ Rp, if we re-parameterize the model as w = u◦N − v◦N (where u◦N

means the N -th element-wise power of u), then gradient descent will bias the training towards

sparse solutions. This reparameterization is equivalent to a diagonal linear network, as shown in

Figure 3.1a. This is further studied in [59] for interpolating predictors, where they show that a

27

small enough initialization induces `1-norm regularization. For noisy settings, [29] and [1] show

that gradient descent converges to sparse models with early stopping. In the special case of sparse

recovery from under-sampled observations (or compressive sensing), the optimal sample complex-

ity can also be obtained via this reparameterization [86].

Inspired by this approach, we study a novel model reparameterization of the form

w = [w>1 , . . . ,w
>
L],

where wl = u2
l vl for each group l ∈ {1, . . . , L}. (One way to interpret this model is to think of

ul as the “magnitude” and vl as the “direction” of the subvector corresponding to each group; see

Section 3.2 for details.) This corresponds to a special type of linear neural network architecture,

as shown in Figure 3.1b. A related architecture has also been recently studied in [78], but there the

authors have focused on the bias induced by an explicit `2 regularization on the weights and have

not investigated the effect of gradient dynamics.

The diagonally linear network parameterization of [59, 1] does not suffer from identifiability

issues. In contrast to that, in our setup the “magnitude” parameter ul of each group interacts with

the norm of the “direction”, ‖vl‖2, causing a fundamental problem of identifiability. By leveraging

the layer balancing effect [87] in DGLNN, we verify the group regularization effect implicit in

gradient flow with early stopping. But gradient flow is idealized; for a more practical algorithm,

we use a variant of gradient descent based on weight normalization, proposed in [88], and studied

in more detail in [80]. Weight normalization has been shown to be particularly helpful in stabilizing

the effect of learning rates [89, 90]. With weight normalization, the learning effect is separated into

magnitudes and directions. We derive the gradient dynamics on both magnitudes and directions

with perturbations. Directions guide magnitude to grow, and as the magnitude grows, the directions

get more accurate. Thereby, we are able to establish regularization effect implied by such gradient

dynamics.

A remark on grouped architectures. Finally, we remark that grouping layers have been

28

commonly used in grouped CNN and grouped attention mechanisms [91, 92], which leads to pa-

rameter efficiency and better accuracy. Group sparsity is also useful for deep learning models in

multi-omics data for survival prediction [93]. We hope our analysis towards diagonally grouped

linear NN could lead to more understanding of the inductive biases of grouping-style architectures.

3.2 Setup

Notation. Denotes the set {1, 2, . . . , L} by [L], and the vector `2 norm by ‖·‖. We use 1p and

0p to denote p-dimensional vectors of all 1s and all 0s correspondingly. Also, � represents the

entry-wise multiplication whereas β◦N denotes element-wise power N of a vector β. We use ei

to denote the ith canonical vector. We write inequalities up to multiplicative constants using the

notation ., whereby the constants do not depend on any problem parameter.

Observation model. Suppose that the index set [p] = ∪Lj=lGl is partitioned into L disjoint (i.e.,

non-overlapping) groups G1, G2, . . . , GL where Gi ∩ Gj = ∅,∀i 6= j. The size of Gl is denoted

by pl = |Gl| for l ∈ [L]. Let w? ∈ Rp be a p-dimensional vector where the entries of w? are

non-zero only on a subset of groups. We posit a linear model of data where observations (xi, yi) ∈

Rp × R, i ∈ [n] are given such that yi = 〈xi,w?〉 + ξi for i = 1, . . . , n, and ξ = [ξ1, . . . , ξn]>

is a noise vector. Note that we do not impose any special restriction between n (the number of

observations) and p (the dimension). We write the linear model in the following matrix-vector

form: y = Xw? + ξ, with the n × p design matrix X = [X1,X2, . . . ,XL], where Xl ∈ Rn×pl

represents the features from the lth group Gl, for l ∈ [L]. We make the following assumptions on

X:

Assumption 1. The design matrix X satisfies

sup
‖β1‖≤1,‖β2‖≤1

∣∣∣∣〈β1,

(
1

n
X>l Xl − I

)
β2

〉∣∣∣∣ ≤ δin, where β1,β2 ∈ Rpl , (3.1)

sup
‖β1‖≤1,‖β2‖≤1

∣∣∣∣〈 1√
n

Xlβ1,
1√
n

Xl′β2

〉∣∣∣∣ ≤ δout, where β1 ∈ Rpl ,β2 ∈ Rpl′ , l 6= l′, (3.2)

for some constants δin, δout ∈ (0, 1).

29

The first part (3.1) is a within-group eigenvalue condition while the second part (3.2) is a

between-group block coherence assumption. There are multiple ways to construct a sensing matrix

to fulfill these two conditions [94, 95]. One of them is based on the fact that random Gaussian

matrices satisfy such conditions with high probability [96].

Reparameterization. Our goal is to learn a parameter w from the data {(xi, yi)}ni=1 with co-

efficients which obey group structure. Instead of imposing an explicit group-sparsity constraint on

w (e.g., via weight penalization by group), we show that gradient descent on the unconstrained

regression loss can still learn w?, provided we design a special reparameterization. Define a

mapping g(·) : [p] → [L] from each index i to its group g(i). Each parameter is rewritten as

wi = u2
g(i)vi,∀i ∈ [p]. The parameterization G(·) : RL

+ × Rp → Rp reads

[u1, . . . , uL, v1, v2, . . . , vp]→ [u2
1v1, u

2
1v2, . . . , u

2
Lvp].

This corresponds to the 2-layer neural network architecture displayed in Figure 3.1b, in which

W1 = diag(v1, . . . , vp), and W2 is “diagonally” tied within each group:

W2 = diag(u1, . . . , u1, u2, . . . , u2, . . . , uL, . . . , uL).

Gradient dynamics. We learn u and v by minimizing the standard squared loss:

L(u,v) =
1

2

∥∥y −X[(Du)◦2 � v]
∥∥2
,

where

D =



1p1 0p1 . . . 0p1

0p2 1p2 . . . 0p2
...

...
...

...

0pL 0pL . . . 1pL


∈ Rp×L.

30

By simple algebra, the gradients with respect to u and v read as follows:

∇uL = 2D>
(
v �

[
X>X((Du)◦2 � v −w?)−X>ξ

]
�Du

)
,

∇vL =
[
X>X((Du)◦2 � v −w?)−X>ξ

]
� (Du)◦2.

Denote r(t) = y −∑L
l′=1 u

2
l (t)Xlvl(t). For each group l ∈ [L], the gradient flow reads

∂ul(t)

∂t
=

2

n
ul(t)v

>
l (t)X>l r(t),

∂vl(t)

∂t
=

1

n
u2
l (t)X

>
l r(t). (3.3)

Although we are not able to transform the gradient dynamics back onto w(t) due to the overpa-

rameterization, the extra term ul(t) on group magnitude leads to “incremental learning” effect.

3.3 Analysis of Gradient Flow

3.3.1 First Attempt: Mirror Flow

Existing results about implicit bias in overparameterized models are mostly based on recasting

the training process from the parameter space {u(t),v(t)}t≥0 to the predictor space {w(t)}t≥0

[59, 83]. If properly performed, the (induced) dynamics in the predictor space can now be analyzed

by a classical algorithm: mirror descent (or mirror flow). Implicit regularization is demonstrated

by showing that the limit point satisfies a KKT (Karush–Kuhn–Tucker) condition with respect to

minimizing some regularizer R(·) among all possible solutions.

At first, we were unable to express the gradient dynamics in Eq. (3.3) in terms of w(t) (i.e.,

in the predictor space), due to complicated interactions between u and v. This hints that the

training trajectory induced by an overparameterized DGLNN may not be analyzed by mirror flow

techniques. In fact, we prove a stronger negative result, and rigorously show that the corresponding

dynamics cannot be recast as a mirror flow. Therefore, we conclude that our subsequent analysis

techniques are necessary and do not follow as a corollary from existing approaches.

We first list two definitions from differential topology below.

31

Definition 2. Let M be a smooth submanifold of RD. Given two C1 vector fields of X, Y on M ,

we define the Lie Bracket of X and Y as [X, Y](x) := ∂Y (x)X(x)− ∂X(x)Y (x).

Definition 3. Let M be a smooth submanifold of RD. A C2 parameterization G : M → Rd is said

to be commuting iff for any i, j ∈ [d], the Lie Bracket [∇Gi,∇Gj](x) = 0 for all x ∈M .

The parameterization studied in most existing works on diagonal networks is separable, mean-

ing that each parameter only affects one coordinate in the predictor space. In DGLNN, the param-

eterization is not separable, due to the shared parameter u within each group. We formally show

that it is indeed not commuting.

Lemma 1. G(·) is not a commuting parameterization.

Non-commutativity of the parameterization implies that moving along −∇Gi and then −∇Gj

is different with moving with−∇Gj first and then−∇Gi. This causes extra difficulty in analyzing

the gradient dynamics. [97] study the equivalence between gradient flow on reparameterized mod-

els and mirror flow, and show that a commuting parameterization is a sufficient condition for when

a gradient flow with certain parameterization simulates a mirror flow. A complementary necessary

condition is also established on the Lie algebra generated by the gradients of coordinate functions

of G with order higher than 2. We show that the parameterization G(·) violates this necessary

condition.

Theorem 3. There exists an initialization [u>init,v
>
init] ∈ RL

+ × Rp and a time-dependent loss Lt

such that gradient flow under Lt �G starting from [u>init,v
>
init] cannot be written as a mirror flow

with respect to any Legendre function R under the loss Lt.

The detailed proof is deferred to the Appendix. Theorem 3 shows that the gradient dynamics

implied in DGLNN cannot be emulated by mirror descent. Therefore, a different technique is

needed to analyze the gradient dynamics and any associated implicit regularization effect.

32

3.3.2 Layer Balancing and Gradient Flow

Let us first introduce relevant quantities. Following our reparameterization, we rewrite the true

parameters for each group l as

w?
l = (u?l)

2v?l , ‖v?l ‖2 = 1, v?l ∈ Rpl .

The support is defined on the group level, where S = {l ∈ [L] : u?l > 0} and the support size

is defined as s = |S|. We denote u?max = max{u?l |l ∈ S}, and u?min = min{u?l |l ∈ S}.

The gradient dynamics in our reparameterization does not preserve ‖vl(t)‖2 = 1, which causes

difficulty to identify the magnitude of each ul and ‖vl(t)‖2. [87] and [98] show that the gradient

flow of multi-layer homogeneous functions effectively enforces the differences between squared

norms across different layers to remain invariant. Following the same idea, we discover a similar

balancing effect in DGLNN between the parameter u and v.

Lemma 2. For any l ∈ [L], we have

d

dt

(
1

2
u2
l − ‖vl‖2

)
= 0.

The balancing result eliminates the identifiability issue on the magnitudes. As the coordinates

within one group affect each other, the direction which controls the growth rate of both u and v

need to be determined as well.

Lemma 3. If the initialization vl(0) is proportional to 1
n
X>l y, then

〈
vl(0)

‖vl(0)‖ ,v
?
l

〉
≥ 1−

(
δin + Lδout +

∥∥∥∥ 1

n
X>l ξ

∥∥∥∥
2

/(u?l)
2

)2

.

33

Note that this initialization can be obtained by a single step of gradient descent with 0 initial-

ization. Lemma 3 suggests the direction is close to the truth at the initialization. We can further

normalize it to be ‖vl(0)‖2
2 = 1

2
u2
l (0) based on the balancing criterion. The magnitude equality,

‖vl(t)‖2
2 = 1

2
u2
l (t), is preserved by Lemma 2. However, ensuring the closeness of the direc-

tion throughout the gradient flow presents significant technical difficulties. That said, we are able

to present a meaningful implicit regularization result of the gradient flow under orthogonal (and

noisy) settings.

Theorem 4. Fix ε > 0. Consider the case where 1
n
X>l Xl = I, 1

n
X>l Xl′ = O, l 6= l′, the initial-

ization ul(0) = θ < ε
2(u?max)2

and vl(0) = ηl
1
n
X>l y with ‖vl(0)‖2

2 = 1
2
θ2,∀l ∈ [L], there exists an

lower bound and upper bound of the time Tl < Tu in the gradient flow in Eq. (3.3), such that for

any Tl ≤ t ≤ Tu we have

∥∥u2
l (t)vl(t)−w?

l

∥∥
∞ .


∥∥ 1
n
X>ξ

∥∥
∞ ∨ ε, if l ∈ S.

θ3/2, if l /∈ S.

Theorem 4 states the error bounds for the estimation of the true weights w?. For entries out-

side the (true) support, the error is controlled by θ3/2. When θ is small, the algorithm keeps all

non-supported entries to be close to zero through iterations while maintaining the guarantee for

supported entries. Theorem 4 shows that under the assumption of orthogonal design, gradient flow

with early stopping is able to obtain the solution with group sparsity.

3.4 Gradient Descent with Weight Normalization

We now seek a more practical algorithm with more general assumptions and requirements on

initialization. To speed up the presentation, we will directly discuss the corresponding variant of

(the more practical) gradient descent instead of gradient flow. When standard gradient descent

is applied on DGLNN, initialization for directions is very crucial; The algorithm may fail even

with a very small initialization when the direction is not accurate, as shown in Appendix B.5. The

balancing effect (Lemma 2) is sensitive to the step size, and errors may accumulate [87].

34

Algorithm 1 Gradient descent with weight normalization

Initialize: u(0) = α1, unit norm initialization vl(0) for each l ∈ [L], ηl,t = 1
u4l (t)

.
for t = 0 to T do

z(t+ 1) = v(t)− ηl,t∇vL(u(t),v(t))

vl(t+ 1) = zl(t+1)
‖zl(t+1)‖2

,∀l ∈ [L]

u(t+ 1) = u(t)− γ∇uL(u(t),v(t+ 1))
if the early stopping criterion is satisfied then

stop
end if

end for

Weight normalization as a commonly used training technique has been shown to be helpful in

stabilizing the training process. The identifiability of the magnitude is naturally resolved by weight

normalization on each vl. Moreover, weight normalization allows for a larger step size on v, which

makes the direction estimation at each step behave like that at the origin point. This removes the

restrictive assumption of orthogonal design. With these intuitions in mind, we study the gradient

descent algorithm with weight normalization on v summarized in Algorithm 1. One advantage of

our algorithm is that it converges with any unit norm initialization vl(0). The step size on u(t) is

chosen to be small enough in order to enable the incremental learning, whereas the step size on

v(t) is chosen as ηl,t = 1
u4l (t)

as prescribed by our theoretical investigation. For convenience, we

define ζ = 80
(∥∥ 1

n
X>ξ

∥∥
∞ ∨ ε

)
, for a precision parameter ε > 0. The convergence of Algorithm

1 is formalized as follows:

Theorem 5. Fix ε > 0. Consider Algorithm 1 with

ul(0) = α <
ε4 ∧ 1

(u?max)
8
∧ 1

80L
(u?min)2 ∧ ε

L
, ∀l ∈ [L],

any unit-norm initialization on vl for each l ∈ [L] and γ ≤ 1
20(u?max)2

. Suppose Assumption 1 is

satisfied with δin ≤ (u?min)2

120(u?max)2
and δout ≤ (u?min)2

120s(u?max)2
. There exist a lower bound on the number of

35

iterations

Tlb =
log (u?max)2

2α2

2 log(1 + γ
2
(ζ ∨ (u?min)2))

+

⌊
log2

(u?max)
2

ζ

⌋
5

2γ(ζ ∨ (u?min)2)
,

and an upper bound

Tub ≥
5

16γ(ζ ∨ (u?min)2)
log

1

α4
,

such that Tlb ≤ Tub and for any Tlb ≤ t ≤ Tub,

∥∥u2
l (t)vl(t)−w?

l

∥∥
∞ .


∥∥ 1
n
X>ξ

∥∥
∞ ∨ ε, if l ∈ S

α, if l /∈ S
.

Similarly as Theorem 4, Theorem 5 states the error bounds for the estimation of the true

weights w?. When α is small, the algorithm keeps all non-supported entries to be close to zero

through iterations while maintaining the guarantee for supported entries. Compared to the works

on implicit (unstructured) sparse regularization [29, 86], our assumption on the incoherence pa-

rameter δout scales with 1/s, where s is the number of non-zero groups, instead of the total number

of non-zero entries. Therefore, the relaxed bound on δout implies an improved sample complexity,

which is also observed experimentally in Figure 3.4. We now state a corollary in a common setting

with independent random noise, where (asymptotic) recovery of w? is possible.

Definition 4. A random variable Y is σ-sub-Gaussian if for all t ∈ R there exists σ > 0 such that

EetY ≤ eσ
2t2/2.

Corollary 2. Suppose the noise vector ξ has independent σ2-sub-Gaussian entries and

ε = 2

√
σ2 log(2p)

n
.

36

Under the assumptions of Theorem 5, Algorithm 1 produces w(t) = (Du(t))◦2�v(t) that satisfies

‖w(t)−w?‖2
2 . (sσ2 log p)/n with probability at least 1− 1/(8p3) for any t such that Tlb ≤ t ≤

Tub.

Note that the error bound we obtain is minimax-optimal. Despite these appealing properties

of Algorithm 1, our theoretical results require a large step size on each vl(t), which may cause

instability at later stages of learning. We observe this instability numrerically (see Figure B.1, Ap-

pendix B.5). Although the estimation error of w? remains small (which aligns with our theoretical

result), individual entries in v may fluctuate considerably. Indeed, the large step size is mainly

introduced to maintain a strong directional information extracted from the gradient of vl(t) so as

to stabilize the updates of u(t) at the early iterations. Therefore, we also propose Algorithm 2, a

variant of Algorithm 1, where we decrease the step size after a certain number of iterations.

Algorithm 2. Run Algorithm 1 with the same setup till each ul(t), l ∈ [L] gets roughly accurate,

set ηl,t = η. Continue Algorithm 1 until early stopping criterion is satisfied.

Theorem 6. Under the assumptions of Theorem 5 with replacing the condition on δ’s by δin ≤
√
ζ(u?min)2

120(u?max)3
and δout ≤

√
ζ(u?min)2

120s(u?max)3
, we apply Algorithm 2 with ηl,t = 1

u4(t)
at the beginning, and

ηl,t = η ≤ 4
9(u?max)2

after ∀l ∈ [L], u2
l (t) ≥ 1

2
(u?l)

2, then with the same Tlb and Tub, we have that for

any Tlb ≤ t ≤ Tub,

∥∥u2
l (t)vl(t)−w?

l

∥∥
∞ .


∥∥ 1
n
X>ξ

∥∥
∞ ∨ ε, if l ∈ S.

α, if l /∈ S.

In Theorem 6, the criterion to decrease the step size is: u2
l (t) ≥ 1

2
(u?l)

2,∀l ∈ [L]. Once this

criterion is satisfied, our proof indeed ensures that it would hold for at least up to the early stopping

time Tub specified in the theorem. In practice, since u?l ’s are unknown, we can switch to a more

practical criterion: max
l∈[L]
{|ul(t+ 1)− ul(t)|/|ul(t) + ε|} < τ for some pre-specified tolerance τ >

0 and small value ε > 0 as the criterion for changing the step size. The motivation of this criterion is

further discussed in Appendix B.4. The error bound remains the same as Theorem 5. The change in

37

step size requires a new way to study the gradient dynamics of directions with perturbations. With

our proof technique, Theorem 6 requires a smaller bound on δ’s (see Lemma 31 versus Lemma 24

in Appendix B.3 for details). We believe it is a proof artifact and leave the improvement for future

work.

Connection to standard sparsity. Consider the degenerate case where each group size is

1. Our reparameterization, together with the normalization step, can roughly be interpreted as

wi ≈ u2
i sgn(vi), which is different from the power-reparameterization wi = uNi − vNi , N ≥ 2

in [29] and [1]. This also shows why a large step size on vi is needed at the beginning. If the

initialization on vi is incorrect, the sign of vi may not move with a small step size.

3.5 Simulation Study

We conduct various experiments on simulated data to support our theory. Following the model

in Section 3.2, we sample the entries of X i.i.d. using Rademacher random variables and the entries

of the noise vector ξ i.i.d. under N(0, σ2). We set σ = 0.5 throughout the experiments.

0 500 1000 1500 2000
epochs

0

1

2

3

||w
(t

)
−

w
?
||2

Recovery error

0 500 1000 1500 2000
epochs

0

1

2

3

4

u
l(
t)

Recovered group magnitudes

ul(t), l ∈ S
max
l /∈S

ul(t)

Figure 3.2: Convergence of Algorithm 1. The entries on the support are all 10. Reprinted with
permission from [2].

The effectiveness of our algorithms. We start by demonstrating the convergence of the two

proposed algorithms. In this experiment, we set n = 150 and p = 300. The number of non-

zero entries is 9, divided into 3 groups of size 3. We run both Algorithms 1 and 2 with the same

38

0 200 400 600 800 1000
epochs

0

2

4

6

8

10

12

w
li
(t

)

Recovered entries

wli(t), l ∈ S
max
l /∈S

wli(t)

0 200 400 600 800 1000
epochs

0

1

2

3

4

u
l(
t)

Recovered group magnitudes

ul(t), l ∈ S
max
l /∈S

ul(t)

0 200 400 600 800 1000
epochs

0.94

0.95

0.96

0.97

0.98

0.99

1.00

〈v
l(
t)
,v

?
〉

Recovered group directions

group1

group2

group3

Figure 3.3: Convergence of Algorithm 2. The entries on the support are from 5 to 13. Reprinted
with permission from [2].

initialization α = 10−6. The step size γ on u and decreased step size η on v are both 10−3. In

Figure 3.2, we present the recovery error of w? on the left, and recovered group magnitudes on

the right. As we can see, early stopping is crucial for reaching the structured sparse solution. In

Figure 3.3, we present the recovered entries, recovered group magnitudes and recovered directions

for each group from left to right. In addition to convergence, we also observe an incremental

learning effect.

0 100 200 300 400 500
epochs

0.00

0.25

0.50

0.75

1.00

1.25

w
li
(t

)

Recovered entries using group sparsity

wli(t), l ∈ S
max
l /∈S

wli(t)

0 100 200 300 400 500
epochs

0.00

0.25

0.50

0.75

1.00

1.25

w
li
(t

)

Recovered entries using sparsity

wli(t), l ∈ S
max
l /∈S

wli(t)

Figure 3.4: Comparison with reparameterization using standard sparsity. n = 100, p = 500.
Reprinted with permission from [2].

Structured sparsity versus standard sparsity. From our theory, we see that the block inco-

herence parameter scales with the number of non-zero groups, as opposed to the number of non-

zero entries. As such, we can expect an improved sample complexity over the estimators based

39

on unstructured sparse regularization. We choose a larger support size of 16. The entries on the

support are all 1 for simplicity. We apply our Algorithm 2 with group size 4. The result is shown

in Figure 3.4 (left). We compare with the method in [29] with parameterization w = u◦2 − v◦2,

designed for unstructured sparsity. We display the result in the right figure, where interestingly,

that algorithm fails to converge because of an insufficient number of samples.

0 200 400 600 800 1000
epochs

−1.0

−0.5

0.0

0.5

1.0

w
li
(t

)

Recovered entries

wli(t), l ∈ S
max
l /∈S
|wli(t)|

0 200 400 600 800 1000
epochs

−10

−8

−6

−4

lo
g

2
||w

t
−

w
?
||2 2

Recovery error

Figure 3.5: Degenerate case when each group size is 1. The log `2-error plot is repeated 30 times,
and the mean is depicted. The shaded area indicates the region between the 25th and 75th per-
centiles. Reprinted with permission from [2].

Degenerate case. In the degenerate case where each group is of size 1, our reparameterization

takes a simpler form wi ≈ u2
i sgn(v), i.e., due to weight normalization, our method normalizes v to

1 or−1 after each step. We demonstrate the efficacy of our algorithms even in the degenerate case.

We set n = 80 and p = 200. The entries on the support are [1,−1, 1,−1, 1] with both positive and

negative entries. We present the coordinate plot and the recovery error in Figure 3.5.

3.6 Discussion

In this work, we show that implicit regularization for group-structured sparsity can be obtained

by gradient descent (with weight normalization) for a certain, specially designed network archi-

tecture. Overall, we hope that such analysis further enhances our understanding of neural network

training. Future work includes relaxing the assumptions on δ’s in Theorem 2, and rigorous analysis

of modern grouping architectures as well as power parametrizations.

40

4. MATRIX COMPLETION WITH INFORMATIVE MISSING

4.1 Introduction

Matrix completion is the study of recovering an underlying matrix from its noisy and partial

observations, where we can also view it as a modern high-dimensional missing data problem.

Despite various significant breakthroughs made in the last two decades [99, 44], most work on

matrix completion still focus on missing-at-random mechanism. While such an assumption is

doubtful in many real-life applications, there are very few available options, especially those with

theoretical guarantees. This work aims to provide a principled alternative method for missing-not-

at-random settings. In particular, we focus on a pairwise pseudo-likelihood approach [46].

A usual assumption that allows succeeding matrix completion is to suppose that the unknown

matrix has low rank or has an approximately low rank. The noiseless setting was first studied

in [43] using nuclear norm minimization. The vast majority of existing theories on matrix com-

pletion assume that entries are revealed with the sample probability independently [100, 101]. Re-

cent approaches to handling entries being revealed with non-uniform probabilities have shown the

strength to improve matrix completion accuracy substantially [45, 102, 103]. However, such ap-

proaches require the knowledge of missing mechanisms to estimate the propensity score/weights to

de-bias the existing matrix completion methods [104]. There is another line of work that assumed

that the matrix follows some form of a latent variable model [105, 106]. In this work, we focus

on the recovery of a single matrix without other covariate information available [107, 108]. Al-

though the non-uniform missing mechanism is quite flexible, it is fundamentally different from the

missing-not-at-random mechanism. The key difference would be whether the missing probability

is dependent on the noisy observations, which we will highlight below. In the missing-not-at-

ramdom case, the methods developed for the non-uniform missing mechanism are not applicable

in general. However, the method we propose in this work for informative missing is applicable for

non-uniform missing as well.

41

The generalized low-rank model has received extensive attention within the matrix comple-

tion literature for its efficacy in modeling non-Gaussian data, particularly discrete data. No-

tably, researchers have investigated its application in specific scenarios such as one-bit matrix

completion[109] and multinomial matrix completion [110, 111]. The application of the generalized

low-rank model also extends to accommodating unbounded non-Gaussian observations, including

Poisson matrix completion [112] and exponential family matrix completion [113, 114].

Within the missing data literature, likelihood-based methods commonly involve specifying a

parametric distribution of the missing data mechanism. However, this assumption should be dealt

with caution, as it is highly sensitive and may easily induce a misspecified model, resulting in

biased estimation and inaccurate results. To circumvent such issues, it is preferable to adopt an

assumption as flexible and generally applicable as possible. This type of assumption, often re-

ferred to as an unspecified missing data mechanism [48], avoids explicitly specifying a parametric

model. Instead, it allows for the derivation of a nonregular likelihood [46], which serves as the

foundation for subsequent estimation. Such nonstandard likelihood approaches have been used in

regression analysis [115] and variable selection when confronted with informative missing [48].

One disadvantage of this approach is not all the unknown parameters are estimable due to the

non-identification issue [116, 46].

In this work, we adapt the pairwise pseudo-likelihood approach [46] to matrix completion with

a mild separable/decomposable assumption on the missing mechanism to deal with informative

missing under a generalized trace-regression framework. The assumption is very flexible and

generally applicable. While not all the parameters are estimable, we can identify the dispersion-

scaled matrix values up to a constant shift without suffering from the informative missing, which

shows promises to be applied in practice, for example, recommendation systems.

42

4.2 Preliminaries

Let A? = (A?,ij)
m1,m2

i,j=1 ∈ Rm1×m2 be the matrix of interest, and the observations (Y,X)

satisfying a generalized trace regression model

f(Y |X; A?) = Exph,G,φ(〈X,A?〉) := h(Y)exp

(〈X,A?〉Y −G(〈X,A?〉)
φ

)
,

where h and G are the base measure and log partition functions associated to the canonical repre-

sentation, φ is a constant corresponding to the dispersion parameter. Assume the design matrices

Xk are i.i.d. copies of a random matrixX having distribution Π on the set

X = {ei(m1)e>j (m2), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2},

where ei(m) are the canonical basis vectors in Rm. For simplicity, we consider a specific sampling

model

P(X = ei(m1)e>j (m2)) =
1

m1m2

,

which shares the similarity with Uniform Sampling at Random (USR) matrix completion. How-

ever, we further consider a second-stage missing mechanism. For each data pair (Y,X), let T be

the indicator variable with value 1 if (Y,X) is observed and 0 otherwise. Note that in this case

the probability of observation location (i, j) is Pr(X = eij|T = 1), which heavily depends on the

missing mechanism and goes beyond USR matrix completion. Note that our analysis below is not

restricted to uniform sampling model.

Assumption 2. The observation probability is separable, i.e.,

Pr(T = 1|Y,X) = s(Y)t(X)

for some functions s(·) and t(·).

Note that we do not require any specific form of s(·) and t(·). This assumption is very flexible

43

and generally applicable. It includes the non-uniform missing mechanism as a special case, where

we set s(Y) = 1 and leave t(X) to account for the non-uniform missing.

Applying the Bayes formula, we now rewrite the conditional distribution as

p(Y |X, T = 1) =
Pr(T = 1|Y,X)f(Y |X)

Pr(T = 1|X)
= s(Y)

t(X)

Pr(T = 1|X)
f(Y |X)

= s(Y)b(X)f(Y |X),

where b(X) = t(X)
P(T=1|X)

.

We may see the conditional likelihood of the observations is complicated, which makes the es-

timation of the matrix A intractable. To address this issue, we adopt the procedure called statistical

chromatography [46, 47] in matrix completion with informative missing to extract information on

A.

Suppose we get n data points (Yk,Xk) from the distribution of (Y,X) given T = 1, we

decompose Y = (Y1, . . . , Yn) into R = (R1, . . . , Rn) and Y(·) = (Y(1), . . . , Y(n)), which denote

the rank and order statistics of Y, respectively. Denote X = (X1, . . . ,Xn), we have that

Pr(R|X,Y(·),T = 1; A) =

∏n
k=1 s(Yk)t(Xk)f(Yk|Xk; A)∑

π∈Ξ

∏n
k=1 s(Yπ(k))t(Xk)f(Yπ(k)|Xk; A)

=

∏n
k=1 exp(〈Xk,A〉Yk/φ)∑

π∈Ξ

∏n
k=1 exp(〈Xk,A〉Yπ(k)/φ)

= Pr(R|X,Y(·); A),

where Ξ is the set of all one-to-one maps from {1, . . . , n} to {1, . . . , n}. We notice that this

conditional likelihood does not involve the missing probabilities s(·) and t(·) due to the separable

property. It is also not dependent on the base measure h(·) and the log partition function G(·).

More importantly, this pseudolikelihood on observed data is identical to that on the complete data,

which indicates that this procedure does not suffer from informative missing.

However, the full pseudolikelihood conditioned on the rank statistics is computationally inten-

sive due to the combinatorial nature of permutations, we consider a surrogate of Pr(R|X,Y(·); A)

44

using second-order information. For any k and k′, let RL
kk′ denote the local rank statistic of Yk and

Yk′ among the paper (Yk, Yk′). Instead of considering the full conditional probability, we study the

product of all possible combinations of the local rank conditional probability

∏
k<k′

Pr(RL
kk′ = rLkk′|Xk,Xk′ ,Y

L
(k,k′), Tk = Tk′ = 1; A)

=
∏
k<k′

exp
(
〈Xk,A〉Yk+〈Xk′ ,A〉Yk′

φ

)
exp

(
〈Xk,A〉Yk+〈Xk′ ,A〉Yk′

φ

)
+ exp

(
〈Xk,A〉Yk′+〈Xk′ ,A〉Yk

φ

)
=
∏
k<k′

1

1 + exp(−(Yk − Yk′)〈A,Xk −Xk′〉/φ)

=
∏
k<k′

Pr(RL
kk′ = rLkk′|Xk,Xk′ ,Y

L
(k,k′); A).

Taking the negative part after logarithmic transformation, we obtain the function

`(A/φ) =

(
n

2

)−1 ∑
1≤k<k′≤n

log(1 +Rkk′(A/φ)),

where Rkk′(A/φ) = exp{−(Yk − Yk′)〈A/φ,Xk −Xk′〉}. We notice that the effect of A and φ

can not be separated from A
φ

. Therefore, we aim to estimate a dispersion-scaled matrix A?

φ
. After

removing the unwanted quantities from this pairwise pseudolikelihood, some information about A

is also missed. We also notice that `(A) = `(A + c) for any constant c. Denote J as all one’s

matrix. The penalized pairwise pseudolikelihood estimator we consider is

Â ∈ argmin
〈J,A〉=0,‖A‖∞≤a

`(A) + λ ‖A‖? .

4.3 Main Results

We denote some convenient constants for dimensions, i.e.

m = min{m1,m2},M = min{m1,m2}, d = m1 +m2.

45

Assumption 3. We assume the following holds

(C1) The rank of the centered, dispersion-scaled true matrix is bounded by r, i.e.,

rank

(
A?

φ
−
〈

A?

φ
,J

〉
J

)
≤ r.

(C2) There exists τl > 0 and τu > 0 such that

1

τlm1m2

≤ Pr(X = eij|T = 1) ≤ τu
m1m2

, ∀i ∈ [m1], j ∈ [m2].

(C3) Denote πr =
∑

1≤j≤m2
πrj and πc =

∑
1≤i≤m1

πic. We assume there is a positive constant

L ≥ 1 s.t.

max
r∈[m1],c∈[m2]

(πr, πc) ≤ L/m.

(C4) The observation Y is bounded by some constant B almost surely.

(C5) Denote

Zkk′ = (Yk − Yk′)
exp((Yk − Yk′)〈Xk −Xk′ ,A〉/2)

1 + exp((Yk − Yk′)〈Xk −Xk′ ,A〉)
,

where ‖A‖∞ ≤M . There exists some constant κM > 0 s.t. E(Z2
kk′|Xk,Xk′) ≥ κM .

Condition (C1) is the low-rank assumption for the underlying unknown matrix of interest.

Instead of making assumptions on the original matrix, we assume the centered and dispersion-

scaled matrix is low-rank. These two assumptions are very similar since it is easy to check that

one implies the other. With a slight abuse of notation, we may denote A? as A?

φ
−
〈

A?

φ
,J
〉

J.

Condition (C2) and (C3) are to avoid some specific entries/rows/columns being sampled with very

high probability, where the trace-norm penalization fails to work [117, 118]. Condition (C4) is

a technical assumption for analyzing the concentration inequalities of the involved U-statistics

in pairwise pseudolikelihood. Note that this does not violate the parametric assumption on the

distribution of Y . For example, truncated normal distribution satisfies both. We leave the extension

46

to a light tail type of assumption for future work. Condition (C5) is about the second moment of

the difference between two observations, which is bounded away from zero. Intuitively, the larger

the difference, the more effective the pairwise pseudolikelihood.

Let {uk ∈ Rm1} and {vk ∈ Rm2} be the left and right singular vectors of A? respectively. Let

the column and row span of A? be U? = col(A?) = span{uk} and V? = row(A?) = span{vk}.

Define

M := {A : row(A) ⊆ V?, col(A) ⊆ U?}

M⊥
:= {A : row(A) ⊆ V⊥? , col(A) ⊆ U⊥? }.

It is easy to see thatM ⊆M, butM 6=M. The subspace compatibility ofM is upper bounded

by
√

2r, i.e.

ψ(M) = sup
A∈M\{0}

‖A‖?
‖A‖F

≤
√

2r.

The pairwise pseudo likelihood in can be written as

`(A) =
2

n(n− 1)

∑
1≤k<k′≤n

{ψ(Yk\k′〈Xk\k′ ,A〉)− Yk\k′〈Xk\k′ ,A〉},

where ψ(t) = log(1 + exp(t)), and hence ψ′(t) = exp(t)
1+exp(t)

, ψ′′(t) = exp(t)
(1+exp(t))2

and ψ′′′(t) =

exp(t)(1−exp(t))
(1+exp(t))3

. After some algebra, we have that |ψ′(t)| ≤ 1, |ψ′′(t)| ≤ 0.25 and |ψ′′′(t)| ≤ 0.1.

Therefore, its first and second order derivatives are

∇`(A) =
2

n(n− 1)

∑
1≤k<k′≤n

{ψ′(Yk\k′〈Xk\k′ ,A〉)Yk\k′Xk\k′ − Yk\k′Xk\k′},

and

∇2`(A) =
2

n(n− 1)

∑
1≤k<k′≤n

{ψ′′(Yk\k′〈Xk\k′ ,A〉)Y 2
k\k′vec(Xk\k′)

⊗2},

where vec(X) is the standard vectorization of matrixX and v⊗2 = vv>.

47

Denote

Σg,R =
∑
kk′∈g

2

n
εkk′Zkk′(Xk −Xk′)

where g is any group of non-overlapped pairs in [n] and εkk′ is i.i.d. Radamacher random variables.

Theorem 7. Suppose 〈A?,J〉 = 0, ‖A?‖∞ ≤ a and all the conditions in Assumption 3 hold, there

exists an absolute constant c > 0 such that with probability at least 1− 9
d
, the following holds

1

m1m2

∥∥∥∥Â− A?

φ

∥∥∥∥2

F

≤cmax

{
1

κ2
M

rτ 4
l m1m2 max{λ2, B2a2(E ‖Σg,R‖)2},

τ 2
l

κM
a2

√
log(d) + log(n)

n

}
.

Corollary 3. Under the same condition as Theorem 7, there exists absolute constants C?, c, c′ >

0 such that choosing λ =
√
C?LB2 log(d)+log(n)

mn
and when 3c

128
Lm log3(d) ≤ n ≤ m1m2, with

probability at least 1− 9
d
, the following holds

1

m1m2

∥∥∥∥Â− A?

φ

∥∥∥∥2

F

≤ c′max

{
rτ 4
l B

2L

κ2
M

M log(d)

n
max{1, a2}, τ

2
l a

2

κM

√
log(d)

n

}
.

Our result implies that the penalized pairwise pseudolikelihood approach can estimate the re-

maining components of A? after excluding the non-identifiable parts, i.e., a constant shift and scal-

ing. Compared with [44], the error rate shown above is nearly the same up to a logarithmic factor.

However, our method is able to handle the informative missing, which contains the non-uniform

missing as a special case.

4.4 Numerical Experiments

We propose an efficient algorithm to solve the optimization problem related to the penalized

pairwise pseudolikelihood. Note that the objective function and the constraint set are both convex.

48

and the constraint set is a closed convex set. We adapt the projected gradient descent algorithm to

solve the optimization problem, shown below.

Algorithm 2 Projected gradient descent

Initialize: A(0) = 0, set learning rate η.

for t = 0 to T do

G(t) = ∇`(A(t))− 1
m1m2

〈J,∇`(A(t))〉

K(t) = A(t)− ηG(t)

Q(t) = Sλ(K(t))

A(t+ 1) = POCS(Q(t))

if the early stopping criterion is satisfied then

stop

end if

end for

Here, POCS is the projection onto the intersection of two convex sets {A|〈J,A〉 = 0} and

{A| ‖A‖∞ ≤ a}. The notation Sλ(·) is the soft-thresholding operator,

Sλ(A) = UDλV
>, with Dλ = diag[(d1 − λ)+, . . . , (dr − λ)+],

where UDV> is the SVD of A, and tx = max(t, 0).

We use the following simulation study to demonstrate the efficacy of the proposed method.

We generate a 50 × 50 matrix A? with rank r = 5, and the observations Y are generated from

a Gaussian distribution with noise level σ = 1. The probability of each entry being observed is

related to the value of entry itself

P(T = 1|Y,X = eij) =
1

1 + exp(3Y)
.

49

Therefore, the observed entries are more likely to be small in magnitude, as shown in Figure 4.1.

−6 −4 −2 0 2 4 6
0

25

50

75

100

125

C
ou

nt

Observed/Unobserved entries

unobserved

observed

Figure 4.1: Observation bias.

We use the observed entries as training data, and equally split the unobserved data as validation

and test data. We compare the proposed method with [119, 99, 45, 106]. The distribution of

recovered entries is shown in Figure 4.2. It shows that only our method is able to mitigate the

observational bias and exhibits a symmetric distribution, while the distribution of other methods

is left skewed. As there exists some identification issue with our method, we run a simple linear

regression using validation data for all methods and report the test error in Table 4.1, where our

method achieves the best performance.

Table 4.1: Test root mean squared errors (TRMSE), test mean absolute errors (TMAE).

Informative Missing
Method TRMSE TMAE

SoftImpute [119] 1.0687 0.8149
CZ [99] 1.1193 0.8580

MFW [45] 1.0554 0.8036
SNN [106] 1.3110 0.9737
Our method 0.9462 0.7127

50

−5.0 −2.5 0.0 2.5 5.0
0

50

100

150

200

C
ou

nt

True entries

−5.0 −2.5 0.0 2.5 5.0
0

50

100

150

200

250

C
ou

nt

Soft Impute

−5.0 −2.5 0.0 2.5 5.0
0

50

100

150

200

C
ou

nt

Max Norm

−5.0 −2.5 0.0 2.5 5.0
0

50

100

150

200

C
ou

nt

Model Free Weighting

−5.0 −2.5 0.0 2.5 5.0
0

50

100

150

200

250

C
ou

nt

Synthetic NN

−5.0 −2.5 0.0 2.5 5.0
0

50

100

150

200

C
ou

nt

Pseudolikelihood

Figure 4.2: The recovered entries are left skewed from other methods.

51

5. SUMMARY

This dissertation presents several contributions towards learning algorithms under implicit bias

and data bias. The research focuses on understanding the implicit bias of training algorithms in

neural networks and developing effective algorithms for mitigating data bias.

We specifically study the training trajectories of diagonally linear neural networks with general

depth-N [1]. We theoretically prove the implicit sparse regularization effect under the general

correlated and noisy setting. We characterize the impact of depth and early stopping, and show

that increasing depth enlarges the scale of working initialization and the early-stopping window

so that this implicit sparse regularization effect is more likely to take place. Such insights and the

associated techniques shed light on studying the training trajectories of more general deep models.

To further delve into the implicit regularization of gradient descent towards structured sparsity,

we propose a novel neural reparameterization [2]. Through this approach, we uncover an intriguing

property: gradient descent on the squared regression loss, without explicit regularization, exhibits

a bias towards solutions with a group sparsity structure. In contrast to many existing works in

understanding implicit regularization, we prove that our training trajectory cannot be simulated by

mirror descent. We analyze the gradient dynamics of the corresponding regression problem in the

general noise setting. This discovery not only advances our understanding of implicit regulariza-

tion but also opens up new possibilities for leveraging this property to promote structured sparsity

in various machine learning tasks.

Additionally, we explore the problem of matrix completion with informative missing. We pro-

pose a penalized pairwise pseudolikelihood approach to mitigate data bias in matrix completion.

The proposed method does not suffer from data bias under a flexible and generally applicable as-

sumption. We provide a near-optimal error bound after excluding the non-identifiable components

and demonstrate the efficacy of the proposed method through numerical experiments.

Moving forward, we envision several promising future directions. Building upon our explo-

ration of deeper models and richer implicit regularization effects, we aim to understand the learn-

52

ing algorithms under implicit bias for richer, deeper, and more general models. By discovering

additional intriguing and fundamental implicit regularization effects, we anticipate gaining deeper

insights into neural network training and generalization performance, leading to the development

of more effective, reliable, and trustworthy artificial intelligence models. Given the ubiquity of

data bias in real-world applications, stemming from human reporting and selection biases, as well

as algorithmic and interpretation biases, we also aim to develop more efficient and powerful al-

gorithms for data bias mitigation. Furthermore, we intend to extend the insights gained from our

study of matrix completion with informative missing to other machine learning models, addressing

data bias challenges across diverse applications.

By addressing these fundamental aspects, this thesis not only advances our understanding of

implicit bias, and data bias mitigation but also offers valuable insights and techniques for overcom-

ing challenges in modern machine learning. Through these contributions, we aim to drive the field

forward, foster the development of more effective algorithms, and promote fairness and reliability

in practical machine learning applications.

53

REFERENCES

[1] J. Li, T. Nguyen, C. Hegde, and R. K. W. Wong, “Implicit sparse regularization: The impact

of depth and early stopping,” Advances in Neural Information Processing Systems, vol. 34,

2021.

[2] J. Li, T. V. Nguyen, C. Hegde, and R. K. Wong, “Implicit regularization for group sparsity,”

in The Eleventh International Conference on Learning Representations, 2023.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–

444, 2015.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners,” Advances

in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[5] X. Wang, L. Zhang, and D. Klabjan, “Keyword-based topic modeling and keyword selec-

tion,” in 2021 IEEE International Conference on Big Data (Big Data), pp. 1148–1154,

IEEE, 2021.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

[7] S. Shan, Y. Li, and J. B. Oliva, “Meta-neighborhoods,” Advances in Neural Information

Processing Systems, vol. 33, pp. 5047–5057, 2020.

[8] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human knowledge,”

nature, vol. 550, no. 7676, pp. 354–359, 2017.

[9] S. Shan, L. Hantrakul, J. Chen, M. Avent, and D. Trevelyan, “Differentiable wavetable

synthesis,” in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and

54

Signal Processing (ICASSP), pp. 4598–4602, IEEE, 2022.

[10] H. Purwins, B. Li, T. Virtanen, J. Schlüter, S.-Y. Chang, and T. Sainath, “Deep learning for

audio signal processing,” IEEE Journal of Selected Topics in Signal Processing, vol. 13,

no. 2, pp. 206–219, 2019.

[11] J. Li and M. Armandpour, “Deep spatio-temporal wind power forecasting,” in ICASSP 2022-

2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 4138–4142, IEEE, 2022.

[12] S. Shan, Y. Li, and J. B. Oliva, “Nrtsi: Non-recurrent time series imputation,” in ICASSP

2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 1–5, IEEE, 2023.

[13] L. Zhang, A. Ebrahimi, and D. Klabjan, “Layer flexible adaptive computation time,” in 2021

International Joint Conference on Neural Networks (IJCNN), pp. 1–9, IEEE, 2021.

[14] L. Zhang, X. Chen, T. Chen, Z. Wang, and B. J. Mortazavi, “Dynehr: Dynamic adaptation

of models with data heterogeneity in electronic health records,” in 2021 IEEE EMBS Inter-

national Conference on Biomedical and Health Informatics (BHI), pp. 1–4, IEEE, 2021.

[15] K. K. Zhang, J. Li, M. Jeon, and K. S. Ramos, “Single-cell mrna sequencing into precision

medicine: Promise and challenges,” in Reference Module in Biomedical Sciences, Elsevier,

2023.

[16] L. Zhang, N. C. Hurley, B. Ibrahim, E. Spatz, H. M. Krumholz, R. Jafari, and M. J. Bobak,

“Developing personalized models of blood pressure estimation from wearable sensors data

using minimally-trained domain adversarial neural networks,” in Machine Learning for

Healthcare Conference, pp. 97–120, PMLR, 2020.

[17] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “Deepxde: A deep learning library for

solving differential equations,” SIAM review, vol. 63, no. 1, pp. 208–228, 2021.

[18] Y. Li, H. Yi, C. Bender, S. Shan, and J. B. Oliva, “Exchangeable neural ode for set model-

ing,” Advances in Neural Information Processing Systems, vol. 33, pp. 6936–6946, 2020.

55

[19] B. Lei, D. Xu, R. Zhang, S. He, and B. K. Mallick, “Balance is essence: Accelerating sparse

training via adaptive gradient correction,” arXiv preprint arXiv:2301.03573, 2023.

[20] G. Bellec, D. Kappel, W. Maass, and R. Legenstein, “Deep rewiring: Training very sparse

deep networks,” arXiv preprint arXiv:1711.05136, 2017.

[21] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning

requires rethinking generalization,” arXiv preprint arXiv:1611.03530, 2016.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[23] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better: Stability of stochas-

tic gradient descent,” in International Conference on Machine Learning, pp. 1225–1234,

PMLR, 2016.

[24] L. Zhang, J. Zhang, B. Lei, S. Mukherjee, X. Pan, B. Zhao, C. Ding, Y. Li, and D. Xu, “Ac-

celerating dataset distillation via model augmentation,” arXiv preprint arXiv:2212.06152,

2022.

[25] B. Lei, R. Zhang, D. Xu, and B. Mallick, “Calibrating the rigged lottery: Making all tickets

reliable,” arXiv preprint arXiv:2302.09369, 2023.

[26] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to

algorithms. Cambridge university press, 2014.

[27] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint

arXiv:1711.05101, 2017.

[28] G. Vardi, “On the implicit bias in deep-learning algorithms,” Communications of the ACM,

vol. 66, no. 6, pp. 86–93, 2023.

[29] T. Vaskevicius, V. Kanade, and P. Rebeschini, “Implicit regularization for optimal sparse

recovery,” in Advances in Neural Information Processing Systems, pp. 2972–2983, 2019.

56

[30] P. Zhao, Y. Yang, and Q.-C. He, “Implicit regularization via hadamard product over-

parametrization in high-dimensional linear regression,” arXiv preprint arXiv:1903.09367,

2019.

[31] S. Gunasekar, B. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro, “Implicit regu-

larization in matrix factorization,” in 2018 Information Theory and Applications Workshop

(ITA), pp. 1–10, IEEE, 2018.

[32] Y. Li, T. Ma, and H. Zhang, “Algorithmic regularization in over-parameterized matrix sens-

ing and neural networks with quadratic activations,” in Conference On Learning Theory,

pp. 2–47, PMLR, 2018.

[33] S. Arora, N. Cohen, W. Hu, and Y. Luo, “Implicit regularization in deep matrix factoriza-

tion,” arXiv preprint arXiv:1905.13655, 2019.

[34] R. Ge, J. D. Lee, and T. Ma, “Learning one-hidden-layer neural networks with landscape

design,” arXiv preprint arXiv:1711.00501, 2017.

[35] X. Wang, C. Wu, J. D. Lee, T. Ma, and R. Ge, “Beyond lazy training for over-parameterized

tensor decomposition,” Advances in Neural Information Processing Systems, vol. 33,

pp. 21934–21944, 2020.

[36] F. Williams, M. Trager, C. Silva, D. Panozzo, D. Zorin, and J. Bruna, “Gradient dynamics

of shallow univariate relu networks,” arXiv preprint arXiv:1906.07842, vol. 32, 2019.

[37] H. Jin and G. Montúfar, “Implicit bias of gradient descent for mean squared error regression

with wide neural networks,” arXiv preprint arXiv:2006.07356, 2020.

[38] S. Gunasekar, J. D. Lee, D. Soudry, and N. Srebro, “Implicit bias of gradient descent on lin-

ear convolutional networks,” Advances in Neural Information Processing Systems, vol. 31,

2018.

[39] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro, “The implicit bias of

gradient descent on separable data,” The Journal of Machine Learning Research, vol. 19,

no. 1, pp. 2822–2878, 2018.

57

[40] M. S. Nacson, J. Lee, S. Gunasekar, P. H. P. Savarese, N. Srebro, and D. Soudry, “Con-

vergence of gradient descent on separable data,” in The 22nd International Conference on

Artificial Intelligence and Statistics, pp. 3420–3428, PMLR, 2019.

[41] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big

data, vol. 3, no. 1, pp. 1–40, 2016.

[42] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on bias and

fairness in machine learning,” ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–35,

2021.

[43] E. Candes and B. Recht, “Exact matrix completion via convex optimization,” Communica-

tions of the ACM, vol. 55, no. 6, pp. 111–119, 2012.

[44] O. Klopp, “Noisy low-rank matrix completion with general sampling distribution,”

Bernoulli, vol. 20, no. 1, pp. 282–303, 2014.

[45] J. Wang, R. K. Wong, X. Mao, and K. C. G. Chan, “Matrix completion with model-free

weighting,” arXiv preprint arXiv:2106.05850, 2021.

[46] K.-Y. Liang and J. Qin, “Regression analysis under non-standard situations: a pairwise

pseudolikelihood approach,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), vol. 62, no. 4, pp. 773–786, 2000.

[47] Y. Ning, T. Zhao, and H. Liu, “A likelihood ratio framework for high-dimensional semipara-

metric regression,” The Annals of Statistics, vol. 45, no. 6, pp. 2299–2327, 2017.

[48] J. Zhao, Y. Yang, and Y. Ning, “Penalized pairwise pseudo likelihood for variable selection

with nonignorable missing data,” Statistica Sinica, vol. 28, no. 4, pp. 2125–2148, 2018.

[49] M. Li, M. Soltanolkotabi, and S. Oymak, “Gradient descent with early stopping is provably

robust to label noise for overparameterized neural networks,” in International conference on

artificial intelligence and statistics, pp. 4313–4324, PMLR, 2020.

58

[50] B. Neyshabur, R. Tomioka, R. Salakhutdinov, and N. Srebro, “Geometry of optimization

and implicit regularization in deep learning,” arXiv preprint arXiv:1705.03071, 2017.

[51] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro, “The implicit bias of

gradient descent on separable data,” The Journal of Machine Learning Research, vol. 19,

no. 1, pp. 2822–2878, 2018.

[52] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning practice

and the classical bias-variance trade-off,” Proceedings of the National Academy of Sciences

of the United States of America, vol. 116, no. 32, pp. 15849–15854, 2019.

[53] V. Muthukumar, K. Vodrahalli, V. Subramanian, and A. Sahai, “Harmless interpolation of

noisy data in regression,” IEEE Journal on Selected Areas in Information Theory, vol. 1,

no. 1, pp. 67–83, 2020.

[54] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear dynamics

of learning in deep linear neural networks,” arXiv preprint arXiv:1312.6120, 2013.

[55] S. Gunasekar, J. D. Lee, N. Srebro, and D. Soudry, “Implicit bias of gradient descent

on linear convolutional networks,” Advances in Neural Information Processing Systems,

vol. 2018, pp. 9461–9471, 2018.

[56] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro, “Characterizing implicit bias in terms of

optimization geometry,” in International Conference on Machine Learning, pp. 1832–1841,

PMLR, 2018.

[57] D. Gissin, S. Shalev-Shwartz, and A. Daniely, “The implicit bias of depth: How incremental

learning drives generalization,” arXiv preprint arXiv:1909.12051, 2019.

[58] G. Gidel, F. Bach, and S. Lacoste-Julien, “Implicit regularization of discrete gradient dy-

namics in linear neural networks,” arXiv preprint arXiv:1904.13262, 2019.

[59] B. Woodworth, S. Gunasekar, J. D. Lee, E. Moroshko, P. Savarese, I. Golan, D. Soudry,

and N. Srebro, “Kernel and rich regimes in overparametrized models,” in Conference on

Learning Theory, pp. 3635–3673, PMLR, 2020.

59

[60] E. Moroshko, B. E. Woodworth, S. Gunasekar, J. D. Lee, N. Srebro, and D. Soudry, “Implicit

bias in deep linear classification: Initialization scale vs training accuracy,” in Advances

in Neural Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. F.

Balcan, and H. Lin, eds.), vol. 33, pp. 22182–22193, Curran Associates, Inc., 2020.

[61] Z. Li, Y. Luo, and K. Lyu, “Towards resolving the implicit bias of gradient descent for

matrix factorization: Greedy low-rank learning,” arXiv preprint arXiv:2012.09839, 2020.

[62] G. Neu and L. Rosasco, “Iterate averaging as regularization for stochastic gradient descent,”

in Conference On Learning Theory, pp. 3222–3242, PMLR, 2018.

[63] G. Raskutti, M. J. Wainwright, and B. Yu, “Early stopping and non-parametric regres-

sion: an optimal data-dependent stopping rule,” The Journal of Machine Learning Research,

vol. 15, no. 1, pp. 335–366, 2014.

[64] A. Suggala, A. Prasad, and P. K. Ravikumar, “Connecting optimization and regularization

paths,” Advances in Neural Information Processing Systems, vol. 31, pp. 10608–10619,

2018.

[65] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Sta-

tistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[66] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,”

SIAM review, vol. 43, no. 1, pp. 129–159, 2001.

[67] E. Candes, T. Tao, et al., “The dantzig selector: Statistical estimation when p is much larger

than n,” Annals of statistics, vol. 35, no. 6, pp. 2313–2351, 2007.

[68] K. Bredies and D. A. Lorenz, “Linear convergence of iterative soft-thresholding,” Journal

of Fourier Analysis and Applications, vol. 14, no. 5-6, pp. 813–837, 2008.

[69] A. Agarwal, S. Negahban, and M. J. Wainwright, “Fast global convergence of gradient

methods for high-dimensional statistical recovery,” The Annals of Statistics, pp. 2452–2482,

2012.

60

[70] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE transactions on infor-

mation theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[71] S. Foucart and H. Rauhut, “An invitation to compressive sensing,” in A mathematical intro-

duction to compressive sensing, pp. 1–39, Springer, 2013.

[72] S. Foucart and J. Li, “Sparse recovery from inaccurate saturated measurements,” Acta Ap-

plicandae Mathematicae, vol. 158, no. 1, pp. 49–66, 2018.

[73] L. Carin, D. Liu, and B. Guo, “Coherence, compressive sensing, and random sensor arrays,”

IEEE Antennas and Propagation Magazine, vol. 53, no. 4, pp. 28–39, 2011.

[74] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcomplete

representations in the presence of noise,” IEEE Transactions on information theory, vol. 52,

no. 1, pp. 6–18, 2005.

[75] E. J. Candes, Y. C. Eldar, D. Needell, and P. Randall, “Compressed sensing with coherent

and redundant dictionaries,” Applied and Computational Harmonic Analysis, vol. 31, no. 1,

pp. 59–73, 2011.

[76] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smoothness via

the fused lasso,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),

vol. 67, no. 1, pp. 91–108, 2005.

[77] C. R. Vogel and M. E. Oman, “Iterative methods for total variation denoising,” SIAM Journal

on Scientific Computing, vol. 17, no. 1, pp. 227–238, 1996.

[78] Z. Dai, M. Karzand, and N. Srebro, “Representation costs of linear neural networks: Anal-

ysis and design,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[79] M. Jagadeesan, I. Razenshteyn, and S. Gunasekar, “Inductive bias of multi-channel lin-

ear convolutional networks with bounded weight norm,” arXiv preprint arXiv:2102.12238,

2021.

61

[80] X. Wu, E. Dobriban, T. Ren, S. Wu, Z. Li, S. Gunasekar, R. Ward, and Q. Liu, “Implicit

regularization and convergence for weight normalization,” Advances in Neural Information

Processing Systems, vol. 33, pp. 2835–2847, 2020.

[81] M. Pilanci and T. Ergen, “Neural networks are convex regularizers: Exact polynomial-time

convex optimization formulations for two-layer networks,” in International Conference on

Machine Learning, pp. 7695–7705, PMLR, 2020.

[82] A. Sahiner, T. Ergen, J. Pauly, and M. Pilanci, “Vector-output relu neural network prob-

lems are copositive programs: Convex analysis of two layer networks and polynomial-time

algorithms,” arXiv preprint arXiv:2012.13329, 2020.

[83] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro, “Characterizing implicit bias in terms of

optimization geometry,” in International Conference on Machine Learning, pp. 1832–1841,

PMLR, 2018.

[84] J. Schwarz, S. Jayakumar, R. Pascanu, P. Latham, and Y. Teh, “Powerpropagation: A spar-

sity inducing weight reparameterisation,” Advances in Neural Information Processing Sys-

tems, vol. 34, 2021.

[85] R. Berthier, “Incremental learning in diagonal linear networks,” arXiv preprint

arXiv:2208.14673, 2022.

[86] H.-H. Chou, J. Maly, and H. Rauhut, “More is less: Inducing sparsity via overparameteriza-

tion,” arXiv preprint arXiv:2112.11027, 2021.

[87] S. S. Du, W. Hu, and J. D. Lee, “Algorithmic regularization in learning deep homogeneous

models: Layers are automatically balanced,” Advances in Neural Information Processing

Systems, vol. 31, 2018.

[88] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to

accelerate training of deep neural networks,” Advances in neural information processing

systems, vol. 29, 2016.

62

[89] D. Morwani and H. G. Ramaswamy, “Inductive bias of gradient descent for weight normal-

ized smooth homogeneous neural nets,” in International Conference on Algorithmic Learn-

ing Theory, pp. 827–880, PMLR, 2022.

[90] T. Van Laarhoven, “L2 regularization versus batch and weight normalization,” arXiv

preprint arXiv:1706.05350, 2017.

[91] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for

deep neural networks,” in Proceedings of the IEEE conference on computer vision and pat-

tern recognition, pp. 1492–1500, 2017.

[92] X. Wu, Z. Zhang, W. Zhang, Y. Yi, C. Zhang, and Q. Xu, “A convolutional neural net-

work based on grouping structure for scene classification,” Remote Sensing, vol. 13, no. 13,

p. 2457, 2021.

[93] G. Xie, C. Dong, Y. Kong, J. F. Zhong, M. Li, and K. Wang, “Group lasso regularized deep

learning for cancer prognosis from multi-omics and clinical features,” Genes, vol. 10, no. 3,

p. 240, 2019.

[94] Y. C. Eldar and H. Bolcskei, “Block-sparsity: Coherence and efficient recovery,” in 2009

IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2885–

2888, IEEE, 2009.

[95] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based compressive sens-

ing,” IEEE Transactions on information theory, vol. 56, no. 4, pp. 1982–2001, 2010.

[96] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruction of block-sparse signals with

an optimal number of measurements,” IEEE Transactions on Signal Processing, vol. 57,

no. 8, pp. 3075–3085, 2009.

[97] Z. Li, T. Wang, J. Lee, and S. Arora, “Implicit bias of gradient descent on reparametrized

models: On equivalence to mirror descent,” arXiv preprint arXiv:2207.04036, 2022.

63

[98] S. Arora, N. Cohen, and E. Hazan, “On the optimization of deep networks: Implicit acceler-

ation by overparameterization,” in International Conference on Machine Learning, pp. 244–

253, PMLR, 2018.

[99] T. T. Cai and W.-X. Zhou, “Matrix completion via max-norm constrained optimization,”

Electronic Journal of Statistics, vol. 10, no. 1, pp. 1493–1525, 2016.

[100] S. Chatterjee, “Matrix estimation by universal singular value thresholding,” The Annals of

Statistics, pp. 177–214, 2015.

[101] D. Song, C. E. Lee, Y. Li, and D. Shah, “Blind regression: Nonparametric regression for la-

tent variable models via collaborative filtering,” Advances in Neural Information Processing

Systems, vol. 29, 2016.

[102] X. Mao, R. K. Wong, and S. X. Chen, “Matrix completion under low-rank missing mecha-

nism,” arXiv preprint arXiv:1812.07813, 2018.

[103] W. Ma and G. H. Chen, “Missing not at random in matrix completion: The effectiveness

of estimating missingness probabilities under a low nuclear norm assumption,” Advances in

neural information processing systems, vol. 32, pp. 14871–14880, 2019.

[104] T. Schnabel, A. Swaminathan, A. Singh, N. Chandak, and T. Joachims, “Recommendations

as treatments: Debiasing learning and evaluation,” in international conference on machine

learning, pp. 1670–1679, PMLR, 2016.

[105] M. Udell and A. Townsend, “Why are big data matrices approximately low rank?,” SIAM

Journal on Mathematics of Data Science, vol. 1, no. 1, pp. 144–160, 2019.

[106] A. Agarwal, M. Dahleh, D. Shah, and D. Shen, “Causal matrix completion,” arXiv preprint

arXiv:2109.15154, 2021.

[107] X. Mao, S. X. Chen, and R. K. Wong, “Matrix completion with covariate information,”

Journal of the American Statistical Association, vol. 114, no. 525, pp. 198–210, 2019.

64

[108] H. Jin, Y. Ma, and F. Jiang, “Matrix completion with covariate information and informative

missingness,” Journal of Machine Learning Research, vol. 23, no. 180, pp. 1–62, 2022.

[109] M. A. Davenport, Y. Plan, E. Van Den Berg, and M. Wootters, “1-bit matrix completion,”

Information and Inference: A Journal of the IMA, vol. 3, no. 3, pp. 189–223, 2014.

[110] T. Cai and W.-X. Zhou, “A max-norm constrained minimization approach to 1-bit matrix

completion.,” J. Mach. Learn. Res., vol. 14, no. 1, pp. 3619–3647, 2013.

[111] O. Klopp, K. Lounici, and A. B. Tsybakov, “Robust matrix completion,” Probability Theory

and Related Fields, vol. 169, pp. 523–564, 2017.

[112] Y. Cao and Y. Xie, “Poisson matrix recovery and completion,” IEEE Transactions on Signal

Processing, vol. 64, no. 6, pp. 1609–1620, 2015.

[113] S. Gunasekar, P. Ravikumar, and J. Ghosh, “Exponential family matrix completion under

structural constraints,” in International Conference on Machine Learning, pp. 1917–1925,

PMLR, 2014.

[114] J. Lafond, “Low rank matrix completion with exponential family noise,” in Conference on

Learning Theory, pp. 1224–1243, PMLR, 2015.

[115] G. Tang, R. J. Little, and T. E. Raghunathan, “Analysis of multivariate missing data with

nonignorable nonresponse,” Biometrika, vol. 90, no. 4, pp. 747–764, 2003.

[116] J. D. Kalbfleisch, “Likelihood methods and nonparametric tests,” Journal of the American

Statistical Association, vol. 73, no. 361, pp. 167–170, 1978.

[117] R. Foygel, O. Shamir, N. Srebro, and R. R. Salakhutdinov, “Learning with the weighted

trace-norm under arbitrary sampling distributions,” Advances in neural information pro-

cessing systems, vol. 24, 2011.

[118] N. Srebro and R. R. Salakhutdinov, “Collaborative filtering in a non-uniform world: Learn-

ing with the weighted trace norm,” Advances in neural information processing systems,

vol. 23, 2010.

65

[119] R. Mazumder, T. Hastie, and R. Tibshirani, “Spectral regularization algorithms for learning

large incomplete matrices,” The Journal of Machine Learning Research, vol. 11, pp. 2287–

2322, 2010.

[120] T. K. Lee, W. J. Baddar, S. T. Kim, and Y. M. Ro, “Convolution with logarithmic filter

groups for efficient shallow cnn,” in International Conference on Multimedia Modeling,

pp. 117–129, Springer, 2018.

[121] L. Jing, J. Zbontar, et al., “Implicit rank-minimizing autoencoder,” Advances in Neural

Information Processing Systems, vol. 33, pp. 14736–14746, 2020.

[122] I. Carmichael, T. Keefe, N. Giertych, and J. P. Williams, “yaglm: a python package for fit-

ting and tuning generalized linear models that supports structured, adaptive and non-convex

penalties,” arXiv preprint arXiv:2110.05567, 2021.

[123] C. Molinari, M. Massias, L. Rosasco, and S. Villa, “Iterative regularization for convex regu-

larizers,” in International conference on artificial intelligence and statistics, pp. 1684–1692,

PMLR, 2021.

[124] T. E. Scheetz, K.-Y. A. Kim, R. E. Swiderski, A. R. Philp, T. A. Braun, K. L. Knudtson,

A. M. Dorrance, G. F. DiBona, J. Huang, T. L. Casavant, et al., “Regulation of gene expres-

sion in the mammalian eye and its relevance to eye disease,” Proceedings of the National

Academy of Sciences, vol. 103, no. 39, pp. 14429–14434, 2006.

[125] Y. Yang and H. Zou, “A fast unified algorithm for solving group-lasso penalize learning

problems,” Statistics and Computing, vol. 25, pp. 1129–1141, 2015.

[126] J. Wang, R. K. Wong, and X. Zhang, “Low-rank covariance function estimation for mul-

tidimensional functional data,” Journal of the American Statistical Association, vol. 117,

no. 538, pp. 809–822, 2022.

[127] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,” Foundations of com-

putational mathematics, vol. 12, pp. 389–434, 2012.

66

[128] W. N. Anderson Jr and T. D. Morley, “Eigenvalues of the laplacian of a graph,” Linear and

multilinear algebra, vol. 18, no. 2, pp. 141–145, 1985.

[129] P. Bühlmann and S. Van De Geer, Statistics for high-dimensional data: methods, theory and

applications. Springer Science & Business Media, 2011.

[130] O. Klopp, “Rank penalized estimators for high-dimensional matrices,” Electronic Journal

of Statistics, vol. 5, pp. 1161–1183, 2011.

67

APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER II

The appendix is organized as follows.

In Appendix A.1, we present a simplied theorem about non-negative signals and illustrate the

idea behind the proof.

In Appendix A.2, we study the multiplicative updates and build connections to its continuous

approximation, which will be used next.

In Appendix A.3, we provide the proof of propositions and technical lemmas in Appendix A.1.

In Appendix A.4, we prove the main results stated in the paper.

In Appendix A.5, we provide the experimental results on real-world datasets to illustrate the

effectiveness of the proposed algorithm.

A.1 Proof for Non-negative Signals

We mainly follow the proof structure from [29] to obtain the convergence of similar gradient

descent algorithm for the case N = 2, which is a limiting case of ours. We will demonstrate how

gradient dynamics changes with N > 2, which requires us to study the growth rate of error and

convergence rate more carefully.

In this section, we will start with the general set up and provide a simplified version of Theorem

1 about non-negative signals.

A.1.1 Setup

The gradients of L(u,v) with respect to u,v read as

∇uL(w) =
2N

n
XT(Xw − y)� uN−1

∇vL(w) = −2N

n
XT(Xw − y)� vN−1.

68

With the step size η, the gradient descent updates on ut and vt simply are

ut+1 = ut �
(

1− 2Nη

(
1

n
XT(X(wt −w?)− ξ)� uN−2

t

))
,

vt+1 = vt �
(

1 + 2Nη

(
1

n
XT(X(wt −w?)− ξ)� vN−2

t

))
.

Let wt = w+
t −w−t where w+

t := uNt and w−t := vNt with the power taken element-wisely. We

denote S as the support of w?, and let S+ = {i|w?i > 0} denote the index set of coordinates with

positive values, and S− = {i|w?i < 0} denote the index set of coordinates with negative values.

Therefore S = S+ ∪ S− and S+ ∩ S− = ∅. Then define the following signal and noise-related

quantities:

st := 1S+ �w+
t − 1S− �w−t ,

et := 1Sc �wt + 1S− �w+
t − 1S+ �w−t ,

bt :=
1

n
XTXet −

1

n
XTξ,

pt :=

(
1

n
XTX− I

)
(st −w?) .

(A.1)

Let αN be the initial value for each entry of w and rewrite the updates on wt, w+
t and w−t in a

more succinct way:

w+
0 = w−0 = αN ,

wt = w+
t −w−t ,

w+
t+1 = w+

t �
(
1 − 2Nη (st −w? + pt + bt)� (w+

t)(N−2)/N
)N

,

w−t+1 = w−t �
(
1 + 2Nη (st −w? + pt + bt)� (w−t)(N−2)/N

)N
.

(A.2)

When our target w? is with non-negative entries, the design of vt is no longer needed and the

69

algorithm could be simplied to the following form.

w+
0 = uN0 = αN ,

w+
t = uNt ,

w+
t+1 = w+

t �
(
1 − 2Nη (st −w? + pt + bt)� (w+

t)(N−2)/N
)N (A.3)

The results in this section are all about updates in equation (A.3), and will be generalized to updates

in equation (A.2) in Section A.4.

A.1.2 The Key Propositions

Starting from t = 0, we have ‖s0 −w?‖∞ . O(w?max) and ‖e0‖∞ ≤ αN . The idea of proposi-

tion 1 is to show that after some certain number of iterations t, we obtain ‖st −w?‖∞ . O(w?min)

and ‖et‖∞ ≤ αN/2. Proposition 2 further reduces the approximation error from O(w?min) to

O(
∥∥ 1
n
XTξ

∥∥
∞) if possible, while still maintaining ‖et‖∞ ≤ αN/4.

Proposition 1. Consider the updates in equations (A.3). Fix any 0 < ζ ≤ w?max and let γ =

Cγ
w?min

w?max
where Cγ is some small enough absolute constant. Suppose the error sequences (bt)t≥0

and (pt)t≥0 for any t ≥ 0 satisfy the following:

‖bt‖∞ ≤ Cbζ − αN/4,

‖pt‖∞ ≤ γ ‖st −w?‖∞ ,

where Cb is some small enough absolute constants. If the initialization satisfies

α ≤
(

1

8

)2/(N−2)

∧
(

(w?max)(N−2)/N

log w?max

ε

)2/(N−2)

,

70

and the step size η ≤ αN

8N2ζ(3N−2)/N , then for any T1 ≤ T ≤ T2 where

T1 =
75

16ηN2ζ(2N−2)/N
log
|w?max − αN |

ε
+

15

8N(N − 2)ηζα(N−2)
,

T2 =
5

N(N − 1)ηζ

(
1

α(N−2)
− 1

α(N−2)/2

)
,

and any 0 ≤ t ≤ T , we have

‖sT −w?‖∞ ≤ ζ,

‖et‖∞ ≤ αN/2.

Note that the requirement on ‖bt‖∞ ≤ Cbζ − αN/4 can be relaxed to ‖bt‖∞ ≤ Cbζ when we

just consider the updates in equation (A.3). However, we still consider the stronger requirement in

order to further generalize to updates in equation (A.2) later.

Proposition 2. Consider the updates in equations (A.3). Fix any 0 < ζ ≤ w?max and suppose that

the error sequences (bt)t≥0 and (pt)t≥0 for any t ≥ 0 satisfy

B = ‖bt‖∞ + ‖pt‖∞ ≤
1

200
w?min

‖bt � 1i‖∞ ≤ Bi ≤
1

10
w?min,

‖pt‖∞ ≤
1

20
‖s0 −w?‖∞ .

71

Suppose that

α ≤
(

1

4

)2/(N−2)

∧
(

(w?min)(N−2)/N

log
w?min

ε

)4/(N−2)

,

‖s0 −w?‖∞ ≤
1

5
w?min,

‖e0‖ ≤ αN/2.

Let the step size satisfy η ≤ αN

8N2(w?min)(3N−2)/N . Then for any T3 ≤ t ≤ T4,

T3 =
6

ηN2(w?min)(2N−2)/N
log

w?min

ε
,

T4 =
25

N(N − 1)ηw?min

(
1

α(N−2)/2
− 1

α(N−2)/4

)
,

and any i ∈ S we have

|si,t − w?i | . kµmax
j∈S

Bj ∨Bi ∨ ε,

‖et‖∞ ≤ αN/4.

A.1.3 Technical Lemmas

There are several lemmas, which are about the coherence of the design matrices and the upper

bound of subGaussian noise term.

Lemma 4. Suppose that 1√
n
X is a n × p matrix with `2-normalized columns and satisfies µ-

coherence with 0 ≤ µ ≤ 1. Then for any vector z ∈ Rp we have

∥∥∥∥ 1

n
XTXz

∥∥∥∥
∞
≤ p ‖z‖∞ .

72

Lemma 5. Suppose that 1√
n
X is a n × p `2-normalized matrix satisfying µ-incoherence; that is

1
n
|X>i Xj| ≤ µ, i 6= j. For k-sparse vector z ∈ Rp, we have:

∥∥∥∥(1

n
XTX− I

)
z

∥∥∥∥
∞
≤ kµ ‖z‖∞ .

Lemma 6. Let 1√
n
X be a n × p matrix with `2-normalized columns. Let ξ ∈ Rn be a vector of

independent σ2-sub-Gaussian random variables. Then, with probability at least 1− 1
8p3

∥∥∥∥ 1

n
XTξ

∥∥∥∥
∞

.

√
σ2 log p

n
.

A.1.4 Proof for Non-negative Signals

Recall the notation

Φ(w?max, w
?
min, ε, N) :=

(
1

8

)2/(N−2)

∧
(

(w?max)(N−2)/N

log w?max

ε

)2/(N−2)

∧
(

(w?min)(N−2)/N

log
w?min

ε

)4/(N−2)

,

and

ζ :=
1

5
w?min ∨

200

n

∥∥XTξ
∥∥
∞ ∨ 200ε.

Theorem 8. Suppose that w? < 0 with k ≥ 1 and X/
√
n satisfies µ-incoherence with µ ≤ Cγ/kr,

where Cγ is some small enough constant. Take any precision ε > 0, and let the initialization be

such that

0 < α ≤
(

ε

p+ 1

)4/N

∧ Φ(w?max, w
?
min, ε, N)

For any iteration t that satisfies

1

ηN2ζ(2N−2)/NαN−2
. t .

1

ηN2τ

(
1

αN−2
− 1

ζ(N−2)/2

)
,

the gradient descent algorithm (A.3) with step size η ≤ αN

8N2(w?max)(3N−2)/N yields the iterate wt with

73

the following property:

|wt,i − w?i | .



∥∥ 1
n
XTξ

∥∥
∞ ∨ ε if i ∈ S and w?min .

∥∥ 1
n
XTξ

∥∥
∞ ∨ ε,∣∣ 1

n
(XTξ)i

∣∣ ∨ kµ∥∥ 1
n
XTξ � 1S

∥∥
∞ ∨ ε if i ∈ S and w?min &

∥∥ 1
n
XTξ

∥∥
∞ ∨ ε,

αN/4 if i /∈ S.
(A.4)

Proof. Let

ζ :=
1

5
w?min ∨

2

Cb

∥∥∥∥ 1

n
XTξ

∥∥∥∥
∞
∨ 2

Cb
ε,

where Cb is some small enough positive constant that will be explicitly derived later. Also by the

requirement of the coherence of the design matrix, we have

‖pt‖∞ ≤
Cγ

w?max/w
?
min

‖st −w?‖∞ .

Setting

α ≤
(

ε

p+ 1

)4/N

∧
(

1

8

)2/(N−2)

∧
(

(w?max)(N−2)/N

log w?max

ε

)2/(N−2)

∧
(

(w?min)(N−2)/N

log
w?min

ε

)4/(N−2)

.

As long as ‖et‖∞ ≤ αN/4 we have

‖bt‖∞ + αN/4 ≤
∥∥∥∥ 1

n
XTε

∥∥∥∥
∞

+

∥∥∥∥ 1

n
XTXet

∥∥∥∥
∞

+ αN/4

≤ 2

(∥∥∥∥ 1

n
XTε

∥∥∥∥
∞
∨ (p ‖et‖∞

)
+ αN/4)

≤ 2

(∥∥∥∥ 1

n
XTε

∥∥∥∥
∞
∨ (p+ 1)αN/4

)
≤ Cb

2

Cb

(∥∥∥∥ 1

n
XTε

∥∥∥∥
∞
∨ ε
)

≤ Cbζ.

74

where the second inequality is from Lemma 4. Further by Lemma 5, we also have

‖pt‖∞ ≤
Cγ

w?max/w
?
min

‖st −w?‖∞ .

Therefore, both sequences (bt)t≥0 and (pt)t≥0 satisfy the assumptions of Proposition 1 condi-

tionally on ‖et‖∞ staying below αN/4. If ζ ≥ w?max, at t = 0, we have already have

‖s0 −w?‖ ≤ ζ.

Otherwise, applying Proposition 1, after

T1 =
75

16ηN2ζ(2N−2)/N
log
|w?max − αN |

ε
+

15

8N(N − 2)ηζα(N−2)
,

iterations and before

T2 =
5

N(N − 1)ηζ

(
1

α(N−2)
− 1

α(N−2)/2

)
iterations, we have

‖sT1 −w?‖ ≤ ζ,

‖eT1‖∞ ≤ αN/2.

If 1
5
w?min ≤ 2

Cb

∥∥ 1
n
XTξ

∥∥
∞ ∨

2
Cb
ε, then we are done.

If 1
5
w?min >

2
Cb

∥∥ 1
n
XTξ

∥∥
∞ ∨

2
Cb
ε, we have ζ = 1

5
w?min. Choose Cb + Cγ ≤ 1

40
as we have in

Proposition 1. After T1 iterations, we have

‖bt‖∞ + ‖pt‖∞ ≤ Cb
1

5
w?min +

Cγ
w?max/w

?
min

1

5
w?min ≤ (Cb + Cγ)

1

5
w?min ≤

1

200
w?min.

Now all the assumptions of Proposition 2 are satisfied. To further reduce ‖st −w?‖∞ from

75

1
5
w?min to O(

∥∥ 1
n
XTξ

∥∥), we apply Proposition 2 and obtain that after

T3 =
6

ηN2(w?min)(2N−2)/N
log

w?min

ε

iterations and before

T4 =
25

N(N − 1)ηw?min

(
1

α(N−2)/2
− 1

α(N−2)/4

)

iterations, we have for any i ∈ S,

|st,i − w?i | . kµmax
j∈S

Bj ∨Bi ∨ ε,

‖et‖∞ ≤ αN/4.

We use 1{·} to denote the indicator function. Therefore, the total number of iterations needed

is

T1 + T3 =
75

16ηN2ζ(2N−2)/N
log
|w?max − αN |

ε
+

15

8N(N − 2)ηζα(N−2)

+
6

ηN2(w?min)(2N−2)/N
log

w?min

ε
1

{
1

5
w?min >

2

Cb

∥∥∥∥ 1

n
XTξ

∥∥∥∥
∞
∨ 2

Cb
ε

} (A.5)

and the upper bound for the total number of iterations would be

T2 + T4 =
5

N(N − 1)ηζ

(
1

α(N−2)
− 1

α(N−2)/2

)
+

25

N(N − 1)ηw?min

(
1

α(N−2)/2
− 1

α(N−2)/4

)
1

{
1

5
w?min >

2

Cb

∥∥∥∥ 1

n
XTξ

∥∥∥∥
∞
∨ 2

Cb
ε

}
(A.6)

76

A.2 Multiplicative Update Sequences with General Order N

In this section, we analyze the one-dimensional updates that exhibits the similar dynamics to

our gradient descent algorithm. The lemmas we derive will be assembled together to prove Propo-

sition 1 and 2. The whole framework is similar to [29]. However, the continuous approximation

plays an important role to deal with N > 2, and the detailed derivation differs from [29] a lot,

especially for Lemma 8, 11 and 18.

A.2.1 Error Growth

Lemma 7. Consider the setting of updates given in equations (A.2). Suppose that ‖et‖∞ ≤ 1
8
w?min

and there exists some B ∈ R such that for all t we have ‖bt‖∞ + ‖pt‖∞ ≤ B. Then, if η ≤
1

12(w?max+B)
for any t ≥ 0 we have

‖et‖∞ ≤ ‖e0‖∞
t−1∏
i=1

(1 + 2Nη(‖bi‖∞ + ‖pi‖∞) ‖ei‖(N−2)/N
∞)N

or in the other form,

‖et+1‖∞ ≤ ‖et‖∞ (1 + 2Nη(‖bt‖∞ + ‖pt‖∞) ‖et‖(N−2)/N
∞)N .

Proof. From the equations above, we get

1Sc � et+1 = 1Sc �wt � (1 − 2Nη(st −w? + pt + bt)�w
(N−2)/N
t)N

= 1Sc � et � (1Sc − 1Sc2Nη(st −w? + pt + bt)� e
(N−2)/N
t)N

= 1Sc � et � (1 − 2Nη(pt + bt)� e
(N−2)/N
t)N

77

and hence

‖1Sc � et+1‖∞ ≤ ‖et‖∞ (1 + 2Nη(‖bt‖∞ + ‖pt‖∞) ‖et‖(N−2)/N
∞)N .

When we have the bound for ‖bt‖∞+‖pt‖∞, we can control the size of ‖et‖∞ by the following

lemma.

Lemma 8. Let (bt)t≥0 be a sequence such that for t ≥ 0 we have |bt| ≤ B for some B > 0. Let the

step size satisfy η ≤ 1

4N(N−1)Bx
(N−2)/(2N)
0

and consider a one-dimensional sequence (xt)t≥0 given

by

0 <x0 < 1,

xt+1 =xt(1 + 2Nηbtx
(N−2)/N
t)N .

Then for any t < 1
8N(N−1)ηB

(
1

x
(N−2)/N
0

− 1

x
(N−2)/2N
0

)
we have

xt ≤
√
x0.

Proof. We start with studying the larger increasing rate of the updates,

xt+1 = xt(1 + 2Nηbtx
(N−2)/N
t)N

≤ xt(1 + 2NηBx
(N−2)/N
t)N

≤ xt

(
1 +

2N2ηBx
(N−2)/N
t

1− 2(N − 1)Nηx
(N−2)/N
t

)

≤ xt(1 + 4N2ηBx
(N−2)/N
t),

where the second inequality is obtained by (1 + x)r ≤ 1 + rx
1−(r−1)x

for x ∈ (0, 1
r−1

), and the last

inequality is by the requirement of step size η. Therefore, to achieve to some value xT , the number

78

of iterations needed is lower bounded as

T ≥
T−1∑
t=0

xt+1 − xt
4N2ηBx

(2N−2)/N
t

.

We aim at the number of iterations for
√
x0, and we denote T as the maximal number of

iterations, i.e. xT <
√
x0 and xT+1 ≥

√
x0. Therefore,

√
x0 − xT

4N2ηBx
(2N−2)/N
T

≤ xT+1 − xT
4N2ηBx

(2N−2)/N
T

≤ 1.

And for T , we derive the lower bound as

T ≥
T−1∑
t=0

xt+1 − xt
4N2ηBx

(2N−2)/N
t

≥ 1

4N2ηB

T−1∑
t=0

∫ xt+1

xt

1

x(2N−2)/N
dx

≥ 1

4N2ηB

∫ xT

x0

1

x(2N−2)/N
dx

≥ 1

4N2ηB

∫ √x0
x0

1

x(2N−2)/N
dx− 1

4N2ηB

∫ √x0
xT

1

x(2N−2)/N
dx

>
1

4N2ηB

(
− N

2N − 2

1

x(N−2)/N

)∣∣∣∣∣
√
x0

x0

− 1

=
1

8N(N − 1)ηB

(
1

x
(N−2)/N
0

− 1

x
(N−2)/2N
0

)
− 1.

Therefore, we know that for any t ≤ 1
8N(N−1)ηB

(
1

x
(N−2)/N
0

− 1

x
(N−2)/2N
0

)
− 1, we have xt ≤

√
x0.

Since in practice t is chosen as an integer, without loss of generality, we simply the requirement as

t < 1
8N(N−1)ηB

(
1

x
(N−2)/N
0

− 1

x
(N−2)/2N
0

)
.

A.2.2 Understanding 1-d Case

A.2.2.1 Basic Setting

In this subsection we analyze one-dimensional sequences with positive target corresponding to

gradient descent updates without any perturbations. That is, wt = uNt , 1
n
XTX = I and ignoring

the error sequences (bt)t≥0 and (pt)t≥0. Hence, we will look at one-dimensional sequences of the

79

form
0 < x0 = αN < x?

xt+1 = xt(1− 2Nη(xt − x?)x(N−2)/N
t)N .

(A.7)

Lemma 9 (Iterates behave monotonically). Let η > 0 be the step size and suppose the updates are

given by

xt+1 = xt(1− 2Nη(xt − x?)x(N−2)/N
t)N .

Then the following holds

1. If 0 < x0 ≤ x? and η ≤ 1
2N(2N−2)(x?)(2N−2)/N then for any t > 0 we have x0 ≤ xt−1 ≤ xt ≤

x?.

2. If x? ≤ x0 ≤ 3
2
x? and η ≤ 1

6N2(x?)(2N−2)/N then for any t ≥ 0 we have x? ≤ xt ≤ xt−1 ≤ 3
2
x?.

Proof. Note that if x0 ≤ xt ≤ x? then xt − x? ≤ 0 and hence xt+1 ≥ xt. Thus for the first part it

is enough to show that for all t ≥ 0 we have xt ≤ x ≤ x?.

Assume for a contradiction that exists t such that

x0 ≤ xt ≤ x?,

xt+1 > x?.

Plugging in the update rule for xt+1 we can rewrite the above as

xt ≤ x?

< xt(1− 2Nη(xt − x?)x(N−2)/N
t)N

≤ xt

(
1 +

1

2N − 2
− x

(2N−2)/N
t

(2N − 2)(x?)(2N−2)/N

)N

80

Letting λ =
(
xt
x?

)(2N−2)/N , by our assumption we have 0 < λ ≤ 1. The above inequality gives us

(
1

λ

) 1
2N−2

< 1 +
1

2N − 2
− 1

2N − 2
λ.

And hence for 0 < λ ≤ 1 we have f(λ) :=
(

1
λ

) 1
2N−2 + 1

2N−2
λ < 1 + 1/(2N − 2). Since for

0 < λ < 1 we also have

f ′(λ) =
1

2N − 2
− 1

2N − 2

(
1

λ

) 1
2N−2

+1

< 0,

so f(λ) ≥ f(1) = 1 + 1/(2N − 2). This gives us the desired contradiction and concludes our

proof for the first part.

We will now prove the second part. Similarly to the first part, we just need to show that for all

t ≥ 0 we have xt ≥ x?. Suppose that x? ≤ xt ≤ 3
2
x? and hence we can write xt = x?(1 + γ) for

some γ ∈ [0, 1
2
]. Then we have

xt+1 = (1 + γ)x?(1− 2Nηγx?x
(N−2)/N
t)N

≥ (1 + γ)x?(1− 3Nηγ(x?)(N−2)/N)N

≥ x?(1 + γ)

(
1− 1

2N
γ

)N
≥ x?.

The last inequality is obtained by letting f(γ) := (1 + γ)
(
1− 1

2N
γ
)N , we could get that

f ′(γ) =

(
1− 1

2N
γ

)N
− 1

2
(1 + γ)

(
1− 1

2N
γ

)N−1

=

(
1− 1

2N
γ

)N−1(
1

2
− 1

2
γ

)
> 0.

Hence, f(γ) ≥ f(0) = 1 when γ ∈ [0, 1
2
], which finishes the second part of our proof.

Lemma 10 (Iterates behaviour near convergence). Consider the same setting as before. Let x? > 0

81

and suppose that |x0 − x?| ≤ 1
2
x?. Then the following holds.

1. If x0 ≤ x? and η ≤ 1
2N(2N−2)(x?)(2N−2)/N , then for any t ≥ 2

ηN2(x?)
2N−2
N

we have

0 ≤ x? − xt ≤
1

2
|x0 − x?|.

2. If x? ≤ x0 ≤ 3
2
x? and η ≤ 1

6N2(x?)(2N−2)/N then for any t ≥ 1
2N2η(x?)(2N−2)/N we have

0 ≤ xt − x? ≤
1

2
|x0 − x?|.

Proof. Let us write |x0 − x?| = γx? where γ ∈ [0, 1
2
].

For the first part, we have x0 = (1 − γ)x?, we want to know how many steps t are needed to

halve the error, i.e.,

xt(1− 2Nη(xt − x?)x
N−2
N

t))N ≥ (1− γ

2
)x?.

We have that

xt(1− 2Nη(xt − x?)x
N−2
N

t))N ≥ xt(1 + 2Nη
γ

2
x?((1− γ)x?)

N−2
N))N

≥ x0(1 +Nηγ(1− γ)
N−2
N (x?)

2N−2
N))Nt

It is enough to have

x0(1 +Nηγ(1− γ)
N−2
N (x?)

2N−2
N))Nt ≥ (1− γ

2
)x?

⇒(1− γ)(1 + tN2ηγ(1− γ)
N−2
N (x?)

2N−2
N)) ≥ (1− γ

2
)

⇒t ≥
(

1− γ
2

1− γ − 1

)
1

N2ηγ(1− γ)
N−2
N (x?)

2N−2
N

⇒t ≥ 1

2(1− γ)
2N−2
N N2η(x?)

2N−2
N

⇒t ≥ 2

ηN2(x?)
2N−2
N

82

The last step is by γ ∈ [0, 1
2
], we could obtain that 1

2(1−γ)
2N−2
N

≤ 1

2(1/2)
2N−2
N

≤ 1
2(1/2)2

≤ 2.

Therefore after t ≥ 2

ηN2(x?)
2N−2
N

, the error is halved.

To deal with the second part, we write x0 = x?(1+γ). We will use a similar approach as the one

in the first part. If for some xt we have xt ≤ (1 + γ/2)x? we would be done. If xt > x?(1 + γ/2)

we have xt+1 ≤ xt(1− 2Nη γ
2
x?(x?)(N−2)/N)N . Therefore,

x0(1− 2Nη
γ

2
x?(x?)(N−2)/N)Nt ≤ x?(1 + γ/2)

⇐⇒Nt log(1−Nηγ(x?)(2N−2)/N) ≤ log
x?(1 + γ/2)

x0

⇐⇒t ≥ 1

N

log x?(1+γ/2)
x0

log(1−Nηγ(x?)(2N−2)/N)
.

We can deal with the term on the right hand side by noting that

1

N

log x?(1+γ/2)
x0

log(1−Nηγ(x?)(2N−2)/N)
=

1

N

log 1+γ/2
1+γ

log(1−Nηγ(x?)(2N−2)/N)

≤ 1

N

(
1+γ/2
1+γ
− 1
)
/
(

1+γ/2
1+γ

)
−Nηγ(x?)(2N−2)/N

=
1

N

−γ
2
/(1 + γ

2
)

−Nηγ(x?)(2N−2)/N

≤ 1

2N2η(x?)(2N−2)/N

where the second line used log x ≤ x− 1 and log x ≥ x−1
x

. Note that both logarithms are negative.

Lemma 11 (Iterates at the beginning). Consider the same setting as before. If 0 < x0 ≤ 1
2
x? and

η ≤ x0
2N(2N−4)(x?)(3N−2)/N , for any t ≥ 3

2N(N−2)ηx?x
(N−2)/N
0

, we will have 1
2
x? ≤ xt ≤ x?.

Proof. We need to find a lower-bound on time T which ensures that xT ≥ x?

2
. At any time t, we

83

have

xt+1 = xt(1− 2Nη(xt − x?)x(N−2)/N
t)N ≥ xt(1− 2N2η(xt − x?)x(N−2)/N

t).

xt+1 − xt ≥ −2N2η(xt − x?)x(2N−2)/N
t

xt+1 − xt
2N2η(x? − xt)x(2N−2)/N

t

≥ 1

T−1∑
t=0

xt+1 − xt
2N2η(x? − xt)x(2N−2)/N

t

≥
T−1∑
t=0

1 = T.

Therefore, for t that is larger than the left hand side, we have xt ≥ 1
2
x?.

T−1∑
t=0

xt+1 − xt
2N2η(x? − xt)x(2N−2)/N

t

≤ 1

N2ηx?

T−1∑
t=0

xt+1 − xt
x

(2N−2)/N
t

=
1

N2ηx?

T−1∑
t=0

∫ xt+1

xt

1

x(2N−2)/N
+

(
1

x
(2N−2)/N
t

− 1

x(2N−2)/N

)
dx

≤ 1

N2ηx?

T−1∑
t=0

∫ xt+1

xt

1

x(2N−2)/N
dx

+
1

N2ηx?
max

0≤t≤T−1

(
1

x
(2N−2)/N
t

− 1

x
(2N−2)/N
t+1

)
(xT − x0)

≤ 1

N2ηx?

∫ 1
2
x?

x0

1

x(2N−2)/N
dx (A.8)

+
1

N2ηx?
max

0≤t≤T−1

(
1

x
(2N−2)/N
t

− 1

x
(2N−2)/N
t+1

)(
1

2
x? − x0

)
(A.9)

+
1

N2ηx?
1

(1
2
x?)(2N−2)/N

(
xT −

1

2
x?
)

(A.10)

84

For equation (A.8),

1

N2ηx?

∫ 1
2
x?

x0

1

x(2N−2)/N
dx ≤ 1

N2ηx?

− N

N − 2

1

x(N−2)/N

∣∣∣∣∣
1
2
x?

x0


=

1

N2ηx?

(
− N

N − 2

1

(1
2
x?)(N−2)/N

+− N

N − 2

1

x
(N−2)/N
0

)

=
1

N(N − 2)ηx?

(
1

x
(N−2)/N
0

− 2(N−2)/N

(x?)(N−2)/N

)
.

For equation (A.9), we first focus on

1

x
(2N−2)/N
t

− 1

x
(2N−2)/N
t+1

.

We have that

xt+1 = xt(1− 2Nη(xt − x?)x(N−2)/N
t)N ,

⇒ x
(2N−2)/N
t+1 = x

(2N−2)/N
t (1− 2Nη(xt − x?)x(N−2)/N

t)2N−2.

To deal with the multiplicative coefficient, with η ≤ 1
2N(2N−3)(x?)(2N−2)/N using the inequality

(1 + x)r ≤ 1 + rx
1−(r−1)x

where x ∈ (0, 1
r−1

), we obtain that

(1− 2Nη(xt − x?)x(N−2)/N
t)2N−2 ≤ (1 + 2Nη(x?)(2N−2)/N)(2N−2)

≤ 1 +
2N(2N − 2)η(x?)(2N−2)/N

1− 2N(2N − 3)η(x?)(2N−2)/N

=
1− 2Nη(x?)(2N−2)/N

1− 2N(2N − 3)η(x?)(2N−2)/N
.

85

Therefore,

1

x
(2N−2)/N
t

− 1

x
(2N−2)/N
t+1

=
1

x
(2N−2)/N
t

− 1

x
(2N−2)/N
t (1− 2Nη(xt − x?)x(N−2)/N

t)2N−2

=
1

x
(2N−2)/N
t

(
1− 1

(1− 2Nη(xt − x?)x(N−2)/N
t)2N−2

)

≤ 1

x
(2N−2)/N
t

(
1− 1− 2N(2N − 3)η(x?)(2N−2)/N

1− 2Nη(x?)(2N−2)/N

)
≤ 1

x
(2N−2)/N
t

2N(2N − 4)η(x?)(2N−2)/N

1− 2Nη(x?)(2N−2)/N

≤ 1

x
(2N−2)/N
t

2N(2N − 4)η(x?)(2N−2)/N

≤ 1

x
(2N−2)/N
0

2N(2N − 4)η(x?)(2N−2)/N .

If we further require the step size satisfies η ≤ x0
2N(2N−4)(x?)(3N−2)/N , we have for equation (A.9),

1

N2ηx?
max

0≤t≤T−1

(
1

x
(2N−2)/N
t

− 1

x
(2N−2)/N
t+1

)(
1

2
x? − x0

)
≤ 1

N2ηx?
1

x
(N−2)/N
0 x?

(
1

2
x? − x0

)
≤ 1

2N2ηx?
1

x
(N−2)/N
0

,

which is with the same order with the result of equation (A.8).

Combining the results from equations (A.8), (A.9), (A.10), we obtain that

T ≤ 1

N(N − 2)ηx?

(
1

x
(N−2)/N
0

− 2(N−2)/N

(x?)(N−2)/N

)
+

1

2N2ηx?
1

x
(N−2)/N
0

+
1

N2ηx?
1

(1
2
x?)(2N−2)/N

(
xT −

1

2
x?
)

≤ 1

N(N − 2)ηx?

(
1

x
(N−2)/N
0

− 2(N−2)/N

(x?)(N−2)/N
+

1

2x
(N−2)/N
0

+
1

(1
2
x?)(N−2)/N

)

≤ 3

2N(N − 2)ηx?x
(N−2)/N
0

.

86

Lemma 12 (Overall iterates). Consider the same setting as before. Fix any ε > 0.

1. If ε < |x? − x0| ≤ 1
2
x? and η ≤ 1

6N2(x?)(2N−2)/N then for any t ≥ 3

ηN2(x?)
2N−2
N

log |x
?−x0|
ε

we

have

|x? − xt| ≤ ε.

2. If 0 < x0 ≤ 1
2
x? and η ≤ x0

2N(2N−4)(x?)(3N−2)/N then for any

t ≥ 3

ηN2(x?)
2N−2
N

log
|x? − x0|

ε
+

3

2N(N − 2)ηx?x
(N−2)/N
0

we have

x? − ε ≤ xt ≤ x?.

Proof. 1. To prove the first part we simply need apply Lemma 10 dlog2
|x?−x0|

ε
e times. Hence

after
2 log2 e

ηN2(x?)
2N−2
N

log
|x? − x0|

ε
≤ 3

ηN2(x?)
2N−2
N

log
|x? − x0|

ε

iterations we are done.

2. For the second part, we simply combine the results from the first part and Lemma 11, it is

enough to choose t larger than or equal to

3

ηN2(x?)
2N−2
N

log
|x? − x0|

ε
+

3

2N(N − 2)ηx?x
(N−2)/N
0

.

A.2.2.2 Dealing with Bounded Errors bt

In this subsection we extend the previous setting to handle bounded error sequences (bt)t≥0

such that for any t ≥ 0 we have ‖bt‖∞ ≤ B for some B ∈ R. That is, we look at the following

updates

xt+1 = xt(1− 2Nη(xt − x? + bt)x
(N−2)/N
t)N .

87

Surely, if B ≥ x?, the convergence to x? is not possible. Hence, we will require B to be small

enough, with a particular choice B ≤ 1
5
x?. For a given B, we can only expect the sequence (xt)t≥0

to converge to x? up to precision B. We would consider two extreme scenarios,

x+
t+1 = x+

t (1− 2Nη(x+
t − (x? −B))(x+

t)(N−2)/N)N ,

x−t+1 = x−t (1− 2Nη(x−t − (x? +B))(x−t)(N−2)/N)N .

Lemma 13 (Squeezing iterates with bounded errors). Consider the sequences (x−t)t≥0, (xt)t≥0 and

(x+
t)t≥0 as defined above with

0 < x−0 = x+
0 = x0 ≤ x? +B

If η ≤ 1
8N2(x?)(2N−2)/N then for all t ≥ 0

0 ≤ x−t ≤ xt ≤ x+
t ≤ x? +B.

Proof. We will prove the claim by induction. The claim holds trivially for t = 0. If x+
t ≥ xt, we

88

have

x+
t+1 = x+

t (1− 2Nη(x+
t − (x? +B))(x+

t)
N−2
N)N

≥ x+
t (1− 2Nη(x+

t − (x? +B))x
N−2
N

t)N

(4 = x+
t − xt) = (xt +4)(1− 2Nη(xt − x? + bt)x

N−2
N

t

+ 2Nη(x+
t − xt −B − bt)x

N−2
N

t)N

(mt = 1− 2Nη(xt − x? + bt)x
N−2
N

t) ≥ (xt +4)(mt − 2Nη4x
N−2
N

t)N

≥ (xt +4)(mt − 2Nη4x
N−2
N

t)N

= xtm
N
t + (xt +4)(mt − 2Nη4x

N−2
N

t)N − xtmN
t

= xtm
N
t + (xt +4)mN

t

(
1− 2Nη4x

N−2
N

t

mt

)N

− xtmN
t .

We aimed to show that (xt + 4)mN
t (1 − 2Nη4x

N−2
N

t /mt)
N − xtm

N
t is positive. With η ≤

1
4N(x?+B)(x?)(N−2)/N , we can see mt ≥ 1/2 for all t and

(xt +4)mN
t (1− 2Nη4x

N−2
N

t /mt)
N − xtmN

t ≥ (xt +4)mN
t (1− 4Nη4x

N−2
N

t)N − xtmN
t

≥ (xt +4)mN
t (1− 4N2η4x

N−2
N

t)− xtmN
t .

The last inequality is obtained via (1 − x)n ≥ 1 − nx. If we further require η ≤ 1
8N2(x?)(2N−2)/N ,

we obtain that

(xt +4)mN
t (1− 4N2η4x

N−2
N

t)− xtmN
t ≥ (xt +4)mN

t

(
1− 1

2x?
4
)
− xtmN

t

≥ mN
t

(
xt +4− xt

2x?
4− 1

2x?
42 − xt

)
≥ mN

t 4
(

1− xt
2x?
− 4

2x?

)
≥ mN

t 4
(

1− 1

2
− 1

2

)
≥ 0.

89

Therefore, we obtain that

x+
t+1 ≥ xtm

N
t = xt+1.

For x−t , it follows a similar proof.

Lemma 14 (Iterates with bounded errors monotonic behaviour). Consider the previous setting

with B ≤ 1
5
x?, η ≤ 1

6N2(x?)(2N−2)/N . Then the following holds

1. If |xt − x?| > B then |xt+1 − x?| < |xt − x?|.

2. If |xt − x?| ≤ B then |xt+1 − x?| ≤ B.

Proof. The choice of B and step size η ensures us to apply Lemma 9 and Lemma 13 to the se-

quences (x−t)t≥0 and (x+
t)t≥0.

Lemma 15 (Iterates with B near convergence). Consider the setting as before. Then the following

holds:

1. If 1
2
(x? −B) ≤ x0 ≤ x? − 5B then for any t ≥ 2

ηN2(x?)
2N−2
N

we have

|x? − xt| ≤
1

2
|x0 − x?|.

2. If x? + 4B < x0 <
6
5
x? then for any t ≥ 4

ηN2(x?)
2N−2
N

we have

|x? − xt| ≤
1

2
|x0 − x?|.

Proof. 1. To prove the first part, let us first apply Lemma 10 on x−t twice, therefore for all

t ≥ 25

4ηN2(x?)
2N−2
N

≥ 2
2

ηN2(x? −B)
2N−2
N

90

we have

0 ≤ (x? −B)− x−t

≤ 1

4
|x0 − (x? −B)|

≤ 1

4
|x0 − x?|+

1

4
B.

When xt ≤ x?, from Lemma 13 we have

0 ≤ x? − xt

≤ x? − x−t
1

4
|x0 − x?|+

5

4
B

≤ 1

2
|x0 − x?|.

When xt ≥ x? then by Lemma 13 we have

0 ≤ xt − x? ≤ B ≤ 1

5
|x0 − x?|,

where both last inequalities are from x0 ≤ x? − 5B.

2. The second part follows a very similar proof for x+
t , the number of iterations would be

t ≥ 4

ηN2(x?)
2N−2
N

≥ 2
2

ηN2(x? +B)
2N−2
N

.

Lemma 16 (Overall iterates with B). Consider the same setting as before. Fix any ε > 0, then the

following holds

1. If B + ε < |x? − x0| ≤ 1
5
x? then for any t ≥ 15

4ηN2(x?)
2N−2
N

log |x
?−x0|
ε

iterations we have

|x? − xt| ≤ B + ε.

91

2. If 0 < x0 ≤ x? −B − ε then for any

t ≥ 75

16ηN2(x?)
2N−2
N

log
|x? − x0|

ε
+

15

8N(N − 2)ηx?x
(N−2)/N
0

we have x? −B − ε ≤ xt ≤ x? +B.

Proof. 1. If x0 > x?+B then by Lemma 13 and Lemma 14 we only need to show that (x+
t)t≥0

hits x? +B+ ε within the desired number of iterations. From the first part of Lemma 12, we

see that

3

ηN2(x? +B)
2N−2
N

log
|x? +B − x0|

ε
≤ 15

4ηN2(x?)
2N−2
N

log
|x? − x0|

ε

iterations are enough, where we require |x
?−x0|
ε
≥ 5

2
.

2. The upper bound is obtained immediately from Lemma 13. For lower bound, we simply

apply the second part of Lemma 12 to the sequence (x−t)t≥0 to get

t ≥ 75

16ηN2(x?)
2N−2
N

log
|x? − x0|

ε
+

15

8N(N − 2)ηx?x
(N−2)/N
0

≥ 3

ηN2(x? −B)
2N−2
N

log
|x? −B − x0|

ε
+

3

2N(N − 2)η(x? −B)x
(N−2)/N
0

to ensure the results we wanted.

Lemma 17. Suppose the error sequences (bt)t≥0 and (pt)t≥0 satisfy the following for any t ≥ 0:

‖bt � 1S‖ ≤ B,

‖pt‖∞ ≤
1

20
‖st −w?‖∞ .

92

Suppose that

20B < ‖s0 −w?‖∞ ≤
1

5
w?min.

Then for η ≤ 1
6N2(w?max)(2N−2)/N and any t ≥ 2

ηN2(w?max)(2N−2)/N we have

‖st −w?‖∞ ≤
1

2
‖s0 −w?‖∞ .

Proof. Note that ‖b0‖∞+‖pt‖∞ ≤ 1
10
‖s0 −w?‖∞. For any i such that |s0,i−w?i | ≤ 1

2
‖s0 −w?‖∞,

Lemma 14 guarantees that for any t ≥ 0 we have |st,i − w?i | ≤ 1
2
‖s0 −w?‖∞. On the other hand,

for any i such that |s0,i−w?i | > 1
2
‖s0 −w?‖∞ by Lemma 15 we have |s0,i−w?i | ≤ 1

2
‖s0 −w?‖∞

for any t ≥ 2
ηN2(w?max)(2N−2)/N which concludes the proof.

A.2.3 Dealing with Negative Targets

Lemma 18. Let xt = uN−vN and x? ∈ R be the target such that |x?| > 0. Suppose the sequences

(ut)t≥0 and (vt)t≥0 evolve as follows

0 < u0 = α, ut+1 = ut(1− 2Nη(xt − x? + bt)u
N−2
t),

0 < v0 = α, vt+1 = vt(1 + 2Nη(xt − x? + bt)v
N−2
t),

where α ≤ (2−2
N−2
N)

1
N−2 |x?|1/N and there existsB > 0 such that |bt| ≤ B and η ≤ α

4N(N−2)(x?+B)x?
.

Then the following holds: For any t ≥ 0 we have

• If x? > 0 and uNt ≥ x?, then vNt ≤ 1
2
αN .

• If x? < 0 and vNt ≥ |x?|, then uNt ≤ 1
2
αN .

Proof. Let us assume x? > 0 first and prove the first statement. From the updating equation, we

obtain that
ut+1 − ut
uN−1
t

= −2Nη(xt − x? + bt).

93

Therefore,

t∑
i=0

−2Nη(xi − x? + bi) =
t∑
i=0

ui+1 − ui
uN−1
i

≥
t∑
i=0

∫ ui+1

ui

1

uN−1
du

=

∫ ut

u0

1

uN−1
du

= (2−N)(u2−N
t − u2−N

0).

When uNt ≥ x?, we have that u2−N
t ≤ (x?)(2−N)/N . Therefore,

t∑
i=1

−2Nη(xi − x? + bi) ≥ (2−N)(u2−N
t − u2−N

0).

Similarly for vt, we have

t∑
i=1

2Nη(xi − x? + bi) =
t∑
i=0

vi+1 − vi
vN−1
i

≥ (2−N)(v2−N
t − v2−N

0).

94

Therefore, we have that

(N − 2)((x?)
2−N
N − α2−N) ≥ (2−N)(v2−N

t − α2−N).

=⇒ (α2−N − (x?)
2−N
N) + α2−N ≤ v2−N

t .

=⇒ vt ≤
(

1

2α2−N − (x?)
2−N
N

) 1
N−2

=⇒ vt ≤
(

1

2− αN−2/(x?)
N−2
N

) 1
N−2

α

=⇒ vt ≤
(

1

2− (2− 2
N−2
N)

) 1
N−2

α

=⇒ vt ≤ 2
1
N α.

For x? < 0, we obtain a similar result by symmetry.

Lemma 19. Let xt = x+
t −x−t and x? ∈ R be the target such that |x?| > 0. Suppose the sequences

(x+
t)t≥0 and (x−t)t≥0 evolve as follows

0 < x+
0 = αN ≤ 23(2

1
N − 1)

N
N−2 |x?|, x+

t+1 = x+
t (1− 2Nη(xt − x? + bt)(x

+
t)(N−2)/N)N ,

0 < x−0 = αN ≤ 23(2
1
N − 1)

N
N−2 |x?|, x−t+1 = x−t (1 + 2Nη(xt − x? + bt)(x

−
t)(N−2)/N)N ,

and that there exists B > 0 such that |bt| ≤ B and η ≤ 1
8N(x?+B)(x?)(N−2)/N . Then the following

holds: For any t ≥ 0 we have

• If x? > 0 then x−t ≤ αNΠt−1
i=0(1 + 2Nη|bt|(x−i)(N−2)/N)N .

• If x? < 0 then x+
t ≤ αNΠt−1

i=0(1 + 2Nη|bt|(x+
i)(N−2)/N)N .

Proof. Assume x? > 0 and fix any t ≥ 0. Let 0 ≤ s ≤ t be the largest s such that x+
s > x?. If no

such s exists we are done immediately. If s = t then by the first part we have x−t ≤ αN and we are

done.

95

If s < t, by Lemma 18, we have x−s ≤ 1
2
αN . From the requirement of initialization, we have

(1 + 2Nη(x+
s − x−s − x? + bs)(x

−
s)(N−2)/N)N ≤

(
1 +

(1
2
αN)

N−2
N

4(x?)
N−2
N

)N

≤ (1 + 2
1
N − 1)N = 2.

Therefore

x−t = x−s

t−1∏
i=s

(1 + 2Nη(x+
i − x−i − x? + bi)(x

−
i)(N−2)/N)N

=
1

2
αN · 2

t−1∏
i=s+1

(1 + 2Nη(x+
i − x−i − x? + bi)(x

−
i)(N−2)/N)N

≤ αN
t−1∏
i=s+1

(1 + 2Nη|bi|(x−i)(N−2)/N)N .

This completes the proof for x? > 0. It follows a similar proof for the case x? < 0.

A.3 Proof of Propositions and Technical Lemmas

In this section, we provide the proof for the propositions and technical lemmas mentioned in

Appendix A.1.

A.3.1 Proof of Proposition 1

By the assumptions on (bt)t≥0 and (pt)t≥0, we obtain that

‖bt‖∞ ≤ Cbζ − αN/4,

‖pt‖∞ ≤
Cγ

w?max/ζ
‖st −w?‖∞ ≤

Cγ
w?max/ζ

w?max ≤ Cγζ.

Choose Cb and Cγ such that Cb + Cγ ≤ 1/40. Therefore, we have

B ≤ ‖bt‖∞ + ‖pt‖∞ + αN/4 ≤ (Cb + Cγ)ζ ≤
1

40
ζ.

96

For any j such that w?j ≥ 1
2
ζ , we have that B ≤ 1

20
w?j . Therefore, by applying Lemma 16, we

know when

t ≥ 75

16ηN2ζ(2N−2)/N
log
|w?max − αN |

ε
+

15

8N(N − 2)ηζα(N−2)
= T1,

we have |wj,t − w?j | ≤ ζ .

On the other hand, for any j such that w?j ≤ 1
2
ζ , wj,t will stay in (0, w?j + 1

40
ζ] maintaining

|wj,t − w?j | ≤ ζ as required.

By Lemma 8, we have that ‖et‖∞ ≤ αN/2 up to

T2 =
5

N(N − 1)ηζ

(
1

αN−2
− 1

α
N−2

2

)
.

From our choice of initialization α, we can see that T1 ≤ T2 is ensured. To see this,

α ≤
(

1

8

)2/(N−2)

∧
(
ζ(N−2)/N

log w?max

ε

)2/(N−2)

=⇒α(N−2)/2 ≤ 1

8
∧ 16ζ(N−2)/N

15 log w?max

ε

=⇒4α(N−2)/2

(
15

16
α(N−2)/2 log

w?max

ε
+ ζ(N−2)/N

)
≤ ζ(N−2)/N

=⇒ 15

2ζ(N−2)/N
log

w?max

ε
+

6

α(N−2)
≤ 8

(
1

α(N−2)
− 1

α(N−2)/2

)
=⇒ 75

16ηN2ζ(2N−2)/N
log
|w?max − αN |

ε
+

15

8N(N − 2)ηζα(N−2)

≤ 5

N(N − 1)ηζ

(
1

α(N−2)
− 1

α(N−2)/2

)
=⇒T1 ≤ T2.

(A.11)

97

A.3.2 Proof of Proposition 2

By Lemma 8, with the choice of B = 1
200
w?min, we can maintain ‖et‖∞ ≤ αN/4 for at least

another

t ≤ 25

N(N − 1)ηw?min

(
1

α(N−2)/2
− 1

α(N−2)/4

)
= T4.

Now we consider to further reduce ‖st −w?‖∞ from 1
5
w?min to

∥∥ 1
n
XTξ

∥∥
∞ ∨ ε. Let Bi := (bt)i

and B := maxj∈S Bj .

We first apply Lemma 17 for log2
w?min

100(B∨ε) times, the total number of iterations for this step

would be
2

ηN2(w?min)(2N−2)/N
log2

w?min

100(B ∨ ε) .

After that we have ‖st −w?‖∞ < 20(B∨ ε) and so ‖pt‖∞ < kµ ·20(B∨ ε). Hence, for any i ∈ S

we have

‖bt � 1i‖∞ + ‖pt‖∞ ≤ Bi + kµ20(B ∨ ε).

Then we further apply Lemma 16 for each coordinate i ∈ S to obtain that

|wi,t − w?i | .
∣∣∣∣ 1n(XTξ)i

∣∣∣∣ ∨ kµ ∥∥∥∥ 1

n
XTξ � 1S

∥∥∥∥
∞
∨ ε.

the number of iterations needed for this step is 15
4ηN2(w?min)(2N−2)/N log

w?min

ε
.

Therefore the total number of iterations needed to further reduce ‖st −w?‖∞ is

T3 =
6

ηN2(w?min)(2N−2)/N
log

w?min

ε

≥ 2

ηN2(w?min)(2N−2)/N
log2

w?min

100(B ∨ ε) +
15

4ηN2(w?min)(2N−2)/N
log

w?min

ε
.

Since T3 is no longer related to α, we can easily ensure T3 ≤ T4 with some mild upper bound on

α(N−2)/4 ≤ (w?min)(N−2)/N

log
w?
min
ε

∧ 1/2.

98

α(N−2)/4 ≤ (w?min)(N−2)/N

log
w?min

ε

∧ 1/2

=⇒α(N−2)/4

(
α(N−2)/4 log

w?min

ε
+ (w?min)(N−2)/N

)
≤ (w?min)(N−2)/N

=⇒α(N−2)/2 log
w?min

ε
≤ (w?min)(N−2)/N − α(N−2)/4(w?min)(N−2)/N

=⇒ 1

(w?min)(N−2)/N
log

w?min

ε
≤ 1

α(N−2)/2
− 1

α(N−2)/4

=⇒ 6

ηN2(w?min)(2N−2)/N
log

w?min

ε
≤ 25

ηN(N − 1)w?min

(
1

α(N−2)/2
− 1

α(N−2)/4

)
=⇒T3 ≤ T4.

(A.12)

A.3.3 Proof of Technical Lemmas

Proof of Lemma 4. Since 1√
n
X is with `2-normalized columns and satisfies µ-coherence, where

0 ≤ µ ≤ 1, ∣∣∣∣∣
(

1

n
XTX

)
i,j

∣∣∣∣∣ =

∣∣∣∣∣
(

1√
n

Xi

)>(
1√
n

Xj

)∣∣∣∣∣ ≤ max{1, µ} ≤ 1.

Therefore, for any z ∈ Rp, ∥∥∥∥ 1

n
XTXz

∥∥∥∥
∞
≤ p ‖z‖∞ .

Proof of Lemma 5. It is straightforward to verify that for any i ∈ {1, . . . , p},

∣∣∣∣(1

n
XTXz

)
i

− zi

∣∣∣∣ ≤ kµ ‖z‖∞ .

Therefore, ∥∥∥∥(1

n
XTX− I

)
z

∥∥∥∥
∞
≤ kµ ‖z‖∞ .

Proof of Lemma 6. Since the vector ξ are made of independent σ2-subGaussian random vari-

99

ables and any column Xi of X is `2-normalized, i.e.
∥∥∥ 1√

n
Xi

∥∥∥ = 1, the random variable 1√
n
(XTξ)i

is still σ2-subGaussian.

It is a standard result that for any ε > 0,

P
(∥∥∥∥ 1√

n
XTξ

∥∥∥∥
∞
> ε

)
≤ 2p exp

(
− ε2

2σ2

)
.

Setting ε = 2
√

2σ2 log(2p), with probability at least 1− 1
8p3

we have

∥∥∥∥ 1

n
XTξ

∥∥∥∥
∞
≤ 1√

n
2
√
σ2 log(2p) .

√
σ2 log p

n
.

A.4 Proof of Theorems in Chapter 2.3

In this section, we provide the proof for all results we mentioned in Section 2.3.

A.4.1 Proof of Theorem 1

Proof. Now let us consider the updates in equation (A.2). The major idea is to show that the results

in Theorem 8 can be easily generalized with the lemmas we developed in Section A.2.3.

Let us denote

Ψ(w?min, N) := (2− 2
N−2
N)

1
N−2 (w?min)

1
N ∧ 2

3
N (2

1
N − 1)

1
N−2 (w?min)

1
N .

We set

α ≤
(

ε

p+ 1

)4/N

∧ Φ(w?max, w
?
min, ε, N) ∧Ψ(w?min, N).

Under the same requirements on other parameters with Theorem 8, we satisfy the conditions

100

of Lemma 7, Lemma 8 and Lemma 19. From these lemmas, we could maintain that

w?j > 0 =⇒ 0 ≤ w−t ≤ αN/4,

w?j < 0 =⇒ 0 ≤ w+
t ≤ αN/4,

up to T2 + T4 as defined in Proposition 1 and 2.

Consequently, for w?j > 0 we can ignore (w−j,t)t≥0 by treating as a part of bounded error bt. The

same holds for sequence (w+
j,t)t≥0 when w?j < 0. Then, for w?j > 0 the sequence (w+

j,t) evolves as

follows

w+
j,t+1 = w+

j,t(1− 2Nη(w+
j,t − w?j + (bj,t − w−j,t) + pj,t)(w

+
j,t)

(N−2)/2)N .

The bj,t − w−j,t explains why we need ‖bt‖∞ + αN/4 ≤ Cbζ in Proposition 1. For w?j > 0, we

follow the exact proof structure with Theorem 8 with treating (w−j,t)t≥0 as a part of bounded error.

For w?j < 0 it follows the same argument by switching w+
t and w−t .

Therefore, we could closely follow the proof of Theorem 8 to generalize the result from non-

negative signals to general signals. The result remains unchanged as well as the number of it-

erations requirement in equation (A.5) and (A.6). With the choice of Cb = 1
100

in the proof of

Theorem 8, recall that

ζ =
1

5
w?min ∨ 200

∥∥∥∥ 1

n
XTξ

∥∥∥∥
∞
∨ 200ε,

and define the indicator function with A as the event {1
5
w?min > 200

∥∥ 1
n
XTξ

∥∥
∞ ∨ 200ε},

1(A) =


1, when 1

5
w?min > 200

∥∥ 1
n
XTξ

∥∥
∞ ∨ 200ε,

0, when 1
5
w?min ≤ 200

∥∥ 1
n
XTξ

∥∥
∞ ∨ 200ε.

101

We now define that

Tl(w
?, α,N, η, ζ, ε) :=

75

16ηN2ζ(2N−2)/N
log
|w?max − αN |

ε
+

15

8N(N − 2)ηζα(N−2)

+
6

ηN2(w?min)(2N−2)/N
log

w?min

ε
1(A),

Tu(w
?, α,N, η, ζ, ε) :=

5

N(N − 1)ηζ

(
1

α(N−2)
− 1

α(N−2)/2

)
+

25

N(N − 1)ηw?min

(
1

α(N−2)/2
− 1

α(N−2)/4

)
1(A).

(A.13)

The error bound (A.4) holds for any t such that

Tl(w
?, α,N, η, ζ, ε) ≤ t ≤ Tu(w

?, α,N, η, ζ, ε).

The equation (A.11) and (A.12) ensure that it is not a null set.

Thus, we finish generalizing Theorem 8 to general signals with an extra requirement Ψ(w?min, N)

on the initialization α.

For the case k = 0, i.e., w? = 0, we set w?min = 0 and

α ≤
(

ε

p+ 1

)4/N

.

Conditioning on ‖et‖∞ ≤ αN/4, we still have that

‖bt‖∞ + αN/4 ≤ pαN/4 +

∥∥∥∥ 1

n
XTξ

∥∥∥∥
∞

+ αN/4 ≤ 2

(∥∥∥∥ 1

n
XTξ

∥∥∥∥
∞
∨ ε
)
≤ Cbζ ≤

1

40
ζ.

Therefore, by Lemma 8, for η ≤ 1
N(N−1)ζα(N−2)/2 , we ensure ‖et‖∞ ≤ αN/4 up to

5

N(N − 1)ηζ

(
1

αN−2
− 1

α(N−2)/2

)
,

which agrees to the definition of Tu(w?, α,N, η, ζ, ε) in this case.

102

A.4.2 Proof of Corollary 1

Since ξ is made of independent σ2-sub-Gaussian entries, by Lemma 6 with probability 1 −

1/(8p3) we have ∥∥∥∥ 1

n
XTξ

∥∥∥∥
∞
≤ 2

√
2σ2 log(2p)

n
.

Hence, letting ε = 2
√

2σ2 log(2p)
n

, we obtain that

‖wt −w?‖2
2 .

∑
i∈S

ε2 +
∑
i/∈S

αN/2 ≤ kε2 + (p− k)
ε2

(p+ 1)2
.
kσ2 log p

n
.

A.4.3 Proof of Theorem 2

We now state Theorem 2 formally as below.

Theorem 9. Let T1, T2, T3 and T4 be the number of iterations defined in Proposition 1 and Propo-

sition 2. Suppose ζ ≥ 1, w?max ≥ 1 and the initialization α ≤ exp(−5/3), fixing α and η for all N ,

both T2 − T1 and T4 − T3 have a tight lower bound that is increasing as N increases (N > 2).

Proof. We observe first that under the assumption ζ ≥ 1 andw?max ≥ 1, 75
16ηN2ζ(2N−2)/N log |w

?
max−w0|
ε

and T3 = 6
ηN2(w?max)(2N−2)/N log

w?min

ε
are decreasing as N increases.

For the rest part of T2 − T1, we will be showing that a lower bound of that is increasing as

N increases. As T2 − T1 is by design a lower bound of the “true” early stopping window, the

lower bound we get here is tight for T2 − T1 and is treated as equivalent to T2 − T1 to indicate the

monotonicity of the "true" early stopping window.

5

N(N − 1)ηζ

(
1

α(N−2)
− 1

α(N−2)/2

)
− 15

8N(N − 2)ηζα(N−2)

≥ 5

4N(N − 1)ηζ

(
1

α(N−2)
− 4

α(N−2)/2

)

103

Denote

f(N) =
1

N(N − 1)

(
1

α(N−2)
− 4

α(N−2)/2

)
.

Therefore,

f ′(N) =
−(2N − 1)

N2(N − 1)2

(
1

α(N−2)
− 4

α(N−2)/2

)
+

1

N(N − 1)
(− logα)

(
1

α(N−2)
− 4

2α(N−2)/2

)
=
−(2N − 1)− (N − 1)N logα

2N2(N − 1)2

(
1

α(N−2)
− 2

α(N−2)/2

)
+

2N − 1

N2(N − 1)2

2

α(N−2)/4

Note that the second term is always positive, we just need to show the first term is positive.

−(2N − 1)− (N − 1)N logα ≥ 0,

1

α(N−2)
− 2

α(N−2)/2
≥ 0,

which is satisfied when

logα ≤ min
N≥3

(1− 2N)

N(N − 1)
= min

N≥3

(
1

1−N −
1

N

)
= −5

6

α(N−2)/2 ≤ 1/2.

We can further derive that when α ≤ exp(−5/6) ∧ 1/4, we have a lower bound of T2 − T1 is

increasing as N increases.

To show T4− T3 is increasing as N increases, we just need to show T4 is increasing. It follows

a similar proof.

We can further derive that when α ≤ exp(−5/3) ∧ 2, we have T4 − T3 is increasing as N

increases.

104

A.4.4 Proof of Remark 2

The proof is indeed similar to that of Theorem 9. Fixing any N > 2 and step size η, we look at

T2 − T1 and T4 − T3 and show that a tight lower bound of that is increasing as α decreases. We

start with T2 − T1.

Recall that

T2 − T1 =
5

N(N − 1)ηζ

(
1

α(N−2)
− 1

α(N−2)/2

)
− 15

8N(N − 2)ηζα(N−2)
)

− 75

16ηN2ζ(2N−2)/N
log
|w?max − αN |

ε

≥ 5

N(N − 1)ηζ

(
1

α(N−2)
− 1

α(N−2)/2

)
− 75

16ηN2ζ(2N−2)/N
log
|w?max|
ε

Notice that the second term is not about α. We just need to show that f(α) = 1
α(N−2) − 1

α(N−2)/2 is

increasing as α decreases. With the general requirement of α < 1, we have that

f ′(α) = −(N − 2)

α(N−1)
+

(N − 2)/2

αN/2

= (N − 2)

(
1

2αN/2
− 1

α(N−1)

)
= (N − 2)

α(N−2)/2 − 2

2α(N−1)
< 0.

For T4 − T3, it follows a similar proof.

A.5 Experiments on MNIST

The efficacy of different depth parameter N is shown in Figure 2.2 and Figure A.1 on both

simulated data and real world datasets. The number of measurements is set as n = 392, where

the dimension of the original image is p = 784. We use Rademacher sensing matrix. The MNIST

105

Original N=2 N=3 N=5

Figure A.1: Experiments with different choice depth parameter N . Reprinted with permission
from [1].

examples are successfully recovered from Rademacher linear measurements using different deep

parametrizations.

106

APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER III

B.1 Geometric properties of the parametrization

We start by calculating the vector field induced by the parameterization G(·).

∇Gi([u
>,v>]) = 2ug(i)vieg(i) + u2

g(i)eL+i,

where ei ∈ RL+p is only 1 on ith entry and 0 elsewhere, and

∇2Gi([u
>,v>]) = 2viEg(i),g(i) + 2ug(i)Eg(i),L+i + 2ug(i)EL+i,g(i),

where Ei,j ∈ R(L+p)×(L+p) is the one-hot matrix for ith row and j th column. For i 6= j s.t. g(i) =

g(j),

∇2Gi([u
>,v>])∇Gj([u

>,v>]) = (2viEg(i),g(i) + 2ug(i)Eg(i),L+i + 2ug(i)EL+i,g(i))

· (2ug(j)vjeg(j) + u2
g(j)eL+j)

= 4ug(j)vivjeg(i) + 4ug(i)ug(j)vjeL+i

= 4ug(i)vivjeg(i) + 4u2
g(i)vjeL+i,

similarly,

∇2Gj([u
>,v>])∇Gi([u

>,v>]) = 4ug(i)vivjeg(i) + 4u2
g(i)vieL+j.

Proof for Lemma 1. For two indices within the same group, i.e, i 6= j and g(i) = g(j), we

107

obtain that

[∇Gi,∇Gj]([u
>,v>]) =∇2Gj([u

>,v>])∇Gi([u
>,v>])−∇2Gi([u

>,v>])∇Gj([u
>,v>])

= 4u2
g(i)vjeL+i − 4u2

g(i)vieL+j,

which is not always 0 when vi 6= vj . Therefore, G(·) is not commuting.

Proof for Theorem 3. For i 6= j and g(i) 6= g(j), we have

[∇Gi,∇Gj]([u
>,v>]) = 0.

For i 6= j and g(i) = g(j), we have that

[∇Gi,∇Gj]([u
>,v>]) = vj∇Gi − vi∇Gj ∈ span{∇Gi}pi=1.

By Corollary 4.13 in [97] and Lemma 1, we show that there exists and initialization and a time-

dependent loss that the gradient flow can not be analyzed by mirror flow.

Alternatively, we can show directly that the necessary condition in Theorem 4.10 in [97] is

violated, i.e.,

〈∇Gj, [∇Gi, [∇Gi,∇Gj]]〉([u>,v>]) 6= 0

for some [u>,v>] in every open set M .

We first obtain that

∇[∇Gi,∇Gj]([u
>,v>]) = 8ug(i)vjEL+i,g(i) + 4u2

g(i)EL+i,L+j

− 8ug(i)viEL+j,g(i) − 4u2
g(i)EL+j,L+i.

108

Therefore,

[∇Gi, [∇Gi,∇Gj]]([u
>,v>]) = ∇[∇Gi,∇Gj]([u

>,v>])∇Gi([u
>,v>])

−∇2Gi([u
>,v>])[∇Gi,∇Gj]([u

>,v>])

= (8ug(i)vjEL+i,g(i) + 4u2
g(i)EL+i,L+j

− 8ug(i)viEL+j,g(i) − 4u2
g(i)EL+j,L+i)

· (2ug(i)vieg(i) + u2
g(i)eL+i)

− (2viEg(i),g(i) + 2ug(i)Eg(i),L+i + 2ug(i)EL+i,g(i))

· (4u2
g(i)vjeL+i − 4u2

g(i)vieL+j)

= 16u2
g(i)vivjeL+i − 16u2

g(i)v
2
i eL+j − 4u4

g(i)eL+j − 8u3
g(i)vjeg(i)

= 16u2
g(i)vivjeL+i − (16u2

g(i)v
2
i + 4u4

g(i))eL+j − 8u3
g(i)vjeg(i).

Hence,

〈∇Gj, [∇Gi, [∇Gi,∇Gj]]〉([u>,v>])

=〈2ug(i)vjeg(i) + u2
g(i)eL+j, 16u2

g(i)vivjeL+i − (16u2
g(i)v

2
i + 4u4

g(i))eL+j − 8u3
g(i)vjeg(i)〉

=− 16u4
g(i)v

2
j − 16u4

g(i)v
2
i − 4u6

g(i) < 0.

By Theorem 4.10 in [97], there exists an initialization such that no Legendre function R is able to

make the gradient flow be written as a mirror flow with respect to R.

B.2 Proof for Analysis of Gradient Flow

Proof for Lemma 2. Recall

∂L
∂ul

= − 2

n
ulv

>
l X>l r(t),

∂L
∂vl

= − 1

n
u2
lX
>
l r(t).

109

Therefore, we obtain that

∂ ‖vl(t)‖2

∂t
= 2v>l (t)

∂vl(t)

∂t
= 2v>l (t)

(
− ∂L
∂vl

)
=

2

n
u2
l v
>
l (t)X>l r(t)

= ul

(
− ∂L
∂ul

)
=
∂ 1

2
u2
l (t)

∂t
.

Proof for Lemma 3. We start with decomposing vl(0)

vl(0) = η
1

n
X>l y = ηw?

l + η

(
1

n
X>l X− I

)
w?
l + η

∑
l′ 6=l

1

n
X>l Xl′w

?
l′ + η

1

n
X>l ξ

= ηw?
l + ηbl.

With this decomposition, we have that

〈vl(0),v?l 〉2 = η2((u?l)
2 + 〈bl,v?l 〉)2

‖vl(0)‖2
2 = η2((u?l)

4 + 2〈bl,w?
l 〉+ ‖bl‖2

2).

Therefore,

〈vl(0),v?l 〉2
‖vl(0)‖2

2

=
η2((u?l)

2 + 〈bl,v?l 〉)2

η2((u?l)
4 + 2〈bl,w?

l 〉+ ‖bl‖2
2)

= 1− ‖bl‖2
2 − 〈bl,v?l 〉2

(u?l)
4 + 2〈bl,w?

l 〉+ ‖bl‖2
2

= 1− ‖bl/(u?l)2‖2
2 − 〈bl/(u?l)2,v?l 〉2

1 + 2〈bl/(u?l)2,v?l 〉+ ‖bl/(u?l)2‖2
2

= 1− 1− 〈bl/ ‖bl‖ ,v?l 〉2
1 + 2 ‖bl‖ /(u?l)2〈bl/ ‖bl‖ ,v?l 〉+ ‖bl‖2 /(u?l)

4

∥∥bl/(u?l)2
∥∥2

≥ 1−
∥∥bl/(u?l)2

∥∥2

2
,

110

where last inequality is from

1− α2

β2 + 2αβ + 1
=

1
β2+2αβ+1

1−α2

=
1

1 + β2+2αβ+α2

1−α2

=
1

1 + (α+β)2

1−α2

≤ 1,

for 0 ≤ α ≤ 1.

Since

‖bl‖2 ≤ δin(u?l)
2 + Lδout(u

?
l)

2 +

∥∥∥∥ 1

n
X>l ξ

∥∥∥∥
2

,

we obtain that

〈
vl(0)

‖vl(0)‖ ,v
?
l

〉
≥ 1−

(
δin + Lδout +

∥∥∥∥ 1

n
X>l ξ

∥∥∥∥
2

/(u?l)
2

)2

.

Lemma 20. Consider a simplified case where 1
n
X>l Xl = I, 1

n
X>l Xl′ = O, l 6= l′, if vl(0) =

η 1
n
X>l y, then

vl(t) = c
1

n
X>l y,

for some constant c.

Proof. From the gradient on the directions, we have that

∂vl(t)

∂t
=

1

n
u2
l (t)X

>
l r(t) =

1

n
u2
l (t)X

>
l y − 1

n
u2
l (t)X

>
l

∑
l′

Xl′u
2
l′(t)vl′(t)

=
1

n
u2
l (t)X

>
l y − u4

l (t)vl(t).

Since vl(0) is with the same direction as 1
n
X>l y at the initialization. Therefore, ∂vl(t)

∂t
has the same

direction as vl(t). We obtain that vl(t) = c 1
n
X>l y for some constant c.

111

Lemma 21. If the gradient flow satisfies

1

2

∂u2(t)

∂t
≤ u6(t) +

√
2u4(t)B

for some constant B > 0, then for any t ≤ T =
log 1

θ

2θ2+θ
√

2B
we have u(t) ≤

√
θ with initialization

u(0) = θ.

Proof. We wanted to find some time T such that when t ≤ T , u(t) ≤
√
θ. Since the gradient is

bounded from above, we obtain that

1

2
u2(T) ≤ 1

2
θ2 · exp

(∫ T

0

2u4(t) +
√

2u2(t)Bdt

)
≤ 1

2
θ2 · exp

(
(2θ2 +

√
2θB)T

)
≤ 1

2
θ.

This gives us

T ≤ log 1
θ

2θ2 + θ
√

2B
.

Lemma 22. Fix any τ < 1
2
. Consider the gradient flow

1

2

∂u2(t)

∂t
≥ (1− 2B)

√
2u3(t)(u?)2 − u6(t)−

√
2u3(t)B(u?)2

for some constant 0 < B < 1
10

with initialization u(0) = θ < 1
2
u?, we have that

∣∣∣∣ 1√
2
u3(t)− (u?)2

∣∣∣∣ < (1− 3B − τ)(u?)2,

after

t ≥ T =
21/3(u?)4/3

θ2

1

(1− 6B)
√

2(u?)2θ
+

2 log2
1
2τ

3(u?)2(1/2− 3B)
(√

2(1/2− 3B)(u?)2
)1/3

.

112

Proof. For any T ≥ 0, we have that

1

2
u2(T) ≥ 1

2
θ2 · exp

(∫ T

0

(1− 2B)2
√

2u(t)(u?)2 − 2u4(t)− 2
√

2u(t)B(u?)2dt

)
.

When u(t) < 1
2
u?, we first aim to get T1 such that 1√

2
u3(T1) ≥ 1

2
(u?)2. Therefore,

1

2
θ2 · exp

(∫ T

0

(1− 2B)2
√

2u(t)(u?)2 − 2u4(t)− 2
√

2u(t)B(u?)2dt

)
≥ 1

2
θ2 · exp

((
(1− 2B)2

√
2(u?)2 −

√
2(u?)2 − 2

√
2B(u?)2

)
θT1

)
≥ 1

2

(√
2

2
(u?)2

)2/3

.

We obtain that

T ≥ 21/3(u?)4/3

θ2

1

(1− 6B)
√

2(u?)2θ
.

When t ≥ T1, we have that 1√
2
u3(t) ≥ 1

2
(u?)2. Let us denote 1√

2
u3(0) = ((1− 3B)− η)(u?)2, we

wonder how many iterations Td are needed to make 1√
2
u3(Td) ≥

(
(1− 3B)− 1

2
η
)

(u?)2.

1

2

(√
2 ((1− 3B)− η) (u?)2

)2/3

· exp

(∫ T

0

(1− 2B)2
√

2u(t)(u?)2 − 2u4(t)− 2
√

2u(t)B(u?)2dt

)
≥ 1

2

(√
2 ((1− 3B)− η) (u?)2

)2/3

· exp

((
1

2
η(u?)2

)(√
2 ((1− 3B)− η) (u?)2

)1/3

T2

)
≥ 1

2

(√
2 ((1− 3B)− η) (u?)2

)2/3

·
(

1 +

(
1

2
η(u?)2

)(√
2 ((1− 3B)− η) (u?)2

)1/3

T2

)
≥ 1

2

(√
2

(
(1− 3B)− 1

2
η

)
(u?)2

)2/3

.

113

Therefore,

T2 ≥
(
(1− 3B)− 1

2
η
)2/3 − ((1− 3B)− η)2/3

((1− 3B)− η)2/3

1

1
2
η(u?)2

(√
2 ((1− 3B)− η) (u?)2

)1/3

≥ 2

3

1
2
η

1
2
η(u?)2 ((1− 3B)− η)

(√
2 ((1− 3B)− η) (u?)2

)1/3

≥ 2

3(u?)2(1/2− 3B)
(√

2(1/2− 3B)(u?)2
)1/3

.

Overall, we obtain that ∣∣∣∣ 1√
2
u3(t)− (u?)2

∣∣∣∣ < (1− 3B − ε)(u?)2,

after

t ≥ T = T1 + T2 log2

1

2τ
.

Proof of Theorem 4. Denote ζ = 100
∥∥ 1
n
X>ξ

∥∥
∞. For l ∈ S, the gradient flow can be simplied

as

1

2

∂u2
l (t)

∂t
=

2

n
w>l (t)X>l r(t)

= 2w>l (t)(w?
l −wl(t)) +

2

n
w>l X>l ξ

≥ 2u2
l (t)(u

?
l)

2〈vl(t),v?l 〉 − 2u4
l (t) ‖vl(t)‖2

2 − 2u2
l (t) ‖vl(t)‖2

∥∥∥∥ 1

n
X>l ξ

∥∥∥∥
2

.

Since the initialization is balanced 1
2
u2
l (0) = ‖vl(0)‖2

2, we know that from the balancing result

Lemma 2,
1

2
u2
l (t) = ‖vl(t)‖2

2 .

Since the initialization of vl(t) is aligned with direction 1
n
X>l y, and with our assumption on or-

thogonal design, by Lemma 3 and Lemma 20, if
∥∥ 1
n
X>l ξ

∥∥
2
≤ B(u?l)

2, we can further simplify the

114

gradient flow as

1

2

∂u2
l (t)

∂t
≥
√

2(1− 2B2)u3
l (t)(u

?
l)

2 − u6
l (t)−

√
2u3

l (t)B

≥
√

2(1− 2B)u3
l (t)(u

?
l)

2 − u6
l (t)−

√
2u3

l (t)B,

where the last inequality holds when B < 1. We will verify that B < 1 holds in the following

analysis.

If ζ ≥ (u?max)
2, then our desired inequality is achieved at the initialization.

If (u?min)2 ≤ ζ ≤ (u?max)
2, for these group that ζ ≤ (u?l)

2, applying Lemma 22 with

B =

∥∥ 1
n
X>l ξ

∥∥
2

(u?l)
2
≤
∥∥ 1
n
X>ξ

∥∥
∞

(u?l)
2
≤ 1

100
, τ =

ε

(u?l)
2

we obtain the convergence on magnitudes

| ‖wl(t)‖2 − ‖w?
l ‖2 | ≤ (3B + ε) ‖w?

l ‖2 ,

after

21/3(u?l)
4/3

θ2

1

(1− 6B)
√

2(u?l)
2θ

+
2 log2

(ul)
2

2ε

3(u?l)
2(1/2− 3B)

(√
2(1/2− 3B)(u?l)

2
)1/3

.

If ζ ≤ (u?min)2, similarly applying Lemma 22, the number of iterations needed for entries on

the support to converge is

Tl =
21/3(u?max)

4/3

θ2

1

(1− 6B)
√

2(u?min)2θ
+

2 log2
(umax)2

2ε

3(u?min)2(1/2− 3B)
(√

2(1/2− 3B)(u?min)2
)1/3

.

We now have that for l ∈ S,

| ‖wl(t)‖2 − ‖w?
l ‖2 | ≤ (3B + ε) ‖w?

l ‖2 ,

115

where B =
‖ 1
n
X>y‖∞

(u?min)2
≤ 1

100
, ∀l ∈ S.

Recall that the direction is lower bounded by Lemma 3 and Lemma 24,

〈
wl(t)

‖wl(t)‖2

,
w?
l

‖w?
l ‖2

〉
≥ 1−B2.

Therefore, the error bound on the support is as follows,

‖wl(t)−w?
l ‖∞ ≤ ‖wl(t)−w?

l ‖2 =

∥∥∥∥(‖wl(t)‖2 − (u?l)
2
) vl(t)

‖vl(t)‖
+ (u?l)

2

〈
vl(t)

‖vl(t)‖
,v?l

〉∥∥∥∥
2

≤ (3B + τ)(u?l)
2 + (u?l)

2

√
2− 2

〈
vl(t)

‖vl(t)‖
,v?l

〉
= (3B + τ)(u?l)

2 + (u?l)
2
√

2B ≤
∥∥∥∥ 1

n
X>y

∥∥∥∥
∞

+ ε.

For l /∈ S, we derive a lower bound on the growth rate

1

2

∂u2
l (t)

∂t
=

2

n
w>l (t)X>l r(t)

= 2 ‖wl(t)‖2
2 +

2

n
w>l X>l ξ

≤ u6
l (t) +

√
2u4

l (t)B.

By applying Lemma 21 with B =
∥∥ 1
n
X>y

∥∥
∞, we obtain that before

Tu =
log 1

θ

2θ2 + θ
√

2B
.

Since θ < ε
2(umax)2

, Tl < Tu is ensured.

B.3 Analysis of gradient descent

116

B.3.1 Monotonic updates

Lemma 23. With an initialization u(0) < u? and step size γ ≤ 1
4(u?)2

, the updating sequence

u(t) = u(t− 1) + 2γu(t− 1)[(u?)2 − u2(t− 1)],

is always bounded above by u?.

Proof. We prove it by contradiction. Assume there is a time t s.t.

u(t) ≤ u?, u(t+ 1) > u?.

Therefore,

u(t) + 2γu(t)[(u?)2 − u2(t)] > u?.

Denote λ = u(t)/u?, we have that

1 + 2γ(u?)2(1− λ2)− 1/λ > 0

for some λ ∈ (0, 1].

Let f(λ) = 1 + 2γ(u?)2(1− λ2)− 1/λ, we obtain the derivative

f ′(λ) = −4γ(u?)2λ+
1

λ2
> 0.

However, fmax(λ) = f(1) = 0, and f(λ) ≤ 0 for all λ ∈ (0, 1], which gives our desired contradic-

tion.

B.3.2 Updates with bounded perturbations

To study the general non-orthogonal and noisy case, we first extend the lemmas above to gra-

dient dynamics with bounded perturbations.

117

Consider the update on v(t) with bounded perturbations

z(t+ 1) = v(t) + ηtu
2(t)((u?)2v? − u2(t)v(t)) + ηtu

2(t)bt

v(t+ 1) =
z(t+ 1)

‖z(t+ 1)‖ .
(B.1)

and the updates on u(t)

u(t+ 1) = u(t) + 2γu(t)v>(t+ 1){(u?)2v? − u2(t)v(t+ 1)}+ 2γu(t)et, (B.2)

Note that if we choose ηt = 1
u4(t)

, Eq. (B.1) is recast as

z(t+ 1) =
(u?)2

u2(t)
v? +

1

u2(t)
bt

v(t+ 1) =
z(t+ 1)

‖z(t+ 1)‖ .
(B.3)

Lemma 24. Consider the update in Eq. (B.3), if ‖bt‖ ≤ B(u?)2 for some constant 0 < B < 1, we

have that

〈v(t+ 1),v?〉 ≥ 1−B2.

Proof. We have that

〈z(t+ 1),v?〉 =
(u?)2

u2(t)
+

1

u2
l (t)
〈bt,v?〉

‖z(t+ 1)‖2 =
(u?)4

u4(t)
+ 2

(u?)2

u4(t)
〈bt,v?〉+

1

u4
l (t)
‖bt‖2 ,

118

therefore,

〈z(t+ 1),v?〉2
‖z(t+ 1)‖2 =

(u?)4

u4(t)
+ 2 (u?)2

u4(t)
〈bt,v?〉+ 1

u4l (t)
〈bt,v?〉2

(u?)4

u4(t)
+ 2 (u?)2

u4(t)
〈bt,v?〉+ 1

u4l (t)
‖bt‖2

= 1− ‖bt‖2 − 〈bt,v?〉2
(u?)4 + 2(u?)2〈bt,v?〉+ ‖bt‖2

= 1− ‖bt/(u?)2‖2 − 〈bt/(u?)2,v?〉2
1 + 2〈bt/(u?)2,v?〉+ ‖bt/(u?)2‖2

= 1− 1− 〈bt/ ‖bt‖ ,v?〉2
1 + 2 ‖bt‖ /(u?)2〈bt/ ‖bt‖ ,v?〉+ ‖bt‖2 /(u?)4

∥∥bt/(u?)2
∥∥2

≥ 1−
∥∥bt/(u?)2

∥∥2

≥ 1−B2.

Hence, we have that

〈v(t+ 1),v?〉 ≥
√

1−B2 ≥ 1−B2.

Lemma 25. Consider the updates in Eq. (B.2) with |et| ≤ B, if u2(0) ≤ (u?)2, then u2(t) ≤

(u?)2 +B for all t. If u2(0) ≥ (u?)2 and |〈v(t),bt〉| ≤ B2τ(u?)2, then u2(t) ≥ (1−B2)(u?)2−B

for all t.

Proof. Proof by contradiction similarly to Lemma 23.

Lemma 26. Fix the step size γ for the update on u(t), and choose u(0) = α ≤ 1
5
u?. Consider

the updates in Eq. (B.2) and Eq. (B.1) with |〈v(t),bt〉| ≤ 1
20

(u?)2 and |et| ≤ 1
20

(u?)2, then T ≥
log

(u?)2

2α2

2 log(1+γ 1
2

(u?)2)
, we have that u2(T) ≥ 1

2
(u?)2.

Proof. Apply Lemma 24 with B = 1
20

,

〈v(t+ 1),v?〉 ≥ 1−B2 = 1− 1

400
≥ 4

5

119

Starting from t = 1, we have that

v>(t){(u?)2v? − u2(t)v(t)} ≥ 4

5
(u?)2 − u2(t),

therefore, we obtain an lower bound of the growth rate on u(t), which reads

u(t+ 1) ≥ u(t) + 2γu(t)

(
4

5
(u?)2 − u2(t)− 1

20
(u?)2

)
= u(t)

(
1 + 2γ

(
3

4
(u?)2 − u2(t)

))
≥ u(t)

(
1 + γ

1

2
(u?)2

)
.

Therefore, the requirement on the number of iterations is recast as

α2

(
1 + γ

1

2
(u?)2

)2T

≥ 1

2
(u?)2

⇐⇒2T ≥ log (u?)2

2α2

log(1 + γ 1
2
(u?)2)

⇐⇒T ≥ log (u?)2

2α2

2 log(1 + γ 1
2
(u?)2)

.

With these requirements, by Lemma 25, we also have that u2(t) ≤ 3
2
(u?)2,∀t ≥ 0.

Lemma 27. Fix the step size γ for the update on u(t), and choose the initialization u(0) such

that |(u?)2 − u2(0)| ≤ τ(u?)2 where 0 < τ ≤ 1/2. Consider the updates in Eq. (B.2) and

Eq. (B.1) with |〈v(t),bt〉| ≤ 1
10
τ(u?)2 and |et| ≤ 1

10
τ(u?)2, then after T ≥ 5

2γ(u?)2
, we have that

〈v(t),v?〉 ≥ 1− 1
5
τ 2 for all t ≤ T and |u2(T)− (u?)2| ≤ 1

2
τ(u?)2.

Proof. When u2(0) ≤ (u?)2, by applying to Lemma 24, we have that

〈v(t+ 1),v?〉 ≥ 1−
(

1

10
τ

)2

≥ 1− 1

5
τ 2,

120

therefore,

u(t+ 1) ≥ u(t) + 2γu(t)

((
1− 1

5
τ

)
(u?)2 − u2(t)− 1

10
τ(u?)2

)
= u(t)

(
1 + 2γ

((
1− 3

10
τ

)
(u?)2 − u2(t)

))
.

Further, we want to find an lower bound requirement on T s.t.

(
(u?)2 − τ(u?)2

)(
1 + 2γ

((
1− 3

10
τ

)
(u?)2 −

(
(u?)2 − 1

2
τ

)
(u?)2

))2T

≥ (u?)2 − 1

2
τ(u?)2,

which can be relaxed as

(
(u?)2 − τ(u?)2

)(
1 +

2

5
γTτ(u?)2

)
≥ (u?)2 − 1

2
τ(u?)2

⇐⇒1 +
2

5
γTτ(u?)2 ≥ (u?)2 − 1

2
τ(u?)2

(u?)2 − τ(u?)2

⇐⇒2

5
γTτ(u?)2 ≥

1
2
τ(u?)2

((u?)2 − τ(u?)2)

⇐⇒T ≥ 5

4γ(u?)2(1− τ)

=⇒T ≥ 5

2γ(u?)2
.

121

When u2(0) > (u?)2, we have that

u(t+ 1) ≤ u(t) + 2γu(t)

(
(u?)2 − u2(t) +

1

10
τ(u?)2

)
= u(t)

(
1 + 2γ

((
1 +

1

10
τ

)
(u?)2 − u2(t)

))
.

≤ u(t)

(
1− 4

5
γτ(u?)2

)
.

Similarly, we want to get

(u?)2 +
1

2
τ(u?)2 ≥

(
(u?)2 + τ(u?)2

)(
1− 4

5
γTτ(u?)2

)
⇐⇒(u?)2 + 1

2
τ(u?)2

(u?)2 + τ(u?)2
≥ 1− 4

5
γTτ(u?)2

⇐⇒4

5
γTτ(u?)2 ≥

1
2
τ(u?)2

(u?)2 + τ(u?)2

⇐⇒T ≥ 5

8γ(u?)2(1 + τ)

=⇒T ≥ 5

8γ(u?)2
.

If u(0) <= u? and u(t) > u?, t < T , or u(0) > u? and u(t) ≤ u?, t < T , we have already have

|u2(t)− u?)2| ≤ 1
2
τ(u?)2. By Lemma 25, |u2(T)− u?)2| ≤ 1

2
τ(u?)2 remains to hold.

Hence, after T ≥ 5
2γ(u?)2

, we have |u2(T)− u?)2| ≤ 1
2
τ(u?)2.

B.3.3 Analysis of perturbations

We decompose the updates into several terms for later investigation.

122

The gradient of L(·) on each vl is

∂L
∂vl

= − 1

n
u2
lX
>
l

(
y −

∑
l′ 6=l

u2
l′Xl′vl′

)
+

1

n
u4
lX
>
l Xlvl

= − 1

n
u2
lX
>
l

(
y −

L∑
l′=1

u2
l′Xl′vl′

)

When l ∈ S, the gradient update on each vl is

zl(t+ 1) = vl(t) + ηl,tu
2
l (t)

1

n
X>l

(
y −

L∑
l′=1

u2
l′(t)Xl′vl′(t)

)

= vl(t) + ηl,tu
2
l (t)((u

?
l)

2v?l − u2
l (t)vl(t))

+ ηl,tu
2
l (t)

(
1

n
XT
l Xl − I

)
((u?l)

2v?l − u2
l (t)vl(t))

+ ηl,tu
2
l (t)

∑
l′ 6=l,l′∈S

1

n
X>l Xl′((u

?
l′)

2v?l′ − u2
l′(t)vl′(t))

− ηl,tu2
l (t)

∑
l′∈Sc

1

n
X>l Xl′u

2
l′(t)vl′(t)

+ ηl,tu
2
l (t)

1

n
X>l ξ.

The gradient of L(·) on each ul is

∂L
∂ul

= − 2

n
ul

〈
Xlvl,y −

∑
l′ 6=l

u2
l′Xl′vl′

〉
+

2

n
u3
l ‖Xlvl‖2

= − 2

n
ul

〈
Xlvl,y −

L∑
l′=1

u2
l′Xl′vl′

〉

When l ∈ S, the gradient update on ul reads

123

ul(t+ 1) = ul(t) + γ
2

n
ul(t)

〈
Xlvl(t+ 1),y −

L∑
l′=1

u2
l′(t)Xl′vl′(t+ 1)

〉

= ul(t) + 2γul(t)v
>
l (t+ 1)((u?l)

2v?l − u2
l (t)vl(t+ 1))

+ 2γul(t)v
>
l (t+ 1)

(
1

n
X>l Xl − I

)
((u?l)

2v?l − u2
l (t)vl(t+ 1))

+ 2γul(t)v
>
l (t+ 1)

1

n
X>l

∑
l′ 6=l,l′∈S

Xl′((u
?
l′)

2v?l′ − u2
l′(t)vl′(t+ 1))

− 2γul(t)v
>
l (t+ 1)

1

n
X>l

∑
l′∈Sc

Xl′u
2
l′(t)vl′(t+ 1)

+ 2γul(t)
1

n
v>l (t+ 1)X>l ξ.

We now rewrite the definition of bounded perturbation in Eq. (B.1, B.2), where the bounded

perturbation el,t on updates of ul(t) reads

el,t = v>l (t+ 1)

(
1

n
X>l Xl − I

)
((u?l)

2v?l − u2
l (t)vl(t+ 1))

+ v>l (t+ 1)
1

n
X>l

∑
l′ 6=l,l′∈S

Xl′((u
?
l′)

2v?l′ − u2
l′(t)vl′(t+ 1))

− v>l (t+ 1)
1

n
X>l

∑
l′∈Sc

Xl′u
2
l′(t)vl′(t+ 1)

+
1

n
v>l (t+ 1)X>l ξ,

and the bounded perturbation bl,t on updates of vl(t) reads

bl,t =

(
1

n
XT
l Xl − I

)
((u?l)

2v?l − u2
l (t)vl(t))

+
∑

l′ 6=l,l′∈S

1

n
X>l Xl′((u

?
l′)

2v?l′ − u2
l′(t)vl′(t))

−
∑
l′∈Sc

1

n
X>l Xl′u

2
l′(t)vl′(t)

+
1

n
X>l ξ.

124

We show in Lemma 27 that when the perturbations are bounded, the direction is roughly ac-

curate (〈vl(t),v?〉 is large) and ul(t) converges exponentially. Now we show below that when the

direction is roughly accurate and ul(t) is close to u?l , the perturbations are bounded.

Lemma 28. Assume δin ≤ (u?min)2

120(u?max)2
and δout ≤ (u?min)2

120s(u?max)2
, α < 1

2

√
τ0
L
u?l ,

∥∥ 1
n
X>ξ

∥∥
∞ ≤

1
80
τ0(u?l)

2 and |(u?l)2 − u2
l (0)| ≤ τ(u?l)

2 for each l ∈ [L] where 0 < τ0 ≤ τ ≤ 1/2. If

〈vl(t),v?l 〉 ≥ 1− 1
5
τ 2, then |〈vl(t),bl,t〉| ≤ 1

10
τ(u?l)

2 and |el,t| ≤ 1
10
τ(u?l)

2.

Proof. We first verify

∥∥(u?l)
2v?l − u2

l (t)vl(t)
∥∥ =

∥∥{(u?l)2 − u2
l (t)}v?l − u2

l (t){vl(t)− v?l }
∥∥

≤ |(u?l)2 − u2
l (t)|+ u2

l (t) ‖vl(t)− v?l ‖

≤ τ(u?l)
2 + u2

l (t)
√

2− 2〈vl(t),v?l 〉

≤ τ(u?l)
2 +

3

2
(u?l)

2

√
2√
5
τ (B.4)

≤ 3τ(u?l)
2.

By Assumption 1, we have that

∣∣∣∣∣v>l (t)

(
1

n
XT
l Xl − I

)
((u?l)

2v?l − u2
l (t)vl(t)) + v>l (t)

∑
l′ 6=l,l′∈S

1

n
X>l Xl′((u

?
l′)

2v?l′ − u2
l′(t)vl′(t))

∣∣∣∣∣
≤ 3δinτ(u?max)

2 + 3sδoutτ(u?max)
2 ≤ 1

40
τ(u?l)

2 +
1

40
τ(u?l)

2 =
1

20
τ(u?l)

2.

For the other two terms, we have that

∣∣∣∣∣v>l (t)
∑
l′∈Sc

1

n
X>l Xl′u

2
l′(t)vl′(t)

∣∣∣∣∣ ≤ δ(L− s)α2 ≤ 1

80
τ(u?l)

2,

125

and

∣∣∣∣v>l (t)
1

n
X>l ξ

∣∣∣∣ ≤ ∥∥v>l (t)
∥∥

1

∥∥∥∥ 1

n
X>l ξ

∥∥∥∥
∞

≤
∥∥v>l (t)

∥∥
2

∥∥∥∥ 1

n
X>l ξ

∥∥∥∥
∞

≤ 1

80
τ(u?l)

2.

Therefore,

|el,t| = |〈vl(t),bl,t〉| ≤
1

20
τ(u?l)

2 +
1

80
τ(u?l)

2 +
1

80
τ(u?l)

2 ≤ 1

10
τ(u?l)

2.

Lemma 27 shows that when the upper bound of perturbation is fixed, ul(t) grows. Now we

show that after ul(t) grows, the upper bound of perturbations will be decreased.

Lemma 29. Assume δin ≤ (u?min)2

120(u?max)2
and δout ≤ (u?min)2

120s(u?max)2
, α <

√
τ0

2
√
L
u?l ,
∥∥ 1
n
X>ξ

∥∥
∞ ≤

1
80
τ0(u?l)

2

and 〈vl(t),v?l 〉 ≥ 1 − 1
5
τ 2. If we achieve that |(u?l)2 − u2

l (0)| ≤ 1
2
τ(u?l)

2 for each l ∈ [L] where

0 < τ0 ≤ τ ≤ 1/2, then |〈vl(t),bl,t〉| ≤ 1
20
τ(u?l)

2 and |el,t| ≤ 1
20
τ(u?l)

2.

Proof. Similarly to the proof of Lemma 27,

∥∥(u?l)
2v?l − u2

l (t)vl(t)
∥∥ ≤ 1

2
τ(u?l)

2 + u2
l (t)
√

2− 2〈vl(t),v?l 〉

≤ 1

2
τ(u?l)

2 +
3

2
(u?l)

2 1√
5
τ

≤ 3

2
τ(u?l)

2.

126

By Assumption 1, we have that

∣∣∣∣∣v>l (t)

(
1

n
XT
l Xl − I

)
((u?l)

2v?l − u2
l (t)vl(t)) + v>l (t)

∑
l′ 6=l,l′∈S

1

n
X>l Xl′((u

?
l′)

2v?l′ − u2
l′(t)vl′(t))

∣∣∣∣∣
≤ 3

2
δinτ(u?max)

2 +
3

2
sδoutτ(u?max)

2 ≤ 1

40
τ(u?l)

2,

where δ ≤ 1
60s

. Similarly, we obtain that

|el,t| = |〈vl(t),bl,t〉| ≤
1

40
τ(u?l)

2 +
1

80
τ(u?l)

2 +
1

80
τ(u?l)

2 ≤ 1

20
τ(u?l)

2.

By Lemma 26, we know that after certain iterations, we have that |u2(t) − (u?)2| ≤ 1
2
(u?)2.

Starting from there, we will apply Lemma 27 and Lemma 28 iteratively until we have our desired

accuracy.

We just need to verify when τ = 1
2
, the condition of either Lemma 27 and Lemma 28 is

satisfied. Note that the condition of Lemma 26 already satisfies the condition of Lemma 27 at

τ = 1
2
. Note the condition of Lemma 26 is satisfied when δin ≤ (u?min)2

120(u?max)2
and δout ≤ (u?min)2

120s(u?max)2
,

α ≤ 1
4
(u?min)2,

∥∥ 1
n
X>ξ

∥∥
∞ ≤

1
80
τ0(u?min)2.

127

B.3.4 Error analysis outside the support

We only care about the growth rate of ul(t) when l /∈ S. When l ∈ Sc, the gradient updates on

ul reads

ul(t+ 1) = ul(t) + γ
2

n
ul(t)

〈
Xlvl(t),y −

L∑
l′=1

u2
l′(t)Xl′vl′(t)

〉

= ul(t)− 2γu3
l (t)

− 2γu3
l (t)v

>
l (t)

(
1

n
X>l Xl − I

)
vl(t)

+ 2γul(t)v
>
l (t)

1

n
X>l

∑
l′∈S

Xl′((u
?
l′)

2v?l′ − u2
l′(t)vl′(t))

− 2γul(t)v
>
l (t)

1

n
X>l

∑
l′ 6=l,l′∈Sc

Xl′u
2
l′(t)vl′(t)

+ 2γul(t)
1

n
vl(t)X

>
l ξ.

Consider the initialization is ul(0) = α, we wonder the smallest number t of iterations that we

can ensure ul(t) ≤
√
α. Denote

el,t = −u2
l (t)− u2

l (t)v
>
l (t)

(
1

n
X>l Xl − I

)
vl(t)

+ v>l (t)
1

n
X>l

∑
l′∈S

Xl′((u
?
l′)

2v?l′ − u2
l′(t)vl′(t))

− v>l (t)
1

n
X>l

∑
l′ 6=l,l′∈Sc

Xl′u
2
l′(t)vl′(t)

+
1

n
v>l (t)X>l ξ.

We have that

|el,t| ≤ α + αδin + αδout(L− s) +
3

2
(u?max)

2δouts+

∥∥∥∥ 1

n
X>l ξ

∥∥∥∥
∞
.

128

If α ≤ 1
80L

(u?min)2, δin ≤ (u?min)2

120(u?max)2
and δout ≤ (u?min)2

120s(u?max)2
, we have that

|el,t| ≤
1

20
(u?min)2 +

∥∥∥∥ 1

n
X>l ξ

∥∥∥∥
∞
. (B.5)

Lemma 30. Consider

u(t+ 1) = u(t)(1 + 2γet)

where |et| ≤ B and u(0) = α. Let the step size γ ≤ 1
4B

, then for any t ≤ T = 1
32γB

log 1
α4 , we

have u(t) ≤
√
u(0).

Proof. We start by observing,

√
α ≥ u(t) ≥ α(1 + 2γB)t

⇐⇒t ≤
log 1√

α

log(1 + 2γB)
.

By using log x ≤ x− 1,

log 1√
α

log(1 + 2γB)
≥ 1

2γB
log

1√
α
≥ 1

32γB
log

1

α4
.

B.4 Proof of Theorems in Chapter 3.4

B.4.1 Proof of Theorem 5

Proof. If ζ ≥ (u?max)
2, at the initialization, we already have for ∀l ∈ [L]

∥∥u2
l (0)vl(0)− (u?l)

2v?l
∥∥
∞ ≤ u2

l (0) + (u?l)
2 ≤ α2 + (u?max)2

≤ 2(u?max)2 ≤ 2ζ

≤ 160

∥∥∥∥ 1

n
X>ξ

∥∥∥∥
∞
∨ 160ε.

129

If ζ ≤ (u?max)
2, for those l ∈ S such that ζ ≤ (u?l)

2, we can apply Lemma 26. After

T1 =
log

(u?l)2

2α2

2 log(1 + γ 1
2
(u?l)

2)
,

we obtain that 1
2
(u?l)

2 ≤ u2
l (T1) ≤ 3

2
(u?l)

2, where we also have that
∥∥ 1
n
X>ξ

∥∥
∞ ≤

1
80

(u?l)
2 for

every l.

Let m0 be the number s.t.

2−m0−1(u?max)
2 ≤ ζ ≤ 2−m0(u?max)

2,

which can be written as m0 = blog2
(u?max)2

ζ
c. We can apply Lemma 27 and Lemma 28 together

m0 times. Then further after

T2 = blog2

(u?max)
2

ζ
c 5

2γ(u?l)
2
,

we have that

|u2
l (T2)− (u?l)

2| ≤ 2−m0(u?max)
2 ≤ 2ζ

〈vl(T2),v?l 〉 ≥ 1− 1

5
2−2m0 .

Therefore,

∥∥u2
l (T2)vl(T2)− (u?l)

2v?l
∥∥
∞ ≤

∥∥u2
l (T2)vl(T2)− (u?l)

2v?l
∥∥

2

≤
∥∥(u2

l (T2)− (u?l)
2)vl(T2)− (u?l)

2(v?l − vl(T2))
∥∥

2

≤ 2−m0(u?max)
2 + (u?l)

2
√

2− 2〈vl(T2),v?l 〉

≤ 2−m0(u?max)
2 + (u?l)

2 2

5
2−m0

≤ 2ζ.

(B.6)

Note that the above inequality holds for every l ∈ S such that (u?l)
2 ≥ ζ . For those l such that

ζ ≥ (u?l)
2, we are not able to recover the true signal (u?l)

2. the gradient dynamics on this group

130

behaves as errors outside group, and bounded by Lemma 30.

For entries outside the support, we know that from Eq. (B.5),

B =
1

20
(u?min)2 +

∥∥∥∥ 1

n
X>l ξ

∥∥∥∥
∞
≤ 1

10
(ζ ∨ (u?min)2).

By Lemma 30, we have that before T3 ≤ 1
32γB

log 1
α4 , ul(T3) ≤ √α.

When ζ ≤ (u?min)2, Eq. (B.6) holds for every l ∈ S. Therefore, a uniform number of iterations

T1 and T2 for all groups is written as

T1 =
log (u?max)2

2α2

2 log(1 + γ 1
2
(ζ ∨ (u?min)2))

,

and

T2 = blog2

(u?max)
2

ζ
c 5

2γ(ζ ∨ (u?min)2)
.

All we left is to show that T3 ≥ T1 + T2. We observe that

T1 =
log (u?max)2

2α2

2 log(1 + γ 1
2
(ζ ∨ (u?min)2))

≤ 1 + γ 1
2
(ζ ∨ (u?min)2))

γ(ζ ∨ (u?min)2))
log

(u?max)
2

2α2

≤ 2

γ(ζ ∨ (u?min)2)
log

(u?max)
2

2α2

where the first inequality is by log x ≥ x−1
x

.

With our choice of small initialization on α, we have T1 ≤ 1
2
T3, due to α < 1

(u?max)8
. We have

T2 ≤ 1
2
T3, because of α < ζ4

(umax)8
.

Hence, we obtain that after Tl = T1 + T2 ≥
log

(u?max)
2

2α2

2 log(1+γ 1
2

(ζ∨(u?min)2))
+ blog2

(u?max)2

ζ
c 5

2γ(ζ∨(u?min)2)
,

and before Tu = T3 ≤ 5
16γ(ζ∨(u?min)2)

log 1
α4 ,

∥∥u2
l (t)vl(t)− (u?l)

2v?l
∥∥
∞ .


∥∥ 1
n
X>ξ

∥∥
∞ ∨ ε, if l ∈ S.

α, if l /∈ S.

131

B.4.2 Proof for Corollary 2

Since ξ is made of independent σ2-sub-Gaussian entries, by Lemma 6 with probability 1 −

1/(8p3) we have ∥∥∥∥ 1

n
XTξ

∥∥∥∥
∞
≤ 2

√
2σ2 log(2p)

n
.

Hence, letting ε = 2
√

2σ2 log(2p)
n

, we obtain that

∥∥(Du(t))2 � v(t)−w?
∥∥2

2
.
∑
l∈S

ε2 +
∑
l /∈S

α ≤ sε2 + (L− s) ε
2

L2
.
sσ2 log p

n
.

B.4.3 Convergence for algorithm 2

Lemma 31. Consider the update in Eq. (B.1), choose the step size ηt = η ≤ 4
9(u?)4

, if 〈v(t),v?〉 ≥

1− 1
5
τ , |u2(t)− (u?)2| ≤ τ(u?)2 and ‖bt‖ ≤ 1

10
τ(u?)2 for some constant 0 < τ < 1

2
, we have that

〈v(t+ 1),v?〉 ≥ 1− 1

5
τ.

Proof. We first rewrite z(t+ 1) as

z(t+ 1) = ηu2(t)(u?)2v? + (1− ηu4(t))v(t) + ηu2(t)bt.

Therefore,

〈z(t+ 1),v?〉 ≥ ηu2(t)(u?)2 + (1− ηu4(t))〈v(t),v?〉+ ηu2(t)〈bt,v?〉

≥ ηu2(t)(u?)2 + (1− ηu4(t))

(
1− 1

5
τ

)
− ηu2(t)

1

10
τ(u?)2

‖z(t+ 1)‖ ≤ ηu2(t)(u?)2 + (1− ηu4(t)) + ηu2(t)
1

10
τ(u?)2.

132

We obtain that

〈v(t+ 1),v?〉 =
〈z(t+ 1),v?〉
‖z(t+ 1)‖ ≥ 1−

1
5
τ(1− ηu4(t)) + 2ηu2(t) 1

10
τ(u?)2

ηu2(t)(u?)2 + (1− ηu4(t)) + ηu2(t) 1
10
τ(u?)2

≥ 1− 1− ηu4(t) + ηu2(t)(u?)2

ηu2(t)(u?)2 + (1− ηu4(t)) + ηu2(t) 1
10
τ(u?)2

1

5
τ

≥ 1− 1

5
τ.

Note that compared with Lemma 24, under the condition ‖bt‖ ≤ B(u?)2, we get 〈v(t +

1),v?〉 ≥ 1 − B instead of 〈v(t + 1),v?〉 ≥ 1 − B2. Accordingly, we need to a new version for

Lemma 28 with a smaller bound on δ to make up the loss in Lemma 31.

Lemma 32. Assume δin ≤
√
τ0(u?min)2

120(u?max)2
and δout ≤

√
τ0(u?min)2

120s(u?max)2
, α < 1

2

√
τ0
L
u?l ,

∥∥ 1
n
X>ξ

∥∥
∞ ≤

1
80
τ0(u?l)

2 and |(u?l)2 − u2
l (0)| ≤ τ(u?l)

2 for each l ∈ [L] where 0 < τ0 ≤ τ ≤ 1/2. If

〈vl(t),v?l 〉 ≥ 1− 1
5
τ , then |〈vl(t),bl,t〉| ≤ 1

10
τ(u?l)

2 and |el,t| ≤ 1
10
τ(u?l)

2.

Proof. Similarly to Lemma 28, we have that

∥∥(u?l)
2v?l − u2

l (t)vl(t)
∥∥ ≤ τ(u?l)

2 + u2
l (t)
√

2− 2〈vl(t),v?l 〉

≤ τ(u?l)
2 +

3

2
(u?l)

2

√
2√
5

√
τ (B.7)

≤
(

1 + 2
1√
τ0

)
τ(u?l)

2.

By Assumption 1, we have that

∣∣∣∣∣v>l (t)

(
1

n
XT
l Xl − I

)
((u?l)

2v?l − u2
l (t)vl(t)) + v>l (t)

∑
l′ 6=l,l′∈S

1

n
X>l Xl′((u

?
l′)

2v?l′ − u2
l′(t)vl′(t))

∣∣∣∣∣
≤
(

1 + 2
1√
τ0

)
δinτ(u?max)

2 +

(
1 + 2

1√
τ0

)
sδoutτ(u?max)

2 ≤ 1

20
τ(u?l)

2,

133

where δ ≤
√
τ0(u?min)2

60s(u?max)2
. The other two terms follows exactly what we did in Lemma 28. Therefore,

|el,t| = |〈vl(t),bl,t〉| ≤
1

20
τ(u?l)

2 +
1

80
τ(u?l)

2 +
1

80
τ(u?l)

2 ≤ 1

10
τ(u?l)

2.

Proof to Theorem 6. The proof is similar to that of Theorem 5. For the first stage, we apply

Lemma 26, as nothing is changed from Theorem 5. For the second stage, instead of applying

Lemma 27 and Lemma 28, we apply Lemma 31 and Lemma 32 iteratively. To apply these lemmas,

we first observe that

ζ ≤ τ0(u?max)
2 ⇐⇒ ζ

(u?max)
2
≤ τ0.

Therefore the requirement on δ’s becomes δin ≤
√
τ0(u?min)2

120(u?max)3
and δout ≤

√
τ0(u?min)2

120s(u?max)3
. The number of

iterations and convergence results follow from the proof of Theorem 5.

The criterion for switching time. We provide some motivation for the practical criterion. We

first note that, the criterion in Theorem 6 actually indicates a lower bound of switching time. With

more derivations, our results still hold if one choose to switch after the time when the criterion is

first satisfied (instead of switching right at that time.) Let us focus on the entries on the support.

In the proof of Theorem 5, one can also obtain the convergence on ul(t) as the positiveness of

ul(t) can be ensured with a small step size γ (since the power-parametrization will recast the

gradient updates into a multiplicative sequence). Therefore, with an appropriate choice of τ , the

practical criterion max
l∈S
{|ul(t+ 1)− ul(t)|/|ul(t) + ε|} < τ would imply the theoretical criterion

ul(t)
2 ≥ 1

2
u?l (t)

2 on the support, and therefore would indicate a possibly later switching time than

what the theoretical criterion determines. For gradient updates outside the support, we observe

slow growth rate and hence the practical rule is likely satisfied on the non-support entry, which we

134

observe in the numerical experiments. Note that the switching only happens when both the support

and non-support entries fulfill the criterion.

B.5 More numerical results

B.5.1 Stability issue of Algorithm 1 and standard GD

0 100 200 300 400 500

0

5

10

15

Recovered entries

group1

group2

group3

non support

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Recovered direction parameters (v)

group1

group2

group3

non support

(a) Numerical instability in direction estimations.

0 100 200 300 400 500
epochs

0

1

2

3

||w
(t

)
−

w
?
||2

Recovery error

0 100 200 300 400 500
epochs

0

1

2

3

4

u
l(
t)

Recovered group magnitudes

ul(t), l ∈ S
max
l /∈S

ul(t)

(b) Parameter estimation error remains small.

Figure B.1: Numerical instability of algorithm 1. Reprinted with permission from [2].

Stability issue of Algorithm 1. Figure B.1 presents the recovered entries and direction pa-

rameters v(t) under the same setting as Figure 3.2. Because of the large learning rate on v, the

algorithm may not show a convergent result in the latter stage due to the irreducible error (perturba-

tions). Although the parameter estimation is still reasonable with normalization on each vl, l ∈ [L],

we still aim to get a stable algorithm, which motivates our algorithm 2.

135

0 2000 4000 6000 8000
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

w
li
(t

)

Recovered entries with zero initialization

wli(t), l ∈ S
max
l /∈S

wli(t)

0 2000 4000 6000 8000
epochs

0.0

0.2

0.4

0.6

0.8

1.0

〈v
l(
t)
,v

?
〉

Recovered group directions with zero initialization

group1

group2

group3

group4

0 2000 4000 6000 8000
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

w
li
(t

)

Recovered entries with small initialization

wli(t), l ∈ S
max
l /∈S

wli(t)

Figure B.2: Gradient descent without weight normalization. Reprinted with permission from [2].

Standard gradient descent. To further understand how weight normalization affects the gra-

dient dynamics, we conduct experiments using standard gradient descent without weight normal-

ization. For that, we use the same setting as in Figure 3.4 and show the result in Figure B.2. The left

and middle figures are based on zero initialization on v. We see a numerically convergent result,

and the inner product between learned and true directions starts to grow from 0. As the directions

guide the magnitude to grow, there is an extra stage for the directions to become roughly accu-

rate. The choice of this initialization is necessary and subtle. The figure on the right is for small

initialization 10−3, where the entries outside support get significant magnitudes, and the algorithm

fails.

B.5.2 Autoencoder with grouping layer

The grouping layers have been used in grouped CNN and grouped attention mechanisms [92,

91, 120], which usually leads to parameter efficiency and better accuracy. To demonstrate the

practical value of such grouping layers, we conduct the following experiment about learning good

representations on MNIST.

[121] proposed implicit rank-minimizing autoencoder (IRMAE), which is a deterministic au-

toencoder with implicit regularization. The idea is to apply more linear layers between encoder

and decoder to penalize the rank of latent representation. A graphical illustration of the architec-

ture is shown in Figure B.3, where we explicitly show the last convolution layer and the linear

layers in the latent space, which are absorbed into the last layer of the encoder in practice. This

136

design is related to the power parametrization [84] trick to promote sparsity/low-rankness. One

major advantage is that IRMAE produces a more interpretable latent representation, and the linear

interpolation in the latent space gives a natural transition between two images.

x Enc CNN Dec XZ

latent layers

Figure B.3: Implicit rank-minimizing autoencoder. Reprinted with permission from [2].

X Enc Dec XZ

grouped latent layers

Figure B.4: Implicit rank-minimizing autoencoder with grouping layers. Reprinted with permis-
sion from [2].

137

Inspired by our DGLNN, we design a CNN analog of it, which we call grouped autoencoder

(GAE). The architecture is shown in Figure B.4. The channels feed into the last convolutional

layer of encoder is separable into g groups. The linear layers (power-parametrization) are applied

within each group. Grouping channels of convolutional layers is a common practice to improve

the parameter efficiency. With these grouping and power layers in the latent space, we expect it

learns a better latent representation as IRMAE does.

A
E

VA
E

G
A

E
8

G
A

E
4

IR
M

A
E

Figure B.5: Linear interpolations between data points on the MNIST dataset. GAE4/8 stands for
grouped autoencoder with 4/8 groups. Reprinted with permission from [2].

The linear interpolations between data points in the latent space are shown in Figure B.5. We

compare the grouped autoencoder (GAE) with autoencoder (AE), variantional autoencoder (VAE)

and implicit rank-minimizing autoencoder (IRMAE). We see that GAE outperforms AE and VAE,

and gives comparable results with IRMAE. However, GAE achieves a better parameter efficiency

as shown in Table B.1.

138

of params
IRMAE 786K
GAE4 196K
GAE8 98K

Table B.1: Number of parameters of hidden layers in latent space. Reprinted with permission from
[2].

B.5.3 Experiments with Gaussian measurements

Besides the numerical results shown in Section 3.5, we conduct the following experiments with

sampling each entry of X from a standard normal distribution.

The effectiveness using Gaussian design. We follow the same setting with that Figure 3.3

except changing Rademacher random variables to Gaussian random variables. The convergence

of Algorithm 2 is shown in Figure B.6. We see that the recovered entries, group magnitudes and

directions successfully converge to the true ones.

0 200 400 600 800 1000
epochs

0

2

4

6

8

10

12

w
li
(t

)

Recovered entries

wli(t), l ∈ S
max
l /∈S

wli(t)

0 200 400 600 800 1000
epochs

0

1

2

3

4

u
l(
t)

Recovered group magnitudes

ul(t), l ∈ S
max
l /∈S

ul(t)

0 200 400 600 800 1000
epochs

0.94

0.95

0.96

0.97

0.98

0.99

1.00

〈v
l(
t)
,v

?
〉

Recovered group directions

group1

group2

group3

Figure B.6: Convergence of algorithm 2 with Gaussian measurements. Reprinted with permission
from [2].

Comparisons with explicit regularization methods. We compare Algorithm 2 with proxi-

mal gradient descent implemented in [122] and primal-dual procedure [123]. Each entry of X is

sampled from a standard Gaussian distribution. We set n = 150 and p = 300, and the number

of non-zero entries is 10, divided into 3 groups with size 4. We vary the variance in the noise to

achieve different signal-to-noise ratios (SNR). The experiment is repeated 30 times at each noise

139

level. The average and standard deviation of the estimation error are depicted in Figure B.7. Our

algorithm is consistently better than explicit regularization methods, whereas the primal-dual pro-

cedure has a comparable performance when SNR is large.

0 5 10 15 20 25 30 35
SNR

−4

−2

0

2

4

6

8

lo
g

2
||w

t
−

w
?
||2 2

PGD

DGLNN

Primal-Dual

Figure B.7: Comparisons with proximal gradient descent and iterative regularization. Reprinted
with permission from [2].

To further discover the potential applications of our findings, we use a gene expression dataset

from the Microarray experiments of mammalian eye tissue samples [124]. The dataset consists

of 120 samples with 100 predictors that are expanded from 20 genes using 5 basis B-splines, as

described in [125]. The goal is to predict the gene expression level of TRIM32, which causes

Bardet-Biedl syndrome. We randomly split the data equally, and use the validation dataset for

hyperparameter tuning and early stopping. We compare our approach with the commonly used

proximal gradient descent and a primal-dual approach. The result is shown in Table B.2. Our

approach achieves the best performance among these three methods.

Test error PGD Primal-Dual Our approach
MSE 0.03096 0.02868 0.02477

Table B.2: Comparisons of MSE (mean squared error) on test set. Reprinted with permission from
[2].

140

APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER IV

C.1 Proof of Theorem 7

Proof. It follows from the definition of the estimator Â that

`(Â) + λ
∥∥∥Â∥∥∥

?
≤ `(A?) + λ ‖A?‖? ,

equivalently

`(Â)− `(A?) ≤ λ
(
‖A?‖? −

∥∥∥Â∥∥∥
?

)
which implies

〈∇`(A?), vec(Â−A?)〉+ vec(Â−A?)
>∇2`(Ã)vec(Â−A?) ≤ λ

(
‖A?‖? −

∥∥∥Â∥∥∥
?

)
.

where Ã = tA? + (1− t)Â for some t ∈ [0, 1].

Let’s denote ∆ = Â−A?. We first observe that

∥∥∥Â∥∥∥
?

=
∥∥A? + ∆M + ∆M⊥

∥∥
?
≥
∥∥A? + ∆M⊥

∥∥
?
− ‖∆M‖? = ‖A?‖? +

∥∥∆M⊥∥∥? − ‖∆M‖? .
By choosing λ ≥ 2 ‖∇`(A?)‖, we have

141

vec(Â−A?)
>∇2`(Ã)vec(Â−A?) ≤ λ

(
‖A?‖? −

∥∥∥Â∥∥∥)+ ‖∇`(A?)‖
∥∥∥Â−A?

∥∥∥
?

≤ λ ‖∆M‖? − λ
∥∥∆M⊥∥∥? +

λ

2

∥∥∆M + ∆M⊥
∥∥
?

≤ 3λ

2
‖∆M‖? −

λ

2

∥∥∆M⊥∥∥?
≤ 3λ

2
‖∆M‖?

≤ 3λψ(M)

2

∥∥∥A? − ÂM

∥∥∥
F
≤ 3λψ(M)

2

∥∥∥A? − Â
∥∥∥
F

≤ 3λ
√

2r

2

∥∥∥A? − Â
∥∥∥
F
.

Case 1: when Evec(Â−A?)
>∇2Ln(Ã)vec(Â−A?) ≤

√
192(log(d)+log(n))

log(6/5)n
, from Lemma 39 we

have that

κM
2

τ 2
l m1m2

∥∥∥Â−A?

∥∥∥2

F
≤ Evec(Â−A?)

>∇2Ln(Ã)vec(Â−A?) ≤
√

192(log(d) + log(n))

log(6/5)n
,

i.e.
1

m1m2

∥∥∥Â−A?

∥∥∥2

F
≤ c

τ 2
l

2κM

√
log(d)

n
,

where c =
√

192
log(6/5)

.

Case 2: when Evec(Â−A?)
>∇2Ln(Ã)vec(Â−A?) > c

√
log(d)+log(n)

n
, by Lemma 35, we

have that

vec(Â−A?)
>∇2`(A)vec(Â−A?) ≥ Evec(Â−A?)

>∇2`(A)vec(Â−A?)
>

− 1024B2r(2a)2τ 2
l m1m2/κM(E ‖Σg,R‖)2

142

where the constrain set is C(2r) and
∥∥∥Â−A?

∥∥∥
∞
≤ 2a. Therefore, we have that

κM
2

τ 2
l m1m2

∥∥∥Â−A?

∥∥∥2

F
− 1024B2r(2a)2τ 2

l m1m2/κM(E ‖Σg,R‖)2

≤Evec(Â−A?)
>∇2`(A)vec(Â−A?)

> − 1024B2r(2a)2τ 2
l m1m2/κM(E ‖Σg,R‖)2

≤vec(Â−A?)
>∇2`(A)vec(Â−A?)

≤3λ
√

2r

2

∥∥∥A? − Â
∥∥∥
F
.

After some simplification,

2

m1m2

∥∥∥Â−A?

∥∥∥2

F
≤ 3τ 2

l λ
√

2r

2κM

∥∥∥A? − Â
∥∥∥
F

+ 1024B2r(2a)2τ 4
l m1m2/κ

2
M(E ‖Σg,R‖)2

≤ 9τ 4
l λ

2r

8κ2
M

m1m2 +
1

m1m2

∥∥∥Â−A?

∥∥∥2

F

+ 1024B2r(2a)2τ 4
l m1m2/κ

2
M(E ‖Σg,R‖)2.

Therefore,

1

m1m2

∥∥∥Â−A?

∥∥∥2

F
≤ 9τ 4

l λ
2r

8κ2
M

m1m2 + 1024B2r(2a)2τ 4
l m1m2/κ

2
M(E ‖Σg,R‖)2

≤ 1

κ2
M

4196rτ 4
l m1m2 max{λ2, B2a2(E ‖Σg,R‖)2}.

Overall,

1

m1m2

∥∥∥Â−A?

∥∥∥2

F
≤max

{
1

κ2
M

4196rτ 4
l m1m2 max{λ2, B2a2(E ‖Σg,R‖)2},

c
τ 2
l a

2

κM

√
log(d)

n

}
.

143

C.2 Proof of Corollary 7

Proof. By Lemma 34, there exist some constant c > 0, with probability 1
d
, when 3c

128
Lm log(d) ≤

n ≤ m1m2, we are able to choose

2 ‖∇`(A)‖ ≤ λ ≤ cB

√
L

log(d)

mn
.

By Lemma 38, we have that

(E ‖Σg,R‖)2 ≤ C?L log(d)

nm
.

Therefore, there exists some constant c′ > 0 such that

1

m1m2

∥∥∥∥Â− A?

φ

∥∥∥∥2

F

≤c′max

{
rτ 4
l B

2L

κ2
M

M log(d)

n
max{1, a2},

τ 2
l a

2

κM

√
log(d)

n

}
.

C.3 Useful lemmas

Lemma 33.

E{∇`(A)} = 0

Proof. Denote

Rkk′(A) = exp(−(Yk − Yk′)〈Xk −Xk′ ,A〉).

Note that

∇`(A) = −
(
n

2

)−1 ∑
1≤k<k′≤n

Rkk′(A)

1 +Rkk′(A)
(Yk − Yk′)(Xk −Xk′).

Following the same procedure in [47], we are able to show the expectation of gradient is 0.

144

Lemma 34. We choose c s.t., 3c/512B2 ≥ 4. When n ≥ 3c
128
Lm log(d),

Pr

{
‖∇`(A)‖ ≥

√
cLB2

log(d) + log(n)

mn

}
≤ 1

d
.

Proof. We denote

Lkk′ = − Rkk′(A)

1 +Rkk′(A)
(Yk − Yk′)(Xk −Xk′).

When n is even, by Lemma S.4 in [126], we are able to partition the collection P = {(k, k′) :

1 ≤ j < j′ ≤ n} into n − 1 groups G1, . . . , Gn−1, s.t. |Gi| = n/2 and no individual occurs more

than one time within a group.

∇`(A) =
1

n− 1

n−1∑
i=1

∑
Gi

2

n
Lkk′ .

When n is odd, similarly, let’s add one extra index. We are able to partition the collection P =

{(k, k′) : 1 ≤ j < j′ ≤ n} into n groups G1, . . . , Gn−1, s.t. |Gi| = (n + 1)/2 and no individual

occurs more than one time within a group. In each group, the extra index only appears once, and

we remove that pair. Therefore, we have n groups G1, . . . , Gn−1, s.t. |Gi| = (n − 1)/2 and no

individual occurs more than one time within a group.

∇`(A) =
1

n

n∑
i=1

∑
Gi

2

n− 1
Lkk′ .

WLOG, we assume n is even. The case when n is odd directly follows. We apply the dilation from

[127],

T (Lkk′) =

 0 Lkk′

L>kk′ 0

 .

145

Since |Yk| ≤ B, we have that

2

n
‖T (Lkk′)‖ ≤

2

n
2
√

2B ≤ 4

n

√
2B = R.

Denote (r(k), c(k)) as the row-index and column-index of k. Before looking into the variance

parameter, we look at the term

∥∥ELkk′L
>
kk′

∥∥
≤4B2

∥∥E(Xk −Xk′)(Xk −Xk′)
>∥∥

=4B2

∥∥∥∥∥∑
kk′

πkπk′Er(k)r(k) +
∑
kk′

πkπk′Er(k′)r(k′) −
∑
kk′

πkπk′(Er(k)r(k′) + Er(k′)r(k))1(r(k) 6= r(k′))

∥∥∥∥∥
=4B2

∥∥∥∥∥2
∑
k

πkEr(k)r(k) −
∑
kk′

πkπk′(Er(k)r(k′) + Er(k′)r(k))1(r(k) 6= r(k′))

∥∥∥∥∥
=8B2

∥∥∥∥∥∥
∑
r∈[m1]

πrErr −
∑
rr′

πrπr′

2
(Err′ + Er′r)1(r 6= r′)

∥∥∥∥∥∥ .
Let’s now consider a weighted graph such each row index pair has a weight

wrr′ =
πrπr′

2
, r 6= r′.

Therefore,

drr = 2
∑
r′ 6=r

πrπr′

2
= πr(1− πr).

We then consider the corresponding graph Laplacian matrix, by [128], we have that

‖D − A‖ ≤ 2 max
r
πr(1− πr).

146

Therefore, we have that

∥∥ELkk′L
>
kk′

∥∥
≤8B2

∥∥∥∥∥∥
∑
r∈[m1]

πr(1− πr)Err −
∑
rr′

πrπr′

2
(Err′ + Er′r)1(r 6= r′) +

∑
r∈[m1]

π2
rErr

∥∥∥∥∥∥
≤8B2

∥∥∥∥∥∥
∑
r∈[m1]

πr(1− πr)Err −
∑
rr′

πrπr′

2
(Err′ + Er′r)1(r 6= r′)

∥∥∥∥∥∥+ 8B2

∥∥∥∥∥∥
∑
r∈[m1]

π2
rErr

∥∥∥∥∥∥
≤16B2 max

r
πr(1− πr) + 8B2 max

r
π2
r

≤16B2 L

m
+ 8B2 L

2

m2
.

The variance parameter

σ2 = max

{∑ 4

n2

∥∥ELkk′L
>
kk′

∥∥ ,∑ 4

n2

∥∥EL>kk′Lkk′
∥∥}

=
2

n
max

{∥∥ELkk′L
>
kk′

∥∥ ,∥∥EL>kk′Lkk′
∥∥} ≤ 2

n

(
16B2 L

m
+ 8B2 L

2

m2

)
.

Therefore, by Theorem 6.1 from [127], we have that the following holds for all t ≥ 0,

Pr

{∥∥∥∥∥ ∑
kk′∈Gi

2

n
Lkk′

∥∥∥∥∥ ≥ t

}
≤ d exp

(−t2/2
σ2 +Rt

)

≤


d exp(−3t2/8σ2) for t ≤ σ2/R

d exp(−3t/8R) for t ≥ σ2/R

,

where R = 4
n

√
2B and σ2 = 2

n

(
16B2 L

m
+ 8B2 L

m2

)
≤ 64

nm
B2. Choosing t =

√
cLB2 log(d)+log(n)

mn
,

when n ≤ c
128
Lm log(d), t ≥ σ2/R, we have that

Pr

{
‖∇`(A)‖ ≥

√
cLB2

log(d) + log(n)

mn

}
≤ nd exp(−3

√
cn(log(d) + log(n))/m/32

√
2B).

147

When n ≥ 3c
128
Lm log(d) (keeping n ≤ m1m2), t ≥ σ2/R, we have that

Pr

{
‖∇`(A)‖ ≥

√
cLB2

log(d) + log(n)

mn

}
≤ nd exp(−3c(log(d) + log(n))/512B2)

≤ nd exp(−3c log(d)/512B2 − log(n))

≤ d exp(−3c log(d)/512B2),

where the second inequality is from 3c
512B2 ≥ 4. We choose c s.t., 3c/512B2 ≥ 4. Therefore, when

n ≥ 3c
128
Lm log(d),

Pr

{
‖∇`(A)‖ ≥

√
cLB2

log(d) + log(n)

mn

}
≤ 1

d
.

Recall the Hessian

∇2`(Ã) =
2

n(n− 1)

∑
1≤k<k′≤n

{ψ′′(Yk\k′〈Xk\k′ , Ã〉)Y 2
k\k′vec(Xk\k′)

⊗2}

=
2

n(n− 1)

∑
1≤k<k′≤n

(Yk − Yk′)2 exp((Yk − Yk′)〈Xk −Xk′ , Ã〉)
(1 + exp((Yk − Yk′)〈Xk −Xk′ , Ã〉))2

vec(Xk\k′)
⊗2

=
1

n− 1

∑
g

∑
kk′∈g

2

n
Z2
kk′vec(Xk\k′)

⊗2,

where

Zkk′ = (Yk − Yk′)
exp((Yk − Yk′)〈Xk −Xk′ , Ã〉/2)

1 + exp((Yk − Yk′)〈Xk −Xk′ , Ã〉)
.

By the boundedness of Yk, we have that |Zkk′ | ≤ 2B. We also assume E(Z2
kk′|Xk,Xk′) ≥ κM .

148

We consider the following constrained set

C(r) =

{
U ∈ Rm1×m2

∣∣∣∣ 〈J,U〉 = 0, ‖U‖ = 1, ‖U‖? ≤
√
r ‖U‖F ,

Eu>∇2Ln(A)u ≥ c

√
log(d) + log(n)

n

}
.

For each U ∈ Rm1×m2 , we denote u = vec(U). Note that

u>∇2Ln(A)u =
1

n− 1

∑
g

∑
kk′∈g

2

n
Z2
kk′(uk − uk′)2,

and

Eu>∇2Ln(A)u = EZ2
kk′(uk − uk′)2 ≥ κME(uk − uk′)2

≥ κM
1

τ 2
l m

2
1m

2
2

∑
1≤k,k′≤m1m2

(uk − uk′)2

= κM
2

τ 2
l m1m2

‖U‖2
F .

Denote

Σg,R =
∑
kk′∈g

εkk′
2

n
Zkk′(Xk −Xk′)

where εkk′ are independent Radamacher variable, and define

E = 512B2rτ 2
l m1m2/κM(E ‖Σg,R‖)2.

Lemma 35. For all U ∈ C(r),

u>∇2`(A)u ≥ Eu>∇`(A)u− 512B2rτ 2
l m1m2/κM(E ‖Σg,R‖)2

with probability at least 1− 2
d
.

149

Proof. We will show that the probability of the following bad event is small

B =

{
∃U ∈ C(r) such that

∣∣u>∇2Ln(A)u− Eu>∇2Ln(A)u
∣∣ > 1

2
Eu>∇2Ln(A)u + E .

}

We use a standard peeling argument. Let v =
√

3(log(d)+log(n))
2c log(6/5)n

and α = 6
5
, where c = 1

128
. For

l ∈ N set

Sl =
{
U ∈ C(r) : αl−1ν ≤ Eu>∇2Ln(A)u ≤ αlν

}
.

If the event B holds for some matrix U ∈ C(r), then U belongs to some Sl and

∣∣u>∇2Ln(A)u− Eu>∇2Ln(A)u
∣∣ > 1

2
Eu>∇2Ln(A)u + E

>
1

2
αl−1ν + E

>
5

12
αlν + E .

For each T > ν, we consider the following set of matrices

C(r, T) = {U ∈ C(r) : Eu>∇2Ln(A)u ≤ T},

and the following event

Bl =

{
∃U ∈ C(r, αlν) such that

∣∣u>∇2Ln(A)u− Eu>∇2Ln(A)u
∣∣ > 1

2
Eu>∇2Ln(A)u + E .

}

Denote

WT = sup
U∈C(r,T)

∣∣u>∇2Ln(A)u− Eu>∇2Ln(A)u
∣∣ ,

and

Zg,T = sup
U∈C(r,T)

∣∣∣∣∣∑
kk′∈g

2

n
Z2
kk′(uk − uk′)2 − E

∑
kk′∈g

2

n
Z2
kk′(uk − uk′)2

∣∣∣∣∣ .

150

We have that

WT ≤
1

n− 1

∑
g

Zg,T .

We start with Zg,T first. The standard symmetrization trick still applies here,

EZg,T ≤ 2E sup
U∈C(r,T)

∣∣∣∣∣∑
kk′∈g

εkk′
2

n
Z2
kk′(uk − uk′)2

∣∣∣∣∣ .
Since |Zkk′ | ≤ 2B and ‖U‖∞ = 1, Z2

kk′(uk−uk′)2 ≤ 16B2. Therefore, φ(u) = u2, |φ(u)−φ(v)| ≤

|u+ v||u− v| ≤ 8B|u− v|. The contraction inequality yields

EZg,T ≤ 2E sup
U∈C(r,T)

∣∣∣∣∣∑
kk′∈g

εkk′
2

n
Z2
kk′(uk − uk′)2

∣∣∣∣∣
≤ 16BE sup

U∈C(r,T)

∣∣∣∣∣∑
kk′∈g

εkk′
2

n
Zkk′(uk − uk′)

∣∣∣∣∣
≤ 16BE sup

U∈C(r,T)

∣∣∣∣∣∑
kk′∈g

εkk′
2

n
Zkk′〈Xk −Xk′ ,U〉

∣∣∣∣∣
≤ 16BE sup

U∈C(r,T)

∣∣∣∣∣
〈∑
kk′∈g

εkk′
2

n
Zkk′(Xk −Xk′),U

〉∣∣∣∣∣
≤ 16BE

∥∥∥∥∥∑
kk′∈g

εkk′
2

n
Zkk′(Xk −Xk′)

∥∥∥∥∥ ‖U‖?
≤ 16B

√
r ‖U‖F E

∥∥∥∥∥∑
kk′∈g

εkk′
2

n
Zkk′(Xk −Xk′)

∥∥∥∥∥
≤ 8
√

2B
√
rτl
√
m1m2T/κME ‖Σg,R‖ .

Note that

8
√

2B
√
rτl
√
m1m2T/κME ‖Σg,R‖ ≤

1

4
T + 512B2rτ 2

l m1m2/κM(E ‖Σg,R‖)2

≤ 8

9

5

12
T + 512B2rτ 2

l m1m2/κM(E ‖Σg,R‖)2.

151

By lemma 36, with probability smaller than n exp(−cnT 2), where c = 1
128

, we have that

WT ≥
5

12
T + 512B2rτ 2

l m1m2/κM(E ‖Σg,R‖)2 =
5

12
T + E .

Therefore, we obtain that

Pr(Bl) ≤ n exp(−cnα2lv2).

Using the union bound, we have

Pr(B) ≤
∞∑
l=1

Pr(Bl) ≤
∞∑
l=1

n exp(−cnα2lv2)

≤
∞∑
l=1

n exp(−2cn log(α)v2l) ≤ n
exp(−2cn log(α)v2)

1− exp(−2cn log(α)v2)

≤ 2

d
.

where the last inequality is obtained by choosing v =
√

3(log(d)+log(n))
2c log(6/5)n

.

We aim to show concentration on WT .

Lemma 36.

Pr

(
WT ≥ EZg,T +

1

9

(
5

12
T

))
≤ n exp(−cnT 2).

Proof. Recall

WT = sup
U∈C(r,T)

∣∣u>∇2Ln(A)u− Eu>∇2Ln(A)u
∣∣

= sup
U∈C(r,T)

∣∣∣∣∣ 1

n− 1

∑
g

∑
kk′∈g

2

n
Z2
kk′(uk − uk′)2 − E

1

n− 1

∑
g

∑
kk′∈g

2

n
Z2
kk′(uk − uk′)2

∣∣∣∣∣
≤ 1

n− 1

∑
g

sup
U∈C(r,T)

∣∣∣∣∣∑
kk′∈g

2

n
Z2
kk′(uk − uk′)2 − E

∑
kk′∈g

2

n
Z2
kk′(uk − uk′)2

∣∣∣∣∣ ,
and

Zg,T = sup
U∈C(r,T)

∣∣∣∣∣∑
kk′∈g

2

n
Z2
kk′(uk − uk′)2 − E

∑
kk′∈g

2

n
Z2
kk′(uk − uk′)2

∣∣∣∣∣ .
152

Within each grouping g, by Massart’s concentration inequality (e.g., Theorem 14.2 in [129]), we

have that

P
(
Zg,T ≥ E(Zg,T) +

1

9

(
5

12
T

))
≤ exp

(
− 1

128
nT 2

)
.

Therefore, with a union bound argument, we have that

P
(
WT ≥ E(Zg,T) +

1

9

(
5

12
T

))
≤ n exp

(
− 1

128
nT 2

)
.

We aim to bound E ‖Σg,R‖ below. Denote

Lkk′ = εkk′Zkk′(Xk −Xk′).

Lemma 37. There exists some absolute constant c?, s.t., with probability at least 1− exp(−t), we

have that

∥∥∥∥∥ 2

n

∑
kk′∈g

Lkk′

∥∥∥∥∥ ≤ C? max

{
B

√
L(t+ log(d))

mn
,B log(m)

t+ log(d)

n

}
.

Proof. We first observe that

ELkk′ = 0.

Similar to the proof of Lemma 34, by observing the pattern ofXk −Xk′ , we have that

‖εkk′Zkk′(Xk −Xk′)‖ ≤ 2
√

2B = U.

We then verify the variance parameter,

σ2
L = max

{∥∥∥∥∥ 2

n

∑
kk′∈g

E(Lkk′L
>
kk′)

∥∥∥∥∥ ,
∥∥∥∥∥ 2

n

∑
kk′∈g

E(L>kk′Lkk′)

∥∥∥∥∥
}
.

153

Following the same argument in the proof of Lemma 34, we have that

σ2
L ≤ 32B2 L

m
.

Therefore, with probability at least 1− exp(−t), we have that

∥∥∥∥∥ 2

n

∑
kk′∈Gi

Lkk′

∥∥∥∥∥ ≤ c? max

{
σL

√
t+ log(d)

n
, U log

U

σL

t+ log(d)

n

}
,

for some absolute constant c?, which further simplifies to

∥∥∥∥∥ 2

n

∑
kk′∈g

Lkk′

∥∥∥∥∥ ≤ C? max

{
B

√
L(t+ log(d))

mn
,B log(m)

t+ log(d)

n

}
.

Lemma 38. Assume εkk′ are i.i.d. Rademacher random variables. When n ≥ m log3(d)/L, these

is some absolute constant C? > 0 s.t.

E

∥∥∥∥∥ 2

n

∑
kk′∈g

εkk′Zkk′(Xk −Xk′)

∥∥∥∥∥ ≤ C?

√
2eL log(d)

nm
.

Proof. Follow Lemma 6 from [44] (or Lemma 7 in [130]). Find the critical t? when the tail

behavior changes, and apply Holder’s inequality.

Lemma 39. Suppose 〈J,U〉 = 0 and E(Z2
kk′|Xk,Xk′) ≥ κM , we have that

Eu>∇2Ln(A)u ≥ κM
2

τ 2
l m1m2

‖U‖2
F .

154

Proof.

Eu>∇2Ln(A)u = EZ2
kk′(uk − uk′)2 ≥ κME(uk − uk′)2

≥ κM
1

τ 2
l m

2
1m

2
2

∑
1≤k,k′≤m1m2

(uk − uk′)2

≥ κM
1

τ 2
l m

2
1m

2
2

∑
1≤k,k′≤m1m2

u2
k + u2

k′ − 2ukuk′

= κM
2

τ 2
l m1m2

‖U‖2
F .

155

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Implicit Regularization for Sparsity
	Introduction
	Setup
	Main Results
	Proof Ingredients
	A Simplified Analysis
	Proof Sketch

	Simulation Study
	Conclusions and Future Work
	Implicit Regularization for Dictionary Sparsity

	Implicit Regularization for Group Sparsity
	Introduction
	Setup
	Analysis of Gradient Flow
	First Attempt: Mirror Flow
	Layer Balancing and Gradient Flow

	Gradient Descent with Weight Normalization
	Simulation Study
	Discussion

	matrix completion with informative missing
	Introduction
	Preliminaries
	Main Results
	Numerical Experiments

	summary
	REFERENCES
	APPENDIX Supplementary material for chapter ii
	Proof for Non-negative Signals
	Setup
	The Key Propositions
	Technical Lemmas
	Proof for Non-negative Signals

	Multiplicative Update Sequences with General Order Lg
	Error Growth
	Understanding 1-d Case
	Basic Setting
	Dealing with Bounded Errors Lg

	Dealing with Negative Targets

	Proof of Propositions and Technical Lemmas
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Technical Lemmas

	Proof of Theorems in Chapter 2.3
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Remark 2

	Experiments on MNIST

	APPENDIX Supplementary material for chapter iii
	Geometric properties of the parametrization
	Proof for Analysis of Gradient Flow
	Analysis of gradient descent
	Monotonic updates
	Updates with bounded perturbations
	Analysis of perturbations
	Error analysis outside the support

	Proof of Theorems in Chapter 3.4
	Proof of Theorem 5
	Proof for Corollary 2
	Convergence for algorithm 2

	More numerical results
	Stability issue of Algorithm 1 and standard GD
	Autoencoder with grouping layer
	Experiments with Gaussian measurements

	APPENDIX Supplementary material for chapter iv
	Proof of Theorem 7
	Proof of Corollary 7
	Useful lemmas

