
A GENERALIZED RATIO CUT OBJECTIVE IN GRAPHS AND EFFICIENT ALGORITHM

FOR SOLVING THE LOCALIZED GENERALIZED EXPANSION RATIO PROBLEM

A Thesis

by

SIJING YU

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Nate Veldt
Committee Members, Jianer Chen

Tiandong Wang
Head of Department, Scott Schaefer

August 2023

Major Subject: Computer Science

Copyright 2023 Sijing Yu

ABSTRACT

In graph clustering, ratio cut objectives represent the ratio between the connectivity of the

subgraph and some notation of the graph properties including size and density. These ratio cut

objectives are widely studied and used for many tasks including graph partitioning. Specifically,

the standard expansion ratio measures the ratio between subgraph’s connections to the rest of the

graph and the subgraph size. This thesis introduces a generalized version of the standard expansion

ratio objective and studies a localized variant of the expansion ratio problem by presenting its

connections to existing problems and numerical results on existing problems.

The generalized version of the expansion ratio concerned in this thesis replaces the subgraph

size with a convex function of the set size, generalizing more than one existing objective functions.

The localized variant of the expansion ratio problem removes the constraint of subgraph size while

restricting the resulting subgraph to a given seed set of nodes. While the original expansion prob-

lem is NP-hard to solve, this thesis introduces a polynomial-time algorithm for the novel localized

variant of the problem. By varying the convex function and tuning parameters, numerical experi-

ments show solving this new problem with the generalized objective allows one implicitly control

the size of the resulting subgraph.

ii

ACKNOWLEDGMENTS

Foremost, I would like to express my deepest gratitude to my advisor Dr. Nate Veldt for

his invaluable guidance and continuous patience throughout my master’s study. Furthermore, his

expertise, dedication, and commitment to academic excellence have constantly and greatly inspired

me to push my boundaries and strive for intellectual growth.

I would like to thank Dr. Jianer Chen and Dr. Tiandong Wang, my committee members, for all

their support throughout the defense. The completion of the whole process is impossible without

their help.

I would also like to thank members of the graduate advising office, especially Karrie Bourquin.

It is their support that helps me navigate challenging situations and provides important resources

for my academic development.

Finally, I would like to express my heartfelt gratitude to my family for their unwavering love,

support, and encouragement throughout my academic journey. This whole journey is impossible

without their continued understanding and contributions.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Nate Veldt and Pro-

fessor Jianer Chen of the Department of Computer Science and Professor Tiandong Wang of the

Department of Statistics.

The theorems proved in Chapter 4 were conjectured and validated by Professor Nate Veldt. All

other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was partly supported by Professor Nate Veldt from Texas A&M University.

There is no outside funding source to acknowledge for the research and completion of this thesis.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES. viii

1. INTRODUCTION. 1

1.1 Spectral techniques. 1
1.2 Approximation algorithms . 2
1.3 Local clustering . 2
1.4 Flow-based methods . 3
1.5 Contributions . 3
1.6 Experiments and code. 4

2. PRELIMINARIES AND RELATED WORK. 5

2.1 Graph basics . 5
2.2 Hyperedge and splitting functions. 6

2.2.1 Hypergraph cut . 6
2.3 Ratio cut objective functions . 7

2.3.1 Expansion ratio . 7
2.3.2 Uniform sparsest cut . 7
2.3.3 Minimum bisection . 8
2.3.4 Conductance . 8
2.3.5 Normalized cut . 8
2.3.6 Size-normalized cut . 9

2.4 Hyperedge reduction techniques . 9
2.5 Related work . 10

2.5.1 MaxFlow Quotient-Cut Improvement (MQI) problem and algorithm 11

3. THE GENERALIZED EXPANSION RATIO AND SPARSEST CUT . 13

3.1 Connections to existing optimization problems . 14

4. THE LOCAL GENERALIZED EXPANSION RATIO PROBLEM AND ALGORITHMS 16

v

CONTRIBUTORS AND FUNDING SOURCES. iv

4.1 Algorithm I . 16
4.1.1 Main idea . 16
4.1.2 Localized algorithm . 19

4.1.2.1 Localization. 20
4.1.3 Runtime . 21

4.2 Algorithm II . 22
4.2.1 Main idea . 22

4.2.1.1 Sparse reduction strategies . 24
4.2.1.2 Auxiliary graph construction . 25

4.2.2 Localized algorithm . 25
4.2.3 Runtime . 25

5. NUMERICAL EXPERIMENTS . 27

5.1 Datasets . 27
5.2 Runtime. 27
5.3 Relationship between parameter α and the resulting set size . 29
5.4 Connection between the generalized sparsest cut and the minimum bisection. 30

6. CONCLUSIONS AND FUTURE WORK . 32

REFERENCES . 33

vi

LIST OF FIGURES

FIGURE Page

4.1 Auxiliary Graph . 17

5.1 Resulting sets with different α’s . 30

5.2 Graph size with respect to different α’s . 30

5.3 Generalized sparsest cut problem solutions with different α’s . 31

vii

LIST OF TABLES

TABLE Page

5.1 Runtime (s) in the 2nd row, and corresponding auxiliary graph size in the 3rd row . . . 28

5.2 Runtime (s) in the 2nd row, and corresponding auxiliary graph size in the 3rd row . . . 28

5.3 Sizes of results from random seed sets on the Karate club graph . 29

5.4 Details of solution sets in Figure 5.3 . 31

viii

1. INTRODUCTION

A graph is a mathematical structure of a pair G = (V,E) where V is a set of elements named

vertices or nodes, and E is a set of elements of paired vertices, capturing pairwise relationships

between elements in V . A graph is weighted if there is a weight assigned to each edge e ∈ E,

denoted by G = (V,E,w) where w : E → R≥0 assigns a non-negative weight to each of the

edges.

Graph clustering is an important task in graph optimization, aiming to find subsets of nodes

that are more well-connected to each other than the rest of the graph, characterized by more edges

within the subset than the rest of the graph. As a fundamental task in graph-based data mining,

graph clustering has many applications in various areas including data transformation, and biolog-

ical networks with an example task of classifying gene expression data [1, 2].

One standard approach to graph clustering is to minimize a so-called ratio cut objective, which

measures the ratio between edge cut for a set of nodes and some notion of the cluster’s size. Com-

mon examples include graph expansion or graph conductance [3, 4]. However, in practice, NP-

hardness is a common bottleneck in optimizing many objective functions including the expansion

ratio problem, the normalized cut problem, and the conductance problem with details introduced

in the next section [5, 6, 7]. Therefore, approximation techniques and important variants of the are

proposed to approach the problem.

1.1 Spectral techniques

Spectral algorithms are widely used as the solution for these problems. The core idea of

spectral methods is to find the eigenvectors of the matrix corresponding to the graph [8]. One

commonly used objective in spectral clustering is the normalized cut [9].

There exists an approximation bound based on the second smallest eigenvalue, also defined

as the Fiedler value, justifying the use of spectral methods [10, 6]. Many spectral methods are

designed for specific tasks including graph clustering, and they are mostly based on the eigen-

1

decomposition of the graph’s Laplacian matrices [11]. These methods can also be applied to ad-

dress the converse problem of avoiding small cuts [12, 13, 14].

Other work includes methods based on spectral methods and convex optimization for the spe-

cific task of graph partitioning on random graphs [15]. While spectral algorithms work on the

matrices, many of them suffer from obstacles when translating the result to a discrete output on the

graph [6].

1.2 Approximation algorithms

There also exists a range of algorithms that are not spectral giving the approximate results. As

optimizing conductance is a well-known NP-hard problem, approximation algorithms have been

proposed based on linear programming [16, 17], semidefinite programming [18], and so-called

cut-matching games [19, 20] as summarized in [2]. Specifically, Leighton and Rao introduced the

first true approximation of O(logn)-approximations for the sparsest cut and graph conductance.

A multicommodity flow-based linear programming relaxation is used [17] where the integrality

gap is Ω(logn). Therefore, novel strategies are needed for improving the approximation factors.

A O(
√

logn)-approximations for the sparsest cut, edge expansion, and graph conductance is pro-

posed by Arora, Rao and Vazirani using semidefinite programming [18]. Many of the methods

described above suffered from complexity implementation, thus more scalable methods are in-

spired and proposed [21] as mentioned by [2].

1.3 Local clustering

Considering the increasing sizes of graphs for clustering, problems of scalability encourage

the development of local graph clustering algorithms that come with various theoretical guarantees

[22]. Instead of outputting a global clustering from the complete graph, local clustering seeks to

find the clusters around a given seed node or a given set of seed nodes [23]. Specifically, local

graph algorithms are algorithms where the result is determined as the function of a local area of

the graph instead of the complete graph. Therefore, the scalability issues are addressed by using

time and memory resources only dependent on the size of the cluster returned instead of the entire

2

graph [23].

Furthermore, some methods are strongly local meaning their runtime is only dependent on the

size of the seed set instead of the entire graph. Many strongly-local methods have been developed

for the task of graph clustering with satisfactory performances [20, 24].

In addition to theoretical guarantees for computational resources needed, local graph clustering

algorithms have been shown to be useful for uncovering small-scale structures in large-scale graphs

[25]. They are widely studied with applications in various areas [26].

1.4 Flow-based methods

Flow-based algorithms approach graph clustering by repeatedly solving minimum cut and

maximum flow problems on the input graph. Many of these flow-based algorithms have guaranteed

cut improvement for ratio cut objectives like conductance [27, 20, 28]. Furthermore, some of these

algorithms are strongly local [24].

As many other algorithms can be cast to instances of network flow, flow-based algorithms

achieve decent performances in many tasks including optimizing some ratio cut objectives.

Hochbaum shows a the solution to the relaxation of the expansion ratio problem can be found in

polynomial time via computing a sequence of max-flow and min-cut problems [6].

1.5 Contributions

This thesis introduces a generalized version of the graph expansion objective. By replacing the

term of subgraph size with a convex function of the subgraph size, the objective allows different

extent of influences that the subgraph size can have on the result. Therefore, by changing the

function, optimizing the objective allows implicitly controlling the size of the subgraph.

Considering the computational hardness of optimizing this new objective which follows from

the original expansion ratio problem, this thesis introduces a localized variant of the corresponding

optimization problem where the returning result is restricted to a given seed set of nodes.

Given the local variant of the problem, this thesis proposes polynomial-time flow-based algo-

rithms based on properties induced by the convexity of the function in the objective and theoretical

3

guarantees from techniques used in hypergraph cut problems. Dependent on the flow algorithm,

theoretical guarantees are derived to prove that this localized problem is solvable in practice.

1.6 Experiments and code

In addition to theoretical results, experimental results are presented in Chapter 4. These

numerical results mainly demonstrate (i) the effects of the introduced objective function in con-

trolling the size of the resulting graph, and (ii) the connections between our introduced problem

and previous optimization problems.

4

2. PRELIMINARIES AND RELATED WORK

This chapter presents the mathematical definitions and the technical background for optimiza-

tion problems considered in this thesis. Starting with mathematical notations on graphs, this chap-

ter then gives an overview of several important objective functions.

In addition, this chapter introduces previous work on optimizing the objectives and their appli-

cations, with the MQI algorithm for "quotient-style" objectives explained in detail. An important

contribution of the thesis is to solve the proposed problem using gadget expansion techniques of

hypergraph gadgets. Therefore, mathematical details of existing graph reduction techniques and

theoretical properties for the hypergraph cut problem are also covered.

2.1 Graph basics

Let G = (V,E,w) be a weighted directed graph with edge weight w : E → R+, |V | = n and

|E| = m. For each directed edge (i, j) ∈ E, we assume weights wij > 0. An undirected edge

(i, j) is interpreted as having two directed edges (i, j) and (j, i). Let dv = |Nv| denote the degree

of a node v where Nv is the set of nodes that share an edge with v. Given a set of nodes S ⊆ V

and its complement set S̄ = V \S, we have following definitions of cut and volume:

cut(S) = cut(S, S̄) =
∑

u∈S,v∈S̄

wuv

vol(S) =
∑
v∈S

dv

Then the classic graph cut problem is to find the subset S ⊂ V that minimizes the cut value, namely

cut(S). In addition, if we identify two special terminal nodes s and t in V , then the minimum s-t

cut problem is to find the set of edges with minimum sum of edge weights such that there are no

paths from s to t if the set is removed, formally denoted as

min
S⊂V

cut(S) subject to s ∈ S, t ∈ S̄ (2.1)

5

Note that the minimum s-t cut problem focuses on a directed graph and only aims to cut flows

from s to t. Therefore, instead of any edges with two endpoints in S and S̄, only edges crossing

from S to S̄ incur penalties.

2.2 Hyperedge and splitting functions

Let H = (V, E) denote a hypergraph where each hyperedge e ∈ E is a subset of nodes in V .

For each hyperedge e ∈ E , we associate a splitting function we : A ⊆ e → R≥0 for splitting e

among two clusters, mapping subsets A ⊆ e to a nonnegative penalty. For the purpose of this

thesis, only one single hyperedge e is considered instead of an entire hypergraph, and we have

following properties regarding a hyperedge splitting function.

Definition 1. For any A,B ⊆ e, the function we is

(1) submodular if we(A) + we(B) ≥ we(A ∩B) + we(A ∪B);

(2) cardinality-based if we(A) = we(B) when |A| = |B|.

Then we have the following observation, following the definition of the concavity of functions.

Observation 1. The splitting function we : A ⊆ e → R≥0 is submodular if it can be expressed as

a concave function g : [0, |e|]→ R such that we(A) = g(|A|).

This follows directly from the concavity of the function, and it is also easy to observe that such

we is also cardinality-based by we(A) = we(B) = g(|A|) = g(|B|) when |A| = |B|.

2.2.1 Hypergraph cut

Analogous to the cut of simple graphs, based on the splitting function for each hyperedge,

the hypergraph cut for a subset S ⊂ V is defined as

cutH(S) =
∑
e∈E

we(e ∩ S).

Since only one hyperedge e is involved in the focus of this thesis, the corresponding minimum s-t

cut problem for this hypergraph of one hyperedge is denoted as

6

min
S⊂V

cutH(S) = min
S⊂V

∑
e∈E

we(e ∩ S) = min
S⊂V

we(S) subject to s ∈ S, t ∈ S̄ (2.2)

where s and t are assigned source and sink nodes, similar to the minimum s-t problem on simple

graphs. It is proved that this problem can be solved for any submodular cardinality-based splitting

function via reduction to a graph s-t cut problem [29].

2.3 Ratio cut objective functions

As an important category of objective functions used in graph clustering, ratio cut objective

functions have been widely studied. This thesis will mainly focus on the expansion ratio (with its

optimization problem) and several other closely related objective functions.

2.3.1 Expansion ratio

For a given graph G, the expansion ratio is a measure of the connectivity of the entire graph,

given by finding the set minimizing the expansion ratio as defined below. It is also called the edge

expansion and is equivalent to the Cheeger constant when .

min
S⊆V,|S|≤ |V |

2

cut(S)
|S|

(2.3)

2.3.2 Uniform sparsest cut

For a given graph G, the optimization of the uniform sparsest cut objective is defined as

min
S⊆V

cut(S)
|S||S̄|

(2.4)

Since |V |
2
≤ |S̄| ≤ |V |, optimizing the sparest cut is the same as solving the expansion ratio

problem on a graph up to a factor of 2.

7

2.3.3 Minimum bisection

A bisection (S, S̄) for a given graph G is a partition of nodes into two sets S and S̄ such that

their sizes differ by at most one. Then the minimum bisection problem is defined as

min
S⊆V, |(|S|−|S̄|)|≤1

cut(S) (2.5)

This problem can be proved to share a set of optimal solutions to the new problem this thesis

introduces with details in the next section.

2.3.4 Conductance

Defined as the ratio between the number of connections between the subgraph to the rest of

the graph and the minimum volume of S and S̄, the conductance is an important objective in graph

optimization:

ϕ(S) =
cut(S)

min(vol(S), vol(S̄))
(2.6)

Naturally, the corresponding optimization problem is to minimize the measure. A set of optimal

conductance can be interpreted as a basic bottleneck when exploring the community structure of

the graph [2]. As the conductance values must fall between 0 and 1, another way to interpret them

is to treat them as probabilities [2].

2.3.5 Normalized cut

This objective is related to the conductance in the way that it differs by at most a factor of two

from conductance [30]

cut(S)
vol(S)

+
cut(S)
vol(S̄)

=
cut(S)(vol(S) + vol(S̄))

vol(S)vol(S̄)
= vol(V)

cut(S)
vol(S)vol(S̄)

(2.7)

Both the conductance and the normalized cut are NP-hard to minimize [31] on the entire graph but

the localized variants can be minimized in polynomial-time by repeatedly solving maximum flow

problem [27, 12, 20, 24, 28].

8

2.3.6 Size-normalized cut

This quantity can be used to bound the expansion ratio of the graph, and can be viewed as

an unweighted normalization version of the normalized cut problem where the weight of all nodes

is set to one, resulting in the name of "size normalized". In addition, we can see that the uniform

sparsest cut problem has the same set of optimal solutions as the size-normalized problem defined

as

min
S⊆V

cut(S)
|S|

+
cut(S)
|S̄|

(2.8)

by observing that

cut(S)
|S|

+
cut(S)
|S̄|

=
cut(S)(|S|+ |S̄|)

|S||S̄|
= |V |cut(S)

|S||S̄|
where |V | = n is a constant.

2.4 Hyperedge reduction techniques

A cardinality-based splitting function we on an k-node hyperedge involved in this thesis can be

characterized by k− 1 penalty scores wi for i ∈ {1, 2, ..., k− 1} where wi is the penalty of having

i nodes on the source-side of the cut [29]. Since this thesis only considers a single hyperedge, with

a source node s and a sink node t being introduced, the original hypergraph s-t problem discussed

by Veldt [29] is presented in (2.2).

In order to reduce the problem to a graph problem where flow-based algorithms can be applied,

an asymmetric cardinality-based gadget (ACB-gadget) is used and constructed as below, following

Definition B.2. from [32]

• For each hyperedge e, introduce a new auxiliary node ve,

• For each v ∈ e, add directed edges (v, ve) with weight a · (k− b) and (ve, v) with weight a · b

respectively.

Then this ACB-gadget models the following splitting function

wa,b(S) = a ·min{i · (k − b), (k − i) · b},

9

where k is the number of nodes in hyperedge and i is the number of nodes on the source-side of

the cut. The theoretical guarantee of applying graph reduction techniques in this thesis is based on

Theorem 4.8 in [29], where we only illustrate the case concerned in this thesis.

Theorem 1. For a cardinality-based splitting function we, the problem presented in (2.2) is graph

reducible if we is submodular.

Proof. A problem is graph reducible if can be modeled by some splitting function, Theorem 4.8 in

[29] states that the instance of asymmetric cardinality-based HYPER-ST-CUT is graph reducible if

every splitting function is submodular. For cardinality-based we, the problem (2.2) is an instance of

cardinality-based HYPER-ST-CUT when the entire hypergraph only contains a single hyperedge

e. Therefore, for we(S) = g(|S|) where g : [0, |e|] → R is concave, we have we being both

submodular and cardinality-based as the only splitting function. As a result, problem (2.2) is graph

reducible and can be modeled by the ACB-gadgets presented above.

2.5 Related work

Minimizing the connections of the subgraph to the rest of the graph while some notion of

the graph size is expected to be maximized, optimization problems with the objectives above are

desired for tasks like graph clustering and partitioning in nature. This subsection will discuss some

of the existing work on approximating or relaxing objective functions discussed above, as well as

applications like graph partitioning.

Measures including conductance, expansion ratio, sparsest and normalized cut are frequently

used in graph clustering and partitioning, being approximation reducible within a constant factor

[17]. Leighton and Rao introduced the first true approximation of O(logn)-approximations for

the sparsest cut and graph conductance. A multicommodity flow-based linear programming re-

laxation is used [17] where the integrality gap is Ω(logn). Therefore, novel strategies are needed

for improving the approximation factors. A O(
√

logn)-approximations for the sparsest cut, edge

expansion, and graph conductance is proposed Arora, Rao and Vazirani using semidefinite pro-

gramming [18]. Algorithms based on so-called cut-matching games have also been proposed to

10

optimize conductance [20]. Many of the methods described above suffered from complexity im-

plementation, thus more scalable methods are inspired and proposed [21].

2.5.1 MaxFlow Quotient-Cut Improvement (MQI) problem and algorithm

Related to the problem studied in this thesis and specified by Lang and Rao, the MQI problem

seeks to improve the quality of graph clustering quantified by quotient-style graph objectives using

flow-based algorithms [12, 2]. Given an input graph G = (V,E) and a seed set R ⊂ V with

the constraint vol(R) ≤ vol(G)
2

, the algorithm returns a "better" cluster represented by minimized

conductance. To illustrate, the basic MQI problem is

min
S⊆R

cut(S)
vol(S)

(2.9)

With the constraint vol(R) ≤ vol(G)
2

, the above problem can be represented as

min
S⊆R

ϕ(S) (2.10)

where ϕ(S) is the conductance score defined in equation 2.6. The constraint S ⊆ R with vol(R) ≤
vol(G)

2
is important for the conductance problem to be solvable in polynomial time [2]. In fact, it

is NP-hard to even find a set S with vol(S) ≤ vol(G)
2

where the set of the minimum conductance is

contained. Lang and Rao propose the following algorithm targeting the MQI problem in 2.6 that

the objective decreases monotonically at each iteration.

The convergence of the algorithm is given in the original paper as a corollary of Theorem 3.4

where δi denotes the value objective function evaluated at Si.

Theorem 2. [12, 2] Given an undirected, connected graph with nonnegative weights G and a

subgraph for the seed set R where vol(R) ≤ vol(R̄). The sequence δk decreases monotonically at

each iteration of MQI.

Since this "improvement" of the partition is guaranteed for each iteration from the above

theorem, the maximally balanced partition given by Metis [33], a fast implementation of multi-

11

Algorithm 1 MQI (Lang and Rao, 2004)
Require: : G, R

k := 1
S1 := R
δ1 := ϕ(S1).
while not returning do

Solve Sk+1 := argminS⊆Rcut(S)− δkvol(S)
If ϕ(Sk+1) < δk then

δk+1 := ϕ(Sk+1)
else

δk is optimal, return Sk.
k := k + 1

end while

resolution Fiduccia-Mattheyses [34] is a desired starting point for balanced cuts as the input for

the MQI algorithm. In addition, this algorithm is introduced due to it being an important inspiration

of the algorithms presented in this thesis.

12

3. THE GENERALIZED EXPANSION RATIO AND SPARSEST CUT

Inspired by the original expansion ratio presented in section 2.3, we introduce a new general-

ized objective and the corresponding optimization problem.

Definition 2. Given G = (V,E), the generalized expansion ratio problem is defined as

min
|S|≤ |V |

2

cut(S)
g(|S|)

(3.1)

where g : Z≥0 → R≥0 is a monotonically non-decreasing convex function, and the ratio to be

minimized is naturally the generalized expansion ratio.

By the definition above, we have the following observation naturally.

Observation 2. There exists an instance of the generalized graph expansion ratio problem equiv-

alent to the original graph expansion ratio in (2.1).

This equivalence is easy to be observed by having g(|S|) = |S|. For the purpose of simplicity

and variability, this thesis mainly considers instances of g(|S|) = |S|α where α ∈ [1,∞), satisfying

g being a monotonically non-decreasing convex function by having a positive second derivative.

In addition, the hardness of the generalized expansion ratio problem follows from having the

original expansion ratio problem which is NP-hard as an instance [35, 36]. A related hardness

result can also be observed as follow.

Observation 3. Without constraints |S| ≤ |V |
2

and g being convex, the hardness of the generalized

expansion ratio problem follows by having the (uniform) sparsest cut problem (2.4) as a special

case. This can be seen from having g(|S|) = |S|(|V | − |S|) = |S||S̄| where |S|(|V | − |S|) is a

concave function with respect to |S| with fixed |V |.

Analogous to the generalized expansion ratio, we also introduce a new generalized version of

the sparsest cut objective and establish its connection to other problems presented in section 2.3.

13

Definition 3. Let G = (V,E), for any subset S ⊆ V , the generalized sparsest cut problem is

defined as

min
S⊆V

cut(S)
g(|S|)

+
cut(S)
g(|S̄|)

(3.2)

where g : Z≥0 → R≥0 is a monotonically non-decreasing convex function.

Similarly, we can have the following observation having g(|S|) = |S|.

Observation 4. There exists an instance of the generalized sparsest cut problem equivalent to the

(uniform) sparsest cut problem, thus the size-normalized cut problem presented in (2.4) and (2.8).

3.1 Connections to existing optimization problems

While the optimization problems above generalize the existing expansion and sparsest cut prob-

lems in the nature of their definitions, they are also related to other optimization problems. Recall

the minimum bisection problem in (2.5) as min
S⊆V, |(|S|−|S̄|)|≤1

cut(S), we can derive the following

connection between the minimum bisection problem and the generalized sparsest cut problem for

g(|S|) = |S|α.

Theorem 3. Given a graph G = (V,E) where |V | is even so |S| = |S̄| for some S ⊂ V , there

exists some p ∈ R≥1 such that ∀λ ≥ p, S∗ = argmin
S⊆V,|S|=|S̄|

cut(S) is the optimal solution to (3.2)

when g(|S|) = |S|p.

Proof. Let |V | = n, we have |S∗| = |S̄∗| = n
2
. For any S ⊆ V , let µ = cut(S∗)

cut(S) , |S| = x|V | = xn,

then x ∈ [0, 1], and we have

cut(S∗)

g(|S∗|)
+

cut(S∗)

g(|S̄∗|)
=

2 cut(S∗)

(n
2
)α

=
2α+1 cut(S∗)

nα

First, we can derive that h(x) = 1
xα + 1

(1−x)α
is convex for α ≥ 1, and x ∈ (0, 1) with a minimum

at x = 0.5 by observing h′′(x) > 0, and h′(x) = 0 if only if x = 0.5.

Since h(0.5) = 2α+1, we have h(x) > 2α+1 for x ∈ (0, 0.5) ∪ (0.5, 1), α ≥ 1. Then we can

compute that

lim
α→∞

1

2α+1
(
1

xα
+

1

(1− x)α
) =∞, x ∈ (0, 0.5) ∪ (0.5, 1) (3.3)

14

By the formal definition of limit, we have that for any µ, there exists a δ > 0 such that for all

α ≥ 1, p ̸= α,

0 < |α− p| < δ =⇒ 1

2α+1
(
1

xα
+

1

(1− x)α
) > µ

for x ∈ (0, 0.5) ∪ (0.5, 1). Therefore, for any µ defined above, there must exist a p such that

µ 2p+1 ≤ 1
xp + 1

(1−x)p
. This implies that for subset S ⊆ V , x ∈ (0, 0.5) ∪ (0.5, 1), there exists a

p ≥ 1 such that

cut(S∗)2p+1 ≤ (
1

xp
+

1

(1− x)p
)cut(S) (3.4)

=⇒ 2 cut(S∗)2p

np
≤ cut(S)

(nx)p
+

cut(S)
(n(1− x))p

(3.5)

=⇒ 2 cut(S∗)

|S∗|p
≤ cut(S)
|S|p

+
cut(S)
|S̄|p

(3.6)

By the limit obtained in (3.5), we have (3.6) holds for any λ ≥ p. Therefore, there exists a p ≥ 1

such that for all S ⊆ V ,

2 cut(S∗)

|S∗|p
≤ cut(S)
|S|p

+
cut(S)
|S̄|p

, and

∀λ ≥ p,
2 cut(S∗)

|S∗|λ
≤ cut(S)
|S|λ

+
cut(S)
|S̄|λ

.

The theorem establishes that for large enough α in the generalized sparsest cut problem with

g(|S|) = |S|αshares the optimal solution to the minimum bisection problem. Therefore, in prac-

tice, the minimum bisection problem may be solved by approaching the generalized sparsest cut

problem for g(|S|) = |S|α with properly chosen α’s. This is also shown in the experimental results

in Chapter 5.

15

4. THE LOCAL GENERALIZED EXPANSION RATIO PROBLEM AND ALGORITHMS

Based on the generalized expansion ratio problem above, we then introduce a localized version

of the generalized expansion ratio problem with g : Z≥0 → R≥0 being convex, i.e. g(x)− 2g(x+

1) + g(x+ 2) ≤ 0 holds for any x ∈ Z≥0, and propose two polynomial-time algorithms.

Definition 4. Given a graph G = (V,E,w) and a seed set of nodes R ⊂ V , the local generalized

expansion ratio problem is defined by

min
S⊆R

cut(S)
g(|S|)

(4.1)

where g : Z≥0 → R≥0 is a monotonically non-decreasing convex function.

While the original generalized expansion ratio problem suffers from computational hardness,

we propose two polynomial-time algorithms for solving this localized variant based on repeatedly

applying flow-based algorithms.

4.1 Algorithm I

This algorithm mainly uses the properties of g being a convex function. The cut value of a

set in the auxiliary graph constructed below gives the value of a variant of the objective function.

Therefore, by solving the minimum s-t cut problem on the resulting graph, the subset returned

minimizes the objective function. First, we will introduce the graph construction and theoreti-

cal guarantees on the entire graph, and then move to the localized version with modifications in

implementation.

4.1.1 Main idea

For given G = (V,E) and a seed set R ⊂ V where |R| = r, inspired by Kawase and Miyauchi

on the densest subgraph problem [37], we construct the auxiliary graph (U,A,wζ) as follows:

• Introduce source node s and sink node t

16

Figure 4.1:
Auxiliary Graph

• Let U = V ∪ P ∪ {s, t} where P = {p1, p2, ..., pr−1}

• Let A = As ∪ At ∪ A1 ∪ A2 where

As = {(s, v)| v ∈ V },

At = {(p, t)| p ∈ P}

A1 = {(u, v)| {u, v} ∈ E},

and A2 = {(v, p)| v ∈ V, p ∈ P}.

• Define the edge weights wζ : A→ R≥0 as

wζ(e) =

d(v)− 2β · ar (e = (s, v) ∈ As)

1 (= w({u, v})) (e = (u, v) ∈ A1)

β · ak (e = (v, pk) ∈ A2 for k ∈ [1, n− 1])

β · k · ak (e = (pk, t) ∈ At for k ∈ [1, n− 1])

−β · ar + d(v) (e = (v, t) ∈ At)

17

where ak =

g(k + 1) + g(k − 1)− 2g(k) k = 1, ..., r − 2, r − 1

g(n− r − 1)− g(n− r) k = r

Thus ak ≥ 0 for k = 1, ..., r because g is non-decreasing and convex We have the following

lemma.

Lemma 4. Let (X, Y) be any minimum s-t cut in the network (U,A,wζ) such that X ∪ Y = U

and X ∩ Y = ∅, and let S = X ∩ V . Then, the cost of (X, Y) is equal to cut(S) + vol(V)− β ·

g(|S|)− 2β|V | · ar + βg(0).

Proof. Similar to [37], we first show that for any positive integer s ≤ n− r, it holds that

r∑
i=1

min{i, s} · ai = g(0)− g(s).

By the definition of ak, we get

r∑
j=i

aj = g(r − 1)− g(r) +
r−1∑
j=i

(g(j + 1) + g(j − 1)− 2g(j))

= g(r − 1)− g(r)−
r−1∑
j=i

((g(j)− g(j + 1)) + (g(j)− g(j − 1)))

= g(i− 1)− g(i)

Thus, we have

r∑
i=1

min{i, s} · ai =
s∑

i=1

r∑
j=i

aj =
s∑

i=1

(g(i− 1)− g(i)) = g(0)− g(s).

We can observe that when |S| > k, pk ∈ X and pk ∈ Y if |S| < k. Consequently, the cost of the

18

minimum cut (X, Y) is

∑
v∈V \S

(d(v)− 2β · ar) +
∑

{u,v}∈E:u∈S,v∈V \S

w({u, v}) + β ·
r−1∑
i=1

min {i, |S|} · ai +
∑
v∈S

(−β · ar + d(v))

= vol(V \S)− |V \S| · 2β · ar + cut(S) + β ·
r−1∑
i=1

min {i, |S|} · ai − β · |S| · ar + vol(S)

= vol(V \S) + vol(S) + cut(S)− |V \S| · 2β · ar+

(β ·
r−1∑
i=1

min {i, |S|} · ai + β · |S| · ar)− 2β · |S| · ar

= vol(V) + cut(S)− 2β|V | · ar + β ·
r∑

i=1

min {i, |S|} · ai

= cut(S) + vol(V)− β · g(|S|)− 2β|V | · ar + βg(0)

We observe that

vol(V) + cut(S)− 2β|V | · ar − βg(s) + βg(0) ≤ vol(V)− 2β|V | · ar + βg(0)

if and only if cut(S) − βg(s) ≤ 0 which implies cut(S)
g(|S|) ≤ β. Therefore, since vol(V) − 2β|V | ·

ar + βg(0) is a constant, for a given β, by solving the minimum s-t cut problem on the auxiliary

graph constructed above, we can conclude if there exists a set S ⊂ V satisfying cut(S)
g(|S|) ≤ β. By

repeatedly solving the minimum s-t cut problem on the graph with decreasing β, the objective can

be minimized. However, the main obstacle in practice is that the algorithm will always return the

entire graph since the cut value is zero. This is also part of the motivation for the localized version

of the problem where we propose practical algorithms with applications.

4.1.2 Localized algorithm

Based on the graph construction above, in order to guarantee the resulting subset as a subset

of seed set R, we make sure to exclude nodes in R̄. To exclude R̄, in implementation, the easiest

19

way is to put infinite weight for every (v, t) where v ∈ R̄. However, this method may incur

computational problems in practice due to infinite weight. Therefore, we merge all nodes in R̄

with t.

4.1.2.1 Localization

Given (U,A,wζ) constructed above, we merge all nodes in R̄ with t by replacing R̄ ∪ t

with a "supernode" t′ where for every u ∈ R the weight of (u, t) becomes
∑

v∈R̄ wr,u. There-

fore, (U,A,wζ) becomes (U ′, A′, w′
ζ) where U ′ = R ∪ P ∪ {s, t} and A′ = {(u, v)|(u, v) ∈

A and u, v cannot both belong to R̄}. The correctness of this idea for solving (3.1) follows from

(i) nodes from R̄ cannot be returned in the result after being merged (ii) the cost of any cut of the

set returned still follows Lemma 3 since the total weights from any v ∈ R to R̄ remains the same.

Therefore, solving the minimum s-t cut problem with decreasing β still works to minimize the

objective with the local constraint. The detailed algorithm for the localized problem is as follows.

Algorithm 2 Minimizing generalized expansion ratio – Algorithm I
Require: : G, R

G← constructed as described above as (U ′, A′, w′
ζ)

β :=∞
βnew ← cut(R)

g(|R|)
S = R
while βnew < β do

Sbest ← S
β ← βnew

S ← argmin cut(S)− βg(|S|)
βnew ← cut(S)

g(|S|)
end while
return Sbest

A bound on the number of iterations for Algorithm 2 is derived below by slightly adapting

techniques used by Anderson and Lang [27, 24].

Theorem 5. Algorithm 2 will need to solve the min-cut objective at most cut(R) times.

20

Proof. Let fβ(S) = cut(S) − βg(|S|), then consider two consecutive iterations in which Algo-

rithm 2 successfully outputs sets with improved generalized expansion ratio. Let Si denote the set

returned after the (i − 1)st iteration, so Si = argmin fβi−1
(S) for some βi−1 = cut(Si−1)

g(|Si−1|) and set

cut(S)
g(|Si+1|) = cut(Si)

g(|Si|) < βi−1. Similarly we have Si+1 = argmin fβi
(S) and cut(S)

g(|S|i+1)
= cut(Si+1)

g|Si+1| < βi.

Then we have

fβi−1
(Si) = cut(Si)− βi−1g(|Si|) + g(|V |)

= βig(|Si|)− βi−1g(|Si|) + g(|V |)

= g(|Si|)(βi − βi−1) + g(|V |)

and similarly

fβi−1
(Si+1) = g(|Si+1|)(βi+1 − βi−1) + g(|V |)

Since Si minimizes fβi−1
we have fβi−1

(Si) ≤ fβi−1
(Si+1), and this implies

g(|Si|)(βi − βi−1) ≤ g(|Si+1|)(βi+1 − βi−1).

Since (βi+1 − βi−1) < (βi − βi−1) < 0, we have g(|Si+1|) < g(|Si|). Therefore, both cut(S)
g(|S|)

and g(|S|) are strictly decreasing between non-terminating iterations of the algorithm. Conse-

quently, cut(R) must strictly decrease at each iteration correspondingly. Considering the graph is

unweighted, there are at most cut(R) iterations in the algorithm.

4.1.3 Runtime

A runtime bound dependent on the number of nodes and edges can also be given based on

different max-flow algorithms. Let Tmf (N,M) denote the time to solve a max-flow problem with

N nodes and M edges. Then, given G = (V,E) with |V | = n, |M | = m and a seed set of nodes

R such that |R| = r, the final auxiliary graph is (U ′, A′, w′
ζ) where U ′ = R ∪ P ∪ {s, t} and

21

A′ = {(u, v)|(u, v) ∈ A and u, v cannot both belong to R̄}. Recall P = {p1, p2, ..., pr−1} and

A = As ∪At ∪A1 ∪A2 with As = {(s, v)| v ∈ V }, At = {(p, t)| p ∈ P}, A1 = {(u, v)| {u, v} ∈

E}, and A2 = {(v, p)| v ∈ V, p ∈ P}. Therefore, there are |U ′| = r+r−1+2 = 2r+1 nodes and

at most |A| ≤ r+m+ r(r− 1)+ (2r− 1) = r2 +2r+m− 1 edges. Therefore, the time required

to solve the max-flow problem in each iteration is bounded by Tmf (2r + 1, r2 + 2r +m − 1). A

recent Õ(M + N1.5)-time algorithm for the maximum s-t flow problem by van den Brand et al.

would generate a runtime guarantee of Õ(r2 + 2r +m− 1 + (2r + 1)1.5) [38].

Based on the flow-based algorithm, we then propose another algorithm with faster runtime

using techniques of gadget reduction.

4.2 Algorithm II

We then introduce the second flow-based algorithm with improved runtime, sharing the same

idea of repeatedly solving the minimum s-t cut problem on an auxiliary graph with decreasing β

from cut(S)− βg(|S|) + c with constant c.

4.2.1 Main idea

The auxiliary graph is constructed by combining two parts accounting for two terms respec-

tively, namely cut(S) and −βg(|S|).

Lemma 6. Given G1 = (V,E1, w1), G2 = (V,E2, w2), let G3 = (V,E3, w3) where E3 = E1 ∪E2

and ∀(i, j) ∈ E1 ∪ E2, w3(i, j)) = w1(i, j) + w2(i, j) , if S ⊆ V induces cut costs of c1 and c2 on

G1 and G2 respectively, S induces a cut cost of c1 + c2 on G3.

Proof. By the definition of cut, for any subset S ⊂ V , we have c1 = cut
G1

(S) =
∑

i∈S,j∈S̄ w1(i, j)

22

and c2 = cut
G2

(S) =
∑

i∈S,j∈S̄ w2(i, j). Therefore,

cut
G3

(S) =
∑

i∈S,j∈S̄

w3(i, j)

=
∑

i∈S,j∈S̄

(w1(i, j) + w2(i, j))

=
∑

i∈S,j∈S̄

w1(i, j) +
∑

i∈S,j∈S̄

w2(i, j) = cut
G1

(S) + cut
G2

(S) = c1 + c2.

Therefore, based on the above lemma, c1 + c2 can be minimized by solving min-cut problem

on G3 where G3 is constructed as above for given G1 and G2 with c1 = cut
G1

(S) and c2 = cut
G2

(S).

Having the input graph G as G1 gives c1 = cut
G1

(S) = cut(S). Then if we could construct a desired

G2 satisfying c2 = cut
G2

(S) = c − βg(|S|), then combining two graphs as described above into

G3 gives a desired graph reduction for the objective cut(S) − βg(|S|) + c. First, we establish the

correctness of this idea of graph reduction for the term c− βg(|S|).

Lemma 7. Given a graph G = (V,E), there exists a graph G′ = (V ′, E ′) where for any S ⊂ V ,

the cost of cut induced by S on G′ is equivalent to c− βg(|S|), namely cut
G′

(S) = c− βg(|S|).

Proof. Since g is convex, for any constant c and β ≥ 0, h(|S|) = c − βg(|S|) is concave where

h : Z≥0 → R≥0. By Observation 1, we(S) = h(|S|) is a submodular function where we : S ⊆

e → R≥0 is a splitting function. Therefore, by Theorem 1, the problem presented in (2.2) with

we(S) = h(|S|) is graph reducible, that is,

min
S⊂V

we(S) = min
S⊂V

h(|S|) = min
S⊂V

c− βg(|S|) subject to s ∈ S, t ∈ S̄. (4.2)

can be modeled by a gadget splitting function. Let the resulting graph from reduction be G′ =

(V ′, E ′), then we have cut
G′

(S) = c− βg(|S|) for any S ⊂ V .

With the guarantee that it can be reduced to a graph cut problem, the specific techniques are

23

adopted from [39]’s graph reduction techniques. Modeling we can be achieved by combining a set

of cardinality-based(CB) gadgets [29] where a CB-gadget is a subgraph parametrized by positive

weights (a, b). As introduced in section 2.4, after introducing an auxiliary node ve, for each v ∈ V ,

introduce directed edges (v, ve) and (ve, v) with weights a · (k − b) and a · b respectively, then the

function we(S) = a ·min{|S| · (i− b), (k − |S|) · b} can be modeled. This can be understood by

considering having i nodes on the s-side, then placing ve on the s-side would incur a cut penalty

of ab(k − i), while placing ve on the t-side gives a penalty of ai(k − b). Therefore, to solve the

min-cut problem in (4.2), the smaller of the two cut penalties will be chosen. Then the graph

of a combination of these CB-gadgets with corresponding edge weights (a, b)’s is able to model

problem (4.2).

4.2.1.1 Sparse reduction strategies

While it was shown that any cardinality-based submodular function we can be modeled by

combining |e| − 1 CB-gadgets, the runtime can be largely improved using techniques introduced

in [39]. For the purpose of this thesis, only related theoretical guarantees and reduction details

will be presented from the original work. Since this thesis focuses on the exact problem without

approximation error, the approximation ratio ε is set to 0 in the original problem. Given a concave

function g, there are two major steps:

• Solve a sparsest approximate reduction problem (SpAR) [29], which gives the minimum

number of linear pieces required to model the function g where each linear piece corresponds

to a CB-gadget. The solution also outputs values needed to compute the weights of edges

introduced by the auxiliary nodes.

• With the information of the class piecewise linear functions, its correspondence to the com-

bined gadget functions can be established in Lemma 1 in [29]. As a result, the gadgets can

be built, combined, and added to the graph.

By Theorem 6 in [39], for the graph considered in this thesis with a single hyperedge, the above

procedures will construct a graph with O(n) nodes and O(n2) edges. In fact, the actual graph

24

constructed with respect to different g is much smaller, with experiments shown in the next chapter.

4.2.1.2 Auxiliary graph construction

For a given input graph G = (V,E), let G′ = (V ′, E ′) denote the graph where any S ⊂ V

induces a cut penalty of g(|V |)− βg(|S|), which is positive since g non-decreasing and |V | ≥ |S|.

Since naturally, S would incur a cut penalty of cut(S) on G, we combine G and G′ into a new

graph G′′ = (V ∪ V ′, E ∪ E ′) = (V ∪ Ae, E ∪ E) where A and E are auxiliary node and edge

set generated by reductions above. Then for any S ⊆ V , the cut penalty induced by S on G is

equivalent to cut(S) + g(|V |)− βg(|S|), which shares the same minimizer with cut(S)− βg(|S|)

since g(|V |) is a constant.

4.2.2 Localized algorithm

Analogous to section 4.1.2, given G′′ = (V ∪ Ae, E ∪ E) constructed above, similarly to

the localization for the algorithm I, we merge all nodes in R̄ with t by replacing R̄ ∪ t with a

"supernode" t′ where for every u ∈ R the weight of (u, t) becomes
∑

v∈R̄ wr,u. Therefore, (V ∪

Ae, E ∪ E) becomes (R ∪ Ae, (E ∪ E)\{(u, v)|u, v ∈ R}). The correctness of this idea follows

similarly to the localization in Algorithm I. Therefore, solving the minimum s-t cut problem with

decreasing β works to minimize the objective with the local constraint. The detailed algorithm for

the localized problem is as follows.

We can see that the algorithm shares the same idea of solving the minimum s-t cut problem

with Algorithm 2, but using differently constructed auxiliary graphs. Algorithm 3 and Algorithm

2 share the same input, output, and every step of the flow-based algorithm except for the auxiliary

graph. We could derive the following bound on the runtime with almost the same proof steps as

Theorem 4, therefore the proof is omitted.

Theorem 8. Algorithm 3 will need to solve the min-cut objective at most cut(R) times.

4.2.3 Runtime

Similarly, a runtime bound can be derived based on the number of nodes and edges. It is depen-

dent both on an existing flow-based algorithm and the function g in the objective. Let Tmf (N,M)

25

Algorithm 3 Minimizing generalized expansion ratio - algorithm II
Require: : G, R

G← constructed above as (R ∪ Ae, (E ∪ E)\{(u, v)|u, v ∈ R})
β :=∞
βnew ← cut(R)

g(|R|)
S = R
while βnew < β do

Sbest ← S
β ← βnew

S ← argmin cut(S) + g(|V |)− βg(|S|)
βnew ← cut(S)

g(|S|)
end while
return Sbest

denote the time to solve a max-flow problem with N nodes and M edges. Dependent on the reduc-

tion technique used, the size of the final auxiliary graph is bounded byO(n) nodes andO(n2+n).

Then, the time required to solve the max-flow problem in each iteration is Tmf (O(n),O(n2)). A

recent algorithm for the maximum s-t flow problem by van den Brand et al. would generate a

runtime guarantee of Õ(M +N1.5) where M ∈ O(n) and N ∈ O(n2) [38].

26

5. NUMERICAL EXPERIMENTS

This chapter will introduce the experimental results of an important instance of the localized

generalized expansion ratio problem below

min
S⊆R

cut(S)
g(|S|)

(5.1)

with g(|S|) = |S|α where α ≥ 0, satisfying g being monotonically non-decreasing and convex.

5.1 Datasets

We mainly consider two datasets: Zachary’s karate club is a small graph capturing the network

of 34 members of a karate club [40]; Minnesota road network has 2642 nodes and 2 strongly

connected components [41].

5.2 Runtime

While the original problems on the entire graph are not tractable in practice, the two algorithms

proposed by this thesis are both polynomial-time solvable. We test both algorithms on both the

karate club and the Minnesota road network datasets with the same seed set at corresponding

entries. All runtimes (in seconds) are averaged from five rounds. Table 5.1 gives the runtime of

seed sets of 2 sizes on the karate club graph. While both algorithms are fast on the karate graph,

Algorithm I generally outperform Algorithm II. An explanation is the time needed for auxiliary

graph construction while the karate club graph is too small to suffer from runtime caused by the

large auxiliary graphs.

27

Table 5.1: Runtime (s) in the 2nd row, and corresponding auxiliary graph size in the 3rd row

Algorithm I

seed set α = 1.1 α = 1.3 α = 1.5 α = 2.0

|R1| = 5 0.0042 0.0016 0.0018 0.0018

|R2| = 2 0.0015 0.0029 0.0020 0.0019

|R1| = 5 62 62 62 62

|R2| = 2 65 65 65 65

Algorithm II

α = 1.1 α = 1.3 α = 1.5 α = 2.0

0.0080 0.0039 0.0013 0.0079

0.0034 0.0021 0.0024 0.0041

47 47 47 47

50 50 50 50

Table 5.2: Runtime (s) in the 2nd row, and corresponding auxiliary graph size in the 3rd row

Algorithm I

seed set α = 1.1 α = 1.3 α = 1.5 α = 2.0

|R1| = 2 8.7717 6.7575 6.8943 7.2734

|R2| = 50 33.3645 7.7874 7.3141 6.8514

|R1| = 2 5277 5277 5277 5277

|R2| = 50 5229 5229 5229 5229

Algorithm II

α = 1.1 α = 1.3 α = 1.5 α = 2.0

59.1921 57.2558 61.5402 60.2531

82.2321 79.4229 84.8938 76.2546

3959 3959 3959 3959

3911 3911 3911 3911

We run the same experiments on the road network graph with 2640 nodes as shown in Table

5.2. While Algorithm I still outperforms Algorithm II in runtime, we can also notice a significant

difference in the size of the auxiliary graph. Therefore, if auxiliary graphs are pre-computed,

Algorithm II is expected to be much faster. In fact, approximation techniques related to gadget

reduction may be further used to improve the runtime, which will be introduced in the next chapter

of future work.

28

R \α 1.1 1.2 1.3 1.4 1.5

{1,5,8,33,34} 1 24 29 29 29
{1,34} 5 32 32 32 32

{1,3,7,8,34} 15 21 21 29 29
{3,17,33,34} 14 14 14 22 24

{2,5,8,17,33,34} 1 22 22 28 28

Table 5.3: Sizes of results from random seed sets on the Karate club graph

5.3 Relationship between parameter α and the resulting set size

First, we note that all results in this section are solutions to the generalized expansion ratio

problem and solutions to other problems will be specified. For g(|S|) = |S|α, when g increases as α

increases, the influences of the size of the resulting subgraph decrease by g being the denominator.

Therefore, by varying α, we expect to manipulate the size of the subgraph returned. This is also

demonstrated in the experimental results below on the Karate group where the entries are the sizes

of the returning set.

From Table 5.3 where several instances with randomly chosen seed set R’s are presented, the

localized expansion ratio problem with g(|S|) = |S|α is solved with respect to a range of alpha.

We can see that as α increases, the size of the resulting set increases accordingly. In Figure 5.1, we

also present a specific case where as α increases, the entire graph is returned gradually as the result

of the localized generalized expansion ratio problem. The newly recovered nodes with greater α

are marked by lighter colors.

Trends in Table 5.3 are present throughout the solutions with random seed sets as shown in

Figure 5.2 where each line represents a different seed set R. While the monotonicity of the set

sizes is guaranteed, the change in set sizes is not always gradual as many lines are not smooth. In

fact, the effects of changing the parameter α greatly depend on the seed set and structure of the

input graph.

29

(a) R in white (b) α = 1.1 (c) α = 1.2 (d) α = 1.3

Figure 5.1: Resulting sets with different α’s

Figure 5.2: Graph size with respect to different α’s

5.4 Connection between the generalized sparsest cut and the minimum bisection

As proved in Theorem 3, the generalized sparest cut problem shares the optimal set of solu-

tions with the minimum bisection problem for large enough α. Therefore, the minimum bisection

problem can be solved by the solution to the generalized sparsest cut problem with arbitrarily large

α. Recall that the problems of the generalized sparest cut and the minimum bisection are

min
S⊆V

cut(S)
g(|S|)

+
cut(S)
g(|S̄|)

and min
S⊆V, |(|S|−|S̄|)|≤1

cut(S).

30

(a) (b) (c)

α 1.0 1.1 1.2
S {3} {2,3,5} {1,2,3,4,5,8}

cut(S) 9 23 32
Sparsest Cut(S) 9.72 8.92 7.45

Table 5.4: Details of solution sets in Figure 5.3

(a) α = 1.0 (b) α = 1.1 (c) α = 1.2

Figure 5.3: Generalized sparsest cut problem solutions with different α’s

Although both problems are NP-hard to solve, solutions to smaller instances can be obtained

by brute force. Below is an example set of solutions to the sparsest cut problem with increasing α

where the third solution set exactly matches the solution of the minimum bisection problem. We

can see that as α increases, the solution sets of two problems eventually match.

31

6. CONCLUSIONS AND FUTURE WORK

This thesis introduces a novel generalized graph clustering objective inspired by the graph

expansion ratio problem. After a brief overview of existing graph optimization problems, this

thesis establishes the connections between this newly introduced objective and existing objectives

in graph clustering.

Regarding newly introduced objective, this thesis presents a local variant of the corresponding

optimization problem. While optimization problems corresponding to existing objectives suffer

from computational hardness, this thesis presents two polynomial-time solvable algorithms for the

local variant of the optimization problem involving the new objective.

Using existing flow-based algorithms with theoretical runtime guarantees, the two proposed al-

gorithms achieve the effects of changing the size of the resulting graph. Furthermore, the connec-

tion between the proposed generalized sparsest cut problem and the minimum bisection problem

is also shown.

Although this thesis presents the performances and usage of the algorithms in exploring graphs,

its efficient usage in graph clustering requires more research into how performances can be im-

proved with respect to specific real-world graphs for clustering.

One major natural future direction is to explore the potential of the sparse reduction strategies

used in Algorithm II where approximations can be possible with much faster runtime. Since the

domain and the final output of the function is a discrete, approximation for a continuous extension

may also result in the exact discrete solution. One minor future direction is to explore the steps

of auxiliary graph construction in Algorithm II. Currently, the localization is after the main graph

construction, and the graph size may be reduced by having localization before constructing the

whole graph.

In addition, the proposed algorithms not being strongly local algorithms result in runtime limi-

tations for large graphs in nature. One possible direction for future work is to explore the potential

of other objectives with varying granularity achieved by generalized functions.

32

REFERENCES

[1] S. E. Schaeffer, “Survey: Graph clustering,” Comput. Sci. Rev., vol. 1, p. 27–64, aug 2007.

[2] K. Fountoulakis, M. Liu, D. F. Gleich, and M. W. Mahoney, “Flow-based algorithms for im-

proving clusters: A unifying framework, software, and performance,” SIAM Review, vol. 65,

no. 1, pp. 59–143, 2023.

[3] S. Hoory and N. Linial, “Expander graphs and their applications,” Bulletin of the American

Mathematical Society, vol. 43, pp. 439–561, 2006.

[4] A. Sinclair and M. Jerrum, “Approximate counting, uniform generation and rapidly mixing

markov chains,” Information and Computation, vol. 82, no. 1, pp. 93–133, 1989.

[5] D. W. Matula and F. Shahrokhi, “Sparsest cuts and bottlenecks in graphs,” Discrete Applied

Mathematics, vol. 27, no. 1, pp. 113–123, 1990.

[6] D. S. Hochbaum, “A polynomial time algorithm for rayleigh ratio on discrete variables: Re-

placing spectral techniques for expander ratio, normalized cut, and cheeger constant,” Oper-

ations Research, vol. 61, no. 1, pp. 184–198, 2013.

[7] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar, “On the hardness of ap-

proximating multicut and sparsest-cut,” in 20th Annual IEEE Conference on Computational

Complexity (CCC’05), pp. 144–153, 2005.

[8] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta, “A survey of kernel and spectral meth-

ods for clustering,” Pattern Recognition, vol. 41, no. 1, pp. 176–190, 2008.

[9] W. Ye, S. Goebl, C. Plant, and C. Böhm, “Fuse: Full spectral clustering,” in Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing, KDD ’16, (New York, NY, USA), p. 1985–1994, Association for Computing Machinery,

2016.

33

[10] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical Journal, vol. 23,

no. 2, pp. 298–305, 1973.

[11] M. C. Nascimento and A. C. de Carvalho, “Spectral methods for graph clustering – a survey,”

European Journal of Operational Research, vol. 211, no. 2, pp. 221–231, 2011.

[12] K. Lang and S. Rao, “A flow-based method for improving the expansion or conductance

of graph cuts,” in Integer Programming and Combinatorial Optimization (D. Bienstock and

G. Nemhauser, eds.), (Berlin, Heidelberg), pp. 325–337, Springer Berlin Heidelberg, 2004.

[13] N. Alon and V. Milman, “1, isoperimetric inequalities for graphs, and superconcentrators,”

Journal of Combinatorial Theory, Series B, vol. 38, no. 1, pp. 73–88, 1985.

[14] R. M. Tanner, “Explicit concentrators from generalized n-gons,” SIAM Journal on Algebraic

Discrete Methods, vol. 5, no. 3, pp. 287–293, 1984.

[15] R. B. Boppana, “Eigenvalues and graph bisection: An average-case analysis,” 28th Annual

Symposium on Foundations of Computer Science (sfcs 1987), pp. 280–285, 1987.

[16] T. Leighton and S. Rao, “An approximate max-flow min-cut theorem for uniform multicom-

modity flow problems with applications to approximation algorithms,” in Proceedings of the

29th Annual Symposium on Foundations of Computer Science, SFCS ’88, (USA), p. 422–431,

IEEE Computer Society, 1988.

[17] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems and their use in de-

signing approximation algorithms,” J. ACM, vol. 46, p. 787–832, nov 1999.

[18] S. Arora, S. Rao, and U. Vazirani, “Expander flows, geometric embeddings and graph parti-

tioning,” J. ACM, vol. 56, apr 2009.

[19] R. Khandekar, S. Rao, and U. Vazirani, “Graph partitioning using single commodity flows,”

J. ACM, vol. 56, jul 2009.

[20] L. Orecchia and Z. A. Zhu, Flow-Based Algorithms for Local Graph Clustering, pp. 1267–

1286.

34

[21] K. Lang, M. Mahoney, and L. Orecchia, “Empirical evaluation of graph partitioning using

spectral embeddings and flow,” pp. 197–208, 06 2009.

[22] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using pagerank vectors,”

in 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06),

pp. 475–486, 2006.

[23] K. Fountoulakis, D. F. Gleich, and M. W. Mahoney, “A short introduction to local graph

clustering methods and software,” ArXiv, vol. abs/1810.07324, 2018.

[24] N. Veldt, D. Gleich, and M. Mahoney, “A simple and strongly-local flow-based method for cut

improvement,” in Proceedings of The 33rd International Conference on Machine Learning

(M. F. Balcan and K. Q. Weinberger, eds.), vol. 48 of Proceedings of Machine Learning

Research, (New York, New York, USA), pp. 1938–1947, PMLR, 20–22 Jun 2016.

[25] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community structure in large

networks: Natural cluster sizes and the absence of large well-defined clusters,” Internet Math-

ematics, vol. 6, pp. 123 – 29, 2008.

[26] M. Ghaffari, Local Graph Algorithms, pp. 201–238. 2022.

[27] R. Andersen and K. J. Lang, “An algorithm for improving graph partitions,” in Proceedings

of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, (USA),

p. 651–660, Society for Industrial and Applied Mathematics, 2008.

[28] N. Veldt, C. Klymko, and D. F. Gleich, Flow-Based Local Graph Clustering with Better Seed

Set Inclusion, pp. 378–386.

[29] N. Veldt, A. R. Benson, and J. Kleinberg, “Hypergraph cuts with general splitting functions,”

SIAM Review, vol. 64, no. 3, pp. 650–685, 2022.

[30] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

35

[31] D. Wagner and F. Wagner, “Between min cut and graph bisection,” in Proceedings of the

18th International Symposium on Mathematical Foundations of Computer Science, MFCS

’93, (Berlin, Heidelberg), p. 744–750, Springer-Verlag, 1993.

[32] A. R. Benson, J. M. Kleinberg, and N. Veldt, “Augmented sparsifiers for generalized hyper-

graph cuts,” ArXiv, vol. abs/2007.08075, 2020.

[33] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular

graphs,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 359–392, 1998.

[34] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network par-

titions,” in Proceedings of the 19th Design Automation Conference, DAC ’82, p. 175–181,

IEEE Press, 1982.

[35] M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified np-complete graph problems,”

Theoretical Computer Science, vol. 1, no. 3, pp. 237–267, 1976.

[36] B. Mohar, “Isoperimetric numbers of graphs,” Journal of Combinatorial Theory, Series B,

vol. 47, no. 3, pp. 274–291, 1989.

[37] Y. Kawase and A. Miyauchi, “The densest subgraph problem with a convex/concave size

function,” Algorithmica, vol. 80, p. 3461–3480, dec 2018.

[38] J. van den Brand, Y. T. Lee, Y. P. Liu, T. Saranurak, A. Sidford, Z. Song, and D. Wang,

“Minimum cost flows, mdps, and 1-regression in nearly linear time for dense instances,” in

Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC

2021, (New York, NY, USA), p. 859–869, Association for Computing Machinery, 2021.

[39] N. Veldt, A. R. Benson, and J. Kleinberg, “Approximate decomposable submodular function

minimization for cardinality-based components,” in Advances in Neural Information Process-

ing Systems (M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.),

vol. 34, pp. 3744–3756, Curran Associates, Inc., 2021.

[40] M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,”

Proceedings of the National Academy of Sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

36

[41] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM Trans. Math.

Softw., vol. 38, dec 2011.

37

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Spectral techniques
	Approximation algorithms
	Local clustering
	Flow-based methods
	Contributions
	Experiments and code

	PRELIMINARIES AND RELATED WORK
	Graph basics
	Hyperedge and splitting functions
	Hypergraph cut

	Ratio cut objective functions
	Expansion ratio
	Uniform sparsest cut
	Minimum bisection
	Conductance
	Normalized cut
	Size-normalized cut

	Hyperedge reduction techniques
	Related work
	MaxFlow Quotient-Cut Improvement (MQI) problem and algorithm

	THE GENERALIZED EXPANSION RATIO AND SPARSEST CUT
	Connections to existing optimization problems

	THE LOCAL GENERALIZED EXPANSION RATIO PROBLEM AND ALGORITHMS
	Algorithm I
	Main idea
	Localized algorithm
	Localization

	Runtime

	Algorithm II
	Main idea
	Sparse reduction strategies
	Auxiliary graph construction

	Localized algorithm
	Runtime

	NUMERICAL EXPERIMENTS
	Datasets
	Runtime
	Relationship between parameter and the resulting set size
	Connection between the generalized sparsest cut and the minimum bisection

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

