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ABSTRACT 

Autonomous trucks (ATs) are different from Human-driven trucks (HTs) in traffic 

characteristics in terms of lane choice and lateral positioning. Current design method 

(i.e. MEPDG) and existing highway system is to serve traditional traffic configurations. 

Therefore, it is crucial to develop a framework for studying the potential impact of 

autonomous truck and truck platooning on the long-term performance of current and 

future highway system (pavements and bridges).  

This dissertation enhanced Pavement ME design by proposing a mechanics-based 

framework to evaluate autonomous truck and truck platooning impact on long-term 

performance of Texas highway system. The developed framework consists of input 

module, traffic characterization module, material property module, pavement 

performance module, and bridge analysis module. We adopted the traffic load spectra 

model developed in NCHRP 1-41 with some modifications. The modified traffic model 

considers axle load distribution for each axle and vehicle type, different wheel wander 

parameters for HTs and ATs, respectively, AT percentage, and traffic growth rate. 

Several models were integrated into the material property module that cover pavement 

temperature, asphalt aging, dynamic modulus of asphalt mixture, Thornthwaite moisture 

index, equilibrium soil suction for subgrade soil, moisture variation in unbound 

materials, stress-moisture-dependent resilient modulus of unbound materials, and 

pavement response. In the pavement performance module, we adopted and improved 

NCHRP project 1-52 model to predict TDC initiation and propagation in asphalt 

pavements. The primary improvements to the NCHRP 1-52 model includes the coupling 
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of the HMA-FM-based crack initiation model, and the incorporation of a novel aging 

model for asphalt mixture. The bridge module was developed to conduct a high-level 

prioritization of about 55000 existing Texas bridges due to future platooning loads. 

Prioritization levels (from 5 to 1) were established for Texas bridge inventory under 

vertical loading of 6 different platooned truck configurations. The developed framework 

can be effectively implemented for assessing the potential impact of autonomous truck 

and truck platooning on the long-term performance of Texas highway system. 
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1. INTRODUCTION

1.1. Background 

The mechanistic empirical pavement design guide (MEPDG) was developed under the 

National Cooperative Highway Research Program (NCHRP) Project 1-37A (ARA Inc. 

2004) to overcome the limitations of the empirical design procedures in the American 

Association of State Highway and Transportation Officials (AASHTO) Guide for 

Design of Pavement Structures (AASHTO 1993). MEPDG replaced the AASHTO 

design procedure due to the inability of the AASHTO methods to incorporate significant 

material properties into the design procedure, not recognizing the impacts of various 

climatic conditions, and its over extrapolation of traffic projections beyond what was 

encountered at the AASHO Test Road.   

Research efforts to develop improved tools and models for more accurate consideration 

of varying design scenarios and improved pavement performance prediction led to the 

development of the mechanistic-empirical pavement design guide (MEPDG) which was 

incorporated into AASHTOWare Pavement ME Design™ software. PavementME 

incorporates mechanistic approach in the calculation of stress, strain and deformation 

fields in the pavement structure due to a specific combination of material types and 

pavement structure under given climatic condition and traffic loads. Unlike the 

AASHTO 1993 design guide, PavementME combines the mechanistically obtained 

stress, strain and deformation fields with empirical distress models to correlate predicted 

cumulative damage to the observed pavement performance. 
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The introduction of PavementME promises to represent significant improvement in 

pavement design and performance evaluation allowing the prediction and optimization 

of pavement performance with respect to specific failure or distress modes in both 

flexible and rigid pavements. Unfortunately, some state DOTs have not yet realized the 

potential benefits of PavementME due to various implementation and development 

issues, such as the demand of conducting extensive dynamic modulus tests, lack of well-

documented pavement sections for local calibration, as well as some of the key models 

in the Pavement ME framework currently being placeholders.  

The main components of the Pavement ME include: (a) the climate module to predict the 

temperature distribution in the pavement layers and account for the environmental 

effects on the pavement performance using the Enhanced Integrated Climate Model 

(EICM); (b) the materials characterization module to obtain the relevant material 

properties of HMA layer, PCC layer and unbound granular layer materials; (c) the traffic 

module to characterize traffic load on the pavement; (d) the pavement response module 

to account for the effect of the pavement structural configuration and various traffic 

loads on the resulting stress and strain fields; (e) the damage accumulation module to 

predict the amount of distress in the pavement structure by using empirical transfer 

functions. 

1.2. Problem Statement 

Autonomous vehicles (AVs) have gained tremendous attention over the past a few years 

due to progressive development in Intelligent Transportation Systems (ITS). 

Autonomous trucks (ATs) are different from human-driven trucks (HTs) in terms of lane 
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choice and lateral positioning, which might introduce new risks and challenges for 

current infrastructure system. For example, the application of autonomous truck and 

truck platooning can potentially reduce wheel wander and increase highway capacity due 

to lane-keeping system and elimination of human factors, which will lead to faster 

deterioration of pavement condition and shorten pavement service life (Forrest and 

Konca 2007, VdM Steyn and Fisher 2008, Litman 2017, Georgouli et al. 2021). 

Therefore, it is crucial to study the potential impact of autonomous truck and truck 

platooning on the long-term performance of existing highway system (pavements and 

bridges) and structure design of new pavements and bridges accommodating the epoch 

of AT.  

1.3. Objectives of Study 

This dissertation aims for the enhancements to pavement ME design by proposing a 

mechanics-based framework to study the potential autonomous truck and truck 

platooning impact on the long-term performance of Texas highway system (pavements 

and bridges). The main goals of this research were summarized in the following. 

• Develop a traffic load spectra model that considers axle load distribution for each

axle and vehicle type, different wheel wander parameters for human-driven trucks

and autonomous trucks, autonomous truck percentage, and traffic growth rate.

• Develop a mechanistic-empirical model for predicting moisture variation in subgrade

soil.

• Develop a FWD-based backcalculation program to determine stress-moisture

dependent resilient modulus of unbound materials.
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• Develop a unified mechanics-based framework to evaluate long-term top-down 

cracking performance (crack initiation and propagation) of asphalt pavements. 

• Conduct a high-level prioritization study for about 55000 existing bridges in Texas 

to evaluate the potential bridge performance under vertical loading of 6 different 

platooned truck configurations. 

 

1.4. Dissertation Outline 

This dissertation is divided into 7 chapters. A brief review of each chapter is presented 

as follows. 

Chapter 1 consists of study background, problem statement, study objectives, and 

dissertation outline. 

Chapter 2 presents a generalized framework to characterize traffic for both human-

driven trucks and autonomous trucks. Wheel wander, axle load spectra, autonomous 

truck percentage are considered in the traffic model. The impact indicator was 

introduced to quantify the autonomous truck impact on the performance of asphalt 

pavements in TX in terms of top-down fatigue cracking (TDC), bottom-up fatigue 

cracking (BUC), and rutting. A parametric study is conducted to identify the significance 

of some key parameters in different pavement designs in responds to autonomous truck 

(AT) implementation, and to test how sensitive a pavement response to autonomous 

trucks is in terms of its performance. 

Chapter 3 presents a mechanistic-empirical model for predicting moisture variation in 

subgrade soil by coupling a modified ME-based equilibrium soil suction model and 
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Mitchell’s diffusion equation. The proposed moisture prediction mode was validated 

using the moisture data collected from MnROAD and LTPP databases. 

Chapter 4 introduces a FWD-based backcalculation program to backcalculate stress-

moisture-dependent resilient modulus of subgrade soil using COMSOL Multiphysics. 

Lytton model was employed to characterize the stress dependency and moisture 

sensitivity of subgrade resilient modulus. The new moisture prediction model was 

incorporated into the program to predict moisture and suction profile on the date when 

FWD testing was conducted. We used Bound Optimization by Quadratic Approximation 

(BOBYQA) as the optimization method to backcalculate the parameters used in Lytton 

model. The backcalculation program was verified using the FWD data collected from 

LTPP database. 

Chapter 5 introduces a new unified mechanics-based framework to predict TDC 

initiation and propagation in asphalt pavements. The unified framework was developed 

based on NCHRP 1-52 model and improved the robustness of NCHRP 1-52 model by 

replacing their empirical crack initiation model with a HMA-FM-based crack initiation 

model and incorporating with a novel aging model for asphalt mixture. The proposed 

framework was validated by 18 pavement sections from different geographical locations 

with well-documented performance history and material properties. 

Chapter 6 presents a framework for evaluating performance impact of autonomous truck 

and truck platooning on Texas highway system (pavements and bridges). This 

framework consists of pavement module and bridge module. In the pavement module, 

the mechanics-based TDC initiation sub-framework introduced in chapter 5 was 
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improved to study the effects of autonomous truck loads and autonomous truck 

percentage on the TDC performance of asphalt pavements. The major improvement 

includes the incorporation of a more realistic traffic load spectra model that distinguishes 

HTs from ATs, and a stress-moisture-dependent resilient modulus prediction model for 

unbound layers. In the bridge module, we developed an approach to conduct a 

prioritization study in about 55000 existing Texas bridges due to future platooning loads. 

The developed approach leveraged the National Bridge Inventory (NBI) database along 

with prior research to evaluate each bridge structure in Texas. 

Chapter 7 presents the summary, conclusions, limitations, and recommendations of the 

research work included in this dissertation. 

Two generalized flowcharts are presented in Figure 1.1 to illustrate the process and 

interdependencies of each module developed in this dissertation.  

Figure 1.1 High-level illustration of the process and interdependencies of each 
module developed in this dissertation (left: Pavement framework; right: bridge 
framework). 
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2. PERFORMANCE IMPACT OF AUTONOMOUS TRUCKS ON FLEXIBLE 

PAVEMENTS 

2.1. Introduction 

Automated vehicles (AVs) are enabled by substantial advances in sensing, 

communication, and computer science, and have received significant worldwide interest. 

The Society of Automotive Engineers International (SAE International 2018) published 

the definitions of six levels of driving automation, ranging from no driving automation 

(level 0) to full driving automation in all circumstances (level 5), while the level 3 

automation has been achieved in the current AVs market. Polls (Rainie et al. 2022) have 

shown concerns from the public regarding riding in a driverless vehicle and sharing the 

road with driverless vehicles. Nevertheless, the expectation of AVs from the market is 

exceedingly positive despite that high-level automated vehicles are not available yet. 

The U.S. Department of Transportation announced a $100 million budget for automated 

vehicle research and development in 2018, including a $60 million grant for 

demonstration projects that test the feasibility and safety for private 

companies(Shepardson 2018). The proportion of AVs circulating (Liu et al. 2019) was 

predicted to reach 20% by the end of the 2030s and occupy 50% by the end of the 2050s. 

Autonomous truck (AT) as a new category of vehicles has been making their progress 

towards commercial implementation that will profoundly impact the whole industry of 

the transportation of goods(Ackerman 2021). TuSimple, an automated vehicle company, 

has completed the first fully automated test of a heavy-duty autonomous truck on open 

public roads for more than 80 miles of travel in Arizona in December of 2021, among a 
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long list of other companies developing their trucks without a driver in the cab. A report 

(Research and Markets 2022) regarding autonomous trucking market forecasts predicted 

growth of the global market of ATs to 5.2 billion US dollars by 2027, at a compound 

annual growth rate of 4.6% between 2021 and 2027. 

Birgisson et al. (Birgisson et al. 2020) presented a detailed review to identify the 

potential impacts, benefits, impediments, and solutions for autonomous truck and truck 

platooning technologies. AT as an essential subset of AV relies on underlying 

technology such as sensors (cameras and LiDAR sensors, etc. (Dennis et al. 2019)), 

communications (Dedicated Short-Range Communications (DSRC) and 5G (Yoshino et 

al. 2018)), and software systems (artificial intelligence technologies (Greer et al. 2018)) 

that are mainly used for identifying objects, measuring vehicle speed, and maintaining 

vehicle position when cruising (Slowik and Sharpe 2018). AT technologies would 

provide potential solutions for many problems caused by traditional trucks such as 

increasing CO2 emission, energy efficiency, the human-error induced accident 

occurrence, and exacerbating traffic congestion (Weisser 1998, Fagnant and Kockelman 

2015, Litman 2017, Vahidi and Sciarretta 2018). Still, commercial operations of ATs 

need to consider many other aspects than traditional trucks, including safety (Greer et al. 

2018), environmental (Sun and Yin 2019), roadway capacity, labor (Short and Murray 

2016), and economic impacts (Chottani et al. 2018).  

To better accommodate AT, automation technologies and emerging intelligent 

transportation systems should be tied together to pose a great influence on the fuel 

efficiency and environmental impacts of medium- and heavy-duty vehicles (National 
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Academies of Sciences and Medicine 2020). Fitzpatrick et al. (Fitzpatrick et al. 2017) 

suggested that the investment in infrastructure should be focused on road widening with 

better lane markings, improved geometric design, and higher quality pavements with 

thicker pavement layers. The design and performance of pavements depend on climate, 

truck traffic, pavement configuration, and material properties (Mallick and El-Korchi 

2008). ATs are different from Human-driven trucks (HTs) in traffic characteristics in 

terms of lane choice and lateral positioning within the lane. It is crucial to study the 

impact of ATs on the long-term performance of existing pavement structures and the 

design of new pavements accommodating the epoch of AT.  

HTs normally do not follow the exact path on a road while traveling. The term, wheel 

wander, is used to characterize this phenomenon and is defined as the lateral deviations 

of tire loads over a pavement cross-section (Gungor 2018). Wheel wander of a human-

driven truck is affected by several factors including weather conditions (i.e. wind speed 

and precipitation), environment, time, type of vehicle, traffic conditions, road 

characteristics (i.e. road type, road configuration, road roughness, road markings) (Buiter 

et al. 1989), and rutting depth (Blab and Litzka 1995). Field measurements showed that 

the wheel-path of HTs is normally distributed within a traffic lane (Buiter et al. 1989). 

The standard deviation characterizes the spread of wheel loads, which ranges from 8 to 

24 inches depending on the lane width, vehicle size, etc. 10 inches of standard deviation 

is taken in most pavement designs (ARA Inc. 2004). The wheel wander of ATs is 

programmed by the vehicle computer controlling the steering system using a specific 

lane-keeping algorithm. Therefore, ATs, theoretically, can follow any predefined lateral 
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distributions such as channelized wheel path with a much smaller wheel wander. 

Narrower wheel wander helps with increasing traffic safety due to a more predictable 

traffic trajectory and increasing passenger comfort. However, the studies (Forrest and 

Konca 2007, VdM Steyn and Fisher 2008, Litman 2017, Georgouli et al. 2021) showed 

that the channelized wheel loads caused faster damage accumulation on a specific spot 

of the pavement thereby yielding a reduced service life. Noorvand (Noorvand et al. 

2017) compared the effect of uniform distribution of wheel loads with the zero-wander 

scenario. Different combinations of ATs and HTs were considered in the analysis of the 

long-term performance of asphalt pavements using Pavement ME software. It was found 

that the inclusion of uniformly distributed ATs improves the long-term performance or 

reduces the required design thickness of pavements, whereas the opposite occurs when 

there is zero-wander is deployed in ATs. Siddharthan et al. (Siddharthan et al. 2017) 

developed a Monte-Carlo simulation scheme to study the wheel wander effect of trucks 

on the pavement performances. The proposed method calculates pavement responses 

(strains in different directions) of 10000 randomly generated wheel wanders that 

conform to normal distribution. 

To this end, this research focuses on addressing the following question: How 

autonomous trucks will affect the performance of current pavements due to their unique 

traffic characteristics compared with HTs? In this context, we describe the following key 

points that are necessary for a realistic characterizing the traffic for both ATs and HTs: 

(i) the variation of the position of tire loads (wheel wander); (ii) the variation of axle 

loads on categories and magnitude (load spectra); and (iii) the variations of how many 
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ATs in service on the road (percentages of AT loads in all truck loads). Following that, 

we propose a new generalized framework based on emphasized aspects to appropriately 

assess the impact of AT. The proposed framework is applied to evaluate the AT impact 

on Texas flexible pavement. Additionally, a parametric study is conducted to identify the 

significance of some key parameters in different pavement designs in response to AT 

implementation. Finally, some actual factors and characteristics of ATs are to be 

determined in the future since ATs still have a long journey before being commercially 

available and the narrative of their utilization remains unknown.  

The rest of the paper is organized as follows. Section 2.2 defines all the traffic related 

variations and the detailed mathematical formulation that are necessary to be included in 

performance impact analysis. We propose a generalized framework for evaluating ATs 

impact in section 2.3. Section 2.4 presents extended evaluation and a parametric analysis 

of AT impact on Texas flexible pavement. Finally, we wrap up with a summary and 

conclusions in Section 2.5. 

2.2. Traffic Variations 

2.2.1. Variation of Tire Load Positions 

Human-driven truck wheels are distributed randomly at different locations on specific 

pavement sections. Their lateral positions with respect to the center of wheel-path are 

called transverse wheel wander that significantly affect loading conditions and pavement 

performance. Field measurements exhibit the positions where the tires of HTs landed 

following a normal distribution with a specific standard deviation in a traffic lane (Buiter 

et al. 1989). The standard deviation of its probability density characterizes the spread of 



 

12 

 

wheel loads, which usually range from 8 to 24 inches depending on lane width, weight 

and size of vehicles, etc. As an illustration example, Figure 2.1 shows the tire deviation 

distributions of 1 million tire repetitions following a normal distribution with different 

standard deviations: 127 mm (5 inches), 254 mm (10 inches), and 381 mm (15 inches). 

The concentration of tire loads is much higher when the standard deviation is smaller, 

and would cause a higher level of distress around the center of wheel-path. Having 

defined the standard deviation, tire location on the cross-section of pavement for both 

HTs and ATs can be precisely characterized statistically.  

 

 
Figure 2.1 Tire deviation distributions following normal distribution of 1 million 
tire repetitions with different standard deviations: 127 mm (5 inches), 254 mm (10 
inches), and 381 mm (15 inches). 
 

2.2.2. Variations of Axle Load on Categories and Magnitude 

The tire load repetitions also vary in magnitude depending on the load weight and the 

category of trucks. This work employs a hierarchical approach to characterize the 
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normalized axle load distribution for each axle and vehicle type using typical Weigh-In-

Motion (WIM) data gathered from field. Federal Highway Administration (FHWA) 

characterizes traffic into thirteen (13) vehicle classes. Vehicle class 1 to class 3 are the 

light vehicle groups that are neglected in pavement performance analysis since they do 

not have a significant impact on pavement distress. Vehicle classes 4 to 13 are the heavy 

load categories that are the cause of pavement distress. The axle types for the vehicles in 

each class are categorized as single, tandem, tridem, and quadrem axles. Additionally, 

each axle has single or dual tires. According to the mentioned FHWA vehicle 

classification and following NCHRP 1-41 (Lytton et al. 2010), the traffic load is finally 

characterized into 8 categories shown in Table 2.1 that is used as traffic input for the 

pavement performance evaluation.  

 
Table 2.1 Vehicle categories classified by vehicle class, axle type, and the number of tires 
(Lytton et al. 2010). 

Vehicle Class Single axle Tandem axle Tridem axle Quadrem axle 
4 

1 
3 5 7 5 

6 

4 6 8 

7 
8 

2 

9 
10 
11 
12 
13 

                                            single tire             dual tire 

 

The detailed axle load distribution for each load category can be obtained from the WIM 

data for each axle type of each vehicle class. In case WIM data is not available, the 

annual average daily truck traffic (AADTT) is used to estimate the number of axle loads 

for each category using a model of cumulative axle load distribution (CALD) with a 
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series of default distributions (Lytton et al. 2010). A typical CALD is a sigmoidal-

shaped curve that is obtained from summarizing the individual load intervals in each 

load category. NCHRP 1-41 (Lytton et al. 2010) employed the Gompertz model to 

characterize the statistic properties of the CALD, 

exp[ exp( )]y xα β γ= − −  (2.1) 

where x  is load interval (lb), α , β , and γ  are the shape parameters defining the curve. 

With the default parameters summarized from historical traffic data, a series of traffic 

data with the information of vehicle category, axle type, tire type, and load interval can 

be estimated based on AADTT in following steps:  

1) The following equation expends AADTT data to the annual number of trucks for each

vehicle class based on a normalized vehicle distribution, 

VC
i iDNT AADTT P= ⋅ (2.2) 

where iDNT  is the daily number of trucks for vehicle class i , VC
iP  is normalized truck 

class distribution factor of class i  shown in Table 2.2 that is obtained from the principal 

arterials in the roadway function class and the major multi-trailer truck route in Truck 

Traffic Classification. 

Table 2.2 Default normalized vehicle class distribution factor (Lytton et al. 2010). 
Vehicle class 4 5 6 7 8 9 10 11 12 13 

Distribution factors (percentage) 1.8 24.6 7.6 0.5 5.0 31.3 9.8 0.8 3.3 15.3 

2) Using the typical number of axles for each vehicle shown in Table 2.3, the daily

number of trucks for each vehicle class, iDNT , is derived to the daily number of axle 

loads for each vehicle class and axle type, 
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AN

ij i ijDNA DNT P= ⋅   (2.3) 

where ijDNA is the daily number of axle load for vehicle class i  and axle type j  ( 1j = : 

single axle, …, 4j = : quadrem axle), AN
ijP  is typical number of axles for each vehicle 

class listed in Table 2.3. Here, the subscripts i  and j  do not follow the Einstein notation 

convention. 

 
Table 2.3 Typical number of axles for each vehicle (Lytton et al. 2010). 

Vehicle class Single axle Tandem axle Tridem axle Quadrem axle 
4 1.62 0.39 0.00 0.00 
5 2.00 0.00 0.00 0.00 
6 1.02 0.99 0.00 0.00 
7 1.00 0.26 0.83 0.00 
8 2.38 0.67 0.00 0.00 
9 1.13 1.93 0.00 0.00 
10 1.19 1.09 0.89 0.00 
11 4.29 0.26 0.06 0.00 
12 3.52 1.14 0.06 0.00 
13 2.15 2.13 0.35 0.00 
                                                                                 single tire             dual tire 

 

3) According to the categorization method shown in Table 2.1, the daily number of axle 

load ijDNA  are summarized into eight traffic load categories and are rewritten as kDNA , 

where k  is the vehicle categories. Then, the daily number of axle load is attributed to 

different load intervals according to their distributions, 

 
INT INT
km k kmDNA DNA P= ⋅   (2.4) 

where k  is vehicle categories (1~8), m  is the order of load magnitude internals (1-38), 

INT
kmP  is the default distribution of load intervals for each traffic category calculated based 

on the CALD listed in Table 2.4 and illustrated in Figure 2.2. 
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Table 2.4 Default CALD vs. load intervals for each traffic category (Lytton et al. 2010). 
 Category 

1 2 3 4 5 6 7 8 
Axle type Single Tandem Tridem Quadrem 
Tire type Single Dual Single Dual Single Dual Single Dual 
Interval 

No. 1~38 
From 3000 lb,  

1000 lb interval 
From 6000 lb,  

2000 lb interval 
From 3000 lb,  

3000 lb interval 
From 12000 lb,  
3000 lb interval 

1 0.132 0.0896 0.0971 0.0269 0.5835 0.0754 0.4005 0.0056 
2 0.2541 0.1941 0.1654 0.0596 0.7411 0.1318 0.5384 0.0187 
3 0.3958 0.3282 0.2494 0.1109 0.8465 0.2044 0.6578 0.0472 
4 0.5341 0.4689 0.3424 0.1799 0.9115 0.2882 0.7532 0.0962 
5 0.6542 0.5977 0.4373 0.2624 0.9498 0.3772 0.8255 0.166 
6 0.7505 0.7048 0.5281 0.3522 0.9718 0.4658 0.8783 0.2523 
7 0.8235 0.7884 0.611 0.4431 0.9842 0.5496 0.916 0.3478 
8 0.8769 0.8508 0.6837 0.53 0.9912 0.6256 0.9423 0.4449 
9 0.9149 0.896 0.7457 0.6094 0.9951 0.6924 0.9606 0.5373 
10 0.9416 0.9281 0.7973 0.6796 0.9973 0.7497 0.9732 0.621 
11 0.9601 0.9505 0.8396 0.7398 0.9985 0.7979 0.9818 0.694 
12 0.9728 0.9661 0.8738 0.7905 0.9992 0.8379 0.9876 0.7557 
13 0.9815 0.9768 0.9011 0.8325 0.9995 0.8706 0.9916 0.8067 
14 0.9875 0.9842 0.9228 0.8668 0.9997 0.8971 0.9943 0.8481 
15 0.9915 0.9892 0.9399 0.8945 0.9999 0.9184 0.9962 0.8813 
16 0.9942 0.9927 0.9533 0.9167 0.9999 0.9355 0.9974 0.9076 
17 0.9961 0.995 0.9637 0.9344 1 0.9491 0.9982 0.9284 
18 0.9974 0.9966 0.9719 0.9484  0.9599 0.9988 0.9446 
19 0.9982 0.9977 0.9782 0.9596  0.9684 0.9992 0.9572 
20 0.9988 0.9984 0.9832 0.9683  0.9752 0.9995 0.967 
21 0.9992 0.9989 0.987 0.9752  0.9805 0.9996 0.9746 
22 0.9994 0.9993 0.9899 0.9806  0.9847 0.9997 0.9805 
23 0.9996 0.9995 0.9922 0.9848  0.988 0.9998 0.985 
24 0.9997 0.9997 0.994 0.9882  0.9906 0.9999 0.9885 
25 0.9998 0.9998 0.9954 0.9907  0.9926 0.9999 0.9911 
26 0.9999 0.9998 0.9964 0.9928  0.9942 0.9999 0.9932 
27 0.9999 0.9999 0.9972 0.9944  0.9954 1 0.9948 
28 0.9999 0.9999 0.9979 0.9956  0.9964  0.996 
29 1 1 0.9984 0.9966  0.9972  0.9969 
30   0.9987 0.9973  0.9978  0.9976 
31   0.999 0.9979  0.9983  0.9982 
32   0.9992 0.9984  0.9987  0.9986 
33   0.9994 0.9987  0.9989  0.9989 
34   0.9995 0.999  0.9992  0.9992 
35   0.9997 0.9992  0.9994  0.9994 
36   0.9997 0.9994  0.9995  0.9995 
37   0.9998 0.9995  1  1 
38   1 1     
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Figure 2.2 Cumulative axle load distribution versus load intervals for all categories using 
default class, axle type and axle load distribution. 
 

4) Finally, for sake of simplicity, the daily number of axle loads with different levels of 

load intervals of each category, INT
kmDNA  with eight traffic categories are summarized into 

the ones for two different tire types (single tire and dual tire), INT
nmDNA , where n  

indicates tire type ( 1n =  represents single tire, 2n =  represents dual tire). Using the 

aforementioned steps, Figure 2.3 shows the number of axle load repetitions versus load 

intervals based on 2,000,000 annual trucks for single tire and dual tire loads. 

 

   
                               (a)                                                                       (b) 

Figure 2.3 Number of axle load repetition versus load intervals based on 2×106 annual 
truck traffic repetitions for (a) single and (b) dual tire type. 
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2.3. A Generalized Framework for Evaluating Performance Impact of ATs 

2.3.1. Framework 

To emerge the impact of AT, the pavement performance analysis for both HTs and ATs 

are necessary to be performed for us to compare. The most obvious differences between 

the loading patterns of the HTs and AT are the lateral wheel wander and load spectra. 

Pavement performance subjected to ATs can be evaluated using the same framework by 

adjusting the standard deviation, load spectra of load magnitude, among other factors 

like the proportion of ATs operating on road in total traffic, etc., if these data are 

available. In the analysis, every tire load’s location and magnitude during pavement life 

can be sampled from the probability given in Figure 2.1 and Figure 2.3 for example. 

Figure 2.4 illustrates the scenarios of tire loads that can possibly be located and be in a 

certain load magnitude intervals, along with the age- and temperature-dependent 

mechanical properties of the AC layer when the tire load applies. 
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Figure 2.4 Illustration of variation of traffic load spectra, tire deviation, and dynamic 
modulus of AC layers. 
 

     
(a)                                                                            (b) 

Figure 2.5 (a) Typical temperature profiles of pavement at various depths tied to 
the time of a year (Epps 2002), and (b) a plot of predicted dynamic modulus for 
twenty-year considering aging. 
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estimated (Figure 2.5(b)) using the material module presented in (Huang et al. 2021). A 

generalized flowchart is presented in Figure 2.6 designed specifically for the evaluation 

of the impact of ATs considering their unique loading characteristics. Pavement sections 

are designed to accommodate the specific design conditions and exhibit different 

variations in modulus of AC layers, resilience modulus of unbound layers, geographical 

climate conditions, etc. Thus, the performance impact of ATs on each pavement section 

would vary and should be examined individually. The following points are emphasized 

to appropriately assess the impact of AT: 

• The variability of the lateral wheel wander follows a normal distribution with a

standard deviation of 10 inches (25.4 cm) for HTs, compared to a much smaller

standard deviation for ATs.

• The variation of tire load magnitude follows the axle load distribution modelled by

the Gompertz model with default parameters used in NCHRP 1-41 (Lytton et al.

2010), which is the same for both HTs and ATs since the load spectra for ATs has

not been adequately studied up to now.

• In the framework, we can define the percentages of truck traffic that are from ATs.

The tire deviations of HTs and ATs sharing the same pavement are sampled

separately from the normal distributions with different standard deviations.

• Depending on the objectives of the analysis, the effects are investigated specifically

based on the driving force responsible for different pavement distress types (e.g.,

top-down cracking) at the location (e.g., pavement surface) where the distress is

likely to occur.
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In this work, we only consider the impact of ATs at a general level without employing 

any specific models to predict the development of certain distress like rutting, top-down 

cracking, etc. The accumulated value of distress driving force is chosen to be an impact 

indicator due to its straightforwardness and objectivity that is not subjected to any bias 

by a specific model. The accumulated values of distress driving force profile induced by 

both AT loads and human-driven truck loads will be obtained and compared. 

 

 
Figure 2.6 Flow chart for evaluation of the impact by autonomous trucks considering 
variations of traffic load spectra, and tire deviation. 
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The horizontal tensile strain at the bottom of the AC layer is commonly considered as 
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Number of trucks for 
each vehicle class

Number of axle load for each 
vehicle class and each axle type

Number of axle load 
repetitions for each load 

interval for each load category

Distribution of axle loads 
for each load interval for 
- single tire - dual tire
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Figure 2.7, the load position and load magnitude of every single tire load (blue and grey 

arrows) are sampled from the probabilities calculated in the previous section. The 

number of tire loads on a pavement section over its lifetime is statistically large enough. 

Through the mechanical response analysis module, we obtain a tensile strain profile at 

the bottom of the AC layer induced by each tire load. The variations in tire location, load 

magnitude, and the modulus of each layer will result in different strain profiles. The 

strain profiles ( )xε  induced by each tire load of HTs and ATs are both recorded, which 

are shown as blue and dark grey curves in Figure 2.7, respectively. The blue curves are 

the tensile strain profiles caused by HTs with wider tire deviation, while the grey curves 

are the profiles induced by ATs with narrower, even zero tire deviation. Both profiles are 

respectively summed up using the superposition principle.  

 
2

1 1 1
( ) ( )

iji MJ

ijm
i j m

D x xε
= = =

= ∑∑∑   (2.5) 

where 1,2i =  indicates single and dual tire load type respectively, j  is the total number 

of tire load interval for i th tire type, m  is the number of tire repetitions in j th tire load 

interval for i th tire type. The maximum value of summed strain profiles for both ATs 

and HTs are compared as an indicator of performance impact. Since the strain profiles 

induced by AT are commonly more concentrated near the center of wheel-path due to 

narrower tire deviation, the summed ( )xε  profile ( ( )ATD x ) will be much higher 

compared with the one by HTs ( ( )HTD x ). The impact indicator I  is calculated by 

comparing maximum values of ( )D x  profile for ATs and HTs shown as follows, 
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D x
=   (2.6) 

 

 
Figure 2.7 The driving force profiles (tensile strain at AC bottom) induced by each tire 
load with (pink curves) and without (dark grey curve) wheel wander. 
 

2.4. Evaluation and Parametric Analysis of AT Impact on Texas Flexible Pavement 

This section evaluates the impact of ATs based on the variations of tire deviation and the 

percentage of ATs driving on flexible pavements. The design of flexible pavements is 

based on various conditions and criteria such as specific service traffic volume, 

environmental condition, design reliability, roadbed resilient modulus, structural asphalt 

thickness, and mixture design, which covers a wide range of parametric variations. 

These different design features influence extensively and diversely on the AT effects on 

pavement performance. Thus, distress acceleration induced by AT would not be a 

uniform factor but is a case-dependent one that needs to be studied section by section. 
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The AT impact on twenty-two (22) Texas LTPP sections is analyzed in this section. 

Furthermore, a sensitivity analysis is carried out on the variations of mixture parameters 

and design features to exhibit how sensitive the pavement section is in response to the 

changes or the uncertainty of some of these parameters such as asphalt concrete 

thickness, and binder content, etc. 

2.4.1. Assessment of AT Impact on Major Type of Flexible Pavement Distress 

Following the evaluation procedure shown in Figure 2.6, the AT impact on major types 

of flexible pavement distress such as top-down cracking (TDC), bottom-up cracking 

(BUC), and rutting can be evaluated based on their corresponding driving force 

introduced by each tire load: 

Table 2.5 Distress types and their corresponding driving force. 
Distress type Objective driving force 

TDC The tensile stress profile at pavement surface adjacent to tire load 
BUC The tensile strain profile at bottom of AC layer 

rutting The vertical strain profiles in AC, base, and subgrade layers, respectively 

Since driving force profiles induced by ATs are more concentrated near the center of 

wheel-path due to smaller tire deviation, the accumulated profile by ATs is higher in 

magnitude and narrower in distribution compared with the profile by HTs. As illustrated 

in Figure 2.8, the twenty-year accumulated driving force for TDC, BUC, and rutting for 

Texas LTPP section 3689 are plotted respectively. These plots visualize the comparison 

of the shape of accumulated driving force profile and their maximum level that is used to 

quantify the AT impact indicator.  
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(a) 

(b) 

(c) 
Figure 2.8 The plot of the typical accumulated driving force for (a) TDC, (b) BUC, and (c) 
rutting for Texas LTPP section 3689. 

0

5E+12

1E+13

1.5E+13

2E+13

2.5E+13

3E+13

-4 -3 -2 -1 0 1 2 3 4

Ac
cu

m
ul

at
ed

 T
DC

 d
riv

in
g 

fo
rc

e 
(h

or
iz

on
ta

l s
tre

ss
 o

n 
su

rfa
ce

) 

Distance from the center of wheelpath (m)

100% AT
traditional

0

5000

10000

15000

20000

25000

-4 -3 -2 -1 0 1 2 3 4

Ac
cu

m
ul

at
ed

 B
UC

 d
riv

in
g 

fo
rc

e 
(h

or
iz

ao
nt

al
 s

tra
in

 o
n 

th
e 

bo
tto

m
 o

f A
C)

 

Distance from the center of wheelpath (m)

100% AT
traditional

0

2000

4000

6000

8000

10000

12000

14000

16000

-4 -3 -2 -1 0 1 2 3 4

Ac
cu

m
ul

at
ed

 ru
tti

ng
 d

riv
in

g 
fo

rc
e 

(v
er

tic
al

 s
tra

in
) 

Distance from the center of wheelpath (m)

AC 100% AT
Base 100% AT
Subgrade 100% AT
AC traditional
Base traditional
Subgrade traditional



 

26 

 

Figure 2.9 shows the impact indicators of ATs for BUC, TDC, and rutting respectively 

for twenty-two (22) Texas LTPP sections. The higher the impact indicator value, the 

more the pavement section suffer from AT impact.  The blue and grey bars are the 

impact indicators of 100% and 50% ATs in service, which are plotted in descending 

order. The red connected dots are the AC thickness of each section exhibiting that the 

sections with thinner AC layer and lower AADTT are more affected by ATs (with 

higher impact factors and more on the left-hand side), while the sections with thicker AC 

layer and higher AADTT are less vulnerable to ATs (with lower impact factors and more 

on the right-hand side). Besides, the impact indicators on TDC are overall smaller than 

the ones for BUC. It could be explained that the driving force profile for BUC 

(horizontal strain at AC bottom) is more concentrated under the tire load, therefore, 

highly concentrated tire loads further intensify the accumulation of driving force. While 

the driving force profile of TDC is flatter, even with more concentrated tire loads, the 

level of accumulation of TDC is much lower than the one for BUC. Overall, the sections 

with higher traffic volume, higher reliability, and thicker AC layer are less affected by 

AT implementation for BUC and TDC. 

Figure 2.9 (c)-(e) show the AT impact indicators of rutting in AC, base, and subgrade 

layers, respectively. These charts are plotted using the same scale showing that the 

relative magnitudes of the AT impact indicators gradually decrease from AC to 

subgrade. It is rational since the vertical stress and strain are gradually dispersed to 

become widespread with the increase of depth. As mentioned before, a less concentrated 

driving force results in lower impact by ATs. Therefore, the highest level of impact 
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indicator decreases from 1.99 in the AC layer to 1.69 in base, and 1.41 in the subgrade. 

The impact indicators for AC layer do not change much from section to section. No 

strong correlation is found between impact indicators and pavement features such as 

AADTT, AC, base, or subgrade layers for rutting in the AC layer. While for base and 

subgrade, the section with higher AADTT is less affected by ATs due to the fact that 

they are designed with higher reliability and are to serve higher traffic volume. 

As shown in Figure 2.10, we run a cross-comparison of the AT impact with different AT 

standard deviations (0 inches, 2.5 inches, and 5 inches) and percentages of AT in 

service(25%, 50%, and 100%) for TDC, BUC, and rutting on Texas LTPP section 1039 

that is a high AADTT and thick AC pavement section. With the development of AT 

technology and implementation, there would be more ATs on the flexible pavement in 

the near future, while the tire deviation would be intentionally adjusted by an advanced 

lane-keeping algorithm. The full spectrum analysis would benefit the AT design and 

pavement management for a specific pavement section with known potential impacts of 

different scenarios.  
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(a) 

  
(b) 

Figure 2.9 Impact factors of ATs (50% and 100% AT) for different distress: (a) BUC, (b) 
TDC, and (c) rutting: AC, (d) rutting: base, and (e) subgrade on twenty-two (22) Texas 
LTPP sections. 

 

0

2

4

6

8

10

12

14

1

1.5

2

2.5

3

3.5

4

38
75

 (2
, 4

80
)

10
50

 (1
, 1

89
)

37
49

 (1
.5

, 2
00

)

11
74

 (4
.6

, 2
44

)

36
89

 (2
.7

, 2
10

)

11
16

 (4
.6

, 8
61

)

11
19

 (6
.2

, 3
39

)

10
76

 (8
.3

, 2
95

)

10
48

 (1
.2

, 1
21

)

61
60

 (3
, 3

31
)

10
56

 (1
.8

, 1
95

)

61
79

 (5
.5

, 3
90

)

10
61

 (1
, 2

63
)

11
83

 (5
.3

, 3
85

)

10
87

 (7
.7

, 1
40

)

11
30

(3
.9

, 2
20

)

11
11

 (9
.5

, 3
65

)

11
78

 (8
.5

, 3
37

)

10
39

 (9
, 1

01
0)

37
29

 (1
1.

6,
 1

28
0)

60
79

 (1
1.

4,
 2

19
0)

60
86

 (1
0,

89
5)

AC
 th

ic
kn

es
s 

(in
ch

)

AT
 im

pa
ct

 in
di

ca
to

r (
B

U
C

)

Section (AC thickness inch, AADTT)

100% AT 50% AT AC thickness

0

2

4

6

8

10

12

14

1

1.5

2

2.5

3

3.5

10
50

 (1
, 1

89
)

10
61

 (1
, 2

63
)

38
75

 (2
, 4

80
)

10
56

 (1
.8

, 1
95

)
10

48
 (1

.2
, 1

21
)

61
60

 (3
, 3

31
)

37
49

 (1
.5

, 2
00

)
36

89
 (2

.7
, 2

10
)

11
74

 (4
.6

, 2
44

)
60

79
 (1

1.
4,

 2
19

0)
11

16
 (4

.6
, 8

61
)

60
86

 (1
0,

89
5)

11
30

(3
.9

, 2
20

)
61

79
 (5

.5
, 3

90
)

11
19

 (6
.2

, 3
39

)
10

76
 (8

.3
, 2

95
)

11
83

 (5
.3

, 3
85

)
10

87
 (7

.7
, 1

40
)

11
78

 (8
.5

, 3
37

)
11

11
 (9

.5
, 3

65
)

37
29

 (1
1.

6,
 1

28
0)

10
39

 (9
, 1

01
0)

AC
 th

ic
kn

es
s 

(in
ch

)

AT
 im

pa
ct

 in
di

ca
to

r (
TD

C
)

Section (AC thickness inch, AADTT)

100% AT 50% AT AC thickness



 

29 

 

  
(c) 

  
(d) 

Figure 2.9 Impact factors of ATs (50% and 100% AT) for different distress: (a) BUC, (b) 
TDC, and (c) rutting: AC, (d) rutting: base, and (e) subgrade on twenty-two (22) Texas 
LTPP sections (cont’d). 
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(e) 

Figure 2.9 Impact factors of ATs (50% and 100% AT) for different distress: (a) BUC, (b) 
TDC, and (c) rutting: AC, (d) rutting: base, and (e) subgrade on twenty-two (22) Texas 
LTPP sections (cont’d). 
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(a) 

 
(b) 

 
(c) 

Figure 2.10 Cross comparison of the AT impact with different AT standard deviations 
and percentages of AT for (a) TDC, (b) BUC, and (c) rutting on Texas LTPP section 1039. 
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2.4.2. Parametric Analysis of Variations of Mixture Parameters  

The design features of a flexible pavement vary upon specific conditions and criteria. A 

parametric study is necessary to identify those parameters in different pavement designs 

that have a significant influence on pavement performance in response to AT 

implementation. Two typical pavement sections, a high traffic volume section 1039 

(1010 AADTT) and a low traffic section 1174 (244 AADTT), were selected for this 

purpose. The parametric study was conducted by varying one parameter at a time. The 

key parameters that may link to pavement vulnerability to ATs are listed in Table 2.6. 

The middle column of each section represents the actual design inputs value, while the 

left column is 70% of its original value and the right column is 130% of its original 

value, respectively. 30 simulations were undertaken for these two sections using the 

range of values specified in Table 2.6. The normalized error nE  between the varied and 

the original values is used to recognize the significance of each parameter on AT impact 

on pavement performance. The nE  is obtained by normalizing the error of impact 

indicators between the original parameters originalI  and the varied parameters variedI . 

 varied original

original

100%n

I I
E

I
−

= ⋅   (2.7) 

The overall normalized error of each parameter is the averaged nE  values of the 

minimum (70% of the original value) and maximum (130% of the original value) design 

parameters. The averaged nE  is utilized to quantify how much variation in AT impact 

will yield from changing certain input parameters within a certain range. In other words, 

it is to test how sensitive a pavement responds to ATs in terms of its performance. 
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Table 2.6 Selection of design parameters and range of values used for parametric analysis. 
Parameter Range of values 

section 1039 (high AADTT) 
Range of values 

section 1174 (low AADTT) 
Thickness of AC, 

ACH , inch 6.3 9 11.7 3.22 4.6 5.98 

Thickness of base, 
baseH , inch 15.26 21.8 28.34 9.24 13.2 17.16 

Dynamic modulus of AC, 
ACE , ksi 0.7 ACE Determined by 

material module 
1.3 ACE 0.7 ACE Determined by 

material module 
1.3 ACE

Resilient modulus of base, 
baseE , ksi 89.33 127.61 165.89 175.90 251.28 326.66 

Resilient modulus of 
subgrade, subgradeE , ksi 38.67 55.24 71.81 61.16 87.37 113.58 

Air void, 
avV , % 4.42 6.32 8.21 9.24 13.2 17.16 

Volume of effective asphalt 
binder, beV , % 6.9 9.86 12.81 5.07 7.24 9.41 

Figure 2.11 shows the normalized error of AT impact for each parameter. As shown in 

Figure 2.11(a), AC thickness has a significant influence on the AT impact for both low- 

and high-traffic sections in the TDC scenario. Other parameters in the high traffic 

volume section, such as the thickness baseH  and the stiffness baseE  of base, cause much 

fewer variations in the impact factor. For the low volume section, on the other hand, the 

overall level of nE  is much higher, in which the thickness of AC, the thickness and the 

stiffness of base, and the stiffness of subgrade are the highly influencing parameters that 

caused significant variation in the impact factor. For BUC shown in Figure 2.11(b), the 

thickness and modulus of AC are the top two influencing parameters for the high-

volume section. While for the low-volume section, the parameters like the thickness of 

AC, the thickness and the stiffness of base are the significant influencing parameters on 

AT effect. These results indicate the thick AC layer in high volume section is generally 

less sensitive to the impact by ATs, and the parameters in the layers under AC are less 
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significant in resisting AT impact. The low volume section with thin AC layer is not 

only highly affected by AC thickness but also greatly impacted by the underlying 

materials and configurations since the mechanical support by base and subgrade is more 

crucial to this type of pavement. The parametric analysis for rutting is particularly 

interesting. Since rutting mainly occurs in the AC layer of pavement sections with thick 

AC layers, all the parameters related to AC have a significant influence on rutting caused 

by AT, such as thickness, dynamic modulus, air void, and effective asphalt binder 

content for AC layer. If pavement has a thin AC layer, rutting is most likely to occur in 

the underlying layers. Therefore, the thickness of the base layer and the modulus of base 

and subgrade layers can remarkably affect the rutting performance in response to ATs, 

which can be observed in Figure 2.11(c). Higher rutting is expected by AT when the 

pavement has a weak base and subgrade layers. The parametric analysis indicates the 

key parameters of pavement design that should be noticed when it comes to AT 

implementation.  
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(a) 

 
(b) 

 
(c) 

Figure 2.11 Parameter analysis of pavement design on AT impact for (a) TDC, (b) BUC, 
and (c) rutting for a high traffic volume section 1039 (1010 AADTT) and a low traffic 
volume section 1174 (244 AADTT). 
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2.4.3. Other Factors of ATs Under Development 

Though the expectation of ATs is exceedingly positive, ATs still have a long journey 

before being commercially available and the narrative of their utilization remains 

unknown. Thus, the following facts cannot be determined at this stage: 

• ATs fleet proportion: regardless of the fact that there are many insights and forecasts

on the development of ATs, the actual extent of AT implementation remains

uncertain and considerably related to a much bigger picture linked to technologies,

efficiency, global economy, legislation, and even situation of COVID-19 pandemic

(Laing 2022), etc.

• Intensified loading frequency induced by platooned-autonomous truck: The

platooning of vehicles is a technology applied under AT umbrella that a group of

vehicles closely follows a common leading vehicle on the highway. With the advent

of computers and wireless communication devices equipped in these trucks, they can

maintain close distances from each other to enhance fuel-efficiency, improve road

capacity, etc. (Lu et al. 2017). Meanwhile, the platooning behavior can greatly

shorten the resting time of flexible pavement between each axle load since the

distance between trucks is much smaller than HTs. This phenomenon is not

considered in this work but would make a flexible pavement more vulnerable if the

resting time for recovery is shortened thus aggravating the accumulation of pavement

distress.
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Figure 2.12 Typical AT types under Federal Highway Administration (FHWA) vehicle 
classification (Randall 2012). 
 

• Load spectra with AT operation: the analyses presented in the previous sections are 

based on the load spectra obtained from historical traffic data by fully HTs. 

Implementation of ATs is a game-changer that would drastically reshape the load 

spectra curves of flexible pavement considering factors such as safety, operational 

cost efficiency, and related regulations in the future. Till now, the most common 

types of self-driving trucks under development are classes 8 and 9 under Federal 

Highway Administration (FHWA) vehicle classification shown in Figure 2.12. Most 

of the investment of ATs have been bet on the middle mile solution involving heavy 

duty class 8 trucks (Banker 2022). If these truck classes will be the majority of 

models in the future, the truck categories distribution shown from Table 2.1 - 2.4 and 

Figure 2.2 will be changed drastically and can no longer precisely describe actual 

traffic scenarios with ATs.  

• Lateral tire deviation of ATs: Zhou et al.(Zhou et al. 2019) directly measured the 

patterns of AVs lateral tire deviation. It was found that the standard deviation of AVs 



is at least 3 times smaller than human-driven vehicles. The narrower wheel wonder 

pattern is also measured by an AT technology company (Figure 2.13). Nevertheless, 

different lane-keeping algorithms utilized by ATs would yield various wheel wander 

patterns, which could even mimic the tire deviation pattern of HTs. Therefore, 

assuming a much narrower wheel wander may not always be accurate to describe the 

wheel wander pattern of ATs in the future. 

Figure 2.13 Tire deviation distributions of self-drive trucks and human-operated trucks 
(TuSimple 2023). 

Summarily, the results of the current analysis may not precisely represent realistic 

scenarios in the future since the assumptions of ATs we made may be subject to many 

uncertainties mentioned above. These results, however, still provide rational insight into 

how AT operations may accelerate various types of distress in flexible pavement based 

on the current situation. Whenever more information on ATs implementation is 

available, one can easily utilize the same modeling procedure with the updated data for a 

more realistic evaluation.  

38 
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Autonomous truck (AT) as a new category of vehicles has been making progressive 

steps towards commercially available. The expectation of ATs has shown exceptionally 

welcoming from the market perspective. Among many potential impacts, benefits, 

impediments, and technical aspects of ATs under extensive research, we focused on the 

potential impact of ATs on the performance of flexible pavement, more specifically, 

fatigue cracking and rutting performance. Since current infrastructure is designed to 

serve traditional traffic configurations, it is essential to study the impact of AT 

implementations on the long-term performance of existing pavement structures. The 

results of the analysis would benefit the future design of new pavements accommodating 

the coming AT.  

Traffic variations for both ATs and HTs were elaborated. Loads of ATs are more 

concentrated in the center of wheel-path, which intuitionally leads to shorter pavement 

life, but the question is how to quantify the effect of ATs on distress development. 

Additionally, we adopted a hierarchical approach to characterize the normalized axle 

load distribution for each axle and vehicle type using historical WIM data. A new 

generalized framework was proposed that can evaluate the pavement response to ATs 

operation throughout its service life. The impact of AT was evaluated in a general way 

without employing any distress predictive models to avoid any bias induced by the 

choice of models. The impact indicator was introduced to quantify the AT impact. 

Twenty-two (22) Texas LTPP sections were chosen and analyzed. The findings are listed 

as follows:  

(i) the AT impact on BUC is overall more significant than the ones for TDC.

2.5. Conclusions 
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(ii) the sections with higher traffic volume, higher reliability, and thicker AC layer are 

less vulnerable to AT implementation for both BUC and TDC. 

(iii) the rutting impact indicators for the AC layer are higher than the ones in the base 

and subgrade.   

(iv)  Impact indicators of rutting in AC do not change much from section to section and 

no strong correlation was found between rutting impact indicators and any pavement 

features in the AC layer. 

(v) for rutting in base and subgrade, the sections with higher AADTT are less affected 

by ATs due to that they are designed with higher reliability and a stronger AC layer.  

A cross-comparison was presented to show the capacity of the present framework by 

running a full spectrum analysis covering different AT standard deviations and 

percentages of ATs. In addition, a parametric study was conducted to identify the 

sensitivity of the selected key parameters in response to AT implementation. The 

normalized error of AT impact of each parameter implied the sensitivity of certain 

parameters to AT loads: 

For TDC, 

(i) AC thickness has a significant influence on the AT impact for both low and high 

traffic sections; 

(ii) for the high traffic volume section, the changes in base thickness and base stiffness 

caused much smaller variations of impact factor; 

(iii) the parameters for the low traffic volume section are more sensitive to AT 

implementation; 
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(iv)  for the low traffic volume section, the thickness of AC and base, the stiffness of 

base and subgrade are the highly influencing parameters that caused significant 

variation of performance impact. 

For BUC, 

(i) for the high-volume section, the thickness and modulus of AC are the top two 

influencing parameters; 

(ii) for the low-volume section, the thickness of AC and base, and the stiffness of base 

are the significant influencing parameters on AT effect; 

(iii) thick AC layers in the high-volume section generally insured higher performance 

under the impact of ATs and vice versa.  

For rutting, 

(i) for the high-volume section, rutting mainly occurs in the AC layer in pavement 

sections with thicker AC layers. All the parameters related to AC have a significant 

influence on rutting by AT, such as the thickness, dynamic modulus, air void, and 

effective asphalt binder content for the AC layer; 

(ii) for a section with thin AC layers (or low traffic volume), rutting is most likely to 

occur in the underlying material. The thickness of the base layer, the modulus of the 

base and the subgrade layers can significantly affect the rutting behaviors in response 

to ATs.  

Finally, since the narrative of ATs utilization remains unknown, our analysis may not 

precisely represent realistic scenarios in the future. The effect of intensified loading 

frequency induced by platooned-autonomous trucks was neglected in this work. We 



 

42 

 

described a few other facts of ATs that are to be determined. Nevertheless, the results 

provided some rational perception of how AT implementation may shorten the life of 

flexible pavement based on existing information. The same framework can be utilized 

for a better estimation when more data regarding AT is available. 



3. A MECHANISTIC-EMPIRICAL MODEL FOR PREDICTING MOISTURE

VARIATION IN SUBGRADE SOIL 

3.1. Introduction 

Moisture content of fined-grained subgrade soil is an important factor in pavement 

design because it directly affects the mechanical properties (i.e. resilient modulus), 

swell-shrink behavior of compacted subgrade soil (clay), and in turn the performance of 

pavements. Therefore, accurate prediction of moisture variation within subgrade soil is 

critical in pavement design.  

Subgrade soil is compacted at optimal moisture content (OMC) under pavement 

construction to reach maximum dry density (MDD). Subgrade soil reaches moisture 

equilibrium condition several years after construction. The equilibrium moisture content 

at the depth of moisture active zone can be either larger or smaller than OMC depending 

on the suction potential in the subgrade soil at compaction (Bae and Stoffels 2019). After 

moisture equilibrium condition reaches, the moisture content above the depth of 

moisture active zone still fluctuates because of seasonal rainfall and evapotranspiration, 

while the moisture content below the active zone is barely affected by seasonal rainfall 

and evapotranspiration and keeps almost constant (McKeen and Johnson 1990). Previous 

studies show that the suction/moisture in subgrade soil is controlled by environmental 

factors (i.e. precipitation and evaporation) and material properties (Fredlund and 

Rahardjo 1993, Zapata et al. 2009, Bulut et al. 2014, Javid and Bulut 2019, Saha et al. 

2019, Javid et al. 2022), while ground water has a minor effect unless the ground water 

table is close to the top of the subgrade layer (Bae and Stoffels 2019). Therefore, it is 
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necessary to consider both environmental factors and soil material properties to 

accurately predict moisture condition and suction distribution in subgrade soil, which is 

critical in predicting resilient modulus of subgrade soil in pavement design.  

Thornthwaite Moisture Index (TMI) is an indicator of local precipitation relative to the 

potential evapotranspiration. TMI has been correlated to equilibrium soil suction beneath 

pavements (Javid and Bulut 2019, Saha et al. 2019). There are many reported methods 

for calculating TMI since 1948. The first method of calculating TMI (TMI-1948) was 

empirically developed by Thornthwaite  (Thornthwaite 1948) using limited climate data 

available during that period of time. In this method, TMI was defined as the annual 

moisture balance in a specified region based on precipitation, evaporation, water storage, 

deficit, and runoff. This method assumes that soil storage capacity is constant for all 

locations across the United States. The areas between isolines were interpolated. 

Thornthwaite and Mather (Thornthwaite and Mather 1955) revised the first method after 

they found that the implementation of the original method was difficult. This method is 

referred to as TMI-1955. There are only two parameters in the equation of TMI-1955, 

namely, annual precipitation and potential evapotranspiration of the site. Potential 

evapotranspiration is calculated using mean monthly temperature. Precipitation and air 

temperature data can be found from most weather stations around the world. Willmott 

and Feddema (Willmott and Feddema 1992) further revised TMI-1955 model by using a 

piecewise function in 1992. This method made a normalization of TMI-1955 model so 

that TMI ranges from -1 to +1, where -1 represents zero precipitation and +1 indicates 

zero potential evapotranspiration. Witczak (Witczak et al. 2006) found that the TMI-
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1955 model provides TMI results significantly different from the results of TMI-1948, 

so he empirically adjusted TMI-1955 model so that the adjusted TMI-1955 (also called 

TMI-2006) closely matches TMI-1948 results. This method has been incorporated in the 

Enhanced Integrated Climate Model (EICM) for the Mechanistic-Empirical Pavement 

Design Guide (MEPDG) (ARA Inc. 2004). The input data for calculating TMIs across 

the United States can be found in the National Oceanic and Atmospheric Administration 

(NOAA) climate database.  

As a component of the Mechanistic Empirical Pavement Design Guide (MEPDG), 

EICM is used to predict water and heat flow through pavement layers (Witczak et al. 

2006). Groundwater table is the input for EICM in predicting moisture content and 

suction above the phreatic surface which could yield inaccurate predictions if the 

groundwater is far below the subgrade layer (Zapata et al. 2009). To accurately predict 

moisture condition and suction distribution in subgrade soil, Gay (Gay 1994) first 

established a functional relationship between TMI and the mean annual moisture depth. 

Saha et al. (Saha et al. 2019) adopted Gay’s work and developed a mechanistic-

empirical model to predict equilibrium suction for subgrade soil by considering both 

climate and soil properties. TMI-2006 (Witczak et al. 2006) was used to represent the 

climate effect in this model. However, Saha et al. model (Saha et al. 2019) is incapable 

of characterizing suction variation above the depth of moisture active zone due to the 

climate condition, soil drainage, and vegetation cover on site. Suction variations at any 

depths and time within the subgrade soil can be determined by solving Mitchell’s one-

dimensional diffusion equation (Mitchell 1979). Based on Mitchell’s approach, McKeen 



 

46 

 

and Johnson (McKeen and Johnson 1990) proposed a model to determine the depth of 

moisture active zone and diffusion coefficient of subgrade soil given field suction 

measurements.  Yue and Veenstra (Yue and Veenstra 2018) employed the McKeen and 

Johnson’s model to estimate the diffusion coefficient and moisture active zone in 

Oklahoma using the data collected Oklahoma Mesonet (weather station). Javid et al. 

(Javid and Bulut 2019) collected field measured suction data from the same data source 

(Oklahoma Mesonet), and back-calculated equilibrium soil suction by fitting the field 

suction data into Mitchell’s diffusion equation. A statistical model was established to 

estimate equilibrium suction as a function of relative humidity, clay content, and TMI. 

Such a statistical model was developed based on the data collected at a specific site in 

Oklahoma under a specific climate and soil conditions, which limits the usage in other 

regions with different field conditions. To avoid the limitations of statistical approach, a 

mechanistic-empirical approach is ideal to model moisture/suction variation within 

subgrade soil. 

The objective of this study is to develop a mechanistic-empirical model to predict 

moisture variation in fine-grained subgrade soil based on a modified mechanistic-

empirical equilibrium suction prediction model (Saha et al. 2019) and Mitchell’s one-

dimensional diffusion equation (Mitchell 1979). The modification to Saha’s equilibrium 

suction model is the incorporation of a new TMI model.  This paper is organized as 

follows. The next section describes the data collection and processing which will be used 

in model calibration and validation. Then a new Thornthwaite Moisture Index (TMI) 

prediction model is introduced and the predicted TMI is used to represent the climate 
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factor in the prediction of the equilibrium soil suction at the depth of moisture active 

zone as described in the following section. Next, the predicted equilibrium soil suction at 

the depth of moisture active zone is input into Mitchell’s diffusion equation to predict 

the soil suction with time and depth within the subgrade layer of pavements. The last 

two sections conduct model validation and summarizes the significant findings of this 

study. 

3.2. Data Collection and Processing 

The data used in this paper were collected from two sources: MnROAD and LTPP 

databases (LTPP InfoPave 2020). MnROAD is a pavement test track operated by the 

Minnesota Department of Transportation. As shown in Figure 3.1, MnROAD consists of 

three main road segments: a 3.5 mile I-94 original Westbound, a 3.5 mile I-94 Mainline, 

and a 2.5 mile Low Volume Road (LVR), which are divided into over 50 sections with 

different materials and pavement types.  

 

Figure 3.1 MnROAD map (map data: Google Earth). 
 
More than 1000 electronic sensors have been installed at MnROAD test sections since 

1993 to track the changes in pavement performance due to environmental change and 

dynamic loading.  
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Initially, the senor model used to monitor moisture variation in subsurface layers was 

time domain reflectometry (TDR) and then was replaced with Decagon EH2O-TE (since 

2007) and EH2O-5TE (since 2008). 

The moisture data collected by EH2O-TE and EH2O-5TE sensors were used in this 

paper. EH2O-TE and EH2O-5TE were installed in the base and subgrade layers at 

different depths and the output includes volumetric water content (VWC), electrical 

conductivity (EC), and temperature (Tc). Campbell Scientific data loggers (CR 1000) 

and multiplexors were used to automatically collect the sensors’ measurements every 15 

minutes. With a material specific calibration, a precision of ±2% can be achieved using 

the recommended calibration method provided by Decagon. MnROAD staff developed a 

calibration approach for the base/subbase and subgrade materials used at MnROAD 

based on the Decagon’s method and the calibration functions are summarized in Table 

3.1. The MnROAD materials are classified according to aggregate gradation (grain size 

distribution), as presented in Figure 3.2.   

The collected raw data were converted to VWC using the calibration functions 

determined in the laboratory as shown below: 

                                        (3.1) 

where a and b for different paving materials can be found in Table 3.1. 

A data screening criteria developed in a previous study (Teshale et al. 2019) was 

employed here to ensure that high quality data were selected and used to validate the 

proposed model. The details of the screening criteria can be found in (Teshale et al. 

2019). After the data screening, cell 17, 19 and 35 were selected and the VWC data for 

%VWC a EW b= ⋅ +
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the selected cells were further smoothed out using the exponential weighted moving 

average (EMA) with a span of seven days. An example of the comparison between 

VWC and its EMA can be found in Figure 3.8 and 3.10 in section 3.4 of this chapter. A 

LTPP pavement section (ALABAMA 01-0102) with measured moisture content within 

the subgrade layer was also selected with no data screening process because there was 

only one data point with the date and depth of the measurement. The pavement 

configurations, paving materials and sensor locations (only the sensors in subgrade 

layers are marked in red balls) for cell 17, 19, 35, and LTPP 01-0102 are presented in 

Figure 3.3. Cell 17 contains three sensors within the subgrade layer at the depths of 48, 

60, and 72 inches from pavement surface. Cell 19 contains two sensors within the 

subgrade soil at the depths of 60 and 72 inches. Cell 35 contains six sensors within the 

subgrade soil at depths of 20.04, 24, 36, 48, 60, and 72 inches. LTPP 01-0102 contains 

only one sensor within the subgrade soil at 17.18 inches depth. 
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Table 3.1 Material properties and coefficients of the calibration function for TE 
and 5TE (Teshale et al. 2019). 

 Proctor parameters TE** sensor 
calibration coefficients 

5TE** sensor 
calibration coefficients 

Material MDD 
(g/cm3) 

OMC 
(%) a b a b 

class3 2.05 9.4 0.0009 -0.5149 0.0004 -0.0481 
class5 2.108 7.4 0.0007 -0.3524 0.0003 -0.0239 
class6 2.062 6.8 0.0011 -0.6787 0.0006 -0.1438 
SG* 2.111 7.8 0.0011 -0.6615 0.0005 -0.0908 
clay 1.875 13.1 0.0009 -0.4693 0.0003 -0.0021 

* Select Granular, crusher-run material meeting MnDOT requirements. ** Decagon ECH2O sensors (two 
types: TE and 5TE) 
 
 

 
Figure 3.2 Classification of MnROAD materials. 
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Figure 3.3 Schematic representation of pavement sections with sensor locations. 
 

3.3. Model Development 

3.3.1. Thornthwaite Moisture Index 

Three TMI models were reviewed in the introduction of this paper. This study introduces 

a new TMI model developed by McKeen (unpublished) based on prior research (Mather 

1974, McKeen and Johnson 1990). An average of at least 20 consecutive years’ TMI is 

recommended to represent the long-term effect of climate on the soil moisture. 

Below is the step-by-step procedure (Mather 1974, McKeen and Johnson 1990) to 

determine TMI. 

Step 1. Collect input data including coordinates (Latitude and Longitude), monthly 

precipitation p(i), and air temperature ti. 
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Step 2. Determine soil initial moisture S0 and maximum moisture storage Smax at the 

starting time of calculation. The default S0 and Smax are set to be 0.48 and 20.32, 

respectively.  

Step 3. Determine monthly heat index, h(i), annual heat index for the year y, H(y), and 

Thornthwaite’s coefficient a ranging from 0 to 4.25 using Eqn. (3.2 - 3.4). 

 [ ]1.514( ) 0.2 ( )h i t i= ⋅  (3.2) 

 
12

1
( ) ( )H y h i= ∑  (3.3) 

 3 7 2 5 2( ) 6.75 10 ( ) 7.71 10 ( ) 1.792 10 0.49239a H y H y H y− − −= ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ +  (3.4) 

Step 4. Determine the unadjusted monthly potential evaporation e(i) using Eq. (3.5). 

 10 ( )( ) 1.6 )
( )

a
t ie i

H y
 ⋅

= ⋅  
 

 (3.5) 

Step 5. Determine monthly adjusted potential evapotranspiration, e′(i), by multiplying 

e(i) by the day-length corrections D(i) based on the latitude of the site that can be found 

in Table 3.2 ; determine the annual potential evapotranspiration,  PE(y), by summing the 

e′(i) for a year. 

 ( ) ( ) ( )'( )
30

e i D i N ie i ⋅ ⋅
=  (3.6) 

where N(i) is number of days in each month. 

 
12

1
( ) '( )PE y e i= ∑  (3.7) 
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Table 3.2 Day Length correction factors (McKeen and Johnson 1990). 

 
 

Step 6. Determine the monthly change of moisture, ∆m(i), initial amount of storage in 

each month, Str(i), monthly change of storage, ∆Str(i), final storage at the end of each 

month, STR(i), and the monthly change in deficit, ∆d(i) using Eqn. (3.8 – 3.12). 

 ( ) ( ) '( )m i p i e i∆ = −  (3.8) 

 
0 (1)              if 1

( )
( 1) ( )   if 2

S m i
Str i

STR i m i i
+ ∆ =

=  − + ∆ ≥
 (3.9) 

 { max

max max

( )  if ( )
( )

      if ( )
Str i Str i S

Str i
S Str i S

 <
∆ = 

≥
 (3.10) 

 
Str(i)  if ( ) 0 

( )
0          if ( ) 0

Str i
STR i

Str i
∆ ∆ >

=  ∆ ≤
 (3.11) 

 
0                       if ( ) 0

( )
( ) ( )  if ( ) 0

m i
d i

m i STR i m i
∆ >

∆ = ∆ + ∆ ≤
 (3.12) 

Step 7. Compute monthly deficit, DEF(i), and runoff, RUN(i) using Eqn. (3.13 – 3.14). 

 
0           if ( ) 0

( )
( )  if ( ) 0

d i
DEF i

d i d i
∆ >

= −∆ ∆ ≤
 (3.13) 

Degree North
 Lattitude

Month                      1                                   
0 5 10 15 20 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Jan 1.04 1.02 1.00 0.97 0.95 0.93 0.92 0.92 0.91 0.91 0.90 0.90 0.89 0.88 0.88 0.87 0.86 0.85 0.85 0.84 0.83 0.82 0.81 0.81 0.80 0.79 0.77 0.76 0.75 0.74
Feb 0.94 0.93 0.91 0.91 0.90 0.89 0.88 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.85 0.85 0.84 0.84 0.84 0.83 0.83 0.83 0.82 0.82 0.81 0.81 0.80 0.80 0.79 0.78
Mar 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
Apr 1.01 1.02 1.03 1.04 1.05 1.06 1.06 1.07 1.07 1.07 1.08 1.08 1.08 1.09 1.09 1.10 1.10 1.10 1.11 1.11 1.11 1.12 1.12 1.13 1.13 1.13 1.14 1.14 1.14 1.15
May 1.04 1.06 1.08 1.11 1.13 1.15 1.15 1.16 1.16 1.17 1.18 1.18 1.19 1.19 1.20 1.21 1.22 1.23 1.23 1.24 1.25 1.26 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33
Jun 1.01 1.03 1.06 1.08 1.11 1.14 1.15 1.15 1.16 1.16 1.17 1.18 1.19 1.20 1.20 1.22 1.23 1.24 1.24 1.25 1.26 1.27 1.28 1.29 1.29 1.31 1.32 1.33 1.34 1.36
Jul 1.04 1.06 1.08 1.12 1.14 1.17 1.17 1.18 1.18 1.19 1.20 1.20 1.21 1.22 1.22 1.24 1.25 1.25 1.26 1.27 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.37
Aug 1.04 1.05 1.07 1.08 1.11 1.12 1.12 1.13 1.13 1.13 1.14 1.14 1.15 1.15 1.16 1.16 1.17 1.17 1.18 1.18 1.19 1.19 1.20 1.20 1.21 1.22 1.22 1.23 1.24 1.25
Sep 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.05 1.05 1.06
Oct 1.04 1.03 1.02 1.01 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.94 0.94 0.93 0.93 0.93 0.92
Nov 1.01 0.99 0.98 0.95 0.93 0.91 0.91 0.90 0.90 0.90 0.89 0.89 0.88 0.88 0.87 0.86 0.85 0.84 0.84 0.83 0.82 0.82 0.81 0.80 0.79 0.79 0.78 0.77 0.76 0.73
Dec 1.04 1.02 0.99 0.97 0.94 0.91 0.91 0.90 0.90 0.89 0.88 0.88 0.87 0.86 0.86 0.84 0.83 0.83 0.82 0.81 0.80 0.79 0.77 0.76 0.75 0.74 0.73 0.72 0.71 0.70

Degree South
 Lattitude

Month                      1                                   
0 5 10 15 20 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Jan 1.06 1.08 1.12 1.14 1.17 1.20 1.23 1.27 1.28 1.30 1.32 1.34 1.37
Feb 0.95 0.97 0.98 1.00 1.01 1.03 1.04 1.06 1.07 1.08 1.10 1.11 1.12
Mar 1.04 1.05 1.05 1.05 1.05 1.06 1.06 1.07 1.07 1.07 1.07 1.08 1.08
Apr 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.92 0.91 0.90 0.89
May 1.02 1.01 0.98 0.96 0.94 0.92 0.89 0.86 0.85 0.83 0.82 0.80 0.77
Jun 0.99 0.96 0.94 0.91 0.88 0.85 0.82 0.78 0.76 0.74 0.72 0.70 0.67
Jul 1.02 1.00 0.97 0.95 0.93 0.90 0.87 0.84 0.82 0.81 0.79 0.76 0.74
Aug 1.03 1.01 1.00 0.99 0.98 0.96 0.94 0.92 0.92 0.91 0.90 0.89 0.88
Sep 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
Oct 1.05 1.06 1.07 1.08 1.10 1.12 1.15 1.15 1.16 1.17 1.17 1.18 1.19
Nov 1.03 1.05 1.07 1.09 1.11 1.14 1.20 1.20 1.22 1.23 1.25 1.27 1.29
Dec 1.06 1.10 1.12 1.15 1.18 1.21 1.29 1.29 1.31 1.33 1.35 1.37 1.41
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 max max

max

( )  if ( )
( )

0                  if ( )
Str i S Str i S

RUN i
Str i S

− >
=  ≤

 (3.14) 

Step 8. Compute annual deficit (sum of monthly deficit), DEF(y), and annual runoff 

(sum of monthly runoff), RUN(y) using Eqn. (3.15 – 3.16). 

 
12

1
( ) ( )DEF y DEF i= ∑  (3.15) 

 
12

1
( ) ( )RUN y RUN i= ∑  (3.16) 

Step 9. Determine the Thornthwaite Moisture Index (TMI) for year y using Eqn. (3.17). 

 
100 ( ) 60 ( )

( )
RUN y DEF yTMI

PE y
⋅ − ⋅

=  (3.17) 

Step 10. Repeat the procedure to calculate the TMIs for the next consecutive19 years. 

The moisture storage in the end of each year is used as the initial moisture storage in the 

beginning of the next year. The average of 20 years’ TMI can be used as a climate factor 

in residential foundation design. 

 
3.3.2. Equilibrium Soil Suction 

This study employed Saha’s model (Saha et al. 2019) to predict the equilibrium soil 

suction at the depth of moisture active zone with the TMI calculated using the procedure 

reported in section 3.3.1. The details are summarized in the following sub-sections 

including the calculations of depth of moisture active zone (Zm), Maximum available 

annual moisture depth (dam), diffusivity coefficient (α), mean annual moisture (dm), and 

finally the equilibrium soil suction (ue). 
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3.3.2.1. Depth of Moisture Active Zone (Zm) 

The depth of moisture active zone is defined as the least soil depth above which changes 

in water content and soil heave may occur because of change in environmental 

conditions after construction (Fattah and Salman 2006). The presence of vegetation 

significantly affects the depth of moisture active zone and surface suction. The average 

Zm in non-vegetation and full vegetation areas were estimated to be 9.39 ft. (286.2 cm) 

and 21 ft. (640.1 cm), respectively according to Lytton (Lytton 1997) and FPA (FPA 

2017). Therefore, to calculate Zm, the fraction of vegetation cover (Fr) is first calculated 

using Brunsell and Gillies’ method (Brunsell and Gillies 2003) as expressed in Eqn. 

(3.18). Then, the Zm is determined by interpolation between 286.2 cm and 640.1 cm 

corresponding to bare soil and soil with full vegetation as shown in Eqn. (3.19). 
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 (3.18) 

 286.2 (640.1 286.2)m rZ F= + − ⋅  (3.19) 

where NDVI0 and NDVImax are set to be -2000 and 10000 to represent bare and full 

vegetation soils, respectively; Normalized Difference Vegetation Index (NDVI) data 

covering the United States can be downloaded from NOAA Climate Data Records 

(CDR). 

3.3.2.2. Maximum Available Annual Moisture Depth (dam) 

The maximum available annual moisture depth is defined as the moisture lost during the 

transition from wet to dry state of soil above the depth of moisture active zone. As 
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shown in Figure 3.4, dam can be expressed as the area between the moisture profiles 

under wet and dry conditions.  
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 (3.20) 

where θwet and θdry are the volumetric water contents at top surface under wet (suction is 

assumed to be 4.5 or 5.7 pF) and dry conditions (suction is assumed to be3 pF), 

respectively according to Saha et al. (Saha et al. 2019); '
wetθ and '

dryθ are the volumetric 

water contents at the depth of moisture active zone under wet and dry conditions, 

respectively; '
dryθ is calculated from '

dryu using the SWCC ANN model (Saha et al. 

2018a); '
dryu is the suction at the depth of moisture active zone under dry condition 

calculated using Eqn. (3.21) when equilibrium suction ( eu ) is assumed to be 3; n is the 

number of cycles of wetting and drying during a year; α is unsaturated diffusivity of 

subgrade soil which will be explained in the next section. 

 0( ) exp( )e
nu z u u zπ
α

= + ⋅ −  (3.21) 

where ( )u z is the suction at the depth z; eu is equilibrium suction; 0u is suction profile 
amplitude. 
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Figure 3.4 Schematic of maximum available annual moisture depth (dam) (Saha et 
al. 2019). 
 
 

To obtain the moisture profile under dry state, a one-dimensional diffusion equation 

proposed by Mitchell (Mitchell 1979) is used to predict the suction profile with depth. 

Then the calculated suction profile is converted into moisture profile using a previously 

developed SWCC artificial neural network (ANN) model (Saha et al. 2018a). Mitchell’s 

diffusion equation model will be introduced in the next section. The Fredlund-Xing 

SWCC model (Fredlund and Xing 1994) as shown in Eqn. (3. 22 - 3.23) is used to 

correlate soil moisture content and suction. The SWCC ANN model is used to predict 

the coefficients of the Fredlund-Xing SWCC model.  
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where h is soil matric suction; af, bf, cf and hr are model parameters predicted by the 

SWCC ANN model. 

3.3.2.3. Diffusivity coefficient 

Diffusivity coefficient (α) controls how fast the surface moisture infiltrates into soil 

mass. Diffusivity coefficient can be measured in either the laboratory, or calibrated using 

Mitchell’s diffusion equation with field suction measurements, or estimated using 

empirical models. The most accurate way of determining diffusivity coefficient that 

represents the field condition is by monitoring the suction variation at the surface and 

depth over which moisture changes seasonally; then use Mitchell’s diffusion equation to 

fit the field data to backcalculate field diffusivity coefficient. McKeen and Johnson 

(McKeen and Johnson 1990) reported that the backcalculated diffusivity coefficients for 

Dallas/Fort Worth (FDW) region using Mitchell’s diffusion equation were much larger 

than the laboratory values which implies that laboratory values might not be 

representative to the field condition. However, field suction data is not always available. 

The slope of the SWCC reflects the soil response to suction changes and it was believed 

this parameter is correlated with diffusion coefficient (McKeen and Johnson 1990). 

Lytton (Lytton 1994) proposed an equation that correlated the slope of SWCC with 

diffusion coefficient as shown in Eqn. (3.24). 

 /w dS pα γ γ=  (3.24) 



 

59 

 

where S is slope of the SWCC at 80% of saturated volumetric water content; dγ is dry 

unit weight of soil; wγ is unit weight of water; p is unsaturated permeability and 

0 0 / 0.434p h k= ; 0k is saturated permeability of soil that was collected from the Natural 

Resource Conservation Service (NRCS) database; 0h is the soil suction at which the soil 

saturates. 

3.3.2.4. Mean Annual Moisture Depth (dm) 

The mean annual moisture depth (dm) is defined as the moisture depth (volume) under 

equilibrium condition. The mean annual moisture depth is dependent on both soil 

properties and climate factors. TMI is representative to climate factors because it is an 

indicator of annual moisture balance by considering precipitation and potential 

evapotranspiration. Saha et al. (Saha et al. 2019) adopted Gay’ approach (Gay 1994) to 

estimate the mean annual moisture depth as a function of TMI (= T - 65) and the 

maximum available annual moisture depth, which is expressed as: 
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 (3.25) 

 0.0369* amdγ =  (3.26) 

 1 0.269* amd d=  (3.27) 

 1 0.8418* amT d=  (3.28) 

By replacing amd  and  with md and wetθ , respectively in Eqn. (3.20), the equilibrium 

moisture content ( eθ ) at the depth of moisture active zone is calculated using Eqn. 

eθ
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(3.29). A schematic illustration of mean annual moisture depth (dm) is shown in Figure 

3.5. 
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 (3.29) 

The equilibrium moisture content ( eθ ) at the depth of moisture active zone is converted 

into equilibrium soil suction by using the developed SWCC ANN model (Saha et al. 

2018a). 

 
Figure 3.5. Schematic of mean annual moisture depth (dm) (Saha et al. 2019). 
 

3.3.3. Prediction of Subgrade Soil Moisture Variation with Time and Depth 

Soil moisture varies at the surface due to climate, drainage and vegetation cover 

(Mitchell 1979). According to Mitchell (Mitchell 1979, Javid and Bulut 2019), the effect 

of climate variation on the moisture flow and then the seasonal movement of clayey 

subgrade can be characterized by solving a diffusion equation (Eqn. (3.30)) and 

boundary conditions (Eqns. (3.31 – 3.32)) given below: 

 
2

2

u u
t z

α∂ ∂
=

∂ ∂
 (3.30) 



61 

0
1 2(0, ) cos( 2 ) cos(2 2 ) ...

2
Uu t U n t U n t etcπ π= + ⋅ + ⋅ +  (3.31) 

( , ) 0u z t →  as z → ∞  (3.32) 

where (0, )u t  is an arbitrary state of surface suction according to the site specific climate 

(precipitation and evapotranspiration); z is depth; t is time; α is diffusivity coefficient; n 

is the number of cycles of wetting and drying during a year; U0/2 is equilibrium soil 

suction in pF; and Ui is Fourier Series coefficients. 

The solution of the diffusion equation is: 
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where the Fourier Coefficients iU  is determined by 

0

2 (0, ) cos( ) ,
P

i
i tU u t dt

P P
π

= ⋅∫ 0,1,2,...i =  (3.34) 

where P=1/2n. 

When the surface suction is averaged every month and expressed as S1, S2, …, S12, the 

Fourier coefficients of Eqn. (3.34) can be rewritten as 

1 2 12

1 2 120 1 11

2 cos( ) cos( ) ... cos( )
12 12 12 12i

i t i t i tU S dt S dt S dtπ π π = ⋅ + ⋅ + + ⋅  ∫ ∫ ∫  (3.35) 

Figure 3.6 shows the flow chart for predicting soil suction within subgrade soil using the 

proposed framework. 
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Figure 3.6 Flow chart for predicting soil suction (moisture) within subgrade soil. 
 

3.4. Model Validation 

3.4.1. Validation of New TMI Model 

In this study, the modification to Saha’s equilibrium suction model (Saha et al. 2019) is 

the incorporation of a new TMI model (Mather 1974, McKeen and Johnson 1990).  To 

validate the new TMI model, this section compares the new TMI model with TMI-2006 

model using the precipitation and air temperature data collected from 5852 weather 

stations across the United States (Saha et al. 2019). As shown in Figure 3.7, the 

predicted TMIs using the new TMI model are in good agreement with the predictions of 

TMI-2006 model with R2 value of 0.93.  
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Figure 3.7 Comparison between TMI-2006 model (Witczak et al. 2006) and new 
TMI model. 
 

3.4.2. Validation of Modified Equilibrium Soil Suction Model 

This section validates the updated equilibrium soil suction model by comparing 

predicted equilibrium soil suction with field measurements. The VWC data along with 

pavement configuration and paving material properties from 3 MnROAD sections and 1 

LTPP section (Figure 3.3) were collected to calibrate and validate the proposed 

framework. Since each section has multiple sensors installed within the subgrade layer, 

only one sensor from each section is used in model calibration and the rest of them are 

used in model validation. Specifically, the raw moisture data collected from MnROAD 

database is first converted into volumetric water content (VWC) using the calibration 

functions shown in Table 3.1. The converted VWC data is then smoothed out using the 

exponential weighted moving average (EMA) with a span of seven days, which are used 

to calculate suction in pF through the previously developed SWCC artificial neural 



 

64 

 

network (ANN) model (Saha et al. 2018a). Finally, the equilibrium soil suction and 

diffusivity coefficient are calibrated by fitting the calculated suction data into Mitchell’s 

diffusion equation (Mitchell 1979, Javid and Bulut 2019). 

As shown in Figure 3.3, Cell 17 has 3 sensors installed in the subgrade layer, cell 19 has 

two, cell 35 has 6, and LTTP 0102 has 1. The selected sensors for calibration are C17- 

207, C19-208, C35-204, and S-LTPP for cell 17, 19, 35, and LTPP 0102, respectively. 

Figure 3.8 compares the measured and predicted VWC using Mitchell’s diffusion 

equation using calibrated equilibrium soil suction and diffusivity coefficient for each 

section. The time limit of measured VWC data is different from sensor to sensor because 

some sensors failed prematurely or the data collected were of poor quality. Notice that 

the VWC predictions repeat each year whereas the measured VWC are different to some 

degree in each year. This is because we assumed the precipitation and evaporation 

variation the same each year to simplify the computation complexity and the first year’s 

climate data were used as input in predicting VWC, while the actual precipitation and 

evaporation varies slightly from year to year. This explains why the model predictions 

agree well with the field measurements in the first year, while it is not always the case 

when the weather conditions change significantly in the subsequent years. 

The equilibrium soil suction in each pavement section was determined after we 

calibrated Mitchell’s diffusion equation. Figure 3.9 compares the calibrated and 

predicted equilibrium soil suctions for four pavement sections with the average deviation 

of 0.1 pF.  
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                                       (a)                                                                  (b) 

 
                                       (c)                                                                  (d) 
Figure 3.8 Comparison between measured and predicted VWC using calibrated 
model parameters (a) Cell 17 (b) Cell 19 (c) Cell 35 (d) LTPP-0102. 

 
Figure 3.9 Comparison between predicted and calibrated equilibrium soil suction. 
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3.4.3. Validation of Mitchell’s Diffusion Equation 

The previous section determined equilibrium soil suction and diffusivity coefficient 

using the data collected by 1 selected sensor at a specific depth within the subgrade layer 

in each pavement section. In this section, the rest of sensors are used to evaluate the 

performance of Mitchell’s diffusion equation using the calibrated equilibrium soil 

suctions and diffusivity coefficients.  

Figure 3.10 (a-b) compares the model predictions with the field measured VWC at 

depths of 48 (sensor C17-206) and 72 (sensor C17-208) inches, respectively, for Cell 17. 

The calibrated model parameters were determined through sensor C17-207. Figure 3.10 

(c) compares the model predictions with the field measured VWC at depths of 60 (sensor 

C19-207) inches for Cell 19. The calibrated model parameters were determined through 

sensor C19-208. Figure 3.10 (d-h) compares the model predictions with the field 

measured VWC at depths of 20.04 (sensor C35-203), 36 (sensor C35-205), 48 (sensor 

C35-206), 60 (sensor C35-207), and 72 (sensor C35-208) inches, respectively, for Cell 

35. The calibrated model parameters were determined through sensor C35-204. The 

LTPP section is not presented here because only 1 sensor was installed in the subgrade 

layer.  

A reasonable agreement was found between model predictions and field measurements. 

In Figure 3.10 (d), the under-prediction of the moisture variation near the top of the 

subgrade layer (sensor C35-203) could possibly be due to the existence of micro cracks 

that changed the soil water characteristic curve for the upper subgrade soil so that this 

region is able to retain more water than the lower region in the subgrade soil. The 
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oscillation of measured VWC in Figure 3.10 (h) is very significant possibly due to 

sensor malfunctioning but the averages of measured and predicted VWC are close to 

each other (23.1% vs. 21.5%). As mentioned before, Decagon EH2O-TE and EH2O-

5TE measure VWC with a precision of ±2% if a material specific calibration is 

performed. Therefore, a possible reason that caused the error is from the field 

measurements. What’s more, the diffusivity coefficient plays an important role in 

suction and moisture prediction as shown in Eqn. (3.33). The diffusivity coefficient 

changes with depth and has a positive correlation with the volumetric water content in 

the soil (Bai et al. 2007). Therefore, incorporation of the diffusivity coefficient as a 

function of depth and volumetric content in the Mitchell’s diffusivity equation should be 

considered in further studies.  

 

 
                                       (a)                                                                 (b) 
Figure 3.10 Comparison between measured and predicted VWC using calibrated 
model parameters for other sensors. 
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                                       (c)                                                                 (d) 

 
                                       (e)                                                                 (f) 

 
                                       (g)                                                                 (h) 
Figure 3.10 Comparison between measured and predicted VWC using calibrated 
model parameters for other sensors (cont’d). 
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According to Figure 3.11, the proposed framework is capable of characterizing a clear 

seasonal pattern in VWC due to the climate factors including precipitation, evaporation 

and runoff. What’s more, both the predicted and measured amplitude of moisture 

variation decrease as depth goes deeper in the subgrade layer (Figure 3.12). The same 

phenomenon was also found in Yue’s study (Yue and Veenstra 2018).  

 
Figure 3.11 Comparisons of predicted volumetric water content (VWC) at different 
depths in the subgrade soil in cell 35. 
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Figure 3.12 Comparison between predicted and measured amplitude of volumetric 
water content (VWC) in cell 35. 
 

3.5. Conclusion 

Subgrade soil under pavement structure is usually unsaturated, and moisture content in 

subgrade soil directly affect material properties (i.e. resilient modulus) and thereby 

pavement performance. Therefore, this study proposed a mechanistic-empirical model 

for predicting moisture variation in subgrade Soil by coupling a modified ME-based 

equilibrium soil suction model and Mitchell’s diffusion equation. The major findings 

and conclusions are as follows. 

• A new TMI model was introduced and validated by comparing with TMI-2006 using 

the climate data collected from 5852 weather stations across the United States. A 

statistical analysis was performed and it was found that the predicted TMI using the 

proposed TMI model matches well with the predicted results using TMI-2006 model 

with coefficient of determination of 0.93. 
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• A previously developed equilibrium soil suction model was improved by 

incorporating with a new TMI model. The modified equilibrium soil suction model 

was validated using the moisture data from 3 MnROAD pavement sections and 1 

LTPP section. It was found that the average deviation of predicted equilibrium soil 

suction from calibrated counterparts was 0.1 pF. 

• We finally proposed a ME-based soil moisture prediction model by coupling the 

modified equilibrium soil suction model to Mitchell’s diffusion equation. The 

proposed moisture prediction model was validated using the moisture data collected 

by 9 sensors at different depths in the subgrade soil. 

• The proposed moisture prediction model is capable of characterizing a clear seasonal 

pattern in VWC due to climate factors including precipitation, evaporation and 

runoff. 

• Both the measured and predicted moisture wave amplitude decreased as depth gets 

closer to the depth of moisture active zone, which is consistent with Yue’s study 

(Yue and Veenstra 2018). 

• In future studies, diffusivity coefficient should be considered as a function of depth 

and volumetric water content in Mitchell’s diffusivity equation. What’s more, the 

actual precipitation and evaporation data for each year will be used instead of 

assuming the same pattern each year to better reflect the climate effect on moisture 

condition in subgrade soil.  

• The accurate prediction of the resilient moduli of unbound base and subgrade soil is 

crucial in pavement design. It is believed that the resilient moduli of unbound base 
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and subgrade soil are the stress and moisture dependent. The next paper will focus on 

the prediction of resilient modulus profile within subgrade soil with consideration of 

stress dependency and moisture sensitivity. 
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4. BACKCALCULATION OF RESILIENT MODULUS OF FINE-GRAINED 

SUBGRADE SOIL FROM FALLING WEIGHT DEFLECTIONS 

4.1. Introduction 

Fine-grained subgrade soil, used as the foundation of asphalt pavements, directly 

contributes to the overall stiffness and performance of pavement system. Fatigue 

cracking and rutting in asphalt pavements are associated with resilient strain and 

permanent deformation within the subgrade layer (Brown and Selig 1991, Brown 1996, 

Puppala et al. 1999). Therefore, stiffness of subgrade soil is important in pavement 

design and analysis. 

The response of unbound aggregate base and fine-grained subgrade soil tend to shake 

down to be resilient (elastic) under repeated traffic load. Resilient modulus (MR), defined 

as the ratio of deviator stress to axial resilient strain (Seed et al. 1962), is commonly 

used to represent stiffness of unbound base and subgrade soil in pavement design. 

Previous studies have shown that the resilient response of both unbound aggregate base 

and fine-grained subgrade soil exhibits nonlinear stress-dependency (Seed et al. 1967, 

Thompson and Robnett 1979, Moossazadeh and Witczak 1981, Witczak and Uzan 1988, 

ARA Inc. 2004, Peng et al. 2020) and moisture-dependency (Lytton 1996, Drumm et al. 

1997, ARA Inc. 2004, Khoury and Zaman 2004, Liang et al. 2008, Salour and 

Erlingsson 2013, Peng et al. 2020) under repeated traffic loads. Therefore, the resilient 

modulus distribution within unbound aggregate base and fine-grained subgrade layers 

should be a function of stress state and moisture content, which is different from a single 

value used in layered linear elastic solution. Some studies also showed that resilient 
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modulus of subgrade soil was affected by relative compaction (Zhang et al. 2021) and 

soil physical properties (i.e. passing the #200 sieve, maximum dry density, optimum 

moisture content, Atterberg limits) (George 2004).  

Repeated load triaxial test (RLT) is commonly used to determine the resilient modulus 

of unbound base and subgrade soil, and evaluate the risk of shear force induced 

premature rutting of asphalt pavements. In RLT, fifteen combinations of varying 

confining and deviator stresses are imposed on soil specimens, and resilient modulus is 

measured for each load condition. However, the RLT data are not always available for 

the studied pavement sections, and performing RLT is time consuming and requires 

well-trained personnel.  

In order to predict MR instead of performing RLT, numerous resilient modulus models 

have been proposed to capture the stress- and/or moisture dependent behavior of 

unbound base and subgrade soil. NCHRP 1-53 summarized 28 resilient modulus models 

for unbound base and subgrade materials which can be categorized into stress-dependent 

model, stress-moisture-dependent model, stress-moisture-dependent and cross-

anisotropic model, and empirical regression model.  

General-purpose finite-element programs have been used for decades to analyze the 

layered pavement system with user-defined geo-material models for characterizing the 

nonlinearity of unbound base and/or fine-grained subgrade soil. ILLI-PAVE (Raad and 

Figueroa 1980) and GT-PAVE (Tutumluer 1995) are two famous FE-based programs 

that take into account the stress-dependent resilient modulus of unbound base and 

subgrade soil. In ILLI-PAVE, K-θ model (Seed et al. 1967) was used in unbound 
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granular base material to characterize its stress hardening behavior, and bilinear model 

(Thompson and Robnett 1979) was used in fine-grain subgrade soil to characterize its 

stress softening behavior. The failure of base and subgrade soil was governed by Mohr-

Coulomb theory. Uzan model (Uzan 1985) and UT-Austin model (Pezo 1993) are 

available in GT-PAVE to characterize the stress dependent behavior of unbound 

granular base material. However, both of the aforementioned programs didn’t consider 

moisture effect on the resilient modulus distribution in unbound materials.  

More recently, more and more general-purpose FE programs are available to be used in 

pavement response analysis (i.e. ABAQUS, ADINA, ANASYS, and COMSOL 

Multiphysics). Kim et al.  (Kim et al. 2009) programmed three stress-dependent resilient 

modulus models including Uzan model (Uzan 1985), universal octahedral shear stress 

model (Witczak and Uzan 1988) and bilinear model (Thompson and Robnett 1979) in a 

user material subroutine (UMAT) in the FM program ABAQUS to characterize stress-

hardening behavior of unbound granular materials (the first two models) and stress-

softening behavior of fine-grained subgrade soil (the last model). Erlingsson and Ahmed 

(Erlingsson and Ahmed 2013) proposed an elastic response program for layered asphalt 

pavements based on Burmister MLET theory. The universal constitutive model 

(extended K-θ model) (ARA 2004), currently used by MEPDG was incorporated into the 

program to characterize the stress dependency of unbound materials. The drawback of  

Uzan model (Uzan 1985), universal octahedral shear stress model (Witczak and Uzan 

1988) and bilinear model (Thompson and Robnett 1979), and  extended K-θ model 
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(ARA 2004) is that the moisture effect was not considered which is very important in 

determining the resilient modulus of unbound material. 

Gu et al. (Gu et al. 2016) implemented Lytton model (Lytton 1996) into ABAQUS by 

developing a new user defined material subroutine (UMAT) in ABAQUS to characterize 

the stress and moisture dependency of resilient modulus in unbound granular base 

material. Cross-anisotropy was also considered in unbound base material. Later on, 

Zhang et al. (Zhang et al. 2018) developed a coupled nonlinear cross-anisotropic 

elastoplastic (NAEP) constitutive model for unbound granular base layer of pavement. 

The model was implemented into COMSOL Program by using weak form partial 

differential equation (PDE) module. However, all of the material models used in above 

FE analysis were calibrated through RLT or regression models which might not be able 

to capture the in-situ conditions (Karasahin et al. 1993). This is because compaction 

variability of the soil specimen in the field and lab might change the inherent soil 

structure. 

To reflect the field condition, field-based data (i.e. FWD data) should be used in the 

determination of model parameters. Growing efforts (Hoffman and Thompson 1982, 

Ceylan et al. 2005, Ahmed et al. 2016, Varma and Emin Kutay 2016, Li and Wang 

2019) have been made to backcalculate nonlinear material properties of unbound base 

and fine-grained subgrade soil using deflection basin data measured by falling weight 

deflector (FWD). So far, the material models for unbound base and fine-grained 

subgrade soil that have been considered in current backcalculation programs are linear 

elastic, nonlinear elastic (stress dependent). Taking account of the moisture effect on 
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unbound granular base and/or fine-grained subgrade soil has not been reported in 

currently available backcalculation programs yet. The authors developed a mechanistic-

empirical model to predict moisture variation within subgrade soil by coupling a 

mechanistic-empirical based equilibrium suction prediction model (Saha et al. 2019) to 

Mitchell’s diffusion equation (Mitchell 1979), which has the potential to be incorporated 

into a backcalculation program. 

The objective of this study was to develop a FWD-based backcalculation program that 

considers moisture- and stress-dependent resilient modulus for fine-grained subgrade 

soil. To achieve this objective, a new moisture prediction model was incorporated into a 

forward pavement response program developed in COMSOL Multphysics to simulate 

the pavement response of FWD dropping weight. Bound Optimization by Quadratic 

Approximation (BOBYQA) method (Powell 2009) was used in the backcalculation 

procedure to backcalculate material properties. The developed backcalculation program 

was verified using the field FWD data collected from Long-term Pavement Performance 

(LTPP) database. Finally, the effects of pavement temperature, magnitude of dropping 

weight in FWD test on the backcalculated material properties, and effects of moisture 

and k-values on resilient modulus distribution within the subgrade soil were 

investigated.   

4.2. Characterization of Moisture Distribution within Fine-grained Subgrade Soil 

Fine-grained subgrade soil is the in situ unsaturated material upon which the pavement 

structure is built. The existence of moisture within the subgrade soil directly affects its 

resilient modulus, swell-shrink behavior, and thereby the overall stiffness and 
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performance of asphalt pavements (i.e. fatigue cracking and rutting). Therefore, accurate 

prediction of moisture variation within the subgrade soil is crucial in pavement design.  

Gay (Gay 1994) developed a functional relationship between mean annual moisture 

depth and Thornthwaite moisture index (TMI) by applying Juarex-Badillo’s approach 

(Juárez-Badillo 1975) based on the climatic data collected from 12 sites in Texas, USA. 

Based on Gay’s work, Saha et al. (Saha et al. 2019) proposed a prediction model of 

equilibrium soil suction for fine-grained subgrade soil by considering both TMI and soil 

properties. The authors then developed a mechanistic-empirical model to predict 

moisture variation within subgrade soil by coupling Saha’s equilibrium soil suction 

model with Mitchell’s diffusion equation (Mitchell 1979). A new TMI prediction model 

was used in the prediction of soil equilibrium suction of subgrade soil at the depth of 

moisture active zone. The predicted soil suction was converted into volumetric water 

content through Fredlund-Xing SWCC equation (Fredlund and Xing 1994). The fitting 

parameters of the Fredlund-Xing SWCC equation were predicted by a previous 

developed artificial neural network (ANN) (Saha et al. 2018a).  

The detailed description of the equilibrium soil suction and TMI models can be found in 

chapter 3 of this dissertation and will not be discussed herein for brevity. The predicted 

equilibrium soil suction at the depth of moisture active zone was used as a parameter in 

Mitchell’s diffusion equation.  

Moisture content at soil surface is affected by climate, drainage and vegetation cover 

(Mitchell 1979). According to Mitchell, the effect of climate on the moisture flow and 

seasonal movement of subgrade can be captured by imposing an arbitrary state of 
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suction according to local climatic condition (precipitation and evapotranspiration) at the 

soil surface. The arbitrary state of suction is set to be a function of time and used as a 

boundary condition in solving the diffusion equation. 

The Mitchell diffusion equation and the boundary condition are given as: 

2

2

u u
t z

α∂ ∂
=

∂ ∂
 (4.1) 

0
1 2(0, ) cos( 2 ) cos(2 2 ) ...

2
Uu t U n t U n t etcπ π= + ⋅ + ⋅ +  (4.2) 

( , ) 0u z t →  as z → ∞ (4.3) 

where (0, )u t is an arbitrary state of surface suction according to the site specific climate 

(precipitation and evapotranspiration); z is depth; t is time; α is diffusivity coefficient; n 

is the number of cycles of wetting and drying during a year; U0/2 is equilibrium soil 

suction in pF which is predicted from Saha’s equilibrium soil suction model (Saha et al. 

2019); and Ui is Fourier Series coefficients. 

The solution of the diffusion equation is:   
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where the Fourier Coefficients iU  is determined by 

0

2 (0, ) cos( ) ,
P

i
i tU u t dt

P P
π

= ⋅∫ 0,1,2,...i =  (4.5) 

where P=1/2n. 
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The moisture prediction model was calibrated using the field moisture content at the 

depth of 43.64 cm within the subgrade layer of LTPP pavement section 01-0102 

collected on 10/15/1996. The calibrated diffusivity coefficient α for the subgrade soil 

was 0.0032 cm2/sec. The details of data collection and model calibration can be found in 

chapter 3 of this dissertation. Figure 4.1 shows the predicted volumetric water content 

(VWC) profiles within the subgrade layer of pavement section 01-0102 on 05/20/1996 

(left) and 08/23/1996 (right), which represent the typical VWC profiles in dry and wet 

seasons, respectively.  

 

 

Figure 4.1 Predicted volumetric water content vs. depth on 05/20/1996 (left) and 
08/23/1996 (right). 
 

4.3. Resilient Modulus Model for Fine-grained Subgrade Soil 

Resilient modulus is a measure of stiffness for unbound materials (i.e. unbound 

aggregate base and fine-grained subgrade soil). It was first introduced in AASHTO 1986 

and defined as the applied stress to recoverable strain.  

Seed et al. (Seed et al. 1967) first proposed a resilient modulus model (also called K-θ 

model) that emphasizes the stress hardening behavior of unbound granular material: 
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where RM is resilient modulus; aP is atmospheric pressure;θ is bulk stress ( 1 2 3σ σ σ+ + ); 

and 1 2 3,  ,  and σ σ σ are three principal stresses. 

Moossazadeh and Witczak (Moossazadeh and Witczak 1981) proposed a model by 

replacing bulk stress with deviator stress in K-θ model in order to capture the stress 

softening behavior of fine-grained (cohesive) subgrade soil:  
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Where dσ is deviator stress ( 1 3σ σ− ). 

Similarly, by considering deviator stress, Thompson and Robnett (Thompson and 

Robnett 1979) proposed bilinear model which has been the most commonly used 

resilient modulus model for fine-grained subgrade.  

Later on, Witczak and Uzan (Witczak and Uzan 1988) proposed the universal model that 

was the first model that considers both stress hardening and softening effect of unbound 

base and cohesive subgrade soil, as presented in Eqn. (4.8): 
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where ( ) ( ) ( )2 2 2
1 2 1 3 2 3

1
3octτ σ σ σ σ σ σ = − + − + −  . 
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As shown in Eqn. (4.9), the generalized model was developed based on the universal 

model with a slight modification, which is currently being used by AASHTOWare-ME 

(ARA 2004). 

 
2 3

1 1
k k

oct
R a

a a

M k P
P P

τθ   
= +   

   
 (4.9) 

Lytton (Lytton 1996) proposed a new resilient modulus model (also called Lytton 

model) by incorporating the moisture and suction term into the universal model, as 

presented in Eqn. (4.10). It can be seen from Eqn. (4.10) that the existence of moisture 

(in unsaturated condition) in the soil induces an additional inter-particle normal force 

and thus stiffen the soil structure. In order to characterize the stress-dependency and 

moisture sensitivity in the subgrade soil, Lytton model was used in this study. 

 
2 3

1
1

3 1
k k

oct
R a

a a

I fhM k P
P P

τθ   −
= +   

   
 (4.10) 

where 1I is the first invariant of the stress tensor in kPa; aP is atmospheric pressure in 

kPa; θ is volumetric water content; h is matric suction in kPa; f is saturation factor, 

11 f
θ

≤ ≤ ; octτ is octahedral shear stress in kPa; and 1 2 3,  ,  and k k k are fitting coefficients 

where 1k is in kPa and 2 3 and k k are dimensionless. 

f is a saturation factor which is multiplied by volumetric water content and soil suction 

to represent the stress exerted on the soil skeleton due to the existence of water. The 

expression of the saturation factor is given as 
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(4.11) 

where S is degree of saturation in percent; andθ is volumetric water content in decimal. 

4.4. Nonlinear Forward Calculation Procedure 

Modelling fine-grained subgrade soil with stress- and moisture-dependent resilient 

modulus involves iterative calculation among modulus, stress and deformation. Unlike 

Abaqus, the coefficient-form partial differential equation (PDE)-based technique in 

COMSOL Multiphysics, a FEM software, has proved to be capable of solving the above 

coupling problem (Zhang et al. 2016, 2018) without developing a user-defined 

subroutine. The coefficient form PDE in COMSOL Multiphysics is a strong form PDE 

and is automatically converted into a weak form PDE when solving the user-defined 

PDE. Therefore, the coefficient form PDE module in COMSOL Multiphysics was used 

in this study to model the stress- and moisture-dependent behavior of subgrade soil.  

The following steps were followed to model the fine-grained subgrade soil in COMSOL 

Multiphysics. 

Step 1. Define the material properties and pavement thicknesses as input in the 

Parameters Module. Table 4.1 presents the structure of the pavement section 

(ALABAMA 01-0102) to be modelled including layer thicknesses, material types, 

constitutive models, and model parameters.  

Step 2. Develop a 2D-axisymmetric structure as shown in Figure 4.2 to model the 

pavement section ALABAMA 01-0102 in COMSOL Multiphysics with the asphalt layer 

of 10.7 cm, an unbound granular base layer of 30.5 cm, and a subgrade layer of 200 cm. 
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A ramp load with 6 incremental loading steps was applied in order to obtain a converged 

solution of the iterative calculation. An ‘Extremely fine’ type of element size was 

selected to generate the mesh of the pavement structure. 

Step 3. Create a new physics from ‘Coefficient Form PDE’ module to define two 

Dependent Variables u11 and u12 with a unit of N/m2.  

Step 4. Define the two Dependent Variables which are used in calculating the stress- and 

moisture-dependent resilient modulus of the subgrade layer. The two Dependent 

Variables are given by 

 2. 1Solid I s  (4.12) 

 ( ( 2. 2 )*2 / 3)sqrt abs solid II s  (4.13) 

where 2. 1Solid I s is the first invariant of the stress tensor; ( ( 2. 2 )*2 / 3)sqrt abs solid II s is 

the second invariant of the deviator stress tensor. 

Step 5. Import a predefined function ‘VWCS_Pa’ which was defined as the 

multiplication of soil suction and volumetric water content. The procedure of predicting 

‘VWCS_Pa’ can be found in section 4.2 of this dissertation. 

 _VWCS Pa fhθ=  (4.14) 

Step 6. Define the stress- and moisture-dependent resilient modulus as a variable using 

the two predefined Dependent Variables in Eqns. (4.12 – 4.13) as presented below. 

 ( )( ) ( )1 2 3* 11 / 3* _ / ^ * 12 / 1 ^sg a a a aE k P abs u P VWCS Pa P k u P k= + +  (4.15) 
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Table 4.1. Pavement Structures, Material Models, Parameters used in the forward 
calculation Program. 

Pavement layers 
(thickness) Material Constitutive Model Model Parameters 

Layer 1 (10.7 cm) Asphalt concrete Linear elastic Elastic modulus, 
Poisson’s ratio 

Layer 2 (30.5 cm) Unbound granular base Linear elastic Elastic modulus, 
Poisson’s ratio 

Layer 3 (200 cm) Fine-grained subgrade (a) Linear elastic 
(b) Nonlinear elastic 

(a) Elastic modulus, 
Poisson’s ratio 
(b) k1, k2, k3, 
Poisson’s ratio 

 

 

Figure 4.2 Axisymmetric finite element model of pavement section ALABAMA 01-
0102. 
 

4.5. Nonlinear Backcalculation Procedure 

The Optimization Module can be used in COMSOL Multiphysics to solve the problems 

that is to determine the model parameters that provides the simulated data which best 

matches the measured counterparts. In this study, the problem is to best match the 
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simulated surface deflection basin with the field FWD measurements by optimizing the 

material properties including moduli of asphalt and base layer, and k-values for the 

subgrade layer.  

There are several optimization algorithms available in COMSOL Multiphysics, which 

can be divided into gradient-based and gradient-free algorithms. Among them, Bound 

Optimization by Quadratic Approximation (BOBYQA) (Powell 2009) is a gradient-free 

algorithm which was employed in this study. BOBYQA is an iterative algorithm that 

minimizes the value of objective function, subject to bounds on the variables. A 

quadratic model is used to approximate the objective function in each iteration, and is 

updated by minimizing the Frobenius norm of the difference in the Hessians of the two 

consecutive quadratic approximations. 

The objective function was defined as the relative difference between the simulated and 

measured surface deflection basins as presented below. 
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( ) ( ) 
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D i D iObjective funtion
D i=

 −
=  

 
∑  (4.16) 

where ( )sD i is the simulated surface deflection for the ith sensor; ( )mD i is the field 

measured surface deflection for the ith sensor. 

Due to the iterative nature of the nonlinearity in the forward calculation procedure, it 

might take a relatively long time to back-calculate all the parameters (Elastic moduli of 

asphalt and base layers, and k1, k2, and k3 for the subgrade layer). To improve the 

computation efficiency of the backcalculation program, a two-step backcalculation 

procedure was employed.  
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Step one: as shown in Figure 4.3, all the layers are assumed to be linear elastic. Lytton 

model can be simplified to be elastic model by setting k2 and k3 to be zero. Therefore, the 

parameters to be calculated in this step include: elastic moduli of the asphalt and base 

layers, and k1 for the subgrade layer. 

Step two: as shown in Figure 4.4, stress- and moisture- dependency of the subgrade layer 

is considered. The parameters to be backcalculated include Elastic moduli of asphalt and 

base layers, and k1, k2, and k3 for the subgrade layer. The backcalculated parameters in 

step 1 are used as the seed values in step 2. A good seed values for k2 and k3 are obtained 

by fitting the Lytton model into the resilient modulus test data that contains the 15 lab 

measured resilient moduli under various combinations of axial and confining pressures. 

 

 

Figure 4.3 Step one of developed backcalculation procedure. 
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Figure 4.4 Step two of developed backcalculation procedure. 
 

4.6. Verification of Nonlinear Backcalculation Module 

This section verifies the proposed backcalculation algorithm using the field FWD data 

collected at Long-term Pavement Performance (LTPP) section ALABAMA 01-0102. 

The moisture and suction profiles on a specified day within the subgrade layer of the 

pavement were first predicted by the previously developed model described in section 

4.2. They were then imported into the backcalculation algorithm as an input function. 

The input data can be divided into two categories, namely, the input for the moisture 

prediction model and the input for the backcalculation algorithm. 

The input for predicting moisture variation within the subgrade layer is presented in 

Table 4.2 and Figure 4.5. The pavement structure (thickness of each layer) and surface 

deflection data with the corresponding dropping weights measured in the field by falling 
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weight deflector (FWD) are the input data for the backcalculation algorithm. 

Specifically, the measured FWD data were collected 91.4 m away from the start of the 

LTPP section 01-0102 mid lane on 04/17/1996. The drop load is 1068 kPa with load 

radius of 0.15 m. 

 
Table 4.2 Input for the moisture prediction model 

Latitude 32.6357° Liquid Limit 41 
Longitude 85.29572° Plastic Index 16.5 
MAAT* ( °C) 17.97 Tested Moisture Content (%) 15.60% 
Specific Gravity 2.74 Depth of Moisture Measurement (cm) 43.64 
Dry Density (pcf) 101.78 Date of Moisture Measurement 10/15/1996 
MDD** (pcf) 112.6     

* Mean Annual Air Temperature. ** Maximum Dry Density. 

 

 
Figure 4.5 Aggregate gradation of the subgrade in LTPP ALABAMA 01-0102 
 

In step one of the backcalculation procedure, all the pavement layers were assumed 

linear elastic. Figure 4.6 compares the measured and predicted surface deflection basins 

after the optimization process. It can be seen that the predicted surface deflection 

matches well with the field measurements. The backcalculated moduli were compared 

with the backcalculation results provided by LTPP as presented in Figure 4.7. It can be 
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seen that the backcalculated moduli of the asphalt and subgrade layers from LTPP are 

almost double the moduli backcalculated using the proposed algorithm, while the LTPP 

backcalculated base modulus is around one third of the counterpart backcalculated by 

the proposed algorithm. Due to the fact that unbound granular base normally has much 

larger modulus than the modulus of fine-grained subgrade soil, the authors believe that 

the backcalculated moduli from the proposed backcalculation algorithm are more 

reasonable. 

 

 
Figure 4.6 Comparison between measured and predicted deflection basins obtained 
in step one. 
 

 
Figure 4.7 Comparison of backcalculated moduli by LTPP, linear backcalculation 
and nonlinear backcalculation algorithms. 
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In step two, Lytton model was used in the subgrade layer, and asphalt and base layers 

were assumed to be linear elastic. As mentioned before, the purpose of step one was to 

obtain good estimates of moduli of asphalt and base layer, and k1 for the subgrade layer 

used as seed values in the nonlinear backcalculation procedure (step two). The 

backcalculated moduli of asphalt and base layer, and k1 for the subgrade layer from step 

one were 3842.33 MPa, 206.78 MPa, and 827.88 kPa. The corresponding backcalculated 

modulus of the subgrade layer was 83.86 MPa which can be calculated using Lytton 

model with k1 of 827.88 kPa and k2 and k3 of zero.  

The seed values of k2 and k3 were obtained by fitting the Lytton model into the resilient 

modulus test data for the subgrade soil of pavement section ALABAMA 01-0102 that 

contains the 15 lab measured resilient moduli under various combinations of axial and 

confining pressures. Figure 4.8 shows the comparison between the measured and 

predicted resilient moduli using the fitted k-values with R-SQUARED of 0.96. The fitted 

k1, k2, and k3 were 301.09 Pa, 1.28, and -1.00, respectively. 

According to Lytton (Lytton 1996), the term3 fhθ in Lytton model was to represent the 

stress exerted on the soil skeleton due to the existence of water, which contribute to the 

increase of the resilient modulus of the subgrade soil. Therefore, the moisture and 

suction profiles on the date when the FWD test was conducted were predicted using the 

previously developed moisture prediction model (chapter 3). The predicted volumetric 

content and suction profiles are shown in Figure 4.9. Note that the only Figure 4.9(b) 

were imported into the backcalculation algorithm. 
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Figure 4.8 Comparison between measured and predicted resilient moduli using the 
fitted k-values 
 

 
                                      (a)                                                                 (b) 
Figure 4.9 Predicted (a) volumetric water content profile and (b) multiplication of 
volumetric water content, saturation factor, and suction within the subgrade layer 
on 04/17/1996 for LTPP pavement section ALABAMA 01-0102. 
 

A Time Dependent Study was created in COMSOL Multiphysics with a 6-level 

incremental loading applied in 0.05s in order to obtain converged solution when 

coupling the optimization module with Coefficient Form PDE. Figure 4.10 compares the 

measured deflection basin and predicted counterpart using the optimized material 

properties which shows that the predicted deflection basin matches well with the field 
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measurement. The backcalculated moduli of asphalt and base, k1, k2, and k3 were 

4454.03 MPa, 200.56 MPa, 598.16 Pa, 1.29, and -0.96, respectively. 

 

 
Figure 4.10 Comparison between measured and predicted deflection basins 
obtained in step two. 
 

Figure 4.11 presents the stress- and moisture-dependent resilient modulus distribution 

within the subgrade layer after convergence. The convergence here means that the 

resilient modulus at each location within the subgrade layer is infinitely close to the 

calculated value using Lytton model with optimized k-values, local stress state, and 

imported moisture function. It can be seen that moisture distribution which was 

represented as 3 fhθ is predominant in determining the resilient modulus distribution 

because the location of maximum resilient modulus occurred at the bottom of the 

subgrade course where3 fhθ reached the maximum. The location of the maximum 

resilient modulus occurred at the left bottom instead of somewhere else at the bottom 

because the bottom left part was under the loading area and has larger first invariant of 

the stress tensor compared with the area on the right, as presented in Figure 4.12. It 

implies that the stress state also takes some effect but it is not as important as the 
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moisture condition within the subgrade soil. Zhang et al. (Zhang et al. 2018) considered 

stress dependency when modelling resilient behavior of unbound base course, and it was 

found that the maximum resilient modulus occurred at the top left corner within the base 

course where the first invariant of the stress tensor reached the maximum. This means 

that when the stress state is predominant in determining the resilient modulus 

distribution such as within the unbound base course, the maximum resilient modulus can 

be observed at the top left corner under the loading area. To Summarize, moisture 

condition is predominant in fine-grained subgrade soil in determining the resilient 

modulus, whereas the stress state is predominant in the unbound aggregate base course 

(stress hardening) of asphalt pavements. The same pattern was also found in previous 

studies (Ceylan et al. 2005, Al-Qadi et al. 2010, Ahmed et al. 2016). 

 

 
Figure 4.11 Contour of stress- and moisture-dependent modulus (MPa) in subgrade 
course at a load level of 1068 kPa for pavement section ALABAMA 01-0102. 
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Figure 4.12 Contour of first invariant of stress tensor (MPa) in subgrade course at 
a load level of 1068 kPa for pavement section ALABAMA 01-0102. 
 

Coefficient k1 is positively related to Young’s modulus so that k1 should always be 

positive since the resilient modulus is always positive. Coefficient k2 is the exponent of 

the bulk stress and moisture stress (defined as 3 fhθ ) in Lytton model, and increasing the 

bulk stress and moisture stress produce an increase or stiffening of the subgrade soil (i.e. 

larger resilient modulus). Thus, Coefficient k2 should always be positive as well. 

Coefficient k3 is the exponent of the octahedral shear stress, and k3 should always be 

negative since the increase of the octahedral shear stress produces the softening of the 

subgrade soil (i.e. smaller resilient modulus).  

Figure 4.13 compares the k-values obtained by fitting Lytton model into the resilient 

modulus test data and by the FWD backcalculation algorithm, respectively. It was found 

that coefficients k2 and k3 backcalculated through different methods were close to each 

other with 4% and 1% of the relative difference, while the FWD backcalculated k1 was 

almost double the lab-fitted k1 with the relative difference of 88%. Previous studies 
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showed that a soil specimen re-compacted to the same dry density from different initial 

water content could produce different inherent soil structure (Lambe 1958, Mancuso et 

al. 2002, Ng et al. 2013). The coring in the field and/or the re-compaction of the soil 

specimens in lab could possibly change its inherent structure, and therefore lead to 

different k1 values. Therefore, to reflect the resilient response of the subgrade soil in the 

field, coefficient k1 should be backcalculated using field performance data (i.e. FWD 

data) instead of lab resilient modulus test data.  

 

 
Figure 4.13 Comparison of k-values backcalculated using FWD and lab resilient 
modulus test data, respectively. 
 

4.7. Temperature Effect on Backcalculated Material Properties 

This section studied temperature effect on the material properties backcalculated using 

the proposed backcalculation algorithm. The field FWD data for LTPP pavement section 

01-0102 measured at different times in 1996 with the corresponding pavement 

temperatures measured at different depths within the asphalt layer were collected to 

study the temperature effect. The temperature sensors were installed in the asphalt layer 

of the pavement section at 25 mm, 51 mm, and 76 mm below the pavement surface. The 

temperature of the asphalt layer was represented by the average of the three sensor 
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measurements as shown in Figure 4.14. It was assumed that the temperature of the base 

and subgrade layers of the pavement were not affected by local climate condition. Figure 

4.15 shows the deflection basins measured in 1996. The effect of drop loads were 

ignored because the target drop load for all of the selected FWD data were 71kN. The 

final drop loads are given in Figure 4.16. It can be seen that the measured surface 

deflections under the load center increase as temperature goes up and vice versa. The 

effect of moisture variation within the subgrade course due to local climatic condition 

was also taken into account. As shown in Figure 4.17, the moisture content and suction 

profiles for the days when the FWD test were conducted were predicted using the 

moisture prediction model described in section 4.2. The details of the moisture 

prediction model and the used input data can be found in chapter 3 of this dissertation. 

 

 
Figure 4.14 Measured temperatures at depths of 25, 51, and 76mm below pavement 
surface within asphalt layer in 1996 for LTPP section 01-0102.  
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Figure 4.15 Deflection basins measured at different dates in 1996 for LTPP 01-
0102. 
 

 
Figure 4.16 Drop load of the FWD tests conducted on different days in 1996 for 
LTPP 01-0102. 
 

 
                                      (a)                                                               (b) 
Figure 4.17 Predcited volumetric water content and suction profiles within 
subgrade layer at different dates in 1996 for LTPP 01-0102. 
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When running the backcalculation algorithm, what’s changed in the input data includes 

surface deflection, the corresponding dropping load, and the moisture and suction 

profiles, while the rest parameters kept constant. The studied material properties include 

elastic moduli of the asphalt and base layers, and k-values (k1, k2 and k3) for the subgrade 

layer.  

The backcalculated modulus of the asphalt layer are given in Figure 4.18(a). The asphalt 

layer were assumed not to be affected by the moisture content underneath so that 

pavement temperature was the only factor that influences surface modulus. As expected, 

the backcalculated modulus of the asphalt layer decreases with the increase of the 

averaged temperature within the asphalt layer and vice versa, which implies that the 

proposed backcalculation algorithm is capable of capturing the temperature effect on the 

asphalt mixture.  

Figure 4.18(b) presents the backcalculated base moduli under different temperatures. No 

clear correlation between the base modulus and temperature was observed. 

Figure 4.18(c) shows the backcalculated coefficient k1 used in Lytton model for the 

subgrade course. According to the first four months’ results, it is clear that there is a 

strong positive correlation between temperature and k1, while no clear correlation can be 

observed in later four months. According to Figure 4.17, the moisture condition during 

the first four months are relatively close while the reversed pattern occurs in later 

months which could possibly explain why no clear correlation was observed in later four 

months. What’s more, the change of moduli on top of the subgrade layer affect the stress 

distribution within the pavement structure. Specifically, stiffer asphalt layer is able to 
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spread the stress in a larger region underneath the surface layer to reduce the damage in 

the weaker layers underneath. That’s why a negative correlation between modulus of 

asphalt layer and k1 was observed in the first four months. Notice that the above 

correlation does not mean that temperature directly affects the stiffness of the subgrade 

soil.  

According to Figure 4.18(d) and 4.18(e), the backcalculated k2 ranges from 1.22 to 1.34, 

and the backcalculated k3 ranges from -1.03 to -0.95. It can be concluded that k2 and k3 

are not affected by temperature in the asphalt layer.  

 

 
                                  (a)                                                                    (b)  
Figure 4.18 Backcalculated material properties with different temperature and 
moisture conditions (a) AC modulus; (b) base modulus; (c) k1 for subgrade layer; 
(d) k2 for subgrade layer; (e) k3 for subgrade layer. 
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                                  (c)                                                                    (d)  

 
                                                                     (e)                    
Figure 4.18 Backcalculated material properties with different temperature and 
moisture conditions (a) AC modulus; (b) base modulus; (c) k1 for subgrade layer; 
(d) k2 for subgrade layer; (e) k3 for subgrade layer (cont’d). 
 

4.8. Effect of Drop Load of FWD Test on Backcalculated Material Properties 

This section studied the effect of drop load on the backcalculated material. As shown in 

Figure 4.19, the field FWD data were collected at 91.4m away from the start of the 

LTPP pavement section 01-0102 mid lane at 7:23AM on 04/17/1996 with different drop 

loads. As expected, the surface deflection measured under the load center increases with 

the increase of the drop loads. 
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Figure 4.19 FWD deflection basins measured at 91.4m away from start of LTPP 
pavement section 01-0102 mid lane at 7:23AM on 04/17/1996 with different drop 
loads. 
 

The backcalculated moduli of asphalt and base layers are presented in Figure 4.20(a). It 

can be seen that the backcalculated modulus of the asphalt layer increases with the 

increase of the drop load except when the drop load changes from 13587 lbf to 16972 

lbf, while the opposite correlation was observed in the case of the backcalculated base 

modulus. This is because higher drop height is needed to produce larger drop load in 

FWD test; higher drop height produces higher drop load frequency; and the dynamic 

modulus of asphalt mixture is frequency dependent so that larger modulus was obtained 

with larger drop load through backcalculation. What’s more, the stiffer surface layer 

dissipates more stress induced by the traffic load and spread the stress in a larger region 

within the base course so that the stress-dependent base modulus is reduced (even 

though the stress dependence was not considered in the base course in this study). 

Coefficient k1 is proportional to the elastic modulus of the subgrade course and this 

explains the decrease of coefficient k1 with the increase of the drop load (Figure 4.20 

(b)). The maximum differences among the backcalculated k1, k2 and k3 are 0.18, 0.06 and 
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0.07, respectively. Therefore, it can be concluded that k2 and k3 are independent of drop 

loads.  

(a)                                                                 (b) 
Figure 4.20 Backcalculated material properties by different drop loads. 

4.9. Effect of Moisture and k-values on Resilient Modulus Distribution within 

Subgrade soil 

Previous studies have shown that increasing moisture content or decreasing matric 

suction within the soil specimens causes the decrease of the resilient modulus (Seed et 

al. 1967, Fredlund et al. 1977, Yang et al. 2005). However, the effect of lab-based and 

field-based k-values on the resilient modulus distribution within the subgrade soil has 

not been reported yet.  

In this section, different combinations of moisture conditions and k-values were used as 

input of the forward algorithm to study their effect on the resilient modulus distribution 

within the subgrade course of asphalt pavements. Specifically, as for the moisture 

condition within the subgrade course, zero moisture content and field moisture condition 

predicted by the moisture prediction model were considered; as for the k-values, lab and 

FWD backcalculated k-values were considered.  
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Figure 4.21 compares the resilient modulus profile within the subgrade layer predicted 

using different combinations of moisture conditions and k-values as input. After zero 

moisture content was employed, there was no stress- or moisture-dependency observed 

in the predicted subgrade resilient modulus profile no matter what type of k-values were 

used. The predicted resilient modulus within the subgrade layer was 35 MPa which is the 

minimum value that is allowable in the forward solution. This implies that the moisture 

effect on the resilient modulus profile is predominant in the subgrade course. Compared 

with the resilient modulus profile predicted through the FWD backcalculated k-values 

and field moisture condition, the k-values obtained through resilient modulus test result 

underestimate the resilient modulus of the subgrade. 

 

 
Figure 4.21 Resilient modulus profile within subgrade layer predicted using 
different combinations of mositure condition and k-values 
 

4.10.  Conclusion 

In this study, a FWD-based backcalculation program that considers moisture- and stress-

dependent resilient modulus for fine-grained subgrade soil was developed using 
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COMSOL Multiphysics. In the forward calculation algorithm, we used Lytton model to 

characterize the stress-dependent and moisture-sensitive behavior in fine-grained 

subgrade soil by using coefficient form PDE module in COMSOL Multiphysics. A new 

moisture prediction model was incorporated into the forward calculation algorithm to 

predict the moisture and suction profile at any day and any depth within the subgrade 

layer. Bound Optimization by Quadratic Approximation (BOBYQA) method was used 

in the backcalculation procedure to back-calculate material properties including elastic 

moduli of asphalt and base layers, and k-values for the subgrade layer. A two-step 

backcalculation procedure was provided to improve the computation efficiency and 

accuracy. The backcalculation algorithm was verified using the FWD data collected 

from LTPP database. Investigations were also conducted including the effects of 

pavement temperature, magnitude of dropping weight in FWD test on the backcalculated 

material properties, and effects of moisture and k-values on resilient modulus 

distribution within the subgrade soil. 

The following conclusions were made: 

• The moisture condition is predominant in fine-grained subgrade soil in determining 

the resilient modulus, while the stress state is predominant in the unbound aggregate 

base course. 

• By comparing the k-values obtained by fitting Lytton model into the resilient 

modulus test data with the k-values backcalculated through the proposed FWD 

backcalculation algorithm, we found that the FWD backcalculated coefficient k1 was 

almost double the lab-fitted k1 with the relative difference of 88%. However, there is 
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no significant difference in the coefficients k2 and k3 backcalculated through different 

methods. This is because the coring in the field and/or the re-compaction of the soil 

specimens in lab could possibly change its inherent structure, and therefore lead to 

different k1 values backcalculated using lab and field data, respectively. Therefore, it 

is recommended to use field data (i.e. FWD) instead of RLT data to back-calculate 

material properties of subgrade soil (i.e. k1). 

• The backcalculated modulus of the asphalt layer decreased with the increase of the 

averaged temperature within the asphalt layer, which implies that the proposed 

backcalculation algorithm is capable of capturing the temperature effect on the 

asphalt mixture. There was no clear correlation between the base modulus and AC 

temperature observed. A strong positive correlation between AC temperature and 

backcalculated k1 during the first four months of the studied year. This is because 

stiffer asphalt layer dissipates more stress and spread the stress in a larger region in 

the underlying layers so that the stress-dependent base and subgrade layers react with 

smaller resilient modulus that is reflected as smaller backcalculated k1. Coefficient k2 

and k3 were found not to be affected by AC temperature. 

• We studied the drop load effect on the backcalculated material properties. It was 

found that increasing drop loads produced larger backcalculated AC modulus, 

smaller base modulus, and smaller backcalculated k1, which means that stiffer 

surface layer dissipates more stress induced by the traffic load and spread the stress 

in a larger region within the base and subgrade courses so that the stress-dependent 

base and subgrade moduli are reduced. Note that k1 is proportional to the elastic 
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modulus of the subgrade course so that the change of k1 can be used to represent the 

change of subgrade stiffness. Similar to the conclusion from the study of the 

temperature effect, the backcalculated k2 and k3 are independent of drop loads. 

• The resilient modulus of the subgrade soil did not show either stress or moisture 

dependency after using zero moisture content in Lytton model. Compared with the 

resilient modulus profile predicted through the FWD backcalculated k-values and 

field moisture condition, the k-values obtained through resilient modulus test result 

underestimate the resilient modulus of the subgrade layer. 

• In future studies, we will consider cross-anisotropy in modelling resilient response of 

unbound base and subgrade soil. Empirical relationships between lab-based and 

FWD based coefficient k1 will be established. 
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5. A UNIFIED MECHANICS-BASED FRAMEWORK FOR TOP-DOWN CRACK

INITIATION AND PROPAGATION IN ASPHALT PAVEMENTS 

5.1. Introduction 

Top-down fatigue cracking (TDC) is a common distress type in flexible pavements 

throughout the world. In Florida, 90 percent of pavements scheduled for rehabilitation 

have deficient crack ratings, and almost all of the deficient pavement sections have 

experienced TDC (Roque et al. 2004). TDC initiates at the surface or near the surface of 

asphalt pavements due to the critical tensile or shear stresses at the edge or within the 

wheel paths (Ozer et al. 2011, Wang et al. 2013, Ling et al. 2017), while bottom-up 

cracking (BUC) initiates at the bottom of the asphalt layer due to its bending effect 

caused by tire loads.  There are two phases in TDC, namely, crack initiation and then 

crack propagation. TDC initiation phase generally starts from size of an air void in 

asphalt layer and ends when crack depth reaches 7.5 mm according to Lytton et al. 

(Lytton et al. 1993, 2018). As a crack depth grows to between 16 mm and 22 mm, the 

developed longitudinal crack would generally intersect with transverse crack and 

transition into medium severity alligator cracking which is similar to the cracking pattern 

caused by BUC (Ling et al. 2019, Canestrari and Ingrassia 2020).  

Several factors that affect top-down crack initiation and growth have been identified by 

researchers. These factors include traffic loads, pavement structure, modulus gradient of 

asphalt layer, asphalt mixture properties, thermal effects, and construction quality (Ling 

et al. 2019, 2020, Canestrari and Ingrassia 2020, Huang et al. 2021). Traffic loads is 

generally believed to be the most important factor that contributes to TDC initiation and 
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propagation. For medium and thick asphalt pavements, TDC initiates and propagates at 

the edge or near the edge of tires due to a localized tire loads. It was observed that the 

tire-pavement contact stress is non-uniform and can be decomposed into longitudinal, 

vertical (shear) and transverse (tensile) stresses in a non-circular tire patch area (De Beer 

et al. 1997). The contact stresses in three directions correspond to three different fracture 

modes: sliding mode under vertical stress, opening or tensile mode under transverse 

stress and tearing mode under longitudinal stress (Luo et al. 2018). For thin asphalt 

pavements, TDC initiates at a distance away from the wheel-path due to the bending 

stress where it has the maximum tensile stress at the pavement surface (Roque et al. 

2010). Modulus gradient in asphalt layer is another factor that contributes to TDC due to 

aging and climatic conditions. Long-term aging starts after pavement lay-down, and the 

top part of the asphalt layer ages faster than the bottom part due to excessive exposure to 

air and sunlight. As a result, the asphalt in the top becomes stiffer than the asphalt near 

the bottom. Finally, the aged asphalt layer becomes more and more brittle and more 

prone to cracking (Pellinen et al. 2004, Roque et al. 2010). The temperature gradient in 

the asphalt layer in high air temperature areas causes the modulus to increase with depth 

and induces very high tensile strains at the surface of asphalt pavements with low 

stiffness (Archilla 2015, Ling et al. 2017). One study found that the thermal effect on 

TDC is negligible compared with the traffic effect under intermediate temperatures 

(Ling et al. 2019), while under harsh climates, thermal effect on TDC is predominant 

(Roque et al. 2010). National Center for Asphalt Technology (NCAT) conducted an 

experiment in 2015 to study the effect of material properties on TDC. It was found that 
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the asphalt with high reclaimed asphalt content is more likely to crack prematurely 

(Chen 2020). In addition, larger air void content, lower percentage of fine aggregate,  

and lower binder content contribute to faster TDC initiation and propagation (Canestrari 

and Ingrassia 2020).  

The major factors affecting TDC (paving material properties, pavement structure, traffic, 

and local climate condition) identified above should be considered to accurately model 

TDC in asphalt pavements. The commonly used TDC models reported in literature can 

be categorized into four groups based on the fundamental principles adopted: (i) 

empirical model (ARA Inc. 2004), (ii) Hot-Mix-Asphalt fracture mechanics (HMA-FM) 

model (Zhang et al. 2001, Roque et al. 2002, Birgisson et al. 2003, Dinegdae et al. 2015, 

Huang et al. 2021), (iii) viscoelastic continuum damage (VECD) model (Kutay and 

Lanotte 2018, Canestrari and Ingrassia 2020), and (iv) Paris’ Law model(Luo et al. 

2016, Ling et al. 2017, 2019, 2020, Lytton et al. 2018).  

The advantage of the empirical model is its simplicity and low computation cost. A 

mechanistic-empirical (ME) approach was adopted by the NCHRP project 1-37A (ARA 

Inc. 2004) to model traffic-induced fatigue cracking (BUC and TDC) of asphalt 

pavements. In this ME model, pavement response is translated into damage by using the 

enhanced Asphalt Institute’s MS-1 fatigue life function that defines the number of traffic 

load repetitions allowable until failure of asphalt pavements.  Pavement performance 

(length of longitudinal surface crack per mile for TDC and percent of alligator cracking 

area of total lane area for BUC) is empirically correlated with the calculated 

accumulative damage by a sigmoidal-shaped transfer function. 
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HMA-FM was developed by University of Florida research team to study the top-down 

crack initiation and propagation in asphalt pavements (Zhang et al. 2001, Roque et al. 

2002, Birgisson et al. 2003). According to HMA-FM, there is a threshold of dissipated 

creep strain energy (DCSE) limit for asphalt mixture. The load-induced micro-crack is 

completely healable if induced DCSE is lower than the threshold, while macro-crack 

forms if the induced DCSE exceeds the threshold. Dinegdae et al. (Dinegdae et al. 2015) 

developed a mechanics-based top-down crack initiation prediction framework for asphalt 

pavements based on the enhancement of HMA-FM. The fracture resistance and healing 

potential of asphalt mixture was characterized by incorporating a morphological 

parameter (Das et al. 2015). Huang et al. (Huang et al. 2021) recalibrated Dinegdae’s 

TDC model by a failure curve-based calibration methodology after considering the 

wheel wander effect of traffic loads.  

The viscoelastic continuum damage (VECD) theory is another approach developed to 

characterize the fatigue cracking potential of asphalt mixture in the last two to three 

decades. The VECD theory is primarily based on ‘elastic-viscoelastic correspondence 

(E-VC) principle’, work potential theory  (Schapery 1984), and time-temperature 

superposition (TTS) principle. The VECD theory assumes material continuous and 

homogeneous. The damage caused by the formation and development of micro crack is 

characterized by internal state variables. Therefore, this method is able to identify crack 

initiation and its location, but not able to characterize the crack propagation process 

rigorously. Kutay (Kutay and Lanotte 2018) presented a brief history and introduced 

some commonly used VECD models in the application of fatigue cracking susceptibility 
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analysis of asphalt mixtures. Roque et al. (Roque et al. 2010) integrated VECD and 

HMA-FM approaches into a unified framework for complete TDC initiation and 

propagation predictions.  

Paris’ Law has been widely used to characterize crack growth in fracture mechanics. In 

fracture mechanics, the J-integral is defined as the strain energy release rate or work per 

unit fracture surface area, which can be used in Paris’ Law for elastic-plastic material. 

Using J-integral in Paris’ Law can appropriately characterize of crack growth in asphalt 

mixture because it is a visco-elastic-plastic material. To separate viscoelastic energy 

dissipation from the cracking process, J-integral is replaced with pseudo J-integral in 

Paris’ Law in predicting top-down crack propagation of asphalt pavements (Luo et al. 

2016). Ling et al. (Ling et al. 2020) developed a TDC initiation prediction model using 

pseudo J-integral based Paris’ Law. An empirical regression model was developed using 

LTPP database to predict crack initiation time based on material properties and 

pavement structure. Ling et al. (Ling et al. 2017, 2019) proposed a traffic-induced TDC 

propagation model for asphalt pavements using pseudo J-integral-based Paris’ Law (Luo 

et al. 2016). The predicted crack depths was empirically correlated with the longitudinal 

crack length (parallel to the traffic direction) by a sigmoidal-shaped function with two 

unknown parameters. The above crack initiation and crack growth models were 

assembled into an unified framework (NCHRP 1-52 model) in NCHRP 1-52 (Lytton et 

al. 2018). However, the authors found that NCHRP 1-52 model underestimated the TDC 

initiation times in pavement sections with high traffic volume, while over-estimated the 

TDC initiation times in pavement sections with medium and low traffic volume. To 
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accurately predict the whole process of TDC initiation and propagation, the initiation 

model should be adequately rigorous to insure the consequent propagation model to 

work properly.  

The purpose of this paper is to propose a more robust unified mechanics-based 

framework for TDC initiation and propagation. Our framework improves the robustness 

of NCHRP 1-52 model by replacing their empirical crack initiation model with a HMA-

FM-based crack initiation model. The adopted crack initiation model has been 

implemented in the new mechanics-based Swedish flexible pavement design (Dinegdae 

et al. 2015, Onifade et al. 2017). A modified version of Paris’s law-based TDC growth 

model developed in NCHRP 1-52 (Lytton et al. 2018) was adopted to improve the 

subsequent crack growth prediction. The primary modification to the NCHRP 1-52 

model includes the coupling of the HMA-FM-based crack initiation model, and the 

incorporation of a novel aging model for asphalt mixture.  

The rest of the paper is organized as follows. Section 5.2 presents the unified mechanics-

based framework for TDC and defines all the sub-models in the framework. Section 5.3 

shows the collection of performance data and pavement material properties for the 

following analysis. Section 5.4 evaluates the performance of the crack initiation model 

developed in NCHRP 1-52 to indicate the motivation of our framework. We validate the 

proposed framework in section 5.5. A case study is conducted in section 5.5 to describe 

the step-by-step procedure for applying the proposed framework. We validate the 

proposed framework in section 5.6. Finally, we wrap up with a summary and 

conclusions in section 5.7. 
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5.2. Development of A Unified Mechanics-based TDC Predictive Framework 

5.2.1. General Flow Chart of Developed Framework 

A generalized flowchart is presented in Figure 5.1 to illustrate the process and 

interdependencies of each module in our unified TDC framework for both crack 

initiation and propagation. The input module and material module contribute to both 

TDC initiation and propagation sub-frameworks. These modules cover different 

pavement sections with wide variations in many key factors like dynamic modulus of 

asphalt concrete layers, resilience modulus of unbound layers, geographical information, 

climate conditions, and etc. Robust input and material properties modules feed and 

predict more accurate inputs for the consequent predictive frameworks. The crack 

initiation time predicted by TDC initiation framework will be passed to TDC 

propagation framework to indicate when and where the initial macro-crack appears. The 

TDC propagation framework based on the modified Paris’ law predicts the crack depth 

and pavement failure time when crack growth reaches certain depth. The following 

subsections present all the models in different modules and predictive frameworks.  
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Figure 5.1 Illustration of the process and interdependencies of each module in our 
unified TDC framework. 
 

5.2.2. Input Module 

The input parameters required for the unified framework are divided into four general 

categories that are mixture, traffic, climate, and pavement structure inputs. These input 

parameters can be obtained through direct measurements of the associated properties, 

obtained from an existing database, or predicted using previously developed material 

prediction models. They are: 

• Mixture Inputs: The mixture inputs include the full gradation of aggregates, 

volumetric properties of the mixture, and the PG-grade of the binder. The mixture 

input properties are used to calculate the following properties of the asphalt concrete 

mixture, including the binder G* and phase angle, dynamic modulus of asphalt 

mixture, asphalt stiffness aging model, the mastic coating thickness, the Dissipated 

Input Module

Climate Mixture Structure

Material Module

Traffic

TDC initiation 
framework

TDC propagation 
framework 

Predicted crack initiation time

Predicted Crack Propagation
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Creep Strain Energy limit (DCSE_limit), the Healing potential of the asphalt 

mixture, and the creep strain rate of the asphalt mixture.  

• Climate Inputs: The climate inputs are required to predict the temporal and seasonal 

variations in temperature profiles in the pavement structure. The typical climate 

inputs include the annual hourly air temperature and the mean annual air temperature 

(MAAT). The climate inputs are used to predict the hourly temperature variations at 

different depths in the asphalt concrete layer using a temperature prediction model 

(Han et al. 2011). The hourly variation in pavement temperature profile is used in the 

material module to predict the changes in the mixture properties, e.g., dynamic 

modulus and dissipated creep strain energy.  

• Pavement Structural Inputs: Pavement structural information is required to 

accurately represent the pavement structure and the boundary conditions to simulate 

the actual traffic conditions. The structural information required for the analysis 

includes the layer thicknesses, Poisson’s ratio, modulus of unbound layers, and 

modulus of the asphalt concrete mixture determined from the material module. The 

structural information is used in the pavement response module to compute the 

pavement response due to the application of traffic load. Within the framework, the 

pavement response, including the stress, strain, and deformation fields in the 

pavement layers, can be calculated using the Layered Elastic Theory (LET), an open-

source Finite Element Method (FEM) algorithm implemented in Python, and a 

multiphysics simulation software (COMSOL), respectively.  
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• Traffic Inputs: The traffic inputs are required to account for the influence of the

traffic on the long-term performance of the pavement. Two different types of traffic

inputs are integrated in our framework that are the hourly traffic volume in

equivalent single axle loads (ESALs) and full traffic load spectra. The model can

also consider wheel wander of traffic load for more precise characterization of the

traffic, when available.

The traffic load spectra model is elaborated since traffic load plays a significant role in 

TDC initiation and propagation in asphalt pavements. Higher traffic level would increase 

the rate of accumulation of micro-damage, and therefore, reduce crack initiation time 

and increase the crack propagation rate (Ling et al. 2019). Axle load distribution or axle 

load spectra is defined as the percentage of axle load repetitions for each type of axle 

(single, tandem, tridem and quad) within each load interval for each vehicle class (VC). 

The authors initially employed ESALs as the traffic input in the framework. The 

prediction results show that the crack propagation module is not sensitive to ESALs, 

which is consistent with Zhao et al. (Zhao et al. 2012) who found that TDC is more 

sensitive to changes of traffic axle load spectra than BUC and rutting. Therefore, in this 

study, traffic load spectra is employed instead of ESALs in TDC propagation 

predictions.  

The traffic load spectra model by (Lytton et al. 2010, Ling et al. 2019, 2020) was 

developed to characterize the percentage of axle load repetitions for each type of axle 

(single, tandem, tridem and quad) within each load interval (38 load levels) for each 

vehicle class (class 4-13). The traffic loads are classified as eight categories based on 
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vehicle classes (class 4-13), axle types (single, tandem, tridem and quad) and tire 

configurations (single tire and dual tire). The WIM data, AADTT, or ESALs were 

collected for each of the studied pavement section, but not all types of traffic data were 

available for each section. Therefore, two levels of traffic data were defined based on the 

traffic data availability. WIM data is regarded as the most accurate traffic data and 

defined as level one, and when WIM data is not available, AADTT or ESALs (defined 

as level two traffic data) is used.  

It should be noted that either AADTT or ESALs cannot be used directly as traffic input. 

Instead, they should be converted to the same format as WIM data by using default axle 

load distribution for each load category (Figure 5.2), vehicle class distribution (Table 

5.1), and axle configuration for each vehicle class (Table 5.2) (USDOT 2016). For Texas 

and Swedish sections, AADTT data are available so that they can be converted directly 

using the default distributions shown in Table 5.1 – 5.3 and Figure 5.2. ESALs were 

provided for Florida sections; therefore, a linear relationship between AADTT and 

ESALs was derived using the default traffic distribution before conversion. The tire load 

is finally converted to tire patch length that is used as one of inputs in TDC propagation 

sub-framework (Lytton et al. 2010, Ling et al. 2019, 2020):  

 
Tire Load ( )Tire Lengh ( .)

Tire Pressure ( ) Tire Width ( .)
lbin

psi in
=

×
 (5.1) 
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         (a)                                                                          (b) 

Figure 5.2 Default (a) axle load distribution and (b) accumulative axle load 
distribution. 
(Only category 1, 2, 3, 4 and 6 are presented because there are no quadrem axle for vehicle class 4-13 
and no tridem axle for vehicle class 4-5 according to Table 5.3) 
 

Table 5.1 Distribution of vehicle classes (USDOT 2016). 
Vehicle  
Class 

Distribution Factor 
 (%) 

Vehicle  
Class 

Distribution Factor 
 (%) 

4 1.8 9 31.3 
5 24.6 10 9.8 
6 7.6 11 0.8 
7 0.5 12 3.3 
8 5 13 15.3 

 

Table 5.2 Average number of axle for each vehicle class (USDOT 2016). 
Vehicle 
Class 

Single 
Axle 

Tandem 
Axle 

Tridem 
Axle 

Quadrem 
Axle 

4 1.62 0.39 0 0 
5 2 0 0 0 
6 1.02 0.99 0 0 
7 1 0.26 0.83 0 
8 2.38 0.67 0 0 
9 1.13 1.93 0 0 
10 1.19 1.09 0.89 0 
11 4.29 0.26 0.06 0 
12 3.52 1.14 0.06 0 
13 2.15 2.13 0.35 0 
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Table 5.3 Categories of traffic load (Lytton et al. 2010). 
Vehicle 
Class 

Single 
Axle 

Tandem 
Axle 

Tridem 
Axle 

Quad 
Axle 

4 

1 
3 5 7 5 

6 

4 6 8 

7 
8 

2 

9 
10 
11 
12 
13 

(Shaded areas are axles using single tire; unshaded areas are axles using dual tires) 
 

5.2.3. Material Module 

5.2.3.1. Predictions of Asphalt Aging 

Accurate characterization of the aging of asphalt mixtures is important for predicting the 

changes in the short-term and long-term stiffness of asphalt mixtures. As shown in 

Figure 5.3, asphalt binder aging can generally be divided into two stages: short-term 

aging and long-term aging. Short-term aging occurs during asphalt mixing, 

transportation, and pavement laydown and involves volatilization and oxidation 

processes, while long-term aging is due to oxidation after pavement laydown during the 

entire service life of asphalt pavements. As the asphalt binder ages, it becomes stiffer 

and more brittle due to the change of chemical composition (Sirin et al. 2018), which 

causes asphalt pavement more prone to cracking-related distresses such as TDC and 

BUC.  

Zhang. et al. (Zhang et al. 2019a, 2019b) developed aging models for characterizing 

short-term and long-term aging of asphalt mixture. The rheological activation energy 
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was used to capture binder resistance to viscous flow in the short-term aging model. The 

kinetics-based approach was employed to capture the oxidation process and temperature 

sensitivity in the long-term aging model. In addition, the primary structure coating 

thickness (Lira et al. 2013, Yideti et al. 2013, Dinegdae et al. 2015, Onifade et al. 2017), 

which quantifies the asphalt mastic coating thickness around the load-bearing structure 

of asphalt mixture, was incorporated into the long-term aging model to capture the effect 

of mixture morphology on the oxidation process. 

Figure 5.3 Entire aging evolution of asphalt pavement in terms of binder viscosity 
(Zhang et al. 2019a). 

Formulation of the short-term aging model (Zhang et al. 2019a) is given by: 

( )
( )

0ln ln s sar i
t i s sar i

R

k E t
a E b

RT
η η=

+
= + + + (5.2) 

where 0tη = is short-term aged viscosity corresponding to laydown condition; iη is unaged 

viscosity; ( )ar iE is rheological activation energy of unaged asphalt binder; RT is test 

temperature at which the viscosity is measured; R is the universal gas constant; as, bs, ks, 
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and ts are four model coefficients, which are 0.011327, -2.94272, -0.035330, and 

11.009737, respectively. 

The long-term aging model (Zhang et al. 2019b) is expressed as a sum of short-term 

aged viscosity and an age-hardening increment in a nature logarithm form: 

 ( )0ln ln lnaged t l tη η η== + ∆  (5.3) 

where ( )ln l tη∆ is hardening increment due to long-term aging as a function of aging 

time t; subscript “l” stands for long-term aging. 

The hardening increment term is used to characterize the field oxidative aging and 

includes three components representing the aging evolution, temperature sensitivity and 

morphology dependency, respectively. The long-term aging model can then be finalized 

as follows: 

( ) ( )
( ) ( )0ln ln ln 1 ,     0

l

l af

m
c ar s k tac

aged t l l p l ac lar s
R af

E Ea b t A k e k t b
RT E

η η −
=

      = + + ⋅ + ⋅ − + <             
 (5.4) 

where agedη is long-term aged viscosity; ;  
af ac

a a

E E
RT RT

af af ac ack A e k A e
− −

= = ; ( ) ( ),ar s ar sA E are the 

pre-exponential factor and rheological activation energy of short-term aged binder, 

respectively; pt  is PS coating thickness;; ,  ,  ,  ,  l l l l la b c k m are model  coefficients; and t is 

aging time. 

The dataset used for verifying the short-term and long-term aging model coefficients 

included 420 and 408 pavement sections from the USA and Canada in LTPP (Long 

Term Pavement Performance) database (Zhang et al., 2019a, 2019b).  

5.2.3.2. Predictions of Dynamic Modulus and Phase Angle of Asphalt Binder 
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The Onifade and Birgisson Model (Onifade and Birgisson 2020) was used in this study 

to predict asphalt binder dynamic shear modulus, and phase angle from conventional 

steady-state viscosity for unaged and aged conditions. A suitable form of the generalized 

logistic function was employed in the model to capture the asymptotic behavior of 

asphalt binders under a wide range of temperature conditions. 7120 data points, 

including unmodified and modified binders, were used in the model development and 

verification. In the development of this model, the dynamic shear modulus and phase 

angle predictive model were developed for unmodified and modified binders separately.  

The dynamic shear modulus model for unmodified/modified binders (Onifade and 

Birgisson 2020) is expressed as: 

 ( )( ) ( )
4

0.58* 2
1 log

3

log
1

b a

aG a VTS
a e η ω⋅ ⋅

 
= + ⋅ − 

+ ⋅  
 (5.5) 

where *
bG  is the dynamic shear modulus (psi); η is the steady-state viscosity in 

(MegaPoise); VTS is the regression slope of the Viscosity Temperature Susceptibility 

plot; ω  is the angular frequency in (rad/sec) and 62.8 rad/sec was used in this study to 

similate the tire load with highway traffic speed; a1-a4 are model coefficients and the 

nonlinearly optimized results are presented in (Onifade and Birgisson 2020). 

The phase angle model for unmodified/modified binder (Onifade and Birgisson 2020) is 

given by 

 ( )( ) ( )( )0.7 0.7
2 4

*

log log
1 3

log b ref
b b b

G

b e b e
η ω η ω

δ
⋅ ⋅ ⋅ ⋅

=
⋅ + ⋅

 (5.6) 
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where 𝛿𝛿𝑏𝑏 is the phase angle; *
b ref

G  is the reference dynamic shear modulus (evaluated 

using Eqn. 5.5 at a reference temperature of -96 oC), and the single-valued viscosity shift 

factor is set to be 0.7; b1-b4 are model coefficients and the nonlinearly optimized results 

are presented in (Onifade and Birgisson 2020). 

The predicted dynamic modulus and phase angle of asphalt binder will be used as the 

input parameters in the prediction of dynamic modulus of HMA using Witczak 2006 

model (Bari 2005) detailed in the next section. 

5.2.3.3. Prediction of Dynamic Modulus of Hot Mix Asphalt (HMA) 

The most widely used dynamic modulus models for asphalt mixture are Witczak 1999 

model and Witczak 2006 model (Witczak and Fonseca 1996, Bari 2005). Compared with 

Witczak 1999 model (Witczak and Fonseca 1996), the advantage of Witczak 2006 

model (Bari 2005) is the adoption of the binder dynamic shear modulus and phase angle, 

thereby directly accounting for the frequency-dependent behavior of asphalt binders. 

Therefore, Witczaks’s 2006 dynamic modulus model was adopted in this study.  

Figure 5.4 presents the workflow of HMA dynamic moduli prediction using the Witczak 

2006 model, combined with the short-term and long-term aging models, and the 

dynamic shear modulus and phase angle models of asphalt binder obtained from the 

Onifade and Birgisson model. The output will be input into the crack initiation and 

propagation models detailed in the next two sections. 
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Figure 5.4 Workflow of HMA dynamic modulus prediction. 
 

5.2.3.4. DCSE Limit and Accumulated DCSE  

The framework considers the effect of oxidative aging on the predicted properties of the 

asphalt mixtures and the effects of healing on micro-damage recovery. It also considers 

the effect of different climatic regions on pavement performance by introducing a new 

temperature prediction model (Han et al. 2011). The changes in all key material 

properties due to aging, pavement temperature gradient, and varying temperature 

profiles (Zhang et al. 2019a, 2019b) are considered. The prediction of asphalt aging 

without adequate consideration of the mixture morphology might lead to erroneous 

conclusions (Das et al. 2015). Therefore, in this study, an asphalt mixture morphology 

model (Das et al. 2015) was employed to relate the asphalt mixture aging to the key 

material properties (i.e. aggregate packing, air void, porosity and level of compaction).  

The Dissipated Creep Strain Energy Limit (DCSE_lim) is a threshold derived from the 

HMA-FM that determines the upper limit for macro-crack initiation in asphalt mixtures. 
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The DCSE_lim is related to PS coating thickness (tp) and age according to experimental 

observations on a variety of asphalt mixtures using the SuperPave indirect tension tests 

(Das et al. 2015, Dinegdae et al. 2015). The DCSE_lim of unaged and aged asphalt 

mixture are given as: 

 2
1_ lim

ln1
ln

*( ) *( )i

p aged

k
tDCSE

t
k η

η
=  (5.7) 

where i and t stand for ‘initial’ and aging time, respectively;  agedη  and iη are aged 

steady-state viscosity at time t (in years) and initial unaged steady-state viscosity of 

asphalt binder under reference temperature ( 25°C), respectively; tp is PS coating 

thickness; k1 and k2 are material-specific parameters given as k1 = 15.5 and k2 = 3.35. 

The healing potential (Dinegdae et al. 2015) of the asphalt mixture based on the asphalt 

mixture morphology is given as: 

 k( ) ] )1 ([exp( ) ip DCSE
ym norm

t
t

h t −= −  (5.8) 

where tp is PS coating thickness; k is a factor depending on the traffic volume; t is time 

in years. As can be seen from Eqn. 5.8, asphalt mixtures with higher PS coating 

thickness exhibit more capacity to heal and recover induced damage.  

The accumulated damage induced per loading cycle (ACSEL/cycle) is computed by 

considering maximum surface tensile stress, creep strain rate, and hourly traffic 

expressed as (Dinegdae et al. 2015): 

 
0.1

max
0

*sin(10 )* *sin(10 )dtL AVE pACSE cycle t tσ π ε π•= ∫  (5.9) 
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where σAVE is the averaged stress within the zone being analyzed and maxpε • is creep strain 

rate. 

Taking into account of healing, the accumulated creep strain energy that is not healed is 

expressed as (Dinegdae et al. 2015): 

 ( ) ( )* (1 ( ))remain accum ymACSE t ACSE t h t= −  (5.10) 

5.2.4. TDC Initiation Framework 

The mechanics-based crack-initiation analysis framework predicts the initiation of 

fatigue cracking in asphalt pavements, including both top-down and bottom-up cracking 

initiation (Dinegdae et al. 2015). In this study, the crack-initiation analysis framework 

was coupled with the crack growth model developed under NCHRP 1-52 (Lytton et al. 

2018). Specifically, the first part of the framework was implemented for calculating the 

initiation of top-down cracking of flexible pavements, and then the predicted crack 

initiation time was used as an input in the modified NCHRP 1-52 top-down crack 

growth model. The outline of the TDC initiation framework is summarized in Figure 5.5.  

The underlying criterion for the initiation of top-down cracking is based on an extension 

of HMA-FM (Zhang et al. 2001, Roque et al. 2002, Birgisson et al. 2003). The HMA-

FM identifies an energy threshold representing the resistance of asphalt mixtures to the 

initiation of fracture. Below the energy threshold, induced damage due to micro-cracking 

and micro-void formation are healable. Above the threshold, damage is non-healable and 

result in macro-crack formation, propagation, and eventually failure of pavement.  
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Figure 5.5 Flowchart of TDC initiation framework. 
 

The limiting condition for crack initiation is assessed through continuous evaluation of 

the remaining Accumulated Creep Strain Energy (ACSE) and the Dissipated Creep 

Strain Energy (DCSE) densities limit of the material. When the remaining ACSE exceeds 

the DCSE_lim, a macro-crack initiates. The critical condition for macro-crack initiation 

is expressed as (Dinegdae et al. 2015): 

 lim( ) ( ) ( )remainCI t ACSE t DCSE t= −  (5.11) 

where CI is the crack initiation, and t designates the evolution of the energy densities 

with time.  

5.2.5. TDC Propagation Framework 

A modified version of Paris’s law-based TDC growth model developed in NCHRP 1-52 

(Lytton et al. 2018) was adopted to improve the subsequent crack growth prediction. The 

primary modification to the original crack growth model developed in NCHRP 1-52 
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project is the incorporation of a novel aging model for asphalt mixture. The pseudo J-

integral-based  Paris’ Law is expressed as: 

 ( ) '' ndc A J
dN

= ∆  (5.12) 

Where J∆  is the J-integral computed by an Artificial Neural Network (ANN) model 

(Ling et al. 2017), 'A  and 'n  are the fracture parameters obtained a regression model 

from (Luo et al. 2016). The developed ANN model considers modulus gradient of the 

asphalt layer, moduli of base/subbase and subgrade layers, pavement structure, non-

uniform tire load pattern (De Beer et al. 1997, Ling et al. 2017), and load locations. The 

flowchart of the TDC propagation framework is shown in Figure 5.6. 

 

 
Figure 5.6 Flowchart of TDC propagation framework. 
 

The truck tire-pavement contact stress is non-uniformly distributed along three 

directions, namely, longitudinal, vertical and transverse directions. The contact stresses 
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in three directions correspond to three different fracture modes, including sliding mode 

under vertical stress, opening or tensile mode under transverse stress and tearing mode 

under longitudinal stress (Luo et al. 2018). The tire load considered in the ANN model 

includes three components: vertical stress, transverse stress, and longitudinal stress. The 

distribution of each stress component follows Beer’s work (De Beer et al. 1997). The 

shape of the tire contact area is simplified to be rectangular (Lytton et al. 1993). The 

input variables of the ANN model includes the thickness of each pavement layer, crack 

depth, surface modulus gradient (n, k), modulus of each pavement layer.  

Luo et al. (Luo et al. 2016) developed a regression model for predicting fracture 

coefficients (A′ and n′) through performance-related material properties. The dynamic 

uniaxial tensile test data, controlled-strain RDT test data, and overlay test data collected 

from different sources were used in the multiple regression analysis. The parameters n′ 

and A′ are expressed as: 

 ( )
1

1 116.052 0.135 % 6.500ln % 8.147 5.512 81.515
m

n AV AB
m E

ψ
 

′ = − + + + + −  
 

 (5.13) 

 ( )1.246 3.61510 nA ′− +′ =  (5.14) 

where AV% is air void content, in %; AB% is asphalt binder content by weight of the 

mixture, in %; ψ is the aggregate gradation shape parameter; E1 and m are relaxation 

modulus parameters, in MPa. Relaxation modulus is affected by oxidative aging so that 

the fracture parameters (A′ and n′) is also aging dependent. The power function of the 

relaxation model is (Luo et al. 2016): 

 1( ) mE t E t−=  (5.15) 
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where E(t) is the relaxation modulus of asphalt mixtures, and E1 and m are relaxation 

modulus parameters used to calculate the fracture coefficient n′. 

As we mentioned, dynamic modulus gradient of asphalt mixture plays an important role 

in top-down crack propagation. The equations below are used to model dynamic 

modulus gradient (Ling et al. 2017): 

 ( ) 0
0( ) ;     

N

d d
d

Ed zE z E E E K
d E
− = + − = 

 
 (5.16) 

where E(z) is modulus at depth z; E0 and Ed are moduli at surface and bottom of the 

asphalt layer, respectively; d is the thickness of asphalt layer; N and K are model 

parameters used as input of the J-integral ANN model. Table 5.4 provides the input 

variables for the TDC propagation framework. 
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Table 5.4 Summary of Input Variables for the Top-down Crack Propagation 
Framework. 

Category Name 

J-integral ANN 

Asphalt layer thickness (in.) 
Base layer thickness (in.) 

Subgrade layer thickness (in.) 
Crack depth (mm) 

Surface modulus gradient (n, k) 
Surface modulus (ksi) 

Base modulus (ksi) 
Subgrade modulus (ksi) 

Traffic Yearly ESALs 

Environment Mean Annual Average 
Temperature (C°) 

Dynamic modulus model 

Aggregate gradation 
Percent of air void (%) 

Effective binder content (%) 
Void in Mineral aggregate (%) 

Binder content (%) 
A 

VTS 
Primary structure coating 

thickness (mm) 
Crack initiation prediction model Crack initiation time (yrs) 

 

5.3. Data Collection 

To evaluate the performance of the proposed unified framework, eighteen field test 

sections were investigated as a part of this study. These include eleven pavement 

sections from the State of Florida, three Long Term Pavement Performance Sections 

(LTPP) sections from the State of Texas, and four pavement sections from Sweden 

(Dinegdae et al. 2015, Göransson 2020, LTPP InfoPave 2020). The binder types, mix 

design procedures, mix volumetrics, traffic, climate, and overall pavement design varied 

across these sections.  

The performance history (i.e. crack initiation and propagation) of the field sections are 

necessary to evaluate and validate the prediction accuracy of the proposed framework. 
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The observed crack initiation and failure times of Florida sections were converted from 

crack rating (CR) ranging from 0 to 10 (Dinegdae et al. 2015). A CR of 10 indicates that 

the pavement is intact with no cracks, and a reduction in CR implies the presence of 

microcracks or propagation of macro cracks depending on the level of the CR. 

Specifically, the CR values of 8 and 6.4 indicate TDC initiation and failure, respectively 

(Roque et al. 2010). The longitudinal wheel-path crack length is recorded with three 

severity levels (i.e. low, medium and high) according to the crack width in LTPP 

database. The longitudinal crack data with Medium and high severity levels are barely 

recorded because once the medium severity level reaches, the longitudinal cracks would 

possibly intersect with transverse cracks and therefore be reported as alligator cracking. 

Crack initiation and failure times for the LTPP sections were converted from the field 

measured longitudinal wheel-path crack length at the first appearances of low and 

medium severity level cracks, respectively. On the other hand, crack index is used to 

evaluate the cracking severity level for Sweden sections. A crack index of 150 is defined 

as crack initiation. The measurement of crack index stopped when failure occurs to the 

pavements (Göransson 2020). 

In addition to the performance history data, the laboratory characterizations (i.e. 

aggregate gradation, binder properties, volumetrics, and mechanical properties of the 

mixtures) are also available for each of these sections. The input data used to predict 

TDC initiation and propagation of the proposed framework are summarized in the 

appendix A.  
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5.4. Evaluation of NCHRP 1-52 Model 

This section evaluates the performance of the crack initiation model developed in 

NCHRP 1-52. Figure 5.7 compares the measured with the predicted crack initiation time 

using NCHRP 1-52 model. In Figure 5.7(a), NCHRP 1-52 model generally over-

predicted TDC initiation time in the sections with medium to low traffic volume, while 

under-predicted TDC initiation time in the sections with high traffic volume. The 

average deviations of the predicted results from the field measurements are 19.29 years 

and 4.37 years for medium-to-low traffic sections and high-traffic sections, respectively. 

Therefore, significant high relative error shown in Figure 5.7(b) indicates that 

developing a more reliable TDC initiation model is urgently needed to improve the 

performance of the consequent NCHRP 1-52 crack propagation model. 
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(a) 

 
(b) 

Figure 5.7 Comparison between observed and predicted crack initiation times using 
NCHRP 1-52 model: (a) measured and predicted initiation time; (b) relative 
difference between measured data and predicted results (positive values indicate 
over-predicted and negative values under-predicted). 
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5.5. A Case Study 

A step by step procedure of applying the proposed framework to the prediction of crack 

initiation and failure times of flexible pavements is summarized in this section using the 

input data for Florida section St.Lucie (TPK-2C) as an example. 

Step 1: Collect the input data. 

The input data required can be divided into seven categories including traffic, pavement 

structure, environment asphalt mixture gradation and volumetrics, asphalt binder 

information, and asphalt mixture fracture energy parameter, as shown in Table 5.5 and 

Figure 5.8. 

 
Table 5.5 Input data of Florida pavement section St.Lucie (TPK-2C). 

Category Name Value 

Traffic 

ESALs_yearly 166000 
Coring year 10 

Percent Truck  0.123 
Track factor 1.03 

Pavement  
Structural  

Information 

Depth of AC layer (in.) 6.1 
Depth of Base layer (in.) 12 

Depth of Subbase Layer (in.) 12 
Base  Modulus (ksi) 34 

Subbase Modulus (ksi) 19 
Subgrade Modulus (ksi) 24 

Environment MAAT (°F) 75 
Reference temperature (°F) 50 

Volumetrics 

Aggregate Gradation Figure 5.8 
Air-void content (Va) 4.55 

Effective binder content (Vbe) 10.71 
Void in Mineral Agg. (VMA) 15.26 

Binder content (Pb) 5.23 

Asphalt Binder 
Binder type PG 67-22 

A 10.6316 
VTS -3.548 

Fracture Energy  
Parameter Primary Structure coating thickness (mm) 0.956 
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Figure 5.8 Aggregate gradation of asphalt mixture for Florida pavement section 
St.Lucie (TPK-2C). 

Step 2: Determine dynamic modulus of asphalt mixture at different depths in asphalt 

layer(s).  

Pavement temperature at different depths is first predicted by a new temperature model 

(Han et al. 2011) in order to capture the climate effect on pavement performance, as 

shown in Figure 5.9. It is assumed that the temperature variation keeps the same pattern 

each year. Then the aforementioned short-term and long-term aging model (Zhang et al. 

2019b, 2019b) (Eqn. (5.2 – 5.4)) is employed to predict the aged viscosity of asphalt 

binder, which is then used in Onifade and Birgisson Model (Onifade and Birgisson 

2020) (Eqn. (5.5 – 5.6))  to predict dynamic modulus and phase angle of asphalt binder. 

Finally, hourly dynamic modulus of HMA at four different depths in the asphalt layer 

are predicted by Witczak 2006 model (Bari 2005), as shown in Figure 5.10. 
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Figure 5.9 Predicted hourly pavement temperature at different depths of AC in a 
year for Florida section St.Lucie (TPK-2C). 

 

 
Figure 5.10 Predicted dynamic modulus of AC at different depths in asphalt layer 
for Florida section St.Lucie (TPK-2C). 
 

Step 3: Predict top-down crack initiation time of asphalt pavement. 

The PS coating thickness (tp) is first determined by a morphology model (Das et al. 

2015) which is correlated with DCSE_lim that determines the initiation of maro-cracks 

of asphalt mixture. Then Eqn. (5.7 – 5.11) can be used to calculate top-down crack 

initiation time. Top-down crack initiates when Accumulated Creep Strain Energy 

(ACSE) is equal to DCSE_lim. As shown in Figure 5.11, the predicted crack initiation 

year is 9.2. 
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Figure 5.11 Predicted remaining ACSE and DCSE_lim with time for Florida section 
St.Lucie (TPK-2C). 
 

Step 4: Determine dynamic modulus master curve of asphalt mixture. 

The dynamic modulus of asphalt mixture are predicted at different temperatures and 

frequencies to obtain dynamic modulus master curve. To simplify the calculation, the 

aging condition at crack initiation time is used in generating the input data for 

constructing dynamic modulus master curve of asphalt mixture. The constructed 

dynamic modulus master curve (Figure 5.12 (a)) is then converted to relaxation modulus 

using 11-term Prony Series. The obtained relaxation modulus curve is fitted by power 

function to determine the multiplier and exponent of 1360.4 MPa and -0.205, 

respectively. 
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                                        (a)                                                                            (b) 
Figure 5.12 (a) Predicted dynamic modulus master curve and (b) converted 
relaxation modulus of asphalt mixture for Florida section St.Lucie (TPK-2C). 
 

Step 5: Determine aggregate gradation characteristic parameters for asphalt mixture. 

The aggregate gradation data is also fitted by power function to obtain the aggregate 

gradation shape factor ψ, which is 0.2944 as shown in Figure 5.13. 

 

 
Figure 5.13 Fitting result of aggregate gradation of asphalt mixture for Florida 
section St.Lucie (TPK-2C). 
 

Step 6: Determine fracture coefficients.  

The fracture coefficients (A′ and n′) can be calculated using the regression model (Eqn. 

(5.13 – 5.14)) developed by Xue et al. (Luo et al. 2016) based on the parameters 

calculated in step 4 and 5. The calculated A′ and n′ are 6.03 and 7.42e-12, respectively.  
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Step 7: Determine dynamic modulus gradient parameters (N and K). 

Eqn. (5.16) is used to fit the predicted hourly dynamic modulus of asphalt mixture at 

different depths, and the fitted model parameters N and K are plotted in Figure 5.14. 

 

 
Figure 5.14 Predicted dynamic modulus gradient parameters (N and K) with time 
for Florida section St.Lucie (TPK-2C). 
 

Step 8: Determine traffic loads using the presented load spectra model.  

Since the traffic data provided for Florida sections are ESALs, it should be converted to 

the same format as WIM data by using the default axle load distribution (Figure 5.2), 

vehicle class distribution (Table 5.1), and axle configuration for each vehicle class 

(Table 5.2) before being used in the prediction of top-down crack propagation. Tire 

length is calculated using Eqn. (5.1) which is used as one of eight inputs for J-ANN 

model for predicting J-integral. 

Step 9: Determine J-integrals at the crack tip in asphalt layers. 
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The J-integral is computed by the ANN model developed by Ling et al. (Ling et al. 

2017). The inputs of the ANN model are dynamic modulus of asphalt layers, moduli of 

base and subgrade, thicknesses of AC and base, dynamic modulus gradient parameters 

(N and K), and crack depth updated at each time step. The outputs of the ANN model are 

a total of six J-integrals under single tires with tire lengths of 64 mm, 305 mm, and 406 

mm, and dual tires with the tire lengths of 64 mm, 127 mm, and 229 mm. Since the load 

spectra is used in the top-down cracking predictions, the J-integrals caused by the tire 

loads other than the predicted six should be acquired by interpolation. The calculation of 

J-integral is started after crack initiation predicted by the TDC initiation framework. The 

crack depth at the time of crack initiation is set to be 7.5 mm. The ANN predicted J-

integral under current crack depth, current modulus of each layer under a specific tire 

load level is used in Paris’ Law (Eqn. (5.12)) to calculate the crack depth increment. The 

calculated crack depth increment under each tire load in the current time step is added to 

the total crack depth obtained in the last time step. The J-integrals are updated every four 

hours to enhance the efficiency without the loss in accuracy. Figure 5.15 (a) shows the 

ANN predicted J-integrals under six different tire loads for 20 years. The predicted crack 

growth is plotted in Figure 5.15 (b). For Florida section St.Lucie (TPK-2C), the 

predicted failure time is 14.2 years with the defined failure threshold of 16 mm. 
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                                         (a)                                                                         (b) 
Figure 5.15 (a) ANN predicted J-integrals due to different tire loads for single and 
dual tires and (b) Predicted crack growth for Florida section St.Lucie (TPK-2C). 
 

Step 10: Compare the modelling results with field measurements. 

Figure 16 shows the CR history of the Florida pavement section St.Lucie (TPK-2C). 

Recall that CR values of 8 and 6.4 were defined as the indicators of top-down crack 

initiation and failure, respectively (Roque et al. 2010). Thus, the measured crack 

initiation and failure times for section St.Lucie (TPK-2C) are 8 and 13 years, 

respectively. According to the results presented in Figures 5.11 and 5.15(b), the 

predicted crack initiation and failure time are 9.2 and 14.2 years respectively. For the 

St.Lucie (TPK-2C) section, the predicted results are in good agreement with the field 

observation. 
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Figure 5.16 CR history of Florida section St.Lucie (TPK-2C). 

5.6. Long-term TDC Prediction  

This section presents the predictions by our unified framework for crack initiation and 

propagation using the same dataset mentioned in the previous section. These results and 

comparisons with the measured data validates the proposed framework. Figure 5.17 

shows the observed and predicted crack initiation times using HMA-FM-based crack 

initiation model. The average deviation of the predicted results from the field 

measurements is 1.36 years with the minimum and maximum deviations of 0.25 and 

3.56 years. The HMA-FM-based crack initiation model outperforms the NCHRP 1-52 

model by achieving much smaller deviations from the field measurements. The predicted 

crack initiation times were then adopted as the starting point of crack propagation 

prediction. The crack depth at crack initiation time was set to be 7.5 mm according to 

Lytton et al. (Lytton et al. 1993, 2018). Table 5.6 presents all the calculated fracture 

coefficients and performance-related material properties for the selected pavement 

sections. A′ and n′ were calculated using the regression function in Eqns. (5.13 – 5.14). 

E1 and m were calculated using Eqn. (5.15), and the aggregate gradation shape factor ψ 

is calculated by fitting aggregate gradation data with power function. 
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Table 5.6 Fracture Coefficients and Performance-related Material Properties. 

Section Name 
Fracture 

Coefficients 
 Performance-Related 

Material Properties 
A' n'   E1 (MPa) m ψ 

Florida source       
Charlotte (I75-1A),FL 2.32E-13 7.24  1389.55 0.21 0.28 
Charlotte (I75-1B),FL 3.60E-14 7.89  1525.28 0.21 0.28 
Lee (I75-3),FL 5.03E-14 7.77  1286.78 0.21 0.30 
Hamilton(I-75SB),FL 3.78E-12 6.27  958.38 0.20 0.33 
Marion (US-301 SB),FL 3.82E-13 7.06  1196.48 0.21 0.29 
Duval2(I-295SB),FL 2.46E-15 8.82  1817.62 0.21 0.31 
St.Lucie (TPK-2C),FL 7.42E-12 6.03  1360.41 0.20 0.29 
Alachua (NW 39-1C),FL 1.23E-11 5.86  995.42 0.21 0.32 
Seminole (SR46),FL 3.10E-13 7.14  1478.92 0.22 0.27 
Alachua (SR-121 SB),FL 7.90E-14 7.61  1500.58 0.21 0.29 
Bradford (SR-16EB),FL 3.12E-13 7.14  1189.80 0.21 0.30 
Sweden source       
T-205-1 Karlstad,SE 6.89E-07 2.04  565.04 0.18 0.43 
U-580-1:2 Västerås-Hässlö,SE 5.08E-07 2.15  578.56 0.18 0.43 
P-RV46-1 Såtenäs,SE 5.77E-07 2.11  572.94 0.18 0.43 
T-205-2 Ställdalen,SE 7.12E-07 2.03  563.55 0.18 0.43 
LTPP source       
48-3669,TX 1.06E-10 5.10  935.01 0.19 0.25 
48-1119,TX 4.87E-11 5.38  847.35 0.20 0.34 
48-3729,TX 6.68E-11 5.26  850.35 0.19 0.31 

 

Figure 5.18 shows a comparison of the observed and predicted failure times for the 18 

pavement sections. The failure was set as when the crack depth reaches 16 mm. 

Similarly, the average deviation of predicted pavement failure from the field measured 

results are 1.19 years with the minimum and maximum deviations of 0 and 3 years. The 

maximum deviation can be observed in Bradford (SR-16EB), FL with measured and 

predicted failure times of 13 and 16 years, respectively. The field measurement of crack 

rating index ended at year 11 with CR value of 7 which is larger than the threshold of 

failure (6.4). Since the actual failure time cannot be obtained through direct field 
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observation, the failure time used for the Bradford (SR-16EB), FL section was 

extrapolated and determined to be 13 years. 

 

 
Figure 5.17 Comparison between observed and predicted crack initiation times for 
Swedish, Florida, and Texas pavement sections used in the study. 
 

 
Figure 5.18 Comparison between observed and predicted pavement failure time. 
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5.7. Conclusions 

This paper presents a novel unified mechanics-based framework for predicting the long-

term TDC performance of asphalt pavements. The unified framework consists of two 

distinct sub-frameworks that are the crack initiation sub-framework and the crack 

propagation sub-framework. The required inputs for the unified crack initiation and 

propagation framework are either measured or predicted using established and verified 

models. Our robust input module and material module are capable to cover a wide range 

of different pavements all over the world with diverse specifications like traffic, climatic 

conditions, material properties, structural configuration, etc. To improve the crack 

initiation prediction, the HMA fracture mechanics-based framework is integrated to 

predict TDC initiation, which shows a significant improvement in accuracy compared 

with the original NCHRP 1-52 crack initiation sub-model. A more accurate predicted 

TDC initiation time is adopted as an essential inputs to the crack propagation sub-model 

based on the J-integral-based Paris’ law. Eighteen pavement sections from different 

geographical locations with well-documented performance history and material 

properties were evaluated. The predicted results indicates that the proposed unified 

framework is able to accurately predict the crack initiation and failure time of field 

pavements. 

The prediction results shown in this study were based on limited data available. More 

data is needed to help better validate the proposed framework. Future work will focus on 

extending the field validation sections to further evaluate the performance of the unified 
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TDC framework. In addition, future work will include establishing the performance 

prediction process described here for more comprehensive prediction of the initiation 

and growth of all forms of traffic-related pavement cracking distress, including TDC, 

BUC, reflective cracking, and thermal cracking. The thermal-induced crack growth 

model developed in the NCHRP 1-52 project may also be incorporated into the new 

unified cracking model. On the other hand, the authors will continue focusing on 

establishing and presenting improved material properties prediction in the material 

module that further improves the links between mixture composition and key 

performance properties. 
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6. PERFORMANCE IMPACTS OF TRUCK AUTOMATION AND TRUCK 

PLATOONING ON TEXAS PAVEMENTS AND BRIDGES 

6.1. Introduction 

The rise of private vehicles in cities leads to a number of problems including, but not 

limited to, increasing CO2 emission and energy consumption, increasing accident 

occurrence because of human error, exacerbating traffic congestion, reducing service life 

of road infrastructure. Autonomous vehicles (AVs) has received substantial attention 

because this technology is the potential solution to the problems mentioned above 

(Weisser 1998, Fagnant and Kockelman 2015, Litman 2017, Vahidi and Sciarretta 

2018). According to the S-curve theory (Liu et al. 2019), it was predicted that the 

proportion of AVs circulating would reach 20% by the end of 2030s and occupy 50% by 

the end of 2050s. 

The design and performance of pavement system (bridges and pavements) depend on 

climate, truck traffic, structure, and material properties (Mallick and El-Korchi 2008). 

Connected and autonomous trucks (CATs) affect truck traffic factor differently from 

HTs because of the characteristics of CATs in terms of lane choice, lateral positioning, 

and number of trucks and truck spacing within a platoon.  

HTs (HTs) normally do not follow the exact path on a road while travelling. The term 

‘wheel wander’ can be used to characterize this phenomenon and is defined as the lateral 

distribution of wheel loads over a pavement cross section (Gungor 2018). Wheel wander 

of HTs is affected by several factors including weather conditions (i.e. wind speed and 

precipitation), environment, time, type of vehicle, traffic conditions, and road 
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characteristics (i.e. road type, road configuration, road roughness, road markings) (Buiter 

et al. 1989). Blab and Litzka reported four factors that most influence lateral positioning 

of vehicles: lane width, vehicle width, vehicle speed and rut depth in the cross section 

(Blab and Litzka 1995). Field measurements showed that the wheel path of HTs is 

normally distributed within a traffic lane (Buiter et al. 1989). Standard deviation of its 

probability density curve is commonly used to characterize the spread of wheel loads. 

The standard deviation of wheel wander ranges from 8 to 24 inches depending on the 

lane width and vehicle size and so on, and it is taken as 10 inches in most pavement 

design (ARA Inc. 2004). 

Compared with HTs, the wheel wander of ATs is programmed by the vehicle computer 

embedded into the vehicle steering system. Therefore, the ATs, theoretically, are able to 

follow any predefined lateral distributions that potentially have either positive or 

negative impact on the long-term performance of pavements. AVs can be programmed 

to follow a channelized wheel path with extremely small wheel wander (zero wheel 

wander). This type of wheel wander helps with increasing traffic safety due to more 

predictable traffic trajectory, increasing passenger comfort, and reducing the traffic lane 

width in design which reduces the total cost of pavement construction. On the other 

hand, the studies showed that the channelized wheel loads caused faster damage 

accumulation on one spot of the pavement which thereby yield a reduced service life 

(Forrest and Konca 2007, VdM Steyn and Fisher 2008, Litman 2017). Therefore, it is 

important to study the effect of ATs or CATs on the long-term performance of pavement 

system. 
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This study focused on developing a framework for evaluating autonomous truck effect 

on asphalt pavements and truck platooning effect on bridges in Texas highway system. 

This study is organized as follows. The next section introduces the framework for 

evaluating autonomous truck effect on asphalt pavements including input module, traffic 

module, material module, and pavement performance module. The data collection and 

results and discussion were included in the end of the first section. Section two 

conducted a high-level prioritization of existing Texas bridges using the National Bridge 

Inventory (NBI) data along with prior research. The prioritization levels for about 55000 

bridges in Texas were calculated under various future truck-platoon-loading scenarios. 

The last section summarizes the significant findings of this study.  

6.2. Framework for Evaluating Autonomous Truck Effect on TDC Performance of 

Asphalt Pavements in Texas 

6.2.1. General Flow Chart of Framework 

Chapter 5 developed a unified mechanics-based TDC predictive framework to evaluate 

the TDC performance of asphalt pavements. This section adopted the same framework 

with some modifications to study the autonomous truck effect on TDC performance of 

asphalt pavements. The major modifications includes incorporation of a resilient 

modulus prediction model that considers stress-moisture dependent behavior of unbound 

layers (i.e. base, subbase, and subgrade layers), and a new traffic load spectra model that 

distinguishes HTs from autonomous trucks. A generalized flowchart is presented in 

Figure 6.1 to illustrate the structure of the modified TDC framework. 
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Figure 6.1 Illustration of the process and interdependencies of each module in TDC 
framework. 
 

6.2.2. Input Module 

The input parameters required to evaluate the autonomous truck (AT) effect on asphalt 

pavements are divided into five categories, namely, asphalt mixture, unbound material, 

climate, pavement structure, and traffic inputs. These input parameters can be obtained 

through direct measurements of the associated properties, obtained from an existing 

database, or predicted using previously developed material prediction models. They are: 

• Asphalt mixture Inputs: The mixture inputs include the full gradation of aggregates, 

volumetric properties of the mixture, and the PG-grade of the binder. The mixture 

input properties are used to calculate the following properties of the asphalt concrete 

mixture, including the binder G* and phase angle, dynamic modulus of asphalt 

mixture, asphalt stiffness aging model, the mastic coating thickness, the Dissipated 
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Creep Strain Energy limit (DCSE_limit), the Healing potential of the asphalt 

mixture, and the creep strain rate of the asphalt mixture.  

• Climate Inputs: The climate inputs are required to predict temporal and seasonal 

variations in temperature profiles in the pavement structure (Han et al. 2011), and to 

calculate Thornthwaite Moisture Index (TMI). The hourly variation in pavement 

temperature profile is used in the material module to predict the changes in the 

mixture properties, e.g., dynamic modulus and dissipated creep strain energy. TMI is 

used to represent the climate factor in the prediction of the equilibrium soil suction at 

the depth of moisture active zone. Typical climate inputs include the annual hourly 

air temperature and precipitation, and the mean annual air temperature (MAAT).  

• Unbound material inputs: The unbound material inputs are required to predict 

modulus of unbound layers in asphalt pavements. The typical unbound material 

inputs include Atterberg limits, aggregate gradation, optimum moisture content, 

maximum dry density, and specific gravity. 

• Pavement Structural Inputs: Pavement structural information is required to simulate 

pavement response due to the application of traffic load. The structural information 

required for the analysis includes the layer thicknesses, Poisson’s ratio, and moduli 

of unbound layers and asphalt concrete mixture determined from the material 

module. This framework employs a Python-based Finite Element Method (FEM) 

algorithm to calculate pavement response including the stress, strain, and 

deformation fields in the pavement layers. 
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• Traffic Inputs: The traffic inputs are required to account for the influence of human-

driven trucks (HTs) and/or autonomous trucks (ATs) on the long-term performance

of asphalt pavements. Two levels of traffic data input were established based on data

availability. WIM data is preferred when it is available (level one) because it best

represents the field traffic condition. AADTT or ESAL can be used as level-two

traffic input data when WIM data is not available.

6.2.3. Traffic Module 

6.2.3.1. Traffic Load Spectra 

Appropriate characterization of truck traffic is important in accurately predicting TDC 

performance of asphalt pavements. Section 2.2.2 of this dissertation introduced a traffic 

load spectra model developed in NCHRP 1-41 (Lytton et al. 2010). In NCHRP 1-41 

traffic model, traffic load is categorized based on vehicle class (classes 4-13), axle types 

(single, tandem, tridem, and quadrem), and the number of tires (single tire and dual tire). 

To distinguish HTs from ATs, a user-defined autonomous truck type (class 14) was 

added to NCHRP 1-41 traffic model in this study. Table 6.1-6.2 present the updated 

vehicle class distribution and Average number of axle for each vehicle class, 

respectively. Figure 6.2 displays the axle configuration of the selected autonomous truck 

model (18-wheeler). The updated traffic load spectra model designates the number of 

tires for each axle for each vehicle class. As shown in Table 6.3, the single axle in 

vehicle class 6-7 and all axles in vehicle class 4-5 are designated as single tires, while 

the rest are dual tires. Therefore, the traffic load matrix can be characterized into 10 

categories with 8 categories for HTs and 2 categories for ATs. The axle load distribution 
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for each load category is characterized by the axle load distribution curves with 38-level 

load bins by default (Figure 6.3). Notice that the truck type and axle load distribution for 

autonomous trucks used in this study are tentative as the research on ATs is still 

underway. 

 

Table 6.1 Distribution of vehicle classes (USDOT 2016). 
Vehicle  
Class 

Distribution Factor 
 (%) 

Vehicle  
Class 

Distribution Factor 
 (%) 

4 1.8 10 9.8 
5 24.6 11 0.8 
6 7.6 12 3.3 
7 0.5 13 15.3 
8 5 14 0 
9 31.3 - - 

 

 
Figure 6.2 Selected axle configuration of autonomous truck (vehicle class 14). 
 

Table 6.2 Average number of axle for each vehicle class (USDOT 2016). 
Vehicle 
Class Single Axle Tandem Axle Tridem Axle Quadrem Axle 

4 1.62 0.39 0 0 
5 2 0 0 0 
6 1.02 0.99 0 0 
7 1 0.26 0.83 0 
8 2.38 0.67 0 0 
9 1.13 1.93 0 0 
10 1.19 1.09 0.89 0 
11 4.29 0.26 0.06 0 
12 3.52 1.14 0.06 0 
13 2.15 2.13 0.35 0 
14 1 2 0 0 
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Table 6.3 Categories of traffic load (Lytton et al. 2010). 
Vehicle 
Class 

Single 
Axle 

Tandem 
Axle 

Tridem 
Axle 

Quad 
Axle 

4 

1 
3 5 7 5 

6 

4 6 8 

7 
8 

2 

9 
10 
11 
12 
13 
14 9 10 - 

(Shaded areas are axles using single tire; unshaded areas are axles using dual tires) 
 

 

(a)                                                                             (b) 
Figure 6.3 Default axle load distribution for (a) HTs and (b) ATs. 
 

6.2.3.2. Traffic Wheel Wander 

The evaluation of pavement performance relies upon, among other factors, traffic 

loadings. The driving behavior of ATs is different from HTs in terms of both lane choice 

and lateral positioning (wheel wander). HTs do not normally follow the same repetitive 

path while traveling, while ATs are controlled by vehicle control systems and can follow 

a precise channelized wheel path which induces concentrated traffic loads (i.e., “zero-
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wheel wander”). As a result of this characteristic, the service life of pavements will be 

shortened over time due to autonomous truck loads. Therefore, this study considered the 

wheel wander effect of HTs and ATs separately in modelling TDC performance of 

asphalt pavements. As an example, Figure 6.4 shows the one million tire deviations from 

the center of wheel path that follow normal distribution with standard deviations of 5, 

10, and 15 inches, respectively. 

 

 
Figure 6.4 Normally distributed tire deviations with different standard deviations: 
127 mm (5 inches), 254 mm (10 inches), and 381 mm (15 inches). 
 

6.2.4. Material Module 

6.2.4.1. Equilibrium Soil Suction Prediction 

This study employed a modified equilibrium soil suction model (Saha et al. 2019) to 

predict the equilibrium soil suction at the depth of moisture active zone. The details are 

summarized in section 3.3.1 – 3.3.2 including the calculations of Thornthwaite Moisture 

Index (TMI), depth of moisture active zone (Zm), Maximum available annual moisture 
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depth (dam), diffusivity coefficient (α), mean annual moisture (dm), and finally the 

equilibrium soil suction (ue). The predicted equilibrium soil suction is converted into 

volumetric water content using ANN-based soil water characteristic curve (SWCC) 

(Saha et al. 2018a). 

6.2.4.2. Resilient Modulus of Unbound Base and Subgrade Soil 

Resilient modulus is a measure of stiffness for unbound materials (i.e. unbound 

aggregate base and fine-grained subgrade soil). Section 4.3 reviewed the research on 

modelling resilient behavior of unbound materials. To characterize the stress-

dependency and moisture sensitivity in the subgrade soil, Lytton model (Lytton 1996) 

(Eqn. 6.1) was used in this study. 

 
2 3

1
1

3 1
k k

oct
R a

a a

I fhM k P
P P

τθ   −
= +   

   
 (6.1) 

where 1I is the first invariant of the stress tensor in kPa; aP is atmospheric pressure in 

kPa; θ is volumetric water content; h is matric suction in kPa; f is saturation factor, 

11 f
θ

≤ ≤ ; octτ is octahedral shear stress in kPa; and 1 2 3,  ,  and k k k are fitting coefficients 

where 1k is in kPa and 2 3 and k k are dimensionless. 

f is a saturation factor which is multiplied by volumetric water content and soil suction 

to represent the stress exerted on the soil skeleton due to the existence of water. The 

expression of the saturation factor is given as 

 85 11 1
15

Sf
θ

−  = + − 
 

 (6.2) 
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where S is degree of saturation in percent; andθ is volumetric water content in decimal.  

Saha et al. (Saha et al. 2018b) developed an artificial neural network (ANN)-based 

model for unbound base material to predict coefficients used in Lytton model (Lytton 

1996), while the applicability of this model to unbound subgrade soil is unknown. 

Therefore, this study collected resilient modulus test data with corresponding soil 

properties (e.g. Atterberg limits, aggregate gradation, optimum moisture content, 

maximum dry density, and specific gravity) from LTPP database to train and validate 

ANN models for predicting coefficients of Lytton model for subgrade soils.  

A total of 305 plastic subgrade materials and 514 non-plastic subgrade materials were 

selected for construction of and validation of ANN models for plastic and non-plastic 

subgrade soil, respectively. Table 6.4 presents the input and output of the ANNs for 

plastic and non-plastic subgrade soil.  

Similar to Saha’s previous research (Saha et al. 2018b), we constructed the ANN with a 

three-layer structure including input layer, hidden layer, and output layer. The hidden 

layer consists of 10 neurons to characterize the relationship between input and output. 6 

ANNs were finally constructed to predict Lytton model coefficients (k1, k2, and k3) for 

both plastic and non-plastic subgrade soil. Figure 6.5 shows training and validation 

results of the 6 constructed ANNs for predicting Lytton model coefficients (k1, k2, and 

k3) for both plastic and non-plastic subgrade soil. The coefficient of determination (R2) 

in model validation were all larger than 0.96 which indicates high accuracy in the 

prediction of model coefficients (k1, k2, and k3) for plastic and non-plastic subgrade soil. 
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Table 6.4 Input and output of ANN for plastic and non-plastic subgrade soil. 
Input Output 

Plastic Soil (PI > 0) Non-plastic Soil (PI = 0) 

k1; k2; k3 

%passing 3/8; % passing #200; 
% passing #4; % passing #40; 

PL; PI; MDD; OMC; 
Compaction moisture content; 

Compaction dry density; Gs 

OMC; MDD; % passing #3/8; 
% passing #40; % passing #200; 
Compaction moisture content; 

Compaction dry density; Gs 

Figure 6.5 Training and validation results of k1, k2, and k3 for plastic (P) and non-
plastic (NP) subgrade soils. 
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Figure 6.5 Training and validation results of k1, k2, and k3 for plastic (P) and non-
plastic (NP) subgrade soils (cont’d). 
 

To further verify the constructed ANNs, ANN predicted k-values were input into Eqn. 

6.1-6.2 to calculate resilient modulus (MR) under various stress and moisture condition 

applied in the resilient modulus test. Figure 6.6 compares the ANN predicted MR with 

lab measured MR. R2 were determined to be 0.9812 and 0.9878 for plastic and non-

plastic subgrade soil, respectively, indicating high accuracy in the prediction of MR for 

subgrade soil. 
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Figure 6.6 Comparison of measured and ANN predicted resilient modulus for 
plastic (P) and non-plastic (NP) subgrade soil. 
 

Figure 6.7 outlined the structure of the stress-moisture-dependent resilient modulus 

prediction framework for unbound materials using the material modules presented 

above. 

 
Figure 6.7 Flowchart of resilient modulus prediction framework. 
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6.2.4.3. Dynamic Modulus of Hot Mix Asphalt 

Dynamic modulus is one of the most important parameters used in asphalt pavement 

design. In addition, it is also used in evaluating fatigue cracking and rutting performance 

of asphalt pavements. Therefore, accurately modelling dynamic modulus of asphalt 

mixture is crucial in the development of the TDC framework in this study. 

This study adopted the framework introduced in section 5.2.3.1-5.2.3.3 of this 

dissertation for modelling dynamic modulus of asphalt mixture including a short-term 

and long-term aging model for asphalt binder, dynamic modulus model for asphalt 

binder, and Witczaks’s 2006 dynamic modulus model for asphalt mixture. Figure 6.8 

illustrates the flowchart of the dynamic modulus prediction framework for asphalt 

mixture.   

 

 
Figure 6.8 Flowchart of dynamic modulus prediction framework for asphalt 
mixture. 
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6.2.5. Pavement Performance Module 

Dinegdae et al. (Dinegdae et al. 2015) developed a mechanics-based top-down crack 

initiation prediction framework for asphalt pavements based on the enhancement of 

HMA-FM. The fracture resistance and healing potential of asphalt mixture was 

characterized by incorporating a morphological parameter (Das et al. 2015). Huang et al. 

(Huang et al. 2021) recalibrated Dinegdae’s TDC initiation model by a failure curve-

based calibration methodology after considering the wheel wander effect of traffic loads. 

However, neither traffic load spectra nor traffic growth rate were considered in the TDC 

framework. In this study, the recalibrated TDC initiation model was further improved by 

incorporating a more realistic traffic load spectra model and stress-moisture dependent 

resilient modulus prediction model for unbound materials. A traffic load spectra model 

developed in NCHRP 1-41 (Lytton et al. 2010) was adopted and modified to reflect the 

percentage of HTs and ATs. Traffic growth rate was also considered in the modified 

traffic load spectra model. Figure 6.9 shows the structure of the TDC initiation 

framework developed in section 5.2.4 of this dissertation. 
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Figure 6.9 Flowchart of TDC initiation framework. 
 

As shown in Figure 6.9, the employed TDC initiation framework considers the effects of 

temperature change, aging, and healing in asphalt layers on an hourly basis. Therefore, 

the dynamic modulus of AC is updated every hour, which means that the pavement 

response is dependent on not only the tire load but also the time when it is applied. As a 

result, the multi-layer linear elastic analysis program WinJULEA has to be called very 

frequently to obtain pavement response (i.e. tensile stress profile at pavement surface) to 

each load. The calculated pavement response is then used to calculate the remaining 

Accumulated Creep Strain Energy (ACSE) and the Dissipated Creep Strain Energy 

(DCSE) densities limit of the asphalt layer. When the remaining ACSE exceeds the 

DCSE_lim, a macro-crack initiates. In addition, the output of the traffic load spectra 

model used in this study includes single-axle-single-tire load spectra with 38-level load 

bins and single-axle-dual-tire load spectra with 38-level load bins. Therefore, we 

established the rules below to simplify the computation process. 
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• single-axle-dual-tire load spectra with 38-level load bins are grouped into single-axle-

single-tire load spectra with 38-level load bins using equivalent axle load factor 

(EALF); 

• pavement responses are updated every 6 hours for each load bin; 

• RegularGridInterpolator function from python scipy library was used to replace 

WinJULEA with a simple 4D linear interpolation function. 

To examine the accuracy of the generated scipy interpolation function, the pavement 

response (tensile stress profile at pavement surface) due to fixed dynamic modulus of 

AC and 5 different tire loads (3250 lbf, 7250 lbf, 11250 lbf, 15250 lbf, and 19000 lbf) 

were calculated by WinJULEA and the scipy interpolation function, respectively. Figure 

6.10 - 6.11 compare the pavement response calculated by WinJULEA and the scipy 

interpolation function. The coefficient of determination (R2) is 0.998, which indicates 

high accuracy of the scipy interpolation function in the prediction of pavement response.  

 
Figure 6.10 Pavement response calculated by WinJULEA and scipy interpolation, 
respectively. 
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Figure 6.11 Comparison of pavement response calculated by WinJULEA and scipy 
interpolation function. 

6.2.6. Data Collection 

The FHWA Long-Term Pavement Performance (LTPP) program collects research 

quality data of climate, paving materials, and pavement performance from in service 

sections across USA and Canada (LTPP InfoPave 2020). This study selected 31 asphalt 

pavement sections in TX from LTPP database to study the autonomous truck effect on 

TDC performance of asphalt pavements in TX. The selected 31 sections cover a variety 

of binder types, mix design procedures, mix volumetrics, traffic, and overall pavement 

design. Figure 6.12 shows the geographic locations of the selected LTPP sections on 

Texas freight network. As shown in Figure 6.13, the selected 31 LTPP sections revealed 

6 distinct types of pavement structure. Notice that some layers under AC are limestone 

or cement treated base/subbase. Stress dependency or water sensitivity were not 

considered in these layers. Instead, FWD backcalculated modulus were used in these 
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layers in evaluating the TDC performance of asphalt pavement under autonomous truck 

loads. 

Figure 6.12 Geographic locations of selected LTPP sections on Texas freight 
network. 

Figure 6.13 Pavement structures of selected LTPP sections. 

 



169 

This section used LTPP 48-1183 as an example to elaborate how resilient modulus of 

unbound materials are determined using the developed stress-moisture-dependent 

resilient modulus module.  

Step 1: Collect input for the resilient modulus framework as shown in table 6.5. 

Table 6.5 Input for the resilient moduli prediction framework. 

Pavement 
structure Traffic load Climate Geographic 

location 

Material 
properties 

(unbound base 
& subbase & 

subgrade) 

Thickness and 
Poisson ratio of 

each layer; 
modulus of 

each bounded 
layers 

Tire radius 
and tire 
pressure 

MAAT; 
monthly 

precipitation 
and air 

temperature 

Latitude and 
longitude 

Gradation; 
Atterberg 

Limit; MDD; 
OMC; TMC; 
Gs; resilient 
modulus test 

data 

Step 2: Calculate TMI for at least 20 consecutive years and used the averaged TMI to 

represent the climate condition on site. As shown in Figure 6.14, the averaged TMI for 

LTPP 48-1183 is -26.75. 

Figure 6.14 Calculated TMI vs. time for LTPP 48-1183. 
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6.2.7.1.  Determination of Stress-moisture-dependent Resilient Modulus
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Step 3: Predict equilibrium soil suction (ue) at the depth of moisture active zone using 

the modified equilibrium soil suction model (Saha et al. 2019). The predicted ue is 3.96 

pF. 

Step 4: Generate soil water characteristic curves for all unbound layers which are base 

and subgrade layers in this case using an ANN-based SWCC model (Saha et al. 2018a). 

The predicted SWCC are presented in Figure 6.15. 

Figure 6.15 ANN-predicted SWCC for base and subgrade layers (LTPP 48-1183). 

Step 5: Convert equilibrium soil suction to VWC for base and subgrade layers using the 

predicted SWCC obtained in step 4. The converted VWC were 11.06% and 12.57% for 

base and subgrade layers, respectively. 

Step 6: As mentioned in Figure 6.7, there are two ways of determining resilient modulus 

model coefficients. One is to use the ANN model (Saha et al. 2018b), and other is to use 

the resilient modulus test data to fit the resilient modulus model. The resilient modulus 

test data of both unbound base and subgrade layer are available for LTPP pavement 

section 48-1183. Therefore, the second method was used and the fitting results for base 
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and subgrade layer are presented in Figure 6.16. The fitted model coefficients were 

k1=0.518, k2=0.743, and k3=-0.234 for base and k1=0.352, k2=0.672, and k3=-0.327 for 

subgrade. 

Figure 6.16 Predicted vs. measured resilient modulus for base and subgrade layers 
(LTPP 48-1183). 

Step 7: Considering that resilient modulus of unbound base and subgrade layers are 

stress-dependent, and stress state of material are decided by its modulus, an iteration 

process is necessary to obtain converged resilient modulus for each layer. Figure 6.17 

shows that both base and subgrade moduli converged after 6 times of iteration. The 

converged resilient moduli for base and subgrade were 184.3 MPa and 159.0 MPa, 

respectively. 
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Figure 6.17 Converged resilient modulus for base and subgrade layers (LTPP 48-
1183). 

Table 6.6 summarized the predicted resilient moduli for the rest selected LTPP sections. 

The ‘nan’ value in the table means that the materials used in those layers are either 

limestone or cement treated materials, and only unbound layers were considered to be 

stress-dependent and moisture-sensitive in this study. 

Table 6.6 Predicted resilient modulus for base, subbase, and subgrade layers. 

Section Eb 
(MPa) 

Esb 
(MPa) 

Esg 
(MPa) Section Eb

(MPa) 
Esb 

(MPa) 
Esg 

(MPa) 
1039 66.67 nan 75.18 1174 147.70 nan 88.87 
1049 nan nan 107.63 1178 64.35 nan 67.96 
1050 193.71 nan 128.35 1181 68.63 nan 60.71 
1056 152.80 nan 60.05 1183 184.30 nan 158.97 
1060 12.21 nan 105.68 2133 nan 158.03 112.41 
1061 184.12 nan 134.37 2172 nan 133.69 205.83 
1065 54.76 nan 159.39 3669 nan nan 80.32 
1077 75.55 nan 69.14 3689 nan nan 81.60 
1087 91.32 nan 62.88 3729 53.97 nan 162.39 
1111 146.01 nan 73.91 3875 180.37 nan 165.20 
1116 68.81 nan 41.44 6079 39.25 nan 72.41 
1119 68.81 nan 39.14 6086 22.71 nan 232.30 
1122 227.84 62.89 63.25 6160 167.82 166.86 135.69 
1130 64.19 nan 112.45 6179 199.87 183.09 155.48 
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6.2.7.2. Predicted TDC Initiation Time under HTs and ATs 

ATs affect pavement design and performance differently from HTs in terms of lane 

choice and lateral positioning on pavements. Field measurements showed that the wheel 

path of HTs is normally distributed within a traffic lane (Buiter et al. 1989). Standard 

deviation of its probability density curve is commonly used to characterize the spread of 

wheel loads. 

Because autonomous trucks and truck platooning technologies are still in development, 

there is very limited traffic data available for ATs. This section investigate the effect of 

autonomous trucks on TDC performance of asphalt pavements based on the following 

assumptions. 

• Wheel path of HTs is normally distributed with standard deviation of 10 in. 

• Wheel path of ATs is normally distributed with standard deviation of 0 in. 

• HTs and ATs share the same annual traffic growth rate. 

Figure 6.18 compares the predicted TDC initiation time due to 100% HTs (standard 

deviation of 10 in.) and ATs (standard deviation of 0 in.), respectively, for 31 LTPP 

sections. The predicted crack initiation times for all 31 LTPP sections were predicted to 

be 0.12 to 3.35 years earlier under AT loads than under HT loads. This is because the 

traffic-induced damage in pavement structure accumulates faster under concentrated AT 

loads and therefore results in earlier crack initiation time. The effect of ATs on the 

service life reduction in asphalt pavement varies from section to section due to different 

pavement structure, material properties, traffic, and local climate condition. 
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Figure 6.18 Predicted crack initiation time caused by human-driven and 
autonomous trucks, respectively, using simplified traffic model. 

The improved TDC framework is also capable of studying the effect of AT percentage 

on the TDC performance of asphalt pavements. Figure 6.19 presents the predicted crack 

initiation time for 10 LTPP sections under a mixture of HT and AT loads with AT 

percentage of 0%, 25%, 50%, 75%, and 100%, respectively. According to the results, the 

remaining service life is reduced as AT percentage increases. There are 6 (out of 10) 

studied sections that were observed to have significant reduction in the remaining 

service life when the AT percentage increases from 0% to 25%. 3 (out of 10) studied 

sections show consistent drop in the remaining service life with the growth of AT 

percentage. Only 1 section is not sensitive to the change of AT percentage in the crack 

initiation time prediction. Further studies are warranted to find out how AT affect 

service life of asphalt pavements. 

0
2
4
6
8

10
12
14
16
18
20

10
39

10
48

10
49

10
50

10
56

10
60

10
61

10
65

10
76

10
77

10
87

11
11

11
16

11
19

11
22

11
30

11
74

11
78

11
81

11
83

21
33

21
72

36
69

36
89

37
29

37
49

38
75

60
79

60
86

61
60

61
79

Pr
ed

ic
te

d 
cr

ac
k 

in
iti

at
io

n 
tim

e 
(y

r)

Pavement section number

Standard deviation: 10 in. Standard deviation: 0 in.



 

175 

 

 
Figure 6.19 Predicted crack initiation time caused by a mixture of HTs and ATs 
using complete traffic model. 
 

6.3. Truck Platooning Effect on Texas Highway Bridges 

The objective for this portion of the study was to develop a framework to conduct a 

high-level prioritization of about 55000 existing Texas bridges, considering truck 

platoon loading. The National Bridge Inventory (NBI) database was leveraged, along 

with prior research, to evaluate each structure. The prioritization provides a relative 

comparison of the bridge performance under vertical loading of 6 different platooned 

truck configurations.  

6.3.1. Methodology 

The approach for this investigation was to take advantage of the existing bridge load 

ratings (Item 64 – Operating Rating) reported in the NBI dataset. This load rating is the 
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in the following section. In addition, the NBI appraisal ratings (item 67) were utilized to 

consider the current condition of each bridge.  

6.3.2. Prioritization Metric for Bridges Subjected to Truck Platoon Loading 

The prioritization metric for truck platoon loading (PMpl) is defined in Equation 6.3. 

This expression is the product of an adjusted load rating (LRadj) and a condition factor 

(CF) according to Table 6.7.  

pl adjPM LR CF= (6.3) 
The adjusted load rating (LRadj) was set up to be a function of the design methodology 

for the bridge. This information is not reported within the NBI dataset. However, the 

year the structure was built (item 27) is a reliable source for this information. Prior to 

2005, bridges were designed using Allowable Stress Design (ASD) or Load Factor 

Design (LFD). After 2005, bridges were designed using the Load and Resistance Factor 

Design (LRFD) method. Prior research has shown that the live load model used for 

LRFD adequately envelops truck platoon demands (Yarnold and Weidner 2019, Tohme 

and Yarnold 2020). Conversely, bridges designed using the live load model within ASD 

and LFD can be unconservative for truck platoon loading for certain span lengths.  

For bridges built prior to 2005 (ASD and LDF bridges), a modification factor approach 

was developed based on the work of Yarnold and Weidner (Yarnold and Weidner 2019). 

Essentially, the maximum flexural demand for two, three, and four-truck platoon 

configurations (for 20- and 40-foot platoon spacing) were compared with the design 

truck demands. This comparison included bridge span lengths from 50 to 300 feet, which 

covers the majority of the Texas bridge inventory. The modification factor was the ratio 
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of the truck platoon's maximum moment to the design truck's maximum moment. A 

best-fit cubic function was developed for each case. Figure 6.20 illustrates the dataset 

and best-fit function for a two-truck platoon at 20-foot spacing. Similar plots and 

functions were developed for the other five cases. Note that the bounds for the 

modification factor were set as 0.60 and 1.00.  

Figure 6.20 Load rating modification factor for two-truck platoons with 20-foot 
spacing. 

The Condition Factors (CF) were applied according to Thulaseedharan and Yarnold’s 

work (Thulaseedharan and Yarnold 2020). As shown in Table 6.7, Thulaseedharan and 

Yarnold identified CFs using Appraisal Ratings from NBI. Appraisal Ratings are a 

metric for bridge conditions based on visual inspection. The scale ranges from 0 to 9 

where 9 is excellent condition. Therefore, Appraisal Ratings greater than 7 is considered 

a very good condition, and no need for concern.  
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Table 6.7 Condition Factors for each bridge Appraisal Rating. 
Appraisal Rating >7 7 6 5 <5 

Factor 1 0.85 0.75 0.6 0.5 
 

6.3.3. Prioritization Results 

This section evaluates all Texas bridges using PMpl in Equation 6.3. The determined 

PMpl values were separated into five Prioritization Levels (PL). Level 1 indicates 

relatively low priority, and Level 5 indicates relatively high priority. A high priority 

indicates that the structure should be evaluated further for future truck platoon loading.  

Figure 6.21 illustrates the results for the Texas bridge inventory. Several observations 

were made from these results. First, more than half of the bridges are categorized as 

Level 1 or Level 2, indicating that a large percentage of the Texas bridge inventory is 

adequate for truck platoon loading. However, roughly a quarter of the bridges are at 

Level 4, indicating a good portion might need further evaluation to determine if 

additional strengthening should be performed. There is a relatively low portion of Level 

5 (high priority) bridges. These are the structures that should be investigated first for the 

adequacy of future truck platoon loading.  
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Figure 6.21 Bridge Prioritization Levels for Future Truck Platoon Loading. 

Figure 6.22 shows the geographical locations of TX bridges categorized as level 1- 5, 

respectively, using the platooned truck configuration of two trucks with 20 ft. spacing. 

Similar plots were developed for the other five cases. 

Figure 6.22 Geographical locations of bridges categorized as Level 1 - 5 due to 
platooned truck configuration of two trucks with 20 ft. spacing.  
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6.4. Conclusion 

This study developed and implemented a framework for evaluating performance impact 

of autonomous truck and truck platooning on Texas highway system (pavements and 

bridges).  

In the pavement module, a mechanics-based TDC initiation sub-framework was 

improved to study the effects of autonomous truck loads and autonomous truck 

percentage on the TDC performance of asphalt pavements. The major improvement 

includes the incorporation of a more realistic traffic load spectra model that distinguishes 

HTs from ATs, and a stress-moisture-dependent resilient modulus prediction model for 

unbound layers. The results show that the predicted crack initiation times (CIs) by 

autonomous truck loads are 0.12 to 3.35 years earlier than CIs by human-driven truck 

loads. This is because the traffic-induced damage in pavement structure accumulates 

faster under concentrated autonomous truck loads and therefore results in earlier crack 

initiation time. Different pavement sections display different sensitivity of service life 

reduction due to various pavement structure, material properties, traffic, and local 

climate condition. 

In the bridge module, we developed an approach to conduct a prioritization study in 

about 55000 existing Texas bridges due to future platooning loads. The developed 

approach leveraged the National Bridge Inventory (NBI) database along with prior 

research to evaluate each bridge structure in Texas. Prioritization levels (from 5 to 1) 

were established for Texas bridge inventory under vertical loading of 6 different 
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platooned truck configurations. The results indicate that more than half of the bridges are 

categorized as Level 1 or Level 2, indicating that a large percentage of the Texas bridge 

inventory is adequate for future truck platoon loading. There is a relatively low portion 

of Level 5 (high priority) bridges that should be investigated first for the adequacy of 

future truck platoon loading. 

The pavement and bridge performance analysis due to autonomous truck and truck 

platooning loads was an initial attempt in this study. Currently, the traffic data for 

autonomous truck and truck platooning are very limited; therefore, further investigations 

are warranted to verify the major conclusions drawn from this study.  
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7. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1. Summary 

Autonomous truck (AT) as a new category in the vehicle classification has been making 

progressive steps towards commercial implementation. The expectation of ATs has 

shown exceptionally welcoming from the market perspective. ATs are different from 

Human-driven trucks (HTs) in traffic characteristics in terms of lane choice and lateral 

positioning. Current infrastructure is designed to serve traditional traffic configurations. 

Therefore, it is crucial to study the potential impact of ATs on the long-term 

performance of existing highway system (pavements and bridges) and the design of new 

pavements and bridges accommodating the epoch of AT. 

The objective of this dissertation was to develop a mechanics-based framework to study 

the potential AT impact on the long-term performance of Texas highway system 

(pavements and bridges).  The developed framework consists of input module, traffic 

characterization module, material property prediction module, pavement performance 

prediction module, and bridge analysis module. The major conclusion of each developed 

module was summarized in the next section followed by the limitations and 

recommendations of this study. 

7.2. Conclusions 

7.2.1. Traffic Characterization Module 

Appropriate characterization of truck traffic is important in accurately predicting 

pavement performance. A new generalized framework was proposed in this dissertation 

to traffic load spectra both HTs and ATs. The developed framework considers axle load 
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distribution for each axle and vehicle type, different wheel wander parameters for HTs 

and ATs, respectively, and AT percentage. The impact indicator was introduced to 

quantify the AT impact on the performance of asphalt pavements in terms of top-down 

fatigue cracking (TDC), bottom-up fatigue cracking (BUC), and rutting. 

7.2.2. Material Property Module 

7.2.2.1. Moisture Prediction Model for Subgrade Soil 

Subgrade soil under pavement structure is usually unsaturated, and moisture content in 

subgrade soil directly affect material properties (i.e. resilient modulus) and thereby 

pavement performance. Therefore, this dissertation proposed a mechanistic-empirical 

model for predicting moisture variation in subgrade soil by coupling a modified ME-

based equilibrium soil suction model and Mitchell’s diffusion equation. The major 

contributions of this part of the study are as follows. 

• A new TMI model was introduced and validated by comparing with TMI-2006 using

the climate data collected from 5852 weather stations across the United States.

• A previously developed equilibrium soil suction model was improved by

incorporating with a new TMI model. The modified equilibrium soil suction model

was validated using the moisture data from 3 MnROAD pavement sections and 1

LTPP section.

• We finally proposed a ME-based soil moisture prediction model by coupling the

modified equilibrium soil suction model to Mitchell’s diffusion equation. The

proposed moisture prediction model was validated using the moisture data collected

by 9 sensors at different depths in the subgrade soil.
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7.2.2.2. Stress-moisture dependent resilient modulus model of subgrade soil 

Fine-grained subgrade soil, used as the foundation of asphalt pavements, directly 

contributes to the overall stiffness and performance of pavement system. This portion of 

the study proposed a FWD-based backcalculation program to backcalculate stress-

moisture-dependent resilient modulus of subgrade soil using COMSOL Multiphysics. 

Lytton model was employed to characterize the stress dependency and moisture 

sensitivity of subgrade resilient modulus. The new moisture prediction model was 

incorporated into the program to predict moisture and suction profile on the date when 

FWD testing was conducted. We used Bound Optimization by Quadratic Approximation 

(BOBYQA) as the optimization method to backcalculate the parameters used in Lytton 

model. The backcalculation program was verified using the FWD data collected from 

LTPP database. The following are the major conclusions made in this portion of the 

study. 

• The moisture condition is predominant in fine-grained subgrade soil in determining

the resilient modulus, while the stress state is predominant in the unbound aggregate

base course.

• We found that Lytton model coefficients determined using RLT lab data could not

reflect field condition because the coring in the field and/or the re-compaction of the

soil specimens in lab could possibly change its inherent structure. Therefore, it is

recommended to use field data (i.e. FWD) instead of RLT data to back-calculate

material properties of subgrade soil (i.e. k1).
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Top-down fatigue cracking (TDC) is a common distress type in flexible pavements 

throughout the world. This portion of the study proposed a unified mechanics-based 

framework for evaluating long-term TDC performance of asphalt pavements. The 

unified framework was developed based on NCHRP 1-52 model and improved the 

robustness of NCHRP 1-52 model by replacing their empirical crack initiation model 

with a HMA-FM-based crack initiation model and incorporating with a novel aging 

model for asphalt mixture. The proposed framework was validated by 18 pavement 

sections from different geographical locations with well-documented performance 

history and material properties. The predicted results indicates that the proposed unified 

framework is able to accurately predict the crack initiation and failure time of field 

pavements. 

7.2.4. Bridge Analysis Module 

This portion of the study developed a framework to study the truck platooning effect on 

Texas bridges using National Bridge Inventory (NBI) database. A high-level 

prioritization for about 55000 existing Texas bridges were conducted to evaluate the 

bridge performance under vertical loading of 6 different platooned truck configurations. 

The calculated prioritization metrics were categorized into 5 levels with level 1 

representing the lowest priority and level 5 representing the highest priority. A high 

priority bridge indicates that the structure should be evaluated urgently for future truck 

platoon loading. It was found that more than half of the bridges are categorized as Level 

1 or Level 2, indicating that a large percentage of the Texas bridge inventory is adequate 

for truck platoon loading. However, roughly a quarter of the bridges are at Level 4, 

7.2.3. Pavement Performance Prediction Module 
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indicating a good portion might need further evaluation to determine if additional 

strengthening should be performed. There is a relatively low portion of Level 5 (high 

priority) bridges. These are the structures that should be investigated first for the 

adequacy of future truck platoon loading. 

7.2.5. Evaluation of Autonomous Truck effect on TDC Performance of Asphalt 

Pavements 

This portion of the study further improved the unified mechanics-based TDC predictive 

framework by incorporating with the traffic load spectra model, wheel wander model, 

and stress-moisture-dependent resilient modulus model developed in this dissertation.  A 

user-defined autonomous truck category was added to the NCHRP 1-41 traffic load 

spectra model to distinguish HTs from ATs. A new ANN-based resilient modulus model 

for subgrade soil was trained and validated using the data collected from LTPP database. 

RegularGridInterpolator function from python scipy library was used to more efficiently 

predict pavement response to traffic loads as a replacement of WinJULEA. 31 asphalt 

pavement sections in TX were selected from LTPP database to study the autonomous 

truck impact on the TDC initiation performance of asphalt pavements using the updated 

TDC framework. The results showed that the predicted crack initiation times (CIs) by 

autonomous truck loads are 0.12 to 3.35 years earlier than CIs by human-driven truck 

loads. This is because the traffic-induced damage in pavement structure accumulates 

faster under concentrated autonomous truck loads and therefore results in earlier crack 

initiation time. Different pavement sections display different sensitivity of service life 
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reduction due to various pavement structure, material properties, traffic, and local 

climate condition. 

7.3. Limitations and Future Work 

The framework (i.e. traffic characterization, paving material property, pavement 

performance, and bridge prioritization) developed in this study was based on limited data 

available. More data is needed to help further validate the developed framework.  

One advantage of the developed framework is that the robust input and material modules 

are able to predict dynamic modulus of AC and resilient modulus of unbound according 

to the basic physical material properties and local climate condition; pavement 

performance can thereby be evaluated using the performance module given traffic 

information. Another advantage is that we can easily upgrade the developed framework 

by accommodating more pavement performance models and/or updating material 

module without changing the existing structure. 

Therefore, future study will focus on (1) extending the field validation sections to further 

evaluate the performance of the proposed framework; (2) incorporating more 

performance models into the framework such as bottom-up fatigue cracking, rutting, and 

thermal-induced crack growth in asphalt pavements; (3) establishing and improving 

material property models that improves the links between material properties and 

pavement performance. 
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APPENDIX A 

 

Table A1 Pavement structural properties and binder type of field sections. 
 Layer thickness (in.) Layer modulus (ksi)  

Section Name AC Base Sub-base Base Subbase Subgrade Binder type 
Florida source        
Charlotte (I75-1A),FL 6.54 12.00 12.00 54.80 50.10 30.10 PG 67-22 
Charlotte (I75-1B),FL 6.24 12.00 12.00 63.60 51.40 36.10 PG 67-22 
Lee (I75-3),FL 6.48 12.00 12.00 59.60 34.80 36.20 PG 67-22 
Hamilton(I-75SB),FL 7.40 22.32 - 74.86 - 35.54 PG 64-22 
Marion (US-301 SB),FL 6.42 22.80 - 60.23 - 36.64 PG 64-22 
Duval2(I-295SB),FL 7.76 22.01 - 65.86 - 31.87 PG 76-22 
St.Lucie (TPK-2C),FL 6.10 12.00 12.00 34.00 19.00 24.00 PG 67-22 
Alachua (NW 39-1C),FL 4.00 12.50 12.00 28.00 71.00 28.00 PG 67-22 
Seminole (SR46),FL 5.00 6.50 - 200.00 - 16.80 PG 67-22 
Alachua (SR-121 SB),FL 5.51 20.51 - 50.98 - 23.07 PG 67-22 
Bradford (SR-16EB),FL 7.76 17.99 - 29.33 - 32.25 PG 67-22 
Sweden source        
T-205-1 Karlstad,SE 3.54 5.91 20.47 37.22 27.18 63.50 160/220 
U-580-1:2 Västerås-
Hässlö,SE 1.77 4.33 20.47 117.16 20.96 25.07 160/220 

P-RV46-1 Såtenäs,SE 2.76 4.92 19.69 145.15 17.42 41.44 160/220 
T-205-2 Ställdalen,SE 1.97 3.15 20.87 112.75 20.30 15.98 160/220 
LTPP source        
48-3669,TX 5.80 15.90 - 12.72 - 16.88 PG 70-22S 
48-1119,TX 6.20 7.20 - 27.11 - 4.83 AC-20 
48-3729,TX 10.10 10.50 5.40 60.50 34.25 14.00 PG 64-22 

 
 
 
 



 

 

Table A2. Asphalt material properties of field section 
  Gradation  Volumetrics 

Sieve size 1.5'' 1'' 3/4'' 1/2'' 3/8'' P4 P10 P40 P80 P200  Va Vbe VMA Pb 
Florida source                
Charlotte (I75-1A),FL 100 100 100 95.7 91.8 73.6 57.6 26.9 12.7 5.9  5.4 10.7 16.1 6.2 
Charlotte (I75-1B),FL 100 100 100 97.7 93.7 74.6 55.6 25.6 12.3 5.6  3.2 10.7 13.9 6.8 
Lee (I75-3),FL 100 100 100 93.8 86.2 65.1 52.7 27.3 13.2 5.5  7.2 8.2 15.4 6.6 
Hamilton(I-75SB),FL 100 100 100 93.0 89.0 45.0 38.0 28.2 18.9 4.9  4.2 10.0 14.2 6.5 
Marion (US-301 SB),FL 100 100 100 93.0 88.0 75.0 55.6 25.6 12.3 5.0  5.8 10.1 15.9 6.5 
Duval2(I-295SB),FL 100 100 100 95.0 87.0 59.0 50.4 23.7 13.1 4.7  5.8 5.3 11.1 6.5 
St.Lucie (TPK-2C),FL 100 100 100 99.3 94.8 67.9 54.2 22.9 10.7 7.3  4.6 10.7 15.3 5.2 
Alachua (NW 39-1C),FL 100 100 100 91.0 76.2 52.7 40.3 28.2 18.9 5.5  8.9 9.9 18.8 5.4 
Seminole (SR46),FL 100 100 100 99.5 98.2 75.1 56.7 30.6 14.2 9.0  5.7 10.3 16.0 5.9 
Alachua (SR-121 SB),FL 100 100 100 99.5 90.0 73.0 55.5 27.3 11.7 5.5  7.3 7.3 14.6 6.0 
Bradford (SR-16EB),FL 100 100 100 97.9 88.0 67.0 51.0 24.0 10.0 5.4  9.2 7.8 17.0 6.0 
Sweden source                
T-205-1 Karlstad,SE 100 94.0 82.5 66.0 57.5 43.0 30.0 14.5 9.5 6.0  5.2 10.7 15.9 4.2 
U-580-1:2 Västerås-
Hässlö,SE 100 94.0 82.5 66.0 57.5 43.0 30.0 14.5 9.5 6.0  5.2 10.7 15.9 4.2 

P-RV46-1 Såtenäs,SE 100 94.0 82.5 66.0 57.5 43.0 30.0 14.5 9.5 6.0  5.2 10.7 15.9 4.2 
T-205-2 Ställdalen,SE 100 94.0 82.5 66.0 57.5 43.0 30.0 14.5 9.5 6.0  5.2 10.7 15.9 4.2 
LTPP source                
48-3669,TX 100 100 100 100 95.0 75.0 56.0 47.0 18.0 6.0  5.2 10.5 15.7 6.0 
48-1119,TX 100 100 100 87.0 75.0 49.0 36.0 34.0 17.0 2.0  4.7 7.9 12.6 6.0 
48-3729,TX 100 100 100 100.0 98.0 59.0 35.0 28.0 18.0 8.7  4.6 14.9 19.5 6.2 

 
 



 

 

Table A3. Traffic Data for Florida Sections 
Section Name ESALs_yearly Age Percent Truck Truck Factor 

Charlotte (I75-1A),FL 573000 15 0.148 1.595 
Charlotte (I75-1B),FL 558000 14 0.146 1.595 
Lee (I75-3),FL 674000 15 0.153 1.595 
Hamilton(I-75SB),FL 1040000 11 0.243 1.595 
Marion (US-301 SB),FL 510000 11 0.219 1.595 
Duval2(I-295SB),FL 1410000 - - - 
St.Lucie (TPK-2C),FL 166000 10 0.123 1.03 
Alachua (NW 39-1C),FL 190000 14 0.022 1.03 
Seminole (SR46),FL 141983 14 0.125 1.03 
Alachua (SR-121 SB),FL 60000 - - - 
Bradford (SR-16EB),FL 40000 13 0.081 1.03 

 

Table A4. Traffic Data for Sweden Sections (measured when open to traffic) 

  
T-205-1 

Karlstad,SE 
U-580-1:2 Västerås-

Hässlö,SE 
P-RV46-1 
Såtenäs,SE 

T-205-2 
Ställdalen,SE 

Annual average daily traffic (AADT) 1487 400 2027 942 
Percent Truck (%T) 14 20 14 11.68 
Truck factor (TF) 1.7 1.7 1.7 1.7 
Directional distribution factor (%D) 50 50 50 50 
Lane distribution factor (%L) 92 92 92 92 
Traffic growth rate (%r) 1 2.6 1.3 1 

 

Table A5. AADTT for Texas (USA) Sections 
Time (yr) 48-3669, TX 48-1119, TX 48-3729, TX 

0 283 107 766 
1 179 113 766 
2 179 119 766 
3 167 125 766 
4 311 131 766 
5 218 138 766 
6 222 145 766 
7 144 153 766 
8 99 161 766 
9 73 169 766 
10 112 178 766 
11 133 187 931 
12 100 197 1369 
13 160 207 1369 
14 139 281 1489 
15 152 205 1130 
16 162 262 1288 
17 148 257 1275 
18 100 265 1286 
19 160 260 1263 
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