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ABSTRACT

Nowadays, the number of code bases are growing explosively together with their size and com-

plexity, where million lines of code become common to see. To guarantee the correctness and qual-

ity of software applications, program analysis techniques have been used to detect bugs and errors

each time when there is a new update. However, most existing techniques are designed for whole

program analysis, which become expensive and unscalable as the size of programs consistently

increase. Moreover, those techniques are used during the late phase of software development, e.g.,

testing or production, which may be too late to fix a bug or too difficult to understand a bug.

In this dissertation, we introduce several incremental algorithms which are efficient, precise,

sound and scalable for real-world, large programs. Firstly, we present IPA, an incremental context-

insensitive pointer analysis for Java programs that handles both statement addition, deletion and

modification efficiently. Inspired by new properties we observed, IPA avoids redundant compu-

tation and expensive graph reachability analysis from existing approaches, as well as preserves

precision as the corresponding whole program analysis.

Secondly, we present SHARP, an incremental algorithm that can be generalized to the most

commonly used context-sensitive pointer analysis algorithms, i.e., k-CFA and k-obj. We propose

a precompute algorithm to avoid redundant computation from naively applying IPA on context-

sensitive call graph and pointer assignment graph. We also discuss different parallel scenarios for

incremental code changes according to GitHub commits, summarize their efficiency, redundancy

and conflict, and conclude our parallel algorithm. More importantly, both IPA and SHARP can be

easily extended to other programming languages.

Thirdly, we present D4, a static program analysis framework to detect concurrency bugs (i.e.,

data race and deadlock) during development phase. Except for IPA, D4 is powered by another

three incremental algorithms of static happens-before analysis, lock-dependency analysis and static

concurrency bug detection. D4 can pinpoint concurrency bugs after a code change, which is several

orders of magnitude faster than the corresponding whole program detection.
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Finally, we present O2, a new system for detecting data races in complex multi-threaded and

event-driven applications. O2 is powered by origin, which unifies the concepts of thread and event

by an entry point and its attributes. We apply origins on pointer analysis to identify objects that

are shared by different origins, which concludes our origin-sharing analysis. We also leverage the

result of origin-sensitive pointer analysis in static data race detection, which shows a significant

improvement in both precision and scalability.
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1. INTRODUCTION

Software is everywhere in our daily life: around 36K mobile apps were released every month in

2022 through the Apple App Store [5] and 3,739 apps are new to the Play Store every day [6]. This

is only for smart phones, not to mention applications running on computers, clusters, wearable

devices, and even on cloud. The increasing number of software requirements forces the size of

programs to grow rapidly. As of January 2015, Google had 2 billion lines of code (LOC) including

all its internet services. For the past eight years, it is consistently adding new services and updates

to the existing programs, which further bloats the size of Google code base. This scenario applies

on all code bases, e.g., Linux kernel includes 350X more lines of code from V1.0 to V6.0 within

29 years [7].

Not only the size but also the complexity of modern software are growing enormously. The ar-

chitecture of software changes from monolithic applications to multiple microservices containing

multiple services, from single-threaded to multi-threaded interacting with events and messages,

from local servers to cloud. This has significantly increased the complexity of the whole code

base and the overall development process. To offer better functionality and usability, developers

have proposed open-source frameworks, libraries and cloud-based services, which however mak-

ing software more complex than ever.

The more line of code, the higher the complexity, and the more challenging to maintain the

correctness and quality of a program. Hence, bugs and errors are easy to introduce but hard to

detect. IBM wasted 62m dollars building an AI system to fight against cancer, however, provided

multiple unsafe and wrong treatment recommendations [8]. A front-runner attack leverages race

conditions among transactions to steal 280 million dollars on Ethereum [9]. The autonomous

driving system from Uber even killed a lady due to a software bug [10]. We cannot afford this cost

of huge economic loss or even human lives, thus many research techniques have been developed

to analyze programs and detect bugs each time when there is a new upgrade. These techniques are

mostly designed for late phases of software development, e.g., testing or production. Hence, it is
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hard to scale them to large software because the whole program has to be analyzed. Moreover, it

may be too late to fix a detected bug, or too difficult to understand a reported problem because the

developer may have forgotten the coding context to which the bug pertains.

A promising solution is incremental program analysis. Whenever there is some code change,

we save time by only recomputing those outputs which depend on the changed code. When an

incremental algorithm is successful, it can be significantly faster than recomputing new outputs

naively. Among different techniques, pointer analysis is a fundamental static program analysis

technique, which is widely used in compiler optimization [11, 12, 13], to parallel code [14, 15, 16,

17], detect bugs and errors [18, 19, 20]. Incremental pointer analysis [21, 22, 23, 24, 25, 26, 27, 28]

has been researched for decades, however, it is still challenging to design such an incremental

algorithm due to the consistently increasing size and complexity of modern software. Most existing

incremental techniques have their own limitations, e.g., redundant computation, expensive graph

reachability analysis, precision loss by assuming static call graph, and hard to scale or parallel.

1.1 Dissertation Contributions

This dissertation presents two contributions to overcome the limitations of existing incremental

pointer analysis algorithms: two end-to-end incremental pointer analysis with dynamic update of

strong connected component (SCC) for context-insensitive and -sensitive algorithms respectively,

and parallel version of our incremental algorithms. Besides, we also contribute two pointer analysis

applications that achieve precision, efficiency and scalability on static concurrency bug detection:

a fast concurrency analysis framework, D4, that detects concurrency bugs statically and interac-

tively in the programming phase by only considering code changes, and a new system powered

with origins for whole program data race detection in complex multi-threaded and event-driven

programs. We briefly elaborate our algorithms and applications in the following subsections.

1.1.1 Incremental Pointer Analysis

Our incremental pointer analysis, IPA, is an end-to-end algorithm that can handle statement

additions, deletions and modifications. We specially design the algorithm for handling deletion,
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which is inspired by two new properties (i.e., local neighbours properties) we observed on pointer

assignment graph (PAG). This allows us to update a points-to set lazily after we confirm its change

for a statement deletion. This is also the reason why our algorithm can significantly outperform the

state-of-the-art techniques by avoiding redundant computations and expensive graph reachability

analysis. Most importantly, we prove that the output of running IPA on an incremental code change

is the same as the one of running the corresponding whole program analysis on the new program

by including the change.

The properties and IPA are built on acyclic graphs, which requires to always maintain an acyclic

PAG according to incremental changes. Hence, we propose an incremental algorithm to dynami-

cally update the SCCs upon incremental code changes.

IPA is designed for context-insensitive pointer analysis, and also works for context-sensitive

algorithms but with redundant computations. We present SHARP that eliminates the redundant

computation by conducting a precomputation process and identifying all invalid elements in both

call graph (CG) and PAG. SHARP can be applied to any k-limiting based context-sensitive algo-

rithms, e.g., k-CFA and k-obj.

1.1.2 Parallel Incremental Pointer Analysis

To further improve the performance, we present parallel algorithms for our incremental algo-

rithms, IPA and SHARP, respectively. The parallelization for IPA is based on change idempotency

property we observed on both context-insensitive and -sensitive PAGs. This property enables us

to propagate a points-to set change from a PAG node along its different outgoing PAG edges in

parallel with no conflict and redundancy.

We further discuss the parallel scenarios for incremental code changes according to a GitHub

commit in SHARP. The discussion focuses on efficiency, redundancy and conflict when we handle

intraprocedural and interprocedural deletions (or additions) in parallel. We prove that it is sound

with no redundancy and conflict to handle one statement deletion per time from all methods in

parallel. So do incremental statement additions.
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1.1.3 Fast Static Concurrency Bug Detection via Incremental Analysis

Concurrency bug is one of the most annoying bugs, which is difficult to detect, debug and

fix. Many research techniques [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] has been developed on

detecting concurrency bugs, however, they are designed to analyze the whole program and requires

hours or even days to complete. Sometimes, we can’t afford to recompute the output each time the

code changes.

To address the difficulty of detecting concurrency bugs on large, real-world programs, we

present D4, a static framework to detect concurrency bugs during the programming phase. When-

ever a developer saves his/her code on IDE, D4 will be triggered to detect concurrency bugs (e.g.,

data races and deadlocks) according to the code change. D4 is powered by IPA and another three

incremental algorithms in static happens-before analysis, lock-dependency analysis and static con-

currency bug detection. D4 can pinpoint concurrency bugs introduced by a code change, which

outperforms the state-of-the-art incremental race detector, ECHO [27].

1.1.4 Efficient and Precise Static Data Race Detection Through Origins

One major disadvantage of static analysis techniques is the presence of false positive, espe-

cially for concurrency bugs that are hard to debug and confirm. To improve the precision of static

concurrency bug detection, we present origins, a context that unifies the concepts of threads and

events by treating them as entry points with a set of data pointer attributes. We present origin-

sensitive pointer analysis by adopting origins as context, which precisely identifies shared- and

local-memory accesses by different threads and events. We present origin-sharing analysis that

precisely compute heap objects local to each origin and objects shared by different origins. We

present O2, a whole program static data race detection equipped by origins and three sound opti-

mizations to achieve scalability on million lines of code. Moreover, we have detected 40 new races

from mature, real-world, large C/C++, Java and Android projects.
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1.2 Outline of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 introduces the background

knowledge and related works on pointer analysis for whole program and incremental code changes,

as well as static concurrency bug detection that depends on pointer analysis. Chapter 3 presents our

efficient incremental pointer analysis, IPA, for context-insensitive on-the-fly algorithm. Chapter 4

presents our incremental pointer analysis, SHARP, for context-sensitive algorithms, especially gen-

eralized for k-CFA and k-obj. Chapter 5 presents our static concurrency bug detection framework,

D4, designed to provide instant feedback to developers during the programming phase. Chapter 6

presents our new system powered by origin-sensitive analyses, which significantly improve the

performance and precision of static data race detection for large, real-world programs. Chapter 7

concludes this dissertation and discusses future work.
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2. BACKGROUND AND RELATED WORKS *

This section introduces the background of pointer analysis and static concurrency bug detec-

tion. Section 2.1 presents the basic concepts and algorithms of pointer analysis, as well as existing

incremental and parallel techniques with the discussion of their limitations. Section 2.2 presents

the previous approaches of static concurrency bug detection with their pros and cons.

2.1 Pointer Analysis

Pointer analysis (often used interchangeably with alias analysis and points-to analysis) is a fun-

damental static program analysis technique, which computes an over-approximation of the set of

objects that a pointer, reference or expression can refer to. This set is called points-to set. Each

computed points-to set contains all objects the variable may point to at runtime. Many pointer

analysis algorithms are based on Andersen’s algorithm [40], which computes an inclusion-based

constraint. Another classical algorithm is the Steensgaard’s algorithm [41], which adopts a set

equality constraint. It has the linear time complexity, but is much less precise than the Andersen’s

algorithm. The result of pointer analysis is always represented by a graph which is pointer assign-

ment graph (PAG) [42] or points-to graph. Both algorithms are imprecise because they assume the

static call graph (CG) of a program is available. To be specific, CG is constructed ahead of PAG

as shown in Figure 2.1(a), which assume every pointer can point to any object compatible with its

declared type.

To improve the precision, Andersen’s analysis has been extended to build the inclusion-based

constraints dynamically (a.k.a. on-the-fly) while constructing the call graph (CG) [42, 43]. As

shown in Figure 2.1(b), an iterative process starts with the initially reachable methods (e.g., the

main function) and generate pointer assignment edges, points-to sets and call edges with new

*Reprinted with permission from "Rethinking Incremental and Parallel Pointer Analysis" by Bozhen Liu and Jeff
Huang. ACM Transactions on Programming Languages and Systems, Volume 41, Issue 1, Article No.: 6, pp 1–31,
Copyright 2018 by Bozhen Liu. Reprinted with permission from "When Threads Meet Events: Efficient and Precise
Static Race Detection with Origins" by Bozhen Liu and Peiming Liu and Yanze Li and Chia-Che Tsai and Dilma Da
Silva and Jeff Huang. PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, June 2021, Pages 725–739, Copyright 2021 by Bozhen Liu.

6



Reachable 
Methods Call Graph

PAG Points-to 
Set

Fully Imprecise 
Points-to Set

Reachable 
Methods Call Graph

PAG Points-to 
Set

(a) (b)

Figure 2.1: The workflows of constructing call graph ahead (a) and on-the-fly (b). Reprinted with
permission from [1].

Algorithm 1: On-the-fly Andersen’s Algorithm
1 ∆1← ∅ // ∆1: the new points-to constraints in each iteration

2 ∆2← initial method call targets
3 while ∆2 ̸= ∅ do // repeat until ∆2 is empty

4 ∆1 = extractNewMethodCallConstraints(∆2)
5 ∆2 = runAndersensAnalysis(∆1)
6 end

reachable methods, which continues until reaching a fixed point. The detailed algorithm for Java

is shown in Algorithm 1, where each iteration consists of two steps:

• Resolve new method call targets based on the current points-to result (i.e., the points-to set

of the receiver variable in the method call statements) and extract new points-to constraints

for the newly discovered method calls.

• Evaluate the new constraints by following Andersen’s analysis in Table 2.1 to compute the

points-to set of each variable and discover new call targets if available.

Table 2.1 describes the rules of creating CG and PAG according to the on-the-fly Andersen’s al-
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Table 2.1: On-the-fly Andersen’s Algorithm for Java Programs.

Type Statement Pointer Assignment Edge Constraint

NEW x = new C() o→ x oc ∈ pts(x)
ASSIGN x = y y → x pts(y) ⊆ pts(x)

LOAD

FIELD x = y.f y.f x;
∀o ∈ pts(y): o.f → x ∀o ∈ pts(y): pts(o.f) ⊆ pts(x)

ARRAY x = y[i] y.∗ x;
∀o ∈ pts(y): o.∗ → x ∀o ∈ pts(y): pts(o.∗) ⊆ pts(x)

STORE

FIELD x.f = y y x.f ;
∀o ∈ pts(x): y → o.f ∀o ∈ pts(x): pts(y) ⊆ pts(o.f)

ARRAY x[i] = y y x.∗;
∀o ∈ pts(x): y → o.∗ ∀o ∈ pts(x): pts(y) ⊆ pts(o.∗)

y
invoke g()

;
x = y.g(..., ai, ...) ∀o ∈ pts(y): m = dispatch(o, g)

INVOKE //called from m′() add call edge {m′ ↣ m},
y → thism, pts(y) ⊆ pts(thism)
ai → pi, pts(ai) ⊆ pts(pi)
rm → x pts(rm) ⊆ pts(x)

gorithm for Java programs. There are five types of statements that determine the points-to relation.

NEW and ASSIGN are simple statements which only introduce pointer assignment edges (denoted

→). An abstract heap object is represented by an allocation node o, and a variable is represented by

a variable node x or y. An pointer assignment edge y → x indicates the inclusion-based constraint

between the points-to sets of y and x (i.e., pts(y) ⊆ pts(x)). LOAD, STORE and INVOKE are

complex statements due to the dynamic edges (denoted ), of which pointer assignment edges

vary with the points-to set of its base variable (i.e., y for LOAD and INVOKE, x for STORE). A

field reference node y.f represents a pointer dereference, and a concrete field node o.f represents

the field f created at the allocation site o.

The rules for array load/store are similar to the ones for field load/store: each array is abstracted

with a single field ∗ and considering all array accesses as to that single field. This abstraction is

most commonly adopted in pointer analysis algorithms to balance the precision and performance,

which do not distinguish different array indexes.
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INVOKE is the type of statements that constructs the CG by virtual dispatch: given an abstract

heap object o that the base variable y point to, a dispatch function is invoked to resolve the virtual

dispatch of g() on o to a target method m. This creates new CG edges (denoted m′ ↣ m) and

new points-to constraints for parameters (y → thism and ai → pi), return value (rm → x) and

statements enclosed in the target method.

The above rules are context-insensitive, flow-insensitive, path-insensitive and field-sensitive,

which are simple and commonly used in practice. There are many other dimensions in pointer

analysis [44], which has been extensively researched for decades aiming to balance the trade-

off between performance and precision, e.g., context-sensitivity [45, 46, 47, 48, 49, 50], flow-

sensitivity [51, 52, 53, 54], path-sensitivity [55], field-sensitivity [56, 48], demand-driven [57, 58,

59], algorithmic complexity analysis [60, 61, 62, 63], as well as incremental pointer analysis [22,

23, 24, 25, 26]. In this section, we focus on discussing existing works related to incremental,

parallel algorithms, SCC optimizations and thread-/event-related context-sensitivity.

2.1.1 Incremental Algorithms

An incremental code change in a program includes statement additions, deletions and modifi-

cations (i.e., a statement is replaced by one or several statements). Hence, an incremental algorithm

has to handle all the three scenarios comprehensively. Handling additions is easy according to the

on-the-fly Andersen’s algorithm described in Algorithm 1. New points-to constraints can be first

extracted from the added statement and then provided as the input to run the on-the-fly algorithm.

The difficulty lies in the handling of deletions. For deletion, one has to maintain provenance

information on how facts are derived. When a statement is deleted, one has to delete all facts that

are “no longer reachable” from existing statements through the provenance information. Consider

three consecutive code changes:

1 Add a statement b=a

2 Add another statement c=b

3 Delete the first statement b=a

9



Figure 2.2: An example of edge deletion in a PAG. Reprinted with permission from [1].

When b=a is inserted, pts(b) is updated to pts(b) ∪ pts(a). When c=b is inserted, similarly,

pts(c) is updated to pts(c) ∪ pts(b). However, when b=a is deleted, not only the change in pts(b)

should be reversed, but also that the change in pts(c) should be recomputed, because pts(c) was

previously updated based on pts(b).

In general, there are two types of existing incremental algorithms for handling deletion: reset-

recompute [23, 24, 25, 26] and reachability-based [22, 27]. However, both of them suffer from

performance limitations, and we will illustrate the detail in the following sections.

2.1.1.1 Reset-Recompute Algorithm

Upon a deletion, a simple algorithm is to first reset the points-to sets of all variables that are

“relevant” to the deleted statement and then recompute them following the same rationale as the

on-the-fly algorithm. Here, “relevant” means “reachable” from the root variable of the change

in the PAG. Specifically, one can first remove all edges related to the deleted statement from the

PAG, and reset (set to empty) the points-to sets of their destination nodes as well as all nodes that

these destination nodes can reach (because the points-to sets of all those nodes may be affected).

Then, for all the reset nodes, extract their associated points-to constraints and rerun the fixed-point

computation following Algorithm 1.

Consider an example in Figure 2.2, in which an edge x→ y is deleted from the PAG (e.g., due

to the deletion of a statement y = x in the program). The root variable of the change is y, since

its points-to set may be changed immediately because of the edge deletion. The reset-recompute

10



algorithm first resets pts(y) as well as pts(z) and pts(w) to empty (because z and w are reachable

from y). Then it extracts the points-to constraints pts(y)= pts(y) ∪ {o2}, pts(z)= pts(z) ∪ pts(y),

pts(w)= pts(w)∪pts(y), and pts(w)= pts(w)∪pts(x), from the four edges connected to the three

reset nodes, i.e., o2 → y, y → z, y → w and x → w, and recomputes pts(y), pts(z) and pts(w)

until reaching a fixed point. The final values of the points-to sets are: pts(x)={o1}, pts(y)={o2},

pts(z)={o2} and pts(w)={o1, o2}. As o1 has been removed from pts(y) and y is the base variable

of y.f , it also deletes the edge o3 → o1.f and recomputes pts(o1.f) = ∅.

The reset-recompute algorithm can be traced back to the DRed algorithm [21] and the incre-

mental pointer aliasing analysis [64]. It is inefficient because most computations on the points-to

sets of the reset nodes may be redundant. For example, both before and after the statement dele-

tion, pts(w) remains the same. We call such recomputation on pts(w) as redundant computation

in the incremental analysis.

Context-Insensitive Many research works have been conducted to reduce the redundant com-

putation for reset-recompute algorithm. Saha et al. [23, 28] propose an incremental and demand-

driven points-to analysis based on the DRed algorithm [21]: it marks the affected answers, checks

the marked answers, and removes the answers that cannot be rederived. To reduce the redundant

checks, a support graph is introduced where nodes are the answers, supports and facts, and edges

indicate the points-to relations among them. A primary support, which is independent from its

answer, is maintained to optimize the marking process. When there is an incremental change, they

only mark an answer if its primary support is marked, and then mark all the supports that uses the

answer. After the marking stage, if a marked answer has other unmarked supports, they consider

the answer is rederived and recursively remove the marks generated from the answer. Otherwise,

a recomputation has to be performed on the answer. Instead of PAG, this technique adopts a sup-

port graph to represent the points-to relations among variables. However, such a graph requires

maintaining primary supports for each answer. Besides, the "mark-check-remove mark" method

redundantly propagates the marks, since it cannot recognize whether an answer should be removed

at first glance. Besides, their rederivation technique requires computing derivation length to deter-
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mine the order in which marked answer should be recomputed first. Such an order prohibits the

leverage of parallelization. Besides, the handling of dynamic method calls is very imprecise in this

technique: all the methods that have the same number and types of parameters as the call site are

considered as targets.

Incremental computation has been extensively discussed in the domain of datalog evaluation.

There are several pointer analyses formulated using datalog frameworks [65, 66, 67, 68, 69]. How-

ever, despite intensive research [21, 70] for optimizing the incremental evaluation of datalog, dat-

alog engines are still inefficient to handle incremental deletion of the pointer analysis facts. In

our experience with LogicBlox [71], a state-of-the-art datalog engine that supports incremental

updates of Datalog facts, it cannot even finish in six hours for handling a statement deletion in our

benchmarks.

Researchers also have applied the reset-recompute algorithm to different dimensions of pointer

analysis. Here, we introduce two state-of-the-art approaches, REVISER and IncA.

REVISER [24] proposes an interprocedural, flow- and context-sensitive data-flow analysis

based on the IFDS/IDE (Interprocedural Distributive Environment Transformers) framework. Sim-

ilar to the reset-recompute algorithm, REVISER adopts a clear-and-propagate strategy to clear

and recompute the relative analysis result when necessary. The difference exists in its frameworks,

Soot [72]. The IFDS framework formats the data-flow problem to a graph reachability problem.

Furthermore, the IDE framework can solve distributive functions along the graph edges.

IncA [26] proposes a domain-specific language (DSL) to incrementally update program analy-

sis result based on graph pattern matching. It uses pattern functions to define the relations between

program entities in a program analysis (e.g., the execution order of statements in control-flow

analysis, the points-to relations of variables in points-to analysis). IncA can be used to perform

incremental points-to analysis by introducing a relation PointsTo(x, y) to represent that variable

x can point to variable y. For incremental statement changes, IncA initially updates the interproce-

dural control-flow graph (ICFG) incrementally. Then, according to the new control flow changes,

it performs an incremental graph pattern matching (adopted from EMF-IncQuery [73]) to prop-
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agate changes to all dependent points-to relations and re-analyze the changed program entities.

EMF-IncQuery is an incremental graph query engine to capture and execute live queries over EMF

models (such as UML). It also supports incremental updates of model elements based on the Rete

networks [74]. However, the specific algorithm for handling deletion is not very clear and may be

determined by the considered patterns.

Context-Sensitive To achieve efficiency in context-sensitivity, cloning-based technique [75] cre-

ates multiple instances for a method and each links with a distinct context. This can be adapted

to solve incrementally added statements, however, it cannot handle code deletion which requires

complicate algorithms to guarantee the soundness. Similarly, diff-graph [76] represents the ac-

cesses of a method in a flow-sensitive, but context-insensitive way in order to reduce the workload

of creating a points-to graph [77], which however only handles addition.

Lu et al. [78] present an incremental pointer analysis based on CFL-reachability, where a

points-to query is answered by finding the CFL-reachable paths in the PAG from the queried vari-

able to objects.

Many recent techniques [47, 79, 80, 81, 82, 83, 84, 85, 86] focus on selective context-sensitivity,

which is another promising direction to scale pointer analysis. The idea is to analyze selective

program elements context-sensitively to avoids the combinatorial explosion in analysis time and

memory space. The selection relies on heuristics from user inputs or machine learning techniques,

or pattern matching of the imprecision in dataflow, which shows significant performance and/or

precision improvement.

2.1.1.2 Reachability-Based Algorithm

Before removing an object node from a points-to set, we can always firstly check the path

reachability from the object node to the pointer node. In this way, the points-to sets of those nodes

that are potentially affected by the deletion are not reset, but are updated lazily only if they are not

reachable from the object nodes. This algorithm does not incur any redundant computation on the

points-to set. However, it requires repeated whole-graph reachability checking, which is expensive
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for large PAGs.

For the same example in Figure 2.2, after the deletion of the edge x → y, the algorithm first

checks if x is still reachable to y (i.e., via another path without x → y). If yes, then the algorithm

stops with no changes to any points-to set. Otherwise, it goes on to check if any object in pts(x)

should be removed from pts(y), by checking if the corresponding object node can reach y in the

PAG. In this case, pts(x) contains only o1 which cannot reach y, hence o1 is removed from pts(y).

Because pts(y) is changed, the algorithm then continues to propagate the change by checking the

nodes connected to y (i.e., z and w). Finally, because o1 cannot reach z but can reach w (via the

path o1 → x→ w), o1 is removed from pts(z) but pts(w) remains unchanged.

The main scalability bottleneck of the reachability-based algorithm is that the worst case time

complexity for checking path reachability is linear in the PAG size, which can be very large for

real-world programs. The performance can be improved by parallelizing the reachability check for

different object nodes, however, the time complexity is still linear in the PAG size.

Another important issue of incremental pointer analysis is how to handle the deletion of method

call statement. Most existing pointer analysis algorithms for handling dynamic code changes as-

sume a static program call graph [22, 23, 24, 25], which loses precision after adding or deleting a

method call statement. Moreover, due to the potential change in a base variable, a statement dele-

tion may cause the change in both PAG and CG, thus it should be carefully handled to guarantee

the soundness and correctness.

2.1.2 Parallel Algorithms

Most existing parallel algorithms are designed to speed up the propagation of initial points-to

constraints for whole-program pointer analysis, which require a static whole program.

Putta and Nasre [87] propose a parallel replication-based algorithm for pointer analysis: all the

initial points-to constraints have been partitioned into n sets and arranged to n threads to propagate

points-to sets; each thread has its own copy of conflicting variables and their associated points-to

sets; all the copies are merged after the threads have completed their works.

Méndez-Lojo et al. [88] formulate the inclusion-based points-to analysis in terms of graph
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rewriting rules, which extra constraint edges are added to help the reasoning of points-to relations.

By using the Galois system [89], the rules are performed in parallel on non-interfering nodes in the

constraint graph. This graph rewriting algorithm has been further implemented on GPU [90] with

an efficient graph representation for the constraint graph under the GPU memory model. Nagaraj et

al. [91] propose a flow-sensitive pointer analysis which is parallelized based on the graph rewriting

rules from [88].

PSEGPT [92] is also designed for parallel flow-sensitive pointer analysis, which relies on a

new representation that combines points-to relations and def-use chain on heap. It decomposes

the points-to analysis into fine-grained units of work that can be implemented in an asynchronous

task-parallel programming model. The operations that propagate the points-to information can be

executed in parallel if they obey the data dependence among operations.

Edvinsson et al. [93] discover clusters of points-to constraints that are independent to each

other and assign the clusters to different threads, where the independence refers to the true/false

branches of a selection and the call targets of a method invoke.

Su et al. [94] propose an inter-query parallelism strategy on the demand-driven CFL-reachability

pointer analysis. Each thread fetches a group of queries from a shared work list to perform the com-

putation of points-to sets. In each thread, the order in which queries are processed are determined

by connection distances to achieve early termination. During the process, shortcut edges are added

into the PAG to skip the redundant retraversals of related paths.

2.1.3 SCC Optimizations

An important optimization for pointer analysis in practice is to compute the strongly-connected

components (SCCs) in the PAG. Because all nodes in the same SCC are guaranteed to have identi-

cal points-to sets, all these nodes can be collapsed into a single node. Hence, the points-to sets of

all the nodes in an SCC can be updated all together to leverage the benefit of cycle elimination.

A number of pointer analysis algorithms [50, 95, 96, 97, 98] have adopted some SCC opti-

mizations to improve performance, e.g., Tarjan’s algorithm [99]. However, all these optimizations

do not update SCCs according to dynamic graph changes. To handle dynamic program changes,
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SCCs must also be updated dynamically.

La Poutré et al. [100] propose the first algorithm to dynamically maintain the transitive re-

duction of a directed graph regarding to graph edge additions and deletions, i.e., dynamically

collapse/break SCCs. Bergmann et al. [101] adapt the algorithm [100] for incremental graph pat-

tern matching to improve the scalability. Marlowe et al. [102] propose an incremental data flow

analysis that can decompose/compose the affected SCCs in the data flow graph whenever there are

data flow changes, such that a precise and correct result can be obtained efficiently.

2.1.4 Thread and Event Related Context-Sensitivity

Recently, a new dimension, thread-sensitivity, has been proposed in pointer analysis, in order

to achieve better precision when applying the result of pointer analysis on static concurrency bug

detection. In this section, we will discuss the existing pointer analysis works designed for multi-

threaded and event-driven programs.

2.1.4.1 Thread or Event

Researchers have been comparing thread and event models for so long time: Lauer and Need-

ham [103] compared event-driven systems with thread-based systems and regarded threads and

events as intrinsically dual to each other; Ousterhout [104] then argued against using threads due

to the difficulty of developing correct threaded code; and Lee [105] also noted the lack of un-

derstandability and predictability of multi-threaded code due to nondeterminism and preemptive

scheduling. On the other hand, Von Behren et al. [106] remarked on the “stack ripping” problem

of events and advocated for using threads for their simple and powerful abstraction. In Capric-

cio [107], they used static analysis and compiler techniques to transform a threaded program into

a cooperatively-scheduled event-driven program with the same behavior. Adya et al. [108] also

backed Von Behren by noting the question of threads or events as orthogonal to the question of

cooperative or preemptive scheduling. Meanwhile, a unified concurrency model at the program-

ming language level becomes more practical and useful, including Scala with Actors [109] and

Haskell [110].
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2.1.4.2 Unifying Thread and Event

It is highly desirable to unify threads and events so that these two models can be combined

to achieve optimal performance on a real environment. In fact, for application domains with both

heavy concurrency and intensive I/O such as web and database servers, a hybrid model of threads

and events is often used. For example, in web servers and mobile applications, I/O and lifecycle

events are used to model network connections and user interactions, and thread pools are used to

handle concurrent user requests. Researchers have exploited this direction at the programming lan-

guage level, including Scala with Actors [109] and Haskell [110], to produce a unified concurrency

model.

2.1.4.3 Thread- and Event-Sensitive Algorithms

Many dataflow analysis techniques [111, 112, 113, 114, 115, 116] have been proposed for

event-driven programs to model event lifecycles and event handlers, but they only scale to hundreds

of lines of code. These techniques either compromise precision due to unsound treatment of thread

interactions or lose scalability due to expensive value-flow analysis.

Using threads as the context in pointer analysis is not new [117, 118, 119, 120]. Other al-

gorithms for multithreaded programs are not general as they target specific analyses (e.g., escape

analysis and region-based allocation [121], synchronization elimination [122, 123]), or only work

for structured multithreading (e.g., Cilk [124, 125]). In addition to using threads or events, prior

research has proposed a variety of ways to represent contexts such as call-site [126, 127], receiver

object [49] and type [128]. Recently, selective context-sensitive techniques [19, 79, 80, 81, 82,

129, 130, 131] have also been proposed. Although much progress has been made, context-sensitive

pointer analysis remains difficult to scale.

2.2 Static Concurrency Bug Detection

As an important application of pointer analysis, much research has been done for detecting

bugs statically by leveraging the result of pointer analysis. This section introduces existing works

in static concurrency bug detection.
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Cheetah [132] is a Just-In-Time static analysis to detect programming errors quickly. Instead of

incremental analysis, Cheetah uses a layered analysis which expands the analysis scope gradually

from recent changes to code further away. In addition, Cheetah focuses on data-flow analyses such

as taint analysis for Android apps instead of concurrency analysis.

RacerD [133] is a practical concurrency error detector developed by Facebook. It relies on

code annotation and performs race detection with aggressive ownership analysis, rather than using

pointer analysis and happens-before analysis to analyze the impact of a code change.

There exist a wide range of techniques for detecting concurrency bugs in the multithreaded

whole program. For example, RacerX [30] and Chord [34] detected many real-world data races

and deadlocks in C/C++ and Java programs with static analysis. HARD [134] utilizes hardware

features to improve the race detection performance, Fonseca et al. [135] leverage linearizability

testing to find concurrency bugs, and ConSeq [136] analyzes sequential memory errors to find

concurrency bugs. However, all these techniques focus on whole program analyses which may be

difficult to achieve efficiency.

Meanwhile, as the size and complexity of programs increase, there exist various difficulties

when applied classic detection techniques to modern software. RacerX contains many heuristics

and engineering decisions, which are difficult to duplicate. RELAY [38] depends on the CIL

compiler front-end, which supports only a subset of C and has not been actively developed [137].

Technically, RELAY uses a context- and field-insensitive pointer analysis, a major source of false

positives. String-pattern-based heuristics are used in RELAY to filter out false aliasing. These

heuristics are effective in reducing false positives, but are only specific to the code conventions in

the target program and are unsound.

RacerD, developed at Facebook, is by far the most successful static race detector [133]. It is

regularly applied to Android apps in Facebook and has flagged over 2500 issues that have been

fixed by developers before reaching production [138]. RacerD’s design favors reducing false pos-

itives over false negatives through a clever syntactical reasoning, but it does not reason about

pointers and thus can miss races due to pointer aliases.
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Except for multithreaded programs, races also exit in event-driven programs, which has at-

tracted much attention in recent years [139, 140, 141, 142, 143, 144, 145, 146]. Event-based

races can be more challenging to detect than thread-based races because most events are asyn-

chronous and the event handlers may be triggered in many different ways. Moreover, the difficulty

in detecting event-based races is exacerbated by interactions between threads and events, which

are common in real-world software such as distributed systems. The state-of-the-art race detec-

tors [37, 133, 138] do not perform well in detecting event-based races, also due to the large space

of casual orders among event handlers and threads.
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3. IPA: INCREMENTAL POINTER ANALYSIS *

Pointer analysis is at the heart of most interprocedural program analyses. However, scaling

pointer analysis to large programs is extremely challenging. In this article, we study incremental

pointer analysis and present a new algorithm for computing the points-to information incrementally

(i.e., upon code addition, deletion and modification). Underpinned by new observations of incre-

mental pointer analysis, our algorithm significantly advances the state-of-the-art in that it avoids

redundant computations and the expensive graph reachability analysis, and preserves the precision

as the corresponding whole program exhaustive analysis. Moreover, it is parallel within each it-

eration of the fixed-point computation. We have implemented our algorithm, IPA, for Java based

on the WALA framework and evaluated its performance extensively on real-world large complex

applications. Experimental results show that IPA achieves more than 200X speedups over exist-

ing incremental algorithms, two to five orders of magnitude faster than the whole program pointer

analysis, and also improves the performance of an incremental data race detector by orders of

magnitude. Our IPA implementation is open source and has been adopted by WALA.

3.1 Introduction

Pointer analysis computes the set of objects that a pointer variable can point to at runtime.

It is a fundamental technique underpinning virtually all interesting static program analyses (e.g.,

compiler optimizations and bug detection) and has been the focus of intensive research [40, 46, 47,

48, 49, 50, 57, 60, 61, 63, 62, 96, 147, 148, 149].

Unfortunately, scaling pointer analysis up to large code bases has been extremely challenging.

For example, for the classical Andersen’s pointer analysis, it typically takes tens of minutes or

hours to analyze real-world applications with hundreds of thousand of lines of code [60, 98, 150].

As a result, typically only imprecise pointer analyses are used in production compilers, missing

*Reprinted with permission from "Rethinking Incremental and Parallel Pointer Analysis" by Bozhen Liu and Jeff
Huang. ACM Transactions on Programming Languages and Systems, Volume 41, Issue 1, Article No.: 6, pp 1–31,
Copyright 2018 by Bozhen Liu.
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many potential optimization opportunities [151].

Researchers have investigated incremental pointer analysis since nearly two decades ago [64,

152]. These incremental algorithms [22, 23, 24, 25, 26, 28, 27, 78] promise significant perfor-

mance improvements over the exhaustive pointer analysis because analyzing code changes is often

much faster than analyzing the entire code base. For applications in which pointer analysis has

to run repeatedly with respect to frequent but small program changes, e.g., bug finding in the IDE

(Integrated Development Environment) [27] and incremental compilation [153], this is particularly

useful because only a small part of the program needs to be analyzed instead of the whole program.

However, existing incremental algorithms (albeit fast in simple cases) are still too slow to be

applied in large real-world applications. For instance, in our experiments we find that existing

algorithms [27] can take over half an hour to analyze a statement deletion in large applications.

Moreover, most existing algorithms [22, 23, 24, 25] assume a pre-built call graph of the program,

which does not hold for scenarios where the call graph itself can be modified by the code changes.

Furthermore, some algorithms (e.g., [22]) do not preserve precision but compute a less precise

result than the exhaustive analysis.

In this article, we perform a detailed study of the Andersen-style incremental pointer analysis,

and present a new incremental algorithm that dramatically improves the performance of existing

algorithms. Our algorithm does not assume a pre-built call graph and does not lose precision.

More importantly, it is much more efficient than existing algorithms for handling code deletions,

by exploiting a novel insight on the fundamental transitivity property of the fixed-point based

pointer analysis. We show that to correctly handle a deletion, it is sufficient to analyze the local

neighbours of the changed nodes in the pointer assignment graph (PAG) without global graph

reachability analysis, nor any recomputation of the intermediate points-to results. Besides, we

present an incremental algorithm that dynamically updates the strongly-connected components

(SCCs) upon incremental program changes to further reduce redundant computations.

Moreover, we observe a strong change idempotency property of our incremental pointer anal-

ysis algorithm, which allows efficient parallelization within each iteration of the fixed-point com-
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putation. Specifically, we show that for both code insertion and deletion changes, the propagation

of information along the edges of the PAG is performed using an idempotent operator, i.e., the

repeated update of a node in the graph with the same information (coming along various paths

of the graph) does not change its state. Nor is the order of these updates important (operator is

commutative, as well as associative). This property also enables us to develop a synchronization-

free implementation of the points-to data structure, which further improves the performance of our

algorithm.

We implemented an end-to-end incremental pointer analysis, IPA, in the WALA framework [154]

based on our new algorithm, and evaluated it extensively on a wide range of real-world large com-

plex Java applications from the DaCapo-9.12 benchmarks [155]. The experimental results show

dramatic efficiency and scalability improvements compared to existing algorithms: on a 48-core

HPC machine, IPA takes only 24ms on average and 5.5s in the worst case to analyze a change,

achieving more than 200X speedups over existing incremental algorithms based on graph reacha-

bility and recomputation, and it is two to five orders of magnitude faster than the exhaustive pointer

analysis while preserving the precision. We have also applied IPA to detect data races incremen-

tally in the IDE. Through the use of IPA for incremental pointer analysis, the performance of a

state-of-the-art incremental race detector [27] is improved by as much as 100X.

To the best of our knowledge, IPA is the first parallel incremental pointer analysis that real-

izes both the change incrementalism and the algorithmic parallelization. Although previous re-

search has proposed separately a number of incremental algorithms [23, 24, 26] and parallel algo-

rithms [87, 88, 93, 94, 91, 92], none of them is both incremental and parallel, which is challenging

to design and implement efficiently.

In summary, we claim the following contributions:

• We present a new pointer analysis algorithm that dramatically improves the performance and

practicality of existing algorithms without losing precision. In particular, we present the first

parallel incremental pointer analysis algorithm by exploiting a novel change idempotency

property of incremental pointer analysis.
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• We present an extensive evaluation of IPA on large complex real-world Java programs as

well as an application for IDE-based incremental race detection, demonstrating significant

performance improvements over existing algorithms.

• IPA is open source [156] and has been integrated into the WALA code base.

3.2 New Incremental Algorithms

Our new algorithms are based on a fundamental transitivity property of Andersen’s analysis.

This enables us to prove two key properties of the PAG (with no cycles), which allow us to de-

velop an efficient algorithm together with the incremental SCC optimization, without redundant

computation or graph reachability analysis. We further prove an idempotency property of change

propagation in pointer analysis, which allows parallelizing the incremental algorithm.

We first present the two key properties. We then present the basic incremental algorithm in

Section 3.2.1 and the parallel incremental algorithm in Section 3.2.2.

According to Andersen’s analysis rules in Table 2.1, we have the following correctness prop-

erty:

Transitivity of PAG For an object node o and a pointer node p in the PAG, o ∈ pts(p) iff o can

reach p. For two pointer nodes p and q, if p can reach q in the PAG, then pts(p) ⊆ pts(q).

We first assume the PAG is acyclic, i.e., all SCCs are collapsed into a single node and consider

only one edge deletion. We will present our incremental SCC detection algorithm and describe our

adaption of the on-the-fly Andersen’s algorithm to handle multiple edge deletions in Section 3.2.1.

Based on the transitivity property, we can prove the following lemma:

Lemma 1: Incoming neighbours property. Consider an acyclic PAG and a pointer node q of

which an object o ∈ pts(q). If q has an incoming neighbour r (i.e., there exists an edge r → q)

and o ∈ pts(r), then there must exist a path from o to r without going through q.

Proof. See an illustration in Figure 3.1. First, because o ∈ pts(r), due to transitivity, o can reach

r. Second, because the PAG is acyclic, there cannot exist a path o → . . . → q → . . . → r → q

(which contains a cycle).
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Figure 3.1: Illustration of the incoming neighbours property. Reprinted with permission from [1].

Based on Lemma 1, we can prove the following theorem:

Theorem 1: Suppose an edge p → q is deleted from an acyclic PAG and all the other edges

remain unchanged. For any object o ∈ pts(q), if there exists an incoming neighbour r of q such

that o ∈ pts(r), then o remains in pts(q). Otherwise if q does not have any incoming neighbour of

which the points-to set contains o, then o should be removed from pts(q).

Proof. Due to Lemma 1, o can reach r without going through q. Hence, o can reach r without the

edge p → q. Because r → q, o can hence reach q without the edge p → q. Therefore, o remains

in pts(q) after deleting p → q. Otherwise if no neighbour has a points-to set containing o, then o

cannot reach q and hence should be removed from pts(q).

With Theorem 1, to determine if a deleted edge introduces changes to the points-to informa-

tion, we only need to check the incoming neighbours of the deleted edge’s destination, which is

much faster than traversing the whole PAG for checking the path reachability. Consider again the

example in Figure 2.2. Upon deleting the edge x → y, we only need to check o2, which is the

only incoming neighbour of y. Because the points-to set of o2 does not contain o1, o1 should be

removed from pts(y).

Once the points-to set of a node is changed, the change must be propagated to all its outgoing

neighbours. Again, based on transitivity, we can prove the following lemma:

Lemma 2: Outgoing neighbours property. Consider an acyclic PAG and a pointer node q of

which an object o ∈ pts(q). If q has an outgoing neighbour w (i.e., there exists an edge q → w)

and w has an incoming neighbour r (different from q) such that o ∈ pts(r). If r cannot reach q,
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Figure 3.2: Illustration of the outgoing neighbours property. Reprinted with permission from [1].

then at least one of the following two conditions (or both of them) must hold in the PAG:

(1) There exists a path from o to w without going through q;

(2) There exists a path from q to r.

In other words, if every path from o to w must go through q, then there must exist a path from q

to r; if there is no path from q to r, then there must exist a path from o to w without going through

q.

Proof. See an illustration in Figure 3.2. There must exist such a path o → . . . → r → w from o

to w, because o ∈ pts(r) and r → w. The path may or may not contain q. However, if it contains

q, then it must be o → . . . → q → . . . → r → w, which means that q can reach r. It cannot be

o→ . . .→ r → . . .→ q → w, because r cannot reach q.

Based on Lemma 2, we can prove the following theorem:

Theorem 2: Suppose an edge p → q was deleted from an acyclic PAG and it resulted in the

removal of an object o from pts(q). To propagate this change, it is sufficient to check all the

outgoing neighbours of q. For each outgoing neighbour w, if the points-to set of any of its incoming

neighbours contains o, then the change propagation from this path to w can be skipped (the change

may propagate to w again in the future from another path). Otherwise if none of the points-to sets

of w’s incoming neighbours contains o, o should be removed from pts(w) and the change should

propagate further from w to all its outgoing neighbours.

Proof. After the edge deletion, o was removed from pts(q). Due to transitivity, o can no longer

reach q in the remaining PAG. Consider an outgoing neighbour of q, w. If w has no incoming
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neighbour of which the points-to set contains o, then it means o cannot reach w and o should be

removed from pts(w). If w has an incoming neighbour r such that o ∈ pts(r), we next prove that

the change propagation from q to w can be skipped, while still ensuring the correctness of pointer

analysis (i.e., the transitivity of PAG).

Because o can reach r but cannot reach q, so r cannot reach q. Hence the condition of Lemma 2

is satisfied. Due to Lemma 2, there exists either (1) a path from o to w without going through q, (2) a

path from q to r, or both (1) and (2). For (1), o should remain in pts(w). This is satisfied vacuously

following the change propagation rules in Theorem 2, because pts(r) cannot be affected by the

change propagation. For (2), following the outgoing neighbours of q, the change will propagate to

r along a certain path and hence to w eventually. Therefore, to propagate change from a node, it is

sufficient to check all the node’s outgoing neighbours.

Theorems 1 and 2 together guarantee that upon deleting a statement, it suffices to check the lo-

cal neighbours of the change impacted nodes in the PAG to determine the points-to set changes and

to perform change propagation. This avoids redundant computations in recomputing the points-to

sets and traversing the whole PAG.

Consider again the example in Figure 2.2. When o1 is removed from pts(y), we only need to

check z and w, which are the outgoing neighbours of y. For z, because it does not contain any other

incoming neighbour, o1 is hence removed from pts(z). However, for w, it has another incoming

neighbour x (in addition to y) and pts(x) contains o1, so pts(w) remains unchanged.

3.2.1 Basic Incremental Algorithm

In Theorems 1 and 2, we have made the assumption that the PAG is acyclic and we have

considered only one edge deletion. The acyclic PAG can be satisfied by the SCC optimization,

which is known in existing literature for whole program pointer analysis [96]. However, in the

incremental setting, the SCCs must be dynamically updated. We first give a brief overview of our

incremental SCC detection algorithm, which shares the same main idea with [100, 101]. Based on

it, we then present our incremental algorithms for handling edge deletion and addition.
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Figure 3.3: Three SCC scenarios. Reprinted with permission from [1].

To support multiple edge deletions, we only need to slightly adapt the on-the-fly Andersen’s

algorithm (recall Algorithm 1). Specifically, we can change the on-the-fly algorithm such that

within each iteration only a single edge deletion or addition is applied. This does not affect the

performance of the original algorithm because the same amount of computation is required to reach

the fixed point.

3.2.1.1 Incremental SCC Detection

In incremental analysis, the main difference of the SCC optimization (from that in the on-the-

fly Andersen’s analysis) is that SCCs cannot only be augmented (by insertion), but also be broken

(by deletion). An edge deletion may break a collapsed SCC into multiple smaller SCCs and/or

individual nodes. In our algorithm, we maintain the collapsed SCCs and create a super node for

each collapsed SCC in the PAG. For each deleted edge, we check the following conditions:

1. The edge does not belong to any SCC: nothing to do with existing SCCs.

2. The edge belongs to a certain SCC, but deleting the edge does not break the SCC. In this case,
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we keep the super node corresponding to the collapsed SCC in the PAG, and only remove

the edge from the collapsed SCC. We use Tarjan’s linear-time algorithm [99] to detect SCCs

in the collapsed SCC after the edge deletion. If it returns the same SCC as the collapsed

SCC, then it means the edge deletion does not break the existing SCC.

3. The edge belongs to an SCC and removing it breaks the SCC. In this case, we first delete the

super node corresponding to the collapsed SCC from the PAG, and restore all the nodes/edges

in the broken SCC. Afterwards, we run Tarjan’s linear-time algorithm inside the broken SCC

and collapse any detected SCCs.

For each edge addition, we check the following conditions for the two nodes connected by the

edge:

1. If they belong to the same SCC, nothing to do with existing SCCs.

2. If they do not belong to the same SCC, we use Tarjan’s two-way search algorithm [157]

for sparse graphs to detect new SCCs in the PAG incrementally. For each new SCC, we

then collapse the SCC and create a new super node for it in the PAG. Any existing SCCs

contained in the new SCCs are removed.

Figure 3.3 illustrates the incremental SCC detection with examples. Figure 3.3(a) shows that

adding the edge x → y creates a new SCC and deleting the edge breaks the SCC. Figure 3.3(b)

shows that the edge x → p does not belong to any SCC, so adding/deleting the edge does not

create new SCCs or affect existing SCCs. Figure 3.3(c) shows that the edge x → z belongs to an

SCC, but adding/deleting it does not augment or break the SCC.

3.2.1.2 Incremental Edge Deletion

Algorithm 2 shows our incremental algorithm for handling edge deletion. We maintain a PAG

and a worklist, which is initialized to the input deleted edge. In each iteration, one edge from the

worklist is processed, which involves two steps. First, we remove the edge from the PAG and han-

dle the SCCs according to the incremental SCC detection algorithm described in Section 3.2.1.1.
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Algorithm 2: DeleteEdge(e)
Input : e - a deleted edge

pag - the PAG
1 WL← e // initialize worklist to e

2 while WL ̸= ∅ do
3 e← RemoveOneEdgeFrom(WL)
4 pag ← pag \ {e}
5 DetectSCC(e)

// let e be x→ y

6 PropagateDeleteChange(pts(x), y)
7 end

8 PropagateDeleteChange(∆, y):
Input : ∆ - a set of points-to set changes

y - a node that ∆ propagates to
9 foreach z → y do // z is an incoming neighbour of y

// Objects in ∆ but not in pts(z)

10 ∆ = ∆ \ (∆ ∩ pts(z))
11 if ∆ = ∅ then
12 return
13 end
14 end

// remove ∆ from pts(y)

15 pts(y)← (pts(y) \∆)
16 foreach y → w do // w is an outgoing neighbour of y

17 PropagateDeleteChange(∆, w)
18 end
19 WL← CheckNewDeletedEdges(∆, y)

20 CheckNewDeletedEdges(∆, y):
21 foreach o ∈ ∆ do

// process complex statements related to y.f

22 foreach node o.f generated from y.f do
// add to WL all edges from/to o.f

23 WL← e // let e be o.f → ∗ or ∗ → o.f

24 end
25 end
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We ensure that after deleting the edge the PAG is acyclic and all SCCs are collapsed into a single

node.

After that, we run the procedure PropagateDeleteChange to propagate the points-to set changes

caused by the edge deletion. This procedure takes two inputs: a set ∆ of potential points-to set

changes, and a node y that these changes are propagating to. For an edge x→ y, ∆ is initialized to

pts(x), because after deleting the edge all objects in pts(x) may be removed from pts(y). Then,

we check the incoming neighbours of y; if any change in ∆ is contained in the points-to set of a

neighbour, the change should be skipped, i.e., not applied to pts(y). Hence, we remove from ∆

all the objects that overlap with the points-to sets of y’s incoming neighbours. For the remaining

objects in ∆, we then remove them from pts(y) and propagate them further to all of y’s outgoing

neighbours.

To handle those dynamic edges that can be deleted during the change propagation, we run

the procedure CheckNewDeletedEdges once any change is applied to a node, i.e., any object is

removed from or added to its points-to set. This procedure takes a points-to set change and a

target node as input, and returns a list of deleted PAG edges to the worklist. Note that the complex

statements (i.e., load, store and call) can introduce new edges. Now, we are processing PAG edge

deletion. In CheckNewDeletedEdges, for each object o ∈ ∆, that is removed from pts(y) and for

each node o.f in the PAG that is generated from y.f , we remove all edges from/to o.f (because

the node o.f should be removed). For a deleted method call a = b.m(c), we simply remove the

edges c → p and r → a (p is the formal parameter and r the return variable of m), which are

introduced to the PAG when the method call is added. Note that the nodes/edges of the method

body remain unchanged. This not only addresses multiple calls to a method in the same context,

but also improves performance when the method call is added back later.

3.2.1.3 Incremental Edge Addition

Algorithm 3 shows our incremental algorithm for handling edge insertion, which follows the

on-the-fly algorithm in Algorithm 1. Compared with our incremental deletion algorithm, it has

three main differences. First, instead of deleting edges from the PAG, it always adds edges. Sec-
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Algorithm 3: AddEdge(e)
Input : e - an inserted edge

pag - the PAG
1 WL← e // initialize worklist to e

2 while WL ̸= ∅ do
3 e← RemoveOneEdgeFrom(WL)
4 pag ← pag ∪ {e}
5 DetectSCC(e)

// let e be x→ y

6 PropagateAddChange(pts(x), y)
7 end

8 PropagateAddChange(∆, y):
Input : ∆ - a set of changes

y - a node that ∆ propagates to
// Objects in ∆ but not in pts(y)

9 ∆ = ∆ \ (∆ ∩ pts(y))
10 if ∆ ̸= ∅ then

// add ∆ to pts(y)

11 pts(y)← (pts(y) ∪∆)
12 foreach y → w do //w is an outgoing neighbour of y
13 PropagateAddChange(∆, w)
14 end
15 WL← CheckNewAddedEdges(∆, q)
16 end

17 CheckNewAddedEdges(∆, y):
18 foreach o ∈ ∆ do

// process complex statements related to y.f

19 foreach Load x = y.f do
// add a new edge to WL

20 WL← e // let e be o.f → x

21 end
22 foreach Store y.f = x do

// add a new edge to WL
23 WL← e // let e be x→ o.f

24 end
25 foreach Call y.m() do

// add new edges in o.m to WL
26 WL← AnalyzeNewMethod(o.m)
27 end
28 end
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ond, it does not need to check incoming neighbours. To propagate a change to a node, it simply

checks if the node’s points-to set contains the change or not. If yes the change is skipped, oth-

erwise the change is applied. Third, once the points-to set of a node is changed, it checks if the

node corresponds to a base variable in any complex statement and adds new edges to the PAG

correspondingly. The CheckNewAddedEdges procedure takes a points-to set change ∆ and a target

node y as input, and returns a list of added PAG edges to the worklist. For each object o ∈ ∆, for a

load statement x = y.f we add a new edge o.f → x; for a store statement y.f = x, we add a new

edge x → o.f ; and for a call statement y.m(), we check the method T.m() (where T is the type

of the object o) and add the corresponding method call edges, and also analyze the method body if

T.m() is new.

3.2.2 Parallel Incremental Algorithm

Our parallel incremental algorithms are based on a strong change idempotency property of our

basic incremental algorithms described in Section 3.2.1.

Lemma 3: Change idempotency property: For an edge addition or deletion, the update to

each points-to set is an idempotent operator. In other words, if the change propagates to a node

more than once from different paths, the effect of the change (i.e, the modification applied to the

corresponding points-to set) must be the same.

Proof. Suppose two changes ∆1 and ∆2 are propagated to the same node q along two different

paths: p → . . . → r1 → q (path1) and p → . . . → r2 → q (path2), respectively, where p is

the root change node (the addition or deletion of an edge ending at p) and r1 and r2 are the two

incoming neighbours of q. And suppose that there exits an object o such that o ∈ ∆1 and o /∈ ∆2.

For deletion, we can prove that there must exist a node w on path2 such that o is reachable

to w without going through p (otherwise, the deletion of o would have propagated to r2, which

contradicts with o /∈ ∆2). Due to transitivity, we have o ∈ pts(r2). Because r2 is an incoming

neighbour of p, o will not be removed from pts(p). In other words, any object o /∈ ∆1 ∩ ∆2 will

be preserved in pts(p). Therefore, the changes applied to pts(q) are always the same.
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Figure 3.4: An example of parallel change propagation. Reprinted with permission from [1].

For addition, we can prove that o must be contained in pts(q). The reason is that both ∆1 and

∆2 must be originated from the same root change ∆ and o must be in ∆. If o is not in ∆2, then

there must exist a node w on path2 such that o ∈ pts(w), and again due to transitivity, o ∈ pts(q).

In other words, any object o /∈ ∆1 ∩ ∆2 should be already included in pts(p). Therefore, the

changes applied to pts(q) are always the same.

Algorithm 4: ParallelPropagateDeleteChange(∆, y)
Input : ∆ - a set of changes

y - a node that ∆ propagates to
1 foreach z → y do
2 ∆ = ∆ \ (∆ ∩ pts(z))
3 if ∆ = ∅ then
4 return
5 end
6 end
7 pts(y)← (pts(y) \∆)
// all outgoing edges in parallel

8 Parallel foreach y → w do
9 ParallelPropagateDeleteChange(∆, w)

10 end
11 sync {WL}← CheckNewEdges(∆, y)

Based on Lemma 3, in each iteration of our incremental algorithm, we can parallelize the

change propagation along different paths with no conflicts (if atomic updates are used). More

specifically, we can propagate the points-to set change of a node along all its outgoing edges in
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Algorithm 5: ParallelPropagateAddChange(∆, y)
Input : ∆ - a set of changes

y - a node that ∆ propagates to
1 ∆ = ∆ \ (∆ ∩ pts(y))
2 if ∆ ̸= ∅ then
3 pts(y)← (pts(y) ∪∆)

// all outgoing edges in parallel

4 Parallel foreach y → w do
5 ParallelPropagateAddChange(∆, w)
6 end
7 sync {WL}← CheckNewEdges(∆, y)
8 end

parallel without worrying about the order of propagation. Moreover, because concurrent modifica-

tions to the same points-to set are always consistent, we do not even need synchronization among

them.

Algorithms 4 and 5 show our parallel incremental algorithms for deletion and insertion, respec-

tively. We propagate the points-to set change of a node along all its outgoing edges in parallel (see

line 8 in Algorithm 4 and line 4 in Algorithm 5). Our algorithm guarantees that a change can only

propagate through a node at most once, even though there might be multiple parallel propagation

paths reaching the same node. Figure 3.4 shows an example. Initially, pts(y) = pts(q) = {o1}

and pts(p) = pts(z) = pts(w) = {o1, o2}. After deleting the edge x → y, pts(y) is updated to

{o2}, and the change {o1} is then propagated from y to all the other nodes that y can reach ( i.e.,

p, q, z and w). Based on Algorithm 4, the change propagates along the two paths ( i.e., path1 and

path2) in parallel, and reaches a common node z. There are three possibilities to consider in this

process:

• The propagation along y → p completes faster than that along y → q. At this time, o1

has been removed from pts(p), and we are still checking the incoming neighbours of q,

where pts(q) = {o1}). Then, the propagation from path1 reaches z. Since q is an incoming

neighbour of z and o1 ∈ pts(q), pts(z) will not be changed and hence the propagation from
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path1 terminates at z. Later, when the propagation from path2 reaches z, because pts(q)

and pts(q) do not contain o1 anymore, o1 is finally removed from pts(z) and the change

propagates further to w from path2.

• The propagation along y → q completes faster than that along y → p. Opposite to the first

case, the change propagation from path2 terminates at z, and the change propagation from

path1 continues through z.

• The propagation along both paths reaches p and q at the same time. At this time, pts(p) =

{o2} and pts(q) = ∅. Both changes from p and q propagate to z. No matter which propaga-

tion reaches z first, o1 will be removed from pts(z). When the later propagation comes, no

change to pts(z) will be performed, since o1 has already been removed from pts(z). If both

of them reach z at the same time and both attempt to remove o1 concurrently, to minimize

the amount of the points-to set computation, we can synchronize the updates of pts(z), such

that only one of them can succeed and can continue the change propagation.

In summary, pts(z) needs to be updated once, regardless of the parallel propagation schedule.

In addition to the points-to set, the worklist (line 11 in Algorithm 4 and line 7 in Algorithm 5)

is synchronized, because different parallel tasks may concurrently add different new edges to the

worklist.

3.2.2.1 Synchronization-Free Implementation

In practice, we would like to avoid synchronizations as much as possible, since synchroniza-

tions on parallel processors are expensive. We propose a synchronization-free implementation of

the points-to set data structure. The limitation is that concurrent updates to the same points-to set

may all succeed, which may lead to redundant propagations. Nevertheless, since the chance is

very small for a change to propagate from multiple paths to the same node at the same time, this

optimization works well in practice.

Our implementation maintains an entry for each object o and supports three operations: conta

ins(o), add(o) and remove(o). In both add(o) and remove(o), a flag is returned to
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indicate whether the change was successful (if not, another thread has already done this). This flag

can then be used to prevent unnecessary further propagation from the thread that came second. We

next show why no synchronization is required for these points-to set operations.

Suppose two threads T1 and T2 concurrently execute Algorithm 4 or Algorithm 5, there are

only four possible conflicting scenarios and each scenario always produces a consistent result

regardless of synchronization or any atomicity requirement of the three operations:

1. In Algorithm 4, T1:contains(o) at line 2 on pts(r) and T2:remove(o) at line 7 on

pts(z). Consider the operation contains(o) by T1. With or without synchronization, it

always returns either true or false. If false, then o will be removed from pts(y) at line 7 by

T1. If true, o will not be removed from pts(y) by T1; however, o is removed from pts(z)

by T2 and because y is an outgoing neighbour of z the change will propagate to y. Finally,

o will be removed from pts(y) by T2 or by another thread.

2. In Algorithm 4, both T1:remove(o) and T2:remove(o) at line 7 on pts(y). The entry

for o in pts(y) will be set to 0 (meaning o is not included) by both T1 and T2, i.e., o will be

removed from pts(y).

3. In Algorithm 5, T1:contains(o) at line 1 on pts(y) and T2:add(o) at line 3 on pts(y).

The operation contains(o) by T1 may return either true or false. If false, then o will be

added to pts(y) at line 7 by T1. If true, o has already been added to pts(y) by T2.

4. In Algorithm 5, both T1:add(o) and T2:add(o) at line 3 on pts(y). The entry for o in

pts(y) will be set to 1 (meaning o is included) by both T1 and T2, i.e., o will be added to

pts(y).

3.3 End-to-End Incremental Pointer Analysis

In this section, we present IPA, an end-to-end incremental pointer analysis for real-world Java

programs based on our new incremental algorithms described in Section 3.2. The presented pointer

analysis is context-, path- and flow-insensitive.
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Algorithm 6: Incremental Pointer Analysis for Java
Input : ∆PIR

- a set of IR changes.
Deletions: D: -{d1,d2,...};
insertions: I: +{i1,i2,...}.

// for each deleted IR statement

1 foreach s ∈ D do
// extract edge(s) according to Table 3.1

2 e← ExtractEdge(s)
// call Algorithm 2 for each deleted edge

3 DeleteEdge(e)
4 end
// for each inserted IR statement

5 foreach s ∈ I do
// extract edge(s) according to Table 3.1

6 e← ExtractEdge(s)
// call Algorithm 3 for each added edge

7 AddEdge(e)
8 end

Table 3.1: Java statements and their corresponding pointer assignment edges. Reprinted with
permission from [1].

Statement Pointer Assignment Edges

❶ x = new T() o→ x
❷ x = y y → x
❸ x = y.f y.f → x & ∀o ∈ pts(y): o.f → x
❹ x.f = y y → x.f & ∀o ∈ pts(x): y → o.f
❺ x = y[i] y.∗ → x & ∀o ∈ pts(y): o.∗ → x
❻ x[i] = y y → x.∗ & ∀o ∈ pts(x): y → o.∗

❼ a = b.m(c)* c→ p & r → a

*(Suppose a and c are both reference variables and p is the formal
parameter and r the return variable of m).

Consider a programming environment where the developer has performed an initial commit

of her project, we compile the project, translate the Java bytecode to an SSA-based IR [158] and

use the IR to construct a PAG. Then, the developer commits a collection of program changes

∆Psrc . We recompile the project with ∆Psrc to obtain the updated IR, compare with the old IR to
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obtain the IR changes ∆PIR
, which contains multiple new IR statement insertions and/or old IR

statement deletions or modifications†. ∆PIR
can be divided into two disjoint sets: D - a set of old

IR statement deletions and I - a set of new IR statement insertions. In our implementation, we use

the Java Source Front End provided in WALA to translate the changed source file to Eclipse AST

and then to IR (which is very fast, typically within 10ms for a changed method). If the source file

is uncompilable, e.g., because of syntax error or missing dependencies, DPA will not run.

Algorithm 6 shows our end-to-end algorithm. For each IR statement, we first extract the cor-

responding edges in the PAG according to Table 3.1. In Java, there are seven types of statements

that must be analyzed for pointer analysis. Each statement corresponds to one or more edges in the

PAG:

❶ (allocate): an edge from an object node o to a pointer node x. o is identified by its allocate

site and has a type T .

❷ (simple assignment): an edge from a pointer node y to x.

❸ (field load): an edge from a pointer node y.f to x, and for each object o in pts(y), an edge

from o.f to x.

❹ (field store): an edge from a pointer node y to x.f , and for each object o in pts(x), an

edge from y to o.f .

❺ (array load): an edge from a pointer node y.∗ to x, and for each object o in pts(y), an

edge from o.∗ to x. For array load ❺ and store ❻, since we do not perform array index

analysis, different array elements are not distinguished but represented by a special constant

index “*”.

❻ (array store): an edge from a pointer node y to x.∗, and for each object o in pts(x), add

an edge from y to o.∗.
†A modification of existing IR statements can be treated as deletion of the old IR statements and insertion of the

new IR statements, and a large code chunk can be treated as a collection of small changes.
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❼ (method call): an edge from a pointer node c to the method m’s formal parameter node

p, and an edge from m’s return node r to a.

For statements ❶-❻, their treatments are the same as that in Andersen’s analysis (Table 2.1).

For method call ❼, for each o ∈ pts(b), if T.m (where T is the type of o) corresponds to a new

method, all statements in the method body are also analyzed. For most other types of statements

such as loops and branches, we can simply ignore them because our analysis is path- and flow-

insensitive. However, analyzing them may improve the precision of pointer analysis.

For each identified edge, we then call Algorithm 2 if it is deleted and Algorithm 3 if added, to

compute the new points-to information and update the PAG. To parallelize our algorithm, in each

iteration of Algorithms 2 and 3, we call Algorithms 4 and 5 to propagate the points-to set changes

in parallel. On a multicore machine, we can maintain a thread pool to perform the parallel tasks.

Dynamic Language Features As IPA analyzes code statically, it is difficult to handle dynamic

language features such as dynamic class loading and reflection in Java. This is a known challenging

problem in static analysis, and previous research has proposed a number of effective techniques

to help alleviate this problem, notably [159, 160, 161, 162]. In our implementation, we rely on

WALA’s existing support to deal with dynamic features. For example, WALA has a significant sup-

port for reflective constructs by using the concrete type of the receiver class in a context-sensitive

way [163].

3.4 Discussions

3.4.1 Adapting to Context-Sensitive, Flow-Sensitive and Other Problems

Heretofore, our incremental and parallel algorithm is field-sensitive, but context-insensitive

and flow-insensitive. Next, we discuss the potential to extend our algorithm to other dimensions in

pointer analysis and other research problems.

Context-Sensitivity We note that our incremental algorithms can also apply to context-sensitive

pointer analysis because the handling of edge insertions and deletions is orthogonal to the rep-
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resentation of context. In general, there are two types of techniques in context-sensitive pointer

analysis: k-CFA [43, 126, 164] and CFL-reachability [22, 48, 59, 78].

In a k-CFA pointer analysis, pointer variables uses k call strings from the call graph to distin-

guish contexts. When there is an incremental code change, we can follow Algorithms 2 and 3 to

perform the update for each edge with an additional criterion: we need to consider all the k call

strings of the changed node.

CFL-reachability pointer analysis also represents a program by a PAG, where includes load/s-

tore edges to indicate field accesses and entry/exit edges to indicate the calling context. We need

to discover a feasible path between an object node and a variable node with matching edge labels

in the PAG in order to compute its points-to set. Although the CFL-reachability paths are not

transitive closures, the transitive closure property may still be maintained by using a trace-based

incremental CFL-reachability algorithm [78]. The idea is that the computed feasible paths for

answering a points-to query can be cached as traces. In the cached traces, the transitive closure

property still holds. When a change occurs, we can check the path feasibility of the traces that

contain the changed node, and as long as the path is still feasible, we can apply Algorithms 2 and

3 along the cached traces to incrementally update the points-to results.

Besides, CFL-reachability pointer analysis always computes points-to sets in a demand-driven

way. For this case, we only need to update an edge with its labels in the PAG. Then, discover all

reachable paths containing the edge, and propagate the change along these paths if any answer of

variable on the paths has been cached.

Flow-Sensitivity Flow-sensitive pointer analysis is often a lot more expensive and complicated

than its flow-insensitive version. To determine a points-to set at a program point, a partial SSA rep-

resentation and control flow graph can be combined to infer points-to and def-use relations and to

avoid unnecessary propagation, which can also be represented by graphs [51, 52, 53]. Sometimes,

the analysis can be cast to a graph reachability problem [54].

When incremental changes are introduced to a program, we need to consider: (1) the introduced

control flow changes and its corresponding def-use changes, (2) a strong update or weak update on
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the affected points-to sets, and (3) interprocedural data flow changes. Since the points-to relation

and control flow are coupled in the graph when considering flow-sensitivity, a simple check and

propagation on local neighbours in the graph cannot guarantee a precise result.

A possible solution is to decouple the graph that encodes points-to and control flow as proposed

in IncA [26], in which points-to graph and control-flow graph are maintained separately. In this

case, a two-step update can be performed: first, update the def-use information according to the

control flow changes; second, update the points-to relation based on the new def-use and program

changes. Hence, our incremental algorithm can be modified to perform on a single graph in each

step. However, we note that IncA may loss precision because the construction of a precise control-

flow graph and a precise points-to analysis are typically recursively dependent on each other.

Other Research Problems Our incremental and parallel analysis can be adapted to work on

other research problems that require analyzing and updating information on dynamic graphs, as

long as the analyzed graph G = (V,E) satisfies the following properties:

• G is a directed graph, and SCC collapsing can be applied on G to obtain an acyclic graph,

with or without precision loss on the property of interest;

• Each node in V represents a set of elements, and each edge in E represents a constraint

which propagates the elements.

• The constraint satisfies the local neighbour properties presented in Section 3.2;

• The direction on an edge indicates the propagation direction;

• The propagation of elements on G can terminate.

For example, dynamic algorithms for directed graph reachability are used in motion planning to

search for the next move in the configuration space [165] and to identify collision-free paths [166].

Our algorithms may be applied there to improve efficiency.
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3.4.2 Scheduling of Changed Statements

Since multiple statement additions and deletions may happen at one time and sometimes an

addition can invalidate a deletion effect, the order of statement processing may affect the perfor-

mance of an end-to-end incremental pointer analysis. Some optimizations (e.g., scheduling of

updates [97]) can be performed to reduce such redundant work.

Our pointer analysis is built on SSA-based IR, where each variable and its corresponding

pointer node in a method are named by a unique value number (e.g., v1, v2, v3, ...) rather than

by its variable name (e.g., a, x, y, ...). After several statement additions and deletions, new value

numbers have been assigned to the variables in the updated code. Hence, it is difficult to identify

the correspondence between an added new statement and a deleted old statement: even though

they have the same value number, the number may represent different variables in the method.

Rather than performing a complex procedure to identify the correlations between each added and

deleted statements, we use a straightforward strategy as described in Algorithm 6, in which we

handle deletion followed by addition. Nevertheless, we note that this is only an engineering hur-

dle. With an optimization to find the correlations, we expect that the efficiency of our algorithm

can be further improved.

3.5 Evaluation

We implemented IPA in WALA [154], a popular static program analysis framework that sup-

ports a variety of pointer analyses. We modified the ZeroOneContainerCFA pointer analysis, which

uses a single InstanceKey for every allocation site. To compare with the existing classic algorithms,

we also implemented the reset-recompute and the reachability-based algorithms in the same frame-

work. These two algorithms are based on our prior work, ECHO [27], an IDE-based incremental

bug detection tool for detecting data races. To compare with the state-of-the-art tools, we also

performed an evaluation of REVISER‡ [24]. We evaluated IPA and REVISER on a collection

of 14 real-world large Java applications from DaCapo-9.12, as shown in Table 3.2. However, we

‡REVISER is available at https://github.com/secure-software-engineering/reviser
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note that this is not an apples-to-apples comparison because IPA implements an incremental pointer

analysis, while REVISER implements different incremental client analyses over a non-incremental

pointer and call-graph analysis. Moreover, REVISER is context- and flow-sensitive, while IPA is

not. In this section, we report the results of our experiments.

Evaluation Methodology For each benchmark, we run three sets of experiments. (1) We first

run the whole program exhaustive pointer analysis (i.e., the default ZeroOneContainerCFA) to

construct the PAG. Then, we initialize IPA with the PAG computed for the whole program in the

first step and continue to conduct two experiments with incremental code changes. (2) For each

statement in each method in the program, we delete the statement and run IPA. (3) For the deleted

statement in the previous step, we add it back and re-run IPA.

We run IPA with two configurations: with a single thread (IPA-1) to evaluate our basic incre-

mental algorithms only, and with a pool of 48 threads (IPA-48) to evaluate our parallel incremental

algorithms. We measure the time taken by each component in each step and compare the perfor-

mance between the exhaustive analysis and IPA. We repeat the same experiments for the reset-

recompute and the reachability-based algorithms to compare their performance with IPA. For the

evaluation of REVISER, we initially compute its data-flow analysis for the whole program and

obtain its points-to information using the default points-to analysis. Then, we repeat the same

experimental procedure. The whole program optimizations has been turned on during the entire

process. For this evaluation, the incremental performance we report includes both the time to

re-compute the call graph, and the time to incrementally update the ICFG and PAG.

In addition, we replace the default incremental pointer analysis algorithm in ECHO (which is a

hybrid implementation of reset-recompute and reachability-based) with IPA and compare the time

taken by the tool for detecting data races.

Since it is computational expensive to run the incremental analysis experiments (2) and (3) for

all statements in the benchmarks (which would take several months to years), in each configuration

we limit the total time for each benchmark to two hours. As a result, the performance numbers

correspond to those statements that are analyzed within two hours.
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Table 3.2: Benchmarks and the PAG metrics. Reprinted with permission from [1].

Benchmark #Class #Method #Pointer #Object #Edge

avrora 23K 238K 2M 33K 229M
batik 23K 60K 1.2M 31K 272M
eclipse 21K 36K 365K 7K 44M
fop 19K 68K 2M 42K 295M
h2 20K 69K 2M 32K 301M
jython 26K 79K 2M 53K 325M
luindex 20K 71K 1.8M 29K 299M
lusearch 20K 63K 1M 18K 185M
pmd 22K 42K 983K 25K 101M
sunflow 22K 73K 1.5M 32K 218M
tomcat 16K 36K 886K 23K 94M
tradebeans 14K 39K 674K 19K 99M
tradesoap 14K 38K 653K 20K 97M
xalan 21K 33K 576K 15K 138M

All experiments were performed on an HPC server with Dual 12-core Intel Xeon CPU E5-2695

v2 2.40GHz (2 threads per core) processors and 755GB of RAM. The JDK version was 1.8.

We set the maximum heap to 755GB to run all experiments. Since we want to emphasize

the performance improvement of our incremental and parallel pointer analysis over the exhaustive

analysis and other existing incremental sequential techniques, we do not provide an evaluation on

memory usage among IPA-1, IPA-48 and other techniques.

Benchmarks The metrics of the benchmarks and their PAGs are reported in Table 3.2. Columns

2-6 report the numbers of classes, methods, pointer nodes, object nodes and edges in the PAGs,

respectively. More than half of the benchmarks contain over 1M pointer nodes and over 200M

edges in the PAG. The default ZeroOneContainerCFA pointer analysis creates an object node for

every allocation site and has unlimited object-sensitivity for collection objects. For all benchmarks

certain JDK libraries such as java.awt.* and java.nio.* are excluded§ to ensure that the exhaustive

pointer analysis analysis can finish within 6 hours.

§This can be done by configuring the EclipseDefaultExclusions.txt file in WALA. Analyzing the entire program
including all those libraries in WALA typically takes a long time (>6h without finishing) or runs out of memory.
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Table 3.3: Performance of the incremental algorithms for handling deletion. Reprinted with per-
mission from [1].

Benchmark Full Reset-Recmpt Reachability REVISER IPA-1 IPA-48
Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst

avrora 4.8h 52s 30+min 76s 30+min 135s 230s 89ms 228s 27ms 10.5s
batik 4.1h 48s 22min 79s 30+min 351s 634s 95ms 51s 42ms 6.1s
eclipse 1h 14s 12min 20s 15min 120s 201s 65ms 21s 23ms 2.6s
fop 3.3h 31s 16min 38s 21min 110s 202s 110ms 172s 29ms 5.9s
h2 3.9h 37s 25min 82s 30+min 133s 236s 78ms 120s 24ms 9.4s
jython 3.2h 43s 17min 67s 30+min - - 96ms 480s 18ms 22s
luindex 2.9h 22s 10min 31s 12min 127s 234s 143ms 162s 31ms 7s
lusearch 2.5h 17s 7min 11s 8min 117s 218s 15ms 44s 9ms 2.8s
pmd 0.65h 14s 30+min 14s 30+min 240s 346s 67ms 27s 13ms 1.2s
sunflow 3.5h 47s 11min 61s 18min 221s 322s 66ms 90s 36ms 8s
tomcat 0.6h 9.8s 30+min 12s 30+min 115s 215s 64ms 19s 28ms 1.8s
tradebeans 0.75h 3.5s 7min 3s 9min 109s 223s 24ms 14s 11ms 0.8s
tradesoap 0.8h 4s 10min 5s 11min 112s 217s 31ms 18s 15ms 1s
xalan 0.47h 38s 30+min 14s 8min 104s 205s 12ms 13s 5ms 1.7s

Average 2.4h 26s 17+min 39s 22+min 153s 268s 73ms 66s 24ms 5.5s

Empirical correctness Besides the performance experiments, we also empirically validated the

correctness of our implementations of the incremental algorithms. We set up the tooling to also

compare the points-to results of different incremental and the exhaustive algorithms whenever

possible. More specifically, after each round of deletion and addition experiments for a statement,

we check if the points-to result remains the same as before. In addition, we cross validate the

correctness of the incremental algorithms by checking the updated points-to results after each

deletion. Because re-running the exhaustive analysis after every deletion is too time-consuming,

we have also checked for several outstanding deletions only (i.e., those special cases that take

≥1s to handle and cause changes in the points-to result) and confimred that all the compared

incremental algorithms compute the same points-to result as the exhaustive analysis.

3.5.1 Performance of Incremental Deletion

Table 3.3 compares the performance between the exhaustive pointer analysis (Full) and the

incremental algorithms for deletion. Overall, IPA achieves dramatic speedups over the other algo-
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rithms. On average, IPA is two to five orders of magnitude faster than the exhaustive algorithm

and two orders of magnitude faster than the other two existing incremental algorithms (i.e., reset-

recompute and reachability-based) and REVISER. For most benchmarks, the exhaustive analysis

takes several hours to compute (2.4h on average). For a deletion change, the reset-recompute algo-

rithm takes 26s on average, the reachability-based algorithm takes 39s, whereas IPA-1 takes only

73ms to analyze, which is at least 300X faster than the other algorithms. REVISER shows an

impressive performance (e.g., 153s for all cases on average and 268s for the worst cases), espe-

cially for the worst-case scenarios. However, it still two orders of magnitude slower than IPA-1.

REVISER did not perform a successful run on jython (indicated by “-" in Table 3.3 and 3.4), due

to an unrecognized Java type in the Jimple IR construction. Compared to IPA-1, IPA-48 further

improves performance by an order of magnitude. IPA-48 takes only 24ms on average, more than

three orders of magnitude faster than existing incremental algorithms.

The speedup is also significant for the worst case scenarios, where analyzing a certain deletion

change takes the longest time among all changes in each benchmark. In the worst case, reset-

recompute takes more than 17mins, reachability takes more than 22mins and REVISER needs

268s on average, while IPA-1 takes 66s and IPA-48 takes 5.5s only on average per deletion change,

achieving more than 200X speedup over existing algorithms.

The worst case scenarios are often hundreds to thousands of times slower than the average cases

in the two incremental algorithms from ECHO. For example, for Avrora, the exhaustive analysis

takes 4.8h, and the four incremental algorithms (reset-recompute, reachability-based, IPA-1 and

IPA-48) take 52s, 76s, 89ms and 27ms respectively per deletion on average. However, for the

slowest case, the four incremental algorithms take 30+mins, 30+mins, 228s and 10.5s respectively.

The reason is that there is often a small number of complex array load and store statements in each

benchmark, which involve a long chain of dependencies and a large points-to set. These statements

produce a large number of edge changes upon their deletions and incur long change propagation

paths. However, such special cases are very rare. As we will discuss in Section 3.5.3, for more

than 99.9% of the statements, IPA takes under 1s.
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Table 3.4: Performance of the incremental algorithms for handling addition. Reprinted with per-
mission from [1].

Benchmark Full REVISER IPA-1 IPA-48
Avg Worst Avg Worst Avg Worst

avrora 4.8h 134s 248s 0.99ms 1s 0.82ms 0.1s
batik 4.1h 225s 343s 0.86ms 0.8s 0.41ms 0.1s
eclipse 1h 116s 211s 0.74ms 0.4s 0.62ms 0.07s
fop 3.3h 104s 200s 1.33ms 5s 0.82ms 0.3s
h2 3.9h 132s 247s 0.18ms 17s 0.16ms 1.1s
jython 3.2h - - 0.49ms 12s 0.35ms 0.9s
luindex 2.9h 124s 245s 1.1ms 9s 0.88ms 1.7s
lusearch 2.5h 113s 217s 0.83ms 0.6s 0.42ms 0.2s
pmd 0.65h 229s 338s 0.61ms 0.2s 0.53ms 0.1s
sunflow 3.5h 216s 337s 0.87ms 7s 0.66ms 2.9s
tomcat 0.6h 113s 224s 0.32ms 0.3s 0.19ms 0.05s
tradebeans 0.75h 102s 211s 0.45ms 0.3s 0.37ms 0.1s
tradesoap 0.8h 107s 214s 0.62ms 0.3s 0.43ms 0.2s
xalan 0.47h 101s 209s 0.9ms 0.4s 0.5ms 0.13s

Average 2.4h 140s 250s 0.72ms 4.1s 0.51ms 0.6s

3.5.2 Performance of Incremental Addition

Table 3.4 compares the performance between the exhaustive pointer analysis and the incre-

mental algorithms for insertion. We note that the existing incremental approaches for handling

insertion are essentially the same: they follow the same basic procedure as the fixed-point based

on-the-fly pointer analysis algorithm (though IPA has small implementation optimizations). We

hence do not duplicate the numbers for these approaches because they are mostly the same as IPA.

For REVISER, it has similar performance as reported in Table 3.3 to handle incremental additions,

which is much slower than IPA.

Overall, handling addition is much faster than handling deletion. For all the benchmarks, IPA-1

takes only 1ms or less on average to analyze an insertion and 4.1s in the worst case, and IPA-48

further reduces the worst case to 0.6s. Compared to the exhaustive analysis that takes 2.4h on

average, IPA improves the performance by five orders of magnitude or more per insertion. For
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Table 3.5: Statistics of the special cases. M: #incoming neighbours of the root node after deleting
a statement. N: #updated points-to sets after the change. Reprinted with permission from [1].

Benchmark #Total M>1000 Avg time N>100 Avg time M*N>100K Avg time

avrora 220104 2785(1%) 437ms 419(2‰) 1.1s 62(0.3‰) 17.7s
batik 171126 1903(1%) 173ms 201(1‰) 1s 104(0.6‰) 10.7s
eclipse 259872 630(2‰) 5325ms 89(0.3‰) 2s 17(0.06‰) 11.6s
fop 87064 12(0.1‰) 391ms 2351(3%) 2.3s 91(1‰) 22s
h2 129628 1607(1%) 91ms 228(2‰) 1.1s 7(0.05‰) 9.3s
jython 862570 31(0.04‰) 234ms 218(0.3‰) 3.1s 9(0.01‰) 37s
luindex 71500 77(1‰) 302ms 194(3‰) 2.8s 11(0.2‰) 8.8s
lusearch 27306 23(1‰) 42ms 61(2‰) 0.9s 0 0
pmd 131101 2535(2%) 138ms 106(1‰) 13.8s 95(0.7‰) 4.9s
sunflow 37208 27(0.7‰) 102ms 30(0.8‰) 1.1s 0 0
tomcat 119438 2396(2%) 89ms 374(3‰) 2.8s 51(0.4‰) 7.8s
tradebeans 15832 40(3‰) 32ms 12(0.8‰) 4.2s 0 0
tradesoap 17988 45(3‰) 45ms 9(0.5‰) 5.4s 0 0
xalan 36654 590(1.6%) 21ms 140(4‰) 2s 0.4(1‰) 6.3s

instance, for Avrora, the exhaustive analysis takes 4.8h, whereas IPA-1 and IPA-48 take only 1s

and 0.1s respectively in the worst case. The performance results indicate that incremental algo-

rithms are fast enough for practical use in the programming phase with respect to incremental code

insertions (but not deletion).

3.5.3 Analysis of the Special Cases

The results in Tables 3.3 and 3.4 show that handling deletion is much slower than handling in-

sertion, and in a few cases a statement deletion can take over 20s for IPA to analyze. For example,

for Jython, both IPA-1 and IPA-48 takes less than 0.1s to analyze an insertion in the worst case,

whereas for deletion they take 480s and 22s, respectively. The reasons for such special cases are

twofold. First, the algorithm for handling deletion is inherently more complex than that for inser-

tion. For the slow cases, the in and out degrees of a change impacted node are typically very large

and the chain of dependent variables is long, which require checking a large number of incoming

neighbours and propagating the deletion changes to a large number of outgoing neighbours for

each node. Second, the underlying on-the-fly pointer analysis implementation provided in WALA
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is optimized for handling insertion but not for deletion, since the incremental insertion algorithm

follows the same flow as that of the exhaustive pointer analysis for each statement.

However, such special cases are very rare. Table 3.5 reports the number of special statements

in each benchmark of which the root node in the PAG corresponding to the deletion has M > 1000

incoming neighbours and of which the deletion requires updating N > 100 points-to sets, which

typically take IPA much longer to analyze than by the rest of the statments. Overall, the percentage

of such special statements over all statements in the program is very small. The maximum per-

centage of such cases in the benchmarks is only 3% (in Fop), and the percentage for the majority

of the benchmarks is under 1‰. And for M ∗N > 100K, the maximum percentage of such cases

is only 1‰. In other words, out of every one hundred statements only one of them can affect a

node with more than 1K incoming neighbours, and only three statements can affect more than 100

points-to sets. And only one of every one thousand statements can affect both affect more than

1K incoming neighbours and more than 100 points-to sets, which are expensive to analyze. The

majority of the worst cases in each benchmark belong to this small category. For the rest 99.9%

cases, they typically take IPA several milliseconds or at most 1s to process.

3.5.4 Application on Interactive Race Detection

We have also evaluated IPA for improving the performance of interactive race detection imple-

mented in ECHO [27]. The ECHO tool relies on incremental pointer analysis to detect data races

incrementally, in which pointer analysis is used to determine the thread shared objects and syn-

chronization locks. We run both the default ECHO (which uses a hybrid of reset-recompute and

the reachability-based algorithm for incremental pointer analysis) and the ECHO with IPA config-

ured with a pool of 48 threads (IPA-48) for all the 13 multithreaded applications in DaCapo-9.12

(except fop which is single-threaded).

The results are reported in Table 3.6. Column 2 (Full) reports the time taken by the one-

shot whole program race detection (i.e., with no incremental analysis). The whole-program race

detection takes from half an hour to seven hours to analyze a benchmark (e.g., 6.9h for Avrora

and Batik) and 2.8h on average. Columns 3-4 report the time taken by the original ECHO for a
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Table 3.6: Performance of incremental race detection. #Slow: statements that take the tool ≥1s.
Reprinted with permission from [1].

Benchmark Full ECHO ECHO+IPA-48
Insert Delete #Slow(‰) Insert Delete #Slow(‰)

avrora 6.9h 2123ms 54s 431(2‰) 2064ms 2.1s 72(0.3‰)
batik 6.9h 1313ms 49s 1762(10‰) 1272ms 1.3s 203(1.2‰)
eclipse 1.2h 341ms 14s 1204(5‰) 316ms 0.4s 62(0.2‰)
h2 4h 56ms 37s 315(4‰) 33ms 0.06s 9(0.1‰)
jython 3.3h 33ms 43s 613(5‰) 19ms 0.04s 7(0.1‰)
luindex 3h 25ms 22s 1280(2‰) 5ms 0.04s 37(0‰)
lusearch 2.6h 14ms 17s 82(1‰) 7ms 0.02s 5(0.1‰)
pmd 0.8h 50ms 14s 224(8‰) 42ms 0.05s 11(0.4‰)
sunflow 3.6h 21ms 47s 215(2‰) 1ms 0.04s 2(0‰)
tomcat 0.7h 29ms 10s 100(3‰) 6ms 0.03s 10(0.3‰)
tradebeans 0.8h 8ms 4s 137(1‰) 2ms 0.01s 0(0‰)
tradesoap 0.9h 10ms 4s 47(3‰) 1ms 0.02s 3(0.2‰)
xalan 0.5h 4ms 38s 76(4‰) 0.7ms 0.01s 0(0‰)

Average 2.8h 310ms 27s 4‰ 290ms 0.3s 0.2‰

statement insertion and deletion on average, respectively. The time for ECHO includes that taken

by the incremental algorithms for updating the PAG and for detecting races per change. With

incremental analysis, ECHO is much faster than the whole-program race detection. ECHO takes

under 0.3s to process a statement insertion and 27s to process a statement deletion on average, two

to three orders of magnitude faster than the whole-program race detection. Column 5 (#Slow(‰))

reports the number and the per mille of the slow statements, i.e., those statements that take the tool

at least 1s to analyze. For all benchmarks, 1-10‰ of the statements (4‰ on average) require more

than 1s by ECHO.

Columns 6-8 report the corresponding data for ECHO with IPA-48. The results show that

IPA significantly improves the performance of ECHO, especially for deletion. The original ECHO

takes 3s-54s to process each statement detection, whereas ECHO+IPA-48 takes only 0.01s-2s (0.3s

on average), which is 100X faster. Moreover, IPA significantly reduces the number of slow state-

ments. For all the benchmarks, the per mille of slow statements by ECHO+IPA-48 is under 1.2‰
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(0.2‰ on average), which reduces the number of slow statements by the original ECHO by 10X-

100X. In other words, with IPA, for 99.9% of the cases ECHO now takes less than 1s to analyze

an incremental statement change.

3.5.5 Discussion on Memory Usage

Because IPA stores the intermediate graphs in memory, for large programs it may require a

large memory to run continuously. In particular, in our current implementation we do not remove

the PAG and call graph nodes even if they have no incoming and outgoing edges after a state-

ment deletion (in order to improve performance in case the statement is added back later). In our

experiments, the largest memory consumption we observed was around 140GB. This may be too

excessive for laptops running IDEs, where memory resource is limited. To reduce memory us-

age, we can periodically clean those graph nodes. Alternatively, we can offload IPA and the client

analyses (e.g., data race detection) to remote servers [3] and integrate with a language-independent

IDE through the Language Server Protocol (LSP) [167]. We plan to implement IPA in the WALA

IDE [168] (which supports LSP) in future work.

3.6 Summary

We have presented the design and implementation of a new incremental pointer analysis, IPA,

which significantly improves the scalability of the state-of-the-art. Underpinned by fundamen-

tal properties of the on-the-fly Andersen-style pointer analysis, our new algorithms do not incur

redundant computations or require expensive graph reachability analysis, and it is parallel. We

have implemented our algorithms for Java and integrated our implementation into the open source

WALA framework. Our evaluation on a wide range of real-world large complex applications shows

that IPA improves the performance of existing algorithms by several orders of magnitude without

losing precision. We have also applied IPA for incremental data race detection and shown that IPA

significantly improves the performance of a state-of-the-art IDE-based race detector.
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4. SHARP: INCREMENTAL CONTEXT-SENSITIVE POINTER ANALYSIS *

We present SHARP, an incremental context-sensitive pointer analysis algorithm that scales to

real-world large complex Java programs and can also be efficiently parallelized. To our knowledge,

SHARP is the first algorithm to tackle context-sensitivity in the state-of-the-art incremental pointer

analysis (with regards to code modifications including both statement additions and deletions),

which applies to both k-CFA and k-obj. To achieve it, SHARP tackles several technical challenges:

soundness, redundant computations, and parallelism to improve scalability without losing preci-

sion. We conduct an extensive empirical evaluation of SHARP on large and popular Java projects

and their code commits, showing impressive performance improvement: our incremental algo-

rithm only requires on average 31s to handle a real-world code commit for k-CFA and k-obj, which

has comparable performance to the state-of-the-art incremental context-insensitive pointer analy-

sis. Our parallelization further improves the performance and enables SHARP to finish within 18s

per code commit on average on an eight-core machine.

4.1 Introduction

The previous chapter introduces a promising algorithm that computes the points-to results in-

crementally without losing precision. The key is to observe a change-locality property of Ander-

sen’s analysis [40]: the updates of points-to results upon a code change can be determined by the

local neighbors of the change in the pointer assignment graph (PAG) [42]. This allows develop-

ing a sound incremental pointer analysis that only recomputes the change impact by leveraging

the memoized intermediate analysis results, instead of re-running an exhaustive pointer analysis

for every code change. Their algorithm has scaled to large complex Java programs with aver-

aged response time under a second (per statement change), making it suitable to be applied in the

programming phase to detect sophisticated bugs such as data races.

*Reprinted with permission from "SHARP: Fast Incremental Context-Sensitive Pointer Analysis for Java" by
Bozhen Liu and Jeff Huang. Proceedings of the ACM on Programming Languages, Volume 6, Issue OOPSLA1,
Article No.: 88, pp 1–28, Copyright 2022 by Bozhen Liu.
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T1:
1  public void foo() {
2 A a1 = new A();//O1
3 B b1 = new B();//O2
4 a1.m1(b1);//S1 
5 }
T2:
6 public void bar() {
7 A a2 = new A();//O3
8 B b2 = new B();//O4
9 a2.m1(b2);//S2
10 }

−
+ +

②

①

③ ④

11 public class A {
12  public B f;

13  public void m1(B p1){
14 f = p1; 
15 if(...){
16 f = new B();//O5
17 }
18 m2(f);//S3
19 m3(p1);//S6 
20     ...
21   }

22 public void m2(B p2) {
23   m3(p2);//S4 ...
24   }

25 public void m3(B p3) {
26   m4(p3);//S5 ...
27   }

28  public void m4(B p4) {
29   x = p4; ...
30   } 
31 }

−

Figure 4.1: A Java example with four statement changes: ①-④. Reprinted with permission
from [2].

However, their incremental algorithm only applies to context-insensitive pointer analysis, and

hence can be imprecise for many applications. More importantly, it is unclear how to extend their

algorithm with context-sensitivity. To illustrate the problem, consider the example in Figure 4.1

involving two threads. Before the four highlighted changes (delete statement ①② and add state-

ment ③④), if we run an incremental static data race detector, D4 [3], it reports five warnings on

field f :

• lines (14,14);

• lines (14,15);

• lines (14,16);

• lines (15,15);

• lines (15,16).

Unfortunately, these are all false positives because D4 is based on context-insensitive pointer

analysis, which fails to distinguish the two instances of f from different call sites: o2 from S1 and

o4 from S2. The strength of D4 is that when the developer pushes code commits it can instantly

detect new races or invalidate old warnings. After the four code changes ①-④, D4 still reports one

false positive on lines (14,14).
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It would be highly desirable for developers to have a fast debugging tool that works incre-

mentally like D4 but with much higher precision, since false positives can significantly reduce

the debugging efficiency. To achieve a better precision, k-CFA [126] adopts a k-call-site-sensitive

algorithm with a context-sensitive heap during the on-the-fly call-graph (CG) construction [42].

However, k-CFA is known to be unscalable [81, 150]; this applies to other context-sensitive algo-

rithms such as k-object-sensitive [49] (denoted k-obj) and k-type-sensitive [46] (denoted k-type).

Our goal is to tackle the scalability challenge for context-sensitivity with an incremental algo-

rithm. We are facing the following technical challenges:

• How to incrementally compute points-to results with context-sensitivity?

• If one could come up with an incremental context-sensitive pointer analysis, how to guaran-

tee its soundness? The added and especially deleted pointers, objects, and method calls must

all be handled correctly together with their contexts.

• How to generalize the incremental algorithm for different types of contexts, i.e., k-CFA and

k-obj?

In this paper, we present SHARP, a novel incremental algorithm that addresses these challenges.

Towards pushing the performance boundary of context-sensitive pointer analysis, this work makes

several important contributions:

1. The first contribution is a new algorithm that enhances the existing incremental algorithms [1,

3] with context-sensitivity of k-CFA and k-obj. In particular, we discover the redundant com-

putation in the fixed-point-based pointer analysis when a deleted new statement or method

invocation destroys a sequence of method calls and contexts. We utilize two common proper-

ties in both contexts: inheritance and uniqueness, and leverage them to identify and remove

all invalid program elements in advance to avoid useless propagation of changes generated

by iteratively identified invalid method calls.
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2. The second contribution is a parallel algorithm that further scales the proposed incremental

algorithm by leveraging a third property, convergence. Besides, we study the incremental

impact on the PAG from real-world code commits, and discuss various parallel scenarios

from the perspective of efficiency, redundancy and conflict. Instead of pre-ordering multi-

ple changed statements [94, 97], our parallel algorithm minimizes conflict while avoiding

redundant computation.

3. The third contribution is an extensive evaluation of SHARP on real-world code commits.

We implemented an end-to-end incremental k-CFA and k-obj algorithm, and conducted an

empirical evaluation on a collection of popular and actively maintained Java projects on

GitHub, i.e., Hbase, Lucene, Yarn, Zookeeper. The evaluation shows similar efficiency and

scalability as the state-of-the-art context-insensitive incremental algorithm [1, 3]: SHARP

requires 31s on average to handle all the statement changes from a real-world git commit;

our parallel algorithm achieves on average 1.3x speedup over our incremental algorithm on

an eight-core machine.

4.2 Recall IPA

Section 3.2.1 introduces IPA in the form of algorithms, which we reform into the form of

inference rules to be consistent with the rules of SHARP. This section illustrates the inference rules

of IPA.

IPA takes statement changes as input and efficiently updates the change-affected part in the

PAG and CG. For each deleted statement, IPA extracts the pointer assignment edge(s) according

to Table 2.1 and follow the inference rules shown in Figure 4.2 to handle each deleted pointer as-

signment edge. The procedure of resolving incremental statement additions is similar but simpler,

so this section focuses on the illustration of how to handle incremental deletions.

DELETEPAGEDGE takes a deleted pointer assignment edge epag as input, remove this edge

from the PAG, and calls different rules according to the type of epag. The called rules (i.e., DELETE-

POINTSTO, DELETELOAD, DELETESTORE and DELETEINVOKE) take epag and a set of points-to
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DELETEPAGEDGE
epag ∈ Epag

Epag \ {epag}
if epag = o→ x ∨ y → x : DELETEPOINTSTO(epag, pts(y))

if epag = y x.f ∨ y x.∗ : DELETELOAD(epag, pts(y))

if epag = y.f x ∨ y.f x : DELETESTORE(epag, pts(x))

if epag = y
invoke g()

: DELETEINVOKE(epag, pts(y))

DELETEPOINTSTO
epag = o→ x ∨ y → x ∆

Epag \ {epag} CHECK(x,∆)

DELETELOAD
y.f x ∨ y.∗ x ∆

∀o ∈ ∆ :

FIELD : DELETEPOINTSTO(o.f → x, pts(o.f))

ARRAY : DELETEPOINTSTO(o.∗ → x, pts(o.f))

DELETESTORE
y x.f ∨ y x.∗ ∆

∀o ∈ ∆ :

{
FIELD : DELETEPOINTSTO(y → o.f, pts(y))

ARRAY : DELETEPOINTSTO(y → o.∗, pts(y))

DELETEINVOKE
y

invoke g()
∆

if deleted, Ecg \ {m′ ↣ m}

∀o ∈ ∆ :


m = dispatch(o, g),

DELETEPOINTSTO(y → thism, pts(y)),

DELETEPOINTSTO(ai → pi, pts(ai)),

DELETEPOINTSTO(rm → x, pts(rm))

PROPAGATE

CHECK
∆ ̸= ∅ y is a node that ∆ propagates to

∀u→ y ∈ Epag : ∆ = ∆ \ (∆ ∩ pts(u))
pts(y) = pts(y) \∆ ∆ ̸= ∅
∀y → v ∈ Epag : CHECK(v,∆)

∀epag = y.f w ∈ Epag : DELETELOAD(epag,∆)
∀epag = w y.f ∈ Epag : DELETESTORE(epag,∆)

∀epag = y
invoke g() ∈ Epag : DELETEINVOKE(epag,∆)

Figure 4.2: IPA: DELETEPAGEDGE: The inference rules of handling a deleted pointer assignment
or dynamic edge in the PAG = (Npag, Epag) and CG = (Ncg, Ecg).
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set changes ∆ as input, where ∆ is initialized by this rule.

DELETEPOINTSTO is applied to a pointer assignment edge epag, which removes the edge

from PAG and calls CHECK. The key insight of IPA is CHECK and PROPAGATE: the former rule

confirms the real change ∆ in pts(y) by checking the points-to sets along all the incoming edges

of y; while the later rule abstracts how to propagate ∆ along the outgoing edges of y. Both of the

rules guarantee the soundness and efficiency of IPA after any statement deletion.

For the three complex statements that introduce dynamic edges to the PAG, IPA has DELETELOAD,

DELETESTORE and DELETEINVOKE rules. Note that the dynamic edge is kept when a change is

propagated but no statement is deleted.

DELETELOAD is called on a deleted dynamic edge generated by a LOAD FIELD or LOAD

ARRAY statement: the dynamic edge (i.e., y.f x for FIELD or y.∗ x for ARRAY) and its

derived pointer assignment edges (i.e., o.f → x for FIELD or o.∗ → x for ARRAY) are deleted,

where o ∈ ∆ is removed from pts(y). If this rule is called by PROPAGATE, the dynamic edge

y x is kept in the PAG. However, o ∈ ∆ is no longer valid in pts(y) so that the derived pointer

assignment edges should be deleted.

Similarly, DELETESTORE is applied on a deleted dynamic edge from STORE FIELD or STORE

ARRAY statements, or propagating a change ∆ for such a dynamic edge from y to x.

DELETEINVOKE updates both PAG and CG. For a deleted dynamic edge generated by a IN-

VOKE statement, this rule requires the deletion of both the invalid calling edges m′ ↣ m from the

CG, as well as the introduced pointer assignment edges in the PAG. After the change propagation

from the deleted pointer assignment edges, all other program elements generated by the callee

method m() in the PAG and CG remain the same.

4.3 Scope and Limitations of IPA

Correct context is crucial while building PAG and CG for k-CFA and k-obj, which cannot be

randomly decided for a statement change. Except for context, there exist redundant computations

when applying IPA to context-sensitive algorithms. In this section, we firstly explain how IPA

works with an example, then illustrate the scope and limitation of IPA.
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o1.f o3.f

{o2} {o4}

{o2,o4}

{o2,o4}{o2,o4}

Delete②

(b)

{o2,o4}

{o2,o4}

{o2,o4}

x x
\

\

\

\

\

\

o2 o4

b1 b2

p1

o1.f o3.f

{o2} {o4}

{o2,o4}

{o2,o4}{o2,o4}

(c)

p2

p3

p4

x

{ }

{o2,o4}

{o2,o4}

{o2,o4}

③
④

Add③④

Change Propagation Path
Added PAG Edge

Existing PAG Edge
Removed PAG Edge x

Removed Object in PTS {o5}\
Added Object in PTS {o2}

Figure 4.3: The context-insensitive PAG changes for code changes ①②③④ in Figure 4.1.
Reprinted with permission from [2].

4.3.1 Illustration of IPA

We use the statement changes ①-④ in the code shown by Figure 4.1 to illustrate the rules of

IPA. As depicted in Figure 4.3, IPA handles statement deletions ①② at first, and then additions

③④.

• Delete ① f = new B(): IPA extracts the pointer assignment edges, calls DELETEPAGEDGE

and removes edges o5 → o1.f and o5 → o3.f . Then DELETEPOINTSTO is called with the

initialized change ∆ = {o5} . CHECK and PROPAGATE are performed on the removed

edges, sequentially.

Firstly, IPA applies CHECK rule to o1.f by checking whether any points-to set of PAG nodes

(i.e., p1) that point to o1.f contains o5. After finding out pts(p1) does not contain o5, IPA

confirms the change of pts(o1.f) is ∆ = {o5}, and removes ∆ from pts(o1.f). Next is

to apply PROPAGATE rule by propagating ∆ to p2. Then the CHECK and PROPAGATE are
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…

p4

x

{o2,o4}

{o2,o4} o4.e

ac
P1

P2

{o2,o4}{o2,o4}
o2.e

Iteration1 Iteration2

P3

P4

{o6}
y {o6}

{o6}

...

...bd
{o2,o4}{o2,o4}

④

Store[e]

Figure 4.4: The parallel propagation after adding statement x = p4. Reprinted with permission
from [2].

applied to p2, p3 and p4, successively.

Finally, the same procedure is applied to o3.f . IPA removes ∆ = {o5} from pts(o3.f) and

propagates to p2. However, o5 is already removed from pts(p2), so this propagation stops

here.

• Delete ② m2(f): According to DELETEINVOKE, IPA deletes the edges o1.f → p2 and

o3.f → p2 which represent the points-to relation between the actual and formal parameters

for the removed method call to m2(). Both deleted edges have the change initialized to ∆ =

{o2, o4}. Then IPA runs CHECK on p2 and finds out it has no incoming pointer assignment

edges. Hence, the change ∆ = {o2, o4} is confirmed and removed from pts(p2), and then

propagated to p3. Afterwards, the CHECK and PROPAGATE are applied on p3 and p4 in

order.

• Add ③ m3(p1): An edge p1 → p3 is added in Figure 4.3(c) for the parameter of method

m3(). This is based on the Andersen’s algorithm for INVOKE statements in Table 2.1.

Simpler than handling a deletion, IPA checks whether pts(p3) contains the change ∆ =

pts(p1) = {o2, o4}, adds ∆ to pts(p3) and propagates ∆ to p4.

• Add ④ x = p4: IPA adds the pointer assignment edge p4 → x by following the rule for

ASSIGN statement and propagates the change ∆ = pts(p4) = {o2, o4} to x .
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foo bar

m3,[S6,S1] m3,[S6,S2]

m4,[S5,S6]

m2,[S3,S1] m2,[S3,S2]

foo barfoo bar

m1,[S1] m1,[S2]
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m4,[S5,S4]

Delete② Add③

(c) (d) (e)

m2,[S3,S1] m2,[S3,S2]
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m4,[S5,S4]

m2
foo

m1 m3 m4
bar
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(b)

Delete②

Add③

x x

x x

xm2
foo

m1 m3 m4
bar

x

m1,[S1] m1,[S2] m1,[S1] m1,[S2]

x

Figure 4.5: The CG after each statement change in Figure 4.1. (a)(b) Context-insensitive CG. (c)-
(e) 2-CFA CG. Reprinted with permission from [2].

We use the PAG in Figure 4.4 to explain the workflow of PIPA. After adding statement ④, PIPA

confirms the change ∆ = {o2, o4} in pts(x) through CHECK and starts to propagate ∆ to all the

outgoing neighbours of x in parallel.

In the first iteration, PIPA applies PROPAGATE on all the outgoing points-to edges of x in

parallel, i.e., the propagation along paths P1 and P2 are parallelized. Afterwards, each iteration

propagates along one dynamic edge for complex statements. The second iteration handles y

x.e introduced by statement x.e = y. PIPA creates two new pointer assignment edges, y → o2.e

and y → o4.e due to the points-to set change in x. Then the change ∆ = pts(y) = {o6} is

propagated along P3 and P4 in parallel.

4.3.2 Scope and Limitations

More Computation for Method Call Changes. For a deleted/added method call statement in

method m, we need to handle the change for multiple CG nodes of m but with different con-

texts. Moreover, this introduces more invalid/newly added CG nodes when contexts are consid-

ered, which involves more points-to constraints. Hence, handling a method call change requires

more computation in context-sensitive algorithms than the one in IPA.

For example, replacing ② by ③ is simple for the context-insensitive CG as shown in Fig-

ure 4.5(a)(b) according to IPA: for the deletion of ②, the call edges m1 ↣ m2 ↣ m3 are removed.
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Figure 4.6: The 2-CFA PAG after each statement change in Figure 4.1. Reprinted with permission
from [2].

Now m3 has no caller, so nodes m3, m4 and their connected edge become invalid which should

be removed. Nevertheless, IPA keeps them in case that a future change (adding ③) will add them

back. So do the pointers and edges created by m3 and m4 in the PAG. This reuse trick is only valid

in context-insensitive algorithm, because multiple calls share the same target method. In summary,

only one node is removed from CG for a method call replacement.

However, for 2-CFA, deleting ② causes four nodes removed from its CG as shown in Fig-

ure 4.5(d), and adding ③ creates three new nodes in Figure 4.5(e). Here, the reuse trick cannot

be adopted, because the deleted contexts can never be retrieved by later changes, unless the previ-

ous deletion of ② is withdrawn. In total, seven nodes are changed, not to mention the consequent

update in the 2-CFA PAG.

Context-sensitive algorithms require extra computation to create/delete nodes, constraints with

the incremental rules in order to guarantee the correctness. Therefore, we need an efficient algo-

rithm to update PAG and CG together for a method call statement.

Redundant Computation for Deletion. For k-CFA, a deleted method call statement may in-

troduce multiple invalid call sites that will be gradually discovered in the iterative computation

between PAG and CG. If applying CHECK and PROPAGATE directly, it conducts redundant change

propagation to the pointers that later will be identified as invalid, because their contexts contain

newly discovered, invalid call sites.
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Consider the deletion ② in Figure 4.5(c)(d), which makes S3 an invalid call site. As a result,

methods ⟨m2, [S3, S1]⟩ and ⟨m2, [S3, S2]⟩ are invalid and removed. Then their parameter con-

straints are solved as shown in Figure 4.6(b): IPA resets pts(⟨p2, [S3, S1]⟩) and pts(⟨p2, [S3, S2]⟩)

and propagates the changes {o2, o5S1} and {o4, o5S2}, respectively. pts(⟨p3, [S4, S3]⟩) and pts(⟨p4,

[S5, S4]⟩) are updated twice, each for one change as shown in Figure 4.6(b) (the first time is up-

dated by the blue path, and the second time is updated by the maroon path). Later, IPA deletes

the statements enclosed in the two removed methods, which removes CG edges ⟨m2, [S3, S1]⟩↣

⟨m3, [S4, S3]⟩ and ⟨m2, [S3, S2]⟩↣ ⟨m3, [S4, S3]⟩. Now, S4 is discovered to be invalid, which

indicates the previous change propagations are redundant. A more efficient way is to simply empty

their points-to sets instead of running the CHECK and PROPAGATE rules.

The same scenario exists in k-obj when deleting a new statement. To avoid such redundancy,

we must discover all the invalid graph elements (i.e., methods, contexts, pointers and objects) right

after the deletion of a method call or new statement and before the propagation of points-to set

changes.

More Parallelization The parallel algorithm of PIPA leaves plenty of room for improvement.

For example, can the changes be propagated along all the paths in Figure 4.4, e.g., P1 - P4, in

parallel? Can multiple statement changes be handled in parallel? If possible, can the multiple

statements come from one method or different methods? Is there any conflict or redundancy while

updating points-to sets during the propagation? Moreover, is it possible to add more parallelization

for incremental context-sensitive algorithms?

4.4 SHARP

We now introduce, SHARP, our new incremental algorithm designed for k-CFA and k-obj. Here,

we focus on how to efficiently handle statement deletions, which is challenging for incremental

analyses [1, 27, 97]. Handling additions is then straightforward.

Definitions A precise pointer analysis requires iterative computation between PAG and CG, in

order to achieve a precise result. This introduces more computation workload when considering
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⟨m, [𝑐1, 𝑐2, ...𝑐𝑘 ]⟩

y.m() y = new T()k-CFA

public void m’() {
y = new T();//O
y.m();//S
…

}

public void m() {
T p = new T();//O’
…

}

⟨p, [𝑐1, 𝑐2, ...𝑐𝑘 ]⟩
⟨o’, [𝑐1, 𝑐2, ...𝑐𝑘 ]⟩

Context-Element Invoke-Assistant

y = new T() y.m()k-obj

(a) (b)

CG Node:
PAG Nodes:

Figure 4.7: How NEW and INVOKE determine the CG and PAG for k-CFA and k-obj, respectively.
(a) An example code. (b) The Context-Element and Invoke-Assistant Statements for k-CFA and
k-obj, and how they affect the CG and PAG. Reprinted with permission from [2].

contexts. For Java programs, there are three facts that determine a context-sensitive CG node: (1)

an INVOKE statement, (2) the abstract heap object that the base variable of the invocation may

point to and (3) context.

A context C is composed of a sequence of context elements c, i.e., C = [c1, c2, ...ci, ...]. In

practice, to improve the scalability of context-sensitive pointer analysis, the length of context ele-

ments is bounded by a small constant k (i.e., k-limiting). The most recent k context elements form

the context at a method call.

A specific type of statement defines the context elements for a particular context-sensitive al-

gorithm as shown in Figure 4.7: an INVOKE statement defines a call site S as the context element

of k-CFA, and a NEW statement defines an abstract heap allocation site O as the one of k-obj. We

define this specific type of statement the Context-Element Statement (denoted SCTX).

Except for the SCTX, there is another type of statements determines the callee methods. k-CFA

requires INVOKE to define its contexts and the assistance of NEW to determine the dispatch of

method invocation statements. For k-obj, it requires NEW to define its contexts and the assistance

of INVOKE to determine the dispatched target. We define this assistance statements the Invoke-

Assistant Statement (denoted SINV).

In this paper, we overload the ∈ operator to more than set operations, for example: s ∈ {NEW}

(statement s is a NEW statement), SCTX ∈ m (statement SCTX is from its enclosing method m),
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c ∈ C (context element c is an element of context C).

Definition 4.4.1 (Context-Element Statement)

SCTX = (s ∈ {INVOKE} ∧ k-CFA) ∨ (s ∈ {NEW} ∧ k-obj)

Definition 4.4.2 (Invoke-Assistant Statement)

SINV = (s ∈ {NEW} ∧ k-CFA) ∨ (s ∈ {INVOKE} ∧ k-obj)

To be specific, as shown in Figure 4.7(b), SCTX refers to INVOKE statements and SINV refers

to NEW statements for k-CFA. While it is the opposite for k-obj: SCTX refers to NEW and SINV

refers to INVOKE. No matter which context is selected in pointer analysis, both NEW and INVOKE

statements determine a CG node, which further defines a set of PAG nodes. Hence, we need to

carefully handle the deletion of NEW and INVOKE statements if we want to efficiently identify

invalid graph elements.

Properties We leverage two properties in context-sensitive CG:

• INHERITANCE: a caller node ⟨m′, [c1, c2, ...ck]⟩ must share the first (k − 1) context ele-

ments (i.e., call site s in k-CFA and object allocation site o in k-obj) with its callee node

⟨m, [c, c1, ...ck−1]⟩.

• UNIQUENESS: one SCTX describes its unique context element c, and defines a set of unique

contexts C where c ∈ C. C then defines a unique CG node ⟨m,C⟩ together with method m,

and a unique set of pointer nodes ⟨y, C⟩, object nodes ⟨o, C⟩ and edges in PAG.

According to INHERITANCE, if c becomes invalid, all the nodes in CG with c ∈ C become

invalid, too. Due to UNIQUENESS, we can retrieve a set of nodes in CG and PAG that are derived

from c. These two properties guide SHARP to immediately identify the invalid node(s) in CG

and PAG introduced by a deleted statement, which avoids the redundant computation to gradually

identify invalid elements.
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PREDEL
s ∈ {NEW, INVOKE}{

if(s ∈ {INVOKE} ∧ k-CFA) ∨ (s ∈ {NEW} ∧ k-obj) : SCTX-RULE(s)

if(s ∈ {NEW} ∧ k-CFA) ∨ (s ∈ {INVOKE} ∧ k-obj) : SINV-RULE(s)

SCTX-RULE

{
k-CFA : s ∈ {INVOKE}
k-obj : s ∈ {NEW}

s⇒ c s ∈ m′ C ′ ∈ context(m′)

∀c ∈ C :

{
⟨m,C⟩ ∈N−

cg

ecg = · · ·↣ ⟨m,C⟩ : Ecg \ {ecg}, ecg ∈E−
cg

∀⟨m′, C ′⟩ /∈N−
cg: [s, ⟨m′, C ′⟩] ∈N∗

cg

∀ecg = ⟨f, [. . . , c′, c]⟩↣ ⟨h, [. . . , c′]⟩ ∈ Ecg : CHECKVALIDITY(ecg)

SINV-RULE

{
k-CFA : s ∈ {NEW} ↪→ y = new C()

k-obj : s ∈ {INVOKE} ↪→ x = y.g(. . . , ai, . . . )

s ∈ m′ C ′ ∈ context(m′)

∃epag = y
invoke g()

[k-CFA] : epag ⇒ s′ ∈ {INVOKE} [k-obj] : s′ = s
∀o ∈ pts(y) : m = dispatch(o, g)

C ∈ context(m) ⟨m,C⟩ /∈N−
cg ecg = ⟨m′, C ′⟩↣ ⟨m,C⟩

[s′, ⟨m′, C ′⟩] ∈N∗
cg

[k-CFA] : [s, ⟨m′, C ′⟩] ∈N∗
cg [k-obj] : Ecg \ {ecg}, ecg ∈E−

cg

CHECKVALIDITY
ecg = n′

cg ↣ ncg ecg ⇒ s ∈ {INVOKE}{
if ∃n′′

cg ↣ ncg ∈ Ecg ∧ n′′
cg ̸= n′

cg : [s, n′
cg] ∈N∗

cg

otherwise ncg ∈N−
cg Ecg \ {ecg} ecg ∈E−

cg

CHECKNEWSCTX
e−cg = n′

cg ↣ ncg ∈E−
cg ncg = ⟨f, C⟩

∀s ∈ f :

{
k-CFA : s ∈ {INVOKE} : SCTX-RULE(s)

k-obj : s ∈ {NEW} : SCTX-RULE(s)

CHECKNEWSINV

∀s ∈ n−
cg ∈N−

cg

{
k-CFA : s ∈ {NEW}
k-obj : s ∈ {INVOKE}

SINV-RULE(s)

Figure 4.8: SHARP: PREDEL: The inference rules to precompute the impact on CG = (Ncg, Ecg)
after deleting SCTX and SINV from their enclosing method m′ with context C ′. Reprinted with
permission from [2].
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4.4.1 Precompute for Deletion

The inference rules to precompute the impact on CG from a deleted SCTX and SINV are shown

in Figure 4.8: N−
cg and E−

cg represent two sets of CG nodes and edges that are no longer valid due

to the deletion, and N∗
cg represents all points-to constraints originated from a statement should be

deleted from its enclosing CG node. We overload the ⇒ operator to more operations: s ⇒ c

means s determines a context element c, and ecg ⇒ s means ecg is introduced by statement s. The

red square brackets ([]) means that the premises or conclusions are limited to the specific context-

sensitive algorithm indicated by the brackets. Next, we illustrate how the rules work for k-CFA and

k-obj, respectively.

4.4.1.1 k-CFA

PREDEL identifies the type of input statement s and selects the correct precompute rules (i.e.,

SCTX-RULE or SINV-RULE) for different contexts (i.e., k-CFA or k-obj).

SCTX-Rule is applied when an INVOKE statement s has been removed from its enclosing

method m′. SCTX determines a context element c (i.e., call site). context(m′) maintains a set

of the contexts that have arisen at call sites of each method m′. According to the two properties,

we conclude that N−
cg captures all the invalid CG nodes ⟨m,C⟩ introduced by the invalid context

element c (i.e., c ∈ C). Then we delete all incoming CG edges of those invalid CG nodes from

Ecg, and add them to E−
cg. Besides, all points-to constraints generated by s should be deleted from

its enclosing CG node ⟨m′, C ′⟩, which we store it in N∗
cg and handle them all at the end. To avoid

redundant propagation and guarantee soundness for such deletions, we apply CHECKVALIDITY

rule to each CG edge of which caller has c as the last context element.

SINV-Rule takes a deleted NEW statement s from method m′ as the input, where s is of shape

y = new C() (denoted by ↪→). According to the rule DELETEPOINTSTO, the object node

originally created by s becomes invalid and should be removed from pts(y), which may further

introduce more invalid points-to constraints if there exists an INVOKE statement s′ using y as the

base variable. To guarantee the correctness, we collect the dynamic edges y
invoke g()

introduced
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by such s′ statements. Then we check whether its dispatched callee CG node ⟨m,C⟩ is valid (i.e.,

/∈ N−
cg). If so, we add s′ with ⟨m′, C ′⟩ to N∗

cg in order to remove its points-to constraints. Here, we

keep the call edge ecg because statement s′ still exist in the program.

CHECKVALIDITY checks whether a callee node ncg from the input CG edge ecg is still valid,

where ecg is introduced by an INVOKE statement s. ncg is still valid when there exists any other CG

edge that points to ncg (except for ecg). Only the points-to constraints introduced by ecg is invalid

and should be deleted, so that we store s with its enclosing CG node n′
cg to N∗

cg. Otherwise, ncg

and ecg are invalid.

After applying all the above three rules to a deleted NEW or INVOKE statement, we apply

CHECKNEWSCTX and CHECKNEWSINV to the newly concluded E−
cg and N−

cg in order to further

collect invalid context elements and points-to constraints.

CHECKNEWSCTX goes through each invalid CG edges e−cg ∈ E−
cg, and collect the INVOKE

statement s from the destination node (i.e., ncg). This s introduces invalid CG edge(s) that should

not be reached in the current program. If so, s also introduces a new invalid context element for

k-CFA. To further discover invalid graph elements, we apply SCTX-RULE to s.

CHECKNEWSINV is called after running the above four rules and reaching a fixed point. This

rule discovers the invalid object nodes introduced by NEW statements from N−
cg: they should be

treated as statement deletions and SINV-RULE should be applied to them.

4.4.1.2 k-Obj

This section introduces the differences when applying the rules in Figure 4.8 to k-obj.

SCTX-Rule applies when deleting a NEW statement, where c as a deleted allocation site be-

comes invalid. Similarly, we confirm the invalid elements introduced by c: CG nodes ⟨m,C⟩ and

their incoming CG edges. Meanwhile, the introduced constraints by s should be deleted from its

enclosing CG node by adding them to N∗
cg. Finally, we check the validity of the callee nodes of

which c is the last context element.

SINV-Rule is called to handle a deleted INVOKE statement s in method m′, where s is of shape

x = y.g(. . ., ai, . . .). There are two differences from the rule applied to k-CFA: (1) s and
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DELETESTMT
s{

ifs ∈ {ASSIGN, LOAD, STORE} : PAGONLY(s)

ifs ∈ {NEW, INVOKE} : PAGANDCG(s)

PAGONLY
s ∈ {ASSIGN, LOAD, STORE} C ∈ context(m) Epag = extract(s, C)

∀epag ∈ Epag : DELETEPAGEDGE(epag)

PAGANDCG
s ∈ {NEW, INVOKE}
N∗

cg, N
−
cg = PREDEL(s)

∀n−
cg ∈N−

cg: DELETECGNODE(n−
cg)

∀[s∗, n∗
cg] ∈N∗

cg: DELETECONSTRAINT(s∗, n∗
cg)

DELETECGNODE
n−
cg = ⟨m,C⟩ ∀s ∈ m : E−pag = E−pag ∪ extract(s, C)

Ncg \ {n−
cg} Epag \ E−pag

∀e−pag ∈ E−pag : PROPAGATEORRESET(e−pag, E−pag)

PROPAGATEORRESET
e−pag = v → y ∨ v y ∈ E−pag

∀epag = y → a ∨ y a ∨ v → a ∨ v a :
if epag /∈ E−pag ∧ epag ∈ Epag : DELETEPAGEDGE(epag)

Npag = Npag \ {v, y}

DELETECONSTRAINT
s∗ ∈ m n∗

cg = ⟨m,C⟩ E∗pag = extract(s∗, C)

∀e∗pag ∈ E∗pag : DELETEPAGEDGE(e∗pag)

Figure 4.9: SHARP: DELETESTMT: The inference rules for a deleted statement s in method m
under k-CFA and k-obj. Reprinted with permission from [2].

s′ are the same INVOKE statement which introduce the dynamic edge; (2) we delete the introduced

call edge ecg since the call relation is no longer available after this deletion.

CHECKVALIDITY has no difference comparing with the one applying for k-CFA. Afterwards,

we call the rules CHECKNEWSCTX and CHECKNEWSINV.

CHECKNEWSCTX tries to find a NEW statement s from method f , which instead introduces a

new invalid context element (i.e., allocation site). Similarly, this allocation site from s is unreach-

able in the program for k-obj, and we apply SCTX-RULE to s.
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CHECKNEWSINV finds the invalid calls introduced by INVOKE statements from N−
cg and

SINV-RULE should be applied to them.

Finally, after applying all the above rules, N∗
cg and N−

cg include all invalid points-to constraints

and CG nodes. Instead of iteratively discover invalid program elements, we utilize the properties

to precompute all of them without conducting any change propagation.

4.4.2 Formulations for Deletion

Figure 4.9 shows the inference rules to incrementally update the PAG and CG for a deleted

statement s when considering contexts.

DELETESTMT takes an deleted statement s as input, and matches the type of s with the two

rules PAGONLY and PAGANDCG.

PAGONLY handles a deleted statement of type ASSIGN, LOAD and STORE. Because they

only introduce changes in the PAG before we perform any change propagation. extract(s, C) is

a function to extract pointer assignment edges for a statement s under context C according to

Table 2.1.

PAGANDCG is designed to handle deletions of type NEW and INVOKE by utilizing the impact

on CG precomputed by the rules in Figure 4.8. Note that we firstly apply DELETECGNODE to

each invalid CG node n−
cg ∈ N−

cg, then we handle the constraint deletions from [s∗, n∗
cg] ∈ N∗

cg by

DELETECONSTRAINT.

DELETECGNODE is straightforward: it removes the input CG Node n−
cg and extracts the

pointer assignment edges (E−pag) generated by its enclosing statements under the context C. Then

we call PROPAGATEORRESET to propagate necessary points-to set changes. For the incoming and

outgoing CG edges of n−
cg, they should be already removed from CG after running SCTX-Rule and

SINV-Rule.

PROPAGATEORRESET is designed to avoid redundant change propagation when deleting the

pointer assignment edges created from invalid CG nodes. If the two nodes v and y connected

by an invalid edge e−pag have any outgoing pointer assignment edges epag that are still valid (i.e.,

/∈ E−pag∧ ∈ Epag), we apply DELETEPAGEDGE to those edges to propagate the changes pts(v) or
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pts(y). Finally, we simply remove v and y from PAG.

DELETECONSTRAINT extracts the pointer assignment edges introduced by statement s∗ from

method m under context C. All the extracted pointer assignment edges E∗pag should be removed,

and we apply the rules in Table 2.1to each e∗pag according to its type.

4.4.3 Illustration of SHARP

We use the two deletions ① and ② in Figure 4.1 to illustrate the inference rules in Figure 4.8

and 4.9 when applying them for 2-CFA.

• Delete ① f = new B(): Because the deleted statement is of type NEW with the context

2-CFA, DELETESTMT concludes that PAGANDCG should be used and calls PREDEL. Then

PREDEL determines SINV-RULE is the correct precompute rule.

SINV-RULE firstly collects all method calls invoked by the object field variable f under its

possible contexts, i.e., calls using the base objects ⟨o5, [S1]⟩ (from pts(o1.f)) and ⟨o5, [S2]⟩

(from pts(o3.f)) as shown in Figure 4.6(a). Since there is no such call in the PAG, the con-

cluded N−
cg and E−

cg are empty, which means no need to use the rules of CHECKNEWSCTX

and CHECKNEWSINV and hence no updated in the CG. We add two mappings to N∗
cg: the

deleted statement with its two enclosing CG nodes, i.e., [①, ⟨m1, [S1]⟩] and [①, ⟨m1, [S2]⟩].

Continuing with PAGANDCG, we skip DELETECGNODE because of the empty return value

N−
cg. Then DELETECONSTRAINT is applied to N∗

cg: we extract the two pointer assignment

edges, ⟨o5, [S1]⟩ → ⟨o1.f⟩ and ⟨o5, [S2]⟩ → ⟨o3.f⟩, and perform DeletePAGEdge on the

extracted edges as shown in Table 2.1.

• Delete ② m2(f): SCTX-RULE is used here for an deleted INVOKE statement. As shown in

Figure 4.1, ② determines the context element S3 in its enclosing method m1 (i.e., s ⇒ S3

and s ∈ m1). Hence, we can conclude that all the CG nodes with S3 as its context element

are invalid, i.e., ⟨m2, [S3, S1]⟩, ⟨m2, [S3, S2]⟩ and ⟨m3, [S4, S3]⟩ should be included in
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N−
cg. As shown by Figure 4.5(d), all the CG edges that point to the nodes in N−

cg are also

invalid, which are excluded from CG and included into E−
cg. To guarantee the soundness,

[②, ⟨m1, [S1]⟩] and [②, ⟨m1, [S2]⟩] are added to N∗
cg.

Afterwards, we apply the rule CHECKVALIDITY to any CG edge that has S3 as the last

context element in its caller node, i.e., ⟨m3, [S4, S3]⟩ ↣ ⟨m4, [S5, S4]⟩. Since there is no

other valid CG edge pointing to ⟨m4, [S5, S4]⟩, this node should be included to N−
cg and the

checked call edge is removed from CG and added to E−
cg.

Then CHECKNEWSCTX and CHECKNEWSINV are used on E−
cg and N−

cg, respectively. CHECK-

NEWSCTX collects all INVOKE statements in the callee node of a call edge in E−
cg (i.e.,

here the callee nodes are ⟨m2, [S3, S1]⟩, ⟨m2, [S3, S2]⟩, ⟨m3, [S4, S3]⟩ and ⟨m4, [S5, S4]⟩,

which are the same as N−
cg) and applies SCTX-RULE to them. CHECKNEWSINV collects all

New statements enclosed in the nodes from N−
cg and applies SINV-RULE to them. After this

round of running SCTX-RULE and SINV-RULE, we found out there is no newly concluded

E−
cg and N−

cg, and exit PREDEL.

After returning to PAGANDCG, we apply DELETECGNODE to N−
cg by extracting the pointer

assignment edges (i.e., ⟨p2, [S3, S1]⟩ → ⟨p3, [S4, S3]⟩, ⟨p2, [S3, S2]⟩ → ⟨p3, [S4, S3]⟩ and

⟨p3, [S4, S3]⟩ → ⟨p4, [S5, S4]⟩) introduced by statements in N−
cg and applying PROPAGATE-

ORRESET to them. PROPAGATEORRESET resets the points-to sets of all the pointers from

the extracted pointer assignment edges, since the pointers are all invalid.

Finally, we perform DELETECONSTRAINT for the pointer assignment edges (i.e., o1.f →

⟨p2, [S3, S1]⟩ and o1.f → ⟨p2, [S3, S2]⟩) introduced by N∗
cg.

4.4.4 Handling Addition

Handling additions of SCTX and SINV are different from handling their deletions, because we

know that all the elements exist in the graphs before any deletion. But an addition creates new

elements from none. We cannot precompute all the descendant callee methods with new contexts
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before confirming their existences by analyzing the pointers of their base variables after the propa-

gation of change in the PAG. Hence, we follow the on-the-fly pointer analysis to iteratively update

changes for both graphs.

Algorithm 7: The End-to-End SHARP.
Input : commit - a new git commit hash.
GlobalState: Prog - the analyzed program,

CG - the call graph,
PAG - the pointer assignment graph,
prevCommit - the first parent of commit.

1 GitCheckOut(commit) // run git checkout to obtain this commit

2 Build(Prog) // rebuild the program with the new code change from

commit

3 D ← ∅, A← ∅ // initialize

4 ⟨java−, java+, java∗⟩ ← GitDiff(prevCommit, commit)
5 foreach f ∈ java∗ do
6 {method∗} ← GetEnclosingMethods(f )
7 foreach m∗ ∈ {method∗} do
8 ⟨{stmt−}, {stmt+}⟩ ← CompareIRDiff(m∗) // compare new and old IRs

9 D = D ∪ {stmt−}
10 A = A ∪ {stmt+}
11 end
12 end
13 foreach s− ∈ D do
14 DELETESTMT(s−) // handle deletions according to Figure 4.9

15 end
16 foreach s+ ∈ A do
17 ADDSTMT(s+) // handle additions according to Table 2.1

18 end
19 prevCommit← commit

4.4.5 The End-to-End Algorithm

This section introduces the end-to-end algorithm of SHARP after running the initial pointer

analysis for the whole program. Algorithm 7 takes each code commit as an input to compute the

impact on the PAG and CG from the code changes.
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We firstly do git checkout for the new commit hash commit and rebuild the project. We

also initialize two empty sets, D and A, to record all the deleted and added statements from

this commit, separately. Then we utilize the git diff to obtain a set of files java∗ with code

modifications (marked by GitHub with DiffEntry.ChangeType.MODIFY). Here, we do

not consider the set of added and deleted java files, java+ and java− (marked by GitHub with

DiffEntry.ChangeType.ADD and DiffEntry.ChangeType.DELETE), because they

might not be reachable from the analyzed main method. However, we will not miss any new code

or over-consider deleted code introduced by the code commit. Because our algorithm is an on-the-

fly algorithm: by starting from the modified methods introduced by the modified files, SHARP can

gradually and iteratively propagate the change to reach those code in the new or deleted files.

For each modified java file f , we retrieve a set of its enclosing methods {method∗}. For each

such method m∗, CompareIRDiff computes the new IR for the new commit and compares with

its old IR from prevCommit to obtain the added and deleted statements. Next, we iterate each

delete statement in D and apply the rule DELETESTMT to them. Finally, we handle the additions

by following the Andersen’s algorithm in Table 2.1 with context selections.

4.5 Parallel Algorithms

4.5.1 Context Level

We leverage the third property to guide our parallel algorithm to incrementally update context-

sensitive pointer analysis:

• CONVERGENCE: a set of invalid/newly added CG nodes are introduced by a deleted/added

SCTX, which determines context element c; their context elements will gradually be replaced

by existing context elements; these CG nodes will finally converge at a specific CG node(s)

in CG, of which context C does not include c any more.

DELETECGNODE and its conclusion PROPAGATEORRESET can be executed in parallel for

different invalid CG nodes introduced by the same NEW or INVOKE statement.
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Figure 4.10: An example to explain the intraprocedural parallelization. (a) Delete y = x from the
example code. (b) The PAG before the deletion. (c) The three change propagation paths after the
deletion. Reprinted with permission from [2].

4.5.2 Code Change Level

We first discuss different scenarios of parallelization upon incremental code changes with re-

spect to redundancy, efficiency and conflict. We then present our parallel algorithm that works for

both context-sensitive and -insensitive incremental pointer analysis.

4.5.2.1 Intraprocedural Changes.

There are two parallel scenarios for the statement changes within a method: propagate points-

to set changes in parallel for one changed statement (Section 4.5.2.1) and for multiple changed

statements (Section 4.5.2.1).

One Changed Statement Consider the example in Figure 4.10. Suppose we delete statement y

= x from the code in Figure 4.10(a), which leads to the deletion of edge x → y. As shown in

Figure 4.10(c), we run our incremental algorithm that deletes the edge x→ y with ∆ = pts(x) =

{o1} and removes ∆ from pts(y). Now, three tasks of running the PROPAGATE rule for y will be

performed sequentially in the following order:

Task 1: Propagate the change ∆1 = pts(y) = {o1} to z and its reachable nodes along the path P1

(the blue path).
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Task 2: Propagation for the dynamic edge b
store[f ]

y in Figure 4.10 (i.e., b y.f ) along the

path P2 (the maroon path): according to DELETESTORE, the edge b→ o1.f is extracted for

∆1 = pts(y) = {o1} and should be deleted, which initializes the change ∆2 = pts(b) =

{o4}. Then CHECK is applied to see whether any existing incoming neighbor of o1.f has

o4 in its point-to set. Since there is no such node, the change ∆2 is confirmed and removed

from pts(o1.f). Later, ∆2 is propagated to m, z and its reachable nodes, consecutively.

If there exists another path b→ p→ o1.f , the CHECK rule will confirm that pts(p) contains

o4 as an incoming neighbour of o1.f . Hence, it conclude that o4 should remain in pts(o1.f)

and no change needs to be propagated.

Task 3: Propagation for the dynamic edge y
load[f ]

m in Figure 4.10 (i.e., y.f m ) along the

path P3 (the purple path): similar to Task 2, DELETELOAD extracts edge o1.f → m with

the initialized change ∆3 = pts(o1.f) = {o4}. Then ∆3 = {o4} is confirmed by CHECK,

which is removed from pts(m) and propagated to z and its reachable nodes.

Task 2 and 3 may exchange their orders, but this does not affect the final result: no matter which

task is performed at first, o4 is removed from pts(m); when the other task starts to propagate the

same change {o4}, CHECK will confirm that there is no change to propagate and the propagation

stops here. This example shows the worst case that all the changes (∆1, ∆2 and ∆3) repetitively

update a sequence of nodes with the summarized change ∆sum, i.e., z and its reachable nodes are

updated by ∆1 and ∆2 twice, where ∆sum = ∆1 + ∆2 + ∆3 = {o1, o4}. For the propagation

of ∆3, we can find that ∆3 has already been removed from pts(z) and no change needs to be

propagated. This may reduce the performance significantly.

In summary, there are three cases of the change ∆i (i ∈ [1, n]) along their propagation paths Pi

and the summarized change ∆sum along the common path Psum on a PAG:

Case (i) Psum = ∅,

Case (ii) Psum ̸= ∅ ∧ ∆sum = ∆i ̸= ∅ ∧ ∆j = ∅ (∀j ∈ [1, n] but j ̸= i),
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Case (iii) Psum ̸= ∅ ∧ ∆sum =
k⋃

i=1

∆i ∧ ∆i ̸= ∅ (1 < k ≤ n).

Case (i) and (ii) have no repetitive propagation, since they either have no common propagation

path or only require one time of propagation for one change. Hence, the propagations for different

∆i can be run in parallel without conflict.

Case (iii) involves repetitive propagation as shown in the example. However, the change-

consistency property from PIPA can guarantee the correctness of points-to sets if we update them

in parallel. We prove this in two situations for any ∆i and ∆j from path Pi and Pj (i, j ∈ [1, k]):

Situation 1 If ∆i

⋂
∆j = ∅, CHECK and PROPAGATE run on Pi and Pj and remove different

objects from the same points-to set, which has no conflict.

Situation 2 If ∆i

⋂
∆j = δ ̸= ∅, no matter which path is scheduled to propagate δ first, δ will

be removed from the first points-to set on Psum (denoted pts1). The later propagation from

the other path will confirm that δ no longer exists in pts1, and runs CHECK and PROPAGATE

for the rest change. To be specific, if Pj firstly updates pts1, ∆rest
i = ∆i \ δ; or if Pi goes

first, ∆rest
j = ∆j \ δ. Moreover, the two propagations after pts1 are equivalent to Situation

1, since ∆rest
i

⋂
∆j = ∆i

⋂
∆rest

j = ∅.

Continue with the previous example. If we run the three tasks in parallel, Figure 4.10(c) explains

for case (iii):

• P1 and P2 illustrate Situation 1: ∆1
⋂
∆2 = {o1}

⋂
{o4} = ∅, no matter which path

propagates its change first, the finalized change in pts(z) is always the same.

• P2 and P3 illustrate Situation 2: ∆2
⋂
∆3 = {o4}

⋂
{o4} = {o4} ̸= ∅, both paths propa-

gates the same change to and finalized at m. For the propagation after m, we have δ = {o4}

and ∆rest
2 (if P3 is executed firstly) = ∆rest

3 (if P2 is executed firstly) = ∅.

According to the above reasoning, we can fully parallelize the propagation of changes caused

by one statement change, which includes all the outgoing neighbors from points-to and dynamic

edges in the PAG.
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Multiple Statement Changes We use an SSA-based IR [43] for pointer analysis, where each

variable in a method are represented by a unique value number (e.g., v1, v2, v3). After statement

changes, IR will be recomputed by assigning new value numbers to variables in the new code.

Therefore, a value number represents different variables in the source code before and after the

change, which requires a complex procedure to match the new and old values for a variable.

Additionally, the pointers with large value numbers always have points-to constraints with the

ones with small value numbers. Handling multiple statements from a method in parallel causes

enormous useless work, since the points-to sets of large value number pointers cannot be finalized

until the change propagation stemmed from small value number pointers completes.

In summary, this parallel strategy introduces redundancy. A practical solution is to sequentially

compute the effect of each changed statement according to their order in a method.

4.5.2.2 Interprocedural Changes.

This is the most common scenario in our studied code commits: developers change several

statements in different methods. According to the end-to-end incremental algorithm [1, 3], it

separates the code changes into two sets: statement deletions and additions. They firstly solve

all the deletions and then the additions. Here, we follow the same procedure.

One Changed Statement in Each Method Assume there is only one changed statement for

each method, and all the changes from different methods are either deletions or additions. Similar

to Section 4.5.2.1, there are three cases for a change ∆m
i along its propagation path Pm

i (i ∈ [1, n])

originated from a changed statement in method m ∈ M, where M is a set of different methods

with the same type of statement changes. Here also exists a sequence of nodes repetitively updated

by some paths with change ∆share along the common path Pshare:

Case (i) Pshare = ∅,

Case (ii) Pshare ̸= ∅ and ∆share = ∆m
k ̸= ∅ and ∆m

i = ∅ (∀i ∈ [1, n] but i ̸= k, m,m ∈M),

Case (iii) Pshare ̸= ∅ and ∆share =
k⋃

i=1

∆m
i and ∆m

i ̸= ∅ (1 < k ≤ n, m ∈M).
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The three cases are equivalent to the ones in Section 4.5.2.1, so the same proof can be easily

adapted to the three cases here to conclude that: the computation of changed statements (either

deletion or addition) from multiple methods (one statement from one method) can be parallel

without conflict.

Multiple Changed Statements in Each Method We assume multiple methods have changes,

and each method includes several statement changes that are either deletions or additions. As

we discussed in Section 4.5.2.1, there exist useless computations if we handle multiple statement

changes of one method in parallel. Thus, applying a massive parallelization here will introduce

more redundancy. Instead, we should handle the statement changes in each method sequentially.

Statement Changes with Both Deletion and Addition We assume multiple methods have changes,

each method has only one changed statement which can be deletion or addition. It is obvious that

an addition can invalidate a deletion effect, and vice versa. To avoid such invalidation, an optimized

schedule of processing statements is compulsory [97], which may or may not gain efficiency over

the computation of scheduling. Hence, such a parallel strategy is unwise and we do not adopt it.

4.6 Evaluation

We implemented SHARP in the WALA framework [154] by utilizing its existing k-CFA imple-

mentation [43], and implemented k-obj according to the original paper [49]. Our implementation

is open-source †. We performed an empirical evaluation on four large, real-world Java projects

on GitHub with frequent code commits. Our evaluation aims to answer the following research

questions:

1. Is SHARP as efficient as IPA?

2. Is our parallel algorithm more efficient than the existing parallel algorithm [1, 3]?

3. Is SHARP practical in the real-world scenario, e.g., run an incremental application for code

commits?

†https://github.com/april1989/Incremental_Points_to_Analysis
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Table 4.1: GitHub Information (for the 10 git commits). Reprinted with permission from [2].
Reprinted with permission from [2].

Project #∆Stmt #∆NEW #∆INVOKE

Hbase +2490/-2197 -98 -839
Lucene +2234/-530 -9 -63
Yarn +627/-631 -36 -243
Zookeeper +193/-242 -24 -109

Table 4.2: The Overview of SHARP and Statistics of Different Pointer Analyses. Reprinted with
permission from [2].

Full Avg. Time Statistics

Project Analysis Time Per Commit (Time: ms) #Pointer #Object #Edge

Hbase

CI 2.06min IPA 6494.1/18.1x 310,155 22,327 228,889,050

1-CFA 2.65min SHARP(Max) 11452.94/12.9x 642,685 22,987 110,152,245
2-CFA 3.56h 182858.63/69.2x 4,594,120 38,607 703,547,087
1-obj 13.26s 716.15/17.5x 70,060 4,861 2,098,257
2-obj 17.07s 958.0716.8x 102,526 5,712 3,803,780

Lucene

CI 9.68s IPA 21.5ms/449.1x 127,596 7,418 5,265,380

1-CFA 62.67s SHARP(Max) 2631.47/22.8x 405,498 14,691 79,307,176
2-CFA 7.63h 37555.68/731.0x 3,990,653 33,271 1,094,819,728
1-obj 25.84s 901.41ms/27.6x 116,581 6,420 8,515,319
2-obj 30.88s 311.62/98.1x 143,353 8,028 12,395,079

Yarn

CI 22.96s IPA 406.2ms/55.5x 145,734 11,278 18,660,434

1-CFA 44.97s SHARP(Max) 2062.05/20.8x 310,889 10,196 16,734,763
2-CFA 2.47h 11948.81/742.8x 3,714,158 20,493 370,207,476
1-obj 50.62s 320.36/157.0x 152,089 7,580 11,071,426
2-obj 52min 18637.75/165.8x 616,034 34,472 1,091,507,725

Zookeeper

CI 10.36s IPA 601.3/16.2x 96,238 8,705 9,308,586

1-CFA 26.11s SHARP(Max) 4495.83/4.81x 301,099 9,491 33,759,731
2-CFA 6.35h 15517.79/880.6x 3,925,385 26,220 1,092,490,217
1-obj 15.17s 1243.04/11.2x 79,795 4,297 2,817,254
2-obj 18.58s 1710.73/9.8x 90,276 5,331 5,295,305

Avg. 1.15h
IPA 1783.95/193.5x
SHARP(Max) 18332.64/186.8x

Benchmarks and Code Commits We selected the Java projects as shown in Table 4.1, all of

which are real-world projects that are widely used and have frequent code updates in their GitHub
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repositories. We perform our evaluation on the most recent 10 git commits (at the date of writing)

from the benchmarks’ official git repositories in order to evaluate SHARP on the real-world version

control system. Here, the code update refers to source code change in .java files, and we ignore

the git commits that changes non-Java files, e.g., the updates on build files, text files or comments.

Table 4.1 provides the statistic information for the evaluated 10 git commits for each bench-

marks. Column 2 shows the total number of added and deleted statements (denoted + and −,

respectively). Columns 3 and 4 show the total number of deleted NEW and INVOKE statements

from the evaluated commits, on which we apply SCTX-Rule and SINV-Rule (Figure 4.8).

Table 4.2 shows the statistics of our evaluated PAGs under different pointer analysis algorithms:

Columns 5-7 report the number of pointers, objects and pointer assignment edges in the PAG for

each benchmark. All the benchmarks generate very large context-sensitive PAGs, which include

from at least 2 millions to at most 1 billions pointer assignment edges.

Methodology The evaluation procedure for each technique on each benchmark is as following:

(1) we firstly perform the initial whole program pointer analysis on the most recent code available

in GitHub (at the date of writing). Then we utilize the computed points-to analysis result (i.e., PAG

and CG) to initialize SHARP and apply its incremental algorithms to analyze each commit. (2) We

do git checkout for each commit, rebuild the project, and utilize the git diff to compute the changed

classes and methods. (3) We compute the IR between the previous and current commits to obtain

a set of added and deleted statements for each changed method. Finally, we run the technique on

the two sets of statements.

To compare the performance of incremental algorithms, we run SHARP on the following context-

sensitive pointer analysis algorithms: 1-CFA, 2-CFA, 1-obj and 2-obj. Meanwhile, we run IPA on

context-insensitive algorithm by following the above procedure.

To compare the performance of parallelization, we evaluate our parallel algorithm (denoted

SHARP (Max)) against the existing parallel algorithm [1, 3] (denoted SHARP (PIPA)), both of which

are running on 1-CFA, 2-CFA, 1-obj and 2-obj with 8 threads.

To make sure the whole program pointer analysis can finish within 12 hours, we exclude certain

80



Table 4.3: The Performance of Incremental Algorithms on Different Pointer Analyses (Time: ms).
Reprinted with permission from [2].

Per Commit Per Statement

Avg. Worst Avg. Worst
Project Analysis Add Delete PreDel PreDel Add Delete PreDel Add Delete

Hbase

IPA CI 860.4 4536.4 - - 3.50 20.99 - 438 1895

SHARP

1-CFA 1384.44 243.22 39927.11 352287 5.17 1.03 397.06 1120 1676
2-CFA 250199.00 826.38 29484.13 220082 853.55 13.19 263.25 309888 220082
1-obj 341.39 74.38 537.28 1038 1.53 1.62 74.62 832 417
2-obj 442.94 93.33 1494.43 2024 1.98 2.04 207.56 1982 526

Lucene

IPA CI 4.50 9.50 - - 0.01 0.11 - 6 35

SHARP

1-CFA 2119.25 2311.33 8.00 28 9.49 50.47 1.11 124 104
2-CFA 56153.25 10165.25 905.75 1613 251.36 221.95 125.80 1274 3177
1-obj 629.33 1177.83 7.42 30 2.82 25.72 0.97 24 433
2-obj 229.40 501.94 13.33 33 1.03 10.96 1.85 13 49

Yarn

IPA CI 173.30 236.30 - - 2.76 3.74 - 183 161

SHARP

1-CFA 463.83 43.21 2593.18 3606 7.40 1.23 92.95 294 96
2-CFA 18024.91 487.24 2506.69 19016 287.48 13.84 89.85 31488 1098
1-obj 96.47 329.89 145.28 276 1.54 9.37 5.21 104 638
2-obj 1969.80 16435.95 15192.80 20464 31.42 466.93 544.54 1339 2278

Zookeeper

IPA CI 46.20 1269.20 - - 0.56 13.64 - 54 5191

SHARP

1-CFA 96.55 88.50 5541.40 7700 4.97 8.12 416.65 239 54
2-CFA 30468.94 321.93 6082.50 20382 1578.70 29.53 457.33 10342 4233
1-obj 205.66 154.66 1982.50 7382 10.66 14.19 149.06 109 314
2-obj 440.32 174.33 2463.75 6910 22.81 15.99 185.19 559 19

libraries from the evaluation, e.g., java.awt.* and java.text.*. The experiment is conducted on a

Linux machine with Intel Xeon E7-4860 (Westmere-EX), 8-core, 2.26GHz and 1TB memory.

4.6.1 Overview of SHARP

Table 4.2 provides an overview on the performance of SHARP: column 3 shows the full time

for running different pointer analysis algorithms (indicated by column 2) for the whole project,

and column 4 shows the average end-to-end time to analyze a git commit by SHARP.

In general, SHARP(Max) only requires 18332.64ms on average to finish the incremental anal-

ysis for a commit, which is 186.6x (highlight by red) faster than re-running the whole program

analysis. Meanwhile, IPA is on average 193.5x faster than re-running the context-insensitive algo-

rithm, which means SHARP(Max) can achieve the similar speedup as IPA does and is as efficient

as IPA. The max speedup of SHARP(Max) is 880.6x when analyzing Zookeeper under 2-CFA. This
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proves the efficiency of SHARP(Max): rather than spending hours to run the whole program pointer

analysis, SHARP(Max) provides fast feedback for each commit changes within 19 seconds, which

is a super helpful and convenient way for continuous integration apps to utilize the result of pointer

analysis.

4.6.2 Performance of Incremental Algorithms

Table 4.3 lists the detailed data in the performance comparison between SHARP and IPA.

Columns 4-7 report the performance for each commit: columns 4 and 5 show the average time

to compute the sets of added and deleted statements extracted from a commit, columns 6 and 7

report the average and worst time to run our PREDEL rules for the deleted NEW and INVOKE

statements in a commit (denoted PreDel). Columns 8-12 report the performance for each state-

ment: columns 8-10 show the average time to handle an added statement, a deleted statement, and

to run PREDEL for one deleted NEW or INVOKE statement, while columns 11-12 show the worst

case addition and deletion time.

Here, we separate the time for running PreDel from the one for handling deletions to clearly

show the performance advantage: the average deletion time has been significantly reduced if we do

not consider the interaction between the PAG and CG introduced by NEW and INVOKE statements,

e.g., SHARP requires on average 1982.50ms for running PreDel under 1-obj but only 154.66ms to

handle all other types of statements for a commit.

We can observe that SHARP requires less execution time on k-obj than k-CFA for most bench-

marks in our evaluation, especially the time spend for running the procedure PreDel. This is

because there are more deleted INVOKE statements (6.51x on average and at most 7.56x) in each

git commit as shown in Table 4.1, and the size of PAGs generated by k-obj are relatively smaller

than the ones by k-CFA for the same project.

For some cases, SHARP makes the handling of statement deletions faster than additions due to

the full optimizations (i.e., PreDel and the rules in Figure 4.9). For example, running SHARP on

2-CFA for Yarn requires 287.48ms on average to handle an addition, and 51.85ms on average (the

average of 13.84ms for deletion and 89.85ms for PreDel) to solve a deletion.
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Table 4.4: The Performance of Parallel Algorithms on Different Pointer Analyses (Time: ms).
Reprinted with permission from [2].

Per Commit Per Statement

Avg. Worst Avg. Worst
Project Analysis Add Delete PreDel PreDel Add Delete PreDel Add Delete

Hbase

1-CFA 1194.00 222.66 - - 4.46 1.79 - 909 1043
SHARP 2-CFA 226927.75 585.87 - - 777.48 9.40 - 237801 17137
(PIPA) 1-obj 303.85 59.32 - - 1.36 1.30 - 429 312

2-obj 385.06 83.48 - - 1.72 1.82 - 880 195

1-CFA 839.01 174.83 10439.10 140532 3.76 1.82 149.88 629 582
SHARP 2-CFA 173084.81 430.34 9343.48 181359 774.78 2.27 197.71 208341 14583
(Max) 1-obj 259.28 30.93 425.94 693 1.16 0.68 59.16 292 201

2-obj 234.99 53.75 669.33 934.29 1.05 1.17 92.96 724 76

Lucene

1-CFA 1149.75 1882.75 - - 5.15 41.11 - 107 103
SHARP 2-CFA 46153.25 7165.25 - - 206.59 156.45 - 974 1177
(PIPA) 1-obj 460.49 943.20 - - 2.06 20.59 - 16 374

2-obj 136.40 312.07 - - 0.61 6.81 - 11 38

1-CFA 904.22 1722.43 4.82 21 4.05 37.61 0.67 73 83
SHARP 2-CFA 34554.81 2657.04 343.83 932 154.68 58.01 47.75 684 592
(Max) 1-obj 268.44 629.40 3.57 13 1.20 13.74 0.50 14 241

2-obj 78.90 219.90 12.81 12 0.35 4.80 1.78 7 23

Yarn

1-CFA 383.73 34.83 - - 6.12 0.99 - 259 63
SHARP 2-CFA 16911.94 354.70 - - 269.73 10.08 - 31298 683
(PIPA) 1-obj 57.46 228.34 - - 0.92 6.49 - 85 115

2-obj 1313.93 11531.20 - - 20.96 327.59 - 1052 1805

1-CFA 367.35 31.33 1663.37 2485 5.86 0.89 59.62 192.33 58
SHARP 2-CFA 10803.17 178.91 966.73 9932 172.30 5.08 34.65 11743 203
(Max) 1-obj 43.80 172.68 103.88 214 0.70 4.91 3.72 47 565

2-obj 909.88 8993.16 8734.71 11613 14.51 255.49 313.07 739 793

Zookeeper

1-CFA 92.60 48.63 - - 4.80 4.46 - 212 39
SHARP 2-CFA 24378.80 210.00 - - 1263.15 19.27 - 7271 57
(PIPA) 1-obj 93.15 29.93 - - 4.82 2.66 - 51 211

2-obj 348.38 168.50 - - 18.05 15.46 - 273 17

1-CFA 58.46 24.76 4412.60 4923 3.03 2.27 331.77 193 34
SHARP 2-CFA 12381.60 116.32 3019.87 9342 641.53 10.67 227.06 6432 2050
(Max) 1-obj 76.94 16.63 1149.47 5934 3.99 1.53 86.43 29 110

2-obj 300.35 116.25 1294.12 2937 15.56 10.67 97.30 172 14

The worst cases of PreDel require several minutes to finish, which is relatively slow. We manu-

ally inspect their corresponding code commits, which always involve a large number of invalid CG

nodes. For example, SHARP requires 3.4min to finish PreDel under 2-CFA when analyzing the git

commit 04c3888 from Hbase. This is the largest evaluated code commit for Hbase, which includes

1807 statement additions and 1537 deletions. Moreover, this commit code has 507 deleted IN-

VOKE statements, which invalids 16429 CG nodes as well as their enclosing points-to constraints.
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From the perspective of the volume of changes in the PAG and CG, SHARP is still quite efficient to

finish such a huge amount of deletions.

4.6.3 Performance of Parallel Algorithms

Table 4.4 shows the performance comparison between our parallel algorithm (Max) and the

existing parallel algorithm (PIPA) when applying both of them to our incremental analysis SHARP

for different context-sensitive pointer analyses. This table reports the same attributes as Table 4.3.

Since PIPA does not have the same parallelization as shown by Section 4.5.1, we use "-" to indicate

no such data.

SHARP(Max) indicates 0.6x faster on average over SHARP(PIPA), and 1.3x faster over SHARP.

This proves that our parallel algorithm is more faster than the existing parallel algorithm. The

actual speedup for each commits are quite different due to the distribution of code changes: more

parallelization can be utilized if a commit contains multiple code changes in different methods.

In summary, SHARP works quite well on real-world projects with frequent code commits.

4.6.4 Discussions

How does k affect the performance of SHARP. The performance difference of SHARP between

2-CFA and 1-CFA is different from the one between 2-obj and 1-obj. This is affected not only

by the value of k, but also by the context-sensitive algorithm (i.e., use a call site or a receiver

object). According to the statistics in Table 4.2, 2-CFA always creates much larger sizes of PAG

over 1-CFA when comparing the PAG sizes created by 2-obj over 1-obj. For example, 2-CFA

computes 1,094,819,728 edges for Lucene, which is about 14x more than the one computed by 1-

CFA; while 2-obj only introduces 12,395,079 edges, which is around 1.5x more than the one from

1-obj. Hence, k-CFA essentially involves more computation over k-obj (when both algorithms use

the same k). Our incremental rules are based on k-CFA and k-obj, which performance follows the

same trends as the corresponding context-sensitive algorithms.

When it comes to a larger k (i.e., k ≥ 3), the scalability of k-CFA and k-obj becomes even worse

due to the significantly increased size of constraints. Theoretically, the worst-case complexity can
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be doubly exponential [169]. Hence, it is impractical to use k ≥ 3 in real-world scenarios where

the whole program pointer analysis probably cannot terminate. This is also why most context-

sensitive pointer analysis works use k = 1 and k = 2 in their evaluations [46, 47, 79, 86, 128].

Consequently, SHARP is required to handle more constraints introduced by a large k for incremental

changes, but should still be much faster than re-running the whole pointer analysis.

Threats to Validity. There are three threats to validity of our evaluation: the limited set and

manual selection of Java programs (4) used to compare the performance between IPA and SHARP,

the manual selection of main entry method for each program and the small number of GitHub

commits (10) for each evaluated program. We have partially mitigated the first threat to validity

by selecting the real-world programs with large code bases (i.e., around 1 MLOC) and frequent

GitHub commits with a long history (i.e., at least 10 years). The remaining two threats to validity

are due to the fact that many main methods in a project can be used as the entry point to initiate

pointer analysis, however, some of which cannot terminate especially when we are evaluating

context-sensitive algorithms (i.e., k-CFA and k-obj). Moreover, the GitHub commits may change

different parts of a project, which may not be able to touch the points-to results generated for a

main method that can terminate for all the evaluated algorithms (i.e., 1-CFA, 2-CFA, 1-obj and 2-

obj). Hence, it is difficult to collect a large number of commits that change the points-to result for a

terminatable main method. We have partially mitigated this threat by selecting a configuration that

satisfies all the mentioned requirements, i.e., a main method for each program that can terminate

for all evaluated context-sensitive algorithms with enough GitHub commits (10) that change the

points-to results.

4.7 Summary

We have presented SHARP, an efficient incremental algorithm for context-sensitive pointer anal-

ysis. SHARP addresses deep technical challenges in the state-of-the-art incremental but context-

insensitive pointer analysis, such as inefficient computations in handling method call deletions,

soundness and parallelization. Our evaluation on real-world Java projects demonstrates that SHARP
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scales to real-world large complex codebases with frequent code commits, and it has even compa-

rable performance to the state-of-the-art context-insensitive incremental pointer analysis.
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5. D4: CONCURRENCY DEBUGGING WITH PARALLEL DIFFERENTIAL ANALYSIS *

As the development of hardware and the requirement of performance, parallelism exists in al-

most every modern programs, e.g., apps, database, machine learning tools, smart contracts, web

servers. However, concurrency bugs cannot be effectively avoided and solved when writing paral-

lel, concurrent or event-driven programs, which are more difficult to detect and fix for real-world,

large applications. There are many real-world cases when race conditions introduce enormous eco-

nomic loss or even cost human lives, e.g., the infamous DAO Hack [170] leveraged the re-entrancy

vulnerability and stole 12.7M Ether (approximately $150M at the time), the delayed Facebook’s

IPO [171] by Nasdaq caused $13M loss, and Therac-25 Accident [172] exposed patients to lethal

doses of radiation.

Most existing research and commercial techniques [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39],

statically or dynamically, detect concurrency bugs by performing (1) pointer analysis or dataflow

analysis or ownership analysis to identify the memory locations accessed by different threads in a

static way, or collecting execution traces in a dynamic way; (2) lockset analysis to check mutual

exclusion locks held by threads; and (3) techniquesto determine happens-before or concurrent

relation between two events (e.g., vector clock [173], epoch [31]). All these analyses become

imprecise, unscalable, memory- and time-consuming when applying them on large codebase (e.g.,

Linux kernel, Google Chrome with millions to billions lines of code).

Another common limitation of the existing works is that they are mostly designed for late

phases of software development such as testing or production. Consequently, it is hard to scale

these techniques to large software because the whole code base has to be analyzed. Moreover, it

may be too late to fix a detected bug, or too difficult to understand a reported warning because the

developer may have forgotten the coding context to which the warning pertains.

To address this problem, one promising direction is to detect concurrency bugs incrementally

*Reprinted with permission from "D4: Fast Concurrency Debugging with Parallel Differential Analysis" by Bozhen
Liu and Jeff Huang. PLDI 2018: Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 2018, Pages 359–373, Copyright 2018 by Bozhen Liu.
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in the programming phase. Upon a change in the source code (i.e., statement addition, deletion or

modification), instead of exhaustively re-analyzing the whole program, one can analyze the change

only and recompute the impact of the change for bug detection by memorizing the intermediate

analysis results. This not only provides early feedback to developers (which reduces the cost of

debugging), but also enables efficient bug detection by amortizing the analysis cost.

Besides, data race is exacerbated by interactions between threads and events in real-world

applications, e.g., Android apps and distributed systems. One practical solution is to unify threads

and events by treating them as entry points of code paths attributed with data pointers, which

provides enough precision for data race detection when analyzing shared-memory accesses as well

as reduces the computation of conducting expensive whole program analysis.

To solve the problem, a series of research projects were conducted, which focus on develop-

ing such novel algorithms for both incremental changes and whole programs to statically detect

concurrency bugs (data races and deadlock) in a fast, efficient, scalable and precise way. To be

specific, we develop several algorithms and tools to gradually speedup the process of static con-

currency bug detection as well as reduce the false positive rate to improve the precision. All the

evaluations from the above projects achieve promising performance, scalability and precision for

large, real-world software, which answers our research question.

5.1 Introduction

Writing correct parallel programs is notoriously challenging due to the complexity of con-

currency. Concurrency bugs such as data races and deadlocks are easy to introduce but difficult

to detect and fix, especially for real-world applications with large code bases. Most existing tech-

niques [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] either miss many bugs or cannot scale. A common

limitation is that they are mostly designed for late phases of software development such as testing

or production. Consequently, it is hard to scale these techniques to large software because the

whole code base has to be analyzed. Moreover, it may be too late to fix a detected bug, or too

difficult to understand a reported warning because the developer may have forgotten the coding

context to which the warning pertains.
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Figure 5.1: Architectural overview of D4. Reprinted with permission from [3].

One promising direction to address this problem is to detect concurrency bugs incrementally in

the programming phase, as explored by our recent work ECHO [27]. Upon a change in the source

code (insertion, deletion or modification), instead of exhaustively re-analyzing the whole program,

one can analyze the change only and recompute the impact of the change for bug detection by

memoizing the intermediate analysis results. This not only provides early feedback to developers

(which reduces the cost of debugging), but also enables efficient bug detection by amortizing the

analysis cost.

Despite the huge promise of this direction, a key challenge is how to scale to large real-world

applications. Existing incremental techniques are still too slow to be practical. For instance, in our

experiments with a collection of large applications from the DaCapo benchmarks [155], ECHO

takes over half an hour to analyze a change in many cases. A main drawback is that existing

incremental algorithms are either inefficient or inherently sequential. In addition, the existing tool

runs entirely in the same process as the integrated development environment (IDE), which severely

limits the performance due to limited CPU and memory resources.

In this chapter, we propose D4, a fast concurrency analysis framework that detects concurrency

bugs (e.g., data races and deadlocks) interactively in the programming phase. D4 advances IDE-

based concurrency bug detection to a new level such that it can be deployed non-intrusively in the
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development environment for read-world large complex applications. D4 is powered by two sig-

nificant innovations: a novel system design and two novel incremental algorithms for concurrency

analysis.

At the system design level, different from existing techniques which integrate completely into

the IDE, D4 separates the analysis from the IDE via a client-server architecture, as illustrated in

Figure 5.1. The IDE operates as a client which tracks the code changes on-the-fly and sends them

to the server. The server, which may run on a high-performance computer or in the cloud with a

cluster of machines, maintains a change-aware data structure and detects concurrency bugs incre-

mentally upon receiving the code changes. The server then sends the detection results immediately

back to the client, upon which the client warns the developer of the newly introduced bugs or

invalidates existing warnings.

At the technical level, D4 is underpinned by two parallel incremental algorithms, which em-

brace both change and parallelism for pointer analysis and happens-before analysis, respectively.

We show that these two fundamental analyses for concurrent programs, if designed well with re-

spect to code changes, can be largely parallelized to run efficiently on parallel machines. As

shown in Figure 5.1, D4 maintains two change-aware graphs: a pointer assignment graph (PAG)

for pointer analysis and a static happens-before (SHB) graph for happens-before analysis. Upon

a set of code changes, ∆stmt, the PAG is first updated and its change ∆1 is propagated further.

Taking ∆stmt and ∆1 as input, the SHB graph is then updated incrementally and its change ∆2

together with ∆1 are propagated to the bug detection algorithms.

D4 can be extended to detect a wide range of concurrency bugs incrementally, since virtu-

ally all interesting static program analyses and concurrency analyses rely on pointer analysis and

happens-before analysis. For example, the same race checking algorithm in ECHO can be directly

implemented based on the SHB graph, and deadlock detection can be implemented by extending

D4 with a lock-dependency graph, which simply tracks the lock/unlock nodes in the SHB graph.

D4 can also be extended to analyze pull requests in the cloud. For example, in continuous in-

tegration of large software, D4 can speed up bug detection by analyzing the committed changes
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incrementally.

We have implemented both data race detection and deadlock detection in D4 and evaluated

its performance extensively on a collection of real-world large applications from DaCapo. The

experiments show dramatic efficiency and scalability improvements: by running the incremental

analyses on a dual 12-core HPC server, D4 can pinpoint concurrency bugs within 100ms upon a

statement change on average, 10X-2000X faster than ECHO and over 2000X faster than exhaustive

analysis.

We note that exploiting change and parallelism simultaneously for concurrency analysis incurs

significant technical challenges with respect to performance and correctness. Although previous

research has exploited parallelism in pointer analyses [87, 88, 90, 93, 94], change and parallelism

have never been exploited together. All existing parallel algorithms assume a static whole pro-

gram and cannot handle dynamic program changes. D4 addresses these challenges by carefully

decomposing the entire analysis into parallelizable graph traversal tasks while respecting task de-

pendencies and avoiding task conflicts to ensure the analysis soundness.

In sum, this paper makes the following contributions:

• We present the design and implementation of a fast concurrency analysis framework, D4,

that detects data races and deadlocks interactively in the IDE, i.e., in a hundred milliseconds

on average after a code change is introduced into the program.

• We present an extensive evaluation of D4 on real-world large applications, demonstrating

significant performance improvements over the state-of-the-art.

• D4 is open source. All source code, benchmarks and experimental results are publicly avail-

able at https://github.com/parasol-aser/D4.

5.2 Motivation and Challenges

In this section, we first use an example to illustrate the problem and the technical challenges.

Then, we introduce existing algorithms and discuss their limitations.
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t1:													t2:															t1:													t2:																		
1	lock(l1);					7		lock(l2);						1	lock(l1);					7		lock(l2);								
2	x	=	1;								8		r	=	y;									2	x	=	1;								8		r	=	y;	
3	lock(l2);					9		if(r>0){							3	lock(l2);					9		if(r>0){	
4	y	=	1;								10	x	=	2;①								4	y	=	1;								10	lock(l1);②	
5	unlock(l2);			11	}														5	unlock(l2);			11	x	=	2;	
6	unlock(l1);			12	unlock(l2);				6	unlock(l1);			12	unlock(l1);}	
																																																		13	unlock(l2);	
                       (a)                                                      (b)

Figure 5.2: A motivating example. (a) a data race between lines (2,10) is detected by D4 when
Change ① at line 10 is introduced; (b) a new deadlock between lines (1,3;7,10) is detected by D4
when Change ② at lines 10 and 12 is introduced which attempts to fix the race. Reprinted with
permission from [3].

5.2.1 Problem Motivation

Consider a developer, Amy, who is working on the Java program shown in Figure 5.2(a). The

program consists of two threads t1 and t2, and two shared variables x and y. As soon as Amy

inserts a write ① x=2 to t2 and saves the program in the IDE, D4, which runs in the background,

will prompt a data race warning on lines 2 and 10, similar to syntax error checking.

As Amy sees the warning, she can analyze and fix the bug immediately without waiting until

it is found by a test or a code reviewer, or the bug happens in production. To eliminate the data

race, Amy might want to introduce a lock l1 to protect the write to x at line 10. This fixes the data

race, however, it introduces a deadlock between the lock pairs at lines (1,3; 7,10) in Figure 5.2(b).

Nevertheless, this deadlock is again instantly reported by D4 to guide Amy to fix the bug.

To realize D4 as above, there are three requirements:

1. We need to identify the two threads, the shared data x and y, and the two locks l1 and l2,

i.e., they refer to different locks.

2. We need to identify that the operations by the two threads can execute in parallel, i.e., one

does not always happen before the other, and the four lock operations may have circular

dependencies.
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3. To not interrupt Amy, D4 must be very fast, i.e., it finishes within a sub-second time.

For the first two requirements, we need a pointer analysis and a happens-before analysis. For

the third requirement, we must develop an efficient algorithm that can leverage these analyses to

detect data races and deadlocks.

5.2.2 Existing Algorithms

Previous work [27] has proposed sequential incremental pointer analysis and happens-before

algorithms for data race detection. Although these incremental algorithms are much more efficient

than the exhaustive analysis, they are not efficient enough for large software. We already discussed

incremental pointer analysis techniques in previous section 2.1.1 and chapter 3, 4, and will focus

on existing incremental happens-before analysis in this section.

Table 5.1: Nodes in the SHB graph. Reprinted with permission from [3].

Statements Nodes

❶* x = y.f write(x), ∀Oc ∈ pts(y) : read(Oc.f)
❷* x.f = y read(y), ∀Oc ∈ pts(x) : write(Oc.f)
❸ synchronized(x){. . .} ∀Oc ∈ pts(x) : lock(Oc), unlock(Oc)
❹ o.m(. . .) ∀Oc ∈ pts(o) : call(Oc.m)
❺ t.start() ∀Oc ∈ pts(t) : start(Oc)
❻ t.join() ∀Oc ∈ pts(t) : join(Oc)

* ❶ and ❷ also represent array read (x = y[i]) and write (x[i] = y), resp.

5.2.2.1 Incremental Happens-Before Analysis

The existing technique [27] uses a static happens-before (SHB) graph to compute happens-

before relation among abstract threads, memory accesses, and synchronizations. The SHB graph

for Java programs is constructed incrementally following the rules in Table 5.1. Among them,

statements ❹ (method call), ❺ (thread start) and ❻ (thread join) generate additional edges ac-

cording to Table 5.2. The SHB graph is represented by sequential traces containing per-thread
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Table 5.2: Edges in the SHB graph. Reprinted with permission from [3].

Statements Edges

❹ x = o.m(. . .) ∀Oc ∈ pts(o) : call(Oc.m)→ FirstNode(Oc.m)
LastNode(Oc.m)→ NextNode(call)*

❺ t.start() ∀Oc ∈ pts(t) : start(Oc)→ FirstNode(Oc)
❻ t.join() ∀Oc ∈ pts(t) : LastNode(Oc)→ join(Oc)

* NextNode(call): the consecutive node of the method call statement.

nodes in the SHB graph following the program order, connected by inter-thread happens-before

edges. For race detection, the happens-before relation between nodes from different threads can

then be computed by checking the graph reachability.

Large SHB graph A crucial limitation of this approach is that for large software it can produce

a prohibitively large SHB graph. During the graph construction, when a method is invoked, it has

to analyze the method and creates new nodes for statements inside the method. If a method is

invoked multiple times (invoked repeatedly by a thread, occurs in a loop, or by multiple threads),

multiple nodes representing the same statement will be created and inserted into the SHB graph.

Expensive graph update Updating the SHB graph with respect to code changes can be very

expensive. Existing technique uses a map to record each method call and its corresponding location

in the SHB graph. If there is a statement change in a method, all the matching nodes in the graph

must be tracked and updated. For large software, this incurs significant repetitive computation

because a changed method can be invoked many times.

5.3 Parallel Incremental Happens-Before Analysis

A key to our scalable happens-before analysis is a new representation of the SHB graph, which

enables both compact graph storage and efficient graph updating. Instead of constructing per-

thread sequential traces with repetitive nodes corresponding to the same statement, we construct

a unique subgraph for each method/thread and connect the subgraphs with happens-before edges.

The happens-before relation of nodes (e.g., in the multiply-visited methods) is then computed
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Table 5.3: Edges in the new SHB graph. Reprinted with permission from [3].

Statements Edges

❹ x = o.m(. . .) ∀Oc ∈ pts(o) : call(Oc.m)
tid−→ subshbOc.m

❺ t.start() ∀Oc ∈ pts(t) : start(Oc)
tid−→ subshbOc

❻ t.join() ∀Oc ∈ pts(t) : subshbOc

tid−→ join(Oc)

“on-the-fly” following the method-call edges and the inter-thread edges. When a change in a

multiply-visited method happens, different node instances corresponding to the change can thus

have different happens-before edges without sacrificing accuracy.

5.3.1 SHB Graph Construction

We maintain a map exist from the unique id of each method/thread to its subgraph subshbid.

Each subgraph has two fields: tids which records the threads that have invoked/forked the method-

/thread, and trace which stores the SHB nodes corresponding to the statements inside the method-

/thread. Taking the main method (target), an empty subgraph (subshbtar) and the executing

thread id (ctid) as input, the algorithm returns the SHB graph (shb). Initially, we add the pair

of ⟨tar, subshbtar⟩ to the exist map and include ctid into the field tids of subshbtar. Afterwards,

we extract the statements in target and create SHB nodes according to Table 5.1 for each statement

and insert it into subshbid.trace.

The new happens-before edges are constructed according to Table 5.3. Each edge is labeled

with the corresponding thread id. For method call ❹, we create a unique signature sig of each

callee method Oc.m and check the map exist if subshbsig has been created. If sig exists, it means

Oc.m has been visited before and its subgraph has been created, which avoids redundant statement

traversal. We thus add the ctid into subshbsig.tids and add a new happens-before edge from the

calling node to the existing subgraph with the label ctid. Otherwise, we create a new subgraph

subshbsig for the newly discovered method. For thread start ❺, we create a new thread id (tid)

for each object node in pts(t), and follow the same procedure to construct subshbtid and add

happens-before edges. For thread join ❻, we add an edge from the last node in subshbtid to the
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1	main()	{														t1:															t2:													
2		x	=	0;															9			x	=	1;								12		y	=	x;	
3		y	=	5;															10		m1();									13		m1();	
4		t1	=	new	Thread();			11		m2();//add				14		m2();	
5		t2	=	new	Thread();				
6		t1.start();										15		void	m1(){				18		void	m2(){	
7		t2.start();										16			x	=	3;							19			x	=	2;	
8	}																					17			print(x);}			20			y	=	0;//del}

Figure 5.3: An example for the SHB graph construction. Reprinted with permission from [3].

join node in subshbtar, where tid is the thread id of the joined thread, corresponding to the object

node in pts(t). The procedure for creating different subgraphs can run in parallel, since different

threads/methods are independent from each other.

Example We use an example in Figure 5.3 to illustrate our algorithm. Suppose the method

call m2() at lines 11 is not in the program initially. We first create subshbmain and traverse the

statements in main method. After inserting write(x) and write(y) into the trace field for the two

writes at lines 2 and 3, we see the two thread start operations. We then create subshbt1 and subshbt2

for the two threads in parallel and add their corresponding happens-before edges. Consider the two

method calls m1() at lines 10 and 13, they introduce only one subgraph subshbm1, which is created

when m1() is visited the first time. The final SHB graph is shown in Figure 5.4.

Figure 5.4: The SHB graph for the example in Figure 5.3. Reprinted with permission from [3].
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5.3.2 Incremental Graph Update

Thanks to our new SHB graph representation, incremental changes can be updated efficiently

in parallel: 1) changes to statements in a method that is invoked multiple times need to be updated

only once; and 2) multiple changes to different methods/threads can be updated in parallel (because

they belong to different subgraphs).

For each added statement, we simply follow the same SHB graph construction procedure de-

scribed in the previous subsection. For each deleted statement s, we first delete the node repre-

senting s from its belonging subshbtar. In addition, for method call ❹, we locate the subgraph of

the callee method and remove the corresponding SHB edges. For thread start ❺, we remove the

corresponding SHB edges for each subshbtid. Note that we do not remove the subgraph itself, such

that the subgraph can be reused later if the method call or thread start is added back. For thread

join ❻, we remove the SHB edge from subshbtid to subshbtar.

Example Consider two changes in our example in Figure 5.3: (i) inserting a method call state-

ment m2() at line 11, and (ii) deleting the statement at line 20. For (i), we first create a method call

node call(m2) at the last position in subshbt1 . Since subshbm2 already exists in the SHB graph,

we skip traversing m2(). We add an edge call(m2)
t1−→ subshbm2 to the graph and add t1 into

subshbm2 .tids. For (ii), we localize the write(y) node corresponding to this statement and simply

remove it from subshbm1 .

5.3.3 Computing Happens-Before Relation

Our new SHB graph representation also makes computing the HB relation more efficient than

existing approach [27]. For changes in a method invoked multiple times, instead of checking the

path reachability between each individual pair of nodes, we can check for multiple node pairs

altogether. For example, in Figure 5.4 although the method m2() is invoked once by t1 and once

by t2 which generates two write nodes, when computing the HB relation between the nodes in

tmain and those from m2(), we can find that the nodes in tmain dominate all the nodes in m2() in

the SHB graph. Therefore, we can determine the happens-before relation for all these two write
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nodes by checking the path dominator once.

5.4 Distributed System Design

There are three main components in our design of distributing the analysis to a remote server,

which is expected to have more computing power than the machine running the IDE. The first

component is a change tracker that tracks the code changes in the IDE and sends them to the server

with a compact data format. The second component is a real-time parallel analysis framework that

implements our incremental algorithms for pointer analysis and happens-before analysis. The third

component is an incremental bug detector that leverages our framework to detect concurrency bugs

and also sends the detection results to the IDE. We next focus on describing the second component,

which is the core of our system.

Parallel Analysis Framework We implement a communication interface between the client and

the server based on the open-source Akka framework [174], which supports efficient real-time

computation on graphs via message passing and asynchronous communication. Akka is based on

the actor model and distributes computations to actors in a hierarchical way. We hence can run the

server on both a single multicore machine or multiple machines with a master-workers hierarchy.

The master actor manages task generation and distribution, and the worker actor performs specific

graph computations (e.g., adding/removing nodes/edges and updating the points-to sets). Tasks are

assigned by the master and consumed by workers following a work stealing schedule until all tasks

are processed.

Graph Storage Due to the distributed design, we can leverage distributed memory to store large

graphs when the memory of a single computing node is limited. For the PAG, we partition the

graph by following the edge cut strategy in Titan [175], in which nodes/edges created from the

same method and those involved in the same points-to constraint are more likely to be stored

together. For the SHB graph, we separate it into two parts: graph skeleton and subgraphs. The

graph skeleton uses SHB edges to connect the ids of subgraphs and can be stored in a single

memory region. The subgraphs can be stored in different memory regions and located efficiently
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by maintaining a map from each id to subgraph.

Message Format Akka provides protocol buffers and custom serializers to encode messages

between client and server. We encode all graph nodes/edges and subgraph ids as integers or

strings to facilitate message serialization. For example, deleting a statement “b=a” is encoded

as “-id” where id is the unique id of the statement in the SSA form, and it is further encoded

into “-(id1,id2)” on the server for graph computation, in which id1 and id2 represent inte-

ger identifiers of nodes a and b respectively, and id1 is the source and id2 the sink of the pointer

assignment edge.

5.4.1 Connection with Dynamic Graph Algorithms

D4 updates the two graphs (PAG and SHB) dynamically, which is related to dynamic algo-

rithms on directed graphs. Existing dynamic graph algorithms have focused on shortest path [176],

transitive closure [157, 176] and max/min flow [177]. For pointer analysis, our priority here is to

efficiently update the points-to sets of a specific set of nodes in the PAG. For happens-before

analysis, the problem is to effectively update the content of each node (subshb) as well as its af-

fected nodes/edges based on the definition of the happens-before relation. Although existing algo-

rithms cannot be directly applied to our cases, for certain tasks (e.g., SCC detection and checking

reachability from a pointer node to an object node) we may utilize dynamic reachability algo-

rithms [157, 176] to improve the performance.

5.5 D4: Concurrency Bug Detection

D4 can be used to develop many interesting incremental concurrency analyses, such as detect-

ing data races, atomicity violations and deadlocks.

We have implemented both data race and deadlock detection in D4. Our race detection checks

the happens-before relation and the lockset condition between every conflicting pair of read and

write nodes on the same abstract heap from different threads. If the two nodes cannot reach each

other in the SHB graph and there is no common lock protection, we will report them as a race. Our

race detection algorithm is the same as that presented in [27], except that we use a different SHB
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Figure 5.5: An example for the LD graph construction. Reprinted with permission from [3].

graph representation to determine the happens-before relation.

In this section, we focus on our novel incremental deadlock detection algorithm. Although

exhaustive algorithms for deadlock detection exist, this is the first incremental deadlock detection

algorithm, which is in fact highly non-trivial without D4. One has to develop new incremental data

structures, update them correctly upon code changes, and integrate them efficiently with incremen-

tal race detection. Besides, the ability to detect deadlocks is particularly important for interactive

race detection tools, because once a data race is detected, programmers often use locks to fix the

race, which may introduce new deadlock bugs.

Next, we first introduce the lock-dependency graph which can be constructed from the SHB

graph. Then, we present our incremental algorithm that uses the graph for deadlock detection.

Lock Dependency Graph The lock dependency (LD) graph contains nodes corresponding to

lock operations, and edges corresponding to lock dependencies. For example, if a thread t is

holding a lock l1 and continues to acquire another lock l2, an edge lock(l1)
t−→ lock(l2) is added to

100



the LD graph.

The LD graph can be constructed from the SHB graph by traversing the lock/unlock nodes for

each thread. For a lock statement on variable p, suppose pts(p) = {o1,o2}, it generates two lock

nodes in the LD graph: lock(o1) and lock(o2). Figure 5.5 shows an example. The LD graph con-

tains three nodes lock(o1), lock(o2) and lock(o3) connected by edges labeled with corresponding

thread ids.

Incremental Deadlock Detection Our basic idea of incremental deadlock detection is to look

for cycles in the LD graph with edge labels from multiple threads, which indicate circular depen-

dencies of locks. We then check the happens-before relation between the involved nodes to find

real deadlocks. For example, in Figure 5.5(b), lock(o1)
t1−→ lock(o2) and lock(o2)

t2−→ lock(o1)

form a circular dependency. To realize incremental deadlock detection, we develop an incremental

algorithm for updating the LD graph and an incremental algorithm for deadlock checking.

Incremental LD Graph Update For an added synchronized statement in thread t, we first lo-

cate the method it belongs to and its corresponding subgraph subshbtar, and create a pair of

lock/unlock nodes and insert them into subshbtar according to the statement location. Starting

from the changed node, we search the first lock/unlock node right before the added lock node

(pred), and the consecutive lock/unlock node right after the added lock node (succ) along edges

in the SHB graph. We call two lock nodes connected by an edge of LD graph a lock pair. If pred is

a lock node, it means pred and node can form a lock pair with thread ids in subshbtar.tids. Mean-

while, if succ is also a lock node, a lock pair between node and succ is added to the LD graph.

Afterwards, we traverse the LD graph in the reverse order to discover the incoming lock nodes of

pred with edges labeled t. For each such node pred′, we add a new lock pair between pred′ and

node. Then, we collect the outgoing lock nodes of succ, and create lock pairs for node and each

of them. For a deleted synchronized statement, we simply remove its corresponding lock/unlock

nodes from subshbtar as well as its lock pairs.

Consider Figure 5.5(a) in which lock(o3)/unlock(o3) are added in both t1 and t2. We first

localize the lock nodes before and after the added statement, and then add four edges: lock(o1)
t1−→
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Algorithm 8: IncrementalDeadlockDetection
Global States: shb - updated SHB graph

ldg - updated LD graph
Input : ∆lock - the changed lock nodes
Output : deadlocks - detected deadlocks

1 cycles← DiscoverCircularDependency(ldg, ∆lock)
2 foreach c ∈ cycles do
3 ParallelDeadlockDetection(c)
4 end

5 ParallelDeadlockDetection(c):
6 tids← ExtractTidsInCycle(c)
7 foreach (ti, tj) ∈ tids do

// for each pair of threads

8 lock(x), lock(y)← FindConflictingLocks(ti, tj , c)
// check happens-before condition

9 if (!CheckHBFor(lock(x)ti , lock(y)tj ) && !CheckHBFor(lock(x)tj , lock(y)ti)) then
10 deadlocks← c
11 end
12 end

lock(o3), lock(o1)
t2−→ lock(o3), lock(o3)

t1−→ lock(o2) and lock(o2)
t2−→ lock(o3), as shown in

Figure 5.5(c).

Incremental Deadlock Checking Algorithm 8 illustrates the incremental deadlock detection.

The key idea is to check only the cycles containing the changed (added or deleted) lock nodes. We

first collect all the circular dependencies that include the changed lock nodes. Then, we parallelize

deadlock detection for all cycles by checking the happens-before relation between conflicting lock

nodes from different threads in each cycle.

5.6 Evaluation

We implemented D4 based on the WALA framework [154] and evaluated it on a collection of

14 real-world large Java applications from DaCapo-9.12, as shown in Table 5.4. We ran the D4

client on a MacBook Pro laptop with Intel i7 CPU and the server on a Mercury AH-GPU424 HPC

server with Dual 12-core Intel©Xeon©CPU E5-2695 v2@2.40GHz (2 threads per core) proces-
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Table 5.4: Benchmarks and the PAG metrics. Reprinted with permission from [3].

App #Class #Method #Pointer #Object #Edge

avrora 23K 238K 2M 33K 229M
batik 23K 60K 1.2M 31K 272M
eclipse 21K 36K 365K 7K 44M
fop 19K 68K 2M 42K 295M
h2 20K 69K 2M 32K 301M
jython 26K 79K 2M 53K 325M
luindex 20K 71K 1.8M 29K 299M
lusearch 20K 63K 1M 18K 185M
pmd 22K 42K 983K 25K 101M
sunflow 22K 73K 1.5M 32K 218M
tomcat 16K 36K 886K 23K 94M
tradebeans 14K 39K 674K 19K 99M
tradesoap 14K 38K 653K 20K 97M
xalan 21K 33K 576K 15K 138M

sors. In this section, we report the results of our experiments.

Evaluation Methodology For each benchmark, we run three sets of experiments. (1) We first

run the whole program exhaustive analysis on the local client machine to detect both data-races

and deadlocks. Then, we initialize D4 with the graph data computed for the whole program in

the first step and continue to conduct two experiments with incremental code changes. (2) For

each statement in each method in the program, we delete the statement and run D4, which uses the

parallel incremental algorithms for detecting concurrency bugs. (3) For the deleted statement in

the previous step, we add it back and re-run D4.

We run D4 with two configurations: on the local client machine with a single thread (D4-1)

to evaluate our incremental algorithms only, and on the server machine with 48 threads (D4-48)

to evaluate our parallel incremental algorithms. We measure the time taken by each component in

each step and compare the performance between the exhaustive analysis and D4. In addition, we

repeat the same experiments for ECHO running on the client machine to compare the performance

between D4 and ECHO.
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Table 5.5: Performance of concurrency bug detection. Reprinted with permission from [3].

App
Race Detection Deadlock Detection

Exha- ECHO D4-1 D4-48 D4-1 D4-48
ustive avg. worst avg. worst avg. worst avg. worst avg. worst

avrora >6h 3min 1.8h 21s 15min 16ms 2min 231ms 2min 23ms 32s
batik >6h 5.2min 2h 1.3s 13min 0.9s 57s 1ms 11ms 1ms 8ms
eclipse 1.2h 5s 10min 0.3s 5min 152ms 49s 110ms 2min 13ms 4s
h2 4h 1.2s 6min 33ms 39s 12ms 15s 1ms 18ms 1ms 10ms
jython 3.3h 1s 5min 19ms 20s 17ms 11s 0.4ms 242ms 1ms 53ms
luindex 3h 43ms 2min 4ms 7s 1.9ms 3.8ms 32ms 29s 25ms 17s
lusearch 2.6h 19ms 1.7min 7ms 5s 2.2ms 4.1ms 1ms 3ms 1ms 1.3s
pmd 0.8h 3.1s 7min 41ms 9s 6.8ms 1s 5.4ms 1s 0.2ms 53ms
sunflow 3.6h 1s 3min 0.15ms 23ms 0.1ms 12ms 0.3ms 8ms 0.1ms 2ms
tomcat 0.7h 1.7s 6min 6ms 4.3s 1.5ms 0.82s 0.1ms 0.9ms 0.1ms 0.4ms
tradebeans 0.8h 49ms 3min 1.1ms 1s 0.8ms 0.3s 0.1ms 1.3ms 0.1ms 0.4ms
tradesoap 0.9h 47ms 2.6min 0.9ms 1s 0.7ms 0.4s 0.1ms 1ms 0.1ms 0.3ms
xalan 0.5h 33ms 1.8min 0.2ms 42ms 0.1ms 15ms 1ms 2.7ms 0.1ms 1.1ms

Average >2.6h 25s 21min 1.8s 2.9m 0.12s 20s 29ms 21s 5ms 4.2s

Benchmarks The metrics of the benchmarks and their PAGs are reported in Table 5.4. Columns

2-6 report the numbers of classes, methods, pointer nodes, object nodes and edges in the PAGs,

respectively. More than half of the benchmarks contain over 1M pointer nodes and over 200M

edges in the PAG. The default pointer analysis is based on the ZeroOneContainerCFA in WALA,

which creates an object node for every allocation site and has unlimited object-sensitivity for col-

lection objects. For all benchmarks, certain JDK libraries such as java.awt.* and java.nio.* are

excluded to ensure that the exhaustive analysis can finish within 6 hours. This exclusion makes a

trade-off between soundness and computational cost, which is a common practice for both static

and dynamic analysis tools to improve performance.

5.6.1 Performance of Concurrency Bug Detection

Table 5.5 reports the performance of concurrency bug detection for all the 13 multithreaded

applications in DaCapo-9.12 (fop is excluded because it is single-threaded), including the time

taken by exhaustive analysis, by ECHO (for race detection only), and by D4-1 and D4-48 (for both

data race and deadlock detection). Note that the time for exhaustive analysis includes construct-
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ing both the PAG and the SHB graph for the whole code base and detecting both data races and

deadlocks in the whole program. The time for ECHO and D4 includes that taken by incremental

algorithms for updating the graphs (i.e., SHB and LD) and detecting bugs per change.

Overall, the exhaustive analysis requires a long time (>2.6h on average) to detect races and

deadlocks in the whole program. The incremental detection algorithms are typically orders of

magnitude faster than the exhaustive analysis, even in the worst case scenarios. Between D4 and

ECHO, the incremental race detection algorithm implemented on top of D4 is much faster than

ECHO, achieving 10X-2000X speedup for all cases on average, and 5X-50X speedup for the worst

cases. ECHO takes 25s on average and 21min in the worst case to detect data races upon a change,

while D4-1 and D4-48 take only 1.8s and 0.12s respectively on average, and 2.9min and 20s in the

worst case. The incremental deadlock detection in D4 is also very efficient. It takes less than 29ms

on average and 21s in the worst case for D4-1, and 5ms and 4.2s for D4-48 per change. Compared

to the exhaustive analysis, it is over 2000X faster.

Performance weakness of the new SHB analysis For small programs (e.g., <50 LOC), the

new SHB analysis may require more time than the previous SHB analysis [27] to compute for

incremental updates. There are two main reasons: (1) there are fewer repetitive method calls in

small programs, hence the new SHB representation cannot be fully utilized; (2) the construction of

the new SHB graph is more complex (e.g., maintenance of maps and subgraph fields), which leads

to a trade-off between program size and performance.

5.6.2 Discussions

Network traffic time We also measured the network traffic time of the server mode in D4. In

our lab environment with a standard wireless connection, the network traffic time is under 0.1ms

per statement change, hence it is negligible.

Scalability We notice that the scalability of parallel incremental pointer analysis cannot catch up

with that of parallel concurrency bug detection, due to two main reasons: (1) we only process one

edge in WL (lines 3-5 of Algorithm 2) per iteration in order to avoid conflict of edge updates; (2)
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the shape of the PAG determines the utilization of the parallel resources. For a deletion, if the chain

of dependent variables of the change node is long and the in-degree of the variables on the chain

is large, but the out-degree is small, our algorithm cannot scale well on this pattern, because most

of the work has to be done sequentially, such as checking a large number of incoming neighbours

and updating the affected edges.

Bug detection precision We note that although D4 focuses on improving scalability and effi-

ciency through incremental analysis, it does not sacrifice precision compared to the exhaustive

analysis. Being a static analysis (which is generally undecidable), D4 can report false positives,

but it achieves the same precision as any whole-program static analyzers running the same bug

detection algorithm.

We also studied the detection results reported by the whole program race detector in ECHO

and D4, and confirmed that they report the same results. However, without significant knowledge

in the application code it is difficult to verify the reported warnings (if they are true bugs or false

alarms). On the other hand, the warnings reported by D4 are more manageable, because they are

reported continuously driven by the current code changes, instead of providing the user with a long

list of warnings by analyzing the whole program once.

D4 batch mode Although in our experiments D4 is evaluated for each single statement change

(to avoid any biases caused by choosing a random set of changes), it is unnecessary to run D4

after every line of change, but D4 can be executed after a batch of changes. Currently, D4 runs

whenever a file is saved by the user in the IDE, or the user can trigger D4 whenever an incremental

check is necessary. The size of a batch varies in different applications but is typically small. For

example, for good quality real-world projects such as h2 and eclipse, we observe that most of

the commits contain only 1-50 lines of code changes. Besides, D4 can also run entirely on a single

local machine to eliminate the cost of message passing over network.

Complex code changes As an IDE-based tool, we focus on source-level (i.e., Java bytecode)

analysis. It is difficult for static analysis to handle link-time changes (such as dynamic libraries),
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because they only get into effect at integration time. We leave link-time changes for future research.

Also, currently we do not handle package-level changes such as import. If a package is swapped

out we simply re-build the PAG. We note that the analysis is only triggered after the program type

checks. For changes that result in type errors, e.g., missing a class or method definition, they are

handled by the type checker in the IDE. D4 is based on Andersen’s algorithm, which does not

deal with class-escape information. Hence, we analyze constraints from program changes without

considering the modifiers.

Practicability Although we did not evaluate D4 in a production environment where even larger

programs are running without an IDE, the fundamental and scalable techniques we provide can

be utilized by other analysis tools since we aim at source code analysis. Besides, it is possible to

make D4 independent of the IDE based on the Language Server Protocol [178], which we leave

for future research.

5.7 Summary

We have presented a novel framework for detecting concurrency bugs efficiently in the pro-

gramming phase. Powered by a distributed system design and new parallel incremental algorithms,

D4 achieves dramatic performance improvements over the state-of-the-art. Our extensive evalua-

tion on real-world large systems demonstrates excellent scalability and efficiency of D4, which is

promising for practical use.
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6. O2: EFFICIENT AND PRECISE STATIC RACE DETECTION WITH ORIGINS *

Data races are among the worst bugs in software in that they exhibit non-deterministic symp-

toms and are notoriously difficult to detect. The problem is exacerbated by interactions between

threads and events in real-world applications. We present a novel static analysis technique, O2,

to detect data races in large complex multithreaded and event-driven software. O2 is powered by

“origins”, an abstraction that unifies threads and events by treating them as entry points of code

paths attributed with data pointers. Origins in most cases are inferred automatically, but can also

be specified by developers. More importantly, origins provide an efficient way to precisely reason

about shared memory and pointer aliases.

Together with several important design choices for race detection, we have implemented O2 for

both C/C++ and Java/Android applications and applied it to a wide range of open-source software.

O2 has found new races in every single real-world code base we evaluated with, including Linux

kernel, Redis, OVS, Memcached, Hadoop, Tomcat, ZooKeeper and Firefox Android. Moreover,

O2 scales to millions of lines of code in a few minutes, on average 70x faster (up to 568x) compared

to an existing static analysis tool from our prior work, and reduces false positives by 77%. We also

compared O2 with the state-of-the-art static race detection tool, RacerD, showing highly promising

results. At the time of writing, O2 has revealed more than 40 unique previously unknown races

that have been confirmed or fixed by developers.

6.1 Introduction

Threads and events are two predominant programming abstractions for modern software such

as operating systems, databases, mobile apps, and so on. While the thread vs. event debate has

never ended [104, 106], it is clear that both face a common problem: threads and events often

lead to non-deterministic behaviors due to various types of race conditions, which are notoriously

*Reprinted with permission from "When Threads Meet Events: Efficient and Precise Static Race Detection with
Origins" by Bozhen Liu and Peiming Liu and Yanze Li and Chia-Che Tsai and Dilma Da Silva and Jeff Huang. PLDI
2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, June 2021, Pages 725–739, Copyright 2021 by Bozhen Liu.
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C/C++

Java

Thread Event
pthread_create(... *start_rountine, *arg)

new Thread(runnable).run()

handleEvent(*data)

new EventHandler().handle(event)

origin(entry, attr)

Figure 6.1: An “origin” view of threads and events. Reprinted with permission from [4].

difficult to find, reproduce, and debug.

There has been intensive research on race detection of multithreaded code. Most success-

ful techniques have been dominated by dynamic analysis [31, 33, 179, 180, 181, 182], notably

Google’s ThreadSanitizer [37]. However, dynamic techniques face an inherent challenge of per-

formance overhead and low code coverage. In contrast, static detection techniques have had only

very limited success, notably Facebook’s RacerD [133, 138], despite decades of research [30, 34,

38, 183, 184]. A crucial reason is that reasoning about races typically requires sophisticated pointer

alias analysis to attain accuracy, which is difficult to scale.

Races in event-driven programs have attracted much attention in recent years [139, 140, 141,

142, 143, 144, 145, 146]. Event-based races can be more challenging to detect than thread-based

races because most events are asynchronous and the event handlers may be triggered in many

different ways. Moreover, the difficulty in detecting event-based races is exacerbated by interac-

tions between threads and events, which are common in real-world software such as distributed

systems. The state-of-the-art race detectors [37, 133, 138] do not perform well in detecting event-

based races, also due to the large space of casual orders among event handlers and threads.

In this paper, we present O2, a new system for detecting data races in complex multithreaded

and event-driven applications. We show that conventional thread-sensitive static analysis (with

some tuning and care) is highly effective for finding races, even more effective than RacerD. A key

concept behind O2 are origins, an extended notion of threads and events that unify them through

two parts: 1) an entry point that represents the beginning of a thread or an event handler, and 2)
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1  public void foo(){//main thread
2 Obj s = new Obj();//o1
3    Op op1 = new Op1();//o2
4    Op op2 = new Op2();//o3
5    new T(s, op1).run();//o4 → Origin: T1
6    new T(s, op2).run();//o5 → Origin: T2
7  }
8 public class T extends Thread{
9 Obj f; Op op;//super class of Op1 and Op2
10 public T(Obj a, Op b){
11 f = a; op = b; }
12 public void run(){
13 op.util(f, new Obj());//o6
14   } //with origin:⟨o6,T1⟩ and ⟨o6,T2⟩
15 }
16 void util(Obj x, Obj y){
17 sub1(x, y); ...
18 }
19 void sub1(Obj x, Obj y){
20 sub2(x, y); ...
21 }

22 void subN(Obj x, Obj y){
23 y.do_something();
24 act(x, y);}

...

T.run()

Op1.util()

Op1.subN()
Depth: 
N + 2

(c)

Op2.util()

Op2.subN()

foo()

T.<init>()

(b)

O
ri

gi
n:

 T
2

O
ri

gi
n:

 T
1

Specified
by origin
attribute 
op

Separated
by origin 

entry

Op1.act() Op2.act()

T.run()

Op1.util()

Op1.subN()

foo()T.<init>()

Op1.act()

T.run()

Op2.util()

Op2.subN()

T.<init>()

Op2.act()

Origin: Tmain

Objects Accessed by Meaning

⟨o6,T1⟩ T1 Local to Origin T1

⟨o6,T2⟩ T2 Local to Origin T2

⟨o1,Tmain⟩ T1&T2 Allocated by Origin Tmain, 
Shared by Origins T1 and T2

(a) (d)

Figure 6.2: (a) The example code. (b) The origin-sensitive call graph, where each origin consists
of a sequence of calls of arbitrary length. The origin attributes precisely determine the call chain
executed in each origin. (c) The context-sensitive call graph without origin. (d) A sample origin-
sharing analysis (OSA) output. Reprinted with permission from [4].

a set of attributes that capture additional semantics, such as thread ID, event type, or pointers to

memory objects that will be used in the thread or event handler. Figure 6.1 depicts an “origin”

view for threads and events in C/C++ and Java. The origin attributes can be specified or inferred

automatically at the origin’s entry point and the allocation site of the receiver object. We elaborate

the design in Section 6.2.1.

Rather than a straightforward unification, origins enables origin-sensitive pointer analysis

(OPA), in which the conventional call-string-based or object-based context abstractions are re-

placed by origins. This has several advantages:

• Functions within the same origin share the same context, therefore the computation com-

plexity inside an origin does not grow with the length of the call chain; and

• Computing k-most-recent calling contexts at every call site is redundant in many applica-

tions [129], e.g., when determining which objects are local to or are shared by which threads.

• The crucial origin entry point is preserved, not discarded as a trivial context in k-limiting [127]
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when the call stack’s depth exceeds the context depth k.

Meanwhile, compared to conventional thread-based [117, 118, 119, 120] or event-based [111,

112, 113, 114, 115, 116] analyses, the inclusion of data pointers in origins enables precisely iden-

tifying shared- and local-memory accesses by different threads and events. We develop origin-

sharing analysis (OSA), which uses an origin-sensitive heap abstraction to precisely compute heap

objects local to each origin, and objects shared by each combination of multiple origins. OSA has

several advantages over classical thread-escape analysis. In particular, besides answering whether

an object is shared, OSA provides detailed information on how the object is shared across origins,

which is needed by race detection.

To illustrate these advantages, consider an example in Figure 6.2. To correctly infer that threads

T1 (line 5) and T2 (line 6) do not access the same data on line 23, typically, a k-call-site analysis

(denoted k-CFA) is performed, in which k is the depth of the call chain [126]. Additionally, a call-

site-sensitive heap context is necessary to analyze the object allocation on line 13. This complexity

is shared by k-object-sensitivity [49] (denoted k-obj), in which the sequence of subN() functions

are invoked on different receiver objects. With origins, it suffices to mark the function run() in

each thread as an origin’s entry point. In this way, the allocation on line 13 can be distinguished

by an origin unique to its thread. At the same time, the virtual function act() invoked by each

thread on line 24 can be distinguished by the origin’s data pointers: s and op1 for T1, and s and

op2 for T2. Thus, it can be inferred that the two threads invoke different member functions (from

util() to act()) in classes Op1 and Op2 respectively, which manage the object that y points

to differently. Figure 6.2(d) shows a sample OSA output for the example code.

In addition to OPA and OSA, there are a few important design choices we made in O2 that

together make static race detection highly effective. First, O2’s race detection engine is highly op-

timized to achieve scalability and precision. We construct a static happens-before graph (SHB) and

use static “happens-before” instead of static “may-happen-in-parallel" as the foundational concept

of the analysis. This allows pruning many infeasible race pairs by checking only graph reachabil-

ity. Second, we develop several sound optimizations that scale race detection to large code bases,
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including:

• An efficient representation of origin-local happens-before relations, which further enables

efficient checking and caching the happens-before relation between memory accesses;

• A compact representation of locksets, which enables a fast check of common locks and an

efficient cache policy of the intermediate results;

• A lock-region-based race detection that allows effectively merging many memory accesses

into a representative one, which reduces the number of race checks significantly.

We implemented O2 for both C/C++ and JVM applications based on LLVM [185] and WALA [154],

and applied it to a large collection of widely-used mature open-source software. The results show

that O2 is both efficient and precise: it scales to large programs, being able to analyze millions of

lines of code in a few minutes, up to 568x faster and reduces false positives by 77% on average

compared to existing static analyses from our prior work (D4 [3]).

We compared O2 with RacerD (v1.0.0), the most recent state-of-the-art static data race de-

tector. For the programs that can be compiled and analyzed by RacerD, O2 achieves comparable

performance while detecting many new races and 4.33x fewer warnings on average. In most of the

evaluated programs in which O2 detects new races, RacerD either fails to find the races or cannot

run due to compiler errors.

Surprisingly, O2 found real and previously unknown races in every single real-world code base

we evaluated with. At the time of writing, O2 has revealed more than 40 unique race bugs that have

been confirmed or fixed by developers, including Linux kernel, Redis/RedisGraph, Open vSwitch

OVS, Memcached, Hadoop, ZooKeeper, and the Firefox Android apps. O2 has been integrated

into a commercial static analyzer.

6.2 Origin-Sensitive Analyses

In this section, we first present origins, OPA and OSA. The use of OPA and OSA enables a

more precise pointer analysis and identification of shared- and local-memory accesses by threads
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Table 6.1: The origin entry points identified by O2. Reprinted with permission from [4].

Threads Event handlers

java.lang.Thread.start() actionPerformed(. . . )
java.lang.Runnable.run() onMessageEvent(. . . )
java.util.concurrent.Callable.call() handleEvent(. . . )
pthread_create(. . . ) onReceive(. . . )
* More details for Android events are in Section 6.3.2.

and events. Beyond race detection, OPA and OSA can benefit any analysis that requires analyzing

pointers or ownership of memory accesses, e.g., deadlock, over-synchronization, and memory

isolation. We present O2’s race detection engine in the next section.

6.2.1 Automatically Identifying Origins

In general, a program can be divided into many different origins, each represents a unit of the

program’s functionality. At the code level, an origin is a set of code paths all with the same starting

point (i.e., the entry point) and data pointers (i.e., the origin attributes). In this way, origins divide a

program into different sets of code paths according to their semantics where each origin represents

a separate semantic domain. While origins can be specified by code annotations, we aim to ex-

tract them automatically from common code patterns in multithreaded and event-driven programs.

Our system identifies two kinds of origins automatically by default: threads and event handlers.

Finding static threads is not difficult in practice because threads are almost always explicitly de-

fined, either at the language level or through common APIs such as POSIX Threads (Pthreads) and

Runnable and Callable interfaces in Java. Finding event handlers relies on code patterns such

as Linux system call interfaces (all with prefix __x86_sys_), Android callbacks (onReceive

and onEvent), and popular even-driven frameworks (Node.js and REST APIs). In cases where

threads or events are implicit, such as customized user-level threads, developers may be willing to

provide annotations to mark origins, since customized threads are likely to be an important aspect

of the target application.

For Java and Pthread-based C/C++ programs, we automatically identify the methods in Ta-
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Table 6.2: The OPA rules for Java. Consider the following statements are in method m() with
Origin Oi, denoted ⟨m,Oi⟩. The edges→ are in the PAG and ↣ in the call graph. Reprinted with
permission from [4].

Statement Pointer Assignment Edge & Call Edge

❶ x = new C() ⟨o,Oi⟩ → ⟨x,Oi⟩

❷ x = y ⟨y,Oi⟩ → ⟨x,Oi⟩

❸ x.f = y
∀⟨o,Ok⟩ ∈ pts(⟨x,Oi⟩)
⟨y,Oi⟩ → ⟨o,Ok⟩.f

❹ x = y.f
∀⟨o,Ok⟩ ∈ pts(⟨y,Oi⟩)
⟨o,Ok⟩.f → ⟨x,Oi⟩

❺ x[idx] = y
∀⟨o,Ok⟩ ∈ pts(⟨x,Oi⟩)
⟨y,Oi⟩ → ⟨o,Ok⟩.∗

❻ x = y[idx]
∀⟨o,Ok⟩ ∈ pts(⟨y,Oi⟩)
⟨o,Ok⟩.∗ → ⟨x,Oi⟩

∀⟨o,Ok⟩ ∈ pts(⟨y,Oi⟩)
⟨f ′,Oi⟩ = dispatch(⟨o,Ok⟩, f)

❼ x = y.f(a1, ..., an) ⟨o,Ok⟩ → ⟨f ′
this,Oi⟩

//non-origin entry ⟨ah,Oi⟩ → ⟨ph,Oi⟩, where 1 ≤ h ≤ n
⟨f ′

ret,Oi⟩ → ⟨x,Oi⟩
add call edge ⟨m,Oi⟩↣ ⟨f ′,Oi⟩

Compute new origin: Oj

⟨init,Oj⟩ = dispatch(−, init)
⟨o,Oj⟩ → ⟨initthis,Oj⟩

❽ x = new O(b1, ..., bn) ⟨o,Oj⟩ → ⟨x,Oi⟩
//origin allocation ⟨bh,Oi⟩ → ⟨ph,Oj⟩, where 1 ≤ h ≤ n

add call edge ⟨m,Oi⟩↣ ⟨init,Oj⟩

∀⟨o,Oj⟩ ∈ pts(⟨x,Oi⟩)
❾ x.entry(c1, ..., cn) ⟨entry′,Oj⟩ = dispatch(⟨o,Oj⟩, entry)
//origin entry point ⟨o,Oj⟩ → ⟨entry′this,Oj⟩

⟨ch,Oi⟩ → ⟨ph,Oj⟩, where 1 ≤ h ≤ n
add call edge ⟨m,Oi⟩↣ ⟨entry′,Oj⟩

ble 6.1 as the origin entry points, which are frequently used to run code in parallel or handle an

event. We then reason about the origin attributes in order to distinguish different origins with the

same entry point but different data. The origin attributes can be inferred at two places:
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• Origin Allocation is the allocation site of a receiver object of an origin entry point. The

attributes include the arguments passed to the allocation site. For example, o4 (line 5) is an

origin allocation in Figure 6.2, which is the receiver object of the entry point start() of

Origin T1. As its arguments, s and op1 are the origin attributes of T1.

• Origin Entry Point may be invoked with parameters, of which pointers are also included

in the attributes. For example, onReceive(context, intent) is an entry point of

BroadcastReceiver in Android apps, where intent contains the incoming message and

context represents the environment the message is sent from.

6.2.2 Origin-Sensitive Pointer Analysis

Interestingly, reasoning about pointers and heap objects can be done simultaneously with

origin-sensitive pointer analysis (OPA). Pointer analysis typically uses the pointer assignment

graph (PAG) [42] to represent points-to relations between pointers and objects. To achieve good

precision, the PAG constructed by OPA is built together with the call graph (a.k.a. on-the-fly pointer

analysis [42]). The key difference is that the context of pointers in OPA is represented by origins.

The rules of OPA for Java are summarized in Table 6.2. A set of similar rules can be inferred for

other programming languages.

Intra-Origin Constraints Statements ❶-❼ are in met-hod ⟨m,Oi⟩, and all the program elements

created by them share the same origin Oi to indicate where they are originated from. For example,

the allocated object by statement ❶ is represented as ⟨o,Oi⟩ and assigned to pointer ⟨x,Oi⟩, and

their relation is represented by a points-to edge ⟨o,Oi⟩ → ⟨x,Oi⟩ in the PAG .

An object field pointer is distinguished by the origin of its receiver object. For statement ❹,

each receiver object ⟨o,Ok⟩ corresponds to an object field pointer ⟨o,Ok⟩.f that points to ⟨x,Oi⟩.

Note that a pointer and its points-to objects may have different origins, which shows how data

flows across origins.

Although there exists a large body of work that can infer the content of arrays, analyzing array

index idx in statements ❺❻ is statically undecidable and expensive. Hence, we do not distinguish
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1 public static void main(){//Tmain
2  TA a = new TA();//oa → Ta
3  TB b = new TB();//ob → Tb
4  a.start(); 
5    b.start();
6 }
7 Class TA extends T {
8 TA() { super(); ... }
9 }
10 Class TB extends T {
11 TB() { super(); ... }
12 }

12 Class T {
13 Object f; 
14 T() { 
15     f = new Object();

//without switch: ⟨of,Tmain⟩
//with context switch: ⟨of,Ta⟩ and ⟨of,Tb⟩

16 }
17   public void run(){
18     f.do_something();
19   } 
20 }

Figure 6.3: An example to explain why it is necessary to switch context at origin allocations.
Reprinted with permission from [4].

different array indexes: array objects are modeled as having a single field ∗ that may point to any

value stored in the array, e.g., x[idx] = y is modeled as x.∗ = y. This model simply captures

objects allocated by different origins that flow to an array without any complex index analysis.

Besides, our algorithm can be easily integrated with existing array index analysis algorithms with

no conflict.

A non-origin entry method call ❼ invokes a target method f’ within the same origin Oi as its

caller, even though its receiver object ⟨o,Ok⟩ might be allocated from a different origin Ok. To

determine a virtual call target and its context (e.g., the call on line 13 in Figure 6.2), we use the

type of its receiver object o and the origin Oi of which thread/event-handler executes the target.

The target’s origin must be consistent with its caller’s, regardless of whether it is an entry point or

not.

Inter-Origin Constraints We switch contexts from current origin Oi to a new origin Oj for an

origin allocation ❽ and an origin entry point ❾.

Note that, to avoid false aliasing introduced by thread creations, we analyze every origin allo-

cation in its new origin instead of its parent origin where it should be executed. Figure 6.3 shows

two origins (Ta and Tb) allocated in Origin Tmain. The two origin allocations share the same

super constructor T(). If we analyze them in their parent origin Tmain, only one object of will

be allocated for field f on line 15. This will cause pts(oa.f) = pts(ob.f) = {⟨of , Tmain⟩}, which
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introduces false aliasing. To eliminate such imprecision, OPA creates two objects, ⟨of , Ta⟩ and

⟨of , T b⟩, for each f under each origin by forcing the context switch at origin allocations on lines 2

and 3.

To identify origin allocations on-the-fly, we check the type of the allocated object against the

classes in Table 6.1, i.e., if it implements interface Runnable or event handler handleEvent().

Context switch on ❽ can efficiently separate data flows to the same origin constructor but from dif-

ferent allocation sites, e.g., both op1 and op2 flow to the constructor of T in Figure 6.2. Specifically,

in this example a new and unique origin Oj is created for this new allocation ⟨o,Oj⟩.

Both ❽ and ❾ designate the attributes for the new origin Oj , including constructor arguments

(b1, ..., bn) and method parameters (c1, ..., cn), which reveal significant information of the accessed

data and the origin behavior. To reflect the ownership, the actual parameters use Oi as their contexts

and the formal ones use Oj . Meanwhile, call edges are added in the call graph, e.g., ⟨m,Oi⟩ ↣

⟨init,Oj⟩ for ❽ and ⟨m,Oi⟩↣ ⟨entry′,Oj⟩ for ❾.

Wrapper Functions and Loops In practice, both ❽ and ❾ may be hidden in a wrapper function

(e.g., cross-platform thread wrappers) invoked by multiple call sites. To efficiently separate such

origins, we can extend the entry point of an origin to also include its k-call-site. In our tools, we

set k=1. Meanwhile, for an origin allocated in a loop, we always create two origins with identical

attributes but different origin IDs.

K-Origin-Sensitivity In the same spirit as k-CFA and k-obj, a sequence of origins can be con-

catenated, denoted as k-origin. For example, a method m() can be denoted as follows:

⟨m, [O1,O2, ...,Ok−1,Ok]⟩

where m() is invoked within Origin Ok that has a parent origin Ok−1, etc. k-origin can further

improve the precision when a pointer propagates across nested origins, and we observed such

cases in many of our evaluated programs (e.g., Redis) where thread creations are nested.

Time Complexity Table 6.3 summarizes the worst-case time complexity of different pointer

analysis algorithms according to [186], where p and h are the number of statements and heap
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Algorithm 9: Origin-Sharing Analysis
Global State: OPA - origin-sensitive pointer analysis,

visitedMethods← ∅, // flag visitedMethods
1 m←main. // the main method
2 VisitMethod(m)

3 VisitMethod(∆, y):
4 visitedMethods.add(m)
5 foreach s ∈ m.statements do
6 switch s do
7 case x.f : // read/write object field
8 origins← FindPointsToOrigins(p)
9 foreach O ∈ origins do

10 ComputeOriginSharing(s,f ,O,read/write)
11 end
12 end
13 case x[idx]: // read/write array
14 origins← FindPointsToOrigins(a)
15 foreach O ∈ origins do
16 ComputeOriginSharing(s,∗,O,read/write)
17 end
18 end
19 case m(args): // call a new method
20 foreach m′ ∈ FindCalleeMethods(m(args)) do
21 if !visitedMethods.contains(m′) then
22 VisitMethod(m′)
23 end
24 end
25 end
26 otherwise do
27 break
28 end
29 end
30 end

31 ComputeOriginSharing(s, f , O, isWrite):
Input : s - the statement;

f - accessed field (∗ means array access);
O - origin;
isWrite - true means write and false means read.

32 WO ← GetWriteOrigins(s,f )
33 RO ← GetReadOrigins(s,f )
34 if isWrite && !WO.contains(O) then
35 WO.add(O)
36 end
37 if !isWrite && !RO.contains(O) then
38 RO.add(O)
39 end
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Table 6.3: The time complexity of different pointer analyses. Reprinted with permission from [4].

Analysis Worst-Case Complexity

0-context O(p× h2)
heap O(p3 × h2)
2-CFA + heap O(p5 × h2)
2-obj + heap O(p5 × h2)

1-origin + heap O(p3 × h2)

allocations, respectively. The complexity of k-CFA and k-obj varies according to the context depth

k. However, their worst-case complexity can be doubly exponential [187]. The selective context-

sensitive techniques [19, 79, 80, 81, 82, 130] are also bounded by the context depth and have the

same worst-case complexity as their corresponding full k-CFA and k-obj algorithms.

The 1-origin has the same complexity as 1-call-site-sensitive heap analysis (denoted heap). But

the number of operations is increased linearly by a factor (#O × O%), where #O is the number

of origins and O% is the ratio between the average number of statements within an origin and the

total number of program statements. The ratio is small (<10%) for most applications, according to

our experiments in Section 6.4.

6.2.3 Origin-Sharing Analysis

Based on OPA, our origin-sharing analysis (OSA) uses an origin-sensitive heap abstraction and

automatically identifies memory objects shared by different origins. A sample output is shown in

Figure 6.2(d). A key in OSA is to track the objects accessed in the code path of each origin by

leveraging OPA. Consistently with OPA, OSA is sound, interprocedural, and field-sensitive. More

importantly, OSA is more scalable than conventional thread-escape analysis techniques [121, 122,

188] – it only requires a linear scan of the program statements.

As depicted in Algorithm 9, we traverse the program statements starting from the main entry

method. There are three kinds of statements relevant to OSA:

• For each object field access (statement ❸❹ in Table 6.2), we query OPA to find all the
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possible allocated objects that the base reference may point to. Each object has an origin

which is represented by its allocation site together with an origin. For each such origin

O, we call the procedure ComputeOriginSharing(s, f , O, isWrite) to compute if the field

access is shared by multiple origins or not. In ComputeOriginSharing, we maintain for each

access a set of write origins and a set of read origins, retrieved by GetReadOrigins and

GetWriteOrigins, respectively. If a field access in a statement is accessed by more than one

origin, and with at least one of them is a write, we mark the access as origin-shared. For

static field accesses, the procedure is similar except that each static field is directly encoded

into a unique signature including the class name and the field index.

• For array accesses (statement ❺❻ in Table 6.2), we handle array accesses similar to that of

object field accesses, but query about its field ∗ representing all array elements.

• For method invocation statements (statement ❼❽❾ in Table 6.2) (the receiver object is also

included in the arguments args), we use OPA again to determine the possible callee meth-

ods and traverse their statements.

Compared to thread-escape analysis, OSA has the following key advantages:

• OSA is more general than thread-escape analysis since an origin can represent a thread or an

event;

• OSA is more precise than thread-escape analysis. For example, static variables (and any ob-

ject that is reachable from static variables) are often considered as thread-escaped. However,

certain static variables may only be used by a single thread. OSA can distinguish such cases.

• While standard thread-escape analysis algorithms do not directly work for array accesses

(because they have no information about array aliases), OSA can distinguish if an access a[i]

is an origin-shared array object or not through reasoning about the points-to set of a.∗.

• OSA also identifies origin-shared reads and writes to provide fine-grained access informa-

tion. This is particularly useful for static race detection and performance optimizations.
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Table 6.4: SHB Graph with Origins: the following statements are in method m() with Origin Oi.
Reprinted with permission from [4].

Intra-Origin Happen-before Rules
Statement Intra-Origin Node & HB Edge

❸ x.f = y ∀⟨o,Ok⟩ ∈ pts(⟨x,Oi⟩), write(⟨o,Ok⟩.f )
❹ x = y.f ∀⟨o,Ok⟩ ∈ pts(⟨y,Oi⟩), read(⟨o,Ok⟩.f )
❺ x[idx] = y ∀⟨o,Ok⟩ ∈ pts(⟨x,Oi⟩), write(⟨o,Ok⟩.∗)
❻ x = y[idx] ∀⟨o,Ok⟩ ∈ pts(⟨y,Oi⟩), read(⟨o,Ok⟩.∗)
❼ x = y.f(a1, ..., an) ∀⟨f,Oi⟩ ∈ dispatch(⟨y,Oi⟩, f),

add HB edge: call(⟨f,Oi⟩)⇒ ffirst(⟨f,Oi⟩),
flast(⟨f,Oi⟩)⇒ callnext(⟨f,Oi⟩)

 synchronized(x){ ∀⟨o,Ok⟩ ∈ pts(⟨x,Oi⟩), lock(⟨o,Ok⟩),
. . . } unlock(⟨o,Ok⟩)

Inter-Origin Happen-before Rules
Statement Inter-Origin Node & HB Edge

❾ x.entry(c1, ..., cn) ∀⟨entry,Oj⟩ ∈ dispatch(⟨x,Oi⟩, entry),
add HB edge: entry(Oi,Oj)⇒ originfirst(Oj)

❿ x.join() ∀⟨join,Oj⟩ ∈ dispatch(⟨x,Oi⟩, join),
add HB edge: originlast(Oj)⇒ join(Oj,Oi)

6.3 Static Data Race Detection

In O2, we model both threads and events statically as functional units, each represented by a

static trace of memory accesses and synchronization operations. Our race detection engine uses

hybrid happens-before and lockset analyses similar to most prior work on dynamic race detec-

tion [189] (although ours is static). More specifically, our detection represents happens-before

relations by a static happens-before (SHB) graph [3, 27], which is designed to efficiently compute

incremental changes from source code.

We modify the graph with origins as shown in Table 6.4. We record the field/array read and

write accesses for statements ❸-❻ by creating read and write nodes. For statement ❼, we create

a method call node (call) with two happens-before (HB) edges (denoted⇒): one points from the

call node to the first node (ffirst) of its target method f within the same origin Oi, the other points

121



from the last node (flast) of ⟨f,Oi⟩ to the next node after the call (callnext). Intra-origin HB edges

are created by pointing from one intra-origin node to another in their statement order.

For lock operation , we create lock and unlock nodes to maintain the current lockset. For

Java programs, we consider synchronized blocks and methods. For C/C++ programs, O2

currently only considers monitor-style locks (including both standard pthread mutexes and cus-

tomized locks through configurations). And we aim to support atomics (e.g., std::atomic) and

semaphores in our future work, by adding new happens-before rules from different origins to the

atomic/semaphore operations.

For calls to an origin entry point ❾, we create an origin entry node (entry) to represent the start

of a new origin Oj from its parent origin Oi. And we add an inter-origin HB edge pointing to the

first node (originfirst) of Oj . For thread join statement ❿, we create a join node (join) to indicate the

end of Oj that finally joins to Oi. An inter-origin HB edge is created from the last node (originlast)

of current origin (Oj) to the join node.

Existing static race detection (such as [27]) typically checks each pair of two conflict accesses

from different threads: run a depth-first search (or breadth-first search) starting from one access

and vice versa to check their happens-before relation on the SHB graph, and compute the locksets

for both accesses to check whether they have common lock guards.

However, the efficiency is limited by the redundant work in graph traversals and lockset re-

trievals for all pairs of memory accesses. The straw man approach cannot scale to real-world

programs which can generate large SHB graphs with millions of memory accesses.

6.3.1 Three Sound Optimizations

To address the performance challenges, we develop the following sound optimizations:

Check Happens-Before Relation We only create inter-origin HB edges in the SHB graph. In-

stead of creating intra-origin HB edges, we assign a unique integer ID to each node, which is

monotonically increased during the SHB construction. Therefore, we convert the traversal of vis-

iting all intra-origin nodes along HB edges to a constant time integer comparison.
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Check Lockset Intuitively, a list of locks is associated with each memory access node in the

SHB graph in order to represent the mutex protection. We observe that the number of different

combinations among mutexes is much smaller than the number of conflict memory accesses we

need to check. Therefore, we assign each combination of mutexes (including the empty lockset) a

canonical ID and associate each access node with such an ID. This not only reduces the memory

for storing the SHB graph, but also speeds up the lockset checking process. All memory accesses

with an identical lockset ID, or different IDs corresponding to overlapping locksets, are protected

by the same lock(s), and the intersection of the IDs between two locksets can be cached for later

checks.

Lock-Region-based Race Detection We observe that a synchronization block or method often

guards a large sequence of memory accesses on the same origin-shared object(s) (os), which incurs

redundant race checking. Instead, we treat all the memory accesses on os within the same lock

region as a single memory access on os, and check races on that single access once. This is sound

because their happens-before relations and locksets are exactly the same. This optimization sig-

nificantly boosts O2’s performance by reducing the number of memory access pairs for detecting

data races.

6.3.2 Unify Threads with Android Events

Mobile applications are a representative class of modern software that contains complex inter-

actions between threads and events. For instance, in Android apps, there are hundreds of differ-

ent types of events that can be created from the Activity lifecycles, callbacks, UI, or the system

services [190]. Meanwhile, the app logic may create any number of normal Java threads and

AsyncTask to improve performance.

Keen readers may wonder that O2 may not work well for mobile apps, since such event-

driven applications will generate a large number of origins. However, as we will show in our

experiments, O2 scales well on Android apps, because Android apps often have short-duration

events that explore only a small fraction starting from the entry points.
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O2 detects data races in Android apps through the following treatments. In Android apps,

there is no explicit main method as in other Java programs that can be used as the analysis entry

of O2. Instead, we automatically generate an analysis harness from the main Activity of ev-

ery Android app (i.e., the home screen). The main activity can be identified by parsing the file

AndroidManifest.xml within each Android apk.

Our tool treats each event handler as an origin entry. Once we hit a startActivity() or

startActivityForResult(), we create a harness for the activity being started and analyze

the new harness. All lifecycle event handlers are treated as method calls, while the normal event

handlers are viewed as origin entries in OPA and SHB graph construction. Since all events are

handled by the main thread [191], we protect the memory accesses within all the event handlers by

one global lock, so that no false positive among event handlers will be reported by O2.

6.3.3 Other Implementation Details

Sequential and Relaxed Memory Models Different from sequential consistency, a relaxed

memory model may reorder certain reads and writes in the same thread and different threads may

see different orders. O2 works for both sequential and relaxed memory models. The reason is that

the SHB graph captures inter-origin happens-before relations at synchronization sites, and it does

not assume a global ordering of reads and writes. Hence, our happens-before relations already

relax the ordering constraints for reads and writes from the same origin.

Cross-Module and External Pointers For C/C++, O2 always links the IR files into a single

LLVM module and performs the analysis based on the whole module. Meanwhile, there is always

a default origin (starting from the main entry point), so we do not have to deal with cross-module

pointers. For JVM applications, O2 extends WALA’s ZeroOneCFA to analyze all bytecode-level

pointers loaded by the application classloader. When a pointer is passed from an external function

call for which the IR file does not exist, we will create an anonymous object for that pointer.
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Table 6.5: Performance comparison on JVM programs (in sec.). The left part compares OPA with
other pointer analyses. The right part compares O2 with other race detection algorithms. The
slowdown (in red) is normalized with 0-ctx as the baseline. Reprinted with permission from [4].

Pointer Analysis Race Detection
App 0-ctx #O OPA 1-CFA 2-CFA 1-obj 2-obj 0-ctx O2 1-CFA 2-CFA 1-obj 2-obj RacerD

Avrora 13.42 4 15.56 17.81 56.06 50.30 >4h 20.70 17.85/-14% 30.63/0.48x 615.42/29x 1064/50x - 18.36
Batik 7.22 4 9.83 49.28 2606 >4h >4h 14.47 14.93/3% 84.01/4.81x 2648/182x - - 1min12s
Eclipse 5.03 4 6.52 8.43 8.71 11.84 >4h 7.21 8.03/11% 20.35/1.82x 40.36/4.60x 641.38/88x - *
H2 49.95 3 111.37 192.71 1397 >4h >4h 58.13 169.63/192% 263.00/3.52x 3208/54x - - 38.25
Jython 25.77 4 66.34 16.09 58.85 >4h >4h 163.49 537.63/229% 100.35/-0.39x 172.46/0.05x - - 1min47s
Luindex 10.23 3 15.73 16.74 26.38 >4h >4h 14.43 20.19/40% 31.62/1.19x 1634/112x - - 2min39s
Lusearch 5.06 3 5.66 31.60 2384 6.48 6.63 7.09 7.99/13% 33.79/3.77x 2401/338x 8.58/0.21x 15.05/1.12x 2min39s
Pmd 5.50 3 5.75 6.04 8.00 >4h >4h 25.07 13.32/-47% 57.21/1.28x 122.93/3.90x - - 2min15s
Sunflow 3.13 9 5.68 5.08 5.44 5.12 >4h 20.67 26.01/26% 297.05/13x 2408/116x 3007/144x - 14.77
Tomcat 3.77 6 10.18 30.47 2312 5.89 676.59 7.58 16.87/123% 66.48/7.77x 2829/372x 2918/384x 9589/1.3kx 1min31s
Tradebeans 4.96 3 6.05 6.76 7.54 >4h >4h 8.19 12.05/47% 16.49/1.01x 111.80/13x - - 9.38
Tradesoap 6.25 3 7.44 8.33 9.31 >4h >4h 10.22 10.77/5% 24.32/1.38x 149.53/14x - - 9.38
Xalan 31.30 3 35.73 65.51 3922 213.99 >4h 34.71 42.87/24% 79.33/1.29x 5722/164x 3h/305x - 32.87

ConnectBot 2.40 11 5.45 23.85 3513 >4h >4h 2.49 5.57 /124% 23.99/8.63x 3513/1.4kx - - *
Sipdroid 5.80 15 31.48 14.33 3436 >4h >4h 16.02 228.33/1.3k% 40.88/1.55x 3452/215x - - *
K-9 Mail 6.56 23 14.73 30.88 4284 >4h >4h 8.59 19.49/127% 33.32/2.88x 4288/498x - - 4min56s
Tasks 6.90 7 12.72 117.63 8081 >4h >4h 7.10 12.90/82% 117.77/15.59x 8081/1.1kx - - *
FBReader 6.66 15 20.16 45.26 2.97h >4h >4h 7.49 23.33 /211% 52.79/6.05x 3.10h/1.5kx - - *
VLC 5.35 4 46.40 25.40 3235 >4h >4h 5.39 46.44/762% 25.44/3.72x 3235/599x - - *
FireFox Focus 3.84 8 15.46 17.96 >4h >4h >4h 4.08 15.76/286% 18.34/3.50x - - - 2min5s
Telegram 20.82 134 199.79 83.31 >4h >4h >4h 41.76 372.93/793% 171.42/3.10x - - - *
Zoom 36.77 15 148.01 198.59 >4h >4h >4h 37.62 149.01/296% 200.47/4.33x - - - *
Chrome 6.14 34 108.76 18.43 >4h >4h >4h 7.35 111.79/1.4k% 22.72/2.09x - - - *

HBase 41.96 16 494.64 61.75 >4h >4h >4h >4h 1.34h/-66.5% >4h - - - 8min12s
HDFS 29.03 12 102.83 40.35 165.05 >4h >4h >4h 499.53/-28x >4h >4h - - 3min22s
Yarn 416.37 14 603.70 61.42 55.58 >4h >4h >4h 1.7h/-57.5% >4h >4h - - 8min5s
ZooKeeper 14.40 40 33.45 15.32 33.31 >4h >4h >4h 271.20/-53x >4h >4h - - 21.18

"#O": The number of origins detected during the analysis.
"-": Time out.
"*": RacerD could not run successfully due to compiler errors.

6.4 Experiments

We evaluated O2 on a large collection of real-world, widely-used distributed systems (e.g.,

ZooKeeper and HBase), Android apps (e.g., Firefox and Telegram), key-value stores (e.g., Re-

dis/RedisGraph, Memcached and TDengine), network controllers (Open vSwitch OVS), lock-free

algorithms (e.g., cpqueue and mrlock), as well as the Linux kernel.

6.4.1 Performance for Java, Android and C/C++

6.4.1.1 OPA vs Other Pointer Analyses

The left part of Table 6.5 summarizes the performance of different pointer analysis algorithms

on the JVM benchmarks, including Dacapo [155], a collection of popular Android apps and dis-
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Table 6.6: Performance comparison on C/C++ benchmarks (in sec.). The slowdown (SD) is nor-
malized with 0-ctx as the baseline. Reprinted with permission from [4].

App #KLOC Metrics 0-ctx O2 2-CFA

20.4

Time/SD 5.3 5.8/9% 7.5/41%
Memcached #Pointer 8,400 12,883 15,772
(#O = 12) #Object 2,420 2,468 2,765

#Edge 5,395 10,415 17,116

116

Time/SD 9.3 15.0/61% 275.9/28x
Redis #Pointer 44,535 54,690 281,524
(#O = 15) #Object 14,458 14,913 32,401

#Edge 598,981 963,654 13,530,084

245

Time/SD 213 273/28% OOM
Sqlite3 #Pointer 57,657 61,796 -
(#O = 3) #Object 10,093 10,310 -

#Edge 7,909,626 8,879,155 -

Avg. 126 Time/SD 75.8 97.9/30% -

tributed systems. Overall, OPA significantly outperforms 1-CFA, 2-CFA, 1-obj and 2-obj by 1x,

152x, 390x and 465x speedup (on average) respectively, and OPA has only a small performance

slowdown compared to the context-insensitive baseline (denoted 0-ctx, 1.76x on average). In par-

ticular, the majority of benchmarks running 1-obj and 2-obj cannot terminate within 4 hours.

Note that the number of origins (denoted #O) in the evaluated Android apps is significantly

larger than that in the other JVM applications, up to over a hundred origins in Telegram. However,

OPA is still highly efficient, finishing in a few minutes in the worst case. Compared to the other

algorithms, the performance of origin-sensitivity is comparable to 1-CFA (but much more precise

by identifying thread-/event-local points-to constraints) and several orders of magnitude faster than

2-CFA, 1-obj and 2-obj.

The scalability of k-obj [49] and k-CFA [126] varies depending on the code. For most bench-

marks, more objects are allocated when running k-obj than k-CFA, e.g., 2-CFA allocates 3357

objects for Tomcat, while 2-obj allocates 20679. Meanwhile, opposite cases exist, e.g., Avrora has

7369 objects for 1-CFA and 5848 for 1-obj.
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Table 6.7: Performance and #Shared memory accesses (#S-access) of OSA. Reprinted with per-
mission from [4].

App #S-access Time

Avrora 16 16.72s
Batik 293 7.79s
Eclipse 343 9.22s
H2 2,207 2.3min
Jython 13,121 4.5min
Luindex 2,001 1.6min
Lusearch 252 7.01s
Pmd 300 8.57s
Sunflow 1,603 10.15s
Tomcat 700 15.39s
Tradebeans 45 7.43s
Tradesoap 37 9.12s
Xalan 14 1.2min
Time includes the time of OPA.

Table 6.6 reports the performance for three C/C++ applications (Memcached, Redis and Sqlite3).

OPA achieves upto 17x speedup over 2-CFA on Redis while only incurring 30% slowdown com-

pared with 0-ctx. Moreover, 2-CFA got killed when running on Sqlite3 due to out of memory

(OOM, 32GB) while OPA only imposes 28% slowdown. We note that O2 detected numerous real

races in all these three applications. We will elaborate the case of Memcached in Section 6.4.4.

6.4.1.2 OSA vs Escape Analysis

We compared OSA with an open-source escape analysis TLOA [122], which is integrated in

the state-of-the-art static analysis framework Soot [72]. TLOA uses context-sensitive information

flow analysis to decide whether a field can be accessed by multiple threads. Table 6.7 reports the

number of thread-shared accesses for each benchmark computed by OSA, which has the same

setting with the evaluation of OPA. OSA completes in 51s on average, while TLOA could not

finish within the time limit for all the benchmarks. We further excluded JDK libraries and the

benchmark-specific dependencies (e.g., antlr and asm for Jython). However, TLOA only finishes

the analysis for Avrora in 90s, which generates an imprecise report with no thread-escape accesses.
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Table 6.8: #Races detected by O2 and D4 utilizing different pointer analyses. The percentages of
reduced races (in red) are normalized with 0-ctx as the baseline. The comparison between O2 and
RacerD (v1.0.0) is shown separately on the right, due to different scale. Reprinted with permission
from [4].

App 0-ctx O2 1-CFA 2-CFA 1-obj 2-obj O2 RacerD

Avrora 12,633 38/99.7% 45/99.6% 45/99.6% 47/99.6% - 38 117
Batik 4,369 186/95.7% 4,229/3.2% 640/85.4% - - 186 1,562
Eclipse 958 7/99.3% 944/1.5% 822/14.2% 945/1.4% - 7 *
H2 9,698 2,817/71.0% 7,832/19.2% 6,322/34.8% - - 2,817 6,743
Jython 7,997 3,651/54.3% 2,402/70.0% 2,358/70.5% - - 3,651 52,872
Luindex 3,218 1,792/44.3% 2,821/12.3% 2,271/29.4% - - 1,792 172
Lusearch 567 341/39.9% 538/5.1% 494/12.9% 529/6.7% 526/7.2% 341 172
Pmd 307 256/16.6% 296/3.6% 293/4.6% - - 256 1
Sunflow 9,238 1,925/79.2% 6,868/25.7% 5,899/36.1% 2,288/75.2% - 1,925 69
Tomcat 751 307/59.1% 701/6.7% 693/7.7% 585/22.1% 575/23.4% 307 3,257
Tradebeans 193 75/61.1% 171/11.4% 168/13.0% - - 75 90
Tradesoap 264 64/75.8% 179/32.2% 177/33.0% - - 64 90
Xalan 6 1/83.3% 6/0.0% 6/0.0% 6/0.0% - 1 754
"-": Time out.

For the other benchmarks, TLOA still cannot finish within one hour, which is over 70x (on average)

slower than OSA.

6.4.1.3 Race Detection Performance

The right part of Table 6.5 reports the performance for race detection including the time of

running the corresponding pointer analysis. In summary, O2 achieves 70x speedup on average

over the other context-sensitive detections. Among them, the most speedup (1461x on detection

and 568x in total) is on Tomcat when comparing with 2-obj. Compared to 0-ctx, O2 is only 2.81x

slower on average, and it is even faster for some applications (Avrora and Pmd), due to the much

improved precision of origin-shared memory accesses.

O2 vs RacerD We also compared O2 with RacerD (from the latest release Infer v1.0.0) in Ta-

ble 6.5. RacerD did not complete the detection for 9 out of the 27 benchmarks, due to dependency

limitation of the benchmark or compilation errors. For example, Eclipse has a complex build-

ing procedure, Sipdroid requires Android command which RacerD does not support, and other

Android benchmarks involve legency SDK that could not be resolved. O2 (69s on average) and
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Table 6.9: #Races and #Thread-shared objects (#S-obj) from different pointer analyses for dis-
tributed systems. Reprinted with permission from [4].

#Race #S-obj
App O2 RacerD 0-ctx 1-CFA 2-CFA O2

HBase 687 727 1,269 1,799 - 903
HDFS 910 884 2,322 3,139 6,605 1,066
Yarn 1,164 1,246 5,387 3,083 2,146 1,162
ZooKeeper 747 407 1,389 2,511 4,299 1,271
"-": Time out.

Table 6.10: New Races Detected by O2 (Confirmed by Developers). Reprinted with permission
from [4].

Linux TDengine Redis/RedisGraph OVS cpqueue mrlock Memcached Firefox ZooKeeper HBase Tomcat

#Races 6 6 5 3 7 5 3 2 1 1 1

RacerD (71s on average) have similar performance on Dacapo benchmarks, while RacerD is 90%

slower on average on the two Android benchmarks (i.e., K-9 Mail and Firefox Focus). For the four

distributed systems, O2 (48min, including the execution of a whole program pointer analysis), has

9.6x slowdown on average comparing with RacerD (5min). We also tested RacerD on the three

C/C++ programs in Table 6.6. However, RacerD could not run successfully on Memcached and

Redis, and it reports no violations on Sqlite3.

6.4.2 Precision of Origin-Sensitivity and O2

Tables 6.8 and 6.9 report the number of detected races with different pointer analyses. We

use the number of reported races as the metric to evaluate the end-to-end precision of different

analyses. The baseline is the open-source tool developed in D4 [3], which utilizes the points-to

result from 0-ctx for static race detection.

In summary, O2 reduces warnings by 77% on average, while 1- and 2-CFA reduce 46% and

60%, and 1- and 2-obj reduce 35% and 19% respectively. For the majority of benchmarks, O2

reports significantly fewer races, e.g., Eclipse. For other benchmarks, O2 is much faster to achieve
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a similar precision. For example, O2 reports 38 races for Avrora, both 1- and 2-CFA report 45

races, and 1-obj reports 47 races (while being 60x slower than O2).

O2 vs RacerD RacerD reports two types of thread safety violations in the evaluated benchmarks:

(1) read/write races, and (2) unprotected write violations where a field access at a program location

is outside of synchronization. To perform a fair comparison, we translate the violations in the

RacerD report to a number of potential races: we add up the numbers of read/write races and of the

pairs of conflict field accesses shown in unprotected writes. For distributed systems, we report the

detected races in Table 6.9, since all the other context-sensitive detections run out of time (>4h).

On average, O2 reports 4.33x fewer warnings compared to RacerD (reduces false positives by

82% from Table 6.8). O2 detects new races in FireFox Focus, TDengine, OVS, Memcached and

Redis; while RacerD either reports no races or cannot complete its detection on those programs.

The majority of false positives reported by O2 are due to infeasible paths, which is inherent to

static analysis tools.

6.4.3 Trade-Off between Precision and Performance

Our results show that O2 significantly outperforms k-CFA and k-obj (k ≤ 2) in terms of

both performance and precision (Table 6.5). The reason for the improved precision is that the use

of origins as context significantly improves the analysis precision on the thread- and event-local

objects that are created within an origin. Such origin-local objects would be falsely analyzed as

shared by k-CFA or k-obj if k is smaller than the depth of the call chain inside the thread or event,

whereas such objects can be correctly analyzed as thread-local by O2.

The performance of OPA has obvious slowdown on the distributed systems: the max slowdown

is 9.86x on Yarn compared with 2-CFA. However, its corresponding total time of race detection is

at least 57% faster (up to 53x on ZooKeeper). The reason behind this significant speedup is the

largely reduced number of thread-shared objects as shown in Table 6.9, which means less workload

in both checking happens-before relations and computing common locksets.
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6.4.4 New Races Found in Real-World Software

O2 has detected new races in every real-world code base we tested on, as summarized (par-

tially) in Table 6.10. Most of them are due to a combination of threads and events. If considering

events only or threads only, or considering them separately, these races will be missed. In the fol-

lowing, we elaborate the races found in several high-profile C/C++, Android apps, and distributed

systems.

Linux Kernel We evaluated O2 on the Linux kernel (commit 5b8b9d0c as of April 10th,

2020), compiled with tinyconfig64, clang/LLVM 9.0. We define four types of origins: system calls

with function prefix: __x64_sys_xx, driver functions over file operations (owner, llseek,

read, write, open, release, etc), kernel threads with origin entries kthread_create_on

_cpu() and kthread_create_on_node(), and interrupt handlers with origin entries

request_threaded_irq() and request_irq()). There are 398 system calls included in

our build. For each system call, we create two origins representing concurrent calls of the same

system call, and a shared data pointer if the system call has a parameter that is a pointer (e.g.,

__x64_sys_mincore). In total, 1090 origins are created, including 796 from system calls and

294 from others.

In total, O2 detects 26 races in less than 8 minutes. We manually inspected all these races

and confirmed that 6 are real races, 7 are potential races, and the other 13 are false positives. The

6 real races are all races to the linux kernel bugzilla, and all of them have been confirmed at the

time of writing. The 7 potential races are difficult to manaully inspect due to very complex code

paths involving the races. For the false positives, a majority of them are due to mis-recognition

of spinlocks (such as arch_local_irq_save.38) or infeasible branch conditions which O2

does not handle. The code snippet below shows a real bug found by O2, which detects concurrent

writes on the same element of array vdata (with array index CS_HRES_COARSE).
1 void update_vsyscall_tz(void){ //in class time.vsyscall
2 struct vdso_data *vdata = __arch_get_k_vdso_data();
3 vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest; //RACE
4 vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime; //RACE
5 ...
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6 }

In addition, we found that among the 71459 allocated objects by the kernel (within the con-

figured origins), 329 of them are origin-shared. And 1051 accesses are on origin-shared memory

locations from a total of 36321 memory accesses. The result indicates that the majority of memory

used by the kernel is origin-local, which can be beneficial to region-based memory management.

We also discovered that the system call paths do not create any new kernel threads or register

interrupts. However, driver functions can do both operations. For example, the driver of GPIO

requests a thread to read the events by the kernel API request_threaded_irq †. And the

interrupt requests can create kernel threads by API kthread_create ‡.

Memcached Memcached is a high performance multithreaded event-based key/value cache store

widely used in distributed systems. We applied O2 to commit 14521bd8 (as of May 12th, 2020).

O2 is able to finish analyzing memcached within 5s, and reports 16 new races in total. All these

races are previously unknown. We manually confirmed that 11 of them are real and the rest of

them are potential races. A majority of the real races are on variables such as stats, settings,

time_out, or stop_main_loop. There are also three races that are not on these variables

but look more harmful. We reported the three races to the developers and all of them have been

confirmed. The other five potential races all involve pointer aliases on queued items.

One of the reported races is shown below with the simplified code snippet:
1 void *do_slabs_reassign(){ //event
2 ...
3 if (slabsclass[id].slabs > 1){
4 return cur;//RACE: missing lock
5 }
6 }
7 void *do_slabs_newslabs(){ //thread
8 ...
9 pthread_lock();

10 p->slab_list[p->slabs++] = ptr;//with lock
11 pthread_unlock();
12 ...
13 }

The listed bug is related to Memcached’s slab-base memory allocation, which is used to avoid

†/linux-stable/drivers/gpio/gpiolib.c@1104:8
‡/linux-stable/kernel/irq/manage.c@1279:7 and @1282:7
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memory fragmentation by storing different objects using different slab classes based on their size.

Since the accesses in the event handler is not protected by the lock, there is a data race between

the event handler and all the running threads that try to allocate new slabs. Although another lock-

protected check on the same variable is made later in the function, the data race can still lead to

undefined behaviors. This case is interesting as it shows that unlike previous tools, which only

reason about inter-thread races, O2 is able to unify events and threads to find races in complex

programs that leverage both concepts for concurrency.

FireFox Focus O2 was able to finish in 15s on FireFox Focus 8.0.15 (a privacy-focused mobile

browser), and detected two previously unknown bugs (both reported in Bug-1581940) confirmed

by developers from Mozilla. A simplified code snippet is presented below:
1 // called from Gecko background thread
2 public synchronized IChildProcess bind(){
3 ...
4 Context ctx = GeckoAppShell.getAppCtx();//RACE
5 ...
6 }
7 // called from MainActivity.onCreate()
8 @UiThread
9 public void attachTo(Context context){

10 ...
11 Context appCtx = context.getAppCtx();
12 if(!appCtx.equals(GeckoAppShell.getAppCtx())){
13 GeckoAppShell.setAppCtx(appCtx);//RACE
14 }
15 }

The code involves both FireFox Focus and FireFox’s browser engine, Gecko. Upon the app ini-

tialization, GeckoAppShell.getAppCtx() and GeckoAppShell.setAppCtx(appCtx)

are called without synchronizations, one from Android UI thread (through onCreate event han-

dler), the other from Gecko engine’s background thread. Although in reality, the creation order

between UI thread and Gecko background thread keeps the race from happening, it is possible for

Gecko engine to read an uninitialized application context thus leads to crash.

Distributed Systems We discovered two new races in ZooKeeper 3.5.4 (reported in ZOOKEEPER-

3819) and HBase 2.8.0 (reported in HBase-24374). O2 takes 4.5min to detect the new race in

ZooKeeper by analyzing 40 threads and 88 events. The related code is shown below:
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1 //in class org.apache.zookeeper.server.DataTree
2 public void createNode(..., long ephemeralOwner){ ...
3 HashSet<String> list =ephemerals.get(ephemeralOwner);
4 if (list == null){
5 list = new HashSet<String>();
6 ephemerals.put(ephemeralOwner, list);
7 }
8 synchronized (list) {//RACE
9 list.add(path);

10 }
11 ...
12 }
13 public void deserialize(InputArchive ia, String tag){
14 HashSet<String> list = ephemerals.get(eowner);
15 if (list == null){
16 list = new HashSet<String>();
17 ephemerals.put(eowner, list);
18 }
19 list.add(path);//RACE: missing lock
20 }

These races are caused by interactions between threads and requests. ephemerals is a map in

class DataTree to store the paths of the ephemeral nodes of a session. It is possible that a re-

quest of creating nodes for a session might arrive together with another request to deserialize the

same session, and both requests are handled by different server threads (with super type ZooKeep-

erServer). The lock protection is missing on variable list on line 22, hence both threads can add

paths concurrently to ephemerals. A worse case is that the two code snippets (line 4-7 and line 10-

13) are not protected by common locks or mechanism from ConcurrentHashMap. Hence, the null

checks from two threads on variable list may return null, but only one initialized set can be stored in

ephemerals and all the paths added by another thread are missing. The race in HBase has the same

reason as above, involving two concurrent accesses on a map, keyProviderCache, without locks

from method getKeyProvider() (in class org.apache.hadoop.hbase.io.crypto.

Encryption).

6.5 Summary

We have presented O2, a new system for static race detection. O2 is powered by a novel ab-

straction, origins, that unifies threads and events to effectively reason about shared memory and

pointer aliases. Our extensive evaluation with Java and C/C++ programs demonstrates the poten-
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tial of O2, finding a large number of new races in mature open-source code bases and achieving

dramatic performance speedups and precision improvement over existing static analysis tools. O2

has been integrated into Coderrect, a commerical static analyzer [192]. In future work, we plan to

implement and evaluate O2 for other languages such as Golang, C# and Rust.
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7. CONCLUSION AND FUTURE WORK

This thesis makes contributions to incremental algorithms of pointer analysis and static con-

currency bug detection.

Along the direction of pointer analysis, we present two sets of incremental algorithms, IPA

and SHARP, that are efficient and scalable to real-world Java programs. Established on the new

properties we observed on acyclic PAGs, we present IPA, an end-to-end incremental algorithm for

context-insensitive on-the-fly pointer analysis. IPA handles both statement addition and deletion

that affects the result of pointer analysis, and maintains the soundness and precision as the result

of running whole program pointer analysis. The major contribution of IPA is achieving efficiency

when handling deletions by avoiding the redundant computation and expensive graph reachability

check from existing incremental algorithms. Moreover, we parallel IPA to further boost the per-

formance. To demonstrate the efficiency, we evaluate IPA on DaCapo benchmarks which is 200X

faster than existing state-of-the-art algorithms, while our parallel version only require 24ms on

average.

In order to obtain more precise points-to results, this thesis presents SHARP, an incremental al-

gorithm for context-sensitive pointer analysis that can be generalized to k-CFA and k-obj. Instead

of applying IPA on context-sensitive PAG and CG naively, we identify redundant computation that

iteratively discovers invalid nodes and edges in CG and PAG for a deleted method call statement.

To avoid such redundancy, we propose a precompute algorithm to identify the invalid graph ele-

ments before conducting any update on CG and PAG. Besides, we discuss more parallel scenarios

according to real-world GitHub commits with respect to efficiency, redundancy and conflict. We

conduct an empirical evaluation on real-world GitHub projects. SHARP only requires on average

31s to handle a real-world code commit for k-CFA and k-obj, and our parallelization further im-

proves the performance to 18s per code commit on average on an eight-core machine. Moreover,

the algorithms in IPA and SHARP can be applied to other programming languages, e.g., C/C++ and

Golang.
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Along the direction of static concurrency bug detection, this thesis proposes an static anal-

ysis framework, D4, to detect data races and deadlocks in multithreaded Java programs during

programming phase. Aided by IPA, we design three efficient incremental algorithms on happens-

before analysis, lock-dependency analysis and static concurrency bug detection, in order to achieve

instant feedback. We also evaluate D4 on DaCapo benchmarks and compare with the state-of-the-

art incremental concurrency bug detection tools, ECHO. D4 achieves 10X-2000X speedup, which

is at least 2000X faster than the whole program pointer analysis.

To improve the precision of static concurrency bug detection, we propose "origin" to unify the

concepts of thread and event by treating them as entry point and their attributes. We present origin-

sensitive pointer analysis that precisely and efficiently distinguish origin-shared and origin-local

objects, and show this result in our origin-sharing analysis. We leverage the result of origin-

sensitive pointer analysis to detect concurrency bugs in multithreaded and event-driven programs.

To demonstrate the efficiency and precision of origins, we compare our origin-sharing analysis

with TLOA, a thread escape analysis from Soot. Our analysis only requires 51s on average on

DaCapo benchmarks, while TLOA cannot terminate within an hour. We also evaluate our origin-

based concurrency bug detector on many Java, Android programs and distributed systems, and

compared with the commercial tool, RacerD. Our detector achieves the similar performance as

RacerD, but reports 4.33X fewer races.

Future Work In the future, I would like to pursue two main directions in order to radically im-

prove software quality as well as the experience of developers. The first direction is to collaborate

static analysis with dynamic techniques, in order to improve the precision and confidence of the

detection results. And the second direction is to apply and design static techniques for detecting

vulnerabilities in new and popular programs and languages.

Static error detection techniques still have a long way to go before achieving a reliable, uni-

versal tool to help developers improve the quality of code for everyday usage. Users often lack

of the confidence in speed and precision of static tools due to the hard-to-scale nature and the

mixing of true and false positives. The work D4 proves the potential of static analysis tools in
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the respect of performance. Next step is to improve its precision by verifying reported bugs with

concrete input and execution traces. To reach this goal, dynamic tools, which only report true

positive, is the most useful assistant. Concolic testing, as a practical example of combining static

symbolic execution with concrete runs, inspires me a lot in integrating static concurrency bug de-

tection techniques with efficient dynamic analyses (e.g., fuzzing). Existing hybrid race detection

techniques [181, 193, 194, 195, 196] leverage static analysis to speed up their dynamic procedures

by reducing the suspicious code area, however, cannot guarantee to discover all bugs in the pro-

gram. I will explore the reverse way that dynamic techniques become efficient assistants to filter

out false positives and even verify races reported by static analysis.

More new programming languages emerge according to the demands of new usage scenarios.

Classic programming languages (Java, C/C++), widely-used and maturely-researched, can provide

the precious lessons for the new ones. My goal is to apply my understanding and knowledge

from the classic, mature languages to new, prominent languages. Languages with same features

(e.g., multithreaded, mutex) may expose to the same issues and vulnerabilities, but under different

syntax and semantics with various seriousness. Moreover, the compilers (or interpreters), as the

fundamental component of a language, share similar procedures and algorithms. This generality

across languages triggers me to reconsider my works from a broader view, which in turn stimulates

sound and practical program analysis tools to help more developers with their everyday coding.

138



REFERENCES

[1] B. Liu, J. Huang, and L. Rauchwerger, “Rethinking incremental and parallel pointer analy-

sis,” ACM Trans. Program. Lang. Syst., vol. 41, no. 1, pp. 6:1–6:31, 2019.

[2] B. Liu and J. Huang, “Sharp: Fast incremental context-sensitive pointer analysis for java,”

vol. 6, apr 2022.

[3] B. Liu and J. Huang, “D4: Fast concurrency debugging with parallel differential analysis,”

in Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2018, (New York, NY, USA), pp. 359–373, ACM, 2018.

[4] B. Liu, P. Liu, Y. Li, C.-C. Tsai, D. Da Silva, and J. Huang, “When threads meet events: Ef-

ficient and precise static race detection with origins,” in Proceedings of the 42nd ACM SIG-

PLAN International Conference on Programming Language Design and Implementation,

PLDI 2021, (New York, NY, USA), p. 725–739, Association for Computing Machinery,

2021.

[5] “Average number of new iOS app releases per month as of June 2022.” https:

//www.statista.com/statistics/1020964/apple-app-store-app-

releases-worldwide, 2022.

[6] “Top Google Play Store Statistics 2022 You Must Know.” https://appinventiv.

com/blog/google-play-store-statistics, 2022.

[7] “Development - Linux kernel.” https://en.wikipedia.org/wiki/Linux_

kernel, 2023.

[8] “Ibm gives cancer-killing drug ai project to the open source community.” https:

//www.zdnet.com/article/ibm-reveals-ai-projects-aiming-to-

find-cancer-killing-drugs/, 2022.

139

https://www.statista.com/statistics/1020964/apple-app-store-app-releases-worldwide
https://www.statista.com/statistics/1020964/apple-app-store-app-releases-worldwide
https://www.statista.com/statistics/1020964/apple-app-store-app-releases-worldwide
https://appinventiv.com/blog/google-play-store-statistics
https://appinventiv.com/blog/google-play-store-statistics
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_kernel
https://www.zdnet.com/article/ibm-reveals-ai-projects-aiming-to-find-cancer-killing-drugs/
https://www.zdnet.com/article/ibm-reveals-ai-projects-aiming-to-find-cancer-killing-drugs/
https://www.zdnet.com/article/ibm-reveals-ai-projects-aiming-to-find-cancer-killing-drugs/


[9] “$280 million stolen per month from crypto transactions.” https://cybernews.com/

crypto/flash-boys-2-0-front-runners-draining-280-million-

per-month-from-crypto-transactions/, 2022.

[10] “Report: Software bug led to death in uber’s self-driving crash.” https:

//arstechnica.com/tech-policy/2018/05/report-software-bug-

led-to-death-in-ubers-self-driving-crash/, 2022.

[11] R. Ghiya and L. J. Hendren, “Putting pointer analysis to work,” in Proceedings of the 25th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’98,

(New York, NY, USA), p. 121–133, Association for Computing Machinery, 1998.

[12] R. A. Chowdhury, P. Djeu, B. Cahoon, J. H. Burrill, and K. S. McKinley, “The limits of alias

analysis for scalar optimizations,” in Compiler Construction (E. Duesterwald, ed.), (Berlin,

Heidelberg), pp. 24–38, Springer Berlin Heidelberg, 2004.

[13] M. A. El-Zawawy, “Program optimization based pointer analysis and live stack-heap analy-

sis,” CoRR, vol. abs/1104.0644, 2011.

[14] P. Wu, P. Feautrier, D. Padua, and Z. Sura, “Instance-wise points-to analysis for loop-based

dependence testing,” in Proceedings of the 16th International Conference on Supercomput-

ing, ICS ’02, (New York, NY, USA), p. 262–273, Association for Computing Machinery,

2002.

[15] Y.-S. Hwang, “Parallelizing graph construction operations in programs with cyclic graphs,”

Parallel Computing, vol. 28, no. 9, pp. 1307–1328, 2002.

[16] R. Ghiya, L. J. Hendren, and Y. Zhu, “Detecting parallelism in c programs with recur-

sive data structures,” in Compiler Construction (K. Koskimies, ed.), (Berlin, Heidelberg),

pp. 159–173, Springer Berlin Heidelberg, 1998.

[17] Y. Sui, X. Fan, H. Zhou, and J. Xue, “Loop-oriented pointer analysis for automatic simd

vectorization,” ACM Trans. Embed. Comput. Syst., vol. 17, jan 2018.

140

https://cybernews.com/crypto/flash-boys-2-0-front-runners-draining-280-million-per-month-from-crypto-transactions/
https://cybernews.com/crypto/flash-boys-2-0-front-runners-draining-280-million-per-month-from-crypto-transactions/
https://cybernews.com/crypto/flash-boys-2-0-front-runners-draining-280-million-per-month-from-crypto-transactions/
https://arstechnica.com/tech-policy/2018/05/report-software-bug-led-to-death-in-ubers-self-driving-crash/
https://arstechnica.com/tech-policy/2018/05/report-software-bug-led-to-death-in-ubers-self-driving-crash/
https://arstechnica.com/tech-policy/2018/05/report-software-bug-led-to-death-in-ubers-self-driving-crash/


[18] B. Scholz, J. Blieberger, and T. Fahringer, “Symbolic pointer analysis for detecting memory

leaks,” in Proceedings of the 2000 ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation, PEPM ’00, (New York, NY, USA), p. 104–113,

Association for Computing Machinery, 1999.

[19] S. Z. Guyer and C. Lin, “Error checking with client-driven pointer analysis,” Sci. Comput.

Program., vol. 58, pp. 83–114, Oct. 2005.

[20] N. Dor, M. Rodeh, and M. Sagiv, “Detecting memory errors via static pointer analysis (pre-

liminary experience),” in Proceedings of the 1998 ACM SIGPLAN-SIGSOFT Workshop on

Program Analysis for Software Tools and Engineering, PASTE ’98, (New York, NY, USA),

p. 27–34, Association for Computing Machinery, 1998.

[21] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining views incrementally,” in

Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’93, (New York, NY, USA), p. 157–166, Association for Computing Machinery,

1993.

[22] L. Shang, Y. Lu, and J. Xue, “Fast and precise points-to analysis with incremental cfl-

reachability summarisation: Preliminary experience,” in Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering, ASE 2012, (New York, NY,

USA), pp. 270–273, ACM, 2012.

[23] D. Saha and C. R. Ramakrishnan, “Incremental and demand-driven points-to analysis using

logic programming,” in Proceedings of the 7th ACM SIGPLAN International Conference on

Principles and Practice of Declarative Programming, PPDP ’05, (New York, NY, USA),

pp. 117–128, ACM, 2005.

[24] S. Arzt and E. Bodden, “Reviser: Efficiently updating ide-/ifds-based data-flow analyses in

response to incremental program changes,” in Proceedings of the 36th International Con-

ference on Software Engineering, ICSE 2014, (New York, NY, USA), pp. 288–298, ACM,

2014.

141



[25] G. Kastrinis and Y. Smaragdakis, “Efficient and effective handling of exceptions in java

points-to analysis,” in Proceedings of the 22Nd International Conference on Compiler Con-

struction, CC’13, (Berlin, Heidelberg), pp. 41–60, Springer-Verlag, 2013.

[26] T. Szabó, S. Erdweg, and M. Voelter, “Inca: A dsl for the definition of incremental program

analyses,” in Proceedings of the 31st IEEE/ACM International Conference on Automated

Software Engineering, ASE 2016, (New York, NY, USA), pp. 320–331, ACM, 2016.

[27] S. Zhan and J. Huang, “Echo: Instantaneous in situ race detection in the ide,” in Proceed-

ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, FSE 2016, (New York, NY, USA), p. 775–786, Association for Computing

Machinery, 2016.

[28] D. Saha and C. R. Ramakrishnan, “Symbolic support graph: A space efficient data structure

for incremental tabled evaluation,” in Logic Programming (M. Gabbrielli and G. Gupta,

eds.), (Berlin, Heidelberg), pp. 235–249, Springer Berlin Heidelberg, 2005.

[29] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A randomized scheduler with

probabilistic guarantees of finding bugs,” in Proceedings of the Fifteenth Edition of ASPLOS

on Architectural Support for Programming Languages and Operating Systems, ASPLOS

XV, (New York, NY, USA), pp. 167–178, ACM, 2010.

[30] D. Engler and K. Ashcraft, “Racerx: Effective, static detection of race conditions and dead-

locks,” in Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,

SOSP ’03, (New York, NY, USA), pp. 237–252, ACM, 2003.

[31] C. Flanagan and S. N. Freund, “Fasttrack: Efficient and precise dynamic race detection,”

in Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’09, (New York, NY, USA), pp. 121–133, ACM, 2009.

[32] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated concurrency-bug fixing,” in

Proceedings of the 10th USENIX Conference on Operating Systems Design and Implemen-

tation, OSDI’12, (Berkeley, CA, USA), pp. 221–236, USENIX Association, 2012.

142



[33] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu, “Finding and

reproducing heisenbugs in concurrent programs,” in Proceedings of the 8th USENIX Con-

ference on Operating Systems Design and Implementation, OSDI’08, (Berkeley, CA, USA),

pp. 267–280, USENIX Association, 2008.

[34] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for java,” in Proceedings

of the 27th ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’06, (New York, NY, USA), pp. 308–319, ACM, 2006.

[35] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A dynamic data

race detector for multithreaded programs,” ACM Trans. Comput. Syst., vol. 15, pp. 391–411,

Nov. 1997.

[36] K. Sen, “Race directed random testing of concurrent programs,” in Proceedings of the 29th

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

’08, (New York, NY, USA), pp. 11–21, ACM, 2008.

[37] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: Data race detection in practice,” in

Proceedings of the Workshop on Binary Instrumentation and Applications, WBIA ’09, (New

York, NY, USA), pp. 62–71, ACM, 2009.

[38] J. W. Voung, R. Jhala, and S. Lerner, “Relay: Static race detection on millions of lines of

code,” in Proceedings of the the 6th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineer-

ing, ESEC-FSE ’07, (New York, NY, USA), pp. 205–214, ACM, 2007.

[39] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A coverage-driven testing

tool for multithreaded programs,” in Proceedings of the ACM International Conference on

Object Oriented Programming Systems Languages and Applications, OOPSLA ’12, (New

York, NY, USA), pp. 485–502, ACM, 2012.

[40] L. O. Andersen, Program Analysis and Specialization for the C Programming Language.

PhD thesis, 1994.

143



[41] B. Steensgaard, “Points-to analysis in almost linear time,” in Proceedings of the 23rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’96, (New

York, NY, USA), pp. 32–41, ACM, 1996.

[42] O. Lhoták, “Spark: A flexible points-to analysis framework for Java,” Master’s thesis,

McGill University, December 2002.

[43] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav, “Aliasing in object-oriented

programming,” ch. Alias Analysis for Object-oriented Programs, pp. 196–232, Berlin, Hei-

delberg: Springer-Verlag, 2013.

[44] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?,” in Proceedings of the

2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, PASTE ’01, (New York, NY, USA), pp. 54–61, ACM.

[45] M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive interprocedural points-to anal-

ysis in the presence of function pointers,” in Proceedings of the ACM SIGPLAN 1994 Con-

ference on Programming Language Design and Implementation, PLDI ’94, (New York, NY,

USA), pp. 242–256, ACM, 1994.

[46] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective analysis: Context-

sensitivity, across the board,” in Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’14, (New York, NY, USA),

pp. 485–495, ACM, 2014.

[47] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for points-to analysis,” in Pro-

ceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’13, (New York, NY, USA), pp. 423–434, ACM, 2013.

[48] M. Sridharan and R. Bodík, “Refinement-based context-sensitive points-to analysis for

java,” in Proceedings of the 27th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’06, (New York, NY, USA), pp. 387–400, ACM, 2006.

144



[49] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object sensitivity for points-to

analysis for java,” ACM Trans. Softw. Eng. Methodol., vol. 14, pp. 1–41, Jan. 2005.

[50] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias analysis using

binary decision diagrams,” in Proceedings of the ACM SIGPLAN 2004 Conference on

Programming Language Design and Implementation, PLDI ’04, (New York, NY, USA),

pp. 131–144, ACM, 2004.

[51] B. Hardekopf and C. Lin, “Semi-sparse flow-sensitive pointer analysis,” in Proceedings of

the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’09, (New York, NY, USA), pp. 226–238, ACM, 2009.

[52] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions of lines of code,”

in Proceedings of the 9th Annual IEEE/ACM International Symposium on Code Genera-

tion and Optimization, CGO ’11, (Washington, DC, USA), pp. 289–298, IEEE Computer

Society, 2011.

[53] A. De and D. D’Souza, “Scalable flow-sensitive pointer analysis for java with strong up-

dates,” in Proceedings of the 26th European Conference on Object-Oriented Programming,

ECOOP’12, (Berlin, Heidelberg), pp. 665–687, Springer-Verlag, 2012.

[54] L. Li, C. Cifuentes, and N. Keynes, “Boosting the performance of flow-sensitive points-to

analysis using value flow,” in Proceedings of the 19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations of Software Engineering, ESEC/FSE ’11, (New

York, NY, USA), pp. 343–353, ACM, 2011.

[55] Y. Sui, S. Ye, J. Xue, and P.-C. Yew, “Spas: Scalable path-sensitive pointer analysis on full-

sparse ssa,” in Proceedings of the 9th Asian Conference on Programming Languages and

Systems, APLAS’11, (Berlin, Heidelberg), pp. 155–171, Springer-Verlag, 2011.

[56] D. J. Pearce, P. H. Kelly, and C. Hankin, “Efficient field-sensitive pointer analysis of c,”

ACM Trans. Program. Lang. Syst., vol. 30, Nov. 2007.

145



[57] J. Späth, L. N. Q. Do, K. Ali, and E. Bodden, “Boomerang: Demand-driven flow-

and context-sensitive pointer analysis for java,” in 30th European Conference on Object-

Oriented Programming (ECOOP 2016) (S. Krishnamurthi and B. S. Lerner, eds.), vol. 56 of

Leibniz International Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 22:1–

22:26, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[58] N. Heintze and O. Tardieu, “Demand-driven pointer analysis,” in Proceedings of the ACM

SIGPLAN 2001 Conference on Programming Language Design and Implementation, PLDI

’01, (New York, NY, USA), pp. 24–34, ACM, 2001.

[59] M. Sridharan, D. Gopan, L. Shan, and R. Bodík, “Demand-driven points-to analysis for

java,” in Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications, OOPSLA ’05, (New York, NY,

USA), pp. 59–76, ACM, 2005.

[60] Y. Smaragdakis and G. Balatsouras, “Pointer analysis,” Found. Trends Program. Lang.,

vol. 2, pp. 1–69, Apr. 2015.

[61] M. Sridharan and S. J. Fink, “The complexity of andersen’s analysis in practice,” in Proceed-

ings of the 16th International Symposium on Static Analysis, SAS ’09, (Berlin, Heidelberg),

pp. 205–221, Springer-Verlag, 2009.

[62] J. Dietrich, N. Hollingum, and B. Scholz, “A note on the soundness of difference propaga-

tion,” in Proceedings of the 18th Workshop on Formal Techniques for Java-like Programs,

FTfJP’16, (New York, NY, USA), pp. 3:1–3:5, ACM, 2016.

[63] W. Landi and B. G. Ryder, “Pointer-induced aliasing: A problem classification,” in Pro-

ceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’91, (New York, NY, USA), pp. 93–103, ACM, 1991.

[64] J.-s. Yur, B. G. Ryder, and W. A. Landi, “An incremental flow- and context-sensitive pointer

aliasing analysis,” in Proceedings of the 21st International Conference on Software Engi-

neering, ICSE ’99, (New York, NY, USA), pp. 442–451, ACM, 1999.

146



[65] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification of sophisticated

points-to analyses,” in Proceedings of the 24th ACM SIGPLAN Conference on Object Ori-

ented Programming Systems Languages and Applications, OOPSLA ’09, (New York, NY,

USA), p. 243–262, Association for Computing Machinery, 2009.

[66] M. Bravenboer and Y. Smaragdakis, “Exception analysis and points-to analysis: Better to-

gether,” in Proceedings of the Eighteenth International Symposium on Software Testing and

Analysis, ISSTA ’09, (New York, NY, USA), pp. 1–12, ACM, 2009.

[67] N. Grech and Y. Smaragdakis, “P/taint: Unified points-to and taint analysis,” Proc. ACM

Program. Lang., vol. 1, pp. 102:1–102:28, Oct. 2017.

[68] Y. A. Liu and S. D. Stoller, “From datalog rules to efficient programs with time and space

guarantees,” in Proceedings of the 5th ACM SIGPLAN International Conference on Princi-

ples and Practice of Declaritive Programming, PPDP ’03, (New York, NY, USA), pp. 172–

183, ACM, 2003.

[69] K. T. Tekle and Y. A. Liu, “Precise complexity guarantees for pointer analysis via datalog

with extensions,” TPLP, vol. 16, pp. 916–932, 2016.

[70] B. Motik, Y. Nenov, R. Piro, and I. Horrocks, “Incremental update of datalog materialisa-

tion: The backward/forward algorithm,” in Proceedings of the Twenty-Ninth AAAI Confer-

ence on Artificial Intelligence, AAAI’15, pp. 1560–1568, AAAI Press, 2015.

[71] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L. Veldhuizen,

and G. Washburn, “Design and implementation of the logicblox system,” in Proceedings of

the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD ’15,

(New York, NY, USA), pp. 1371–1382, ACM, 2015.

[72] “Sable/soot: Soot - A Java optimization framework.” https://github.com/Sable/

soot, 2019.

147

https://github.com/Sable/soot
https://github.com/Sable/soot


[73] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth, Z. Szatmári, and

D. Varró, “Emf-incquery: An integrated development environment for live model queries,”

Sci. Comput. Program., vol. 98, pp. 80–99, 2015.

[74] G. Varró and F. Deckwerth, “A rete network construction algorithm for incremental pattern

matching,” in Theory and Practice of Model Transformations (K. Duddy and G. Kappel,

eds.), (Berlin, Heidelberg), pp. 125–140, Springer Berlin Heidelberg, 2013.

[75] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias analysis using

binary decision diagrams,” in Proceedings of the ACM SIGPLAN 2004 Conference on

Programming Language Design and Implementation, PLDI ’04, (New York, NY, USA),

pp. 131–144, ACM, 2004.

[76] J. Krainz and M. Philippsen, “Diff graphs for a fast incremental pointer analysis,” in Pro-

ceedings of the 12th Workshop on Implementation, Compilation, Optimization of Object-

Oriented Languages, Programs and Systems, ICOOOLPS’17, (New York, NY, USA), As-

sociation for Computing Machinery, 2017.

[77] M. Marron, Modeling the Heap: A Practical Approach. PhD thesis, USA, 2008.

AAI3346744.

[78] Y. Lu, L. Shang, X. Xie, and J. Xue, “An incremental points-to analysis with cfl-

reachability,” in Proceedings of the 22Nd International Conference on Compiler Construc-

tion, CC’13, (Berlin, Heidelberg), pp. 61–81, Springer-Verlag, 2013.

[79] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “Precision-guided context sensitivity for

pointer analysis,” Proceedings of the ACM on Programming Languages, vol. 2, no. OOP-

SLA, p. 141, 2018.

[80] Y. Li, T. Tan, A. Møler, and Y. Smaragdakis, “Scalability-first pointer analysis with self-

tuning context-sensitivity,” in Proc. 12th joint meeting of the European Software Engineer-

ing Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engi-

neering (ESEC/FSE), November 2018.

148



[81] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective analysis: context-

sensitivity, across the board,” in ACM SIGPLAN Notices, vol. 49, pp. 485–495, ACM, 2014.

[82] S. Z. Guyer and C. Lin, “Client-driven pointer analysis,” in Proceedings of the 10th Interna-

tional Conference on Static Analysis, SAS’03, (Berlin, Heidelberg), pp. 214–236, Springer-

Verlag, 2003.

[83] B. Hassanshahi, R. K. Ramesh, P. Krishnan, B. Scholz, and Y. Lu, “An efficient tunable

selective points-to analysis for large codebases,” in Proceedings of the 6th ACM SIGPLAN

International Workshop on State Of the Art in Program Analysis, SOAP 2017, (New York,

NY, USA), pp. 13–18, ACM, 2017.

[84] S. Jeong, M. Jeon, S. Cha, and H. Oh, “Data-driven context-sensitivity for points-to analy-

sis,” Proc. ACM Program. Lang., vol. 1, pp. 100:1–100:28, Oct. 2017.

[85] S. Wei and B. G. Ryder, “Adaptive context-sensitive analysis for javascript,” in 29th Eu-

ropean Conference on Object-Oriented Programming (ECOOP 2015) (J. T. Boyland, ed.),

vol. 37 of Leibniz International Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany),

pp. 712–734, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

[86] M. Jeon, S. Jeong, and H. Oh, “Precise and scalable points-to analysis via data-driven con-

text tunneling,” Proc. ACM Program. Lang., vol. 2, pp. 140:1–140:29, Oct. 2018.

[87] S. Putta and R. Nasre, “Parallel replication-based points-to analysis,” in Proceedings of

the 21st International Conference on Compiler Construction, CC’12, (Berlin, Heidelberg),

pp. 61–80, Springer-Verlag, 2012.

[88] M. Méndez-Lojo, A. Mathew, and K. Pingali, “Parallel inclusion-based points-to analy-

sis,” in Proceedings of the ACM International Conference on Object Oriented Programming

Systems Languages and Applications, OOPSLA ’10, (New York, NY, USA), pp. 428–443,

ACM, 2010.

[89] “Galois System.” http://iss.ices.utexas.edu/, 2017.

149

http://iss.ices.utexas.edu/


[90] M. Mendez-Lojo, M. Burtscher, and K. Pingali, “A gpu implementation of inclusion-based

points-to analysis,” in Proceedings of the 17th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’12, (New York, NY, USA), pp. 107–116,

ACM, 2012.

[91] V. Nagaraj and R. Govindarajan, “Parallel flow-sensitive pointer analysis by graph-

rewriting,” in Proceedings of the 22Nd International Conference on Parallel Architectures

and Compilation Techniques, PACT ’13, (Piscataway, NJ, USA), pp. 19–28, IEEE Press,

2013.

[92] J. Zhao, M. G. Burke, and V. Sarkar, “Parallel sparse flow-sensitive points-to analysis,”

in Proceedings of the 27th International Conference on Compiler Construction, CC 2018,

(New York, NY, USA), pp. 59–70, ACM, 2018.

[93] M. Edvinsson, J. Lundberg, and W. Löwe, “Parallel points-to analysis for multi-core ma-

chines,” in Proceedings of the 6th International Conference on High Performance and

Embedded Architectures and Compilers, HiPEAC ’11, (New York, NY, USA), pp. 45–54,

ACM, 2011.

[94] Y. Su, D. Ye, and J. Xue, “Parallel pointer analysis with cfl-reachability,” in Proceedings

of the 2014 Brazilian Conference on Intelligent Systems, BRACIS ’14, (Washington, DC,

USA), pp. 451–460, IEEE Computer Society, 2014.

[95] M. G. Burke, P. R. Carini, J. Choi, and M. Hind, “Flow-insensitive interprocedural alias

analysis in the presence of pointers,” in Languages and Compilers for Parallel Computing,

7th International Workshop, LCPC’94, Ithaca, NY, USA, August 8-10, 1994, Proceedings,

pp. 234–250, 1994.

[96] B. Hardekopf and C. Lin, “The ant and the grasshopper: Fast and accurate pointer analysis

for millions of lines of code,” in Proceedings of the 28th ACM SIGPLAN Conference on

Programming Language Design and Implementation, pp. 290–299, 2007.

150



[97] D. Saha and C. R. Ramakrishnan, “A local algorithm for incremental evaluation of tabled

logic programs,” in Logic Programming (S. Etalle and M. Truszczyński, eds.), (Berlin, Hei-
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