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ABSTRACT 

 

The usage of multi-robot systems to complete monotonous yet complex tasks has become 

increasingly popular. One such category is tasks that require the complete coverage of an 

area, such as the task of vacuuming. The undertaking of a complete coverage task by a 

singular mobile floor cleaning robot requires a minimum of path planning capabilities to 

prevent the recleaning of previously cleaned areas. When more than one robot is utilized 

to complete the same coverage task, there must be some form of global strategy 

implemented that can aid the multi-robot system in reducing the amount of coverage 

overlap, idle time, and overall time required to complete the vacuuming task. Such global 

strategies often utilize a method of decomposing the larger task into smaller subtasks 

which are then allocated among the number of robots within the system. However, many 

of these strategies are either static in their task allocation or are based on a singular robot 

system to accomplish the complete coverage task. The algorithm for global strategy 

proposed in this thesis presents a methodology for utilizing the techniques of triangular 

mesh decomposition, Traveling Salesman Problem optimization, and dynamic flip task 

allocation for multiple floor cleaning robots. 
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1. INTRODUCTION 

1.1. Background 

The task of vacuuming is one of necessary importance to the cleanliness of a building and 

its floors yet the act of completing such a task can be perceived as mundane given the 

repetitiveness and boredom which accompany it. To solve this problem, companies such 

as iRobot and Roborock offer commercially available solutions that can complete the 

vacuuming task. Released in July of 2019 [1] and April of 2022 [2] respectively, iRobot’s 

Roomba s9+ and Roborock’s S7 MaxV Ultra offer state-of-the-art mobile vacuum 

cleaning systems that can autonomously keep a household’s floor clean with little user 

intervention. 

To perform their cleaning operations, such systems employ a variation or 

combination of exploratory and complete coverage path planning algorithms. These 

exploratory algorithms allow the robot to understand and make sense of its workspace by 

creating a detailed map of its surroundings utilizing various onboard sensors. While 

initially inefficient, the data collected by the exploratory algorithm is saved such that it 

can later be used by the complete coverage path planning algorithm for a more time and 

coverage efficient next cleaning. Systems such as those mentioned above typically employ 

a singular robot that goes about performing the task of cleaning the assigned work area. 

These do not exhibit multi-robot system functionality as these systems were designed from 

the ground up to be utilized as standalone devices. 

While the need for multi-robot functionality may not be a priority in a household 

or small office setting as many commercially available systems are intended for, the ability 
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to deploy multiple mobile floor cleaning robots in larger settings such as but not limited 

to hotels, warehouses, and schools gives rise to the need for multi-robot functionality 

which can help free custodians and housekeepers from the mundane task of vacuuming 

long hallways and multiple rooms within a shift. Despite the usefulness of exploratory 

algorithms when employed by a single robot to clean an assigned work area as used by 

the commercially available mobile floor cleaning robots, the problem of strategy arises 

when multiple robots are tasked with cleaning the same work area. 

The scope of strategy in the application of vacuuming comes down to how should 

the work area be cleaned. The primary factor for consideration in implementing a strategy 

is the number and size of the robots to be utilized. The size and number of robots utilized 

influence other aspects of strategy implementation such as the size, shape, and number of 

decomposed regions created within the work area. It is these generated decomposed 

regions that lead to the second factor for consideration in strategy implementation which 

is the determining of an optimal path to traverse the work area such that all decomposed 

regions are visited and cleaned by a robot. In a multi-robot system, a third factor of how 

the decomposed regions, now tasks, will be allocated among the number of available 

robots must also be considered when implementing a strategy as the method of task 

allocation can have an effect on the overall time and power efficiency in completing the 

cleaning task. 

Strategy planning in multi-robot systems is approached in one of two ways: 

centralized and decentralized. In a centralized system, a single central computer 

commands each robot in accordance with the overall task assigned. Furthermore, robots 
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within a centralized system do not exhibit individual intelligence but rather feature sensors 

and systems which record information about that particular robot including speed, 

heading, and orientation with respect to the working environment that is then relayed to 

the central computer for processing and further commands if necessary. By utilizing a 

centralized approach, the robots within the system operate predictably and can be used in 

various settings including organizing warehouses such as Amazon’s fleet of robotic 

pickers [3], commanding a fleet of 1,800 drones to perform mesmerizing light displays 

like the one performed for the Tokyo 2020 Olympics opening ceremony [4], and even 

perform search and rescue operations without human intervention [5]. 

With regards to decentralized systems, this approach is often found in robot 

swarms and is described by [6] as a system consisting of autonomous robots cooperatively 

working together where each robot features local sensing and communication capabilities 

but lacks centralized control or access to global information. In short, the individual robots 

by themselves can perform a simple function but the overall goal of the swarm is only 

achieved when there are many robots involved in completing the assigned task. With 

respect to this research, the employing of a decentralized approach would be akin to having 

multiple robots wandering around aimlessly vacuuming and occasionally bumping into 

objects to then make a preprogrammed turn similar to the more dated commercially sold 

mobile floor cleaning robots. The robots would eventually clean the work area, but the 

time required and energy expended would be highly inefficient. While such an approach 

may not be best suited for a vacuuming application, researchers have been exploring 

potential uses as most decentralized robot swarms, especially large ones, are typically only 
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found in research laboratories. One such example is the Kilobot swarm created in the lab 

of Radhika Nagpal which consists of over 1,000 individual robots that can self-organize 

into various shapes [7]. 

Given the saturation of the commercial market for non-multi-robot mobile floor 

cleaning systems, this research aims to provide a foundation for the development of a 

centralized method of strategy planning to be used by a fleet of 𝑁 number of mobile floor 

cleaning robots in macro-scale cleaning applications such as large indoor spaces. It is 

within these large spaces where one or multiple commercially available floor cleaning 

robots would be inefficient in the amount of time required and the high potential for the 

overlapping of previously cleaned areas due to there being no employed multi-robot 

strategy for the cleaning process. Hence the need for implementing a strategy planning 

algorithm into a fleet of mobile vacuum cleaners which can lead to more efficient cleaning 

times, can help save battery power, and reduce the overlapping of already previously 

cleaned areas. 

 

1.2. Problem Statement 

The problem this research aims to solve is the implementation of a strategy for the dynamic 

task allocation of multiple robots in a complete coverage application such that the amount 

of time a robot is sitting idle after completing its assigned task is minimized when there 

are still tasks assigned to other robots yet to be completed. 
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1.3. Literature Review 

Approaches to strategy planning vary from application to application. Such variations can 

be based on factors such as the complexity of the work environment, if the map of the 

work environment is already known, the number of robots planned to operate within the 

work environment, and the circumstances unique to the particular situation. Furthermore, 

the strategy employed to complete the assigned complete coverage tasks often operates 

behind the scenes of the path planning algorithm but plays a critical role in guiding the 

path planning algorithm through the work environment. 

 

1.3.1. Environment Representation 

One element of strategy planning is how will the robot’s environment be represented. A 

typically utilized approach involves using a grid-based method to discretize the robot’s 

environment into a two-dimensional grid of square cells. The size of the square cells 

dictates the resolution of the grid which can be modified as needed to suit the particular 

application. Each cell within the grid can then be assigned a value based on the state of 

that specific cell. Two common techniques employed in assigning cell values within the 

grid are discussed below. 

Occupancy maps are one method a cell can be assigned a value. Within an 

occupancy map, each cell is given a value that is representative of the likelihood that the 

cell is occupied by an object. In most implementations, the lower the cell value the lower 

the likelihood that the cell is occupied while the higher the cell value the higher the 

likelihood that the cell is occupied. Đakulovic in both [8] and [9] implement an occupancy 
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map where free cells are assigned a value of one while occupied cells are assigned a value 

of infinity. As the path planning algorithm attempts to navigate a robot that can be 

represented by a 𝟕 × 𝟕 grid of cells, the strategy portion of the algorithm further assigns 

cells surrounding obstacles out to seven cells a higher value than the free cells. This 

assignment of higher values to obstacles and cells near obstacles is performed such that 

the path planning portion of the algorithm, which is based on a least-cost function that 

sums up all the cell values within the next possible location of the robot, is dissuaded from 

choosing those cells as the next robot location.  

A second technique utilized to assign cell values is through the use of a neural 

network where each cell within the grid contains a value representative of the amount of 

neural activity present in that particular cell. A popular neural network approach takes 

inspiration from biology and is defined by the following computational model shown 

below in Equation 1 first proposed by Hodgkin and Huxley in 1952 [10]. 

𝐶!
"#!
"$

= −'𝐸% + 𝑉!+𝑔% + (𝐸&' − 𝑉!)𝑔&' − (𝐸( + 𝑉!)𝑔(                                        (1) 

By making a few adjustments to the proposed computational model such as setting 

𝐶! = 1 and substituting 𝐴 = 𝐸% + 𝑉!, the resulting shunting equation first proposed by 

Grossberg [11] is shown below in Equation 2. 

")"
"$
= −𝐴𝑥* + (𝐵 − 𝑥*)𝑆*+(𝑡) − (𝐷 + 𝑥*)𝑆**(𝑡)                                                                   (2) 

Through utilizing Grossberg’s shunting equation, each cell within the grid can then 

be assigned a neural activity value to represent if that cell is a viable next candidate for 

the path planning algorithm to move to or if that particular cell should be avoided. A 

typical application of a bio-inspired neural network (BINN) approach is assigning a 
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positive value to unclean cells, a neutral value of zero to clean cells, and a negative value 

to occupied cells which includes obstacles and other robot locations. This is such that the 

path planning algorithm will be attracted to unclean cells exhibiting the highest neural 

activity values and will be repelled by occupied cells containing the lowest neural activity 

values. Implementations of a BINN approach can be found in Luo and Yang’s works on 

an algorithm for implementing both single robot [12] and multi-robot [13] complete 

coverage strategies in an unknown environment. Sun et al. [14] utilizes an improved 

version of Luo and Yang’s multi-robot approach in the complete coverage path planning 

for autonomous underwater vehicles and Luo further applies a BINN approach to the 

trajectory planning of an autonomous vehicle [15]. 

 

1.3.2. Environment Decomposition 

A second concern regarding strategy planning is how will the work environment be 

decomposed into smaller areas that can then be tasked to an individual robot. 

Decomposition of the work environment can be performed in a multitude of ways however 

the main goal for each strategy is to divide the environment into subregions such that the 

union of the subregions is equal to that of the original environment. 

One common method employed in the decomposition of an environment is that of 

Voronoi decomposition. As defined by [16], this method of decomposition utilizes a set 

of n generating points within the environment to then partition the environment into 

convex polygons such that every polygon contains exactly one generating point and that 

any point contained within a particular polygon is closest in distance to its generating point 
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than to any other. The technique used to calculate the distance between any point within 

the polygon and its generating point will dictate the resulting shape of the polygon. Nair 

and Guruprasad [17] utilize a combination of two generalizations of Voronoi 

decomposition which are geodesic-distance-based and Manhattan-distance-based Voronoi 

decomposition for the multi-robot complete coverage of a known environment. Fu et al. 

[18] implemented an adaptive Voronoi decomposition method for the exploratory 

coverage of an unknown environment by multiple robots using a Divide and Conquer 

method. Hu et al. [19] performs a similar approach to the exploration of an unknown 

environment utilizing a deep reinforcement learning technique in conjunction with 

dynamic Voronoi decomposition which was later applied to a multi-robot complete 

coverage application [20]. While implementations of Voronoi decomposition are 

successful in achieving the complete coverage of an environment, the resulting polygons, 

also referred to as cells, oftentimes are irregular in shape and tend to vary widely in shape 

and area. A method for governing the resulting cell shapes is Centroidal Voronoi 

Tessellations (CVT) as presented in [21] where an iterative process utilizing a hybrid of 

Lloyd’s and MacQueen’s algorithms produces cells more uniform in shape and area. 

 Another commonly employed method is that of Morse decomposition. This 

method of decomposition involves sweeping a line defined by a Morse function through 

a work environment which is then either divided upon encountering an obstacle or 

recombined after the obstacle has been passed as described by [22]. Points at which the 

connectivity of the sweeping line changes as it moves through the work environment are 

referred to as “critical points” which are then used to determine the cell boundaries. Acar 



 

9 

 

and Choset utilize Morse decomposition for the coverage of an unknown environment by 

a single robot with a robot-sized end effector [23] and later along with Lee presented a 

coverage method for a single robot with an end effector larger than the robot yet finite in 

size [24]. While Morse decomposition is a more general form of decomposition that can 

theoretically be applied to any n-dimensional space [22], Boustrophedon decomposition, 

introduced by Choset [25], occurs within the two-dimensional plane of the work 

environment and has been shown to be a specific case of Morse decomposition with a 

Morse function of ℎ(𝑥, 𝑦) = 𝑥 [26]. Boustrophedon decomposition in a complete 

coverage application was implemented in both [27] and [28] for a single robot. While 

Morse decomposition excels in environments with obstacles, it is dependent upon the 

presence of obstacles to produce partitioned areas given the nature of the sweeping line. 

 A method seldom employed is that of triangular mesh decomposition. Upon 

conducting this literary review, it was difficult to locate works that implemented this 

method of decomposition in a complete coverage application that partitions the 

environment into triangles of similar size. One such implementation by Oh et al. [29] 

proposed a method of decomposing the work environment into triangular cells with a 

width equal to the robot. The work environment would then be covered by a robot visiting 

the center of each triangle along its planned path using seven templates to perform 

navigation. While not utilized in the complete coverage sense, [30] and [31] utilize 

triangular mesh for the path planning of the shortest route from a start point to an endpoint. 

Due to the lack of research on utilizing triangular mesh decomposition for complete 

coverage applications, this research aims to fill this knowledge gap presented. 
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1.3.3. Environment Negotiation 

A final matter with regard to strategy planning is how will the environment be negotiated 

by the number of available robots and in the most time-efficient manner possible. One 

method of traversing an environment is to simply allow the robots to go about path 

planning throughout the environment randomly. Known as the Random Walk method, this 

type of method is used in exploratory applications such as search and rescue where a large 

area needs to be covered promptly but not completely. Given the random nature of this 

strategy, the Random Walk method suffers from inefficiencies such as the repeated 

searching of already searched areas. To increase the search efficiency, [32] presents an 

improvement to the Random Walk method by having each robot adjust its step size 

dynamically. While the proposed improvements to the Random Walk method may 

enhance the efficiency of the amount of environment covered by the robots, this method 

falls short in a complete coverage application. The amount of time such a method would 

require to eventually achieve complete coverage of the environment renders it inefficient. 

Another strategy that can be employed in environment negotiation, assuming the 

environment was previously decomposed into smaller regions, is the method of planning 

the shortest path which visits each region created by the decomposition only once. Known 

as the Traveling Salesman Problem (TSP), this problem relates to a salesman needing to 

visit a set of locations in the most efficient and thereby shortest path possible. The solution 

to this problem can be applied to a complete coverage application by replacing the list of 

locations the salesman needs to visit for points within the regions of the decomposed 

environment that the robot(s) must pass through. This technique is applied in the 
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environmental negotiation strategy implemented in [33] by which TSP-based 

reinforcement learning optimization is utilized to generate an optimal path for how a 

singular robot should go about completely covering the work environment. The path 

generated by such an approach provides direction for how the robot should visit each 

decomposed region, or in this case tiles, which would suggest the existence of an ordered 

list detailing which tile to move to next as the robot negotiates the environment.  

For the case of a single robot, each region can simply be visited by the robot along 

its path however when the number of robots is increased, this path must be divided among 

the number of robots to prevent the overlap of cleaned areas along the path. A method 

referred to as “Coverage with Route Clustering” is presented in [34] which was later 

modified for Dubins vehicles in [35] for which an optimal path, such as the path generated 

by a TSP algorithm, is split between multiple robots. In doing so, segments of the global 

path can be assigned to individual robots without overlap. By translating the regions to be 

visited within each segment to tasks, this research aims to implement a similar method as 

a means of allocating tasks between robots with the additional feature of flipping every 

other path segment. This is such that globally the robots negotiate the environment by 

working toward one another which is novel in the application of complete coverage. 
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1.4. Research Goals and Objectives 

The goal of this research is to: 

• Highlight how multiple robots with a global strategy can be used to clean a work 

area more quickly and efficiently when compared to a single robot or multiple 

robots without a global strategy cleaning the same work area. 

• Demonstrate the decrease in idle time and overall cleaning time by dynamically 

reassigning a robot that has completed its assigned tasks to help another robot 

complete its unfinished tasks in simulation. 

• Attempt to apply the algorithm to a real-world cleaning application using at least 

two robots. 
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2. METHODOLOGY 

2.1. Overview 

The strategy planning algorithm can be divided into three main blocks: Image Processing, 

Map Decomposition, and Task Allocation. Each block must be run sequentially in the 

order as mentioned as each subsequent block is reliant upon the output of the previous 

block. In this section, an overview of the algorithm will be presented while a detailed 

description of each block will follow in the succeeding sections. Assume that all functions 

mentioned were provided by MATLAB either through the base program or any additional 

toolboxes utilized unless otherwise stated. 

 

2.1.1. Inputs 

The inputs to the algorithm are: 

1. The edge length of the longest side of the robot measured in grid coordinates. 

2. Length of the longest diagonal from the center point to a corner of the robot 

measured in grid coordinates. 

3. Target minimum triangle mesh edge length. 

4. Desired starting location specified as an integer of either 1) the farthest corner from 

the shape centroid, 2) the closest corner to the shape centroid, or 3) the centroid of 

the shape. 

5. The file path of the completed post-edited LiDAR scan of the work area in PGM 

file format. 

6. The number of robots to be utilized. 
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2.1.2. Outputs 

The strategy planning algorithm outputs have been tailored to reflect the inputs required 

by the subsequently used path planning algorithm. The first output is a probabilistic 

occupancy map of the work area to be completely covered where a value of 0 represents 

a cell to be cleaned denoted by the color white, a value of 1 represents an occupied cell 

denoted by the color black, and 0.5 represents an already cleaned cell when the path 

planning algorithm is performing complete coverage. The second output is a coordinate 

pair containing the starting location for the path planning algorithm to begin completely 

covering. The method by which these outputs are generated will be described in sections 

2.4.3 and 2.4.4 respectively. 

 

2.1.3. Software Utilized 

In addition to the MATLAB base program, the addon toolbox software utilized by the 

strategy planning algorithm is as follows: 

• Image Processing Toolbox 

• Navigation Toolbox 

• Optimization Toolbox 

• Parallel Computing Toolbox 

• Partial Differential Equations Toolbox 

• ROS Toolbox 

• Statistics and Machine Learning Toolbox 
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2.1.4. Required Functions 

Listed below are the functions required in addition to the main roomStrategy script for the 

successful execution of the strategy planning algorithm. The function files are obtainable 

from the repository mentioned in [36].

• allocateTasks 

• directedTSP 

• identifyBoundaries 

• identifyBox2merge 

• identifyTri2merge 

• poly2occgrid 

• polyConn 

• polyNeighbor 

• triDecomposition 

 

2.1.5. Assumptions 

The strategy planning algorithm is based on the following assumptions: 

1. All required software needed to run the algorithm has been preinstalled on the 

machine executing the algorithm. 

2. The map of the completed LiDAR scan is in the PGM file format. 

3. The work area within the completed LiDAR scan forms an enclosed polygon and 

is bordered by at least one layer of occupied cells. 

4. The number of robots to be utilized does not exceed two. 

5. The shape of the robot is a square. 
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2.2. Image Processing 

The Image Processing block involves converting an input PGM file of the completed 

LiDAR scan of the work area to both an occupancy map and a polyshape object. 

 

2.2.1. LiDAR Map Pre-Processing 

Before the PGM file of the LiDAR scan can be input to the algorithm for conversion, there 

is some pre-processing that must be performed to the map to ensure correct boundary 

identification. To begin pre-processing, an image editing software such as GIMP is 

recommended which provides tools for easy image manipulation. In the image editing 

software, the raw LiDAR scan image can be cleaned up by removing any extraneous data 

readings and ensuring that the work area forms an enclosed polygon bordered by at least 

one layer of occupied cells. An example of a raw image compared to an edited image is 

shown in Figure 1 below. 

      

Figure 1. Raw LiDAR scan image compared to edited LiDAR scan image. 
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 As can be seen, the raw image on the left features multiple locations where the 

LiDAR scan produced data points that lie outside the work area. This results in streaked 

areas, which are especially evident in the middle left and top right portions of the raw 

image. To remove these streaked areas, the default shade of light gray which occupies the 

region outside the work area is painted over the streaked areas thereby removing the 

extraneous readings. If these streaked areas are not removed during pre-processing, an 

incorrect representation of the work area may result following the processing of the image 

in the boundary identification step. 

Another issue that may require closer visual inspection is if the work area does not 

form a closed polygon. In the above raw image, various locations about the exterior 

boundary of the work area have gaps in between occupied cells. These gaps must be filled 

in by editing in segments of occupied cells represented by the color black. The result 

should be similar to the edited image on the right in Figure 1 above where all the streaked 

areas have been removed and the exterior border is clearly defined without gaps. In 

performing these edits on the raw image, the work area should now be devoid of most 

measurement errors caused during mapping. 

A final issue is the raw map orientation following the mapping process. This issue 

pertains more to how the algorithm perceives the work environment which in turn affects 

the resulting coverage efficiency. To lessen the impact of this potential deficiency, the raw 

map is visually rotated such that the majority of the exterior boundary borders are vertical.  

Following these edits the map is ready to be input to the algorithm. This is performed by 
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utilizing the imread function where the function input is the file path of the edited image. 

The function output can then be assigned to a variable for access in the following steps.  

 

2.2.2. Identifying Boundaries 

The function utilized to identify the work area boundaries is that of identifyBoundaries, a 

required function that accepts the edited PGM image as input and returns the identified 

exterior and interior boundary coordinates. The Code Example 1 below depicts integral 

parts of the identifyBoundaries function. 

function [exterior, interior] = identifyBoundaries(editedPGM) 

binaryPGM = imbinarize(editedPGM);    % binarize the edited PGM image 

 

[B,~,N,A] = bwboundaries(binaryPGM); 

obs_idx = 1;    % variable to count the number of identified obstacles 

 

%%% MATLAB bwboundaries example code %%% 

% loop through object boundaries   

for k = 1:N  

    % boundary k is the parent of a hole if the k-th column  

    % of the adjacency matrix A contains a non-zero element  

    if (nnz(A(:,k)) > 0)  

        exterior = B{k};          

        % loop through the children of boundary k  

        for l = find(A(:,k))'  

            intBoundary = B{l}; 

             

            % additional code to save the points associated with each 

            % identified interior obstacle 

            tempVar = strcat('obs',num2str(obs_idx));   % update name of obstacle 

            interior.(tempVar)= intBoundary;    % save current obstacle to struct variable 

            obs_idx = obs_idx+1;    % update obstacle count  

        end  

    end  

end 

%%% End MATLAB example code %%% 
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% reduce the number of points describing the exterior boundary 

exterior = reducepoly(exterior,.015); 

end 

Code Example 1. Boundary Identification 

The identifyBoundaries function is primarily centered around bwboundaries which 

requires the input image to be in binary format. Given that the PGM file type stores image 

data in grayscale format, each pixel within the image can be represented by a value ranging 

from 0 to 255 where 0 represents black and 255 represents white. Hence the edited image 

must first be converted to binary format using the imbinarize function. The output of this 

function is a matrix containing the binarized values of each pixel within the input edited 

image. Given that an image is just a matrix of values containing the color values for each 

pixel within the image, the resulting matrix of binarized values can be passed directly into 

the bwboundaries function. 

The bwboundaries function attempts to locate boundaries and any holes associated 

with that particular boundary. In the current use case of the function, the input image 

should ideally contain one boundary which is representative of the work area and any 

identified holes within this boundary are akin to static obstacles within the work area. By 

slightly modifying an example code by MATLAB showing how to use the bwboundaries 

function outputs to loop through each identified boundary and any identified holes 

associated with a particular boundary, any identified holes – more specifically the 

coordinates of the identified hole – are named and stored within the struct variable interior 

for output.  
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Similarly, the coordinates which make up the exterior boundary of the work area 

are also stored in the variable exterior for output. This array of coordinates however can 

be quite long containing hundreds of points identifying every occupied cell on the work 

area exterior boundary. This large quantity of points is not necessary as ideally only the 

coordinates which describe the corners of the work area are required to generate a 

polyshape object. To reduce the number of coordinates describing the work area, the 

function reducepoly can be utilized. Inputting the identified work area coordinates stored 

in the exterior variable and a tolerance value, in this case 0.015, the number of coordinates 

describing the work area can be drastically lessened from hundreds to just tens or less. 

Figure 2 below depicts a sample identification of the work area exterior boundary outlined 

in red, which was originally described by 1895 points now described only by 17 points, 

and any identified interior obstacles within the work area outlined in green. 

 
Figure 2. Boundary identification with two obstacles outlined in green. 
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Both exterior and interior variables are returned to the main workspace however 

in some instances if the work area does not contain any interior obstacles, bwboundaries 

can misidentify the actual work area as an interior obstacle and the image border as the 

exterior boundary resulting in an output similar to that of Figure 3 below.  

 
Figure 3. Boundary identification with no obstacles. 

 To prevent potential errors during interior obstacle removal as a result of the 

misidentification of the work area, a check is conducted on the returned outputs to 

determine if misidentification took place. As shown in Code Example 2 below, the check 

is performed by determining if the number of identified obstacles is equal to one and the 

number of identified exterior boundary coordinates is less than ten. These check values 

were determined based on the fact that the work area would be the lone identified hole 

within the image boundary and the number of coordinates describing the image boundary 

are typically equal to four following the use of reducepoly, although not in all cases, so a 

value of ten was chosen to capture the majority of misidentification incidents.  

% determine if the exterior boundary has been misidentified as an interior obstacle, 

% if so set the interior obstacle as the exterior boundary 

obsNum = fieldnames(interiorIJ);    % determine number of identified interior obstacles 

if (length(exteriorIJ) < 10) && (numel(obsNum) == 1) 

    % reduce the number of points describing the exterior boundary 

    exteriorIJ = reducepoly(interiorIJ.obs1,.01); 

    removeObs = 0;  % do not remove interior obstacles 

else 
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    removeObs = 1;  % do remove interior obstacles 

end 

 

% convert the exterior boundary points from IJ to XY coordinates 

exteriorXY = grid2world(editedMap,exteriorIJ); 

Code Example 2. Work Area Misidentification Check 

 If it is found that the work area was misidentified, the identified interior obstacle 

boundary is resaved as the exterior boundary and the remove obstacle flag is set to 0 to 

skip the obstacle removal process. However before the obstacle removal process can take 

place, it is important to note that the returned coordinates identified by bwboundaries are 

in grid coordinates of the form (𝑖, 𝑗) where 𝑖 represents the row and 𝑗 the column. In order 

to convert these grid coordinates to world coordinates of the form (𝑥, 𝑦) where 𝑥 

represents the distance along the horizontal axis and 𝑦 the distance along the vertical axis, 

the grid2world function must be utilized. This function requires two inputs, an occupancy 

map of the work area and the grid coordinates to be converted. The latter of the two inputs 

is known however the former input will need to be generated. 

To create an occupancy map of the work area, the input edited PGM image pixel 

values will need to be normalized to a value between 0 and 1. In terms of occupancy maps, 

each pixel is referred to as a cell where 0 denotes the likelihood of an unoccupied cell and 

1 an occupied cell. Code Example 3 below outlines the occupancy map generation process. 

% normalize the image to values between 0 and 1 then convert to occupancy 

% values by subtracting from 1 

editedMap_occ = 1 - double(editedPGM)/255; 

% generate an occupancy map from the occupancy values 

editedMap = occupancyMap(editedMap_occ,resolution); 

Code Example 3. PGM to Occupancy Map 
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As previously mentioned, the edited image is simply a matrix of pixel values 

ranging from 0 to 255, and therefore each pixel value will need to be converted to a double 

precision data type using the double function and then divided by 255 to normalize the 

resulting values. These values are almost occupancy values however they are inverted due 

to the inverse meaning of 0 and 1 with respect to occupancy grids and the normalized 

grayscale values of the edited image. For occupancy maps, a value of 0 represents an 

unoccupied cell and is denoted by the color white while in grayscale a value of 0 represents 

the color black. To correct this inverse relationship, the normalized grayscale values of 

the edited image are then subtracted from 1 to convert them to probabilistic occupancy 

values. It is with this matrix of occupancy values that an occupancy map can be generated 

using the occupancyMap function. This function generates an occupancy map based on 

an input array of probabilistic occupancy values and an optional resolution value which 

determines the size of each cell within the occupancy map. By default each cell within the 

occupancy map is 2 cm by 2 cm, however due to the default resolution of the LiDAR map 

generating software of 1 cell per meter, a resolution value of 50 must be applied. Figure 4 

below depicts a generated occupancy map of a work area. 
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Figure 4. Work area occupancy map. 

Now inputting the recently created occupancy map of the work area and the grid 

coordinates to be converted into the grid2world function, the grid coordinates can be 

successfully converted to world coordinates. It is at this point that a polyshape object of 

the work area can be generated. 

 

2.2.3. Polyshape Representation 

With the coordinates of the exterior boundary of the work area and any identified obstacles 

now known, the work area which was once represented as pixels within an image can now 

be represented as a polyshape object or polyshape for short. The purpose for creating a 

polyshape of a particular shape is that MATLAB can perform various geometric queries 

and calculations on the polyshape itself which will be a useful tool in future steps. For 

now, the coordinates of the exterior boundary of the work area will be utilized to generate 

a polyshape of the work area by calling the polyshape function and inputting the (𝑥, 𝑦) 
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coordinate pairs saved in the exterior variable. An example resulting polyshape is shown 

in Figure 5 below. 

 
Figure 5. Polyshape representation of work area. 

In the case of the work area represented in Figure 5 above, the work area did not 

have any identified interior obstacles and was therefore misidentified as an interior 

obstacle as shown in Figure 3. After being checked for misidentification the remove 

obstacle flag for this work area would be set to 0 to skip the obstacle removal process. 

However, if the conditions outlined in the check for misidentification are not met, the 

remove obstacle flag is set to 1. This signals to the algorithm that there are interior 

obstacles to be removed from the work area polyshape. Figure 6 below depicts a work 

area polyshape before obstacle removal. 

 
Figure 6. Polyshape representation of work area prior to obstacle removal. 



 

26 

 

 The obstacle removal process iterates through the number of identified interior 

obstacles. For each obstacle, its points are converted from grid to world coordinates, the 

number of points describing the obstacle is reduced using reducepoly, and a polyshape of 

the obstacle is generated. The final step of the process involves subtracting the obstacle 

polyshape from the work area polyshape. Figure 7 below illustrates a work area polyshape 

following the obstacle removal process. 

 
Figure 7. Polyshape representation of work area post obstacle removal. 

With the work area now represented as a polyshape, the Image Processing block 

of the algorithm is concluded. This polyshape representation of the work area will then be 

passed to the next block for decomposition. 

 

2.3. Map Decomposition 

The Map Decomposition block involves both decomposing the polyshape object 

representing the work area into sections and then determining an optimal global path for 

navigating the decomposed work area. The outputs of this block are a list of tasks to be 

completed and the corresponding polyshape objects. 
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2.3.1. Triangulation Mesh 

The method of decomposition utilized to decompose the work area polyshape is that of a 

triangulation mesh which is applied within the triDecomposition function, a required 

function that accepts the work area polyshape and the target minimum triangle mesh edge 

length as inputs. The function then outputs a struct variable containing the triangulation 

mesh connectivity list, triangle points, a list of polyshape objects, and triangle centroid 

coordinates. The triangulation mesh is formed by the function generateMesh which 

requires first creating a model variable containing the geometry that the triangular mesh 

will be generated from. Code Example 4 below depicts the triangular mesh generation 

steps. 

% perform initial triangulation on room 

TR = triangulation(room); 

 

% generate a geometric model based on initial triangulation 

model = createpde; 

tnodes = TR.Points';  

telements = TR.ConnectivityList'; 

geometryFromMesh(model,tnodes,telements); 

 

% generate triangular mesh 

room_mesh = generateMesh(model,'GeometricOrder','linear','Hmin',min_triEdge); 

Code Example 4. Triangular Mesh Generation 
 

The first step is to perform an initial triangulation on the polyshape object. 

Utilizing the triangulation function, which accepts polyshape objects as an input, a 

triangulation object containing the triangulation points and connectivity list is outputted. 

While the triangulation object produced would be a valid form of decomposition as shown 
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in Figure 8 below, the reason it is not used is due to the inability to have control over the 

size of the triangles produced. 

 
Figure 8. Sample triangulation decomposition output. 

The triangulation object outputted by the triangulation function is a struct variable 

containing the triangulation points and connectivity list which can then be directly 

correlated to the nodes and elements variable inputs of the geometryFromMesh function 

respectively. With the inclusion of the desired model variable which was previously 

assigned with “createpde” to denote it as a geometric model as input, geometryFromMesh 

creates geometry within the model variable according to the geometry stored within the 

nodes and elements variables. It is at this point that the model variable required to generate 

the triangular mesh has been successfully created. 
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Now calling the generateMesh function with the model variable input and the 

“GeometricOrder” and “Hmin” options set to “linear” and the target minimum triangle 

mesh edge length respectively, a triangulation mesh of the work area polyshape object is 

generated and saved to a variable. Figure 9 below illustrates a resulting triangulation mesh. 

 
Figure 9. Sample triangulation mesh decomposition output. 

To address the potential issue of generating a high number of triangles using this 

method, caused by a low input target minimum edge length or not adequately reducing the 

number of points describing each boundary which may lead to the generation of many 

triangles when performing the initial triangulation and subsequently the triangular mesh, 

a check for the number of generated triangles is implemented as shown in the Code 

Example 5 below. 
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% regulate the number of generated triangles in the mesh to 250 or less 

if length(room_mesh.Elements') >= 250 

    num_triangles = length(room_mesh.Elements'); 

    min_triEdge = min_triEdge+.1; % increment minimum edge length to create larger triangles 

 

    loop_count = 1; % initialize loop counter 

    while (num_triangles > 250) && (loop_count <= 500) 

        % regenerate triangular mesh 

        room_mesh = generateMesh(model,'GeometricOrder','linear','Hmin',min_triEdge); 

 

        num_triangles = length(room_mesh.Elements'); % update number of triangles within mesh 

        min_triEdge = min_triEdge+.1;   % increment target minimum edge length 

        loop_count = loop_count+1;  % increment loop counter 

    end 

end 

Code Example 5. Triangle Mesh Regulation 

The threshold for this check is 250 triangles which was settled upon after 

reviewing the performance of the TSP algorithm, which will be described in a later section, 

whose problem size to determine an optimal path through 𝑁 number of points scales by 

𝑁, according to [37]. Hence increasing the amount of time required by the algorithm to 

determine an optimal path and the time required by the strategy planning algorithm 

overall. If it is found that the number of triangles exceeds 250, the process of generating 

the triangular mesh is repeated by incrementing the target triangle mesh minimum edge 

length by a value of 0.1 and rechecking the number of triangles produced. This continues 

until either the number of triangles falls below the 250 threshold or the number of 

iterations performed exceeds 500 to prevent the algorithm from becoming stuck in this 

process.  

Following the generation of the triangulation mesh and checking the number of 

triangles generated, each triangle within the mesh is transformed into a polyshape object 
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by iterating through the number of triangles generated. This value is obtained from the 

number of rows within the elements array of the triangulation mesh where each row 

describes a triangle and each column contains an index value corresponding to a row 

within the nodes array of the triangulation mesh denoting where each coordinate pair is 

stored. By assigning each coordinate to a variable A, B, and C, a polyshape object of the 

current triangle can be generated based on these points. Furthermore, once the triangle is 

represented as a polyshape object the triangle centroid can also be calculated using the 

centroid function. Saving both the elements array and nodes array to a struct variable for 

later reference, the polyshape object of each triangle and corresponding centroid 

coordinates are also saved to the same struct variable which is then returned to the main 

workspace alongside the variable storing the triangulation mesh. 

 

2.3.2. Global Optimal Path Identification 

To identify a global optimal path, a solver-based TSP algorithm is utilized. Contained 

within the required directedTSP function, this algorithm accepts coordinates of 𝑁 points 

and attempts to determine an optimal path that passes through all points exactly once. In 

this use case of the algorithm, the input points are the centroids of the triangles, although 

in later uses of the TSP algorithm centroids of the current polygons. The overall flow of 

the algorithm as paraphrased from [37] is to initially determine all possible connections or 

“trips” between each of the input points, add constraints to these trips to ensure each point 

has only two associated trips, perform an initial optimization which often results in more 

than one cycle referred to as “subtours”, and then continuing to optimize the path until 
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only one subtour remains by iteratively adding additional constraints to prevent that 

particular subtour from occurring again. The output path of this algorithm is a circular 

graph where each node represents a polygon centroid, and each edge is the path direction 

from node to node as shown in Figure 10 below. 

 
Figure 10. TSP algorithm output graph. 

In examining Figure 10, it becomes evident there is no clear global path for 

navigating from node to node. To achieve a global path, all edge directions from node to 

node must point in the same direction. This is remedied by including additional code 

beneath the TSP algorithm within the directedTSP function to iterate through each node 

beginning at node 1, determine if the current node is the source or target of either edge, 

then flip one of the edges per one of two rules: 
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1) If the current node is a first edge target and is not yet a source node, flip the 

second edge such that the current node is now the second edge source. 

2) If the current node is a first edge target and is a source node, flip the first edge 

such that the current node is now the first edge source. 

The resulting graph in following the above rules is shown in Figure 11 below. 

 
Figure 11. TSP algorithm directed output graph. 

As can be observed, there is now a clear global path for navigating from node to 

node. Figure 12 below depicts the directed output graph overlayed on the global map 

highlighting the correspondence between the circle graph nodes and the centroids of the 

decomposed regions within the work environment. 
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Figure 12. Directed output graph overlayed on global map. 

A list of nodes can now be generated which is outputted back to the main 

workspace for later reference. An added benefit to utilizing the TSP algorithm is the 

automatic labeling of each node to a numeric value that directly corresponds to an index 

of a polygon within the polyshape list. This benefit helps in identifying which shapes to 

merge, are neighbors, or the specific tasks to be completed as the directedTSP function is 

called after any change in the number of polyshape objects within the work area for a total 

of four times throughout the course of the strategy planning algorithm. 
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2.3.3. Triangle Merging 

As seen in Figure 9, some resulting triangulation mesh triangles are too small for a robot 

to fit into. To remedy this issue, triangles can be merged with their neighbors to form 

polygons of larger areas that a robot could then fit into. Performed within the required 

function identifyTri2merge, identifying which triangles to be merged simply involves 

iterating through each triangle, calculating its base and height, then determining if either 

of these values falls below a specific threshold; in this case, the threshold value is 0.5	𝑚 

for both base and height. If a triangle is identified to require merging, its node label is 

saved to a variable. After this process has been completed, the identified node labels are 

then placed in ascending order which will then be referenced in the merging process 

depicted in the Code Example 6 below. 

offset = 0; % counter to track the number of nodes removed from the original node list 

for i = 1:length(tri2merge) 

    % identify node to be merged by subtracting the offset from the current node value 

    node2merge = tri2merge(i,1)-offset; 

 

    Gtri = polyConn(tri.shape); % get current polygon connectivity 

 

    % determine which neighboring node to merge with 

    neighbor2merge = polyNeighbor(Gtri, node2merge, tri.shape); 

 

    % merge neighbor node with current triangle node 

    % save resulting merged polygon to neighbor node index in shape list 

    neighborTri = tri.shape(neighbor2merge); 

    currentTri = tri.shape(node2merge); 

    tri.shape(neighbor2merge) = union(neighborTri,currentTri); 

 

    offset = offset+1;  % increment offset value 

    tri.shape(node2merge) = [];   % remove merged triangle node from shape list 

end 

Code Example 6. Triangle Merging Process 
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 The process of merging the identified triangles involves first determining the 

neighbors of the triangle-to-be-merged and then implementing a criterion for which of the 

neighbors the identified triangle should be merged with. To identify the neighbors of the 

triangle-to-be-merged, the connectivity of the triangles must first be found which is done 

by the required function polyConn shown in the Code Example 7 below. 

function Gpoly = polyConn(pshape) 

pbuff = polybuffer(pshape,.0001);   % add a buffer to each polyshape 

 

% allocate an adjacency matrix of zeros of size NxN where N is equal to the 

% number of polyshapes 

pborder = zeros(length(pshape));  

 

% loop through each polyshape object and determine which other polyshapes 

% border it 

for i = 1:length(pshape) 

    for j = (i+1):length(pshape) 

        % if the area of intersection between the current polyshape and 

        % another exceeds the set threshold, set the corresponding 

        % adjacency matrix location to true 

        pborder(j,i) = area(intersect(pbuff(j),pbuff(i))) > 3e-6; 

    end 

end 

 

% generate a connectivity graph of the filled in adjacency matrix 

Gpoly = graph(pborder,'lower'); 

end 

Code Example 7. Polygon Connectivity 

Modified from a function by Loren Shure to identify neighboring states [38], 

polyConn identifies neighboring triangles from a list of polyshape objects by adding a 

small buffer to the borders of all triangles using the polybuffer function and then 

examining the area of intersection between them. The result is a graph where each 
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neighboring triangle node is connected by an edge as depicted in the Figure 13 below and 

is overlayed on top of the work area for better visual reference in the following Figure 14. 

 
Figure 13. Triangle connectivity graph. 

 
Figure 14. Triangle connectivity graph overlayed on work area. 
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With the connectivity of the triangles now known, the neighbors of the identified 

triangle-to-be-merged can then be determined by examining the end nodes of the 

connectivity graph. By calling the required function polyNeighbor, which takes the 

connectivity graph, the triangle-to-be-merged node label, and the list of polyshape objects 

as input, neighboring triangles are identified by locating the indices of the triangle-to-be-

merged node label within the end node array of the connectivity graph. In finding these 

indices, the neighboring triangle is the other end node value within that row index and are 

saved to a variable. Identifying which of these neighbors to merge with is similar to 

polyConn by inflating each of the identified neighbors’ borders and examining the area of 

intersection between them and the triangle-to-be-merged. The neighbor to merge with is 

then selected by choosing the neighboring triangle with the greatest amount of overlap 

with the triangle-to-be-merged. The node value of this neighbor is then returned to the 

main workspace. 

The identified neighbor and triangle-to-be-merged are then finally merged into a 

new single polyshape object by using the union function. This new polyshape object is 

then stored within the identified neighbor’s node index of the polyshape object list while 

the polyshape stored within the now merged triangle-to-be-merged node index is removed 

from the polyshape object list. This merging process continues iteratively until all triangles 

to be merged within the list have been merged. The result of the triangle merging process 

in comparison to before is shown below in Figure 15. 
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Figure 15. Triangle merging process before and after comparison. 

Do note that since array elements are deleted throughout the process, the order in 

which the merging process is conducted is critical. Every time an element is deleted from 

the polyshape object list, an offset variable needs to be incremented. This offset value is 

then subtracted from the node value of the next identified triangle to be merged such that 

the correct node index values are utilized. 

 

2.3.4. Bounding Boxes 

Despite ridding of many smaller triangles, the resulting polygons still exhibit many narrow 

corners and awkward edges that would inhibit the ability of a robot to sufficiently cover. 

The solution to this issue is to generate bounding boxes for each of the resulting polygon 

shapes. In doing so, many of the narrow corners and awkward edges are removed with 

sharp 90-degree corners and straight edges. 

 To generate bounding boxes for each polygon, the boundingbox function is used 

which outputs the 𝑥 and 𝑦 limits for each input polygon polyshape object. Utilizing these 
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limits, the minimum and maximum coordinate pairs are determined and are utilized to 

create a new rectangular polyshape object for each polygon as shown in Figure 16 below. 

 
Figure 16. Merged triangle polygons converted into bounding boxes. 

 In performing the conversion to bounding boxes, many areas of overlap between 

other bounding boxes occur as well as some boxes extending outside the work area and 

hence will need to be cleaned up. The cleanup process begins by creating a polyshape 

object that is the negative of the work area then iterating through each bounding box to 

remove any overlaps between it and neighboring bounding boxes or the negative of the 

work area. Overlap between the current bounding box and the negative of the work area 

is removed by simply subtracting the latter from the former. Overlaps between bounding 
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boxes require first utilizing polyConn to get the current bounding box connectivity, 

implementing a similar process to polyNeighbor where the identified neighbors are 

narrowed down to one except in this case all identified neighbors are needed, then 

removing any overlapping regions between the current bounding box and identified 

neighbors from the bounding box with the higher area value. In some instances, this 

process will result in a current bounding box that is completely removed. If such a situation 

occurs, the node value corresponding to the bounding box is removed from the bounding 

box polyshape object list and an offset value is incremented similar to the triangle merging 

process. Figure 17 depicts the resulting bounding boxes following the cleanup process. 

 
Figure 17. Cleaned up bounding boxes. 
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 Each bounding box is then examined for slivers which are small areas that jut out 

from the main polyshape object and checked such that each polyshape object consists of 

only one region. If any slivers are identified that area is turned into its own polyshape 

object, subtracted from the parent polyshape object, and appended to the list of polyshape 

objects along with any supplementary regions found. It is at this point the merging process 

can take place. 

 Similar to the triangle merging process, the bounding box merging process begins 

with identifying which bounding boxes to merge by calling the required 

identifyBox2merge function. This is done by iterating through each polyshape object 

within the list and determining if the robot, whose size was an input to the strategy 

planning algorithm, can fit within that polyshape object. If the robot cannot fit, the node 

value index for that particular polyshape object is added to a merging list. This list is then 

put into ascending order before the merging process which features the same steps utilized 

in the triangle merging process. The final step is to then ensure that each resulting 

polyshape object contains only one region and has no unnecessary holes. If more than one 

region or a hole is identified, a bounding box covering the entire polyshape object is 

created and replaces the original polyshape object. This can result in some overlap with 

neighboring bounding boxes or even regions outside the work area. Hence, these new 

polyshape objects are recleaned before being saved to the final bounding box polyshape 

object list. Figure 18 below depicts the results of the bounding box merging process. 
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Figure 18. Bounding boxes post-merging process. 

 Following the bounding box merging process, the centroid coordinates of each 

remaining polygon are calculated. These coordinates are then passed into the directedTSP 

function one final time. It is this generated global path, output in the form of a node list, 

which will dictate the order by which each of the resulting bounding boxes are tasked to 

the robots for complete coverage. Figure 19 below illustrates the outcome of the map 

decomposition block of the strategy planning algorithm by overlaying the identified global 

path by the TSP algorithm over the resulting bounding boxes shown in the previous Figure 

18. 
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Figure 19. Resulting bounding boxes with global path overlayed. 

This concludes the Map Decomposition block of the algorithm. The final bounding 

box list of polyshape objects and node list will then be passed to the next block for task 

allocation. 

 

2.4. Task Allocation 

The Task Allocation block involves allocating the tasks as mentioned within the node list, 

then generating an occupancy map and starting location for each task as required by the 

path planning algorithm. 
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2.4.1. Allocation of Tasks 

The process of allocating tasks involves first dividing the node list into adjacent segments 

based on the number of available robots. A sample node list is depicted in Figure 20. 

 
Figure 20. Sample node list. 

 The node list is divided into three columns. The first column is the node index 

value while the second and third columns contain the 𝑥 and 𝑦 coordinates for each polygon 

centroid. For the purposes of task allocation, only the first column will need to be 

examined. To begin the allocation process, the last row of the node list is removed due to 

the circular nature of the graph produced by the TSP algorithm where node 1 appears twice 

within the list. With the last row now removed, the required function allocateTasks shown 

in Code Example 8 below takes the task list and the number of robots as inputs and outputs 

a cell array with the allocated tasks in segments to be assigned.  
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function task_segments = allocateTasks(task_list, numRobots) 

% due to limitations of the below process with 3 tasks divided between 2 

% robots, check if the number of tasks is equal to 3 

if height(task_list) == 3 

    task_segments = {task_list(1:2,:)}; % assign tasks 1 and 2 to segment 1 

    task_segments(2,:) = {task_list(3,:)};  % assign task 3 to segment 2 

else 

    % calculate the number of tasks per segment and round down to the nearest integer 

    num_task_per_segment = fix(height(task_list)/numRobots); 

 

    % calculate the number of segments with an equal number of tasks and 

    % round down to the nearest integer 

    num_equal_segments = fix(height(task_list)/num_task_per_segment); 

     

    % generate an array of ones with length equivalent to the number of equal 

    % segments and multiply each array element by the number of task per segment 

    segment_array = num_task_per_segment*ones(1,num_equal_segments); 

 

    % determine the number of remaining tasks 

    rem_tasks = rem(height(task_list),num_task_per_segment); 

     

    % for each remaining task, increase the number of tasks within the 

    % current segment index by 1 

    for i = 1:rem_tasks 

        segment_array(i) = segment_array(i)+1; 

    end 

     

    % convert the task list matrix to a cell array 

    task_segments = mat2cell(task_list,segment_array,1); 

end 

 

% for every even task segment, flip the task order 

for i = 1:length(task_segments) 

    if mod(i,2) == 1; continue; 

    else task_segments{i} = flip(task_segments{i}); 

    end 

end 

end 

Code Example 8. Task Allocation 
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This is achieved by first determining the number of tasks to be assigned per 

segment by dividing the number of tasks by the number of robots and rounding down the 

result to the nearest whole number. Referencing the node list in the Figure 20 above which 

contains 17 tasks to be allocated between two robots, the number of tasks per segment 

would be equal to 8. Following this, the number of segments with an equal number of 

tasks is calculated and the result is rounded down to the nearest integer value which in this 

example would be two. These generated values are then used to form a segment array with 

a length equivalent to the number of segments with an equal number of tasks. Each 

element value within the newly made segment array is representative of the number of 

tasks to be assigned to the corresponding segment. In this instance, the segment array 

would be of length two with values [8	, 8].  

Following this, the number of remaining tasks is determined. As the number of 

remaining tasks will always be less than the number of elements within the segment array, 

this value can be utilized as an index to iterate through the segment array values in an 

ascending fashion and increase each encountered array index value by one. In the case of 

the ongoing example, the number of remaining tasks would be one for a final segment 

array result of [9	, 8] meaning that the first segment will consist of nine tasks and segment 

two will consist of eight tasks. Utilizing the mat2cell function, the task list array is then 

converted into an 𝑁 × 1 cell array where 𝑁 is equal to the number of elements within the 

segment array generated previously. Each cell is then assigned a length according to the 

value of the corresponding segment array element. The resulting example allocated task 
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output is shown in Figure 21 below where task segment one contains nine tasks while task 

segment two contains eight tasks. 

 
Figure 21. Task allocation output. 

 In performing this task allocation step, the global path is sliced into adjacent 

segments with global directions as shown in Figure 22 and overlayed on the global map 

in Figure 23. It is worth noting that the described process does not work for task lists 

containing one or three tasks. The reasoning for one task is trivial in that a single task 

cannot be divided up in the above manner however the reason behind three tasks is not so 

trivial. It was found that the above process does not work properly with three tasks so a 

check was implemented before the main task allocation process such that if there are three 

tasks to be allocated, the first segment will contain two tasks and the second segment one 

task. 
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Figure 22. Segmented global path. 

 
Figure 23. Segmented global path overlayed on global map. 
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 If these were the global directions utilized, the robots would work moving away 

from each other meaning that if task reallocation were to be performed then a robot may 

be required to travel a longer distance to reach the new reallocated tasks. To remedy this 

issue, the global direction of each even task segment is flipped as shown in the task 

allocation output of Figure 24. 

 
Figure 24. Flipped task allocation output. 

 In performing the flipping of each even task segment, the robots will now work 

toward each other as shown by the global direction depicted in Figure 25 and the 

overlayed path in Figure 26. 

 
Figure 25. Flipped segmented global path. 
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Figure 26. Flipped segmented global path overlayed on global map. 

 In working towards one another, the time required for navigating to any reallocated 

task should theoretically be reduced for a physical robot system and thereby decrease the 

overall cleaning time. With the tasks now allocated and the global direction for each task 

segment known, the process of performing complete coverage on each task can begin. 
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2.4.2. Dynamic Task Allocation 

Performing complete coverage with multiple robots and the incorporating of task 

reallocation requires the use of parallel computing. MATLAB offers three main solutions 

for executing programs in parallel which are parfor, parfeval, and SPMD described in [39]. 

Both parfor and parfeval do not permit the exchanging of data between parallel processes 

which leaves SPMD as the remaining solution. An acronym for Single Program Multiple 

Data, SPMD does allow for the sharing of data between parallel processes which are 

referred to as “workers”. This is useful in the case of task reallocation as the robots are 

able to signal to each other when one robot has completed its assigned tasks so that the 

idle robot can then be sent reallocated tasks. A program overview of each SPMD worker 

is shown in Figure 27 below. 
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Figure 27. SPMD worker flowchart. 
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The SPMD program can be simplified into three main parts which have been 

highlighted for visual reference. Highlighted in orange, this portion of the program 

involves completing the originally assigned tasks while also checking after completing 

each task if the other robot has signaled it has finished its originally assigned tasks. The 

portion highlighted in purple accounts for the situation in which the other robot has 

signaled it has completed its originally assigned tasks. If the other robot does communicate 

it has finished, the loop outlining the orange portion is broken and a decision based on the 

number of remaining tasks on the current robot is encountered. If the number of remaining 

tasks is greater than one, the task reallocation part of the program is executed and the 

reallocated tasks are sent to the other robot. If there is only one task left, the task 

reallocation portion is bypassed and the other robot is instructed to stand by until the 

current robot has completed the remaining task. However if the current robot is able to 

complete all of its originally assigned tasks, the program segment highlighted in yellow is 

executed. This program portion handles the situation in which the current robot signals to 

the other robot it has completed its originally assigned tasks. Based on the information 

received from the other robot, the current robot will either bypass task reallocation and 

stand by for the other robot to finish its remaining task or receive the reallocated tasks 

from the other robot and then proceed to complete these tasks before finishing the 

program. 

In order to keep both workers in sync based on the current situation and to prevent 

one worker from finishing before the other which results in an error due to the 

synchronization required by SPMD in that all workers must exit the SPMD block at the 
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same time, SPMD barriers must be utilized. When a barrier is encountered by a worker, 

program execution stops and waits until the other worker has also encountered a barrier 

before proceeding. This pause in execution is useful when exchanging information 

between workers to ensure the receiving worker is always waiting on the sender to send 

the information and not in the reverse. In total five barriers are utilized for each worker 

and while not implemented within the program with an identifier, each SPMD barrier has 

been assigned an identifier to differentiate it from the others. In some cases when both 

robots finish their assigned tasks simultaneously, the program outlined in the flowchart 

above results in an error. To catch this potential error, a try-catch block is implemented 

around the entirety of the SPMD code block such that if the error occurs when trying to 

execute the program, the catch block will catch the error. 

 

2.4.3. Occupancy Map Generation and Starting Location Identification of Task 

When a task is identified by a worker to be completed, the work area represented by the 

task must be converted from a polyshape object to an occupancy map that can then be 

passed to the path planning algorithm for complete coverage as well as a starting location 

for where to begin coverage. This is done by calling the required poly2occgrid function 

which is split into two main parts. The first part of this function involves generating an 

occupancy map of the work area shown in the Code Example 8 below. 

% obtain the current work area polyshape vertices 

localPoints = polybox.shape(polybox.nodeList(idx,1)).Vertices; 

localx = localPoints(:,1); 

localy = localPoints(:,2); 
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% identify the minimum and maximum XY coordinates of the work area polyshape 

xmin = min(localx); xmax = max(localx); 

ymin = min(localy); ymax = max(localy); 

 

% generate an occupancy map of the work area polyshape with a padding of .5 

localMap = occupancyMap(xmax-xmin+.5,ymax-ymin+.5,resolution); 

localMap.GridLocationInWorld = [xmin,ymin]; % update origin of occupancy map 

updateOccupancy(localMap,1);    % set all cells within occupancy map to 1 (occupied) 

 

% create check points to compare against the current work area polyshape 

step = 1/(2*resolution);    % calculate the step value between each check point 

localx_check = xmin:step:xmax; 

localy_check = ymin:step:ymax; 

 

% generate grid of check points 

[localx_grid,localy_grid] = meshgrid(localx_check,localy_check); 

 

% determine which grid points are in or outside the current work area 

% polyshape 

[in,on] = inpolygon(localx_grid,localy_grid,localx,localy); 

 

% set the cell value to 0 if inside the work area polyshape 

setOccupancy(localMap,[localx_grid(in & ~on),localy_grid(in & ~on)],0); 

Code Example 9. Polyshape to Occupancy Map 

To begin, the coordinate pairs describing the work area polyshape are obtained and 

then split into two arrays for 𝑥 and 𝑦 coordinates. Using the split arrays, the minimum and 

maximum values of both 𝑥 and 𝑦 coordinate values are determined. An occupancy map 

of the work area section, referred to as a local map, is generated using these values to 

create a bounding box by subtracting the maximum from the minimum 𝑥 and 𝑦 values 

with an 0.5 padding value added on. Since generated occupancy map origins always 

default to [0,0], the origin of the newly created local map must be changed to the minimum 

𝑥 and 𝑦 values to reflect its location on the global map. Every cell value within the local 
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map is then defaulted to a value of 1 representing occupied using the updateOccupancy 

function.  

To have the local map represent the work area polyshape, arrays of 𝑥 and 𝑦 check 

points are created with each point separated by a “step” value calculated based on the 

resolution of the local map. Using the meshgrid function and both 𝑥 and 𝑦 check point 

arrays, a grid is created which can then be overlayed on top of the work area polyshape. 

This grid is then checked for which points lie within the polyshape using the function 

inpolygon. The output of this function is logical meaning the point is either in or not within 

the polyshape. Using this as the criteria for representing the work area, all the cell 

occupancy values which lie within the work area polyshape are set to 0 representing 

unoccupied using the setOccupancy function. A sample result of the conversion from a 

polyshape object to an occupancy map is shown in Figure 28 below. 

 
Figure 28. Sample polyshape to occupancy map conversion. 

 With the occupancy map of the work area now generated, the second part of the 

poly2occgrid function involves identifying viable starting corners for the robot and then 

selecting one of these corners based on the desired starting location criteria. This is done 
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by generating four test points representing the top-left, bottom-left, top-right, and bottom-

right corners utilizing the previously determined 𝑥 and 𝑦 minimum and maximum values 

of the work area polyshape. These points are then used to identify which polyshape vertex 

is closest to that corresponding test corner. For each identified vertex, a slightly enlarged 

polyshape of the robot is placed at each vertex and then translated in each of the four 

cardinal and ordinal directions to determine if the robot polyshape is fully within the 

boundaries of the work area polyshape. If so, this location is saved as a viable starting 

location. All identified starting locations for the above work area are shown in Figure 29 

below. 

 
Figure 29. Sample viable starting locations. 

 These viable starting locations are then sorted based on the desired starting location 

input. The highest-ranking starting location following the sort is then selected as the 

starting location and returned to the main workspace along with the work area occupancy 

map. These outputs are then passed to the path planning algorithm to begin complete 

coverage and thereby concludes the strategy planning algorithm. 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1. Equipment Used 

The equipment used to conduct the following experiments is a 2019 MacBook Pro with 8 

GB of LPDDR3 RAM and a 2.4 GHz Quad-Core Intel Core i5 processor, MATLAB 

R2022b, a local version of the path planning algorithm named cleanRoomSimTest based 

on the cleanRoom complete coverage path planning algorithm obtainable from [40], and 

a modified version of the strategy planning algorithm for collecting simulation data named 

roomStrategySim. 

 

3.2. Map Environments Used 

The figures below depict the map environments utilized when conducting the following 

experiments. The workable area in each of the following maps is 22.95	𝑚, for the map 

shown in Figure 30,	54.19	𝑚, for the map shown in Figure 33, and	39.83	𝑚, for the map 

shown in Figure 36. 

 
Figure 30. Map environment 1 PGM image. 

 
Figure 31. Map environment 1 decomposed. 
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Figure 32. Map environment 1 decomposed without triangle merging. 

 
Figure 33. Map environment 2 PGM image. 

 
Figure 34. Map environment 2 decomposed. 
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Figure 35. Map environment 2 decomposed without triangle merging. 

 
Figure 36. Map environment 3 PGM image. 
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Figure 37. Map environment 3 decomposed. 

 
Figure 38. Map environment 3 decomposed without triangle merging. 
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3.3. Experiment 1: Comparing Cleaning Time and Efficiency between a Decomposed 

and Non-Decomposed Work Area 

3.3.1. Hypothesis 

It is hypothesized that constraining a path-planning algorithm to smaller, sectioned-off 

regions within the work area will help to decrease the amount of time spent by the path-

planning algorithm performing complete coverage while also increasing the cleaning 

efficiency as compared to allowing the path-planning algorithm to perform complete 

coverage within a non-decomposed work area. 

 

3.3.2. Procedure 

The procedure for this experiment consists of simulating three cleaning methods by a 

single robot within the three different map environment work areas previously described. 

Each method is broken down into three tests respectively. For each test, the desired starting 

location of the path planning algorithm will be changed from the farthest viable start 

corner from the work area centroid, the closest viable start corner to the work area centroid, 

and the work area centroid itself. Method 1 will be the control experiment by assigning 

the path planning algorithm to the entire work area from each of the three starting 

locations. Method 2 involves decomposing the work area into sections and then having 

the path planning algorithm clean each section by starting at the starting location specific 

to the current test. Method 3 is similar to the previous except when decomposing the work 

area, the triangle merging section of the strategy planning algorithm is skipped. For each 
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method, the amount of time required by the path planning algorithm to completely cover 

the work area and the overall coverage efficiency will be analyzed. 

 

3.3.3. Results 

The results below are the tabulated data collected when performing each simulation run. 

Nine experiments were run in total with three tests performed within each experiment 

resulting in 27 data points. Collected within each test was the coverage efficiency 

percentage, the simulated cleaning time in seconds, the average amount of overlapped or 

re-coverage of already cleaned spaces per section, and the runtime of the strategy planning 

algorithm in seconds. Following the completion of each experiment, the data values from 

each of the three tests are averaged in the final right-hand column. The last two rows 

within each table show the number of output sections generated by the strategy planning 

algorithm and the number of triangles generated from the triangular mesh. These values 

remained constant within each experiment. 

In some instances, the path planning algorithm can get trapped searching for an 

area to cover for long periods of time referred to as a “deadlock”. To mitigate this, a 

deadlock counter was implemented to count the number of overlapped spaces visited 

before locating a new uncovered space. If the path planning algorithm is able to 

successfully locate a new uncovered area, the deadlock counter is reset. However if the 

path planning algorithm is unable to locate a new uncovered area after 30 iterations, the 

simulation is terminated. Terminated simulation runtime data is italicized with a following 
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“*” symbol indicating the number of simulations terminated as a result of a deadlock event 

during that specific test. 

It is worth noting that the simulation runtime data is reflective of ideal conditions 

within a simulated environment and does not consider the time required by a physical 

robot to move from an ending location to a start location nor the speed of the robot 

performing the complete coverage. 

 

3.3.3.1. Map Environment 1 Results 

Table 1. Results for Map 1 work area with no decomposition. 
 Method 1: No Decomposition 

Starting Location Farthest Closest Centroid Average 
Coverage Efficiency 

(%) 75.17% 76% 69.39% 73.52% 

Simulated Cleaning  
Time (s) 44.11 51.68 38.68 44.82 

Overlap per Section 
Average 20 37 13 23.33 

Strategy Planning 
Algorithm Runtime (s) 0.71 0.79 0.75 0.75 

Number of Sections - - - 1 
Number of Generated 

Mesh Triangles - - - N/A 
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Table 2. Results for Map 1 work area with decomposition. 
 Method 2: With Decomposition 

Starting Location Farthest Closest Centroid Average 
Coverage Efficiency 

(%) 65.98% 64.83% 57.26% 62.69% 

Simulated Cleaning  
Time (s) 35.43 33.45 43.59 37.49 

Overlap per Section 
Average 2.63 2.25 5.25 3.38 

Strategy Planning 
Algorithm Runtime (s) 22.85 23.5 25.73 24.03 

Number of Sections - - - 8 
Number of Generated 

Mesh Triangles - - - 36 

 

Table 3. Results for Map 1 work area with triangle merging process skipped during 
decomposition. 

 Method 3: Decomposition without Triangle Merging 
Starting Location Farthest Closest Centroid Average 

Coverage Efficiency 
(%) 62.26% 77.53% 57.31% 65.7% 

Simulated Cleaning  
Time (s) 31.38 42.57 34.03 35.99 

Overlap per Section 
Average 2.33 3.83 4 3.39 

Strategy Planning 
Algorithm Runtime (s) 33.6 33.3 32.6 33.17 

Number of Sections - - - 6 
Number of Generated 

Mesh Triangles - - - 36 
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3.3.3.2. Map Environment 2 Results 

Table 4. Results for Map 2 work area with no decomposition. 
 Method 1: No Decomposition 

Starting Location Farthest Closest Centroid Average 
Coverage Efficiency 

(%) 85.75% 80.16% 82.87% 82.93% 

Simulated Cleaning  
Time (s) 121.73 110.98* 134.31 122.34 

Overlap per Section  
Average 35 32 67 44.67 

Strategy Planning 
Algorithm Runtime (s) 1.19 1.21 1.1 1.17 

Number of Sections - - - 1 
Number of Generated 

Mesh Triangles - - - N/A 

 

Table 5. Results for Map 2 work area with decomposition. 
 Method 2: With Decomposition 

Starting Location Farthest Closest Centroid Average 
Coverage Efficiency 

(%) 74.27% 72.15% 65.99% 70.8% 

Simulated Cleaning  
Time (s) 97.27 92.07 102.58* 97.31 

Overlap per Section  
Average 2.14 2.1 4 2.75 

Strategy Planning 
Algorithm Runtime (s) 112.61 111.2 111.23 111.68 

Number of Sections - - - 21 
Number of Generated 

Mesh Triangles - - - 92 
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Table 6. Results for Map 2 work area with triangle merging process skipped during 
decomposition. 

 Method 3: Decomposition without Triangle Merging 
Starting Location Farthest Closest Centroid Average 

Coverage Efficiency 
(%) 71.89% 72.22% 68.98% 71.03% 

Simulated Cleaning  
Time (s) 92.28 86.29 99.17 92.58 

Overlap per Section  
Average 2.22 2.11 3.33 2.55 

Strategy Planning 
Algorithm Runtime (s) 254.56 256.19 262.09 257.61 

Number of Sections - - - 18 
Number of Generated 

Mesh Triangles - - - 92 

 

3.3.3.3. Map Environment 3 Results 

Table 7. Results for Map 3 work area with no decomposition. 
 Method 1: No Decomposition 

Starting Location Farthest Closest Centroid Average 
Coverage Efficiency 

(%) 82.8% 82.68% 78.56% 81.35% 

Simulated Cleaning  
Time (s) 83.49 98.56 87.58* 89.88 

Overlap per Section  
Average 26 52 40 39.33 

Strategy Planning 
Algorithm Runtime (s) 1.16 0.94 0.91 1 

Number of Sections - - - 1 
Number of Generated 

Mesh Triangles - - - N/A 
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Table 8. Results for Map 3 work area with decomposition. 
 Method 2: With Decomposition 

Starting Location Farthest Closest Centroid Average 
Coverage Efficiency 

(%) 65.56% 64.47% 57.23% 62.42% 

Simulated Cleaning  
Time (s) 60.58 60.89 61.09 60.85 

Overlap per Section  
Average 1.95 2.26 2.74 2.32 

Strategy Planning 
Algorithm Runtime (s) 25.84 25.76 26.74 26.11 

Number of Sections - - - 19 
Number of Generated 

Mesh Triangles - - - 33 

 

Table 9. Results for Map 3 work area with triangle merging process skipped during 
decomposition. 

 Method 3: Decomposition without Triangle Merging 
Starting Location Farthest Closest Centroid Average 

Coverage Efficiency 
(%) 72.87% 63.57% 62.12% 66.19% 

Simulated Cleaning  
Time (s) 72.63 61.77 72.64 69.01 

Overlap per Section  
Average 2.25 2.2 3.4 2.62 

Strategy Planning 
Algorithm Runtime (s) 28.06 36.03 26.81 30.3 

Number of Sections - - - 20 
Number of Generated 

Mesh Triangles - - - 33 
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3.3.3.4. Method Comparison 

Table 10. Comparison of averaged experimental results from each method. 

Method No 
Decomposition 

With 
Decomposition 

Decomposition w/o 
Triangle Merging 

Coverage Efficiency 
(%) 79.26% 65.3% -17.61% 67.64% -14.67% 

Simulated Cleaning  
Time (s) 85.68 65.22 -23.88% 65.86 -23.13% 

Overlap per Section  
Average 35.78 2.81 -92.14% 2.85 -92.03% 

Strategy Planning 
Algorithm Runtime (s) 0.97 53.94 - 107.03 +98.42% 

 
As a note on the much lower average strategy planning algorithm runtime exhibited by the 

experiment with no decomposition performed, this is a result of the strategy planning 

algorithm only needing to identify the work area boundaries, generate an occupancy map 

of the work area, and then determine a viable starting location before handing off to the 

strategy planning algorithm for complete coverage. It was also found that deadlocks did 

not have a considerable impact on the collected data with only two occurring throughout 

the entirety of the experiment. 

 

3.3.4. Conclusions 

From reviewing the experimental results, there are two findings to be made concerning 

the initial hypothesis. The first finding is that by decomposing the room for complete 

coverage, the coverage efficiency decreased contrary to what was hypothesized. 

Reviewing Table 10 in the above section, it can be seen that the coverage efficiency with 

no decomposition is 79.26% while the coverage efficiency with both methods of 

decomposition is 65.3% and 67.64% respectively. Furthermore, the decomposition 
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method in skipping the triangle merging process resulted in a 14.67% reduction in 

coverage efficiency while the full decomposition method led to a 17.61% reduction in 

coverage efficiency when compared to the control experiment with no decomposition.  

The second finding is the decrease in the average simulated cleaning time 

experienced by both decomposition methods when compared to the control experiment 

with no decomposition. With an average cleaning time of 85.68 seconds for the control 

experiment, both the full decomposition and decomposition without triangle merging 

methods were able to reduce their respective cleaning times by 20.46 and 19.82 seconds 

which calculates to an over 23% reduction in time required for cleaning. Although 

agreeing with the initial hypothesis, this decrease in cleaning time could be attributed to 

the reduction in coverage efficiency mentioned previously as a result of the path planning 

algorithm completing its assigned sections in a “faster” manner. This is due to the path 

planning algorithm covering all spaces where it believes the robot can fit which is 

facilitated by generating a grid reliant on the provided starting location that determines the 

possible locations the path planning algorithm can propagate to. If the generated grid is 

offset from the given work area or does not match up accordingly to a location that the 

robot can visually be perceived to fit, those locations will not be covered and hence 

“finish” in a shorter amount of time. This is the reasoning behind varying the desired 

starting location for each experiment as each starting location impacts the coverage 

efficiency as shown within the collected data.  

Some additional findings which were not anticipated are the greater than 92% 

reductions in average overlap per section exhibited by both decomposition methods and 
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the 98.42% increase in strategy planning algorithm runtime of the decomposition method 

with the triangle merging process skipped as compared to the full decomposition process.  

The former finding is the most surprising however the dramatic decreases in average 

overlap per section could be attributed to the fact that any high overlap values incurred by 

any one section are averaged out by the little to no overlap values of the other sections. 

The latter finding was expected but in the reverse sense with the full decomposition 

method resulting in a higher average strategy planning algorithm runtime when compared 

to the method with the triangle merging process skipped. However, the experimental data 

proves the opposite to be true in that the decomposition method without triangle merging 

results in almost double the runtime of the full decomposition method. This nearly 100% 

increase in algorithm runtime required by the decomposition method with the triangle 

merging skipped could be attributed to the process by which the bounding boxes are 

generated – more specifically the process of removing overlaps between neighboring 

bounding boxes. During the full decomposition routine, the preceding triangle merging 

process removes many of the triangle mesh centroids leading to fewer bounding box 

overlaps to remove. This is most evident in Table 6 where the Map 2 environment was 

decomposed into a mesh of 92 triangles which required an average time of 257.61 seconds 

to fully run.  

 These experimental findings would suggest the strategy planning algorithm with 

triangle merging outperforms the method without triangle merging with regard to the time 

required by the strategy planning algorithm to fully run however both methods perform 

similarly with respect to coverage efficiency, simulated cleaning time, and average 



 

73 

 

overlap per section. Of these three aforementioned data, the largest difference is seen in 

the coverage efficiency with a marginal 2.94% edge for the decomposition method without 

triangle merging while the differences between simulated cleaning time and average 

overlap per section are within one percentage point. Therefore it can be concluded that by 

incorporating the process of triangle merging into the decomposition method, algorithm 

run time can be reduced by nearly half with the current algorithm setup. Furthermore, with 

future modification to enhance the ability of the algorithm to select a starting location 

which aims to optimize coverage efficiency as opposed to being based on what the user 

desires may lead to increased performance to potentially match or exceed the measured 

coverage efficiency without decomposition. 

 

3.4. Experiment 2: Comparing Idle Time between Dynamic and Static Task 

Allocation  

3.4.1. Hypothesis 

The hypothesis for this experiment is that by dynamically reallocating tasks amongst the 

available robots, the length of idle time spent by either robot after completing its assigned 

tasks should be considerably reduced as compared to statically allocating tasks. 

 

3.4.2. Procedure 

In this experiment, two multi-robot scenarios are simulated in the three different work 

areas as described previously above. For each work area, both the decomposition method 

with triangle merging and the decomposition method without triangle merging are applied. 
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Three simulations for each scenario are then conducted with each decomposition method 

where the desired starting location of the path planning algorithm is changed from the 

farthest viable start corner from the work area centroid, the closest viable start corner to 

the work area centroid, and the work area centroid itself. The first scenario will be a 

cleaning session by two robots performed without task reallocation. The second scenario 

will be a cleaning session by two robots performed with task reallocation. For each 

scenario, the time difference between the completion of tasks by one robot and the other 

will be examined. 

 

3.4.3. Results 

The tables below contain the resulting data collected when performing each simulation 

run. Twelve experiments were conducted in total, six experiments with no task 

reallocation and six experiments with task reallocation. Three simulations were conducted 

within each experiment resulting in 36 data points. Collected after each simulation run 

was the simulation runtime in seconds required by each robot to complete its assigned 

tasks. After the completion of each experiment, the idle time in seconds was calculated by 

subtracting the longest time for a robot to complete its assigned tasks from the shortest 

time in that particular simulation run. These calculated idle times are then averaged in the 

final column of each table. 

 Despite the ability of the algorithm to reallocate tasks between robots during those 

tests in which it is enabled, task reallocation does not always occur. In most conducted 

simulations task reallocation is bypassed as a result of the robot with the remaining tasks 
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only having one task left to complete or both robots finishing their assigned tasks 

simultaneously. In simulations in which task reallocation did occur, the calculated idle 

time has been bolded. 

 As implemented in Experiment 1, a deadlock counter was utilized to terminate a 

simulation if the threshold of 30 failed attempts by the path planning algorithm to locate 

a new uncovered area is met. Terminated simulation runtime data is italicized with a 

following “*” symbol indicating the number of simulations terminated as a result of a 

deadlock event during that specific test. Note that the simulation runtime data is reflective 

of ideal conditions within a simulated environment and does not consider the time required 

by a physical robot to reach that particular section nor the speed of the robot performing 

the complete coverage.  

 

3.4.3.1. No Task Reallocation vs Task Reallocation Results for Decomposition 

Method with Triangle Merging 

Table 11. No task reallocation results for Map 1 decomposed with triangle merging. 
Map 1 No Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 20.49 17.23 3.26 

3.62 Closest 19.1 16.04 3.06 
Centroid 24.53 19.99 4.54 
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Table 12. Task reallocation results for Map 1 decomposed with triangle merging. 
Map 1 With Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 19.73 16.55 3.18 

3.6 Closest 18.48 15.45 3.03 
Centroid 24.32 19.74 4.58 

 

Table 13. No task reallocation results for Map 2 decomposed with triangle merging. 
Map 2 No Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 52.76 43.26 9.5 

8.71 Closest 45.22 41.71 3.51 
Centroid 57.46* 44.35 13.11 

 

Table 14. Task reallocation results for Map 2 decomposed with triangle merging. 
Map 2 With Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 51.15 43.11 8.04 

4.17 Closest 46.46 43.08 3.38 
Centroid 52.05* 50.95 1.1 

 

Table 15. No task reallocation results for Map 3 decomposed with triangle merging. 
Map 3 No Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 38.43 19.19 19.24 

19.47 Closest 40.51 18.98 21.53 
Centroid 40.77 23.14 17.63 
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Table 16. Task reallocation results for Map 3 decomposed with triangle merging. 
Map 3 With Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 36.83 21.47 15.36 

14.95 Closest 38.39 22.2 16.19 
Centroid 38.73 25.43 13.3 

 

3.4.3.2. No Task Reallocation vs Task Reallocation Results for Decomposition 

Method without Triangle Merging 

Table 17. No task reallocation results for Map 1 decomposed without triangle merging. 
Map 1 No Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 14.49 17.82 3.33 

3.85 Closest 18.17 25.74 7.57 
Centroid 17.35 18.01 0.66 

 

Table 18. Task reallocation results for Map 1 decomposed without triangle merging. 
Map 1 With Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 14.6 18.16 3.56 

3.91 Closest 18.28 25.56 7.28 
Centroid 17.08 17.96 0.88 
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Table 19. No task reallocation results for Map 2 decomposed without triangle merging. 
Map 2 No Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 41.18 44.96 3.78 

5.74 Closest 40.95 45.89 4.94 
Centroid 46.32 54.81 8.49 

 

Table 20. Task reallocation results for Map 2 decomposed without triangle merging. 
Map 2 With Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 41.48 45.47 3.99 

5.58 Closest 41.55 46.31 4.76 
Centroid 45.27 53.27 8 

 

Table 21. No task reallocation results for Map 3 decomposed without triangle merging. 
Map 3 No Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 37.56 41.08 3.52 

4.04 Closest 27.67 33.84 6.17 
Centroid 36.21 38.64 2.43 

 

Table 22. Task reallocation Results for Map 3 decomposed without triangle merging. 
Map 3 With Task Reallocation 

Starting 
Location 

Robot 1 Completion 
Time (s) 

Robot 2 Completion 
Time (s) Idle Time (s) Idle Time 

Average 
Farthest 33.72 37.56 3.84 

2.96 Closest 29.89 32.95 3.06 
Centroid 36.43 38.4 1.97 
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3.4.3.3. Average Idle Time Comparison 

Table 23. Comparison of average idle times. 
 Scenario 

No Task 
Reallocation 

With Task 
Reallocation 

Percent 
Change 

M
et

ho
d Decomposition with 

Triangle Merging 10.6 sec 7.57 sec -28.54% 

Decomposition without 
Triangle Merging 4.54 sec 4.15 sec -8.68% 

 
3.4.4. Conclusions 

In comparing the average idle times for both decomposition methods within each scenario 

of no task allocation and with task allocation as aggregated in Table 23 above, it is evident 

that the full decomposition method with triangle merging exhibited the largest reduction 

in idle time with task allocation at 28.54% while the decomposition method without 

triangle merging had an 8.68% decrease in idle time with task allocation. As mentioned 

previously, task reallocation does not always occur despite being available. During the 18 

simulations conducted with task reallocation available, task reallocation was performed 

only in five or 28% of the simulations ran. Furthermore, of the five task reallocations 

performed, four occurred during simulations utilizing the full decomposition method as 

opposed to the single occurrence of the decomposition method with the triangle merging 

process skipped. 

The largest impact of task reallocation on idle time occurs in the comparison of the 

centroid starting location simulation results of Tables 13 and 14. In Table 13, the 

calculated idle time of the centroid starting location simulation with no task reallocation 

is 13.11 seconds while in Table 14 with task reallocation available the idle time calculated 
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to 1.1 seconds. This suggests that rather than sitting idle for 12 seconds as Robot 2 did 

without task reallocation, both robots were busy completing reallocated tasks to then 

complete those reallocated tasks within 1.1 seconds of each other. The result is a 91.61% 

reduction in idle time for the specific simulation and overall leads to the average idle time 

between the two experiments to reduce from 8.71 seconds to 4.17 seconds, a 52.12% 

decrease. 

The second most significant impact of task reallocation on idle time occurred 

during the closest starting location simulation of Tables 21 and 22. For this simulation, 

the resulting idle times are 6.17 and 3.06 seconds for no task reallocation and with task 

reallocation respectively. This change in idle time results in a 50.41% decrease in the 

amount of idle time spent by one robot waiting for the other robot to complete its assigned 

tasks. The halving of idle time for this one simulation had a 26.73% impact in reducing 

the average idle time from 4.04 seconds with no task reallocation to 2.96 seconds with 

task reallocation for this experiment. 

The final three instances where task reallocation impacted idle time all occurred 

during the same experiment recorded in Table 16. When compared to the experimental 

data in Table 15 in which no task reallocation was performed, an idle time decrease of 

20.17%, 24.8%, and 24.56% occurred for each of the farthest, closest, and centroid starting 

locations respectively. These decreases in idle times for each simulation result in a 23.22% 

decrease in the average idle time from 19.47 seconds with no task reallocation to 14.95 

seconds with task reallocation. 
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These findings in the 28.54% and 8.68% reduction in idle time for both the full 

decomposition method and the decomposition method with the triangle merging process 

skipped respectively for the scenario with task reallocation corroborate the initial 

hypothesis made. It also further supports the use of task reallocation in situations where 

there are a greater number of complete coverage tasks to be completed. In the case of the 

experiments conducted, task reallocation occurred when the number of tasks to be 

completed was within the range of 19 to 21 tasks as in Maps 2 and 3 as compared to no 

task reallocation occurring in low task situations as in Map 1 which had a lower range of 

6 to 8 tasks depending on the method of decomposition. Furthermore, real-world data 

gathered from a physical system would better help to support or disprove the findings 

made in this experiment and the comparison of the flip task allocation approach when 

compared to a split segment approach as this data would consider the global path traveled 

by each robot while the simulation does not. However due to a multitude of technical 

challenges, expanded on further in section 5.1 and time constraints, these data were unable 

to be collected at the time of writing. 
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4. RESEARCH CONTRIBUTIONS, TECHNICAL CHALLENGES, AND FUTURE 

WORK 

4.1. Research Contributions 

• Novel implementation of task flipping: The primary contribution made by this 

research is the novel use of task flipping. This refers to the flipping of the task 

segments assigned to the robots such that globally the robots work towards one 

another, theoretically minimizing the amount of time required by one robot to travel 

to a reallocated task. As only simulation experiments were conducted for this research 

which does not account for the amount of time required for a robot to move from one 

location to another, the impact of task flipping concerning idle time and overall 

cleaning time efficiency is not yet known. However, the framework for utilizing task 

flipping on a real robot system connected to a ROS network can be found within the 

repository mentioned in section 2.1.4. 

• Methodology for utilizing triangular mesh in a complete coverage application: 

The secondary contribution made from this research is the implementation of a 

triangulation mesh in a complete coverage application. As mentioned previously 

during the literature review process, triangulation mesh is seldom utilized to 

decompose a work area for complete coverage. In performing this research, it is 

apparent why this method of decomposition is not widely used due to the angled edges, 

narrow corners, and in some cases too small of an area for a physical robot to fit into 

the triangles produced. However, what this research contributes is a methodology for 
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utilizing triangulation mesh as a viable method of decomposition for a work area 

despite the issues mentioned.  

• Idle time minimization: A tertiary contribution made from performing this research 

is the utilization of task reallocation once a robot has completed its assigned tasks to 

minimize the amount of idle time experienced by any robot. Idle time is an important 

metric to reduce when utilizing multiple robots simultaneously to help reduce the 

amount of time required to complete the overall cleaning task. This research was able 

to demonstrate a methodology for reallocating unfinished tasks once and recording the 

impact on idle time however with some modifications could be expanded further to 

continuing to reallocate tasks until all tasks have been completed within a work area; 

especially those which contain a larger number of tasks. 

 

4.2. Technical Challenges 

4.2.1. Physical System Implementation 

The largest technical challenge faced overall during this research was the implementation 

of the physical system. Two Sensing, Connected, Utility Transport Taxi for Level 

Environments (SCUTTLE) robotic platforms [41] were constructed as shown in Appendix 

A to perform physical system experiments whose data could then be compared to the 

simulation experimental results previously discussed. The issue experienced stems from 

the fact that the initial SCUTTLE driver controller, the program which controls the 

differential drive motion of the robot, was not equipped to handle encountered obstacles 

during movement from one waypoint to another. As this was a feature that was needed to 
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prevent the possible collision of the two robots which would be navigating within the same 

work area, an alternative solution needed to be found. 

One solution was to modify the existing SCUTTLE driver controller to be able to 

account for encountered obstacles mid-motion. However with little knowledge of the 

source code operation and many hours of attempting to understand and make minor 

modifications to the controller code, the desired result was unable to be achieved.  

The second solution was the MATLAB Pure Pursuit Controller [42]. Implemented 

with checks for obstacles, this controller was able to successfully account for obstacles 

encountered midway between waypoints. However, this controller is not of the “point and 

go” variety in which the desired robot movement is to rotate in place toward its goal 

location and then move in a straight line until reaching the goal location. Due to the method 

in which the controller navigates between waypoints, the Pure Pursuit controller attempts 

to make smooth curving motions such as that of an “S” shape. Rather than move in a 

straight line as desired, the robot makes wide sweeping turns which can sometimes cause 

the robot to miss its goal location. This results in the robot making extra turns and 

movements that can cause it to get stuck along the wall or stuck in a perpetual circle motion 

forever circling the goal location. To account for these issues, various parameters of the 

controller were tweaked which reduced the desired “S” shape motion of the controller to 

some extent, and recovery features were implemented to mitigate situations in which the 

motions of the controller would cause the robot to get stuck. Despite best efforts, countless 

hours of testing, and modifications to the Pure Pursuit controller to behave in the desired 
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“point and go” way, a sufficient solution was unable to be found and as a result a full test 

was never able to be completed on the physical system. 

 

4.2.2. Boundary Identification 

The most significant technical challenge faced with regard to implementing the strategy 

planning algorithm was the problem of how to go about identifying boundaries within the 

input PGM image. This process requires not only identifying the coordinates of each 

occupied cell within the image but also the boundary each occupied cell belongs to such 

that a polyshape for that boundary can be generated.  

The simplest solution to this problem is to filter out all the occupied cell locations 

by utilizing the find function to locate the indices of cells with an occupancy value greater 

than 0.9. While this may provide all the occupied cell locations, they are not separated by 

boundary which leads to the issue of needing to identify the cells which make up the edge 

of each boundary. Furthermore, most boundary edges are thicker than one layer of 

occupied cells which arises yet another issue of identifying the cell locations which 

directly border the work environment contained within the image.  

A second solution attempted for this problem was the drawing of rays in an inward 

direction from the outermost cell in each column and row. In this case the locations of 

each occupied cell bordering the work environment could be found. However, this process 

was very time intensive in looping through each cell within each row and column as well 

as the recording of duplicate points and the inability to easily distinguish which boundary 

each cell belonged to. 
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A third solution attempted was more focused on the desired outcome which is the 

identification of the occupied cell locations such that a polyshape of that boundary could 

be created. Generating a polyshape simply requires knowing the vertex coordinates of the 

shape in question and as such a method of identifying the work environment corners within 

the PGM image was implemented. This method included setting cases that describe a 

corner and checking each occupied cell if it matched one of the cases. For example, a top 

left corner can be described as a 2 × 2 grid of cells in which the bottom right cell is 

unoccupied while the remaining three cells are occupied. While somewhat successful in 

identifying corner locations, due to the many edge cases in how a corner can be described 

led to some corners not being identified. This resulted in the final polyshape becoming an 

inaccurate representation of the work environment and this solution being replaced. In 

hindsight, this attempted solution could have been achieved with the implementation of a 

corner detection algorithm such as the one described in [43]. 

The final solution settled upon is the use of the MATLAB function bwboundaries. 

This function performs the desired identification of occupied cell locations and the 

denoting of which cells belong to which boundary. Albeit without its drawbacks as it has 

been observed to be very particular in the images it identifies boundaries within and also 

requires interior obstacles to correctly identify the work environment or else it may be 

misidentified if free of obstacles. It is the use of this function that requires the need for the 

input PGM image to be edited however in an ideal implementation there should be little 

to no editing of the PGM image required by the algorithm user. A potential alternative to 
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bwboundaries is the MATLAB function regionprops although further research and testing 

are required to validate its usefulness regarding the problem of boundary identification. 

 

4.2.3. Parallel Computing 

A second technical challenge encountered was the implementation of SPMD. Having no 

prior parallel computing experience, SPMD proved challenging to utilize in the sharing of 

information between workers which often resulted in an error. It was found that specific 

data, such as flag variables or reallocated tasks, could be shared between workers utilizing 

a “tag” in the spmdSend and spmdReceive functions. This in conjunction with the careful 

placement of spmdBarrier throughout the workers’ program, which was determined based 

on if data is either being sent or received by each worker, the sharing of information 

between workers was able to be made mostly error-free. However in some instances, the 

SPMD block would still result in error when a message sent by one worker fails to be 

received by the other worker. This error was found to occur when both workers would 

finish their assigned tasks simultaneously. This led to the inclusion of a try-catch block 

added around the SPMD code block to catch this potential error for cases in which occurs. 

 

4.2.4. ROS Implementation 

A technical challenge worth mentioning regarding this research was the implementation 

of the Robot Operating System; often referred to as “ROS”. This operating system is based 

on nodes and topics in which nodes can either publish or subscribe to a topic to 

respectively send data to or receive data posted to that topic via messages. ROS was 
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utilized to construct a wireless network consisting of both physical robots and a master 

laptop as nodes to facilitate the control of both robots from a single computer. 

One issue was the simultaneous display of both robots within the ROS 

visualization software Rviz which is used to visualize the real-time physical location of 

the robot within its environment utilizing sensors such as that of a LiDAR. The default 

SCUTTLE library already featured a code block containing the ability to display one robot 

within Rviz however creating a duplicate of this code block and modifying associated 

node and topic names failed to resolve the issue. What resolved the issue instead was the 

use of namespaces which when incorporated proved to be successful in differentiating the 

robots within Rviz allowing for the simultaneous visualization of both robots within the 

environment. 

A second issue was the utilization of ROS to publish messages within the SPMD 

block. The problem stemmed from the location by which the ROS nodes and topics should 

be initialized for each robot. From previous experience in initializing ROS nodes and 

topics, this is typically done before the main code block which in this case would translate 

to initializing the nodes and topics before the SPMD block. This approach however did 

not work with SPMD. To rectify this problem, further research was conducted on this 

topic however there exists little to no online documentation on a solution to this problem. 

Attempts at finding a solution involved initializing the nodes and topics directly after spmd 

which is the keyword that heads the SPMD code block, within each worker directly 

following the if statement which specifies the worker code blocks, and utilizing 

“parallel.pool.Constant” which creates a constant object, in this instance a node, which 
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can be shared between workers. It was later determined that most of the pieces to 

successfully be able to achieve a solution to the problem were found however the missing 

piece was the reference to the individual SPMD workers themselves when setting up the 

nodes and topics. A proper solution to the problem of publishing ROS messages within an 

SPMD block can be seen in the Code Example 10. 

if spmdIndex == 1 

    % set ROS node constant 

    node{spmdIndex} = parallel.pool.Constant(ros.Node('/Robot1',"http://X.X.X.X:11311")); 

 

    % set ROS publisher constants 

    map_pub{spmdIndex} = parallel.pool.Constant(ros.Publisher(node{spmdIndex}.Value... 

        ,'/localMap',"nav_msgs/OccupancyGrid","DataFormat","struct")); 

 

    % set ROS message types 

    map_msgType{spmdIndex} = rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct"); 

 

    % set ROS messages 

    map_msg{spmdIndex} = rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap); 

 

    % send ROS messages 

    send(map_pub{spmdIndex}.Value,map_msg{spmdIndex}) 

end 

Code Example 10. Publishing ROS Message within SPMD 

The presented solution outlines the steps for the sending of an occupancy map 

message type over ROS however can be modified to send any message type. While the 

described ROS network was ultimately not utilized with regard to the research presented, 

a considerable amount of time and effort went into its implementation. As a result, the 

strategy planning algorithm to be used in tandem with a physical system features a 

framework for the sending of ROS messages to be utilized in future research. 
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4.3. Future Work 

• Physical system operation and data collection: The first and primary focus area for 

future work should be in getting the physical system operational such that real-world 

data collection can be conducted. This is critical as such real-world data would 

consider robot speed and distance traveled between tasks, of which the former would 

also need to be factored into the simulations ran once this value has been set as it 

impacts the cleaning time required while the latter would help to better prove or 

disprove the usefulness of the flipping task allocation method presented. It is with 

great optimism that future work in implementing the physical system can forego the 

issues experienced and begin at a stage where the physical system has been constructed 

and a framework for its operation has been provided. 

• Scaling: A second focus area for future work should be in scaling the algorithm to 

account for a larger number of robots with 𝑁 number of robots as the eventual end 

goal. The algorithm was created with this end goal in mind however the SPMD portion 

currently only supports the reallocation of tasks between two robots. Given the current 

method implemented, the greater number of robots added, the more complex the task 

allocation section of the algorithm becomes as there are that many more connections 

between robots that would need to be made. Perhaps a future approach would be to rid 

of the connections between robots and instead have the robots report their status 

directly to the main computer being utilized. 

• Improved task reallocation: The final focus area of future work should be in 

improving the task reallocation method. One way is by implementing an iterative 
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approach to the dynamic reallocation of tasks. As the current task reallocation program 

has been written, task reallocation will only occur once throughout the duration of the 

cleaning process. However with some modifications to the program, an iterative 

approach to the dynamic reallocation of tasks until all tasks have been completed 

should be able to be achieved. A second way is by implementing a method of saving 

the progress of the current task when task reallocation is performed. When tasks are 

reallocated between robots in the current program, the cleaning process for the task 

stopped on is started over. Rather than spend time overlapping already cleaned 

portions of the task stopped on, the already cleaned area should be saved such that 

following task reallocation the robot can continue its progress in completing the task 

as if it was never interrupted.  
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5. CONCLUSIONS 

In conclusion, this thesis presents a strategy planning algorithm for a complete coverage 

application by either one or multiple robots. It features the utilization of triangulation mesh 

in a complete coverage application as well as the novel implementation of the flipping of 

task segments for both the original task assignment and during task reallocation. From the 

simulated experiment data, the algorithm was found to marginally decrease the amount of 

idle time experienced by a robot up to 28% and considerably reduce the amount of overlap 

per section by greater than 90%. The impact of flipping task segments in a real-world 

application remains to be observed yet these simulated findings, which may eventually be 

corroborated by real-world data, provide a basis for the potential real-world effectiveness 

of the strategy planning algorithm presented within this thesis. 
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APPENDIX A: SCUTTLE ROBOT PLATFORM 

 

 

Figure 39. Top view of both constructed SCUTTLE robots. 
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Figure 40. SCUTTLE front view. 
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Figure 41. SCUTTLE side view. 
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APPENDIX B: MAIN SCRIPT 

 

The roomStrategy algorithm has been formatted for both simulation and real-world 

applications. For simulations, the roomStrategySim main script is to be used along with 

the supplementary cleanRoomSimTest function in Appendix D. For use with a real-world 

robot, the roomStrategyReal main script is to be utilized. Note that the ROS network 

implementation of the real-world script has not been extensively tested and should be 

approached as a starting point for future research involving the use of a ROS network. 

I. roomStrategySim 

Setup 

clearvars; close all; % clear all workspace variables and close all figures 

% INPUT PARAMETERS 

rob.size = 12;  % distance from robot center to edge midpoint in IJ coordinates 

rob.diag = 14;  % distance from robot center to corner in IJ coordinates 

 

min_triEdge = 2; % target minimum edge length for triangulation mesh 

 

cornerLoc = 1;  % desired starting location of path planning algorithm.  

Valid values for this parameter are: 

% 1 (farthest valid starting corner from polyshape centroid) 

% 2 (closest valid starting corner from polyshape centroid) 

% 3 (polyshape centroid) 

 

editedPGM_path = "/Users/~";  % file path of post-edited lidar map in PGM format 

 

numRobots = 1; % number of robots to be utilized in decomposed work area 

% ADDITIONAL PARAMETERS 

mergeTri = true; % false skip triangle merging, true perform triangle merging (default) 

if mergeTri; minTri.base = .5; minTri.height = .5; end % minumum values for base and height 

when determining triangles to merge 



 

102 

 

 

rosSetup = false; % false skip connecting to ROS network (default), true connect to ROS network 

 

% due to potential differences between the raw occupancy map origin and 

% the default occupancy map origin in MATLAB (0,0), this difference can be 

% corrected by importing the raw occupancy map 

importRawMap = false; % false skip importing raw occupancy map (default), true import raw 

occupancy map 

 

wholeRoom = false; % false perform map decomposition (default), true do not perform map 

decomposition 

 

enableRetasking = true; % false do not reallocate tasks, true reallocate tasks (default) 

 

resolution = 50;   % occupancy map resolution in cells per meter 

 

mergeRob.size = rob.size+3; % padded robot size to consider when identifying polygons to merge 

mergeRob.diag = rob.diag+3; % padded robot diagonal length to consider when identifying 

polygons to merge 

% CONNECT TO ROS NETWORK 

if rosSetup 

    rosshutdown()   % make sure any ROS sessions are closed 

    rosinit("http://X.X.X.X:11311") % initialize ROS network and connect to host 

end 

% IMPORT RAW MAP 

if importRawMap 

    try 

        % try to subscribe to /map topic and receive the sent message 

        sub = rossubscriber("/map",DataFormat='struct'); 

        msg = receive(sub); 

 

        % generate an occupancy map with the received map message 

        rawMap = rosReadOccupancyGrid(msg); 

        show(rawMap)    % visually inspect the imported raw occupancy map 

    catch 

        % if unable to subscribe to /map topic, load raw map from local save 

        savedMap = load('ros_occMap.mat'); 

        rawMap = savedMap.occupancyMapObj; 

        show(rawMap); clear savedMap; 

    end 
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else 

    rawMap = []; 

end 

Image Processing  

tic 

editedPGM = imread(editedPGM_path); % load in pgm image of post edited lidar scan 

 

% normalize the image to values between 0 and 1 then convert to occupancy 

% values by subtracting from 1 

editedMap_occ = 1 - double(editedPGM)/255; 

 

% generate an occupancy map from the occupancy values 

editedMap = occupancyMap(editedMap_occ,resolution); 

show(editedMap) % visually inspect the generated occupancy map 

% IDENTIFY EXTERIOR BOUNDARY AND INTERIOR OBSTACLE BOUNDARIES 

[exteriorIJ, interiorIJ] = identifyBoundaries(editedPGM); 

 

% determine if the exterior boundary has been misidentified as an interior obstacle, 

% if so set the interior obstacle as the exterior boundary 

obsNum = fieldnames(interiorIJ);    % determine number of identified interior obstacles 

if (length(exteriorIJ) < 10) && (numel(obsNum) == 1) 

    % reduce the number of points describing the exterior boundary 

    exteriorIJ = reducepoly(interiorIJ.obs1,.01); 

    removeObs = 0;  % do not remove interior obstacles 

else 

    removeObs = 1;  % do remove interior obstacles 

end 

 

% convert the exterior boundary points from IJ to XY coordinates 

exteriorXY = grid2world(editedMap,exteriorIJ); 

% POLYSHAPE REPRESENTATION 

% generate a polyshape of the room from the exterior boundary points 

room = polyshape(exteriorXY(:,1),exteriorXY(:,2)); 

plot(room) 

 

% if applicable, remove the identified interior obstacles from the room polyshape 

if removeObs == 1 

    for i = 1:numel(obsNum) 
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        % convert the identifed interior obstacles points from IJ to XY coordinates 

        interiorXY = grid2world(editedMap,interiorIJ.(obsNum{i})); 

 

        % reduce the number of points describing the obstacle 

        reducedObs = reducepoly(interiorXY,.01); 

 

        % generate a polyshape representing the obstacle 

        obs = polyshape(reducedObs(:,1),reducedObs(:,2)); 

 

        % remove the obstacle polyshape from the room polyshape 

        room = subtract(room,obs); 

    end 

    plot(room); % visually inspect the resulting polyshape 

end 

Map Decomposition 

if wholeRoom 

    programTime = toc; 

 

    % get occupancy map and starting location of room 

    [localMap, startXY] = poly2occgrid(room, 0, rawMap, rob, cornerLoc, resolution); 

 

    % convert starting location to IJ coordinates 

    startIJ = world2grid(localMap,startXY); 

 

    % call path planning algorithm to perform complete coverage 

    figure; deadlock_cntr = 0; 

    [localMap,time,turnCount,overlap,pathLength,deadlock_cntr] = 

cleanRoomSimTest(localMap,startIJ,deadlock_cntr); 

 

    % determine the number of cleaned and uncleaned cells 

    localOcc = occupancyMatrix(localMap); 

    clean = length(find((localOcc>.4)&(localOcc<.6))); 

    unclean = length(find(localOcc<.1)); 

 

    % display simualtion data 

    fprintf("Simulation runtime: %.2fs",time) 

    fprintf("Turn count: %d",turnCount) 

    fprintf("Overlap: %d",overlap) 

    fprintf("Path length: %.2f",pathLength) 

 

    covEff = clean / (unclean+clean); 

    fprintf("Coverage efficiency: %.2f%%",covEff*100) 
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    fprintf("Number of deadlock events: %d",deadlock_cntr) 

    fprintf("Strategy planning algorithm runtime: %.2fs",programTime) 

else 

    % decompose polyshape using triangular mesh 

    tri = triDecomposition(room, min_triEdge); 

 

    % determine an initial optimal path passing through all triangle centroids using 

    % Traveling Salesman Problem (TSP) algorithm 

    [Gdir, tri.nodeList] = directedTSP(tri, room.Vertices); 

 

    % overlay triangular mesh and identified optimal path on the edited map 

    show(editedMap); hold on; 

    plot(tri.shape) 

    hGraph = 

plot(Gdir,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2),'LineStyle','none','NodeLabel',{}; 

    highlight(hGraph,Gdir,'LineStyle','-') 

    hold off 

    if mergeTri 

        % determine if a triangle needs to be merged 

        tri2merge = identifyTri2merge(tri, minTri) 

% MERGE IDENTIFIED TRIANGLES 

        % configure waitbar to monitor merging process 

        triWait = waitbar(0,'Initializing Merging Process','Name','Merging Triangles...',... 

            'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

 

        % configure a cancel button on waitbar 

        setappdata(triWait,'canceling',0); 

 

        offset = 0; % counter to track the number of nodes removed from the original node list 

        for i = 1:length(tri2merge) 

            % check if cancel button has been pressed 

            if getappdata(triWait,'canceling'); break; end 

 

            % identify node to be merged by subtracting the offset from the current node value 

            node2merge = tri2merge(i,1)-offset; 

 

            % update waitbar and message 

            waitbar(i/length(tri2merge),triWait,sprintf('Merging triangle %d of 

%d',i,length(tri2merge))) 
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            % fprintf('%d\n',node2merge+offset) % display current node being merged 

 

            % get current polygon connectivity 

            Gtri = polyConn(tri.shape); 

 

            % determine which neighboring node to merge with 

            neighbor2merge = polyNeighbor(Gtri, node2merge, tri.shape); 

 

            % merge neighbor node with current triangle node 

            neighborTri = tri.shape(neighbor2merge); 

            currentTri = tri.shape(node2merge); 

            tri.shape(neighbor2merge) = union(neighborTri,currentTri);    % save resulting 

merged polygon to neighbor node index in shape list 

 

            offset = offset+1;  % increment offset value 

            tri.shape(node2merge) = [];   % remove merged triangle node from shape list 

        end 

 

        delete(triWait) % delete waitbar 

 

        % get current polygon connectivity post merge 

        Gtri = polyConn(tri.shape); 

 

        % update centroid values of new polyshapes 

        [x,y] = centroid(tri.shape); 

        tri.centroid = [x;y]'; 

 

        % visually inspect polygon connectivity 

        show(editedMap); hold on; 

        plot(tri.shape) 

        plot(Gtri,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2)) 

        hold off; 

 

        % determine a final optimal path passing through all triangles using TSP algorithm 

        [Gdir, tri.nodeList] = directedTSP(tri, room.Vertices); 

 

        % visually inspect resulting TSP path 

        show(editedMap); hold on; 

        plot(tri.shape) 

        hGraph = 

plot(Gdir,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2),'LineStyle','none'); 

        highlight(hGraph,Gdir,'LineStyle','-') 

        hold off 
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    end 

% GENERATE BOUNDING BOXES 

    tri.nodeList(end,:) = []; % remove repeated node at end of node list 

 

    % convert merged triangle polygons into bounding boxes 

    for i = 1:length(tri.nodeList) 

 

        % obtain bounding box XY limits 

        [xlim,ylim] = boundingbox(tri.shape(tri.nodeList(i,1))); 

 

        % identify min and max of XY limits 

        xmin = min(xlim); xmax = max(xlim); 

        ymin = min(ylim); ymax = max(ylim); 

 

        % generate a polyshape of the bounding box and add to shape list 

        polyMin = [xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax]; 

        polybox.shape(i) = polyshape(polyMin); 

    end 

     

    % determine centroid values of bounding boxes 

    [x,y] = centroid(polybox.shape); 

    polybox.centroid = [x;y]'; 

 

    % create a polyshape representing the area outside the room 

    [xlim,ylim] = boundingbox(room); 

    xmin = min(xlim); xmax = max(xlim); 

    ymin = min(ylim); ymax = max(ylim); 

    polyMin = polyshape([xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax]); 

    roomOutside = subtract(polyMin,room); 

    % plot(roomOutside) 

% CLEAN UP BOUNDING BOXES 

    % configure waitbar to monitor clean up process 

    cleanWait = waitbar(0,'Initializing Clean Up Process','Name','Cleaning Up Bounding 

Boxes...',... 

        'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

 

    % configure a cancel button on waitbar 

    setappdata(cleanWait,'canceling',0); 

 

    % clean up bounding boxes by removing overlaps and areas outside the room 
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    figure; show(editedMap); hold on; 

    offset = 0;     % counter to track the number of bounding boxes removed from the original 

shape list 

    for i = 1:length(polybox.shape)-offset 

        % check if cancel button has been pressed 

        if getappdata(cleanWait,'canceling'); break; end 

 

        % identify bounding box to be cleaned up by subtracting the offset from the current 

index value 

        polyIdx = i - offset; 

 

        % update waitbar and message 

        waitbar(i/length(polybox.shape)-offset,cleanWait,sprintf('Cleaning up bounding box %d 

of %d',i,length(polybox.shape)-offset)) 

 

        % fprintf('%d\n',polyIdx+offset)  % display current bounding box index being cleaned 

 

        currentpoly = polybox.shape(polyIdx); % identify the current bounding box 

 

        % determine the region of intersection (ROI) between the current bounding box 

        % and the area outside the room then remove it from the current bounding box 

        roomintsec = intersect(currentpoly,roomOutside); 

        currentpoly = subtract(currentpoly,roomintsec); 

 

        Gbox = polyConn(polybox.shape); % get current polygon connectivity 

 

        % determine current bounding box neighbors 

        [row,col] = find(Gbox.Edges.EndNodes==polyIdx); 

        index = [row col]; neighbors = []; 

 

        for j = 1:height(index) 

            if index(j,2) == 1 

                neighbors(j,1) = Gbox.Edges.EndNodes(index(j,1),2); 

            elseif index(j,2) == 2 

                neighbors(j,1) = Gbox.Edges.EndNodes(index(j,1),1); 

            end 

        end 

 

        % remove current bounding box neighbor overlaps 

        for k = 1:height(neighbors) 

            % determine the ROI between current bounding box and neighbor 

            polyintsec = intersect(currentpoly,polybox.shape(neighbors(k))); 
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            % check if the ROI is valid 

            if height(polyintsec.Vertices) == 0 

                continue; 

            else 

                % remove the ROI from the current bounding box if its area is 

                % greater than the neighbor, else remove the ROI from the neighbor 

                if area(currentpoly) > area(polybox.shape(neighbors(k))) 

                    currentpoly = subtract(currentpoly,polyintsec); 

                else 

                    polybox.shape(neighbors(k)) = 

subtract(polybox.shape(neighbors(k)),polyintsec); 

                end 

            end 

        end 

 

        % check if the current bounding box is valid following removal of neighbor overlaps 

        if height(currentpoly.Vertices) == 0 

            polybox.shape(polyIdx) = [];   % remove current bounding box from list 

            offset = offset+1;          % increment offset counter by 1 

            continue; 

        else 

            polybox.shape(polyIdx) = currentpoly;  % save the cleaned up bounding box to the 

original shape list index 

            plot(currentpoly) 

        end 

    end 

    hold off; 

 

    delete(cleanWait) % delete waitbar 

 

    % update centroid values of bounding boxes 

    [x,y] = centroid(polybox.shape); 

    polybox.centroid = [x;y]'; 

 

    % get current bounding box connectivity post clean up 

    Gbox = polyConn(polybox.shape); 

 

    % visually inspect bounding box connectivity 

    figure; show(editedMap); hold on; 

    plot(polybox.shape) 

    plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2)) 

    hold off; 
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% PREPARE AND IDENTIFY BOUNDING BOXES TO MERGE 

    % identify any slivers formed during the clean up process 

    for i = 1:length(polybox.shape) 

        currentpoly = polybox.shape(i); % identify current bounding box 

        polynosliver = rmslivers(currentpoly,.05);  % remove any slivers from current bounding 

box 

        polysliver = subtract(currentpoly,polynosliver);    % save the polyshape consisting of 

the removed slivers 

 

        % check if the removed slivers polyshape is valid, if so append to end 

        % of shape list 

        if height(polysliver.Vertices) == 0 

            continue; 

        else 

            polybox.shape(1,end+1) = polysliver; 

        end 

 

        % check if the polygon with slivers removed is valid, if so save 

        % to the original polygon index 

        if height(polynosliver.Vertices) == 0 

            continue; 

        else 

            polybox.shape(i) = polynosliver; 

        end 

    end 

 

    % ensure that each polygon has one region 

    for i = 1:length(polybox.shape) 

        % if multiple regions are identifed, append these regions to polygon list 

        if polybox.shape(i).NumRegions > 1 

            polyRegions = regions(polybox.shape(i)); 

 

            for j = 1:length(polyRegions) 

                % check if the polygon region is valid 

                if height(polyRegions(j).Vertices) == 0 

                    continue; 

 

                    % save the first region to the original polygon index 

                elseif j == 1 

                    polybox.shape(i) = polyRegions(1); 

 

                    % append following regions to end of shape list 
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                else 

                    polybox.shape(end+1) = polyRegions(j); 

                end 

            end 

        end 

    end 

 

    % update centroid values 

    [x,y] = centroid(polybox.shape); 

    polybox.centroid = [x;y]'; 

 

    % get current polygon connectivity 

    Gbox = polyConn(polybox.shape); 

 

    % visually inspect polygon connectivity 

    figure; 

    show(editedMap); hold on; 

    plot(polybox.shape) 

    plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2)) 

    hold off; 

 

    % determine an optimal path passing through all polygons using TSP algorithm 

    [~, polybox.nodeList] = directedTSP(polybox, room.Vertices); 

 

    % identify the polygons that need to be merged 

    box2merge = identifyBox2merge(mergeRob, polybox, editedMap); 

% MERGE BOUNDING BOXES 

    % configure waitbar to monitor merging process 

    boxWait = waitbar(0,'Initializing Merging Process','Name','Merging Bounding Boxes...',... 

        'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

 

    % configure a cancel button on waitbar 

    setappdata(boxWait,'canceling',0); 

 

    offset = 0; % counter to track the number of nodes removed from the original node list 

    for j = 1:length(box2merge) 

        % check if cancel button has been pressed 

        if getappdata(boxWait,'canceling'); break; end 

 

        % identify node to be merged by subtracting the offset from the current node value 

        node = box2merge(j,1)-offset; 
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        % update waitbar and message 

        waitbar(j/length(box2merge),boxWait,sprintf('Merging polygon %d of 

%d',j,length(box2merge))) 

 

        % fprintf('%d\n',node+offset) % display current node being merged 

 

        Gbox = polyConn(polybox.shape);    % get current polygon connectivity 

 

        try 

            % determine which neighbor to merge with 

            neighbor2merge = polyNeighbor(Gbox, node, polybox.shape); 

 

            % merge neighbor with current node 

            polybox.shape(neighbor2merge) = 

union(polybox.shape(neighbor2merge),polybox.shape(node)); 

 

            offset = offset+1;  % increment offset value 

            polybox.shape(node) = [];   % remove merged node from shape list 

        catch 

            fprintf('Node %d has no identified neighbors',node+offset) 

            offset = offset+1;  % increment offset value 

            polybox.shape(node) = [];   % remove neighborless node from shape list 

        end 

    end 

 

    delete(boxWait) % delete waitbar 

% FINALIZE RESULTING POLYGONS 

    % ensure that each polygon has one region and no unnecessary holes 

    for i = 1:length(polybox.shape) 

        % if multiple regions are identifed, create a bounding box to merge them together 

        if polybox.shape(i).NumRegions > 1 || polybox.shape(i).NumHoles >= 1 

            currentpoly = polybox.shape(i); % identify the current polygon 

 

            % obtain bounding box XY limits 

            [xlim,ylim] = boundingbox(currentpoly); 

 

            % identify min and max of XY limits 

            xmin = min(xlim); xmax = max(xlim); 

            ymin = min(ylim); ymax = max(ylim); 
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            % generate a polyshape of the bounding box and replace the current 

            % polygon with the bounding box 

            polyMin = [xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax]; 

            currentpoly = polyshape(polyMin); 

 

            % identify and remove any areas of the current polygon outside the room 

            roomintsec = intersect(currentpoly,roomOutside); 

            currentpoly = subtract(currentpoly,roomintsec); 

 

            % remove any overlaps between other polyshapes 

            for before = 1:i-1 

                currentpoly = subtract(currentpoly,polybox.shape(before)); 

            end 

 

            for after = i+1:length(polybox.shape) 

                currentpoly = subtract(currentpoly,polybox.shape(after)); 

            end 

 

            % remove any resulting slivers 

            currentpoly = rmslivers(currentpoly,.05); 

 

            % save the edited polygon to the original polygon index 

            polybox.shape(i) = currentpoly; 

        end 

    end 

 

    % update centroid values 

    [x,y] = centroid(polybox.shape); 

    polybox.centroid = [x;y]'; 

 

    % get current polygon connectivity 

    Gbox = polyConn(polybox.shape); 

 

    % visually inspect polygon connectivity 

    figure; show(editedMap); hold on; 

    plot(polybox.shape) 

    plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2)) 

    hold off; 

 

    % determine a final optimal path passing through all polygons using TSP algorithm 

    [Gdir, polybox.nodeList] = directedTSP(polybox, room.Vertices); 

 

    % visually inspect the generated optimal path 
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    figure; show(editedMap); hold on; 

    plot(polybox.shape) 

    hGraph = 

plot(Gdir,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2),'LineStyle','none'); 

    highlight(hGraph,Gdir,'LineStyle','-') 

    hold off 

 

    programTime = toc; % record strategy planning algorithm runtime 

    % if the number of robots is 1 assign all tasks to one robot 

    if numRobots == 1 

        deadlock_cntr = 0;  % initialize a variable to count the number of encountered 

deadlocks 

        % loop through each task for complete coverage 

        for i = 1:length(polybox.shape) 

 

            % get local occupancy map and starting location of current task 

            [localMap, startXY] = poly2occgrid(polybox, i, rawMap, rob, cornerLoc, resolution); 

 

            % convert starting location to IJ coordinates 

            startIJ = world2grid(localMap,startXY); 

 

            % call path planning algorithm to perform complete coverage 

            figure; 

            [localMap,time(i,1),turnCount(i,1),overlap(i,1),pathLength(i,1),deadlock_cntr] = 

cleanRoomSimTest(localMap,startIJ,deadlock_cntr); 

 

            % determine the number of cleaned and uncleaned cells of current task 

            localOcc = occupancyMatrix(localMap); 

            clean(i,1) = length(find((localOcc>.4)&(localOcc<.6))); 

            unclean(i,1) = length(find(localOcc<.1)); 

        end 

 

        % display simualtion data 

        fprintf("Total simulation runtime: %.2f",sum(time)) 

        fprintf("Total turn count: %d",sum(turnCount)) 

        fprintf("Total path length: %.2f",sum(pathLength)) 

 

        fprintf("Total overlap: %d",sum(overlap)) 

        fprintf("Minimum task overlap: %d",min(overlap)) 

        fprintf("Maximum task overlap: %d",max(overlap)) 

        fprintf("Average overlap per task: %.2f",mean(overlap)) 

 

        covEff = sum(clean) / (sum(unclean)+sum(clean)); 
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        fprintf("Coverage efficiency: %.2f%%",covEff*100) 

 

        fprintf("Number of deadlock events: %d",deadlock_cntr) 

        fprintf("Strategy planning algorithm runtime: %.2f",programTime) 

        fprintf("Number of triangles within mesh: %d",length(tri.list)) 

        fprintf("Number of tasks: %d",length(polybox.shape)) 

Task Allocation 

    elseif numRobots == 2 

        task_list = polybox.nodeList(:,1); % assign the node list first column to the task list 

        task_list(end,:) = [];  % remove the repeated node at bottom of list 

 

        % divide the task list into segments according to the number of robots 

        task_segments = allocateTasks(task_list, numRobots) 

 

        delete(gcp('nocreate'));    % end any background parallel pool processes 

        parpool(2); % start a parallel pool process 

 

        % tag naming reference 

        % tag 1 -> robot1retask 

        % tag 2 -> robot2retask 

        % tag 3 -> robot1done 

        % tag 4 -> robot2done 

        % tag 5 -> robot1onetaskleft 

        % tag 6 -> robot2onetaskleft 

 

        % set flag variables 

        finished = 0; 

        otherFinished = 0; 

        reAllocateTasks = 0; 

        robot1onetaskleft = 0; 

        robot2onetaskleft = 0; 

 

        % initialize simulation data variables 

        tot_time = 0; 

        tot_turnCount = 0; 

        tot_overlap = 0; 

        tot_pathLength = 0; 

        clean = 0; 

        unclean = 0; 

 

        if enableRetasking 

            spmd 
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                if spmdIndex == 1 

                    try 

                        disp('Robot 1: Cleaning in progress') 

 

                        deadlock_cntr{spmdIndex} = 0;   % initialize variable on worker to 

count the number of encountered deadlocks 

                        % loop through the assigned tasks for complete coverage 

                        for currentTask = 1:height(task_segments{spmdIndex}) 

 

                            % check if any message received from other robot 

                            if spmdProbe 

                                otherFinished = spmdReceive('any',4)   % receive robot2done 

with tag 4 

 

                                % check if the received message indicates the other robot has 

finished 

                                if otherFinished == 1 

                                    disp('Robot 1: Robot 2 has finished') 

 

                                    % check if the number of remaining tasks is greater than 1 

                                    if (height(task_segments{spmdIndex}) - currentTask) > 1 

                                        reAllocateTasks = 1;    % set reAllocateTasks flag to 1 

                                        robot1onetaskleft = 0;  % set robot1onetaskleft flag to 

0 

                                        spmdSend(robot1onetaskleft,2,5) % send 

robot1onetaskleft to robot 2 with tag 5 

                                        spmdBarrier      % barrier #1; update robot 2 there is 

more than 1 task remaining for robot 1 

                                        break;  % break out of current loop 

                                    else 

                                        disp("Robot 1: 1 task remaining") 

                                        robot1onetaskleft = 1;  % set robot1onetaskleft to 1 

                                        spmdSend(robot1onetaskleft,2,5) % send 

robot1onetaskleft to robot 2 with tag 5 

                                        spmdBarrier     % barrier #1; update robot 2 there is 1 

task remaining for robot 1 

                                    end 

                                end 

                            end 

 

                            % get local occupancy map and starting location of current task 

                            [localMap, startXY] = poly2occgrid(polybox, 

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution); 
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                            % convert starting location to IJ coordinates 

                            startIJ = world2grid(localMap,startXY); 

 

                            % call path planning algorithm to perform complete coverage 

                            figure; 

                            

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] = 

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex}); 

 

                            % determine the number of cleaned and uncleaned cells of current 

task 

                            localOcc = occupancyMatrix(localMap); 

                            clean = clean+length(find((localOcc>.4)&(localOcc<.6))); 

                            unclean = unclean+length(find(localOcc<.1)); 

 

                            % update simulation data 

                            tot_time = tot_time +time; 

                            tot_turnCount = tot_turnCount+turnCount; 

                            tot_overlap = tot_overlap+overlap; 

                            tot_pathLength = tot_pathLength+pathLength; 

 

                            % report cleaning progress 

                            fprintf('Robot %d: Task %d complete. Progress: %d of %d\n', ... 

           

spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex})) 

                        end 

 

                        % enter this code block if the reAllocateTasks flag is set to 1 

                        if reAllocateTasks 

                            % report task reallocation is occurring and task stopped on 

                            fprintf('Robot %d: Reallocating tasks. Stopped on Task %d\n', ... 

                                spmdIndex,task_segments{spmdIndex}(currentTask)) 

 

                            % remove already completed tasks from current task list 

                            for i = 1:currentTask-1 

                                task_segments{spmdIndex}(1,:) = []; 

                            end 

 

                            % reallocate remaining tasks 

                            retasked_segments = 

allocateTasks(task_segments{spmdIndex},num_robots) 
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                            spmdSend(retasked_segments,2,1)   % send robot1retask to robot 2 

with tag 1 

 

                            spmdBarrier     % barrier #2; send robot 1 retask to robot 2 and 

wait 

 

                            % loop through the reassigned tasks for complete coverage 

                            for currentTask = 1:length(retasked_segments{1}) 

 

                                % get local occupancy map and starting location of current task 

                                [localMap, startXY] = poly2occgrid(polybox, 

retasked_segments{1}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                                % convert starting location to IJ coordinates 

                                startIJ = world2grid(localMap,startXY); 

 

                                % call path planning algorithm to perform complete coverage 

                                figure; 

                                

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] = 

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex}); 

 

                                % determine the number of cleaned and uncleaned cells of 

current task 

                                localOcc = occupancyMatrix(localMap); 

                                clean = clean+length(find((localOcc>.4)&(localOcc<.6))); 

                                unclean = unclean+length(find(localOcc<.1)); 

 

                                % update simulation data 

                                tot_time = tot_time +time; 

                                tot_turnCount = tot_turnCount+turnCount; 

                                tot_overlap = tot_overlap+overlap; 

                                tot_pathLength = tot_pathLength+pathLength; 

 

                                % report cleaning progress 

                                fprintf('Robot %d: Reallocated Task %d complete\nProgress: %d 

of %d\n', 

...spmdIndex,retasked_segments{1}(currentTask),currentTask,length(retasked_segments{1})) 

                            end 

                        end 

 

                        finished = 1;   % set finished flag to 1 
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                        disp('Robot 1: Done')   % report robot 1 has completed its assigned 

tasks 

 

                        % enter this code block if the finished flag is set to 1 and the 

otherFinished flag is set to 0 

                        if (finished == 1) && (otherFinished == 0) 

                            spmdSend(finished,2,3)    % send robot1done to robot 2 with tag 3 

 

                            spmdBarrier     % barrier #3; communicate robot 1 has finished 

before robot 2; wait for task remaining update from robot 1 

 

                            robot2onetaskleft = spmdReceive("any",6)    % receive2onetaskleft 

with tag 6 

 

                            % check status of one task remaining flag 

                            if robot2onetaskleft == 0 

                                disp("Robot 1: Receiving reallocated tasks from Robot 2") 

 

                                spmdBarrier     % barrier #4; wait for robot 2 retask update 

 

                                retasked_segments = spmdReceive("any",2)    % receive 

robot2retask with tag 2 

 

                                % loop through the received reassigned tasks for complete 

coverage 

                                for currentTask = 1:length(retasked_segments{2}) 

 

                                    % get local occupancy map and starting location of current 

task 

                                    [localMap, startXY] = poly2occgrid(polybox, 

retasked_segments{2}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                                    % convert starting location to IJ coordinates 

                                    startIJ = world2grid(localMap,startXY); 

 

                                    % call path planning algorithm to perform complete coverage 

                                    figure; 

                                   

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] = 

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex}); 

 

                                    % determine the number of cleaned and uncleaned cells of 

current task 
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                                    localOcc = occupancyMatrix(localMap); 

                                    clean = clean+length(find((localOcc>.4)&(localOcc<.6))); 

                                    unclean = unclean+length(find(localOcc<.1)); 

 

                                    % update simulation data 

                                    tot_time = tot_time+time; 

                                    tot_turnCount = tot_turnCount+turnCount; 

                                    tot_overlap = tot_overlap+overlap; 

                                    tot_pathLength = tot_pathLength+pathLength; 

 

                                    % report cleaning progress 

                                    fprintf('Robot %d: Reallocated Task %d complete\nProgress: 

%d of %d\n', 

...spmdIndex,retasked_segments{2}(currentTask),currentTask,length(retasked_segments{2})) 

                                end 

                            else 

                                disp("Robot 1: Bypassing retask since 1 task remaining on Robot 

2") 

                            end 

                        end 

                        spmdBarrier % barrier #0; wait for both robots to complete assigned 

tasks 

                    catch 

                        disp("Both robots have finished at the same time") 

                    end 

                end 

 

                if spmdIndex == 2 

                    try 

                        disp('Robot 2: Cleaning in progress') 

 

                        deadlock_cntr{spmdIndex} = 0;   % initialize variable on worker to 

count the number of encountered deadlocks 

                        % loop through the assigned tasks for complete coverage 

                        for currentTask = 1:height(task_segments{spmdIndex}) 

 

                            % check if any message received from other robot 

                            if spmdProbe 

                                otherFinished = spmdReceive("any",3)   % receive robot1done 

with tag 3 

 

                                % check if the received message indicates the other robot has 

finished 



 

121 

 

                                if otherFinished == 1 

                                    disp('Robot 2: Robot 1 has finished') 

 

                                    % check if the number of remaining tasks is greater than 1 

                                    if (height(task_segments{spmdIndex}) - currentTask) > 1 

                                        reAllocateTasks = 1;    % set reAllocateTasks flag to 1 

                                        robot2onetaskleft = 0;  % set robot2onetaskleft flag to 

0 

                                        spmdSend(robot2onetaskleft,1,6) % send 

robot2onetaskleft to robot 1 with tag 6 

                                        spmdBarrier     % barrier #3; update robot 1 there is 

more than 1 task remaining for robot 2 

                                        break; 

                                    else 

                                        disp("Robot 2: 1 task remaining") 

                                        robot2onetaskleft = 1;  % set robot1onetaskleft to 1 

                                        spmdSend(robot2onetaskleft,1,6) % send 

robot2onetaskleft to robot 1 with tag 6 

                                        spmdBarrier     % barrier #3; update robot 1 there is 1 

task remianing for robot 2 

                                    end 

                                end 

                            end 

 

                            % get local occupancy map and starting location of current task 

                            [localMap, startXY] = poly2occgrid(polybox, 

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                            % convert starting location to IJ coordinates 

                            startIJ = world2grid(localMap,startXY); 

 

                            % call path planning algorithm to perform complete coverage 

                            figure; 

                            

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] = 

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex}); 

 

                            % determine the number of cleaned and uncleaned cells of current 

task 

                            localOcc = occupancyMatrix(localMap); 

                            clean = clean+length(find((localOcc>.4)&(localOcc<.6))); 

                            unclean = unclean+length(find(localOcc<.1)); 

 



 

122 

 

                            % update simulation data 

                            tot_time = tot_time +time; 

                            tot_turnCount = tot_turnCount+turnCount; 

                            tot_overlap = tot_overlap+overlap; 

                            tot_pathLength = tot_pathLength+pathLength; 

 

                            % report cleaning progress 

                            fprintf('Robot %d: Task %d complete\nProgress %d of %d\n', ... 

spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex})) 

                        end 

 

                        % enter this code block if the reAllocateTasks flag is set to 1 

                        if reAllocateTasks 

                            % report task reallocation is occurring and task stopped on 

                            fprintf('Robot %d: Reallocating tasks. Stopped on Task %d\n', ... 

                                spmdIndex,task_segments{spmdIndex}(currentTask)) 

 

                            % remove already completed tasks from current task list 

                            for i = 1:currentTask-1 

                                task_segments{spmdIndex}(1,:) = [];   % remove already 

completed tasks 

                            end 

 

                            % reallocate remaining tasks 

                            retasked_segments = 

allocateTasks(task_segments{spmdIndex},num_robots) 

 

                            spmdSend(retasked_segments,1,2)   % send robot2retask to robot 1 

with tag 2 

 

                            spmdBarrier     % barrier #4; send robot 2 retask to robot 1 and 

wait 

 

                            % loop through the reassigned tasks for complete coverage 

                            for currentTask = 1:length(retasked_segments{1}) 

 

                                % get local occupancy map and starting location of current task 

                                [localMap, startXY] = poly2occgrid(polybox, 

retasked_segments{1}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                                % convert starting location to IJ coordinates 

                                startIJ = world2grid(localMap,startXY); 
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                                % call path planning algorithm to perform complete coverage 

                                figure; 

                                

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] = 

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex}); 

 

                                % determine the number of cleaned and uncleaned cells of 

current task 

                                localOcc = occupancyMatrix(localMap); 

                                clean = clean+length(find((localOcc>.4)&(localOcc<.6))); 

                                unclean = unclean+length(find(localOcc<.1)); 

 

                                % update simulation data 

                                tot_time = tot_time +time; 

                                tot_turnCount = tot_turnCount+turnCount; 

                                tot_overlap = tot_overlap+overlap; 

                                tot_pathLength = tot_pathLength+pathLength; 

 

                                % report cleaning progress 

                                fprintf('Robot %d: Reallocated Task %d complete\nProgress %d of 

%d\n', ...spmdIndex,retasked_segments{1}(currentTask),currentTask,length(retasked_segments{1})) 

                            end 

                        end 

 

                        finished = 1;   % set finished flag to 1 

                        disp('Robot 2 done')    % report robot 2 has completed its assigned 

tasks 

 

                        % enter this code block if the finished flag is set to 1 and the 

otherFinished flag is set to 0 

                        if (finished == 1) && (otherFinished == 0) 

                            spmdSend(finished,1,4)    % send robot2done to robot 1 with tag 4 

 

                            spmdBarrier     % barrier #1; communicate robot 2 has finished 

before robot 1; wait for task remaining update from robot 1 

 

                            robot1onetaskleft = spmdReceive("any",5)    % receive 

robot1onetaskleft with tag 5 

 

                            % check status of one task remaining flag 

                            if robot1onetaskleft == 0 

                                disp("Robot 2: Receiving reallocated tasks from Robot 1") 
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                                spmdBarrier     % barrier #2; wait for robot 1 retask update 

 

                                retasked_segments = spmdReceive("any",1)    % receive 

robot1retask with tag 1 

 

                                % loop through the received reassigned tasks for complete 

coverage 

                                for currentTask = 1:length(retasked_segments{2}) 

 

                                    % get local occupancy map and starting location of current 

task 

                                    [localMap, startXY] = poly2occgrid(polybox, 

retasked_segments{2}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                                    % convert starting location to IJ coordinates 

                                    startIJ = world2grid(localMap,startXY); 

 

                                    % call path planning algorithm to perform complete coverage 

                                    figure; 

                                   

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] = 

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex}); 

 

                                    % determine the number of cleaned and uncleaned cells of 

current task 

                                    localOcc = occupancyMatrix(localMap); 

                                    clean = clean+length(find((localOcc>.4)&(localOcc<.6))); 

                                    unclean = unclean+length(find(localOcc<.1)); 

 

                                    % update simulation data 

                                    tot_time = tot_time+time; 

                                    tot_turnCount = tot_turnCount+turnCount; 

                                    tot_overlap = tot_overlap+overlap; 

                                    tot_pathLength = tot_pathLength+pathLength; 

 

                                    % report cleaning progress 

                                    fprintf('Robot %d: Reallocated Task %d complete\nProgress 

%d of %d\n', 

...spmdIndex,retasked_segments{2}(currentTask),currentTask,length(retasked_segments{2})) 

                                end 

                            else 

                                disp("Robot 2: Bypassing retask since 1 task remaining on Robot 

1") 
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                            end 

                        end 

                        spmdBarrier % barrier #0; wait for both robots to complete assigned 

tasks 

                    catch 

                        disp("Both robots have finished at the same time") 

                    end 

                end 

            end 

        else 

            spmd 

                if spmdIndex == 1 

                    disp('Robot 1: Cleaning in progress') 

 

                    deadlock_cntr{spmdIndex} = 0;   % initialize variable on worker to count 

the number of encountered deadlocks 

                    % loop through the assigned tasks for complete coverage 

                    for currentTask = 1:height(task_segments{spmdIndex}) 

 

                        % get local occupancy map and starting location of current task 

                        [localMap, startXY] = poly2occgrid(polybox, 

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                        % convert starting location to IJ coordinates 

                        startIJ = world2grid(localMap,startXY); 

 

                        % call path planning algorithm to perform complete coverage 

                        figure; 

                        [localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] = 

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex}); 

 

                        % determine the number of cleaned and uncleaned cells of current task 

                        localOcc = occupancyMatrix(localMap); 

                        clean = clean+length(find((localOcc>.4)&(localOcc<.6))); 

                        unclean = unclean+length(find(localOcc<.1)); 

 

                        % update simulation data 

                        tot_time = tot_time +time; 

                        tot_turnCount = tot_turnCount+turnCount; 

                        tot_overlap = tot_overlap+overlap; 

                        tot_pathLength = tot_pathLength+pathLength; 

 

                        % report cleaning progress 
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                        fprintf('Robot %d: Task %d complete. Progress: %d of %d\n', ... 

           

spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex})) 

                    end 

 

                    disp('Robot 1: Done')   % report robot 1 has completed its assigned tasks 

                    spmdBarrier % barrier #0; wait for both robots to complete assigned tasks 

                end 

 

                if spmdIndex == 2 

                    disp('Robot 2: Cleaning in progress') 

 

                    deadlock_cntr{spmdIndex} = 0;   % initialize variable on worker to count 

the number of encountered deadlocks 

                    % loop through the assigned tasks for complete coverage 

                    for currentTask = 1:height(task_segments{spmdIndex}) 

 

                        % get local occupancy map and starting location of current task 

                        [localMap, startXY] = poly2occgrid(polybox, 

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                        % convert starting location to IJ coordinates 

                        startIJ = world2grid(localMap,startXY); 

 

                        % call path planning algorithm to perform complete coverage 

                        figure; 

                        [localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] = 

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex}); 

 

                        % determine the number of cleaned and uncleaned cells of current task 

                        localOcc = occupancyMatrix(localMap); 

                        clean = clean+length(find((localOcc>.4)&(localOcc<.6))); 

                        unclean = unclean+length(find(localOcc<.1)); 

 

                        % update simulation data 

                        tot_time = tot_time +time; 

                        tot_turnCount = tot_turnCount+turnCount; 

                        tot_overlap = tot_overlap+overlap; 

                        tot_pathLength = tot_pathLength+pathLength; 

 

                        % report cleaning progress 

                        fprintf('Robot %d: Task %d complete\nProgress %d of %d\n', ... 

  spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex})) 
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                    end 

 

                    disp('Robot 2 done')    % report robot 2 has completed its assigned tasks 

                    spmdBarrier % barrier #0; wait for both robots to complete assigned tasks 

                end 

            end 

        end 

 

        % display simualtion data 

        runtime = [tot_time{:}]; 

        fprintf("Robot 1 simulation runtime: %.2fs",runtime(1)) 

        fprintf("Robot 2 simulation runtime: %.2fs",runtime(2)) 

        fprintf("Idle time: %.2fs",max(runtime)-min(runtime)) 

 

        retask = [reAllocateTasks{:}]; 

        if any(retask); fprintf("Tasks reallocated"); else; fprintf("Tasks not reallocated"); 

end 

        fprintf("Robot 1 turn count: %d",tot_turnCount{1}) 

        fprintf("Robot 2 turn count: %d",tot_turnCount{2}) 

 

        fprintf("Robot 1 path length: %.2f",tot_pathLength{1}) 

        fprintf("Robot 2 path length: %.2f",tot_pathLength{2}) 

 

        fprintf("Robot 1 overlap: %d",tot_overlap{1}) 

        fprintf("Robot 2 overlap: %d",tot_overlap{2}) 

 

        covEff1 = clean{1} / (clean{1}+unclean{1}); 

        fprintf("Robot 1 coverage efficiency: %.2f%%",covEff1*100) 

        covEff2 = clean{2} / (clean{2}+unclean{2}); 

        fprintf("Robot 2 coverage efficiency: %.2f%%",covEff2*100) 

        covEff = (clean{1}+clean{2}) / (clean{1}+clean{2}+unclean{1}+unclean{2}); 

        fprintf("Total coverage efficiency: %.2f%%",covEff*100) 

 

        deadlock = [deadlock_cntr{:}]; deadlock = cell2mat(deadlock); 

        fprintf("Robot 1 deadlock events: %d",deadlock(1)) 

        fprintf("Robot 2 deadlock events: %d",deadlock(2)) 

 

        fprintf("Strategy planning algorithm runtime: %.2fs",programTime) 

        fprintf("Number of triangles within mesh: %d",length(tri.list)) 

        fprintf("Number of tasks: %d",length(task_list)) 

    else 

        disp("Current program can only account for 1 or 2 robots") 

    end 
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end 

II. roomStrategyReal 

Setup 

clearvars; close all; % clear all workspace variables and close all figures 

% INPUT PARAMETERS 

rob.size = 12;  % distance from robot center to edge midpoint in IJ coordinates 

rob.diag = 14;  % distance from robot center to corner in IJ coordinates 

 

min_triEdge = 2; % target minimum edge length for triangulation mesh 

 

cornerLoc = 1;  % desired starting location of path planning algorithm.  

Valid values for this parameter are: 

% 1 (farthest valid starting corner from polyshape centroid) 

% 2 (closest valid starting corner from polyshape centroid) 

% 3 (polyshape centroid) 

 

editedPGM_path = "X";  % file path of post-edited lidar map in PGM format 

 

numRobots = 1; % number of robots to be utilized in decomposed work area 

% ADDITIONAL PARAMETERS 

mergeTri = true; % false skip triangle merging, true perform triangle merging (default) 

if mergeTri; minTri.base = .5; minTri.height = .5; end % minumum values for base and height 

when determining triangles to merge 

 

rosSetup = true; % false skip connecting to ROS network, true connect to ROS network (default) 

 

% due to potential differences between the raw occupancy map origin and 

% the default occupancy map origin in MATLAB (0,0), this difference can be 

% corrected by importing the raw occupancy map 

importRawMap = false; % false skip importing raw occupancy map (default), true import raw 

occupancy map 

 

wholeRoom = false; % false perform map decomposition (default), true do not perform map 

decomposition 

 

enableRetasking = true; % false do not reallocate tasks, true reallocate tasks (default) 
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resolution = 50;   % occupancy map resolution in cells per meter 

 

mergeRob.size = rob.size+3; % padded robot size to consider when identifying polygons to merge 

mergeRob.diag = rob.diag+3; % padded robot diagonal length to consider when identifying 

polygons to merge 

% CONNECT TO ROS NETWORK 

if rosSetup 

    rosshutdown()   % make sure any ROS sessions are closed 

    rosinit("http://X.X.X.X:11311") % initialize ROS network and connect to host 

end 

% IMPORT RAW MAP 

if importRawMap 

    try 

        % try to subscribe to /map topic and receive the sent message 

        sub = rossubscriber("/map",DataFormat='struct'); 

        msg = receive(sub); 

 

        % generate an occupancy map with the received map message 

        rawMap = rosReadOccupancyGrid(msg); 

        show(rawMap)    % visually inspect the imported raw occupancy map 

    catch 

        % if unable to subscribe to /map topic, load raw map from local save 

        savedMap = load('ros_occMap.mat'); 

        rawMap = savedMap.occupancyMapObj; 

        show(rawMap); clear savedMap; 

    end 

else 

    rawMap = []; 

end 

Image Processing  

tic 

editedPGM = imread(editedPGM_path); % load in pgm image of post edited lidar scan 

 

% normalize the image to values between 0 and 1 then convert to occupancy 

% values by subtracting from 1 

editedMap_occ = 1 - double(editedPGM)/255; 

 

% generate an occupancy map from the occupancy values 
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editedMap = occupancyMap(editedMap_occ,resolution); 

show(editedMap) % visually inspect the generated occupancy map 

% IDENTIFY EXTERIOR BOUNDARY AND INTERIOR OBSTACLE BOUNDARIES 

[exteriorIJ, interiorIJ] = identifyBoundaries(editedPGM); 

 

% determine if the exterior boundary has been misidentified as an interior obstacle, 

% if so set the interior obstacle as the exterior boundary 

obsNum = fieldnames(interiorIJ);    % determine number of identified interior obstacles 

if (length(exteriorIJ) < 10) && (numel(obsNum) == 1) 

    % reduce the number of points describing the exterior boundary 

    exteriorIJ = reducepoly(interiorIJ.obs1,.01); 

    removeObs = 0;  % do not remove interior obstacles 

else 

    removeObs = 1;  % do remove interior obstacles 

end 

 

% convert the exterior boundary points from IJ to XY coordinates 

exteriorXY = grid2world(editedMap,exteriorIJ); 

% POLYSHAPE REPRESENTATION 

% generate a polyshape of the room from the exterior boundary points 

room = polyshape(exteriorXY(:,1),exteriorXY(:,2)); 

plot(room) 

 

% if applicable, remove the identified interior obstacles from the room polyshape 

if removeObs == 1 

    for i = 1:numel(obsNum) 

        % convert the identifed interior obstacles points from IJ to XY coordinates 

        interiorXY = grid2world(editedMap,interiorIJ.(obsNum{i})); 

 

        % reduce the number of points describing the obstacle 

        reducedObs = reducepoly(interiorXY,.01); 

 

        % generate a polyshape representing the obstacle 

        obs = polyshape(reducedObs(:,1),reducedObs(:,2)); 

 

        % remove the obstacle polyshape from the room polyshape 

        room = subtract(room,obs); 

    end 

    plot(room); % visually inspect the resulting polyshape 
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end 

Map Decomposition 

if wholeRoom 

    programTime = toc; 

 

    % set up ROS publishers 

    localMap_pub = rospublisher("/localMap","nav_msgs/OccupancyGrid",DataFormat='struct'); 

    goal_pub = rospublisher("/goal","geometry_msgs/PoseStamped","DataFormat","struct"); 

 

    % set up ROS publisher messages 

    localMap_msgType = rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct"); 

    goal = rosmessage("geometry_msgs/PoseStamped","DataFormat","struct"); 

     

    % set up ROS subscribers 

    localMap_sub = rossubscriber("/map/local_coverage_map",DataFormat='struct'); 

    taskFlag_sub = rossubscriber("/taskFlag",'std_msgs/Int32'); 

    taskFlag = 0;   % initialize task flag to 0 

 

    % get occupancy map and starting location of room 

    [localMap, startXY] = poly2occgrid(room, 0, rawMap, rob, cornerLoc, resolution); 

     

    % format ROS messages 

    localMap_msg = rosWriteOccupancyGrid(localMap_msgType,localMap); 

    localMap_msg.Header.FrameId = 'map'; 

 

    goal.Header.FrameId = 'map'; 

    goal.Pose.Position.X = startXY(1,1); 

    goal.Pose.Position.Y = startXY(1,2); 

 

    heading  = eul2quat([0,0,pi],'XYZ'); 

    goal.Pose.Orientation.W = heading(1); 

    goal.Pose.Orientation.X = heading(2); 

    goal.Pose.Orientation.Y = heading(3); 

    goal.Pose.Orientation.Z = heading(4); 

     

    % send ROS messages 

    send(localMap_pub,localMap_msg) 

    send(goal_pub,goal) 

     

    % wait for flag to signal task complete 

    while taskFlag ~= 1 

        taskFlag_msg = receive(taskFlag_sub); 
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        taskFlag = taskFlag_msg.Data; 

    end 

     

    % receive cleaned map message 

    localMap_msg = receive(localMap_sub); 

    cleanedMap = rosReadOccupancyGrid(localMap_msg); 

    show(cleanedMap) 

     

    % determine the number of cleaned and uncleaned cells 

    localOcc = occupancyMatrix(cleanedMap); 

    clean = length(find((localOcc>.4)&(localOcc<.6))); 

    unclean = length(find(localOcc<.1)); 

     

    % display data 

    covEff = clean / (unclean+clean); 

    fprintf("Coverage efficiency: %.2f%%",covEff*100) 

 

    fprintf("Strategy planning algorithm runtime: %.2fs",programTime) 

else 

    % decompose polyshape using triangular mesh 

    tri = triDecomposition(room, min_triEdge); 

 

    % determine an initial optimal path passing through all triangle centroids using 

    % Traveling Salesman Problem (TSP) algorithm 

    [Gdir, tri.nodeList] = directedTSP(tri, room.Vertices); 

 

    % overlay triangular mesh and identified optimal path on the edited map 

    show(editedMap); hold on; 

    plot(tri.shape) 

    hGraph = 

plot(Gdir,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2),'LineStyle','none','NodeLabel',{})

; 

    highlight(hGraph,Gdir,'LineStyle','-') 

    hold off 

    if mergeTri 

        % determine if a triangle needs to be merged 

        tri2merge = identifyTri2merge(tri, minTri) 

% MERGE IDENTIFIED TRIANGLES 

        % configure waitbar to monitor merging process 

        triWait = waitbar(0,'Initializing Merging Process','Name','Merging Triangles...',... 

            'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 
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        % configure a cancel button on waitbar 

        setappdata(triWait,'canceling',0); 

 

        offset = 0; % counter to track the number of nodes removed from the original node list 

        for i = 1:length(tri2merge) 

            % check if cancel button has been pressed 

            if getappdata(triWait,'canceling'); break; end 

 

            % identify node to be merged by subtracting the offset from the current node value 

            node2merge = tri2merge(i,1)-offset; 

 

            % update waitbar and message 

            waitbar(i/length(tri2merge),triWait,sprintf('Merging triangle %d of 

%d',i,length(tri2merge))) 

 

            % fprintf('%d\n',node2merge+offset) % display current node being merged 

 

            % get current polygon connectivity 

            Gtri = polyConn(tri.shape); 

 

            % determine which neighboring node to merge with 

            neighbor2merge = polyNeighbor(Gtri, node2merge, tri.shape); 

 

            % merge neighbor node with current triangle node 

            neighborTri = tri.shape(neighbor2merge); 

            currentTri = tri.shape(node2merge); 

            tri.shape(neighbor2merge) = union(neighborTri,currentTri);    % save resulting 

merged polygon to neighbor node index in shape list 

 

            offset = offset+1;  % increment offset value 

            tri.shape(node2merge) = [];   % remove merged triangle node from shape list 

        end 

 

        delete(triWait) % delete waitbar 

 

        % get current polygon connectivity post merge 

        Gtri = polyConn(tri.shape); 

 

        % update centroid values of new polyshapes 

        [x,y] = centroid(tri.shape); 

        tri.centroid = [x;y]'; 
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        % visually inspect polygon connectivity 

        show(editedMap); hold on; 

        plot(tri.shape) 

        plot(Gtri,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2)) 

        hold off; 

 

        % determine a final optimal path passing through all triangles using TSP algorithm 

        [Gdir, tri.nodeList] = directedTSP(tri, room.Vertices); 

 

        % visually inspect resulting TSP path 

        show(editedMap); hold on; 

        plot(tri.shape) 

        hGraph = 

plot(Gdir,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2),'LineStyle','none'); 

        highlight(hGraph,Gdir,'LineStyle','-') 

        hold off 

    end 

% GENERATE BOUNDING BOXES 

    tri.nodeList(end,:) = []; % remove repeated node at end of node list 

 

    % convert merged triangle polygons into bounding boxes 

    for i = 1:length(tri.nodeList) 

 

        % obtain bounding box XY limits 

        [xlim,ylim] = boundingbox(tri.shape(tri.nodeList(i,1))); 

 

        % identify min and max of XY limits 

        xmin = min(xlim); xmax = max(xlim); 

        ymin = min(ylim); ymax = max(ylim); 

 

        % generate a polyshape of the bounding box and add to shape list 

        polyMin = [xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax]; 

        polybox.shape(i) = polyshape(polyMin); 

    end 

 

    % determine centroid values of bounding boxes 

    [x,y] = centroid(polybox.shape); 

    polybox.centroid = [x;y]'; 

 

    % create a polyshape representing the area outside the room 

    [xlim,ylim] = boundingbox(room); 
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    xmin = min(xlim); xmax = max(xlim); 

    ymin = min(ylim); ymax = max(ylim); 

    polyMin = polyshape([xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax]); 

    roomOutside = subtract(polyMin,room); 

    % plot(roomOutside) 

% CLEAN UP BOUNDING BOXES 

    % configure waitbar to monitor clean up process 

    cleanWait = waitbar(0,'Initializing Clean Up Process','Name','Cleaning Up Bounding 

Boxes...',... 

        'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

 

    % configure a cancel button on waitbar 

    setappdata(cleanWait,'canceling',0); 

 

    % clean up bounding boxes by removing overlaps and areas outside the room 

    figure; show(editedMap); hold on; 

    offset = 0;     % counter to track the number of bounding boxes removed from the original 

shape list 

    for i = 1:length(polybox.shape)-offset 

        % check if cancel button has been pressed 

        if getappdata(cleanWait,'canceling'); break; end 

 

        % identify bounding box to be cleaned up by subtracting the offset from the current 

index value 

        polyIdx = i - offset; 

 

        % update waitbar and message 

        waitbar(i/length(polybox.shape)-offset,cleanWait,sprintf('Cleaning up bounding box %d 

of %d',i,length(polybox.shape)-offset)) 

 

        % fprintf('%d\n',polyIdx+offset)  % display current bounding box index being cleaned 

 

        currentpoly = polybox.shape(polyIdx); % identify the current bounding box 

 

        % determine the region of intersection (ROI) between the current bounding box 

        % and the area outside the room then remove it from the current bounding box 

        roomintsec = intersect(currentpoly,roomOutside); 

        currentpoly = subtract(currentpoly,roomintsec); 

 

        Gbox = polyConn(polybox.shape); % get current polygon connectivity 
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        % determine current bounding box neighbors 

        [row,col] = find(Gbox.Edges.EndNodes==polyIdx); 

        index = [row col]; neighbors = []; 

 

        for j = 1:height(index) 

            if index(j,2) == 1 

                neighbors(j,1) = Gbox.Edges.EndNodes(index(j,1),2); 

            elseif index(j,2) == 2 

                neighbors(j,1) = Gbox.Edges.EndNodes(index(j,1),1); 

            end 

        end 

 

        % remove current bounding box neighbor overlaps 

        for k = 1:height(neighbors) 

            % determine the ROI between current bounding box and neighbor 

            polyintsec = intersect(currentpoly,polybox.shape(neighbors(k))); 

 

            % check if the ROI is valid 

            if height(polyintsec.Vertices) == 0 

                continue; 

            else 

                % remove the ROI from the current bounding box if its area is 

                % greater than the neighbor, else remove the ROI from the neighbor 

                if area(currentpoly) > area(polybox.shape(neighbors(k))) 

                    currentpoly = subtract(currentpoly,polyintsec); 

                else 

                    polybox.shape(neighbors(k)) = 

subtract(polybox.shape(neighbors(k)),polyintsec); 

                end 

            end 

        end 

 

        % check if the current bounding box is valid following removal of neighbor overlaps 

        if height(currentpoly.Vertices) == 0 

            polybox.shape(polyIdx) = [];   % remove current bounding box from list 

            offset = offset+1;          % increment offset counter by 1 

            continue; 

        else 

            polybox.shape(polyIdx) = currentpoly;  % save the cleaned up bounding box to the 

original shape list index 

            plot(currentpoly) 

        end 

    end 
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    hold off; 

 

    delete(cleanWait) % delete waitbar 

 

    % update centroid values of bounding boxes 

    [x,y] = centroid(polybox.shape); 

    polybox.centroid = [x;y]'; 

 

    % get current bounding box connectivity post clean up 

    Gbox = polyConn(polybox.shape); 

 

    % visually inspect bounding box connectivity 

    figure; show(editedMap); hold on; 

    plot(polybox.shape) 

    plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2)) 

    hold off; 

% PREPARE AND IDENTIFY BOUNDING BOXES TO MERGE 

    % identify any slivers formed during the clean up process 

    for i = 1:length(polybox.shape) 

        currentpoly = polybox.shape(i); % identify current bounding box 

        polynosliver = rmslivers(currentpoly,.05);  % remove any slivers from current bounding 

box 

        polysliver = subtract(currentpoly,polynosliver);    % save the polyshape consisting of 

the removed slivers 

 

        % check if the removed slivers polyshape is valid, if so append to end 

        % of shape list 

        if height(polysliver.Vertices) == 0 

            continue; 

        else 

            polybox.shape(1,end+1) = polysliver; 

        end 

 

        % check if the polygon with slivers removed is valid, if so save 

        % to the original polygon index 

        if height(polynosliver.Vertices) == 0 

            continue; 

        else 

            polybox.shape(i) = polynosliver; 

        end 

    end 
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    % ensure that each polygon has one region 

    for i = 1:length(polybox.shape) 

        % if multiple regions are identifed, append these regions to polygon list 

        if polybox.shape(i).NumRegions > 1 

            polyRegions = regions(polybox.shape(i)); 

 

            for j = 1:length(polyRegions) 

                % check if the polygon region is valid 

                if height(polyRegions(j).Vertices) == 0 

                    continue; 

 

                    % save the first region to the original polygon index 

                elseif j == 1 

                    polybox.shape(i) = polyRegions(1); 

 

                    % append following regions to end of shape list 

                else 

                    polybox.shape(end+1) = polyRegions(j); 

                end 

            end 

        end 

    end 

 

    % update centroid values 

    [x,y] = centroid(polybox.shape); 

    polybox.centroid = [x;y]'; 

 

    % get current polygon connectivity 

    Gbox = polyConn(polybox.shape); 

 

    % visually inspect polygon connectivity 

    figure; 

    show(editedMap); hold on; 

    plot(polybox.shape) 

    plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2)) 

    hold off; 

 

    % determine an optimal path passing through all polygons using TSP algorithm 

    [~, polybox.nodeList] = directedTSP(polybox, room.Vertices); 

 

    % identify the polygons that need to be merged 

    box2merge = identifyBox2merge(mergeRob, polybox, editedMap); 
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% MERGE BOUNDING BOXES 

    % configure waitbar to monitor merging process 

    boxWait = waitbar(0,'Initializing Merging Process','Name','Merging Bounding Boxes...',... 

        'CreateCancelBtn','setappdata(gcbf,''canceling'',1)'); 

 

    % configure a cancel button on waitbar 

    setappdata(boxWait,'canceling',0); 

 

    offset = 0; % counter to track the number of nodes removed from the original node list 

    for j = 1:length(box2merge) 

        % check if cancel button has been pressed 

        if getappdata(boxWait,'canceling'); break; end 

 

        % identify node to be merged by subtracting the offset from the current node value 

        node = box2merge(j,1)-offset; 

 

        % update waitbar and message 

        waitbar(j/length(box2merge),boxWait,sprintf('Merging polygon %d of 

%d',j,length(box2merge))) 

 

        % fprintf('%d\n',node+offset) % display current node being merged 

 

        Gbox = polyConn(polybox.shape);    % get current polygon connectivity 

 

        try 

            % determine which neighbor to merge with 

            neighbor2merge = polyNeighbor(Gbox, node, polybox.shape); 

 

            % merge neighbor with current node 

            polybox.shape(neighbor2merge) = 

union(polybox.shape(neighbor2merge),polybox.shape(node)); 

 

            offset = offset+1;  % increment offset value 

            polybox.shape(node) = [];   % remove merged node from shape list 

        catch 

            fprintf('Node %d has no identified neighbors',node+offset) 

            offset = offset+1;  % increment offset value 

            polybox.shape(node) = [];   % remove neighborless node from shape list 

        end 

    end 

 

    delete(boxWait) % delete waitbar 
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% FINALIZE RESULTING POLYGONS 

    % ensure that each polygon has one region and no unnecessary holes 

    for i = 1:length(polybox.shape) 

        % if multiple regions are identifed, create a bounding box to merge them together 

        if polybox.shape(i).NumRegions > 1 || polybox.shape(i).NumHoles >= 1 

            currentpoly = polybox.shape(i); % identify the current polygon 

 

            % obtain bounding box XY limits 

            [xlim,ylim] = boundingbox(currentpoly); 

 

            % identify min and max of XY limits 

            xmin = min(xlim); xmax = max(xlim); 

            ymin = min(ylim); ymax = max(ylim); 

 

            % generate a polyshape of the bounding box and replace the current 

            % polygon with the bounding box 

            polyMin = [xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax]; 

            currentpoly = polyshape(polyMin); 

 

            % identify and remove any areas of the current polygon outside the room 

            roomintsec = intersect(currentpoly,roomOutside); 

            currentpoly = subtract(currentpoly,roomintsec); 

 

            % remove any overlaps between other polyshapes 

            for before = 1:i-1 

                currentpoly = subtract(currentpoly,polybox.shape(before)); 

            end 

 

            for after = i+1:length(polybox.shape) 

                currentpoly = subtract(currentpoly,polybox.shape(after)); 

            end 

 

            % remove any resulting slivers 

            currentpoly = rmslivers(currentpoly,.05); 

 

            % save the edited polygon to the original polygon index 

            polybox.shape(i) = currentpoly; 

        end 

    end 

 

    % update centroid values 

    [x,y] = centroid(polybox.shape); 
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    polybox.centroid = [x;y]'; 

 

    % get current polygon connectivity 

    Gbox = polyConn(polybox.shape); 

 

    % visually inspect polygon connectivity 

    figure; show(editedMap); hold on; 

    plot(polybox.shape) 

    plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2)) 

    hold off; 

 

    % determine a final optimal path passing through all polygons using TSP algorithm 

    [Gdir, polybox.nodeList] = directedTSP(polybox, room.Vertices); 

 

    % visually inspect the generated optimal path 

    figure; show(editedMap); hold on; 

    plot(polybox.shape) 

    hGraph = 

plot(Gdir,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2),'LineStyle','none'); 

    highlight(hGraph,Gdir,'LineStyle','-') 

    hold off 

 

    programTime = toc; % record strategy planning algorithm runtime 

    % if the number of robots is 1 assign all tasks to one robot 

    if numRobots == 1 

 

        % set up ROS publishers 

        localMap_pub = rospublisher("/localMap","nav_msgs/OccupancyGrid",DataFormat='struct'); 

        goal_pub = rospublisher("/goal","geometry_msgs/PoseStamped","DataFormat","struct"); 

        stopFlag_pub = rospublisher("/stop",'std_msgs/Int32'); 

 

        % set up ROS publisher messages 

        localMap_msgType = rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct"); 

        goal = rosmessage("geometry_msgs/PoseStamped","DataFormat","struct"); 

        stopFlag = rosmessage(stopFlag_pub); 

        stopFlag.Data = 0;      % initialize stop flag to 0 

        send(stopFlag_pub,stopFlag) % send stop flag status 

 

        % set up ROS subscribers 

        localMap_sub = rossubscriber("/map/local_coverage_map",DataFormat='struct'); 

        taskFlag_sub = rossubscriber("/taskFlag",'std_msgs/Int32'); 

        taskFlag = 0;   % initialize task flag to 0 
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        % loop through each task for complete coverage 

        for i = 1:length(polybox.shape) 

 

            % get local occupancy map and starting location of current task 

            [localMap, startXY] = poly2occgrid(polybox, i, rawMap, rob, cornerLoc, resolution); 

 

            % format ROS messages 

            localMap_msg = rosWriteOccupancyGrid(localMap_msgType,localMap); 

            localMap_msg.Header.FrameId = 'map'; 

 

            goal.Header.FrameId = 'map'; 

            goal.Pose.Position.X = startXY(1,1); 

            goal.Pose.Position.Y = startXY(1,2); 

 

            heading  = eul2quat([0,0,pi],'XYZ'); 

            goal.Pose.Orientation.W = heading(1); 

            goal.Pose.Orientation.X = heading(2); 

            goal.Pose.Orientation.Y = heading(3); 

            goal.Pose.Orientation.Z = heading(4); 

 

            % send ROS messages 

            send(localMap_pub,localMap_msg) 

            send(goal_pub,goal) 

 

            % wait for flag to signal task complete 

            while taskFlag ~= 1 

                taskFlag_msg = receive(taskFlag_sub); 

                taskFlag = taskFlag_msg.Data; 

            end 

 

            % receive cleaned map message 

            localMap_msg = receive(localMap_sub); 

            cleanedMap = rosReadOccupancyGrid(localMap_msg); 

            show(cleanedMap) 

 

            % determine the number of cleaned and uncleaned cells of current task 

            localOcc = occupancyMatrix(cleanedMap); 

            clean(i,1) = length(find((localOcc>.4)&(localOcc<.6))); 

            unclean(i,1) = length(find(localOcc<.1)); 

 

            taskFlag = 0; % reset task flag to 0 

        end 
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        stopFlag.Data = 1;  % set stop flag to 1 to signal all tasks complete 

        send(stopFlag_pub,stopFlag) % send stop flag status 

 

        % display data 

        covEff = sum(clean) / (sum(unclean)+sum(clean)); 

        fprintf("Coverage efficiency: %.2f%%",covEff*100) 

 

        fprintf("Strategy planning algorithm runtime: %.2fs",programTime) 

Task Allocation 

    elseif numRobots == 2 

        task_list = polybox.nodeList(:,1); % assign the node list first column to the task list 

        task_list(end,:) = [];  % remove the repeated node at bottom of list 

 

        % divide the task list into segments according to the number of robots 

        task_segments = allocateTasks(task_list, numRobots) 

 

        delete(gcp('nocreate'));    % end any background parallel pool processes 

        parpool(2); % start a parallel pool process 

 

        % tag naming reference 

        % tag 1 -> robot1retask 

        % tag 2 -> robot2retask 

        % tag 3 -> robot1done 

        % tag 4 -> robot2done 

        % tag 5 -> robot1onetaskleft 

        % tag 6 -> robot2onetaskleft 

 

        % set flag variables 

        finished = 0; 

        otherFinished = 0; 

        reAllocateTasks = 0; 

        robot1onetaskleft = 0; 

        robot2onetaskleft = 0; 

 

        % initialize simulation data variables 

        tot_time = 0; 

        tot_turnCount = 0; 

        tot_overlap = 0; 

        tot_pathLength = 0; 

        clean = 0; 

        unclean = 0; 
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        if enableRetasking 

            spmd 

                if spmdIndex == 1 

                    try 

                        disp('Robot 1: Cleaning in progress') 

 

                        % set ROS node constant 

                        nodeConstant{spmdIndex} = 

parallel.pool.Constant(ros.Node('/Robot1',"http://X.X.X.X:11311")); 

 

                        % set ROS publisher constants 

                        map_pubConstant{spmdIndex} = 

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/localMapRobot1',"nav_msgs/O

ccupancyGrid","DataFormat","struct")); 

                        goal_pubConstant{spmdIndex} = 

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/goalRobot1',"geometry_msgs/

PoseStamped","DataFormat","struct")); 

 

                        % set ROS message types 

                        map_msgType{spmdIndex} = 

rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct"); 

                        goal{spmdIndex} = 

rosmessage("geometry_msgs/PoseStamped","DataFormat","struct"); 

 

                        % loop through the assigned tasks for complete coverage 

                        for currentTask = 1:height(task_segments{spmdIndex}) 

 

                            % check if any message received from other robot 

                            if spmdProbe 

                                otherFinished = spmdReceive('any',4)   % receive robot2done 

with tag 4 

 

                                % check if the received message indicates the other robot has 

finished 

                                if otherFinished == 1 

                                    disp('Robot 1: Robot 2 has finished') 

 

                                    % check if the number of remaining tasks is greater than 1 

                                    if (height(task_segments{spmdIndex}) - currentTask) > 1 

                                        reAllocateTasks = 1;    % set reAllocateTasks flag to 1 

                                        robot1onetaskleft = 0;  % set robot1onetaskleft flag to 

0 
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                                        spmdSend(robot1onetaskleft,2,5) % send 

robot1onetaskleft to robot 2 with tag 5 

                                        spmdBarrier      % barrier #1; update robot 2 there is 

more than 1 task remaining for robot 1 

                                        break;  % break out of current loop 

                                    else 

                                        disp("Robot 1: 1 task remaining") 

                                        robot1onetaskleft = 1;  % set robot1onetaskleft to 1 

                                        spmdSend(robot1onetaskleft,2,5) % send 

robot1onetaskleft to robot 2 with tag 5 

                                        spmdBarrier     % barrier #1; update robot 2 there is 1 

task remaining for robot 1 

                                    end 

                                end 

                            end 

 

                            % get local occupancy map and starting location of current task 

                            [localMap, startXY] = poly2occgrid(polybox, 

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                            % set ROS messages 

                            map_msg{spmdIndex} = 

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap); 

 

                            goal{spmdIndex}.Header.FrameId = 'map'; 

                            goal{spmdIndex}.Pose.Position.X = startXY(1,1); 

                            goal{spmdIndex}.Pose.Position.Y = startXY(1,2); 

 

                            heading  = eul2quat([0,0,pi],'XYZ'); 

                            goal{spmdIndex}.Pose.Orientation.W = heading(1); 

                            goal{spmdIndex}.Pose.Orientation.X = heading(2); 

                            goal{spmdIndex}.Pose.Orientation.Y = heading(3); 

                            goal{spmdIndex}.Pose.Orientation.Z = heading(4); 

 

                            % send ROS messages 

                            send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex}) 

                            send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex}) 

 

                            % report cleaning progress 

                            fprintf('Robot %d: Task %d complete. Progress: %d of %d\n', ... 

  spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex})) 

                        end 
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                        % enter this code block if the reAllocateTasks flag is set to 1 

                        if reAllocateTasks 

                            % report task reallocation is occurring and task stopped on 

                            fprintf('Robot %d: Reallocating tasks. Stopped on Task %d\n', ... 

                                spmdIndex,task_segments{spmdIndex}(currentTask)) 

 

                            % remove already completed tasks from current task list 

                            for i = 1:currentTask-1 

                                task_segments{spmdIndex}(1,:) = []; 

                            end 

 

                            % reallocate remaining tasks 

                            retasked_segments = 

allocateTasks(task_segments{spmdIndex},num_robots) 

 

                            spmdSend(retasked_segments,2,1)   % send robot1retask to robot 2 

with tag 1 

 

                            spmdBarrier % barrier #2; send robot 1 retask to robot 2 and wait 

 

                            % loop through the reassigned tasks for complete coverage 

                            for currentTask = 1:length(retasked_segments{1}) 

 

                                % get local occupancy map and starting location of current task 

                                [localMap, startXY] = poly2occgrid(polybox, 

retasked_segments{1}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                                % set ROS messages 

                                map_msg{spmdIndex} = 

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap); 

 

                                goal{spmdIndex}.Header.FrameId = 'map'; 

                                goal{spmdIndex}.Pose.Position.X = startXY(1,1); 

                                goal{spmdIndex}.Pose.Position.Y = startXY(1,2); 

 

                                heading  = eul2quat([0,0,pi],'XYZ'); 

                                goal{spmdIndex}.Pose.Orientation.W = heading(1); 

                                goal{spmdIndex}.Pose.Orientation.X = heading(2); 

                                goal{spmdIndex}.Pose.Orientation.Y = heading(3); 

                                goal{spmdIndex}.Pose.Orientation.Z = heading(4); 

 

                                % send ROS messages 

                                send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex}) 
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                                send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex}) 

 

                                % report cleaning progress 

                                fprintf('Robot %d: Reallocated Task %d complete\nProgress: %d 

of %d\n', ...                                 

spmdIndex,retasked_segments{1}(currentTask),currentTask,length(retasked_segments{1})) 

                            end 

                        end 

 

                        finished = 1;   % set finished flag to 1 

                        disp('Robot 1: Done')   % report robot 1 has completed its assigned 

tasks 

 

                        % enter this code block if the finished flag is set to 1 and the 

otherFinished flag is set to 0 

                        if (finished == 1) && (otherFinished == 0) 

                            spmdSend(finished,2,3)    % send robot1done to robot 2 with tag 3 

 

                            spmdBarrier     % barrier #3; communicate robot 1 has finished 

before robot 2; wait for task remaining update from robot 1 

 

                            robot2onetaskleft = spmdReceive("any",6)    % receive2onetaskleft 

with tag 6 

 

                            % check status of one task remaining flag 

                            if robot2onetaskleft == 0 

                                disp("Robot 1: Receiving reallocated tasks from Robot 2") 

 

                                spmdBarrier     % barrier #4; wait for robot 2 retask update 

 

                                retasked_segments = spmdReceive("any",2)    % receive 

robot2retask with tag 2 

 

                                % loop through the received reassigned tasks for complete 

coverage 

                                for currentTask = 1:length(retasked_segments{2}) 

 

                                    % get local occupancy map and starting location of current 

task 

                                    [localMap, startXY] = poly2occgrid(polybox, 

retasked_segments{2}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                                    % set ROS messages 
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                                    map_msg{spmdIndex} = 

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap); 

 

                                    goal{spmdIndex}.Header.FrameId = 'map'; 

                                    goal{spmdIndex}.Pose.Position.X = startXY(1,1); 

                                    goal{spmdIndex}.Pose.Position.Y = startXY(1,2); 

 

                                    heading  = eul2quat([0,0,pi],'XYZ'); 

                                    goal{spmdIndex}.Pose.Orientation.W = heading(1); 

                                    goal{spmdIndex}.Pose.Orientation.X = heading(2); 

                                    goal{spmdIndex}.Pose.Orientation.Y = heading(3); 

                                    goal{spmdIndex}.Pose.Orientation.Z = heading(4); 

 

                                    % send ROS messages 

                                    send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex}) 

                                    send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex}) 

 

                                    % report cleaning progress 

                                    fprintf('Robot %d: Reallocated Task %d complete\nProgress: 

%d of %d\n', ...                    

spmdIndex,retasked_segments{2}(currentTask),currentTask,length(retasked_segments{2})) 

                                end 

                            else 

                                disp("Robot 1: Bypassing retask since 1 task remaining on Robot 

2") 

                            end 

                        end 

                        spmdBarrier % barrier #0; wait for both robots to complete assigned 

tasks 

                    catch 

                        disp("Both robots have finished at the same time") 

                    end 

                end 

 

                if spmdIndex == 2 

                    try 

                        disp('Robot 2: Cleaning in progress') 

 

                        % set ROS node constant 

                        nodeConstant{spmdIndex} = 

parallel.pool.Constant(ros.Node('/Robot2',"http://X.X.X.X:11311")); 

 

                        % set ROS publisher constants 
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                        map_pubConstant{spmdIndex} = 

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/localMapRobot2',"nav_msgs/O

ccupancyGrid","DataFormat","struct")); 

                        goal_pubConstant{spmdIndex} = 

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/goalRobot2',"geometry_msgs/

PoseStamped","DataFormat","struct")); 

 

                        % set ROS message types 

                        map_msgType{spmdIndex} = 

rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct"); 

                        goal{spmdIndex} = 

rosmessage("geometry_msgs/PoseStamped","DataFormat","struct"); 

 

                        % loop through the assigned tasks for complete coverage 

                        for currentTask = 1:height(task_segments{spmdIndex}) 

 

                            % check if any message received from other robot 

                            if spmdProbe 

                                otherFinished = spmdReceive("any",3)   % receive robot1done 

with tag 3 

 

                                % check if the received message indicates the other robot has 

finished 

                                if otherFinished == 1 

                                    disp('Robot 2: Robot 1 has finished') 

 

                                    % check if the number of remaining tasks is greater than 1 

                                    if (height(task_segments{spmdIndex}) - currentTask) > 1 

                                        reAllocateTasks = 1;    % set reAllocateTasks flag to 1 

                                        robot2onetaskleft = 0;  % set robot2onetaskleft flag to 

0 

                                        spmdSend(robot2onetaskleft,1,6) % send 

robot2onetaskleft to robot 1 with tag 6 

                                        spmdBarrier     % barrier #3; update robot 1 there is 

more than 1 task remaining for robot 2 

                                        break; 

                                    else 

                                        disp("Robot 2: 1 task remaining") 

                                        robot2onetaskleft = 1;  % set robot1onetaskleft to 1 

                                        spmdSend(robot2onetaskleft,1,6) % send 

robot2onetaskleft to robot 1 with tag 6 

                                        spmdBarrier     % barrier #3; update robot 1 there is 1 

task remianing for robot 2 
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                                    end 

                                end 

                            end 

 

                            % get local occupancy map and starting location of current task 

                            [localMap, startXY] = poly2occgrid(polybox, 

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                            % set ROS messages 

                            map_msg{spmdIndex} = 

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap); 

 

                            goal{spmdIndex}.Header.FrameId = 'map'; 

                            goal{spmdIndex}.Pose.Position.X = startXY(1,1); 

                            goal{spmdIndex}.Pose.Position.Y = startXY(1,2); 

 

                            heading  = eul2quat([0,0,pi],'XYZ'); 

                            goal{spmdIndex}.Pose.Orientation.W = heading(1); 

                            goal{spmdIndex}.Pose.Orientation.X = heading(2); 

                            goal{spmdIndex}.Pose.Orientation.Y = heading(3); 

                            goal{spmdIndex}.Pose.Orientation.Z = heading(4); 

 

                            % send ROS messages 

                            send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex}) 

                            send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex}) 

 

                            % report cleaning progress 

                            fprintf('Robot %d: Task %d complete\nProgress %d of %d\n', ... 

  spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex})) 

                        end 

 

                        % enter this code block if the reAllocateTasks flag is set to 1 

                        if reAllocateTasks 

                            % report task reallocation is occurring and task stopped on 

                            fprintf('Robot %d: Reallocating tasks. Stopped on Task %d\n', ... 

                                spmdIndex,task_segments{spmdIndex}(currentTask)) 

 

                            % remove already completed tasks from current task list 

                            for i = 1:currentTask-1 

                                task_segments{spmdIndex}(1,:) = [];   % remove already 

completed tasks 

                            end 
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                            % reallocate remaining tasks 

                            retasked_segments = 

allocateTasks(task_segments{spmdIndex},num_robots) 

 

                            spmdSend(retasked_segments,1,2)   % send robot2retask to robot 1 

with tag 2 

 

                            spmdBarrier     % barrier #4; send robot 2 retask to robot 1 and 

wait 

 

                            % loop through the reassigned tasks for complete coverage 

                            for currentTask = 1:length(retasked_segments{1}) 

 

                                % get local occupancy map and starting location of current task 

                                [localMap, startXY] = poly2occgrid(polybox, 

retasked_segments{1}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                                % set ROS messages 

                                map_msg{spmdIndex} = 

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap); 

 

                                goal{spmdIndex}.Header.FrameId = 'map'; 

                                goal{spmdIndex}.Pose.Position.X = startXY(1,1); 

                                goal{spmdIndex}.Pose.Position.Y = startXY(1,2); 

 

                                heading  = eul2quat([0,0,pi],'XYZ'); 

                                goal{spmdIndex}.Pose.Orientation.W = heading(1); 

                                goal{spmdIndex}.Pose.Orientation.X = heading(2); 

                                goal{spmdIndex}.Pose.Orientation.Y = heading(3); 

                                goal{spmdIndex}.Pose.Orientation.Z = heading(4); 

 

                                % send ROS messages 

                                send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex}) 

                                send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex}) 

 

                                % report cleaning progress 

                                fprintf('Robot %d: Reallocated Task %d complete\nProgress %d of 

%d\n', ...                    

spmdIndex,retasked_segments{1}(currentTask),currentTask,length(retasked_segments{1})) 

                            end 

                        end 

 

                        finished = 1;   % set finished flag to 1 
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                        disp('Robot 2 done')    % report robot 2 has completed its assigned 

tasks 

 

                        % enter this code block if the finished flag is set to 1 and the 

otherFinished flag is set to 0 

                        if (finished == 1) && (otherFinished == 0) 

                            spmdSend(finished,1,4)    % send robot2done to robot 1 with tag 4 

 

                            spmdBarrier     % barrier #1; communicate robot 2 has finished 

before robot 1; wait for task remaining update from robot 1 

 

                            robot1onetaskleft = spmdReceive("any",5)    % receive 

robot1onetaskleft with tag 5 

 

                            % check status of one task remaining flag 

                            if robot1onetaskleft == 0 

                                disp("Robot 2: Receiving reallocated tasks from Robot 1") 

 

                                spmdBarrier     % barrier #2; wait for robot 1 retask update 

 

                                retasked_segments = spmdReceive("any",1)    % receive 

robot1retask with tag 1 

 

                                % loop through the received reassigned tasks for complete 

coverage 

                                for currentTask = 1:length(retasked_segments{2}) 

 

                                    % get local occupancy map and starting location of current 

task 

                                    [localMap, startXY] = poly2occgrid(polybox, 

retasked_segments{2}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                                    % set ROS messages 

                                    map_msg{spmdIndex} = 

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap); 

 

                                    goal{spmdIndex}.Header.FrameId = 'map'; 

                                    goal{spmdIndex}.Pose.Position.X = startXY(1,1); 

                                    goal{spmdIndex}.Pose.Position.Y = startXY(1,2); 

 

                                    heading  = eul2quat([0,0,pi],'XYZ'); 

                                    goal{spmdIndex}.Pose.Orientation.W = heading(1); 

                                    goal{spmdIndex}.Pose.Orientation.X = heading(2); 
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                                    goal{spmdIndex}.Pose.Orientation.Y = heading(3); 

                                    goal{spmdIndex}.Pose.Orientation.Z = heading(4); 

 

                                    % send ROS messages 

                                    send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex}) 

                                    send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex}) 

 

                                    % report cleaning progress 

                                    fprintf('Robot %d: Reallocated Task %d complete\nProgress 

%d of %d\n', ...                       

spmdIndex,retasked_segments{2}(currentTask),currentTask,length(retasked_segments{2})) 

                                end 

                            else 

                                disp("Robot 2: Bypassing retask since 1 task remaining on Robot 

1") 

                            end 

                        end 

                        spmdBarrier % barrier #0; wait for both robots to complete assigned 

tasks 

                    catch 

                        disp("Both robots have finished at the same time") 

                    end 

                end 

            end 

        else 

            spmd 

                if spmdIndex == 1 

                    disp('Robot 1: Cleaning in progress') 

 

                    % set ROS node constant 

                    nodeConstant{spmdIndex} = 

parallel.pool.Constant(ros.Node('/Robot1',"http://X.X.X.X:11311")); 

 

                    % set ROS publisher constants 

                    map_pubConstant{spmdIndex} = 

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/localMapRobot1',"nav_msgs/O

ccupancyGrid","DataFormat","struct")); 

                    goal_pubConstant{spmdIndex} = 

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/goalRobot1',"geometry_msgs/

PoseStamped","DataFormat","struct")); 

 

                    % set ROS message types 
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                    map_msgType{spmdIndex} = 

rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct"); 

                    goal{spmdIndex} = 

rosmessage("geometry_msgs/PoseStamped","DataFormat","struct"); 

 

                    % loop through the assigned tasks for complete coverage 

                    for currentTask = 1:height(task_segments{spmdIndex}) 

 

                        % get local occupancy map and starting location of current task 

                        [localMap, startXY] = poly2occgrid(polybox, 

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                        % set ROS messages 

                        map_msg{spmdIndex} = 

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap); 

 

                        goal{spmdIndex}.Header.FrameId = 'map'; 

                        goal{spmdIndex}.Pose.Position.X = startXY(1,1); 

                        goal{spmdIndex}.Pose.Position.Y = startXY(1,2); 

 

                        heading  = eul2quat([0,0,pi],'XYZ'); 

                        goal{spmdIndex}.Pose.Orientation.W = heading(1); 

                        goal{spmdIndex}.Pose.Orientation.X = heading(2); 

                        goal{spmdIndex}.Pose.Orientation.Y = heading(3); 

                        goal{spmdIndex}.Pose.Orientation.Z = heading(4); 

 

                        % send ROS messages 

                        send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex}) 

                        send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex}) 

 

                        % report cleaning progress 

                        fprintf('Robot %d: Task %d complete. Progress: %d of %d\n', ...         

spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex})) 

                    end 

 

                    disp('Robot 1: Done')   % report robot 1 has completed its assigned tasks 

                    spmdBarrier % barrier #0; wait for both robots to complete assigned tasks 

                end 

 

                if spmdIndex == 2 

                    disp('Robot 2: Cleaning in progress') 

 

                    % set ROS node constant 
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                    nodeConstant{spmdIndex} = 

parallel.pool.Constant(ros.Node('/BK',"http://192.168.8.178:11311")); 

 

                    % set ROS publisher constants 

                    map_pubConstant{spmdIndex} = 

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/localMapBK',"nav_msgs/Occup

ancyGrid","DataFormat","struct")); 

                    goal_pubConstant{spmdIndex} = 

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/goalBK',"geometry_msgs/Pose

Stamped","DataFormat","struct")); 

 

                    % set ROS message types 

                    map_msgType{spmdIndex} = 

rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct"); 

                    goal{spmdIndex} = 

rosmessage("geometry_msgs/PoseStamped","DataFormat","struct"); 

 

                    % loop through the assigned tasks for complete coverage 

                    for currentTask = 1:height(task_segments{spmdIndex}) 

 

                        % get local occupancy map and starting location of current task 

                        [localMap, startXY] = poly2occgrid(polybox, 

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution); 

 

                        % set ROS messages 

                        map_msg{spmdIndex} = 

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap); 

 

                        goal{spmdIndex}.Header.FrameId = 'map'; 

                        goal{spmdIndex}.Pose.Position.X = startXY(1,1); 

                        goal{spmdIndex}.Pose.Position.Y = startXY(1,2); 

 

                        heading  = eul2quat([0,0,pi],'XYZ'); 

                        goal{spmdIndex}.Pose.Orientation.W = heading(1); 

                        goal{spmdIndex}.Pose.Orientation.X = heading(2); 

                        goal{spmdIndex}.Pose.Orientation.Y = heading(3); 

                        goal{spmdIndex}.Pose.Orientation.Z = heading(4); 

 

                        % send ROS messages 

                        send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex}) 

                        send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex}) 

 

                        % report cleaning progress 
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                        fprintf('Robot %d: Task %d complete\nProgress %d of %d\n', ... 

  spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex})) 

                    end 

 

                    disp('Robot 2 done')    % report robot 2 has completed its assigned tasks 

                    spmdBarrier % barrier #0; wait for both robots to complete assigned tasks 

                end 

            end 

        end 

    else 

        disp("Current program can only account for 1 or 2 robots") 

    end 

end 
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APPENDIX C: REQUIRED FUNCTIONS 

 

I. allocateTasks 

function task_segments = allocateTasks(task_list, numRobots) 

% due to limitations of the below process with 3 tasks divided between 2 

% robots, check if the number of tasks is equal to 3 

if height(task_list) == 3 

    task_segments = {task_list(1:2,:)}; % assign tasks 1 and 2 to segment 1 

    task_segments(2,:) = {task_list(3,:)};  % assign task 3 to segment 2 

else 

    % calculate the number of tasks per segment and round down to the nearest integer 

    num_task_per_segment = fix(height(task_list)/numRobots); 

 

    % calculate the number of segments with an equal number of tasks and 

    % round down to the nearest integer 

    num_equal_segments = fix(height(task_list)/num_task_per_segment); 

     

    % generate an array of ones with length equivalent to the number of equal 

    % segments and multiply each array element by the number of task per segment 

    segment_array = num_task_per_segment*ones(1,num_equal_segments); 

 

    % determine the number of remaining tasks 

    rem_tasks = rem(height(task_list),num_task_per_segment); 

     

    % for each remaining task, increase the number of tasks within the 

    % current segment index by 1 

    for i = 1:rem_tasks 

        segment_array(i) = segment_array(i)+1; 

    end 

     

    % convert the task list matrix to a cell array 

    task_segments = mat2cell(task_list,segment_array,1); 

end 

 

% for every other task segment, flip the task order 

for i = 1:length(task_segments) 

    if mod(i,2) == 1, continue; else, task_segments{i} = flip(task_segments{i}); end 

end 

end 
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II. directedTSP 

function [Gdir,nodeList] = directedTSP(poly, roomOutline) 

%%% MATLAB TSP Solver Based Example Code with some edits %%% 

centroidx = poly.centroid(:,1); 

centroidy = poly.centroid(:,2); 

 

x = roomOutline(:,1); 

y = roomOutline(:,2); 

 

% calculate distances between points 

num_points = length(poly.centroid); 

idxs = nchoosek(1:num_points,2); 

 

dist = hypot(centroidy(idxs(:,1)) - centroidy(idxs(:,2)), ... 

    centroidx(idxs(:,1)) - centroidx(idxs(:,2))); 

lendist = length(dist); 

 

% create and draw graph 

G = graph(idxs(:,1),idxs(:,2)); 

figure 

hGraph = plot(G,'XData',centroidx,'YData',centroidy,'LineStyle','none','NodeLabel',{}); 

hold on 

% Draw the outside border 

plot(x,y,'r-') 

hold off 

 

% Constraints 

Aeq = spalloc(num_points,length(idxs),num_points*(num_points-1)); % Allocate a sparse matrix 

for ii = 1:num_points 

    whichIdxs = (idxs == ii); % Find the trips that include stop ii 

    whichIdxs = sparse(sum(whichIdxs,2)); % Include trips where ii is at either end 

    Aeq(ii,:) = whichIdxs'; % Include in the constraint matrix 

end 

beq = 2*ones(num_points,1); 

 

% Binary bounds 

intcon = 1:lendist; 

lb = zeros(lendist,1); 

ub = ones(lendist,1); 

 

% Optimize using intlinprog 

opts = optimoptions('intlinprog','Display','off'); 
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[x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,[],[],Aeq,beq,lb,ub,opts); 

x_tsp = logical(round(x_tsp)); 

Gsol = graph(idxs(x_tsp,1),idxs(x_tsp,2),[],numnodes(G)); 

 

% Visualize solution 

hold on 

highlight(hGraph,Gsol,'LineStyle','-') 

title('Solution with Subtours') 

 

% subtour constraints 

tourIdxs = conncomp(Gsol); 

numtours = max(tourIdxs); % Number of subtours 

fprintf('# of subtours: %d\n',numtours); 

 

A = spalloc(0,lendist,0); % Allocate a sparse linear inequality constraint matrix 

b = []; 

while numtours > 1 % Repeat until there is just one subtour 

    % Add the subtour constraints 

    b = [b;zeros(numtours,1)]; % allocate b 

    A = [A;spalloc(numtours,lendist,num_points)]; % A guess at how many nonzeros to allocate 

    for ii = 1:numtours 

        rowIdx = size(A,1) + 1; % Counter for indexing 

        subTourIdx = find(tourIdxs == ii); % Extract the current subtour 

        %         The next lines find all of the variables associated with the 

        %         particular subtour, then add an inequality constraint to prohibit 

        %         that subtour and all subtours that use those stops. 

        variations = nchoosek(1:length(subTourIdx),2); 

        for jj = 1:length(variations) 

            whichVar = (sum(idxs==subTourIdx(variations(jj,1)),2)) & ... 

                (sum(idxs==subTourIdx(variations(jj,2)),2)); 

            A(rowIdx,whichVar) = 1; 

        end 

        b(rowIdx) = length(subTourIdx) - 1; % One less trip than subtour stops 

    end 

     

    % Try to optimize again 

    [x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,A,b,Aeq,beq,lb,ub,opts); 

    x_tsp = logical(round(x_tsp)); 

    Gsol = graph(idxs(x_tsp,1),idxs(x_tsp,2),[],numnodes(G)); 

     

    % Visualize result 

    hGraph.LineStyle = 'none'; % Remove the previous highlighted path 

    highlight(hGraph,Gsol,'LineStyle','-') 
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    drawnow 

     

    % How many subtours this time? 

    tourIdxs = conncomp(Gsol); 

    numtours = max(tourIdxs); % number of subtours 

    fprintf('# of subtours: %d\n',numtours) 

end 

 

title('Solution with Subtours Eliminated'); 

hold off 

 

disp(output.absolutegap) 

%%% End MATLAB code %%% 

 

% convert outputted undirected graph Gsol edge table to array 

Esol = Gsol.Edges; 

Esol_array = table2array(Esol); 

 

% separate undirected edge array into source and target nodes 

s_undir = Esol_array(:,1); 

t_undir = Esol_array(:,2); 

 

% create a directed graph to be manipulated later from undirected source 

% and target nodes 

Gdir = digraph(s_undir,t_undir); 

% figure; plot(Gdir,'Layout','force');    % visualize arrows pointing in different directions 

 

% extract directed graph Gdir edge table and convert to array 

Edir = Gdir.Edges;               % observe that 1 source node can point to multiple targe nodes 

Edir_array = table2array(Edir); 

 

% define initial conditions for following loop 

current_node = s_undir(1,1);    % starting node 

nodeList = [current_node...    % array to track node path with starting node set 

    poly.centroid(current_node,1)... 

    poly.centroid(current_node,2)]; 

nodeList_idx = 2;              % index value for node path 

% set to position 2 given starting node is in positon 1 

 

% iterate through directed edge array Edir_array such that each source node 

% points to only 1 target node 

while length(nodeList) <= length(Edir_array) 
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    [row,col] = find(Edir_array==current_node); % locate the indices of the current node wihin 

the edge array 

    index = [row col]; % horizontally concatenate row and col vars into one 2x2 index variable 

    % read by row, col 1 value denotes the corresponding edge within the array  

    % the current node belongs to  

    % col 2 value denotes whether the current node is the source (1) or 

    % target (2) node of the edge (source -> target) 

     

    % if the current node is a first edge target AND is not in the source 

    % node column, flip the second edge such that the current node is now 

    % the second edge source 

    if (index(1,2)==2) && (~ismember(Edir_array(index(2,1)),nodeList(:,1))) 

        Gdir = flipedge(Gdir,index(2,1));       % flip second edge direction 

        Edir_updated = table2array(Gdir.Edges); % update array with new flipped edge 

        Edir_array = Edir_updated; 

         

        % if the current node is a first edge target AND is in the source node 

        % column, flip the first edge such that the current node is now the 

        % first edge source 

    elseif (index(1,2)==2) && (ismember(Edir_array(index(2,1)),nodeList(:,1))) 

        Gdir = flipedge(Gdir,index(1,1));       % flip first edge direction 

        Edir_updated = table2array(Gdir.Edges); % update array with new flipped edge 

        Edir_array = Edir_updated; 

    end 

     

    % update current node indices following flips 

    [row,col] = find(Edir_array==current_node); 

    index = [row col]; 

     

    % determine next node using first edge index value and target node col of array 

    next_node = Edir_array(index(1,1),2); 

     

    % check if the value of the next node is not the same as the current node 

    if next_node ~= current_node 

        nodeList(nodeList_idx,1:3) = [next_node...  % add next node to node list 

            poly.centroid(next_node,1)... 

            poly.centroid(next_node,2)]; 

        current_node = next_node;               % update current node to next node 

        nodeList_idx = nodeList_idx+1;        % increment node list index value 

    end 

end 

figure; plot(Gdir,'Layout','force');    % visually inspect directed graph output 

end 
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III. identifyBoundaries 

function [exterior, interior] = identifyBoundaries(editedPGM) 

binaryPGM = imbinarize(editedPGM);    % binarize the edited PGM image 

 

[B,~,N,A] = bwboundaries(binaryPGM); 

obs_idx = 1;    % variable to count the number of identified obstacles 

 

%%% MATLAB bwboundaries example code with some edits %%% 

imshow(binaryPGM); hold on; 

% loop through object boundaries   

for k = 1:N  

    % boundary k is the parent of a hole if the k-th column  

    % of the adjacency matrix A contains a non-zero element  

    if (nnz(A(:,k)) > 0)  

        exterior = B{k};  

        plot(exterior(:,2),...  

            exterior(:,1),'r','LineWidth',2);  

         

        % loop through the children of boundary k  

        for l = find(A(:,k))'  

            intBoundary = B{l}; 

             

            % additional code to save the points associated with each 

            % identified interior obstacle 

            tempVar = strcat('obs',num2str(obs_idx));   % update name of obstacle 

            interior.(tempVar)= intBoundary;    % save current obstacle to struct variable 

            obs_idx = obs_idx+1;    % update obstacle count 

             

            plot(interior.(tempVar)(:,2),...  

                interior.(tempVar)(:,1),'g','LineWidth',2);  

        end  

    end  

end 

hold off; 

%%% End MATLAB example code %%% 

 

% reduce the number of points describing the exterior boundary 

exterior = reducepoly(exterior,.015); 

end 
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IV. identifyBox2merge 

function box2merge = identifyBox2merge(rob, polybox, map) 

toMerge = []; % initialize an empty array to store node values to be merged 

robSize = rob.size; diag = rob.diag; % set robot size and diagonal parameters 

 

for i = 1:length(polybox.nodeList)-1 

    currentpoly = polybox.shape(polybox.nodeList(i,1)); % identify the current polygon 

     

    % create a test point to locate the top left vertex of the current polygon 

    minx = min(currentpoly.Vertices(:,1)); 

    maxy = max(currentpoly.Vertices(:,2)); 

    testpoint = [minx maxy]; 

     

    % identify the top left vertex of the current polygon by locating the 

    % nearest vertex to the test point 

    [~,~,ind] = nearestvertex(currentpoly,testpoint); 

    TL = currentpoly.Vertices(ind,:); 

    V = world2grid(map,TL); % convert vertex XY coordinates to IJ 

     

    % using the identified vertex as the robot center since this point 

    % would result in portions of the robot outside the boundaries of the 

    % current polygon, translate the robot center in each of the four 

    % cardinal and ordinal directions 

    pV.N = [V(1,1)+robSize V(1,2)]; 

    pV.NE = [V(1,1)+diag V(1,2)+diag]; 

    pV.E = [V(1,1) V(1,2)+robSize]; 

    pV.SE = [V(1,1)-diag V(1,2)+diag]; 

    pV.S = [V(1,1)-robSize V(1,2)]; 

    pV.SW = [V(1,1)-diag V(1,2)-diag]; 

    pV.W = [V(1,1) V(1,2)-robSize]; 

    pV.NW = [V(1,1)+diag V(1,2)-diag]; 

     

    % for each robot center point, determine the robot corner points and generate a polyshape 

    dir = fieldnames(pV); 

    for j = 1:numel(dir) 

        vcheck = pV.(dir{j}); 

        vNE = [vcheck(1,1)+robSize vcheck(1,2)+robSize]; 

        vSE = [vcheck(1,1)-robSize vcheck(1,2)+robSize]; 

        vSW = [vcheck(1,1)-robSize vcheck(1,2)-robSize]; 

        vNW = [vcheck(1,1)+robSize vcheck(1,2)-robSize]; 

        vpoly(j) = polyshape([vNE;vSE;vSW;vNW]); 

    end 
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     % convert the vertices of each polyshape from IJ to XY coordinates 

    for k = 1:numel(dir) 

        verts = vpoly(k).Vertices; 

        vpoly(k).Vertices = grid2world(map,verts); 

    end 

     

    % for each polyshape determine if each corner is in or outside the 

    % boundaries of the current polygon 

    in = []; 

    for l = 1:length(vpoly) 

        in(l,:) = 

inpolygon(vpoly(l).Vertices(:,1),vpoly(l).Vertices(:,2),currentpoly.Vertices(:,1),currentpoly.Ve

rtices(:,2)); 

    end 

     

    % determine if all corners of any of the polyshapes are inside the current polygon 

    for m = 1:length(in) 

        % if so the current polygon is large enough for 

        % the robot to fit and does not need to be merged 

        if all(in(m,:)==1) 

            toMerge(i,1) = 0;   % set merge flag to 0 and break the loop 

            break; 

        else 

            toMerge(i,1) = 1;   % if no polyshapes are completely enclosed by the current 

polygon set merge flag to 1 

        end 

    end 

end 

 

% check the merge status of each polygon 

idx = 1;    % initialize an index variable 

for i = 1:length(toMerge) 

    if toMerge(i) == 1 

        box2merge(idx,:) = polybox.nodeList(i,1);   % identify the node value of the polygon to 

be merged and store to list 

        idx = idx+1;    % increment index variable 

    end 

end 

 

box2merge = sortrows(box2merge,'ascend');   % sort the list of polygon node values into 

ascending order 

end 
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V. identifyTri2merge 

function tri2merge = identifyTri2merge(tri, minTri) 

idx = 1; tri2merge = []; 

% loop through triangle node list except for last node as it is the same 

% as the first node 

for i = 1:length(tri.nodeList)-1 

    % obtain points A,B,C of each triangle by referenceing the column 

    % values of the connectivity list row corresponding to the node value 

    % of the ith row of the node list to the correlating row 

    % within the list of points to retrieve the corresponding coordinate 

    A = [tri.points(tri.list(tri.nodeList(i,1),1),1) 

tri.points(tri.list(tri.nodeList(i,1),1),2)]; 

    B = [tri.points(tri.list(tri.nodeList(i,1),2),1) 

tri.points(tri.list(tri.nodeList(i,1),2),2)]; 

    C = [tri.points(tri.list(tri.nodeList(i,1),3),1) 

tri.points(tri.list(tri.nodeList(i,1),3),2)]; 

     

    % calculate the triangle edge lengths 

    AB = pdist([A;B]); BC = pdist([B;C]); CA = pdist([C;A]); 

     

    % calculate the minimum triangle height using the equation h = 2A/b 

    % where b is the maximum base length 

    shapeArea = area(polyshape([A;B;C])); 

    base = max([AB BC CA]); 

    h = (2*shapeArea)/base; 

     

    % determine the minimum triangle base value 

    base = min([AB BC CA]); 

     

    % determine if the current triangle minimum base and height values are below the 

    % criteria values 

    if (base < minTri.base) || (h < minTri.height) 

        tri2merge(idx,1) = tri.nodeList(i,1);   % if so, add node value of current triangle to 

list to be merged 

        idx = idx+1; 

    else 

        continue; 

    end 

end 

tri2merge = sortrows(tri2merge,'ascend');   % sort node values into ascending order 

end 
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VI. poly2occgrid 

function [localMap, startXY] = poly2occgrid(poly, idx, rawMap, rob, cornerLoc, resolution) 

% obtain the work area polyshape vertices 

if idx == 0     % an idx value of 0 denotes a single polyshape object 

    localPoints = poly.Vertices; 

else 

    localPoints = poly.shape(poly.nodeList(idx,1)).Vertices; 

end 

 

% check if the raw occupancy map is supplied or is empty 

if ~isempty(rawMap), rawMapShift = 1; else, rawMapShift = 0; end 

 

% if the raw occupancy map is available, shift the polyshape vertex points 

% to align with the raw map origin 

if rawMapShift == 1 

    localx = localPoints(:,1) + rawMap.LocalOriginInWorld(1,1); 

    localy = localPoints(:,2) + rawMap.LocalOriginInWorld(1,2); 

else 

    localx = localPoints(:,1); localy = localPoints(:,2); 

end 

 

% concatenate and update work area polyshape vertex points 

localPoints = [localx,localy]; 

 

% identify the minimum and maximum XY coordinates of the work area polyshape 

xmin = min(localx); xmax = max(localx); 

ymin = min(localy); ymax = max(localy); 

 

% LOCAL OCCUPANCY MAP GENERATION 

% generate an occupancy map of the work area polyshape with a padding of .5 

localMap = occupancyMap(xmax-xmin+.5,ymax-ymin+.5,resolution); 

localMap.GridLocationInWorld = [xmin,ymin]; % update origin of occupancy map 

updateOccupancy(localMap,1);    % set all cells within occupancy map to 1 (occupied) 

 

% create a grid of x by y check points to compare against the work area polyshape 

step = 1/(2*resolution);    % calculate the step value between each check point 

% if the raw occupancy map is available, include additional check point values 

% beyond the maximum value 

if rawMapShift == 1 

    localx_check = xmin:step:xmax+abs(rawMap.LocalOriginInWorld(1,1)/4); 

    localy_check = ymin:step:ymax+abs(rawMap.LocalOriginInWorld(1,2)/4); 

else 
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    localx_check = xmin:step:xmax; 

    localy_check = ymin:step:ymax; 

end 

 

% generate grid of check points 

[localx_grid,localy_grid] = meshgrid(localx_check,localy_check); 

 

% determine which grid points are in or outside the work area polyshape 

[in,on] = inpolygon(localx_grid,localy_grid,localx,localy); 

 

% set the cell value to 0 if inside the work area polyshape 

setOccupancy(localMap,[localx_grid(in & ~on),localy_grid(in & ~on)],0); 

 

% IDENTIFY STARTING LOCATION 

% generate a new work area polyshape based on the updated polyshape vertex points 

localShape = polyshape(localPoints); 

[x,y] = centroid(localShape);   % determine the polyshape centroid coordinate 

 

% set robot size and diagonal parameters 

robSize = rob.size; diag = rob.diag; 

 

% if the desired starting location is the polygon centroid, set the 

% starting location to the centroid value 

if cornerLoc == 3 

    startXY = [x,y]; 

else 

    idx = 1;    % initialize index variable 

    % generate a test point for each occupancy map corner 

    for corner = 1:4 

        % for each loop change the corner location 

        switch corner 

            case 1  % Top Left 

                testpoint = [xmin ymax]; 

            case 2  % Top Right 

                testpoint = [xmax ymax]; 

            case 3  % Bottom Right 

                testpoint = [xmax ymin]; 

            case 4  % Bottom Left 

                testpoint = [xmin ymin]; 

        end 

 

        % identify the closest work area polyshape vertex to the test point 

        [~,~,ind] = nearestvertex(localShape,testpoint); 
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        testCorner = localShape.Vertices(ind,:); 

 

        V = world2grid(localMap,testCorner); % convert vertex XY coordinates to IJ 

 

        % using the identified vertex as the robot center since this point 

        % would result in portions of the robot outside the boundaries of the 

        % current work area, translate the robot center in each of the four 

        % cardinal and ordinal directions 

        pV.N = [V(1,1)+robSize V(1,2)]; 

        pV.NE = [V(1,1)+diag V(1,2)+diag]; 

        pV.E = [V(1,1) V(1,2)+robSize]; 

        pV.SE = [V(1,1)-diag V(1,2)+diag]; 

        pV.S = [V(1,1)-robSize V(1,2)]; 

        pV.SW = [V(1,1)-diag V(1,2)-diag]; 

        pV.W = [V(1,1) V(1,2)-robSize]; 

        pV.NW = [V(1,1)+diag V(1,2)-diag]; 

         

        % for each robot center point, determine the robot corner points and 

        % generate a polyshape representative of the possible starting location 

        dir = fieldnames(pV); 

        for j = 1:numel(dir) 

            vcheck = pV.(dir{j}); 

            vNE = [vcheck(1,1)+robSize vcheck(1,2)+robSize]; 

            vSE = [vcheck(1,1)-robSize vcheck(1,2)+robSize]; 

            vSW = [vcheck(1,1)-robSize vcheck(1,2)-robSize]; 

            vNW = [vcheck(1,1)+robSize vcheck(1,2)-robSize]; 

            vpoly(j) = polyshape([vNE;vSE;vSW;vNW]); 

 

            % convert polyshape vertices from IJ to XY coordinates 

            verts = vpoly(j).Vertices; 

            vpoly(j).Vertices = grid2world(localMap,verts); 

        end 

         

        % check if each of the possible starting location polyshapes are completely 

        % within the work area polyshape 

        for k = 1:length(vpoly) 

            % check by subtracting the work area polyshape from the 

            % possible starting location polyshape 

            testpoly = subtract(vpoly(k),localShape); 

             

            % the possible starting location is completely within the work 

            % area if the resulting test polyshape has no vertices (no longer exists) 

            if height(testpoly.Vertices) == 0 
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                viableStart(idx) = vpoly(k);    % append the current possible starting location 

to a viable starting location list 

                idx = idx+1;    % increment the index value 

            end 

        end 

    end 

     

    % visualize the identified viable starting locations within the work area 

    clf; figure; hold on; show(localMap); plot(viableStart); hold off 

 

    % calculate centroids of viable starting locations 

    [vsX,vsY] = centroid(viableStart); 

     

    % transpose and concatenate centroid coordinates 

    startPoints = [vsX',vsY']; 

     

    % calculate the distance between the work area centroid and viable 

    % starting location centroids 

    dist = pdist2([x,y],startPoints); 

     

    % sort the distance list according to the desired starting location 

    if cornerLoc == 1 

        [~,I] = sort(dist,'descend'); % farthest viable starting location from work area 

centroid 

    elseif cornerLoc == 2 

        [~,I] = sort(dist,'ascend');  % closest viable starting location to work area centroid 

    end 

     

    % make sure starting location is within the work area polyshape 

    for j = 1:length(startPoints) 

        checkStart = startPoints(I(j),:);   % obtain the current check point based on the 

sorted distance index 

         

        % check if current check point is within the work area polyshape 

        in = 

inpolygon(checkStart(1,1),checkStart(1,2),localShape.Vertices(:,1),localShape.Vertices(:,2)); 

         

        % if so, set this coordinate as the starting location 

        if in; startXY = checkStart; break; end 

    end 

end 

end 



 

170 

 

VII. polyConn 

function Gpoly = polyConn(pshape) 

 

pbuff = polybuffer(pshape,.0001);   % add a buffer to each polyshape 

pborder = zeros(length(pshape));    % allocate an adjacency matrix of zeros of size NxN where N 

is equal to the number of polyshapes 

 

% loop through each polyshape object and determine which other polyshapes border it 

for i = 1:length(pshape) 

    for j = (i+1):length(pshape) 

        % if the area of intersection between the current polyshape and another exceeds the 

        % set threshold, set the corresponding adjacency matrix location to true 

        pborder(j,i) = area(intersect(pbuff(j),pbuff(i))) > 3e-6; 

    end 

end 

 

Gpoly = graph(pborder,'lower'); % generate a connectivity graph of the filled in adjacency 

matrix 

end 
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VIII. polyNeighbor 

function neighbor2merge = polyNeighbor(Gpoly, node2merge, pshape) 

% determine the row locations of the input polygon within the connectivity graph 

[row,col] = find(Gpoly.Edges.EndNodes==node2merge); 

index = [row col]; 

 

% for each identified row, determine the neighboring polygon by examining 

% the other node within the row 

for i = 1:height(index) 

    if index(i,2) == 1 

        neighbors(i) = Gpoly.Edges.EndNodes(index(i,1),2); 

    elseif index(i,2) == 2 

        neighbors(i) = Gpoly.Edges.EndNodes(index(i,1),1); 

    end 

end 

 

% add a buffer to the current polygon and identified neighbors 

neighborBuff = polybuffer(pshape(neighbors),.01); 

nodeBuff = polybuffer(pshape(node2merge),.01); 

 

% for each identified neighbor, determine the area of intersection between 

% it and the current polygon 

for k = 1:length(neighbors) 

    border(k) = area(intersect(nodeBuff,neighborBuff(k))); 

end 

 

% determine which neighbor borders the current polygon the most and merge 

% with this neighbor 

[~,I] = max(border); 

neighbor2merge = neighbors(I); 

end 
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IX. triDecomposition 

function tri = triDecomposition(room, min_triEdge) 

% perform initial triangulation on room 

TR = triangulation(room); 

figure; triplot(TR); axis padded;   % visually inspect initial triangulation 

 

% generate a geometric model based on initial triangulation 

model = createpde; 

tnodes = TR.Points';  

telements = TR.ConnectivityList'; 

geometryFromMesh(model,tnodes,telements); 

 

% generate triangular mesh 

room_mesh = generateMesh(model,'GeometricOrder','linear','Hmin',min_triEdge); 

 

% regulate the number of generated triangles in the mesh to 250 or less 

if length(room_mesh.Elements') >= 250 

    num_triangles = length(room_mesh.Elements'); 

    min_triEdge = min_triEdge+.1;   % increment target minimum edge length to create larger 

triangles 

 

    loop_count = 1; % initialize loop counter 

    while (num_triangles > 250) && (loop_count <= 500) 

        % regenerate triangular mesh 

        room_mesh = generateMesh(model,'GeometricOrder','linear','Hmin',min_triEdge); 

 

        num_triangles = length(room_mesh.Elements');    % update number of triangles within 

mesh 

        min_triEdge = min_triEdge+.1;   % increment target minimum edge length 

        loop_count = loop_count+1;  % increment loop counter 

    end 

end 

 

figure; pdeplot(room_mesh); % visually inspect triangular mesh 

 

tri.list = room_mesh.Elements'; % save connectivity list of mesh to struct 

tri.points = room_mesh.Nodes';  % save list of triangle points to struct 

 

% loop through each triangle within the mesh and generate a polyshape of 

% each triangle 

for i = 1:length(tri.list) 

    % obtain points A,B,C of each triangle by referenceing the column 
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    % values within the ith row of the connectivity list to the correlating row 

    % within the list of points to retrieve the corresponding coordinate 

    A = [tri.points(tri.list(i,1),1) tri.points(tri.list(i,1),2)]; 

    B = [tri.points(tri.list(i,2),1) tri.points(tri.list(i,2),2)]; 

    C = [tri.points(tri.list(i,3),1) tri.points(tri.list(i,3),2)]; 

 

    pgon = polyshape([A;B;C]);  % generate polyshape using points A,B,C 

    tri.shape(i) = pgon;    % save generated polyshape to struct 

 

    [tri.centroid(i,1),tri.centroid(i,2)] = centroid(pgon); % save polyshape centroid to struct 

end 

end 
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APPENDIX D: SUPPLEMENTARY FUNCTION 

 

I. cleanRoomSimTest 

function [map,timeElapsed,turn_count,overlap,pathLength,deadlock_cntr] = cleanRoomSimTest(map, 

start,deadlock_cntr) 

 

tic 

show(map) 

 

n = zeros(map.GridSize(1), map.GridSize(2)); %generate array to store neural activity values 

 

% For plotting 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% indicator for robot heading direction on map 

up_dir = '^r'; 

down_dir = 'vr'; 

left_dir = '<r'; 

right_dir = '>r'; 

hold on 

pc = start; %starting grid location 

xy = grid2world(map,pc); %convert starting grid location to xy coordinates 

plot(xy(1), xy(2), down_dir) %plot starting location xy coordinates on map 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

go = 1; 

deadlockSearch = 0; 

 

%Building neural network of map 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

prevHeading = 0; turn_count = 0; overlap = 0; 

prevPC = []; pathLength = 0; 

 

while go == 1 

    %find top left corner points in all directions 

    TL = [pc(1)-6, pc(2)-12]; 

    NW_TL = [pc(1)-25, pc(2)-37]; 

    N_TL = [pc(1)-25, pc(2)-12]; 

    NE_TL = [pc(1)-25, pc(2)+13]; 

    E_TL = [pc(1)-6, pc(2)+13]; 

    SE_TL = [pc(1)+13, pc(2)+13]; 
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    S_TL = [pc(1)+13, pc(2)-12]; 

    SW_TL = [pc(1)+13, pc(2)-37]; 

    W_TL = [pc(1)-6, pc(2)-37]; 

 

    %update status of current grid 

    for tl_j = TL(2):1:TL(2)+24 

        for tl_i = TL(1):1:TL(1)+18 

            setOccupancy(map,[tl_i, tl_j],0.5,'grid') 

        end 

    end 

    pause(0.005) 

    show(map) 

 

    %--------------------PATH SELECTION ALGORITHM-------------------------------% 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %Heuristic sequence 

    %left -> bottom -> top -> right -> right bottom -> right top 

 

    %Find status of all possible next positions 

    kN = directionStatus(N_TL); 

    kNE = directionStatus(NE_TL); 

    kE = directionStatus(E_TL); 

    kSE = directionStatus(SE_TL); 

    kS = directionStatus(S_TL); 

    kW = directionStatus(W_TL); 

 

    % modify check the status of all possible next locations 

    pn =[kW, kS, kN, kE, kSE, kNE]; %don't change order of this array 

 

    %check the status of all possible next locations 

    for value = 1:1:length(pn) 

        if pn(value) < 0 

            pn(value) = -1; %indicate cell is obstacle 

        elseif pn(value) > 0.5 

            pn(value) = 1; %indicate cell is uncovered 

        elseif (pn(value) > 0) && (pn(value) < 0.5) 

            pn(value) = 0; %indicate cell is covered 

        end 

    end 

 

    %modify deadlock event 

    if sum(pn==1) == 0 %check to for deadlock event 

        kSW = directionStatus(SW_TL); 
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        kNW = directionStatus(NW_TL); 

        deadlockSearch = deadlockSearch+1; 

        search = [kN,kNE,kE,kSE,kS,kSW,kW,kNW]; %search for uncovered location in closest 

neighbors using neural propagation 

        switch max(search) 

            case search(1) 

                pc = moveNextDirection(N_TL,up_dir); 

                heading = 1; 

                %disp('north is next') 

            case search(2) 

                pc = moveNextDirection(NE_TL,up_dir); 

                heading = 2; 

                %disp('ne is next') 

            case search(3) 

                pc = moveNextDirection(E_TL,right_dir); 

                heading = 3; 

                %disp('east is next') 

            case search(4) 

                pc = moveNextDirection(SE_TL,down_dir); 

                heading = 4; 

                %disp('se is next') 

            case search(5) 

                pc = moveNextDirection(S_TL,down_dir); 

                heading = 5; 

                %disp('south is next') 

            case search(6) 

                pc = moveNextDirection(SW_TL,down_dir); 

                heading = 6; 

                %disp('sw is next') 

            case search(7) 

                pc = moveNextDirection(W_TL,left_dir); 

                heading = 7; 

                %disp('west is next') 

            case search(8) 

                pc = moveNextDirection(NW_TL,up_dir); 

                heading = 8; 

                %disp('nw is next') 

        end 

 

        %once uncovered location is found revert back to heuristic path selection 

    else %continue on with heuristic path selection 

        deadlockSearch = 0; 

        switch max(pn) 
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            case pn(1) 

                pc = moveNextDirection(W_TL,left_dir); 

                heading = 7; 

                %disp('west is next') 

            case pn(2) 

                pc = moveNextDirection(S_TL,down_dir); 

                heading = 5; 

                %disp('south is next') 

            case pn(3) 

                pc = moveNextDirection(N_TL,up_dir); 

                heading = 1; 

                %disp('north is next') 

            case pn(4) 

                pc = moveNextDirection(E_TL,right_dir); 

                heading = 3; 

                %disp('east is next') 

            case pn(5) 

                pc = moveNextDirection(SE_TL,down_dir); 

                heading = 4; 

                %disp('se is next') 

            case pn(6) 

                pc = moveNextDirection(NE_TL,up_dir); 

                heading = 2; 

                %disp('ne is next') 

        end 

    end 

 

    % Stop condition 

    %check if map/environment is completely covered and end operation 

    if sum(n>=0.5, 'all') == 0 

        disp("Coverage complete, stopped at...") 

        disp(grid2world(map, pc)) 

        go = 0; 

    end 

     

    % collect simulation data 

    if deadlockSearch > 30 

        disp("Deadlock max reached. Terminating Sim");  

        deadlock_cntr = deadlock_cntr+1; 

        break; 

    end 

 

    if prevHeading ~= heading; turn_count = turn_count+1; end 
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    prevHeading = heading; 

 

    checkPC = checkOccupancy(map,pc,'grid'); 

    if checkPC == -1; overlap = overlap+1; end 

     

    pcXY = grid2world(map,pc); 

    if ~isempty(prevPC) 

        dist = pdist2(pcXY,prevPC); 

        pathLength = pathLength+dist; 

    end 

    prevPC = pcXY; 

 

end %end of while loop 

 

timeElapsed = toc; 

return 

 

    function y = directionStatus(x) 

        %Use a try block to iterate through and calcuate n-values for all cells eqauting to the 

size of bot in specified direction 

        try 

            for j = x(2):1:x(2)+24 %{Reference; j is cols (goes left to right)} 

                for i = x(1)-1:1:x(1)+18  %{Reference; i is rows (goes up and down)} 

                    status = checkOccupancy(map, [i,j], "grid"); %check status of current grid 

position 

                    %convert grid values to 'I' values 

                    if status == 1 

                        i = x(1) + 6; 

                        j = x(2) + 12; 

                        I = -100; 

                        calculateNeuralActivity 

                        return 

                    end 

                end 

            end 

 

            %if no cell in the group is an obstacle, check the status of cell where COG is 

located and use it's n-value for the specified direction 

            i = x(1)+6; 

            j = x(2)+12; 

            %ab = grid2world(map, [i,j]); 

            status = checkOccupancy(map, [i,j], "grid"); 

            switch status 
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                case -1 %uncovered 

                    I = 0; 

                    calculateNeuralActivity 

                    return 

                case 0 %covered 

                    I = 100; 

                    calculateNeuralActivity 

                    return 

            end 

 

        catch %Catch "index out of bounds" errors and assign n-value of specified direction as 

obstacle (-0.6) 

            y = -0.6; 

            return 

        end %for the try/catch 

 

        function calculateNeuralActivity 

            I_plus = max([I 0]); 

            I_neg = max([-1*I 0]); 

 

            %check neural activity level of neighboring neurons, evaluate using ReLu, and 

calcuate euclidean distance 

            %input the correct displacement values for the COG of the neighboring direction 

            [North, dNorth] = ReLu(-19,0); %n(i, j-1) 

            [South, dSouth] = ReLu(19,0); %n(i+1, j) 

            [West, dWest] = ReLu(0,-25); %n(i, j-1) 

            [East, dEast] = ReLu(0,25); %n(i, j+1) 

            [NW, dNW] = ReLu(-19,-25); %n(i-1, j-1) 

            [NE, dNE] = ReLu(-19,25); %n(i-1, j+1) 

            [SW, dSW] = ReLu(19,-25); %n(i+1, j-1) 

            [SE, dSE] = ReLu(19,25); %n(i+1, j+1) 

 

            %store evaluated neural activity values for neighboring neurons (8x1 matrix/array) 

            xplus = [North, South, West, East, NW, NE, SW, SE]; 

 

            %store euclidean distances (1x8 matrix/array) 

            wij = [dNorth; dSouth; dWest; dEast; dNW; dNE; dSW; dSE]; 

 

            %calculate the weight 

            weight = xplus * wij; % Matrix operation calculating for the weight (order of 

operation should not be changed) 

 

            %set variables 
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            A = 80; 

            B = 1; 

            D = 1; 

            %define & evaluate equation using ODE solver 

            eqn = @(t,Xi) ((-A*Xi) + (B-Xi)*(I_plus + weight) - (D+Xi)*I_neg); 

            [t,Xi] = ode45(eqn, [0:1], n(i,j)); 

            n(i,j) = Xi(end); 

            y = n(i,j); 

 

        end 

 

        % function to check neural activity level of neighboring neurons, evaluate using ReLu, 

and calcuate euclidean distance 

        function [dir, dir_dist] = ReLu(RowDisp,ColDisp) 

            %input the correct displacement values for the COG of the neighboring direction 

            ab = grid2world(map, [i,j]); %current grid position for neural activity calculation 

            try 

                dir = max([n(i + RowDisp, j + ColDisp) 0]); 

                dir_dist = 0.7/((norm(ab - grid2world(map, [i + RowDisp, j + ColDisp])))); 

            catch 

                dir = 0; 

                dir_dist = 0; 

            end 

        end 

 

    end %for the function directionStatus() 

 

    function pc = moveNextDirection(pTL,heading) 

        pc = [pTL(1)+6, pTL(2)+12]; 

        gpc = grid2world(map, pc); 

        plot(gpc(1), gpc(2),heading) 

    end 

end 

 


