
FLIP TASK ALLOCATION FOR ROBOT PATH COVERAGE

A Thesis

by

STEVEN TYLER LONGA

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Chukwuzubelu Ufodike
Committee Members, Mathew Kuttolamadom

Dylan Shell
Head of Department, Reza Langari

August 2023

Major Subject: Engineering Technology

Copyright 2023 Steven Longa

ii

ABSTRACT

The usage of multi-robot systems to complete monotonous yet complex tasks has become

increasingly popular. One such category is tasks that require the complete coverage of an

area, such as the task of vacuuming. The undertaking of a complete coverage task by a

singular mobile floor cleaning robot requires a minimum of path planning capabilities to

prevent the recleaning of previously cleaned areas. When more than one robot is utilized

to complete the same coverage task, there must be some form of global strategy

implemented that can aid the multi-robot system in reducing the amount of coverage

overlap, idle time, and overall time required to complete the vacuuming task. Such global

strategies often utilize a method of decomposing the larger task into smaller subtasks

which are then allocated among the number of robots within the system. However, many

of these strategies are either static in their task allocation or are based on a singular robot

system to accomplish the complete coverage task. The algorithm for global strategy

proposed in this thesis presents a methodology for utilizing the techniques of triangular

mesh decomposition, Traveling Salesman Problem optimization, and dynamic flip task

allocation for multiple floor cleaning robots.

iii

DEDICATION

This thesis is dedicated to my dear mother Karen who bravely battled cancer until

September 25, 2021. It was her unwavering support and encouragement that inspired me

to pursue a master’s degree. In doing so, I hoped to provide her with a source of joy in

envisioning the day she would witness her son proudly crossing the stage after enduring

two challenging years of various cancer treatments. Although the journey through

graduate school has been arduous, I did it Mom.

iv

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Ufodike, and my committee members, Dr.

Shell and Dr. Kuttolamadom, for their guidance and support throughout the course of

this research.

I would also like express my gratitude to my friends, colleagues, and the

department faculty and staff for making my time at Texas A&M University a great

experience.

Lastly, a heartfelt thanks to my father, brother, and family for their constant

encouragement and love.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Dr. Ufodike and Dr.

Kuttolamadom of the Department of Engineering Technology and Industrial Distribution

and Dr. Shell of the Department of Computer Science and Engineering.

All other work conducted for the thesis was completed by the student with the help

and guidance of Danyal Ansarid, Brey Caraway, and Chukwubuikem Ewelike.

Funding Sources

Research was supported by funding from Dr. Ufodike.

vi

NOMENCLATURE

LiDAR Light Detection and Ranging

PGM Portable Gray Map

TSP Traveling Salesman Problem

vii

TABLE OF CONTENTS

Page

ABSTRACT .. ii

DEDICATION .. iii

ACKNOWLEDGMENTS .. iv

CONTRIBUTORS AND FUNDING SOURCES ... v

NOMENCLATURE ...vi

TABLE OF CONTENTS ...vii

LIST OF FIGURES .. x

LIST OF TABLES ... xii

LIST OF CODE EXAMPLESxiv

1. INTRODUCTION ... 1

1.1. Background ... 1
1.2. Problem Statement .. 4
1.3. Literature Review ... 5

1.3.1. Environment Representation .. 5
1.3.2. Environment Decomposition ... 7
1.3.3. Environment Negotiation ... 10

1.4. Research Goals and Objectives ... 12

2. METHODOLOGY .. 13

2.1. Overview ... 13
2.1.1. Inputs .. 13
2.1.2. Outputs ... 14
2.1.3. Software Utilized ... 14
2.1.4. Required Functions .. 15
2.1.5. Assumptions ... 15

2.2. Image Processing .. 16
2.2.1. LiDAR Map Pre-Processing .. 16
2.2.2. Identifying Boundaries ... 18

viii

2.2.3. Polyshape Representation .. 24
2.3. Map Decomposition .. 26

2.3.1. Triangulation Mesh .. 27
2.3.2. Global Optimal Path Identification .. 31
2.3.3. Triangle Merging ... 35
2.3.4. Bounding Boxes ... 39

2.4. Task Allocation ... 44
2.4.1. Allocation of Tasks .. 45
2.4.2. Dynamic Task Allocation .. 52
2.4.3. Occupancy Map Generation and Starting Location Identification of Task ... 55

3. EXPERIMENTAL RESULTS AND DISCUSSION .. 59

3.1. Equipment Used .. 59
3.2. Map Environments Used .. 59
3.3. Experiment 1: Comparing Cleaning Time and Efficiency between a
Decomposed and Non-Decomposed Work Area ... 63

3.3.1. Hypothesis .. 63
3.3.2. Procedure ... 63
3.3.3. Results .. 64
3.3.4. Conclusions .. 70

3.4. Experiment 2: Comparing Idle Time between Dynamic and Static Task
Allocation ... 73

3.4.1. Hypothesis .. 73
3.4.2. Procedure ... 73
3.4.3. Results .. 74
3.4.4. Conclusions .. 79

4. RESEARCH CONTRIBUTIONS, TECHNICAL CHALLENGES, AND FUTURE
WORK ... 82

4.1. Research Contributions ... 82
4.2. Technical Challenges .. 83

4.2.1. Physical System Implementation ... 83
4.2.2. Boundary Identification ... 85
4.2.3. Parallel Computing .. 87
4.2.4. ROS Implementation .. 87

4.3. Future Work .. 90

5. CONCLUSIONS .. 92

REFERENCES .. 93

APPENDIX A: SCUTTLE ROBOT PLATFORM ... 98

ix

APPENDIX B: MAIN SCRIPT ... 101

I. roomStrategySim .. 101
II. roomStrategyReal ... 128

APPENDIX C: REQUIRED FUNCTIONS .. 157

I. allocateTasks ... 157
II. directedTSP ... 158
III. identifyBoundaries .. 162
IV. identifyBox2merge ... 163
V. identifyTri2merge ... 165
VI. poly2occgrid ... 166
VII. polyConn ... 170
VIII. polyNeighbor .. 171
IX. triDecomposition ... 172

APPENDIX D: SUPPLEMENTARY FUNCTION .. 174

I. cleanRoomSimTest ... 174

x

LIST OF FIGURES

Page

Figure 1. Raw LiDAR scan image compared to edited LiDAR scan image. 16

Figure 2. Boundary identification with two obstacles outlined in green. 20

Figure 3. Boundary identification with no obstacles. .. 21

Figure 4. Work area occupancy map. .. 24

Figure 5. Polyshape representation of work area. .. 25

Figure 6. Polyshape representation of work area prior to obstacle removal. 25

Figure 7. Polyshape representation of work area post obstacle removal. 26

Figure 8. Sample triangulation decomposition output. .. 28

Figure 9. Sample triangulation mesh decomposition output. .. 29

Figure 10. TSP algorithm output graph. .. 32

Figure 11. TSP algorithm directed output graph. .. 33

Figure 12. Directed output graph overlayed on global map. ... 34

Figure 13. Triangle connectivity graph. ... 37

Figure 14. Triangle connectivity graph overlayed on work area. 37

Figure 15. Triangle merging process before and after comparison. 39

Figure 16. Merged triangle polygons converted into bounding boxes. 40

Figure 17. Cleaned up bounding boxes. ... 41

Figure 18. Bounding boxes post-merging process. .. 43

Figure 19. Resulting bounding boxes with global path overlayed. 44

Figure 20. Sample node list. .. 45

xi

Figure 21. Task allocation output. ... 48

Figure 22. Segmented global path. .. 49

Figure 23. Segmented global path overlayed on global map. .. 49

Figure 24. Flipped task allocation output. ... 50

Figure 25. Flipped segmented global path. .. 50

Figure 26. Flipped segmented global path overlayed on global map. 51

Figure 27. SPMD worker flowchart. .. 53

Figure 28. Sample polyshape to occupancy map conversion. ... 57

Figure 29. Sample viable starting locations. .. 58

Figure 30. Map environment 1 PGM image. ... 59

Figure 31. Map environment 1 decomposed. ... 59

Figure 32. Map environment 1 decomposed without triangle merging. 60

Figure 33. Map environment 2 PGM image. ... 60

Figure 34. Map environment 2 decomposed. ... 60

Figure 35. Map environment 2 decomposed without triangle merging. 61

Figure 36. Map environment 3 PGM image. ... 61

Figure 37. Map environment 3 decomposed. ... 62

Figure 38. Map environment 3 decomposed without triangle merging. 62

Figure 39. Top view of both constructed SCUTTLE robots. .. 98

Figure 40. SCUTTLE front view. .. 99

Figure 41. SCUTTLE side view. ... 100

xii

LIST OF TABLES

Page

Table 1. Results for Map 1 work area with no decomposition. 65

Table 2. Results for Map 1 work area with decomposition. .. 66

Table 3. Results for Map 1 work area with triangle merging process skipped during
decomposition. ... 66

Table 4. Results for Map 2 work area with no decomposition. 67

Table 5. Results for Map 2 work area with decomposition. .. 67

Table 6. Results for Map 2 work area with triangle merging process skipped during
decomposition. ... 68

Table 7. Results for Map 3 work area with no decomposition. 68

Table 8. Results for Map 3 work area with decomposition. .. 69

Table 9. Results for Map 3 work area with triangle merging process skipped during
decomposition. ... 69

Table 10. Comparison of averaged experimental results from each method. 70

Table 11. No task reallocation results for Map 1 decomposed with triangle merging. ... 75

Table 12. Task reallocation results for Map 1 decomposed with triangle merging. 76

Table 13. No task reallocation results for Map 2 decomposed with triangle merging. ... 76

Table 14. Task reallocation results for Map 2 decomposed with triangle merging. 76

Table 15. No task reallocation results for Map 3 decomposed with triangle merging. ... 76

Table 16. Task reallocation results for Map 3 decomposed with triangle merging. 77

Table 17. No task reallocation results for Map 1 decomposed without triangle
merging. .. 77

Table 18. Task reallocation results for Map 1 decomposed without triangle merging. ... 77

xiii

Table 19. No task reallocation results for Map 2 decomposed without triangle
merging. .. 78

Table 20. Task reallocation results for Map 2 decomposed without triangle merging. ... 78

Table 21. No task reallocation results for Map 3 decomposed without triangle
merging. .. 78

Table 22. Task reallocation Results for Map 3 decomposed without triangle merging. . 78

Table 23. Comparison of average idle times. .. 79

xiv

LIST OF CODE EXAMPLES

Page

Code Example 1. Boundary Identification ... 19

Code Example 2. Work Area Misidentification Check ... 22

Code Example 3. PGM to Occupancy Map ... 22

Code Example 4. Triangular Mesh Generation ... 27

Code Example 5. Triangle Mesh Regulation ... 30

Code Example 6. Triangle Merging Process ... 35

Code Example 7. Polygon Connectivity .. 36

Code Example 8. Task Allocation ... 46

Code Example 9. Polyshape to Occupancy Map ... 56

Code Example 10. Publishing ROS Message within SPMD ... 89

1

1. INTRODUCTION

1.1. Background

The task of vacuuming is one of necessary importance to the cleanliness of a building and

its floors yet the act of completing such a task can be perceived as mundane given the

repetitiveness and boredom which accompany it. To solve this problem, companies such

as iRobot and Roborock offer commercially available solutions that can complete the

vacuuming task. Released in July of 2019 [1] and April of 2022 [2] respectively, iRobot’s

Roomba s9+ and Roborock’s S7 MaxV Ultra offer state-of-the-art mobile vacuum

cleaning systems that can autonomously keep a household’s floor clean with little user

intervention.

To perform their cleaning operations, such systems employ a variation or

combination of exploratory and complete coverage path planning algorithms. These

exploratory algorithms allow the robot to understand and make sense of its workspace by

creating a detailed map of its surroundings utilizing various onboard sensors. While

initially inefficient, the data collected by the exploratory algorithm is saved such that it

can later be used by the complete coverage path planning algorithm for a more time and

coverage efficient next cleaning. Systems such as those mentioned above typically employ

a singular robot that goes about performing the task of cleaning the assigned work area.

These do not exhibit multi-robot system functionality as these systems were designed from

the ground up to be utilized as standalone devices.

While the need for multi-robot functionality may not be a priority in a household

or small office setting as many commercially available systems are intended for, the ability

2

to deploy multiple mobile floor cleaning robots in larger settings such as but not limited

to hotels, warehouses, and schools gives rise to the need for multi-robot functionality

which can help free custodians and housekeepers from the mundane task of vacuuming

long hallways and multiple rooms within a shift. Despite the usefulness of exploratory

algorithms when employed by a single robot to clean an assigned work area as used by

the commercially available mobile floor cleaning robots, the problem of strategy arises

when multiple robots are tasked with cleaning the same work area.

The scope of strategy in the application of vacuuming comes down to how should

the work area be cleaned. The primary factor for consideration in implementing a strategy

is the number and size of the robots to be utilized. The size and number of robots utilized

influence other aspects of strategy implementation such as the size, shape, and number of

decomposed regions created within the work area. It is these generated decomposed

regions that lead to the second factor for consideration in strategy implementation which

is the determining of an optimal path to traverse the work area such that all decomposed

regions are visited and cleaned by a robot. In a multi-robot system, a third factor of how

the decomposed regions, now tasks, will be allocated among the number of available

robots must also be considered when implementing a strategy as the method of task

allocation can have an effect on the overall time and power efficiency in completing the

cleaning task.

Strategy planning in multi-robot systems is approached in one of two ways:

centralized and decentralized. In a centralized system, a single central computer

commands each robot in accordance with the overall task assigned. Furthermore, robots

3

within a centralized system do not exhibit individual intelligence but rather feature sensors

and systems which record information about that particular robot including speed,

heading, and orientation with respect to the working environment that is then relayed to

the central computer for processing and further commands if necessary. By utilizing a

centralized approach, the robots within the system operate predictably and can be used in

various settings including organizing warehouses such as Amazon’s fleet of robotic

pickers [3], commanding a fleet of 1,800 drones to perform mesmerizing light displays

like the one performed for the Tokyo 2020 Olympics opening ceremony [4], and even

perform search and rescue operations without human intervention [5].

With regards to decentralized systems, this approach is often found in robot

swarms and is described by [6] as a system consisting of autonomous robots cooperatively

working together where each robot features local sensing and communication capabilities

but lacks centralized control or access to global information. In short, the individual robots

by themselves can perform a simple function but the overall goal of the swarm is only

achieved when there are many robots involved in completing the assigned task. With

respect to this research, the employing of a decentralized approach would be akin to having

multiple robots wandering around aimlessly vacuuming and occasionally bumping into

objects to then make a preprogrammed turn similar to the more dated commercially sold

mobile floor cleaning robots. The robots would eventually clean the work area, but the

time required and energy expended would be highly inefficient. While such an approach

may not be best suited for a vacuuming application, researchers have been exploring

potential uses as most decentralized robot swarms, especially large ones, are typically only

4

found in research laboratories. One such example is the Kilobot swarm created in the lab

of Radhika Nagpal which consists of over 1,000 individual robots that can self-organize

into various shapes [7].

Given the saturation of the commercial market for non-multi-robot mobile floor

cleaning systems, this research aims to provide a foundation for the development of a

centralized method of strategy planning to be used by a fleet of 𝑁 number of mobile floor

cleaning robots in macro-scale cleaning applications such as large indoor spaces. It is

within these large spaces where one or multiple commercially available floor cleaning

robots would be inefficient in the amount of time required and the high potential for the

overlapping of previously cleaned areas due to there being no employed multi-robot

strategy for the cleaning process. Hence the need for implementing a strategy planning

algorithm into a fleet of mobile vacuum cleaners which can lead to more efficient cleaning

times, can help save battery power, and reduce the overlapping of already previously

cleaned areas.

1.2. Problem Statement

The problem this research aims to solve is the implementation of a strategy for the dynamic

task allocation of multiple robots in a complete coverage application such that the amount

of time a robot is sitting idle after completing its assigned task is minimized when there

are still tasks assigned to other robots yet to be completed.

5

1.3. Literature Review

Approaches to strategy planning vary from application to application. Such variations can

be based on factors such as the complexity of the work environment, if the map of the

work environment is already known, the number of robots planned to operate within the

work environment, and the circumstances unique to the particular situation. Furthermore,

the strategy employed to complete the assigned complete coverage tasks often operates

behind the scenes of the path planning algorithm but plays a critical role in guiding the

path planning algorithm through the work environment.

1.3.1. Environment Representation

One element of strategy planning is how will the robot’s environment be represented. A

typically utilized approach involves using a grid-based method to discretize the robot’s

environment into a two-dimensional grid of square cells. The size of the square cells

dictates the resolution of the grid which can be modified as needed to suit the particular

application. Each cell within the grid can then be assigned a value based on the state of

that specific cell. Two common techniques employed in assigning cell values within the

grid are discussed below.

Occupancy maps are one method a cell can be assigned a value. Within an

occupancy map, each cell is given a value that is representative of the likelihood that the

cell is occupied by an object. In most implementations, the lower the cell value the lower

the likelihood that the cell is occupied while the higher the cell value the higher the

likelihood that the cell is occupied. Đakulovic in both [8] and [9] implement an occupancy

6

map where free cells are assigned a value of one while occupied cells are assigned a value

of infinity. As the path planning algorithm attempts to navigate a robot that can be

represented by a 𝟕 × 𝟕 grid of cells, the strategy portion of the algorithm further assigns

cells surrounding obstacles out to seven cells a higher value than the free cells. This

assignment of higher values to obstacles and cells near obstacles is performed such that

the path planning portion of the algorithm, which is based on a least-cost function that

sums up all the cell values within the next possible location of the robot, is dissuaded from

choosing those cells as the next robot location.

A second technique utilized to assign cell values is through the use of a neural

network where each cell within the grid contains a value representative of the amount of

neural activity present in that particular cell. A popular neural network approach takes

inspiration from biology and is defined by the following computational model shown

below in Equation 1 first proposed by Hodgkin and Huxley in 1952 [10].

𝐶!
"#!
"$

= −'𝐸% + 𝑉!+𝑔% + (𝐸&' − 𝑉!)𝑔&' − (𝐸(+ 𝑉!)𝑔((1)

By making a few adjustments to the proposed computational model such as setting

𝐶! = 1 and substituting 𝐴 = 𝐸% + 𝑉!, the resulting shunting equation first proposed by

Grossberg [11] is shown below in Equation 2.

")"
"$
= −𝐴𝑥* + (𝐵 − 𝑥*)𝑆*+(𝑡) − (𝐷 + 𝑥*)𝑆**(𝑡) (2)

Through utilizing Grossberg’s shunting equation, each cell within the grid can then

be assigned a neural activity value to represent if that cell is a viable next candidate for

the path planning algorithm to move to or if that particular cell should be avoided. A

typical application of a bio-inspired neural network (BINN) approach is assigning a

7

positive value to unclean cells, a neutral value of zero to clean cells, and a negative value

to occupied cells which includes obstacles and other robot locations. This is such that the

path planning algorithm will be attracted to unclean cells exhibiting the highest neural

activity values and will be repelled by occupied cells containing the lowest neural activity

values. Implementations of a BINN approach can be found in Luo and Yang’s works on

an algorithm for implementing both single robot [12] and multi-robot [13] complete

coverage strategies in an unknown environment. Sun et al. [14] utilizes an improved

version of Luo and Yang’s multi-robot approach in the complete coverage path planning

for autonomous underwater vehicles and Luo further applies a BINN approach to the

trajectory planning of an autonomous vehicle [15].

1.3.2. Environment Decomposition

A second concern regarding strategy planning is how will the work environment be

decomposed into smaller areas that can then be tasked to an individual robot.

Decomposition of the work environment can be performed in a multitude of ways however

the main goal for each strategy is to divide the environment into subregions such that the

union of the subregions is equal to that of the original environment.

One common method employed in the decomposition of an environment is that of

Voronoi decomposition. As defined by [16], this method of decomposition utilizes a set

of n generating points within the environment to then partition the environment into

convex polygons such that every polygon contains exactly one generating point and that

any point contained within a particular polygon is closest in distance to its generating point

8

than to any other. The technique used to calculate the distance between any point within

the polygon and its generating point will dictate the resulting shape of the polygon. Nair

and Guruprasad [17] utilize a combination of two generalizations of Voronoi

decomposition which are geodesic-distance-based and Manhattan-distance-based Voronoi

decomposition for the multi-robot complete coverage of a known environment. Fu et al.

[18] implemented an adaptive Voronoi decomposition method for the exploratory

coverage of an unknown environment by multiple robots using a Divide and Conquer

method. Hu et al. [19] performs a similar approach to the exploration of an unknown

environment utilizing a deep reinforcement learning technique in conjunction with

dynamic Voronoi decomposition which was later applied to a multi-robot complete

coverage application [20]. While implementations of Voronoi decomposition are

successful in achieving the complete coverage of an environment, the resulting polygons,

also referred to as cells, oftentimes are irregular in shape and tend to vary widely in shape

and area. A method for governing the resulting cell shapes is Centroidal Voronoi

Tessellations (CVT) as presented in [21] where an iterative process utilizing a hybrid of

Lloyd’s and MacQueen’s algorithms produces cells more uniform in shape and area.

 Another commonly employed method is that of Morse decomposition. This

method of decomposition involves sweeping a line defined by a Morse function through

a work environment which is then either divided upon encountering an obstacle or

recombined after the obstacle has been passed as described by [22]. Points at which the

connectivity of the sweeping line changes as it moves through the work environment are

referred to as “critical points” which are then used to determine the cell boundaries. Acar

9

and Choset utilize Morse decomposition for the coverage of an unknown environment by

a single robot with a robot-sized end effector [23] and later along with Lee presented a

coverage method for a single robot with an end effector larger than the robot yet finite in

size [24]. While Morse decomposition is a more general form of decomposition that can

theoretically be applied to any n-dimensional space [22], Boustrophedon decomposition,

introduced by Choset [25], occurs within the two-dimensional plane of the work

environment and has been shown to be a specific case of Morse decomposition with a

Morse function of ℎ(𝑥, 𝑦) = 𝑥 [26]. Boustrophedon decomposition in a complete

coverage application was implemented in both [27] and [28] for a single robot. While

Morse decomposition excels in environments with obstacles, it is dependent upon the

presence of obstacles to produce partitioned areas given the nature of the sweeping line.

 A method seldom employed is that of triangular mesh decomposition. Upon

conducting this literary review, it was difficult to locate works that implemented this

method of decomposition in a complete coverage application that partitions the

environment into triangles of similar size. One such implementation by Oh et al. [29]

proposed a method of decomposing the work environment into triangular cells with a

width equal to the robot. The work environment would then be covered by a robot visiting

the center of each triangle along its planned path using seven templates to perform

navigation. While not utilized in the complete coverage sense, [30] and [31] utilize

triangular mesh for the path planning of the shortest route from a start point to an endpoint.

Due to the lack of research on utilizing triangular mesh decomposition for complete

coverage applications, this research aims to fill this knowledge gap presented.

10

1.3.3. Environment Negotiation

A final matter with regard to strategy planning is how will the environment be negotiated

by the number of available robots and in the most time-efficient manner possible. One

method of traversing an environment is to simply allow the robots to go about path

planning throughout the environment randomly. Known as the Random Walk method, this

type of method is used in exploratory applications such as search and rescue where a large

area needs to be covered promptly but not completely. Given the random nature of this

strategy, the Random Walk method suffers from inefficiencies such as the repeated

searching of already searched areas. To increase the search efficiency, [32] presents an

improvement to the Random Walk method by having each robot adjust its step size

dynamically. While the proposed improvements to the Random Walk method may

enhance the efficiency of the amount of environment covered by the robots, this method

falls short in a complete coverage application. The amount of time such a method would

require to eventually achieve complete coverage of the environment renders it inefficient.

Another strategy that can be employed in environment negotiation, assuming the

environment was previously decomposed into smaller regions, is the method of planning

the shortest path which visits each region created by the decomposition only once. Known

as the Traveling Salesman Problem (TSP), this problem relates to a salesman needing to

visit a set of locations in the most efficient and thereby shortest path possible. The solution

to this problem can be applied to a complete coverage application by replacing the list of

locations the salesman needs to visit for points within the regions of the decomposed

environment that the robot(s) must pass through. This technique is applied in the

11

environmental negotiation strategy implemented in [33] by which TSP-based

reinforcement learning optimization is utilized to generate an optimal path for how a

singular robot should go about completely covering the work environment. The path

generated by such an approach provides direction for how the robot should visit each

decomposed region, or in this case tiles, which would suggest the existence of an ordered

list detailing which tile to move to next as the robot negotiates the environment.

For the case of a single robot, each region can simply be visited by the robot along

its path however when the number of robots is increased, this path must be divided among

the number of robots to prevent the overlap of cleaned areas along the path. A method

referred to as “Coverage with Route Clustering” is presented in [34] which was later

modified for Dubins vehicles in [35] for which an optimal path, such as the path generated

by a TSP algorithm, is split between multiple robots. In doing so, segments of the global

path can be assigned to individual robots without overlap. By translating the regions to be

visited within each segment to tasks, this research aims to implement a similar method as

a means of allocating tasks between robots with the additional feature of flipping every

other path segment. This is such that globally the robots negotiate the environment by

working toward one another which is novel in the application of complete coverage.

12

1.4. Research Goals and Objectives

The goal of this research is to:

• Highlight how multiple robots with a global strategy can be used to clean a work

area more quickly and efficiently when compared to a single robot or multiple

robots without a global strategy cleaning the same work area.

• Demonstrate the decrease in idle time and overall cleaning time by dynamically

reassigning a robot that has completed its assigned tasks to help another robot

complete its unfinished tasks in simulation.

• Attempt to apply the algorithm to a real-world cleaning application using at least

two robots.

13

2. METHODOLOGY

2.1. Overview

The strategy planning algorithm can be divided into three main blocks: Image Processing,

Map Decomposition, and Task Allocation. Each block must be run sequentially in the

order as mentioned as each subsequent block is reliant upon the output of the previous

block. In this section, an overview of the algorithm will be presented while a detailed

description of each block will follow in the succeeding sections. Assume that all functions

mentioned were provided by MATLAB either through the base program or any additional

toolboxes utilized unless otherwise stated.

2.1.1. Inputs

The inputs to the algorithm are:

1. The edge length of the longest side of the robot measured in grid coordinates.

2. Length of the longest diagonal from the center point to a corner of the robot

measured in grid coordinates.

3. Target minimum triangle mesh edge length.

4. Desired starting location specified as an integer of either 1) the farthest corner from

the shape centroid, 2) the closest corner to the shape centroid, or 3) the centroid of

the shape.

5. The file path of the completed post-edited LiDAR scan of the work area in PGM

file format.

6. The number of robots to be utilized.

14

2.1.2. Outputs

The strategy planning algorithm outputs have been tailored to reflect the inputs required

by the subsequently used path planning algorithm. The first output is a probabilistic

occupancy map of the work area to be completely covered where a value of 0 represents

a cell to be cleaned denoted by the color white, a value of 1 represents an occupied cell

denoted by the color black, and 0.5 represents an already cleaned cell when the path

planning algorithm is performing complete coverage. The second output is a coordinate

pair containing the starting location for the path planning algorithm to begin completely

covering. The method by which these outputs are generated will be described in sections

2.4.3 and 2.4.4 respectively.

2.1.3. Software Utilized

In addition to the MATLAB base program, the addon toolbox software utilized by the

strategy planning algorithm is as follows:

• Image Processing Toolbox

• Navigation Toolbox

• Optimization Toolbox

• Parallel Computing Toolbox

• Partial Differential Equations Toolbox

• ROS Toolbox

• Statistics and Machine Learning Toolbox

15

2.1.4. Required Functions

Listed below are the functions required in addition to the main roomStrategy script for the

successful execution of the strategy planning algorithm. The function files are obtainable

from the repository mentioned in [36].

• allocateTasks

• directedTSP

• identifyBoundaries

• identifyBox2merge

• identifyTri2merge

• poly2occgrid

• polyConn

• polyNeighbor

• triDecomposition

2.1.5. Assumptions

The strategy planning algorithm is based on the following assumptions:

1. All required software needed to run the algorithm has been preinstalled on the

machine executing the algorithm.

2. The map of the completed LiDAR scan is in the PGM file format.

3. The work area within the completed LiDAR scan forms an enclosed polygon and

is bordered by at least one layer of occupied cells.

4. The number of robots to be utilized does not exceed two.

5. The shape of the robot is a square.

16

2.2. Image Processing

The Image Processing block involves converting an input PGM file of the completed

LiDAR scan of the work area to both an occupancy map and a polyshape object.

2.2.1. LiDAR Map Pre-Processing

Before the PGM file of the LiDAR scan can be input to the algorithm for conversion, there

is some pre-processing that must be performed to the map to ensure correct boundary

identification. To begin pre-processing, an image editing software such as GIMP is

recommended which provides tools for easy image manipulation. In the image editing

software, the raw LiDAR scan image can be cleaned up by removing any extraneous data

readings and ensuring that the work area forms an enclosed polygon bordered by at least

one layer of occupied cells. An example of a raw image compared to an edited image is

shown in Figure 1 below.

Figure 1. Raw LiDAR scan image compared to edited LiDAR scan image.

17

 As can be seen, the raw image on the left features multiple locations where the

LiDAR scan produced data points that lie outside the work area. This results in streaked

areas, which are especially evident in the middle left and top right portions of the raw

image. To remove these streaked areas, the default shade of light gray which occupies the

region outside the work area is painted over the streaked areas thereby removing the

extraneous readings. If these streaked areas are not removed during pre-processing, an

incorrect representation of the work area may result following the processing of the image

in the boundary identification step.

Another issue that may require closer visual inspection is if the work area does not

form a closed polygon. In the above raw image, various locations about the exterior

boundary of the work area have gaps in between occupied cells. These gaps must be filled

in by editing in segments of occupied cells represented by the color black. The result

should be similar to the edited image on the right in Figure 1 above where all the streaked

areas have been removed and the exterior border is clearly defined without gaps. In

performing these edits on the raw image, the work area should now be devoid of most

measurement errors caused during mapping.

A final issue is the raw map orientation following the mapping process. This issue

pertains more to how the algorithm perceives the work environment which in turn affects

the resulting coverage efficiency. To lessen the impact of this potential deficiency, the raw

map is visually rotated such that the majority of the exterior boundary borders are vertical.

Following these edits the map is ready to be input to the algorithm. This is performed by

18

utilizing the imread function where the function input is the file path of the edited image.

The function output can then be assigned to a variable for access in the following steps.

2.2.2. Identifying Boundaries

The function utilized to identify the work area boundaries is that of identifyBoundaries, a

required function that accepts the edited PGM image as input and returns the identified

exterior and interior boundary coordinates. The Code Example 1 below depicts integral

parts of the identifyBoundaries function.

function [exterior, interior] = identifyBoundaries(editedPGM)

binaryPGM = imbinarize(editedPGM); % binarize the edited PGM image

[B,~,N,A] = bwboundaries(binaryPGM);

obs_idx = 1; % variable to count the number of identified obstacles

%%% MATLAB bwboundaries example code %%%

% loop through object boundaries

for k = 1:N

 % boundary k is the parent of a hole if the k-th column

 % of the adjacency matrix A contains a non-zero element

 if (nnz(A(:,k)) > 0)

 exterior = B{k};

 % loop through the children of boundary k

 for l = find(A(:,k))'

 intBoundary = B{l};

 % additional code to save the points associated with each

 % identified interior obstacle

 tempVar = strcat('obs',num2str(obs_idx)); % update name of obstacle

 interior.(tempVar)= intBoundary; % save current obstacle to struct variable

 obs_idx = obs_idx+1; % update obstacle count

 end

 end

end

%%% End MATLAB example code %%%

19

% reduce the number of points describing the exterior boundary

exterior = reducepoly(exterior,.015);

end

Code Example 1. Boundary Identification

The identifyBoundaries function is primarily centered around bwboundaries which

requires the input image to be in binary format. Given that the PGM file type stores image

data in grayscale format, each pixel within the image can be represented by a value ranging

from 0 to 255 where 0 represents black and 255 represents white. Hence the edited image

must first be converted to binary format using the imbinarize function. The output of this

function is a matrix containing the binarized values of each pixel within the input edited

image. Given that an image is just a matrix of values containing the color values for each

pixel within the image, the resulting matrix of binarized values can be passed directly into

the bwboundaries function.

The bwboundaries function attempts to locate boundaries and any holes associated

with that particular boundary. In the current use case of the function, the input image

should ideally contain one boundary which is representative of the work area and any

identified holes within this boundary are akin to static obstacles within the work area. By

slightly modifying an example code by MATLAB showing how to use the bwboundaries

function outputs to loop through each identified boundary and any identified holes

associated with a particular boundary, any identified holes – more specifically the

coordinates of the identified hole – are named and stored within the struct variable interior

for output.

20

Similarly, the coordinates which make up the exterior boundary of the work area

are also stored in the variable exterior for output. This array of coordinates however can

be quite long containing hundreds of points identifying every occupied cell on the work

area exterior boundary. This large quantity of points is not necessary as ideally only the

coordinates which describe the corners of the work area are required to generate a

polyshape object. To reduce the number of coordinates describing the work area, the

function reducepoly can be utilized. Inputting the identified work area coordinates stored

in the exterior variable and a tolerance value, in this case 0.015, the number of coordinates

describing the work area can be drastically lessened from hundreds to just tens or less.

Figure 2 below depicts a sample identification of the work area exterior boundary outlined

in red, which was originally described by 1895 points now described only by 17 points,

and any identified interior obstacles within the work area outlined in green.

Figure 2. Boundary identification with two obstacles outlined in green.

21

Both exterior and interior variables are returned to the main workspace however

in some instances if the work area does not contain any interior obstacles, bwboundaries

can misidentify the actual work area as an interior obstacle and the image border as the

exterior boundary resulting in an output similar to that of Figure 3 below.

Figure 3. Boundary identification with no obstacles.

 To prevent potential errors during interior obstacle removal as a result of the

misidentification of the work area, a check is conducted on the returned outputs to

determine if misidentification took place. As shown in Code Example 2 below, the check

is performed by determining if the number of identified obstacles is equal to one and the

number of identified exterior boundary coordinates is less than ten. These check values

were determined based on the fact that the work area would be the lone identified hole

within the image boundary and the number of coordinates describing the image boundary

are typically equal to four following the use of reducepoly, although not in all cases, so a

value of ten was chosen to capture the majority of misidentification incidents.

% determine if the exterior boundary has been misidentified as an interior obstacle,

% if so set the interior obstacle as the exterior boundary

obsNum = fieldnames(interiorIJ); % determine number of identified interior obstacles

if (length(exteriorIJ) < 10) && (numel(obsNum) == 1)

 % reduce the number of points describing the exterior boundary

 exteriorIJ = reducepoly(interiorIJ.obs1,.01);

 removeObs = 0; % do not remove interior obstacles

else

22

 removeObs = 1; % do remove interior obstacles

end

% convert the exterior boundary points from IJ to XY coordinates

exteriorXY = grid2world(editedMap,exteriorIJ);

Code Example 2. Work Area Misidentification Check

 If it is found that the work area was misidentified, the identified interior obstacle

boundary is resaved as the exterior boundary and the remove obstacle flag is set to 0 to

skip the obstacle removal process. However before the obstacle removal process can take

place, it is important to note that the returned coordinates identified by bwboundaries are

in grid coordinates of the form (𝑖, 𝑗) where 𝑖 represents the row and 𝑗 the column. In order

to convert these grid coordinates to world coordinates of the form (𝑥, 𝑦) where 𝑥

represents the distance along the horizontal axis and 𝑦 the distance along the vertical axis,

the grid2world function must be utilized. This function requires two inputs, an occupancy

map of the work area and the grid coordinates to be converted. The latter of the two inputs

is known however the former input will need to be generated.

To create an occupancy map of the work area, the input edited PGM image pixel

values will need to be normalized to a value between 0 and 1. In terms of occupancy maps,

each pixel is referred to as a cell where 0 denotes the likelihood of an unoccupied cell and

1 an occupied cell. Code Example 3 below outlines the occupancy map generation process.

% normalize the image to values between 0 and 1 then convert to occupancy

% values by subtracting from 1

editedMap_occ = 1 - double(editedPGM)/255;

% generate an occupancy map from the occupancy values

editedMap = occupancyMap(editedMap_occ,resolution);

Code Example 3. PGM to Occupancy Map

23

As previously mentioned, the edited image is simply a matrix of pixel values

ranging from 0 to 255, and therefore each pixel value will need to be converted to a double

precision data type using the double function and then divided by 255 to normalize the

resulting values. These values are almost occupancy values however they are inverted due

to the inverse meaning of 0 and 1 with respect to occupancy grids and the normalized

grayscale values of the edited image. For occupancy maps, a value of 0 represents an

unoccupied cell and is denoted by the color white while in grayscale a value of 0 represents

the color black. To correct this inverse relationship, the normalized grayscale values of

the edited image are then subtracted from 1 to convert them to probabilistic occupancy

values. It is with this matrix of occupancy values that an occupancy map can be generated

using the occupancyMap function. This function generates an occupancy map based on

an input array of probabilistic occupancy values and an optional resolution value which

determines the size of each cell within the occupancy map. By default each cell within the

occupancy map is 2 cm by 2 cm, however due to the default resolution of the LiDAR map

generating software of 1 cell per meter, a resolution value of 50 must be applied. Figure 4

below depicts a generated occupancy map of a work area.

24

Figure 4. Work area occupancy map.

Now inputting the recently created occupancy map of the work area and the grid

coordinates to be converted into the grid2world function, the grid coordinates can be

successfully converted to world coordinates. It is at this point that a polyshape object of

the work area can be generated.

2.2.3. Polyshape Representation

With the coordinates of the exterior boundary of the work area and any identified obstacles

now known, the work area which was once represented as pixels within an image can now

be represented as a polyshape object or polyshape for short. The purpose for creating a

polyshape of a particular shape is that MATLAB can perform various geometric queries

and calculations on the polyshape itself which will be a useful tool in future steps. For

now, the coordinates of the exterior boundary of the work area will be utilized to generate

a polyshape of the work area by calling the polyshape function and inputting the (𝑥, 𝑦)

25

coordinate pairs saved in the exterior variable. An example resulting polyshape is shown

in Figure 5 below.

Figure 5. Polyshape representation of work area.

In the case of the work area represented in Figure 5 above, the work area did not

have any identified interior obstacles and was therefore misidentified as an interior

obstacle as shown in Figure 3. After being checked for misidentification the remove

obstacle flag for this work area would be set to 0 to skip the obstacle removal process.

However, if the conditions outlined in the check for misidentification are not met, the

remove obstacle flag is set to 1. This signals to the algorithm that there are interior

obstacles to be removed from the work area polyshape. Figure 6 below depicts a work

area polyshape before obstacle removal.

Figure 6. Polyshape representation of work area prior to obstacle removal.

26

 The obstacle removal process iterates through the number of identified interior

obstacles. For each obstacle, its points are converted from grid to world coordinates, the

number of points describing the obstacle is reduced using reducepoly, and a polyshape of

the obstacle is generated. The final step of the process involves subtracting the obstacle

polyshape from the work area polyshape. Figure 7 below illustrates a work area polyshape

following the obstacle removal process.

Figure 7. Polyshape representation of work area post obstacle removal.

With the work area now represented as a polyshape, the Image Processing block

of the algorithm is concluded. This polyshape representation of the work area will then be

passed to the next block for decomposition.

2.3. Map Decomposition

The Map Decomposition block involves both decomposing the polyshape object

representing the work area into sections and then determining an optimal global path for

navigating the decomposed work area. The outputs of this block are a list of tasks to be

completed and the corresponding polyshape objects.

27

2.3.1. Triangulation Mesh

The method of decomposition utilized to decompose the work area polyshape is that of a

triangulation mesh which is applied within the triDecomposition function, a required

function that accepts the work area polyshape and the target minimum triangle mesh edge

length as inputs. The function then outputs a struct variable containing the triangulation

mesh connectivity list, triangle points, a list of polyshape objects, and triangle centroid

coordinates. The triangulation mesh is formed by the function generateMesh which

requires first creating a model variable containing the geometry that the triangular mesh

will be generated from. Code Example 4 below depicts the triangular mesh generation

steps.

% perform initial triangulation on room

TR = triangulation(room);

% generate a geometric model based on initial triangulation

model = createpde;

tnodes = TR.Points';

telements = TR.ConnectivityList';

geometryFromMesh(model,tnodes,telements);

% generate triangular mesh

room_mesh = generateMesh(model,'GeometricOrder','linear','Hmin',min_triEdge);

Code Example 4. Triangular Mesh Generation

The first step is to perform an initial triangulation on the polyshape object.

Utilizing the triangulation function, which accepts polyshape objects as an input, a

triangulation object containing the triangulation points and connectivity list is outputted.

While the triangulation object produced would be a valid form of decomposition as shown

28

in Figure 8 below, the reason it is not used is due to the inability to have control over the

size of the triangles produced.

Figure 8. Sample triangulation decomposition output.

The triangulation object outputted by the triangulation function is a struct variable

containing the triangulation points and connectivity list which can then be directly

correlated to the nodes and elements variable inputs of the geometryFromMesh function

respectively. With the inclusion of the desired model variable which was previously

assigned with “createpde” to denote it as a geometric model as input, geometryFromMesh

creates geometry within the model variable according to the geometry stored within the

nodes and elements variables. It is at this point that the model variable required to generate

the triangular mesh has been successfully created.

29

Now calling the generateMesh function with the model variable input and the

“GeometricOrder” and “Hmin” options set to “linear” and the target minimum triangle

mesh edge length respectively, a triangulation mesh of the work area polyshape object is

generated and saved to a variable. Figure 9 below illustrates a resulting triangulation mesh.

Figure 9. Sample triangulation mesh decomposition output.

To address the potential issue of generating a high number of triangles using this

method, caused by a low input target minimum edge length or not adequately reducing the

number of points describing each boundary which may lead to the generation of many

triangles when performing the initial triangulation and subsequently the triangular mesh,

a check for the number of generated triangles is implemented as shown in the Code

Example 5 below.

30

% regulate the number of generated triangles in the mesh to 250 or less

if length(room_mesh.Elements') >= 250

 num_triangles = length(room_mesh.Elements');

 min_triEdge = min_triEdge+.1; % increment minimum edge length to create larger triangles

 loop_count = 1; % initialize loop counter

 while (num_triangles > 250) && (loop_count <= 500)

 % regenerate triangular mesh

 room_mesh = generateMesh(model,'GeometricOrder','linear','Hmin',min_triEdge);

 num_triangles = length(room_mesh.Elements'); % update number of triangles within mesh

 min_triEdge = min_triEdge+.1; % increment target minimum edge length

 loop_count = loop_count+1; % increment loop counter

 end

end

Code Example 5. Triangle Mesh Regulation

The threshold for this check is 250 triangles which was settled upon after

reviewing the performance of the TSP algorithm, which will be described in a later section,

whose problem size to determine an optimal path through 𝑁 number of points scales by

𝑁, according to [37]. Hence increasing the amount of time required by the algorithm to

determine an optimal path and the time required by the strategy planning algorithm

overall. If it is found that the number of triangles exceeds 250, the process of generating

the triangular mesh is repeated by incrementing the target triangle mesh minimum edge

length by a value of 0.1 and rechecking the number of triangles produced. This continues

until either the number of triangles falls below the 250 threshold or the number of

iterations performed exceeds 500 to prevent the algorithm from becoming stuck in this

process.

Following the generation of the triangulation mesh and checking the number of

triangles generated, each triangle within the mesh is transformed into a polyshape object

31

by iterating through the number of triangles generated. This value is obtained from the

number of rows within the elements array of the triangulation mesh where each row

describes a triangle and each column contains an index value corresponding to a row

within the nodes array of the triangulation mesh denoting where each coordinate pair is

stored. By assigning each coordinate to a variable A, B, and C, a polyshape object of the

current triangle can be generated based on these points. Furthermore, once the triangle is

represented as a polyshape object the triangle centroid can also be calculated using the

centroid function. Saving both the elements array and nodes array to a struct variable for

later reference, the polyshape object of each triangle and corresponding centroid

coordinates are also saved to the same struct variable which is then returned to the main

workspace alongside the variable storing the triangulation mesh.

2.3.2. Global Optimal Path Identification

To identify a global optimal path, a solver-based TSP algorithm is utilized. Contained

within the required directedTSP function, this algorithm accepts coordinates of 𝑁 points

and attempts to determine an optimal path that passes through all points exactly once. In

this use case of the algorithm, the input points are the centroids of the triangles, although

in later uses of the TSP algorithm centroids of the current polygons. The overall flow of

the algorithm as paraphrased from [37] is to initially determine all possible connections or

“trips” between each of the input points, add constraints to these trips to ensure each point

has only two associated trips, perform an initial optimization which often results in more

than one cycle referred to as “subtours”, and then continuing to optimize the path until

32

only one subtour remains by iteratively adding additional constraints to prevent that

particular subtour from occurring again. The output path of this algorithm is a circular

graph where each node represents a polygon centroid, and each edge is the path direction

from node to node as shown in Figure 10 below.

Figure 10. TSP algorithm output graph.

In examining Figure 10, it becomes evident there is no clear global path for

navigating from node to node. To achieve a global path, all edge directions from node to

node must point in the same direction. This is remedied by including additional code

beneath the TSP algorithm within the directedTSP function to iterate through each node

beginning at node 1, determine if the current node is the source or target of either edge,

then flip one of the edges per one of two rules:

33

1) If the current node is a first edge target and is not yet a source node, flip the

second edge such that the current node is now the second edge source.

2) If the current node is a first edge target and is a source node, flip the first edge

such that the current node is now the first edge source.

The resulting graph in following the above rules is shown in Figure 11 below.

Figure 11. TSP algorithm directed output graph.

As can be observed, there is now a clear global path for navigating from node to

node. Figure 12 below depicts the directed output graph overlayed on the global map

highlighting the correspondence between the circle graph nodes and the centroids of the

decomposed regions within the work environment.

34

Figure 12. Directed output graph overlayed on global map.

A list of nodes can now be generated which is outputted back to the main

workspace for later reference. An added benefit to utilizing the TSP algorithm is the

automatic labeling of each node to a numeric value that directly corresponds to an index

of a polygon within the polyshape list. This benefit helps in identifying which shapes to

merge, are neighbors, or the specific tasks to be completed as the directedTSP function is

called after any change in the number of polyshape objects within the work area for a total

of four times throughout the course of the strategy planning algorithm.

35

2.3.3. Triangle Merging

As seen in Figure 9, some resulting triangulation mesh triangles are too small for a robot

to fit into. To remedy this issue, triangles can be merged with their neighbors to form

polygons of larger areas that a robot could then fit into. Performed within the required

function identifyTri2merge, identifying which triangles to be merged simply involves

iterating through each triangle, calculating its base and height, then determining if either

of these values falls below a specific threshold; in this case, the threshold value is 0.5	𝑚

for both base and height. If a triangle is identified to require merging, its node label is

saved to a variable. After this process has been completed, the identified node labels are

then placed in ascending order which will then be referenced in the merging process

depicted in the Code Example 6 below.

offset = 0; % counter to track the number of nodes removed from the original node list

for i = 1:length(tri2merge)

 % identify node to be merged by subtracting the offset from the current node value

 node2merge = tri2merge(i,1)-offset;

 Gtri = polyConn(tri.shape); % get current polygon connectivity

 % determine which neighboring node to merge with

 neighbor2merge = polyNeighbor(Gtri, node2merge, tri.shape);

 % merge neighbor node with current triangle node

 % save resulting merged polygon to neighbor node index in shape list

 neighborTri = tri.shape(neighbor2merge);

 currentTri = tri.shape(node2merge);

 tri.shape(neighbor2merge) = union(neighborTri,currentTri);

 offset = offset+1; % increment offset value

 tri.shape(node2merge) = []; % remove merged triangle node from shape list

end

Code Example 6. Triangle Merging Process

36

 The process of merging the identified triangles involves first determining the

neighbors of the triangle-to-be-merged and then implementing a criterion for which of the

neighbors the identified triangle should be merged with. To identify the neighbors of the

triangle-to-be-merged, the connectivity of the triangles must first be found which is done

by the required function polyConn shown in the Code Example 7 below.

function Gpoly = polyConn(pshape)

pbuff = polybuffer(pshape,.0001); % add a buffer to each polyshape

% allocate an adjacency matrix of zeros of size NxN where N is equal to the

% number of polyshapes

pborder = zeros(length(pshape));

% loop through each polyshape object and determine which other polyshapes

% border it

for i = 1:length(pshape)

 for j = (i+1):length(pshape)

 % if the area of intersection between the current polyshape and

 % another exceeds the set threshold, set the corresponding

 % adjacency matrix location to true

 pborder(j,i) = area(intersect(pbuff(j),pbuff(i))) > 3e-6;

 end

end

% generate a connectivity graph of the filled in adjacency matrix

Gpoly = graph(pborder,'lower');

end

Code Example 7. Polygon Connectivity

Modified from a function by Loren Shure to identify neighboring states [38],

polyConn identifies neighboring triangles from a list of polyshape objects by adding a

small buffer to the borders of all triangles using the polybuffer function and then

examining the area of intersection between them. The result is a graph where each

37

neighboring triangle node is connected by an edge as depicted in the Figure 13 below and

is overlayed on top of the work area for better visual reference in the following Figure 14.

Figure 13. Triangle connectivity graph.

Figure 14. Triangle connectivity graph overlayed on work area.

38

With the connectivity of the triangles now known, the neighbors of the identified

triangle-to-be-merged can then be determined by examining the end nodes of the

connectivity graph. By calling the required function polyNeighbor, which takes the

connectivity graph, the triangle-to-be-merged node label, and the list of polyshape objects

as input, neighboring triangles are identified by locating the indices of the triangle-to-be-

merged node label within the end node array of the connectivity graph. In finding these

indices, the neighboring triangle is the other end node value within that row index and are

saved to a variable. Identifying which of these neighbors to merge with is similar to

polyConn by inflating each of the identified neighbors’ borders and examining the area of

intersection between them and the triangle-to-be-merged. The neighbor to merge with is

then selected by choosing the neighboring triangle with the greatest amount of overlap

with the triangle-to-be-merged. The node value of this neighbor is then returned to the

main workspace.

The identified neighbor and triangle-to-be-merged are then finally merged into a

new single polyshape object by using the union function. This new polyshape object is

then stored within the identified neighbor’s node index of the polyshape object list while

the polyshape stored within the now merged triangle-to-be-merged node index is removed

from the polyshape object list. This merging process continues iteratively until all triangles

to be merged within the list have been merged. The result of the triangle merging process

in comparison to before is shown below in Figure 15.

39

Figure 15. Triangle merging process before and after comparison.

Do note that since array elements are deleted throughout the process, the order in

which the merging process is conducted is critical. Every time an element is deleted from

the polyshape object list, an offset variable needs to be incremented. This offset value is

then subtracted from the node value of the next identified triangle to be merged such that

the correct node index values are utilized.

2.3.4. Bounding Boxes

Despite ridding of many smaller triangles, the resulting polygons still exhibit many narrow

corners and awkward edges that would inhibit the ability of a robot to sufficiently cover.

The solution to this issue is to generate bounding boxes for each of the resulting polygon

shapes. In doing so, many of the narrow corners and awkward edges are removed with

sharp 90-degree corners and straight edges.

 To generate bounding boxes for each polygon, the boundingbox function is used

which outputs the 𝑥 and 𝑦 limits for each input polygon polyshape object. Utilizing these

40

limits, the minimum and maximum coordinate pairs are determined and are utilized to

create a new rectangular polyshape object for each polygon as shown in Figure 16 below.

Figure 16. Merged triangle polygons converted into bounding boxes.

 In performing the conversion to bounding boxes, many areas of overlap between

other bounding boxes occur as well as some boxes extending outside the work area and

hence will need to be cleaned up. The cleanup process begins by creating a polyshape

object that is the negative of the work area then iterating through each bounding box to

remove any overlaps between it and neighboring bounding boxes or the negative of the

work area. Overlap between the current bounding box and the negative of the work area

is removed by simply subtracting the latter from the former. Overlaps between bounding

41

boxes require first utilizing polyConn to get the current bounding box connectivity,

implementing a similar process to polyNeighbor where the identified neighbors are

narrowed down to one except in this case all identified neighbors are needed, then

removing any overlapping regions between the current bounding box and identified

neighbors from the bounding box with the higher area value. In some instances, this

process will result in a current bounding box that is completely removed. If such a situation

occurs, the node value corresponding to the bounding box is removed from the bounding

box polyshape object list and an offset value is incremented similar to the triangle merging

process. Figure 17 depicts the resulting bounding boxes following the cleanup process.

Figure 17. Cleaned up bounding boxes.

42

 Each bounding box is then examined for slivers which are small areas that jut out

from the main polyshape object and checked such that each polyshape object consists of

only one region. If any slivers are identified that area is turned into its own polyshape

object, subtracted from the parent polyshape object, and appended to the list of polyshape

objects along with any supplementary regions found. It is at this point the merging process

can take place.

 Similar to the triangle merging process, the bounding box merging process begins

with identifying which bounding boxes to merge by calling the required

identifyBox2merge function. This is done by iterating through each polyshape object

within the list and determining if the robot, whose size was an input to the strategy

planning algorithm, can fit within that polyshape object. If the robot cannot fit, the node

value index for that particular polyshape object is added to a merging list. This list is then

put into ascending order before the merging process which features the same steps utilized

in the triangle merging process. The final step is to then ensure that each resulting

polyshape object contains only one region and has no unnecessary holes. If more than one

region or a hole is identified, a bounding box covering the entire polyshape object is

created and replaces the original polyshape object. This can result in some overlap with

neighboring bounding boxes or even regions outside the work area. Hence, these new

polyshape objects are recleaned before being saved to the final bounding box polyshape

object list. Figure 18 below depicts the results of the bounding box merging process.

43

Figure 18. Bounding boxes post-merging process.

 Following the bounding box merging process, the centroid coordinates of each

remaining polygon are calculated. These coordinates are then passed into the directedTSP

function one final time. It is this generated global path, output in the form of a node list,

which will dictate the order by which each of the resulting bounding boxes are tasked to

the robots for complete coverage. Figure 19 below illustrates the outcome of the map

decomposition block of the strategy planning algorithm by overlaying the identified global

path by the TSP algorithm over the resulting bounding boxes shown in the previous Figure

18.

44

Figure 19. Resulting bounding boxes with global path overlayed.

This concludes the Map Decomposition block of the algorithm. The final bounding

box list of polyshape objects and node list will then be passed to the next block for task

allocation.

2.4. Task Allocation

The Task Allocation block involves allocating the tasks as mentioned within the node list,

then generating an occupancy map and starting location for each task as required by the

path planning algorithm.

45

2.4.1. Allocation of Tasks

The process of allocating tasks involves first dividing the node list into adjacent segments

based on the number of available robots. A sample node list is depicted in Figure 20.

Figure 20. Sample node list.

 The node list is divided into three columns. The first column is the node index

value while the second and third columns contain the 𝑥 and 𝑦 coordinates for each polygon

centroid. For the purposes of task allocation, only the first column will need to be

examined. To begin the allocation process, the last row of the node list is removed due to

the circular nature of the graph produced by the TSP algorithm where node 1 appears twice

within the list. With the last row now removed, the required function allocateTasks shown

in Code Example 8 below takes the task list and the number of robots as inputs and outputs

a cell array with the allocated tasks in segments to be assigned.

46

function task_segments = allocateTasks(task_list, numRobots)

% due to limitations of the below process with 3 tasks divided between 2

% robots, check if the number of tasks is equal to 3

if height(task_list) == 3

 task_segments = {task_list(1:2,:)}; % assign tasks 1 and 2 to segment 1

 task_segments(2,:) = {task_list(3,:)}; % assign task 3 to segment 2

else

 % calculate the number of tasks per segment and round down to the nearest integer

 num_task_per_segment = fix(height(task_list)/numRobots);

 % calculate the number of segments with an equal number of tasks and

 % round down to the nearest integer

 num_equal_segments = fix(height(task_list)/num_task_per_segment);

 % generate an array of ones with length equivalent to the number of equal

 % segments and multiply each array element by the number of task per segment

 segment_array = num_task_per_segment*ones(1,num_equal_segments);

 % determine the number of remaining tasks

 rem_tasks = rem(height(task_list),num_task_per_segment);

 % for each remaining task, increase the number of tasks within the

 % current segment index by 1

 for i = 1:rem_tasks

 segment_array(i) = segment_array(i)+1;

 end

 % convert the task list matrix to a cell array

 task_segments = mat2cell(task_list,segment_array,1);

end

% for every even task segment, flip the task order

for i = 1:length(task_segments)

 if mod(i,2) == 1; continue;

 else task_segments{i} = flip(task_segments{i});

 end

end

end

Code Example 8. Task Allocation

47

This is achieved by first determining the number of tasks to be assigned per

segment by dividing the number of tasks by the number of robots and rounding down the

result to the nearest whole number. Referencing the node list in the Figure 20 above which

contains 17 tasks to be allocated between two robots, the number of tasks per segment

would be equal to 8. Following this, the number of segments with an equal number of

tasks is calculated and the result is rounded down to the nearest integer value which in this

example would be two. These generated values are then used to form a segment array with

a length equivalent to the number of segments with an equal number of tasks. Each

element value within the newly made segment array is representative of the number of

tasks to be assigned to the corresponding segment. In this instance, the segment array

would be of length two with values [8	, 8].

Following this, the number of remaining tasks is determined. As the number of

remaining tasks will always be less than the number of elements within the segment array,

this value can be utilized as an index to iterate through the segment array values in an

ascending fashion and increase each encountered array index value by one. In the case of

the ongoing example, the number of remaining tasks would be one for a final segment

array result of [9	, 8] meaning that the first segment will consist of nine tasks and segment

two will consist of eight tasks. Utilizing the mat2cell function, the task list array is then

converted into an 𝑁 × 1 cell array where 𝑁 is equal to the number of elements within the

segment array generated previously. Each cell is then assigned a length according to the

value of the corresponding segment array element. The resulting example allocated task

48

output is shown in Figure 21 below where task segment one contains nine tasks while task

segment two contains eight tasks.

Figure 21. Task allocation output.

 In performing this task allocation step, the global path is sliced into adjacent

segments with global directions as shown in Figure 22 and overlayed on the global map

in Figure 23. It is worth noting that the described process does not work for task lists

containing one or three tasks. The reasoning for one task is trivial in that a single task

cannot be divided up in the above manner however the reason behind three tasks is not so

trivial. It was found that the above process does not work properly with three tasks so a

check was implemented before the main task allocation process such that if there are three

tasks to be allocated, the first segment will contain two tasks and the second segment one

task.

49

Figure 22. Segmented global path.

Figure 23. Segmented global path overlayed on global map.

50

 If these were the global directions utilized, the robots would work moving away

from each other meaning that if task reallocation were to be performed then a robot may

be required to travel a longer distance to reach the new reallocated tasks. To remedy this

issue, the global direction of each even task segment is flipped as shown in the task

allocation output of Figure 24.

Figure 24. Flipped task allocation output.

 In performing the flipping of each even task segment, the robots will now work

toward each other as shown by the global direction depicted in Figure 25 and the

overlayed path in Figure 26.

Figure 25. Flipped segmented global path.

51

Figure 26. Flipped segmented global path overlayed on global map.

 In working towards one another, the time required for navigating to any reallocated

task should theoretically be reduced for a physical robot system and thereby decrease the

overall cleaning time. With the tasks now allocated and the global direction for each task

segment known, the process of performing complete coverage on each task can begin.

52

2.4.2. Dynamic Task Allocation

Performing complete coverage with multiple robots and the incorporating of task

reallocation requires the use of parallel computing. MATLAB offers three main solutions

for executing programs in parallel which are parfor, parfeval, and SPMD described in [39].

Both parfor and parfeval do not permit the exchanging of data between parallel processes

which leaves SPMD as the remaining solution. An acronym for Single Program Multiple

Data, SPMD does allow for the sharing of data between parallel processes which are

referred to as “workers”. This is useful in the case of task reallocation as the robots are

able to signal to each other when one robot has completed its assigned tasks so that the

idle robot can then be sent reallocated tasks. A program overview of each SPMD worker

is shown in Figure 27 below.

53

Figure 27. SPMD worker flowchart.

54

The SPMD program can be simplified into three main parts which have been

highlighted for visual reference. Highlighted in orange, this portion of the program

involves completing the originally assigned tasks while also checking after completing

each task if the other robot has signaled it has finished its originally assigned tasks. The

portion highlighted in purple accounts for the situation in which the other robot has

signaled it has completed its originally assigned tasks. If the other robot does communicate

it has finished, the loop outlining the orange portion is broken and a decision based on the

number of remaining tasks on the current robot is encountered. If the number of remaining

tasks is greater than one, the task reallocation part of the program is executed and the

reallocated tasks are sent to the other robot. If there is only one task left, the task

reallocation portion is bypassed and the other robot is instructed to stand by until the

current robot has completed the remaining task. However if the current robot is able to

complete all of its originally assigned tasks, the program segment highlighted in yellow is

executed. This program portion handles the situation in which the current robot signals to

the other robot it has completed its originally assigned tasks. Based on the information

received from the other robot, the current robot will either bypass task reallocation and

stand by for the other robot to finish its remaining task or receive the reallocated tasks

from the other robot and then proceed to complete these tasks before finishing the

program.

In order to keep both workers in sync based on the current situation and to prevent

one worker from finishing before the other which results in an error due to the

synchronization required by SPMD in that all workers must exit the SPMD block at the

55

same time, SPMD barriers must be utilized. When a barrier is encountered by a worker,

program execution stops and waits until the other worker has also encountered a barrier

before proceeding. This pause in execution is useful when exchanging information

between workers to ensure the receiving worker is always waiting on the sender to send

the information and not in the reverse. In total five barriers are utilized for each worker

and while not implemented within the program with an identifier, each SPMD barrier has

been assigned an identifier to differentiate it from the others. In some cases when both

robots finish their assigned tasks simultaneously, the program outlined in the flowchart

above results in an error. To catch this potential error, a try-catch block is implemented

around the entirety of the SPMD code block such that if the error occurs when trying to

execute the program, the catch block will catch the error.

2.4.3. Occupancy Map Generation and Starting Location Identification of Task

When a task is identified by a worker to be completed, the work area represented by the

task must be converted from a polyshape object to an occupancy map that can then be

passed to the path planning algorithm for complete coverage as well as a starting location

for where to begin coverage. This is done by calling the required poly2occgrid function

which is split into two main parts. The first part of this function involves generating an

occupancy map of the work area shown in the Code Example 8 below.

% obtain the current work area polyshape vertices

localPoints = polybox.shape(polybox.nodeList(idx,1)).Vertices;

localx = localPoints(:,1);

localy = localPoints(:,2);

56

% identify the minimum and maximum XY coordinates of the work area polyshape

xmin = min(localx); xmax = max(localx);

ymin = min(localy); ymax = max(localy);

% generate an occupancy map of the work area polyshape with a padding of .5

localMap = occupancyMap(xmax-xmin+.5,ymax-ymin+.5,resolution);

localMap.GridLocationInWorld = [xmin,ymin]; % update origin of occupancy map

updateOccupancy(localMap,1); % set all cells within occupancy map to 1 (occupied)

% create check points to compare against the current work area polyshape

step = 1/(2*resolution); % calculate the step value between each check point

localx_check = xmin:step:xmax;

localy_check = ymin:step:ymax;

% generate grid of check points

[localx_grid,localy_grid] = meshgrid(localx_check,localy_check);

% determine which grid points are in or outside the current work area

% polyshape

[in,on] = inpolygon(localx_grid,localy_grid,localx,localy);

% set the cell value to 0 if inside the work area polyshape

setOccupancy(localMap,[localx_grid(in & ~on),localy_grid(in & ~on)],0);

Code Example 9. Polyshape to Occupancy Map

To begin, the coordinate pairs describing the work area polyshape are obtained and

then split into two arrays for 𝑥 and 𝑦 coordinates. Using the split arrays, the minimum and

maximum values of both 𝑥 and 𝑦 coordinate values are determined. An occupancy map

of the work area section, referred to as a local map, is generated using these values to

create a bounding box by subtracting the maximum from the minimum 𝑥 and 𝑦 values

with an 0.5 padding value added on. Since generated occupancy map origins always

default to [0,0], the origin of the newly created local map must be changed to the minimum

𝑥 and 𝑦 values to reflect its location on the global map. Every cell value within the local

57

map is then defaulted to a value of 1 representing occupied using the updateOccupancy

function.

To have the local map represent the work area polyshape, arrays of 𝑥 and 𝑦 check

points are created with each point separated by a “step” value calculated based on the

resolution of the local map. Using the meshgrid function and both 𝑥 and 𝑦 check point

arrays, a grid is created which can then be overlayed on top of the work area polyshape.

This grid is then checked for which points lie within the polyshape using the function

inpolygon. The output of this function is logical meaning the point is either in or not within

the polyshape. Using this as the criteria for representing the work area, all the cell

occupancy values which lie within the work area polyshape are set to 0 representing

unoccupied using the setOccupancy function. A sample result of the conversion from a

polyshape object to an occupancy map is shown in Figure 28 below.

Figure 28. Sample polyshape to occupancy map conversion.

 With the occupancy map of the work area now generated, the second part of the

poly2occgrid function involves identifying viable starting corners for the robot and then

selecting one of these corners based on the desired starting location criteria. This is done

58

by generating four test points representing the top-left, bottom-left, top-right, and bottom-

right corners utilizing the previously determined 𝑥 and 𝑦 minimum and maximum values

of the work area polyshape. These points are then used to identify which polyshape vertex

is closest to that corresponding test corner. For each identified vertex, a slightly enlarged

polyshape of the robot is placed at each vertex and then translated in each of the four

cardinal and ordinal directions to determine if the robot polyshape is fully within the

boundaries of the work area polyshape. If so, this location is saved as a viable starting

location. All identified starting locations for the above work area are shown in Figure 29

below.

Figure 29. Sample viable starting locations.

 These viable starting locations are then sorted based on the desired starting location

input. The highest-ranking starting location following the sort is then selected as the

starting location and returned to the main workspace along with the work area occupancy

map. These outputs are then passed to the path planning algorithm to begin complete

coverage and thereby concludes the strategy planning algorithm.

59

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Equipment Used

The equipment used to conduct the following experiments is a 2019 MacBook Pro with 8

GB of LPDDR3 RAM and a 2.4 GHz Quad-Core Intel Core i5 processor, MATLAB

R2022b, a local version of the path planning algorithm named cleanRoomSimTest based

on the cleanRoom complete coverage path planning algorithm obtainable from [40], and

a modified version of the strategy planning algorithm for collecting simulation data named

roomStrategySim.

3.2. Map Environments Used

The figures below depict the map environments utilized when conducting the following

experiments. The workable area in each of the following maps is 22.95	𝑚, for the map

shown in Figure 30,	54.19	𝑚, for the map shown in Figure 33, and	39.83	𝑚, for the map

shown in Figure 36.

Figure 30. Map environment 1 PGM image.

Figure 31. Map environment 1 decomposed.

60

Figure 32. Map environment 1 decomposed without triangle merging.

Figure 33. Map environment 2 PGM image.

Figure 34. Map environment 2 decomposed.

61

Figure 35. Map environment 2 decomposed without triangle merging.

Figure 36. Map environment 3 PGM image.

62

Figure 37. Map environment 3 decomposed.

Figure 38. Map environment 3 decomposed without triangle merging.

63

3.3. Experiment 1: Comparing Cleaning Time and Efficiency between a Decomposed

and Non-Decomposed Work Area

3.3.1. Hypothesis

It is hypothesized that constraining a path-planning algorithm to smaller, sectioned-off

regions within the work area will help to decrease the amount of time spent by the path-

planning algorithm performing complete coverage while also increasing the cleaning

efficiency as compared to allowing the path-planning algorithm to perform complete

coverage within a non-decomposed work area.

3.3.2. Procedure

The procedure for this experiment consists of simulating three cleaning methods by a

single robot within the three different map environment work areas previously described.

Each method is broken down into three tests respectively. For each test, the desired starting

location of the path planning algorithm will be changed from the farthest viable start

corner from the work area centroid, the closest viable start corner to the work area centroid,

and the work area centroid itself. Method 1 will be the control experiment by assigning

the path planning algorithm to the entire work area from each of the three starting

locations. Method 2 involves decomposing the work area into sections and then having

the path planning algorithm clean each section by starting at the starting location specific

to the current test. Method 3 is similar to the previous except when decomposing the work

area, the triangle merging section of the strategy planning algorithm is skipped. For each

64

method, the amount of time required by the path planning algorithm to completely cover

the work area and the overall coverage efficiency will be analyzed.

3.3.3. Results

The results below are the tabulated data collected when performing each simulation run.

Nine experiments were run in total with three tests performed within each experiment

resulting in 27 data points. Collected within each test was the coverage efficiency

percentage, the simulated cleaning time in seconds, the average amount of overlapped or

re-coverage of already cleaned spaces per section, and the runtime of the strategy planning

algorithm in seconds. Following the completion of each experiment, the data values from

each of the three tests are averaged in the final right-hand column. The last two rows

within each table show the number of output sections generated by the strategy planning

algorithm and the number of triangles generated from the triangular mesh. These values

remained constant within each experiment.

In some instances, the path planning algorithm can get trapped searching for an

area to cover for long periods of time referred to as a “deadlock”. To mitigate this, a

deadlock counter was implemented to count the number of overlapped spaces visited

before locating a new uncovered space. If the path planning algorithm is able to

successfully locate a new uncovered area, the deadlock counter is reset. However if the

path planning algorithm is unable to locate a new uncovered area after 30 iterations, the

simulation is terminated. Terminated simulation runtime data is italicized with a following

65

“*” symbol indicating the number of simulations terminated as a result of a deadlock event

during that specific test.

It is worth noting that the simulation runtime data is reflective of ideal conditions

within a simulated environment and does not consider the time required by a physical

robot to move from an ending location to a start location nor the speed of the robot

performing the complete coverage.

3.3.3.1. Map Environment 1 Results

Table 1. Results for Map 1 work area with no decomposition.
 Method 1: No Decomposition

Starting Location Farthest Closest Centroid Average
Coverage Efficiency

(%) 75.17% 76% 69.39% 73.52%

Simulated Cleaning
Time (s) 44.11 51.68 38.68 44.82

Overlap per Section
Average 20 37 13 23.33

Strategy Planning
Algorithm Runtime (s) 0.71 0.79 0.75 0.75

Number of Sections - - - 1
Number of Generated

Mesh Triangles - - - N/A

66

Table 2. Results for Map 1 work area with decomposition.
 Method 2: With Decomposition

Starting Location Farthest Closest Centroid Average
Coverage Efficiency

(%) 65.98% 64.83% 57.26% 62.69%

Simulated Cleaning
Time (s) 35.43 33.45 43.59 37.49

Overlap per Section
Average 2.63 2.25 5.25 3.38

Strategy Planning
Algorithm Runtime (s) 22.85 23.5 25.73 24.03

Number of Sections - - - 8
Number of Generated

Mesh Triangles - - - 36

Table 3. Results for Map 1 work area with triangle merging process skipped during
decomposition.

 Method 3: Decomposition without Triangle Merging
Starting Location Farthest Closest Centroid Average

Coverage Efficiency
(%) 62.26% 77.53% 57.31% 65.7%

Simulated Cleaning
Time (s) 31.38 42.57 34.03 35.99

Overlap per Section
Average 2.33 3.83 4 3.39

Strategy Planning
Algorithm Runtime (s) 33.6 33.3 32.6 33.17

Number of Sections - - - 6
Number of Generated

Mesh Triangles - - - 36

67

3.3.3.2. Map Environment 2 Results

Table 4. Results for Map 2 work area with no decomposition.
 Method 1: No Decomposition

Starting Location Farthest Closest Centroid Average
Coverage Efficiency

(%) 85.75% 80.16% 82.87% 82.93%

Simulated Cleaning
Time (s) 121.73 110.98* 134.31 122.34

Overlap per Section
Average 35 32 67 44.67

Strategy Planning
Algorithm Runtime (s) 1.19 1.21 1.1 1.17

Number of Sections - - - 1
Number of Generated

Mesh Triangles - - - N/A

Table 5. Results for Map 2 work area with decomposition.
 Method 2: With Decomposition

Starting Location Farthest Closest Centroid Average
Coverage Efficiency

(%) 74.27% 72.15% 65.99% 70.8%

Simulated Cleaning
Time (s) 97.27 92.07 102.58* 97.31

Overlap per Section
Average 2.14 2.1 4 2.75

Strategy Planning
Algorithm Runtime (s) 112.61 111.2 111.23 111.68

Number of Sections - - - 21
Number of Generated

Mesh Triangles - - - 92

68

Table 6. Results for Map 2 work area with triangle merging process skipped during
decomposition.

 Method 3: Decomposition without Triangle Merging
Starting Location Farthest Closest Centroid Average

Coverage Efficiency
(%) 71.89% 72.22% 68.98% 71.03%

Simulated Cleaning
Time (s) 92.28 86.29 99.17 92.58

Overlap per Section
Average 2.22 2.11 3.33 2.55

Strategy Planning
Algorithm Runtime (s) 254.56 256.19 262.09 257.61

Number of Sections - - - 18
Number of Generated

Mesh Triangles - - - 92

3.3.3.3. Map Environment 3 Results

Table 7. Results for Map 3 work area with no decomposition.
 Method 1: No Decomposition

Starting Location Farthest Closest Centroid Average
Coverage Efficiency

(%) 82.8% 82.68% 78.56% 81.35%

Simulated Cleaning
Time (s) 83.49 98.56 87.58* 89.88

Overlap per Section
Average 26 52 40 39.33

Strategy Planning
Algorithm Runtime (s) 1.16 0.94 0.91 1

Number of Sections - - - 1
Number of Generated

Mesh Triangles - - - N/A

69

Table 8. Results for Map 3 work area with decomposition.
 Method 2: With Decomposition

Starting Location Farthest Closest Centroid Average
Coverage Efficiency

(%) 65.56% 64.47% 57.23% 62.42%

Simulated Cleaning
Time (s) 60.58 60.89 61.09 60.85

Overlap per Section
Average 1.95 2.26 2.74 2.32

Strategy Planning
Algorithm Runtime (s) 25.84 25.76 26.74 26.11

Number of Sections - - - 19
Number of Generated

Mesh Triangles - - - 33

Table 9. Results for Map 3 work area with triangle merging process skipped during
decomposition.

 Method 3: Decomposition without Triangle Merging
Starting Location Farthest Closest Centroid Average

Coverage Efficiency
(%) 72.87% 63.57% 62.12% 66.19%

Simulated Cleaning
Time (s) 72.63 61.77 72.64 69.01

Overlap per Section
Average 2.25 2.2 3.4 2.62

Strategy Planning
Algorithm Runtime (s) 28.06 36.03 26.81 30.3

Number of Sections - - - 20
Number of Generated

Mesh Triangles - - - 33

70

3.3.3.4. Method Comparison

Table 10. Comparison of averaged experimental results from each method.

Method No
Decomposition

With
Decomposition

Decomposition w/o
Triangle Merging

Coverage Efficiency
(%) 79.26% 65.3% -17.61% 67.64% -14.67%

Simulated Cleaning
Time (s) 85.68 65.22 -23.88% 65.86 -23.13%

Overlap per Section
Average 35.78 2.81 -92.14% 2.85 -92.03%

Strategy Planning
Algorithm Runtime (s) 0.97 53.94 - 107.03 +98.42%

As a note on the much lower average strategy planning algorithm runtime exhibited by the

experiment with no decomposition performed, this is a result of the strategy planning

algorithm only needing to identify the work area boundaries, generate an occupancy map

of the work area, and then determine a viable starting location before handing off to the

strategy planning algorithm for complete coverage. It was also found that deadlocks did

not have a considerable impact on the collected data with only two occurring throughout

the entirety of the experiment.

3.3.4. Conclusions

From reviewing the experimental results, there are two findings to be made concerning

the initial hypothesis. The first finding is that by decomposing the room for complete

coverage, the coverage efficiency decreased contrary to what was hypothesized.

Reviewing Table 10 in the above section, it can be seen that the coverage efficiency with

no decomposition is 79.26% while the coverage efficiency with both methods of

decomposition is 65.3% and 67.64% respectively. Furthermore, the decomposition

71

method in skipping the triangle merging process resulted in a 14.67% reduction in

coverage efficiency while the full decomposition method led to a 17.61% reduction in

coverage efficiency when compared to the control experiment with no decomposition.

The second finding is the decrease in the average simulated cleaning time

experienced by both decomposition methods when compared to the control experiment

with no decomposition. With an average cleaning time of 85.68 seconds for the control

experiment, both the full decomposition and decomposition without triangle merging

methods were able to reduce their respective cleaning times by 20.46 and 19.82 seconds

which calculates to an over 23% reduction in time required for cleaning. Although

agreeing with the initial hypothesis, this decrease in cleaning time could be attributed to

the reduction in coverage efficiency mentioned previously as a result of the path planning

algorithm completing its assigned sections in a “faster” manner. This is due to the path

planning algorithm covering all spaces where it believes the robot can fit which is

facilitated by generating a grid reliant on the provided starting location that determines the

possible locations the path planning algorithm can propagate to. If the generated grid is

offset from the given work area or does not match up accordingly to a location that the

robot can visually be perceived to fit, those locations will not be covered and hence

“finish” in a shorter amount of time. This is the reasoning behind varying the desired

starting location for each experiment as each starting location impacts the coverage

efficiency as shown within the collected data.

Some additional findings which were not anticipated are the greater than 92%

reductions in average overlap per section exhibited by both decomposition methods and

72

the 98.42% increase in strategy planning algorithm runtime of the decomposition method

with the triangle merging process skipped as compared to the full decomposition process.

The former finding is the most surprising however the dramatic decreases in average

overlap per section could be attributed to the fact that any high overlap values incurred by

any one section are averaged out by the little to no overlap values of the other sections.

The latter finding was expected but in the reverse sense with the full decomposition

method resulting in a higher average strategy planning algorithm runtime when compared

to the method with the triangle merging process skipped. However, the experimental data

proves the opposite to be true in that the decomposition method without triangle merging

results in almost double the runtime of the full decomposition method. This nearly 100%

increase in algorithm runtime required by the decomposition method with the triangle

merging skipped could be attributed to the process by which the bounding boxes are

generated – more specifically the process of removing overlaps between neighboring

bounding boxes. During the full decomposition routine, the preceding triangle merging

process removes many of the triangle mesh centroids leading to fewer bounding box

overlaps to remove. This is most evident in Table 6 where the Map 2 environment was

decomposed into a mesh of 92 triangles which required an average time of 257.61 seconds

to fully run.

 These experimental findings would suggest the strategy planning algorithm with

triangle merging outperforms the method without triangle merging with regard to the time

required by the strategy planning algorithm to fully run however both methods perform

similarly with respect to coverage efficiency, simulated cleaning time, and average

73

overlap per section. Of these three aforementioned data, the largest difference is seen in

the coverage efficiency with a marginal 2.94% edge for the decomposition method without

triangle merging while the differences between simulated cleaning time and average

overlap per section are within one percentage point. Therefore it can be concluded that by

incorporating the process of triangle merging into the decomposition method, algorithm

run time can be reduced by nearly half with the current algorithm setup. Furthermore, with

future modification to enhance the ability of the algorithm to select a starting location

which aims to optimize coverage efficiency as opposed to being based on what the user

desires may lead to increased performance to potentially match or exceed the measured

coverage efficiency without decomposition.

3.4. Experiment 2: Comparing Idle Time between Dynamic and Static Task

Allocation

3.4.1. Hypothesis

The hypothesis for this experiment is that by dynamically reallocating tasks amongst the

available robots, the length of idle time spent by either robot after completing its assigned

tasks should be considerably reduced as compared to statically allocating tasks.

3.4.2. Procedure

In this experiment, two multi-robot scenarios are simulated in the three different work

areas as described previously above. For each work area, both the decomposition method

with triangle merging and the decomposition method without triangle merging are applied.

74

Three simulations for each scenario are then conducted with each decomposition method

where the desired starting location of the path planning algorithm is changed from the

farthest viable start corner from the work area centroid, the closest viable start corner to

the work area centroid, and the work area centroid itself. The first scenario will be a

cleaning session by two robots performed without task reallocation. The second scenario

will be a cleaning session by two robots performed with task reallocation. For each

scenario, the time difference between the completion of tasks by one robot and the other

will be examined.

3.4.3. Results

The tables below contain the resulting data collected when performing each simulation

run. Twelve experiments were conducted in total, six experiments with no task

reallocation and six experiments with task reallocation. Three simulations were conducted

within each experiment resulting in 36 data points. Collected after each simulation run

was the simulation runtime in seconds required by each robot to complete its assigned

tasks. After the completion of each experiment, the idle time in seconds was calculated by

subtracting the longest time for a robot to complete its assigned tasks from the shortest

time in that particular simulation run. These calculated idle times are then averaged in the

final column of each table.

 Despite the ability of the algorithm to reallocate tasks between robots during those

tests in which it is enabled, task reallocation does not always occur. In most conducted

simulations task reallocation is bypassed as a result of the robot with the remaining tasks

75

only having one task left to complete or both robots finishing their assigned tasks

simultaneously. In simulations in which task reallocation did occur, the calculated idle

time has been bolded.

 As implemented in Experiment 1, a deadlock counter was utilized to terminate a

simulation if the threshold of 30 failed attempts by the path planning algorithm to locate

a new uncovered area is met. Terminated simulation runtime data is italicized with a

following “*” symbol indicating the number of simulations terminated as a result of a

deadlock event during that specific test. Note that the simulation runtime data is reflective

of ideal conditions within a simulated environment and does not consider the time required

by a physical robot to reach that particular section nor the speed of the robot performing

the complete coverage.

3.4.3.1. No Task Reallocation vs Task Reallocation Results for Decomposition

Method with Triangle Merging

Table 11. No task reallocation results for Map 1 decomposed with triangle merging.
Map 1 No Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 20.49 17.23 3.26

3.62 Closest 19.1 16.04 3.06
Centroid 24.53 19.99 4.54

76

Table 12. Task reallocation results for Map 1 decomposed with triangle merging.
Map 1 With Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 19.73 16.55 3.18

3.6 Closest 18.48 15.45 3.03
Centroid 24.32 19.74 4.58

Table 13. No task reallocation results for Map 2 decomposed with triangle merging.
Map 2 No Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 52.76 43.26 9.5

8.71 Closest 45.22 41.71 3.51
Centroid 57.46* 44.35 13.11

Table 14. Task reallocation results for Map 2 decomposed with triangle merging.
Map 2 With Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 51.15 43.11 8.04

4.17 Closest 46.46 43.08 3.38
Centroid 52.05* 50.95 1.1

Table 15. No task reallocation results for Map 3 decomposed with triangle merging.
Map 3 No Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 38.43 19.19 19.24

19.47 Closest 40.51 18.98 21.53
Centroid 40.77 23.14 17.63

77

Table 16. Task reallocation results for Map 3 decomposed with triangle merging.
Map 3 With Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 36.83 21.47 15.36

14.95 Closest 38.39 22.2 16.19
Centroid 38.73 25.43 13.3

3.4.3.2. No Task Reallocation vs Task Reallocation Results for Decomposition

Method without Triangle Merging

Table 17. No task reallocation results for Map 1 decomposed without triangle merging.
Map 1 No Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 14.49 17.82 3.33

3.85 Closest 18.17 25.74 7.57
Centroid 17.35 18.01 0.66

Table 18. Task reallocation results for Map 1 decomposed without triangle merging.
Map 1 With Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 14.6 18.16 3.56

3.91 Closest 18.28 25.56 7.28
Centroid 17.08 17.96 0.88

78

Table 19. No task reallocation results for Map 2 decomposed without triangle merging.
Map 2 No Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 41.18 44.96 3.78

5.74 Closest 40.95 45.89 4.94
Centroid 46.32 54.81 8.49

Table 20. Task reallocation results for Map 2 decomposed without triangle merging.
Map 2 With Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 41.48 45.47 3.99

5.58 Closest 41.55 46.31 4.76
Centroid 45.27 53.27 8

Table 21. No task reallocation results for Map 3 decomposed without triangle merging.
Map 3 No Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 37.56 41.08 3.52

4.04 Closest 27.67 33.84 6.17
Centroid 36.21 38.64 2.43

Table 22. Task reallocation Results for Map 3 decomposed without triangle merging.
Map 3 With Task Reallocation

Starting
Location

Robot 1 Completion
Time (s)

Robot 2 Completion
Time (s) Idle Time (s) Idle Time

Average
Farthest 33.72 37.56 3.84

2.96 Closest 29.89 32.95 3.06
Centroid 36.43 38.4 1.97

79

3.4.3.3. Average Idle Time Comparison

Table 23. Comparison of average idle times.
 Scenario

No Task
Reallocation

With Task
Reallocation

Percent
Change

M
et

ho
d Decomposition with

Triangle Merging 10.6 sec 7.57 sec -28.54%

Decomposition without
Triangle Merging 4.54 sec 4.15 sec -8.68%

3.4.4. Conclusions

In comparing the average idle times for both decomposition methods within each scenario

of no task allocation and with task allocation as aggregated in Table 23 above, it is evident

that the full decomposition method with triangle merging exhibited the largest reduction

in idle time with task allocation at 28.54% while the decomposition method without

triangle merging had an 8.68% decrease in idle time with task allocation. As mentioned

previously, task reallocation does not always occur despite being available. During the 18

simulations conducted with task reallocation available, task reallocation was performed

only in five or 28% of the simulations ran. Furthermore, of the five task reallocations

performed, four occurred during simulations utilizing the full decomposition method as

opposed to the single occurrence of the decomposition method with the triangle merging

process skipped.

The largest impact of task reallocation on idle time occurs in the comparison of the

centroid starting location simulation results of Tables 13 and 14. In Table 13, the

calculated idle time of the centroid starting location simulation with no task reallocation

is 13.11 seconds while in Table 14 with task reallocation available the idle time calculated

80

to 1.1 seconds. This suggests that rather than sitting idle for 12 seconds as Robot 2 did

without task reallocation, both robots were busy completing reallocated tasks to then

complete those reallocated tasks within 1.1 seconds of each other. The result is a 91.61%

reduction in idle time for the specific simulation and overall leads to the average idle time

between the two experiments to reduce from 8.71 seconds to 4.17 seconds, a 52.12%

decrease.

The second most significant impact of task reallocation on idle time occurred

during the closest starting location simulation of Tables 21 and 22. For this simulation,

the resulting idle times are 6.17 and 3.06 seconds for no task reallocation and with task

reallocation respectively. This change in idle time results in a 50.41% decrease in the

amount of idle time spent by one robot waiting for the other robot to complete its assigned

tasks. The halving of idle time for this one simulation had a 26.73% impact in reducing

the average idle time from 4.04 seconds with no task reallocation to 2.96 seconds with

task reallocation for this experiment.

The final three instances where task reallocation impacted idle time all occurred

during the same experiment recorded in Table 16. When compared to the experimental

data in Table 15 in which no task reallocation was performed, an idle time decrease of

20.17%, 24.8%, and 24.56% occurred for each of the farthest, closest, and centroid starting

locations respectively. These decreases in idle times for each simulation result in a 23.22%

decrease in the average idle time from 19.47 seconds with no task reallocation to 14.95

seconds with task reallocation.

81

These findings in the 28.54% and 8.68% reduction in idle time for both the full

decomposition method and the decomposition method with the triangle merging process

skipped respectively for the scenario with task reallocation corroborate the initial

hypothesis made. It also further supports the use of task reallocation in situations where

there are a greater number of complete coverage tasks to be completed. In the case of the

experiments conducted, task reallocation occurred when the number of tasks to be

completed was within the range of 19 to 21 tasks as in Maps 2 and 3 as compared to no

task reallocation occurring in low task situations as in Map 1 which had a lower range of

6 to 8 tasks depending on the method of decomposition. Furthermore, real-world data

gathered from a physical system would better help to support or disprove the findings

made in this experiment and the comparison of the flip task allocation approach when

compared to a split segment approach as this data would consider the global path traveled

by each robot while the simulation does not. However due to a multitude of technical

challenges, expanded on further in section 5.1 and time constraints, these data were unable

to be collected at the time of writing.

82

4. RESEARCH CONTRIBUTIONS, TECHNICAL CHALLENGES, AND FUTURE

WORK

4.1. Research Contributions

• Novel implementation of task flipping: The primary contribution made by this

research is the novel use of task flipping. This refers to the flipping of the task

segments assigned to the robots such that globally the robots work towards one

another, theoretically minimizing the amount of time required by one robot to travel

to a reallocated task. As only simulation experiments were conducted for this research

which does not account for the amount of time required for a robot to move from one

location to another, the impact of task flipping concerning idle time and overall

cleaning time efficiency is not yet known. However, the framework for utilizing task

flipping on a real robot system connected to a ROS network can be found within the

repository mentioned in section 2.1.4.

• Methodology for utilizing triangular mesh in a complete coverage application:

The secondary contribution made from this research is the implementation of a

triangulation mesh in a complete coverage application. As mentioned previously

during the literature review process, triangulation mesh is seldom utilized to

decompose a work area for complete coverage. In performing this research, it is

apparent why this method of decomposition is not widely used due to the angled edges,

narrow corners, and in some cases too small of an area for a physical robot to fit into

the triangles produced. However, what this research contributes is a methodology for

83

utilizing triangulation mesh as a viable method of decomposition for a work area

despite the issues mentioned.

• Idle time minimization: A tertiary contribution made from performing this research

is the utilization of task reallocation once a robot has completed its assigned tasks to

minimize the amount of idle time experienced by any robot. Idle time is an important

metric to reduce when utilizing multiple robots simultaneously to help reduce the

amount of time required to complete the overall cleaning task. This research was able

to demonstrate a methodology for reallocating unfinished tasks once and recording the

impact on idle time however with some modifications could be expanded further to

continuing to reallocate tasks until all tasks have been completed within a work area;

especially those which contain a larger number of tasks.

4.2. Technical Challenges

4.2.1. Physical System Implementation

The largest technical challenge faced overall during this research was the implementation

of the physical system. Two Sensing, Connected, Utility Transport Taxi for Level

Environments (SCUTTLE) robotic platforms [41] were constructed as shown in Appendix

A to perform physical system experiments whose data could then be compared to the

simulation experimental results previously discussed. The issue experienced stems from

the fact that the initial SCUTTLE driver controller, the program which controls the

differential drive motion of the robot, was not equipped to handle encountered obstacles

during movement from one waypoint to another. As this was a feature that was needed to

84

prevent the possible collision of the two robots which would be navigating within the same

work area, an alternative solution needed to be found.

One solution was to modify the existing SCUTTLE driver controller to be able to

account for encountered obstacles mid-motion. However with little knowledge of the

source code operation and many hours of attempting to understand and make minor

modifications to the controller code, the desired result was unable to be achieved.

The second solution was the MATLAB Pure Pursuit Controller [42]. Implemented

with checks for obstacles, this controller was able to successfully account for obstacles

encountered midway between waypoints. However, this controller is not of the “point and

go” variety in which the desired robot movement is to rotate in place toward its goal

location and then move in a straight line until reaching the goal location. Due to the method

in which the controller navigates between waypoints, the Pure Pursuit controller attempts

to make smooth curving motions such as that of an “S” shape. Rather than move in a

straight line as desired, the robot makes wide sweeping turns which can sometimes cause

the robot to miss its goal location. This results in the robot making extra turns and

movements that can cause it to get stuck along the wall or stuck in a perpetual circle motion

forever circling the goal location. To account for these issues, various parameters of the

controller were tweaked which reduced the desired “S” shape motion of the controller to

some extent, and recovery features were implemented to mitigate situations in which the

motions of the controller would cause the robot to get stuck. Despite best efforts, countless

hours of testing, and modifications to the Pure Pursuit controller to behave in the desired

85

“point and go” way, a sufficient solution was unable to be found and as a result a full test

was never able to be completed on the physical system.

4.2.2. Boundary Identification

The most significant technical challenge faced with regard to implementing the strategy

planning algorithm was the problem of how to go about identifying boundaries within the

input PGM image. This process requires not only identifying the coordinates of each

occupied cell within the image but also the boundary each occupied cell belongs to such

that a polyshape for that boundary can be generated.

The simplest solution to this problem is to filter out all the occupied cell locations

by utilizing the find function to locate the indices of cells with an occupancy value greater

than 0.9. While this may provide all the occupied cell locations, they are not separated by

boundary which leads to the issue of needing to identify the cells which make up the edge

of each boundary. Furthermore, most boundary edges are thicker than one layer of

occupied cells which arises yet another issue of identifying the cell locations which

directly border the work environment contained within the image.

A second solution attempted for this problem was the drawing of rays in an inward

direction from the outermost cell in each column and row. In this case the locations of

each occupied cell bordering the work environment could be found. However, this process

was very time intensive in looping through each cell within each row and column as well

as the recording of duplicate points and the inability to easily distinguish which boundary

each cell belonged to.

86

A third solution attempted was more focused on the desired outcome which is the

identification of the occupied cell locations such that a polyshape of that boundary could

be created. Generating a polyshape simply requires knowing the vertex coordinates of the

shape in question and as such a method of identifying the work environment corners within

the PGM image was implemented. This method included setting cases that describe a

corner and checking each occupied cell if it matched one of the cases. For example, a top

left corner can be described as a 2 × 2 grid of cells in which the bottom right cell is

unoccupied while the remaining three cells are occupied. While somewhat successful in

identifying corner locations, due to the many edge cases in how a corner can be described

led to some corners not being identified. This resulted in the final polyshape becoming an

inaccurate representation of the work environment and this solution being replaced. In

hindsight, this attempted solution could have been achieved with the implementation of a

corner detection algorithm such as the one described in [43].

The final solution settled upon is the use of the MATLAB function bwboundaries.

This function performs the desired identification of occupied cell locations and the

denoting of which cells belong to which boundary. Albeit without its drawbacks as it has

been observed to be very particular in the images it identifies boundaries within and also

requires interior obstacles to correctly identify the work environment or else it may be

misidentified if free of obstacles. It is the use of this function that requires the need for the

input PGM image to be edited however in an ideal implementation there should be little

to no editing of the PGM image required by the algorithm user. A potential alternative to

87

bwboundaries is the MATLAB function regionprops although further research and testing

are required to validate its usefulness regarding the problem of boundary identification.

4.2.3. Parallel Computing

A second technical challenge encountered was the implementation of SPMD. Having no

prior parallel computing experience, SPMD proved challenging to utilize in the sharing of

information between workers which often resulted in an error. It was found that specific

data, such as flag variables or reallocated tasks, could be shared between workers utilizing

a “tag” in the spmdSend and spmdReceive functions. This in conjunction with the careful

placement of spmdBarrier throughout the workers’ program, which was determined based

on if data is either being sent or received by each worker, the sharing of information

between workers was able to be made mostly error-free. However in some instances, the

SPMD block would still result in error when a message sent by one worker fails to be

received by the other worker. This error was found to occur when both workers would

finish their assigned tasks simultaneously. This led to the inclusion of a try-catch block

added around the SPMD code block to catch this potential error for cases in which occurs.

4.2.4. ROS Implementation

A technical challenge worth mentioning regarding this research was the implementation

of the Robot Operating System; often referred to as “ROS”. This operating system is based

on nodes and topics in which nodes can either publish or subscribe to a topic to

respectively send data to or receive data posted to that topic via messages. ROS was

88

utilized to construct a wireless network consisting of both physical robots and a master

laptop as nodes to facilitate the control of both robots from a single computer.

One issue was the simultaneous display of both robots within the ROS

visualization software Rviz which is used to visualize the real-time physical location of

the robot within its environment utilizing sensors such as that of a LiDAR. The default

SCUTTLE library already featured a code block containing the ability to display one robot

within Rviz however creating a duplicate of this code block and modifying associated

node and topic names failed to resolve the issue. What resolved the issue instead was the

use of namespaces which when incorporated proved to be successful in differentiating the

robots within Rviz allowing for the simultaneous visualization of both robots within the

environment.

A second issue was the utilization of ROS to publish messages within the SPMD

block. The problem stemmed from the location by which the ROS nodes and topics should

be initialized for each robot. From previous experience in initializing ROS nodes and

topics, this is typically done before the main code block which in this case would translate

to initializing the nodes and topics before the SPMD block. This approach however did

not work with SPMD. To rectify this problem, further research was conducted on this

topic however there exists little to no online documentation on a solution to this problem.

Attempts at finding a solution involved initializing the nodes and topics directly after spmd

which is the keyword that heads the SPMD code block, within each worker directly

following the if statement which specifies the worker code blocks, and utilizing

“parallel.pool.Constant” which creates a constant object, in this instance a node, which

89

can be shared between workers. It was later determined that most of the pieces to

successfully be able to achieve a solution to the problem were found however the missing

piece was the reference to the individual SPMD workers themselves when setting up the

nodes and topics. A proper solution to the problem of publishing ROS messages within an

SPMD block can be seen in the Code Example 10.

if spmdIndex == 1

 % set ROS node constant

 node{spmdIndex} = parallel.pool.Constant(ros.Node('/Robot1',"http://X.X.X.X:11311"));

 % set ROS publisher constants

 map_pub{spmdIndex} = parallel.pool.Constant(ros.Publisher(node{spmdIndex}.Value...

 ,'/localMap',"nav_msgs/OccupancyGrid","DataFormat","struct"));

 % set ROS message types

 map_msgType{spmdIndex} = rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct");

 % set ROS messages

 map_msg{spmdIndex} = rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap);

 % send ROS messages

 send(map_pub{spmdIndex}.Value,map_msg{spmdIndex})

end

Code Example 10. Publishing ROS Message within SPMD

The presented solution outlines the steps for the sending of an occupancy map

message type over ROS however can be modified to send any message type. While the

described ROS network was ultimately not utilized with regard to the research presented,

a considerable amount of time and effort went into its implementation. As a result, the

strategy planning algorithm to be used in tandem with a physical system features a

framework for the sending of ROS messages to be utilized in future research.

90

4.3. Future Work

• Physical system operation and data collection: The first and primary focus area for

future work should be in getting the physical system operational such that real-world

data collection can be conducted. This is critical as such real-world data would

consider robot speed and distance traveled between tasks, of which the former would

also need to be factored into the simulations ran once this value has been set as it

impacts the cleaning time required while the latter would help to better prove or

disprove the usefulness of the flipping task allocation method presented. It is with

great optimism that future work in implementing the physical system can forego the

issues experienced and begin at a stage where the physical system has been constructed

and a framework for its operation has been provided.

• Scaling: A second focus area for future work should be in scaling the algorithm to

account for a larger number of robots with 𝑁 number of robots as the eventual end

goal. The algorithm was created with this end goal in mind however the SPMD portion

currently only supports the reallocation of tasks between two robots. Given the current

method implemented, the greater number of robots added, the more complex the task

allocation section of the algorithm becomes as there are that many more connections

between robots that would need to be made. Perhaps a future approach would be to rid

of the connections between robots and instead have the robots report their status

directly to the main computer being utilized.

• Improved task reallocation: The final focus area of future work should be in

improving the task reallocation method. One way is by implementing an iterative

91

approach to the dynamic reallocation of tasks. As the current task reallocation program

has been written, task reallocation will only occur once throughout the duration of the

cleaning process. However with some modifications to the program, an iterative

approach to the dynamic reallocation of tasks until all tasks have been completed

should be able to be achieved. A second way is by implementing a method of saving

the progress of the current task when task reallocation is performed. When tasks are

reallocated between robots in the current program, the cleaning process for the task

stopped on is started over. Rather than spend time overlapping already cleaned

portions of the task stopped on, the already cleaned area should be saved such that

following task reallocation the robot can continue its progress in completing the task

as if it was never interrupted.

92

5. CONCLUSIONS

In conclusion, this thesis presents a strategy planning algorithm for a complete coverage

application by either one or multiple robots. It features the utilization of triangulation mesh

in a complete coverage application as well as the novel implementation of the flipping of

task segments for both the original task assignment and during task reallocation. From the

simulated experiment data, the algorithm was found to marginally decrease the amount of

idle time experienced by a robot up to 28% and considerably reduce the amount of overlap

per section by greater than 90%. The impact of flipping task segments in a real-world

application remains to be observed yet these simulated findings, which may eventually be

corroborated by real-world data, provide a basis for the potential real-world effectiveness

of the strategy planning algorithm presented within this thesis.

93

REFERENCES

1. Wang, M. iRobot Roomba s9+: price, specs, feature and release date. 2019
[cited 2022 August 25]; Available from: https://www.gearbest.com/blog/new-
gear/irobot-roomba-s9-price-specs-feature-and-release-date-5384.

2. Karcz, A. The Roborock S7 MaxV Ultra Is The Greatest Robovac System Ever.
2022 [cited 2022 August 25]; Available from:
https://www.forbes.com/sites/anthonykarcz/2022/03/31/the-roborock-s7-maxv-
ultra-is-the-greatest-robovac-system-ever/.

3. Romeo, J. How Amazon Robotics Helps Fill Orders, Create Jobs. 2021 [cited
2022 August 25]; Available from:
https://www.robotics247.com/article/how_amazon_robotics_helps_fill_orders_cr
eate_jobs.

4. Bonifacic, I. Tokyo Olympics opening ceremony included a light display with
1,800 drones. 2021 [cited 2022 August 25]; Available from:
https://www.engadget.com/tokyo-olympics-drone-display-
183750593.html?guccounter=1.

5. Walter, J. This Swarm of Search and Rescue Drones Can Explore Without
Human Help. 2019 [cited 2022 August 25]; Available from:
https://www.discovermagazine.com/technology/this-swarm-of-search-and-
rescue-drones-can-explore-without-human-help.

6. Brambilla, M., et al., Swarm robotics: a review from the swarm engineering
perspective. Swarm Intelligence, 2013. 7(1): p. 1-41.

7. Perry, C. The 1,000-robot swarm. 2014 [cited 2022 August 25]; Available from:
https://news.harvard.edu/gazette/story/2014/08/the-1000-robot-swarm/.

8. Đakulovic, M. and I. Petrovic, Complete coverage path planning of mobile
robots for humanitarian demining. Industrial Robot: An International Journal,
2012. 39(5): p. 484-493.

94

9. Dakulović, M., S. Horvatić, and I. Petrović, Complete coverage D* algorithm for
path planning of a floor-cleaning mobile robot. IFAC Proceedings Volumes,
2011. 44(1): p. 5950-5955.

10. Hodgkin, A.L. and A.F. Huxley, A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of
physiology, 1952. 117(4): p. 500.

11. Grossberg, S., Nonlinear neural networks: Principles, mechanisms, and
architectures. Neural networks, 1988. 1(1): p. 17-61.

12. Luo, C. and S.X. Yang, A bioinspired neural network for real-time concurrent
map building and complete coverage robot navigation in unknown environments.
IEEE Transactions on Neural Networks, 2008. 19(7): p. 1279-1298.

13. Luo, C. and S.X. Yang. A real-time cooperative sweeping strategy for multiple
cleaning robots. in Proceedings of the IEEE Internatinal Symposium on
Intelligent Control. 2002. IEEE.

14. Sun, B., et al., Complete coverage autonomous underwater vehicles path
planning based on glasius bio-inspired neural network algorithm for discrete
and centralized programming. IEEE Transactions on Cognitive and
Developmental Systems, 2018. 11(1): p. 73-84.

15. Luo, C., et al. A computationally efficient neural dynamics approach to
trajectory planning of an intelligent vehicle. in 2014 International Joint
Conference on Neural Networks (IJCNN). 2014. IEEE.

16. Weisstein, E.W. Voronoi diagram, From MathWorld–A Wolfram Web Resource.
2009 [cited 2022 August 31]; Available from:
https://mathworld.wolfram.com/VoronoiDiagram.html.

17. Nair, V.G. and K. Guruprasad, GM-VPC: An algorithm for multi-robot coverage
of known spaces using generalized Voronoi partition. Robotica, 2020. 38(5): p.
845-860.

95

18. Fu, J.G.M., T. Bandyopadhyay, and M.H. Ang. Local Voronoi decomposition for
multi-agent task allocation. in 2009 IEEE International Conference on Robotics
and Automation. 2009. IEEE.

19. Hu, J., et al., Voronoi-based multi-robot autonomous exploration in unknown
environments via deep reinforcement learning. IEEE Transactions on Vehicular
Technology, 2020. 69(12): p. 14413-14423.

20. Hu, J., B. Lennox, and F. Arvin. Collaborative coverage for a network of vacuum
cleaner robots. in Towards Autonomous Robotic Systems: 22nd Annual
Conference, TAROS 2021, Lincoln, UK, September 8–10, 2021, Proceedings.
2021. Springer.

21. Burns, J., Centroidal voronoi tessellations. Centroidal Voronoi Tessellations,
2009.

22. Galceran, E. and M. Carreras, A survey on coverage path planning for robotics.
Robotics and Autonomous systems, 2013. 61(12): p. 1258-1276.

23. Acar, E.U. and H. Choset, Sensor-based coverage of unknown environments:
Incremental construction of morse decompositions. The International Journal of
Robotics Research, 2002. 21(4): p. 345-366.

24. Acar, E.U., H. Choset, and J.Y. Lee, Sensor-based coverage with extended range
detectors. IEEE Transactions on Robotics, 2006. 22(1): p. 189-198.

25. Choset, H., Coverage of known spaces: The boustrophedon cellular
decomposition. Autonomous Robots, 2000. 9: p. 247-253.

26. Acar, E.U., et al., Morse decompositions for coverage tasks. The international
journal of robotics research, 2002. 21(4): p. 331-344.

27. Zhou, P., et al. Complete coverage path planning of mobile robot based on
dynamic programming algorithm. in 2nd international conference on electronic
and mechanical engineering and information technology. 2012.

96

28. Viet, H.H., et al., BA*: an online complete coverage algorithm for cleaning
robots. Applied intelligence, 2013. 39: p. 217-235.

29. Oh, J.S., et al., Complete coverage navigation of cleaning robots using
triangular-cell-based map. IEEE Transactions on Industrial Electronics, 2004.
51(3): p. 718-726.

30. Meysami, A., et al., Investigating the impact of triangle and quadrangle mesh
representations on AGV path planning for various indoor environments: With or
without inflation. Robotics, 2022. 11(2): p. 50.

31. Liu, Y. and Y. Jiang, Robotic path planning based on a triangular mesh map.
International Journal of Control, Automation and Systems, 2020. 18(10): p.
2658-2666.

32. Pang, B., et al., A swarm robotic exploration strategy based on an improved
random walk method. Journal of Robotics, 2019. 2019.

33. Le, A.V., et al., Coverage path planning using reinforcement learning-based TSP
for hTetran—a polyabolo-inspired self-reconfigurable tiling robot. Sensors,
2021. 21(8): p. 2577.

34. Karapetyan, N., et al. Efficient multi-robot coverage of a known environment. in
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2017. IEEE.

35. Karapetyan, N., et al. Multi-robot dubins coverage with autonomous surface
vehicles. in 2018 IEEE International Conference on Robotics and Automation
(ICRA). 2018. IEEE.

36. Longa, S. Flip Task Strategy Planning Algorithm Repository. 2023; Available
from: https://github.com/steveo11780/FlipTaskStrategyPlanning.

37. Traveling Salesman Problem: Solver-Based. [cited 2023 March 19]; Available
from: https://www.mathworks.com/help/optim/ug/travelling-salesman-
problem.html.

97

38. Shure, L. Loren’s Excellent Adventure: Maps, Graphs, and Polygons. 2017
[cited 2023 March 19]; Available from:
https://blogs.mathworks.com/loren/2017/10/12/lorens-excellent-adventure-maps-
graphs-and-polygons/.

39. Choose Between spmd, parfor, and parfeval. [cited 2023 March 19]; Available
from: https://www.mathworks.com/help/parallel-computing/choose-spmd-parfor-
parfeval.html.

40. Ewelike, C. Clean Room Complete Coverage Path Planning Algorithm
Repository. 2023; Available from:
https://github.com/victor056/CompleteCoveragePathPlanning.

41. Welcome to the SCUTTLE Community. [cited 2023 March 19]; Available from:
https://www.scuttlerobot.org.

42. Pure Pursuit Controller. [cited 2023 March 19]; Available from:
https://www.mathworks.com/help/nav/ug/pure-pursuit-controller.html.

43. Hernández, C.A.V. and F.A.P. Ortiz, A Corner Detector Algorithm for Feature
Extraction in Simultaneous Localization and Mapping. Journal of Engineering
Science & Technology Review, 2019. 12(3).

98

APPENDIX A: SCUTTLE ROBOT PLATFORM

Figure 39. Top view of both constructed SCUTTLE robots.

99

Figure 40. SCUTTLE front view.

100

Figure 41. SCUTTLE side view.

101

APPENDIX B: MAIN SCRIPT

The roomStrategy algorithm has been formatted for both simulation and real-world

applications. For simulations, the roomStrategySim main script is to be used along with

the supplementary cleanRoomSimTest function in Appendix D. For use with a real-world

robot, the roomStrategyReal main script is to be utilized. Note that the ROS network

implementation of the real-world script has not been extensively tested and should be

approached as a starting point for future research involving the use of a ROS network.

I. roomStrategySim

Setup

clearvars; close all; % clear all workspace variables and close all figures

% INPUT PARAMETERS

rob.size = 12; % distance from robot center to edge midpoint in IJ coordinates

rob.diag = 14; % distance from robot center to corner in IJ coordinates

min_triEdge = 2; % target minimum edge length for triangulation mesh

cornerLoc = 1; % desired starting location of path planning algorithm.

Valid values for this parameter are:

% 1 (farthest valid starting corner from polyshape centroid)

% 2 (closest valid starting corner from polyshape centroid)

% 3 (polyshape centroid)

editedPGM_path = "/Users/~"; % file path of post-edited lidar map in PGM format

numRobots = 1; % number of robots to be utilized in decomposed work area

% ADDITIONAL PARAMETERS

mergeTri = true; % false skip triangle merging, true perform triangle merging (default)

if mergeTri; minTri.base = .5; minTri.height = .5; end % minumum values for base and height

when determining triangles to merge

102

rosSetup = false; % false skip connecting to ROS network (default), true connect to ROS network

% due to potential differences between the raw occupancy map origin and

% the default occupancy map origin in MATLAB (0,0), this difference can be

% corrected by importing the raw occupancy map

importRawMap = false; % false skip importing raw occupancy map (default), true import raw

occupancy map

wholeRoom = false; % false perform map decomposition (default), true do not perform map

decomposition

enableRetasking = true; % false do not reallocate tasks, true reallocate tasks (default)

resolution = 50; % occupancy map resolution in cells per meter

mergeRob.size = rob.size+3; % padded robot size to consider when identifying polygons to merge

mergeRob.diag = rob.diag+3; % padded robot diagonal length to consider when identifying

polygons to merge

% CONNECT TO ROS NETWORK

if rosSetup

 rosshutdown() % make sure any ROS sessions are closed

 rosinit("http://X.X.X.X:11311") % initialize ROS network and connect to host

end

% IMPORT RAW MAP

if importRawMap

 try

 % try to subscribe to /map topic and receive the sent message

 sub = rossubscriber("/map",DataFormat='struct');

 msg = receive(sub);

 % generate an occupancy map with the received map message

 rawMap = rosReadOccupancyGrid(msg);

 show(rawMap) % visually inspect the imported raw occupancy map

 catch

 % if unable to subscribe to /map topic, load raw map from local save

 savedMap = load('ros_occMap.mat');

 rawMap = savedMap.occupancyMapObj;

 show(rawMap); clear savedMap;

 end

103

else

 rawMap = [];

end

Image Processing

tic

editedPGM = imread(editedPGM_path); % load in pgm image of post edited lidar scan

% normalize the image to values between 0 and 1 then convert to occupancy

% values by subtracting from 1

editedMap_occ = 1 - double(editedPGM)/255;

% generate an occupancy map from the occupancy values

editedMap = occupancyMap(editedMap_occ,resolution);

show(editedMap) % visually inspect the generated occupancy map

% IDENTIFY EXTERIOR BOUNDARY AND INTERIOR OBSTACLE BOUNDARIES

[exteriorIJ, interiorIJ] = identifyBoundaries(editedPGM);

% determine if the exterior boundary has been misidentified as an interior obstacle,

% if so set the interior obstacle as the exterior boundary

obsNum = fieldnames(interiorIJ); % determine number of identified interior obstacles

if (length(exteriorIJ) < 10) && (numel(obsNum) == 1)

 % reduce the number of points describing the exterior boundary

 exteriorIJ = reducepoly(interiorIJ.obs1,.01);

 removeObs = 0; % do not remove interior obstacles

else

 removeObs = 1; % do remove interior obstacles

end

% convert the exterior boundary points from IJ to XY coordinates

exteriorXY = grid2world(editedMap,exteriorIJ);

% POLYSHAPE REPRESENTATION

% generate a polyshape of the room from the exterior boundary points

room = polyshape(exteriorXY(:,1),exteriorXY(:,2));

plot(room)

% if applicable, remove the identified interior obstacles from the room polyshape

if removeObs == 1

 for i = 1:numel(obsNum)

104

 % convert the identifed interior obstacles points from IJ to XY coordinates

 interiorXY = grid2world(editedMap,interiorIJ.(obsNum{i}));

 % reduce the number of points describing the obstacle

 reducedObs = reducepoly(interiorXY,.01);

 % generate a polyshape representing the obstacle

 obs = polyshape(reducedObs(:,1),reducedObs(:,2));

 % remove the obstacle polyshape from the room polyshape

 room = subtract(room,obs);

 end

 plot(room); % visually inspect the resulting polyshape

end

Map Decomposition

if wholeRoom

 programTime = toc;

 % get occupancy map and starting location of room

 [localMap, startXY] = poly2occgrid(room, 0, rawMap, rob, cornerLoc, resolution);

 % convert starting location to IJ coordinates

 startIJ = world2grid(localMap,startXY);

 % call path planning algorithm to perform complete coverage

 figure; deadlock_cntr = 0;

 [localMap,time,turnCount,overlap,pathLength,deadlock_cntr] =

cleanRoomSimTest(localMap,startIJ,deadlock_cntr);

 % determine the number of cleaned and uncleaned cells

 localOcc = occupancyMatrix(localMap);

 clean = length(find((localOcc>.4)&(localOcc<.6)));

 unclean = length(find(localOcc<.1));

 % display simualtion data

 fprintf("Simulation runtime: %.2fs",time)

 fprintf("Turn count: %d",turnCount)

 fprintf("Overlap: %d",overlap)

 fprintf("Path length: %.2f",pathLength)

 covEff = clean / (unclean+clean);

 fprintf("Coverage efficiency: %.2f%%",covEff*100)

105

 fprintf("Number of deadlock events: %d",deadlock_cntr)

 fprintf("Strategy planning algorithm runtime: %.2fs",programTime)

else

 % decompose polyshape using triangular mesh

 tri = triDecomposition(room, min_triEdge);

 % determine an initial optimal path passing through all triangle centroids using

 % Traveling Salesman Problem (TSP) algorithm

 [Gdir, tri.nodeList] = directedTSP(tri, room.Vertices);

 % overlay triangular mesh and identified optimal path on the edited map

 show(editedMap); hold on;

 plot(tri.shape)

 hGraph =

plot(Gdir,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2),'LineStyle','none','NodeLabel',{};

 highlight(hGraph,Gdir,'LineStyle','-')

 hold off

 if mergeTri

 % determine if a triangle needs to be merged

 tri2merge = identifyTri2merge(tri, minTri)

% MERGE IDENTIFIED TRIANGLES

 % configure waitbar to monitor merging process

 triWait = waitbar(0,'Initializing Merging Process','Name','Merging Triangles...',...

 'CreateCancelBtn','setappdata(gcbf,''canceling'',1)');

 % configure a cancel button on waitbar

 setappdata(triWait,'canceling',0);

 offset = 0; % counter to track the number of nodes removed from the original node list

 for i = 1:length(tri2merge)

 % check if cancel button has been pressed

 if getappdata(triWait,'canceling'); break; end

 % identify node to be merged by subtracting the offset from the current node value

 node2merge = tri2merge(i,1)-offset;

 % update waitbar and message

 waitbar(i/length(tri2merge),triWait,sprintf('Merging triangle %d of

%d',i,length(tri2merge)))

106

 % fprintf('%d\n',node2merge+offset) % display current node being merged

 % get current polygon connectivity

 Gtri = polyConn(tri.shape);

 % determine which neighboring node to merge with

 neighbor2merge = polyNeighbor(Gtri, node2merge, tri.shape);

 % merge neighbor node with current triangle node

 neighborTri = tri.shape(neighbor2merge);

 currentTri = tri.shape(node2merge);

 tri.shape(neighbor2merge) = union(neighborTri,currentTri); % save resulting

merged polygon to neighbor node index in shape list

 offset = offset+1; % increment offset value

 tri.shape(node2merge) = []; % remove merged triangle node from shape list

 end

 delete(triWait) % delete waitbar

 % get current polygon connectivity post merge

 Gtri = polyConn(tri.shape);

 % update centroid values of new polyshapes

 [x,y] = centroid(tri.shape);

 tri.centroid = [x;y]';

 % visually inspect polygon connectivity

 show(editedMap); hold on;

 plot(tri.shape)

 plot(Gtri,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2))

 hold off;

 % determine a final optimal path passing through all triangles using TSP algorithm

 [Gdir, tri.nodeList] = directedTSP(tri, room.Vertices);

 % visually inspect resulting TSP path

 show(editedMap); hold on;

 plot(tri.shape)

 hGraph =

plot(Gdir,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2),'LineStyle','none');

 highlight(hGraph,Gdir,'LineStyle','-')

 hold off

107

 end

% GENERATE BOUNDING BOXES

 tri.nodeList(end,:) = []; % remove repeated node at end of node list

 % convert merged triangle polygons into bounding boxes

 for i = 1:length(tri.nodeList)

 % obtain bounding box XY limits

 [xlim,ylim] = boundingbox(tri.shape(tri.nodeList(i,1)));

 % identify min and max of XY limits

 xmin = min(xlim); xmax = max(xlim);

 ymin = min(ylim); ymax = max(ylim);

 % generate a polyshape of the bounding box and add to shape list

 polyMin = [xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax];

 polybox.shape(i) = polyshape(polyMin);

 end

 % determine centroid values of bounding boxes

 [x,y] = centroid(polybox.shape);

 polybox.centroid = [x;y]';

 % create a polyshape representing the area outside the room

 [xlim,ylim] = boundingbox(room);

 xmin = min(xlim); xmax = max(xlim);

 ymin = min(ylim); ymax = max(ylim);

 polyMin = polyshape([xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax]);

 roomOutside = subtract(polyMin,room);

 % plot(roomOutside)

% CLEAN UP BOUNDING BOXES

 % configure waitbar to monitor clean up process

 cleanWait = waitbar(0,'Initializing Clean Up Process','Name','Cleaning Up Bounding

Boxes...',...

 'CreateCancelBtn','setappdata(gcbf,''canceling'',1)');

 % configure a cancel button on waitbar

 setappdata(cleanWait,'canceling',0);

 % clean up bounding boxes by removing overlaps and areas outside the room

108

 figure; show(editedMap); hold on;

 offset = 0; % counter to track the number of bounding boxes removed from the original

shape list

 for i = 1:length(polybox.shape)-offset

 % check if cancel button has been pressed

 if getappdata(cleanWait,'canceling'); break; end

 % identify bounding box to be cleaned up by subtracting the offset from the current

index value

 polyIdx = i - offset;

 % update waitbar and message

 waitbar(i/length(polybox.shape)-offset,cleanWait,sprintf('Cleaning up bounding box %d

of %d',i,length(polybox.shape)-offset))

 % fprintf('%d\n',polyIdx+offset) % display current bounding box index being cleaned

 currentpoly = polybox.shape(polyIdx); % identify the current bounding box

 % determine the region of intersection (ROI) between the current bounding box

 % and the area outside the room then remove it from the current bounding box

 roomintsec = intersect(currentpoly,roomOutside);

 currentpoly = subtract(currentpoly,roomintsec);

 Gbox = polyConn(polybox.shape); % get current polygon connectivity

 % determine current bounding box neighbors

 [row,col] = find(Gbox.Edges.EndNodes==polyIdx);

 index = [row col]; neighbors = [];

 for j = 1:height(index)

 if index(j,2) == 1

 neighbors(j,1) = Gbox.Edges.EndNodes(index(j,1),2);

 elseif index(j,2) == 2

 neighbors(j,1) = Gbox.Edges.EndNodes(index(j,1),1);

 end

 end

 % remove current bounding box neighbor overlaps

 for k = 1:height(neighbors)

 % determine the ROI between current bounding box and neighbor

 polyintsec = intersect(currentpoly,polybox.shape(neighbors(k)));

109

 % check if the ROI is valid

 if height(polyintsec.Vertices) == 0

 continue;

 else

 % remove the ROI from the current bounding box if its area is

 % greater than the neighbor, else remove the ROI from the neighbor

 if area(currentpoly) > area(polybox.shape(neighbors(k)))

 currentpoly = subtract(currentpoly,polyintsec);

 else

 polybox.shape(neighbors(k)) =

subtract(polybox.shape(neighbors(k)),polyintsec);

 end

 end

 end

 % check if the current bounding box is valid following removal of neighbor overlaps

 if height(currentpoly.Vertices) == 0

 polybox.shape(polyIdx) = []; % remove current bounding box from list

 offset = offset+1; % increment offset counter by 1

 continue;

 else

 polybox.shape(polyIdx) = currentpoly; % save the cleaned up bounding box to the

original shape list index

 plot(currentpoly)

 end

 end

 hold off;

 delete(cleanWait) % delete waitbar

 % update centroid values of bounding boxes

 [x,y] = centroid(polybox.shape);

 polybox.centroid = [x;y]';

 % get current bounding box connectivity post clean up

 Gbox = polyConn(polybox.shape);

 % visually inspect bounding box connectivity

 figure; show(editedMap); hold on;

 plot(polybox.shape)

 plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2))

 hold off;

110

% PREPARE AND IDENTIFY BOUNDING BOXES TO MERGE

 % identify any slivers formed during the clean up process

 for i = 1:length(polybox.shape)

 currentpoly = polybox.shape(i); % identify current bounding box

 polynosliver = rmslivers(currentpoly,.05); % remove any slivers from current bounding

box

 polysliver = subtract(currentpoly,polynosliver); % save the polyshape consisting of

the removed slivers

 % check if the removed slivers polyshape is valid, if so append to end

 % of shape list

 if height(polysliver.Vertices) == 0

 continue;

 else

 polybox.shape(1,end+1) = polysliver;

 end

 % check if the polygon with slivers removed is valid, if so save

 % to the original polygon index

 if height(polynosliver.Vertices) == 0

 continue;

 else

 polybox.shape(i) = polynosliver;

 end

 end

 % ensure that each polygon has one region

 for i = 1:length(polybox.shape)

 % if multiple regions are identifed, append these regions to polygon list

 if polybox.shape(i).NumRegions > 1

 polyRegions = regions(polybox.shape(i));

 for j = 1:length(polyRegions)

 % check if the polygon region is valid

 if height(polyRegions(j).Vertices) == 0

 continue;

 % save the first region to the original polygon index

 elseif j == 1

 polybox.shape(i) = polyRegions(1);

 % append following regions to end of shape list

111

 else

 polybox.shape(end+1) = polyRegions(j);

 end

 end

 end

 end

 % update centroid values

 [x,y] = centroid(polybox.shape);

 polybox.centroid = [x;y]';

 % get current polygon connectivity

 Gbox = polyConn(polybox.shape);

 % visually inspect polygon connectivity

 figure;

 show(editedMap); hold on;

 plot(polybox.shape)

 plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2))

 hold off;

 % determine an optimal path passing through all polygons using TSP algorithm

 [~, polybox.nodeList] = directedTSP(polybox, room.Vertices);

 % identify the polygons that need to be merged

 box2merge = identifyBox2merge(mergeRob, polybox, editedMap);

% MERGE BOUNDING BOXES

 % configure waitbar to monitor merging process

 boxWait = waitbar(0,'Initializing Merging Process','Name','Merging Bounding Boxes...',...

 'CreateCancelBtn','setappdata(gcbf,''canceling'',1)');

 % configure a cancel button on waitbar

 setappdata(boxWait,'canceling',0);

 offset = 0; % counter to track the number of nodes removed from the original node list

 for j = 1:length(box2merge)

 % check if cancel button has been pressed

 if getappdata(boxWait,'canceling'); break; end

 % identify node to be merged by subtracting the offset from the current node value

 node = box2merge(j,1)-offset;

112

 % update waitbar and message

 waitbar(j/length(box2merge),boxWait,sprintf('Merging polygon %d of

%d',j,length(box2merge)))

 % fprintf('%d\n',node+offset) % display current node being merged

 Gbox = polyConn(polybox.shape); % get current polygon connectivity

 try

 % determine which neighbor to merge with

 neighbor2merge = polyNeighbor(Gbox, node, polybox.shape);

 % merge neighbor with current node

 polybox.shape(neighbor2merge) =

union(polybox.shape(neighbor2merge),polybox.shape(node));

 offset = offset+1; % increment offset value

 polybox.shape(node) = []; % remove merged node from shape list

 catch

 fprintf('Node %d has no identified neighbors',node+offset)

 offset = offset+1; % increment offset value

 polybox.shape(node) = []; % remove neighborless node from shape list

 end

 end

 delete(boxWait) % delete waitbar

% FINALIZE RESULTING POLYGONS

 % ensure that each polygon has one region and no unnecessary holes

 for i = 1:length(polybox.shape)

 % if multiple regions are identifed, create a bounding box to merge them together

 if polybox.shape(i).NumRegions > 1 || polybox.shape(i).NumHoles >= 1

 currentpoly = polybox.shape(i); % identify the current polygon

 % obtain bounding box XY limits

 [xlim,ylim] = boundingbox(currentpoly);

 % identify min and max of XY limits

 xmin = min(xlim); xmax = max(xlim);

 ymin = min(ylim); ymax = max(ylim);

113

 % generate a polyshape of the bounding box and replace the current

 % polygon with the bounding box

 polyMin = [xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax];

 currentpoly = polyshape(polyMin);

 % identify and remove any areas of the current polygon outside the room

 roomintsec = intersect(currentpoly,roomOutside);

 currentpoly = subtract(currentpoly,roomintsec);

 % remove any overlaps between other polyshapes

 for before = 1:i-1

 currentpoly = subtract(currentpoly,polybox.shape(before));

 end

 for after = i+1:length(polybox.shape)

 currentpoly = subtract(currentpoly,polybox.shape(after));

 end

 % remove any resulting slivers

 currentpoly = rmslivers(currentpoly,.05);

 % save the edited polygon to the original polygon index

 polybox.shape(i) = currentpoly;

 end

 end

 % update centroid values

 [x,y] = centroid(polybox.shape);

 polybox.centroid = [x;y]';

 % get current polygon connectivity

 Gbox = polyConn(polybox.shape);

 % visually inspect polygon connectivity

 figure; show(editedMap); hold on;

 plot(polybox.shape)

 plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2))

 hold off;

 % determine a final optimal path passing through all polygons using TSP algorithm

 [Gdir, polybox.nodeList] = directedTSP(polybox, room.Vertices);

 % visually inspect the generated optimal path

114

 figure; show(editedMap); hold on;

 plot(polybox.shape)

 hGraph =

plot(Gdir,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2),'LineStyle','none');

 highlight(hGraph,Gdir,'LineStyle','-')

 hold off

 programTime = toc; % record strategy planning algorithm runtime

 % if the number of robots is 1 assign all tasks to one robot

 if numRobots == 1

 deadlock_cntr = 0; % initialize a variable to count the number of encountered

deadlocks

 % loop through each task for complete coverage

 for i = 1:length(polybox.shape)

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox, i, rawMap, rob, cornerLoc, resolution);

 % convert starting location to IJ coordinates

 startIJ = world2grid(localMap,startXY);

 % call path planning algorithm to perform complete coverage

 figure;

 [localMap,time(i,1),turnCount(i,1),overlap(i,1),pathLength(i,1),deadlock_cntr] =

cleanRoomSimTest(localMap,startIJ,deadlock_cntr);

 % determine the number of cleaned and uncleaned cells of current task

 localOcc = occupancyMatrix(localMap);

 clean(i,1) = length(find((localOcc>.4)&(localOcc<.6)));

 unclean(i,1) = length(find(localOcc<.1));

 end

 % display simualtion data

 fprintf("Total simulation runtime: %.2f",sum(time))

 fprintf("Total turn count: %d",sum(turnCount))

 fprintf("Total path length: %.2f",sum(pathLength))

 fprintf("Total overlap: %d",sum(overlap))

 fprintf("Minimum task overlap: %d",min(overlap))

 fprintf("Maximum task overlap: %d",max(overlap))

 fprintf("Average overlap per task: %.2f",mean(overlap))

 covEff = sum(clean) / (sum(unclean)+sum(clean));

115

 fprintf("Coverage efficiency: %.2f%%",covEff*100)

 fprintf("Number of deadlock events: %d",deadlock_cntr)

 fprintf("Strategy planning algorithm runtime: %.2f",programTime)

 fprintf("Number of triangles within mesh: %d",length(tri.list))

 fprintf("Number of tasks: %d",length(polybox.shape))

Task Allocation

 elseif numRobots == 2

 task_list = polybox.nodeList(:,1); % assign the node list first column to the task list

 task_list(end,:) = []; % remove the repeated node at bottom of list

 % divide the task list into segments according to the number of robots

 task_segments = allocateTasks(task_list, numRobots)

 delete(gcp('nocreate')); % end any background parallel pool processes

 parpool(2); % start a parallel pool process

 % tag naming reference

 % tag 1 -> robot1retask

 % tag 2 -> robot2retask

 % tag 3 -> robot1done

 % tag 4 -> robot2done

 % tag 5 -> robot1onetaskleft

 % tag 6 -> robot2onetaskleft

 % set flag variables

 finished = 0;

 otherFinished = 0;

 reAllocateTasks = 0;

 robot1onetaskleft = 0;

 robot2onetaskleft = 0;

 % initialize simulation data variables

 tot_time = 0;

 tot_turnCount = 0;

 tot_overlap = 0;

 tot_pathLength = 0;

 clean = 0;

 unclean = 0;

 if enableRetasking

 spmd

116

 if spmdIndex == 1

 try

 disp('Robot 1: Cleaning in progress')

 deadlock_cntr{spmdIndex} = 0; % initialize variable on worker to

count the number of encountered deadlocks

 % loop through the assigned tasks for complete coverage

 for currentTask = 1:height(task_segments{spmdIndex})

 % check if any message received from other robot

 if spmdProbe

 otherFinished = spmdReceive('any',4) % receive robot2done

with tag 4

 % check if the received message indicates the other robot has

finished

 if otherFinished == 1

 disp('Robot 1: Robot 2 has finished')

 % check if the number of remaining tasks is greater than 1

 if (height(task_segments{spmdIndex}) - currentTask) > 1

 reAllocateTasks = 1; % set reAllocateTasks flag to 1

 robot1onetaskleft = 0; % set robot1onetaskleft flag to

0

 spmdSend(robot1onetaskleft,2,5) % send

robot1onetaskleft to robot 2 with tag 5

 spmdBarrier % barrier #1; update robot 2 there is

more than 1 task remaining for robot 1

 break; % break out of current loop

 else

 disp("Robot 1: 1 task remaining")

 robot1onetaskleft = 1; % set robot1onetaskleft to 1

 spmdSend(robot1onetaskleft,2,5) % send

robot1onetaskleft to robot 2 with tag 5

 spmdBarrier % barrier #1; update robot 2 there is 1

task remaining for robot 1

 end

 end

 end

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution);

117

 % convert starting location to IJ coordinates

 startIJ = world2grid(localMap,startXY);

 % call path planning algorithm to perform complete coverage

 figure;

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] =

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex});

 % determine the number of cleaned and uncleaned cells of current

task

 localOcc = occupancyMatrix(localMap);

 clean = clean+length(find((localOcc>.4)&(localOcc<.6)));

 unclean = unclean+length(find(localOcc<.1));

 % update simulation data

 tot_time = tot_time +time;

 tot_turnCount = tot_turnCount+turnCount;

 tot_overlap = tot_overlap+overlap;

 tot_pathLength = tot_pathLength+pathLength;

 % report cleaning progress

 fprintf('Robot %d: Task %d complete. Progress: %d of %d\n', ...

spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex}))

 end

 % enter this code block if the reAllocateTasks flag is set to 1

 if reAllocateTasks

 % report task reallocation is occurring and task stopped on

 fprintf('Robot %d: Reallocating tasks. Stopped on Task %d\n', ...

 spmdIndex,task_segments{spmdIndex}(currentTask))

 % remove already completed tasks from current task list

 for i = 1:currentTask-1

 task_segments{spmdIndex}(1,:) = [];

 end

 % reallocate remaining tasks

 retasked_segments =

allocateTasks(task_segments{spmdIndex},num_robots)

118

 spmdSend(retasked_segments,2,1) % send robot1retask to robot 2

with tag 1

 spmdBarrier % barrier #2; send robot 1 retask to robot 2 and

wait

 % loop through the reassigned tasks for complete coverage

 for currentTask = 1:length(retasked_segments{1})

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

retasked_segments{1}(currentTask), rawMap, rob, cornerLoc, resolution);

 % convert starting location to IJ coordinates

 startIJ = world2grid(localMap,startXY);

 % call path planning algorithm to perform complete coverage

 figure;

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] =

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex});

 % determine the number of cleaned and uncleaned cells of

current task

 localOcc = occupancyMatrix(localMap);

 clean = clean+length(find((localOcc>.4)&(localOcc<.6)));

 unclean = unclean+length(find(localOcc<.1));

 % update simulation data

 tot_time = tot_time +time;

 tot_turnCount = tot_turnCount+turnCount;

 tot_overlap = tot_overlap+overlap;

 tot_pathLength = tot_pathLength+pathLength;

 % report cleaning progress

 fprintf('Robot %d: Reallocated Task %d complete\nProgress: %d

of %d\n',

...spmdIndex,retasked_segments{1}(currentTask),currentTask,length(retasked_segments{1}))

 end

 end

 finished = 1; % set finished flag to 1

119

 disp('Robot 1: Done') % report robot 1 has completed its assigned

tasks

 % enter this code block if the finished flag is set to 1 and the

otherFinished flag is set to 0

 if (finished == 1) && (otherFinished == 0)

 spmdSend(finished,2,3) % send robot1done to robot 2 with tag 3

 spmdBarrier % barrier #3; communicate robot 1 has finished

before robot 2; wait for task remaining update from robot 1

 robot2onetaskleft = spmdReceive("any",6) % receive2onetaskleft

with tag 6

 % check status of one task remaining flag

 if robot2onetaskleft == 0

 disp("Robot 1: Receiving reallocated tasks from Robot 2")

 spmdBarrier % barrier #4; wait for robot 2 retask update

 retasked_segments = spmdReceive("any",2) % receive

robot2retask with tag 2

 % loop through the received reassigned tasks for complete

coverage

 for currentTask = 1:length(retasked_segments{2})

 % get local occupancy map and starting location of current

task

 [localMap, startXY] = poly2occgrid(polybox,

retasked_segments{2}(currentTask), rawMap, rob, cornerLoc, resolution);

 % convert starting location to IJ coordinates

 startIJ = world2grid(localMap,startXY);

 % call path planning algorithm to perform complete coverage

 figure;

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] =

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex});

 % determine the number of cleaned and uncleaned cells of

current task

120

 localOcc = occupancyMatrix(localMap);

 clean = clean+length(find((localOcc>.4)&(localOcc<.6)));

 unclean = unclean+length(find(localOcc<.1));

 % update simulation data

 tot_time = tot_time+time;

 tot_turnCount = tot_turnCount+turnCount;

 tot_overlap = tot_overlap+overlap;

 tot_pathLength = tot_pathLength+pathLength;

 % report cleaning progress

 fprintf('Robot %d: Reallocated Task %d complete\nProgress:

%d of %d\n',

...spmdIndex,retasked_segments{2}(currentTask),currentTask,length(retasked_segments{2}))

 end

 else

 disp("Robot 1: Bypassing retask since 1 task remaining on Robot

2")

 end

 end

 spmdBarrier % barrier #0; wait for both robots to complete assigned

tasks

 catch

 disp("Both robots have finished at the same time")

 end

 end

 if spmdIndex == 2

 try

 disp('Robot 2: Cleaning in progress')

 deadlock_cntr{spmdIndex} = 0; % initialize variable on worker to

count the number of encountered deadlocks

 % loop through the assigned tasks for complete coverage

 for currentTask = 1:height(task_segments{spmdIndex})

 % check if any message received from other robot

 if spmdProbe

 otherFinished = spmdReceive("any",3) % receive robot1done

with tag 3

 % check if the received message indicates the other robot has

finished

121

 if otherFinished == 1

 disp('Robot 2: Robot 1 has finished')

 % check if the number of remaining tasks is greater than 1

 if (height(task_segments{spmdIndex}) - currentTask) > 1

 reAllocateTasks = 1; % set reAllocateTasks flag to 1

 robot2onetaskleft = 0; % set robot2onetaskleft flag to

0

 spmdSend(robot2onetaskleft,1,6) % send

robot2onetaskleft to robot 1 with tag 6

 spmdBarrier % barrier #3; update robot 1 there is

more than 1 task remaining for robot 2

 break;

 else

 disp("Robot 2: 1 task remaining")

 robot2onetaskleft = 1; % set robot1onetaskleft to 1

 spmdSend(robot2onetaskleft,1,6) % send

robot2onetaskleft to robot 1 with tag 6

 spmdBarrier % barrier #3; update robot 1 there is 1

task remianing for robot 2

 end

 end

 end

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution);

 % convert starting location to IJ coordinates

 startIJ = world2grid(localMap,startXY);

 % call path planning algorithm to perform complete coverage

 figure;

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] =

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex});

 % determine the number of cleaned and uncleaned cells of current

task

 localOcc = occupancyMatrix(localMap);

 clean = clean+length(find((localOcc>.4)&(localOcc<.6)));

 unclean = unclean+length(find(localOcc<.1));

122

 % update simulation data

 tot_time = tot_time +time;

 tot_turnCount = tot_turnCount+turnCount;

 tot_overlap = tot_overlap+overlap;

 tot_pathLength = tot_pathLength+pathLength;

 % report cleaning progress

 fprintf('Robot %d: Task %d complete\nProgress %d of %d\n', ...

spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex}))

 end

 % enter this code block if the reAllocateTasks flag is set to 1

 if reAllocateTasks

 % report task reallocation is occurring and task stopped on

 fprintf('Robot %d: Reallocating tasks. Stopped on Task %d\n', ...

 spmdIndex,task_segments{spmdIndex}(currentTask))

 % remove already completed tasks from current task list

 for i = 1:currentTask-1

 task_segments{spmdIndex}(1,:) = []; % remove already

completed tasks

 end

 % reallocate remaining tasks

 retasked_segments =

allocateTasks(task_segments{spmdIndex},num_robots)

 spmdSend(retasked_segments,1,2) % send robot2retask to robot 1

with tag 2

 spmdBarrier % barrier #4; send robot 2 retask to robot 1 and

wait

 % loop through the reassigned tasks for complete coverage

 for currentTask = 1:length(retasked_segments{1})

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

retasked_segments{1}(currentTask), rawMap, rob, cornerLoc, resolution);

 % convert starting location to IJ coordinates

 startIJ = world2grid(localMap,startXY);

123

 % call path planning algorithm to perform complete coverage

 figure;

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] =

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex});

 % determine the number of cleaned and uncleaned cells of

current task

 localOcc = occupancyMatrix(localMap);

 clean = clean+length(find((localOcc>.4)&(localOcc<.6)));

 unclean = unclean+length(find(localOcc<.1));

 % update simulation data

 tot_time = tot_time +time;

 tot_turnCount = tot_turnCount+turnCount;

 tot_overlap = tot_overlap+overlap;

 tot_pathLength = tot_pathLength+pathLength;

 % report cleaning progress

 fprintf('Robot %d: Reallocated Task %d complete\nProgress %d of

%d\n', ...spmdIndex,retasked_segments{1}(currentTask),currentTask,length(retasked_segments{1}))

 end

 end

 finished = 1; % set finished flag to 1

 disp('Robot 2 done') % report robot 2 has completed its assigned

tasks

 % enter this code block if the finished flag is set to 1 and the

otherFinished flag is set to 0

 if (finished == 1) && (otherFinished == 0)

 spmdSend(finished,1,4) % send robot2done to robot 1 with tag 4

 spmdBarrier % barrier #1; communicate robot 2 has finished

before robot 1; wait for task remaining update from robot 1

 robot1onetaskleft = spmdReceive("any",5) % receive

robot1onetaskleft with tag 5

 % check status of one task remaining flag

 if robot1onetaskleft == 0

 disp("Robot 2: Receiving reallocated tasks from Robot 1")

124

 spmdBarrier % barrier #2; wait for robot 1 retask update

 retasked_segments = spmdReceive("any",1) % receive

robot1retask with tag 1

 % loop through the received reassigned tasks for complete

coverage

 for currentTask = 1:length(retasked_segments{2})

 % get local occupancy map and starting location of current

task

 [localMap, startXY] = poly2occgrid(polybox,

retasked_segments{2}(currentTask), rawMap, rob, cornerLoc, resolution);

 % convert starting location to IJ coordinates

 startIJ = world2grid(localMap,startXY);

 % call path planning algorithm to perform complete coverage

 figure;

[localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] =

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex});

 % determine the number of cleaned and uncleaned cells of

current task

 localOcc = occupancyMatrix(localMap);

 clean = clean+length(find((localOcc>.4)&(localOcc<.6)));

 unclean = unclean+length(find(localOcc<.1));

 % update simulation data

 tot_time = tot_time+time;

 tot_turnCount = tot_turnCount+turnCount;

 tot_overlap = tot_overlap+overlap;

 tot_pathLength = tot_pathLength+pathLength;

 % report cleaning progress

 fprintf('Robot %d: Reallocated Task %d complete\nProgress

%d of %d\n',

...spmdIndex,retasked_segments{2}(currentTask),currentTask,length(retasked_segments{2}))

 end

 else

 disp("Robot 2: Bypassing retask since 1 task remaining on Robot

1")

125

 end

 end

 spmdBarrier % barrier #0; wait for both robots to complete assigned

tasks

 catch

 disp("Both robots have finished at the same time")

 end

 end

 end

 else

 spmd

 if spmdIndex == 1

 disp('Robot 1: Cleaning in progress')

 deadlock_cntr{spmdIndex} = 0; % initialize variable on worker to count

the number of encountered deadlocks

 % loop through the assigned tasks for complete coverage

 for currentTask = 1:height(task_segments{spmdIndex})

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution);

 % convert starting location to IJ coordinates

 startIJ = world2grid(localMap,startXY);

 % call path planning algorithm to perform complete coverage

 figure;

 [localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] =

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex});

 % determine the number of cleaned and uncleaned cells of current task

 localOcc = occupancyMatrix(localMap);

 clean = clean+length(find((localOcc>.4)&(localOcc<.6)));

 unclean = unclean+length(find(localOcc<.1));

 % update simulation data

 tot_time = tot_time +time;

 tot_turnCount = tot_turnCount+turnCount;

 tot_overlap = tot_overlap+overlap;

 tot_pathLength = tot_pathLength+pathLength;

 % report cleaning progress

126

 fprintf('Robot %d: Task %d complete. Progress: %d of %d\n', ...

spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex}))

 end

 disp('Robot 1: Done') % report robot 1 has completed its assigned tasks

 spmdBarrier % barrier #0; wait for both robots to complete assigned tasks

 end

 if spmdIndex == 2

 disp('Robot 2: Cleaning in progress')

 deadlock_cntr{spmdIndex} = 0; % initialize variable on worker to count

the number of encountered deadlocks

 % loop through the assigned tasks for complete coverage

 for currentTask = 1:height(task_segments{spmdIndex})

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution);

 % convert starting location to IJ coordinates

 startIJ = world2grid(localMap,startXY);

 % call path planning algorithm to perform complete coverage

 figure;

 [localMap,time,turnCount,overlap,pathLength,deadlock_cntr{spmdIndex}] =

cleanRoomSimTest(localMap,startIJ,deadlock_cntr{spmdIndex});

 % determine the number of cleaned and uncleaned cells of current task

 localOcc = occupancyMatrix(localMap);

 clean = clean+length(find((localOcc>.4)&(localOcc<.6)));

 unclean = unclean+length(find(localOcc<.1));

 % update simulation data

 tot_time = tot_time +time;

 tot_turnCount = tot_turnCount+turnCount;

 tot_overlap = tot_overlap+overlap;

 tot_pathLength = tot_pathLength+pathLength;

 % report cleaning progress

 fprintf('Robot %d: Task %d complete\nProgress %d of %d\n', ...

 spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex}))

127

 end

 disp('Robot 2 done') % report robot 2 has completed its assigned tasks

 spmdBarrier % barrier #0; wait for both robots to complete assigned tasks

 end

 end

 end

 % display simualtion data

 runtime = [tot_time{:}];

 fprintf("Robot 1 simulation runtime: %.2fs",runtime(1))

 fprintf("Robot 2 simulation runtime: %.2fs",runtime(2))

 fprintf("Idle time: %.2fs",max(runtime)-min(runtime))

 retask = [reAllocateTasks{:}];

 if any(retask); fprintf("Tasks reallocated"); else; fprintf("Tasks not reallocated");

end

 fprintf("Robot 1 turn count: %d",tot_turnCount{1})

 fprintf("Robot 2 turn count: %d",tot_turnCount{2})

 fprintf("Robot 1 path length: %.2f",tot_pathLength{1})

 fprintf("Robot 2 path length: %.2f",tot_pathLength{2})

 fprintf("Robot 1 overlap: %d",tot_overlap{1})

 fprintf("Robot 2 overlap: %d",tot_overlap{2})

 covEff1 = clean{1} / (clean{1}+unclean{1});

 fprintf("Robot 1 coverage efficiency: %.2f%%",covEff1*100)

 covEff2 = clean{2} / (clean{2}+unclean{2});

 fprintf("Robot 2 coverage efficiency: %.2f%%",covEff2*100)

 covEff = (clean{1}+clean{2}) / (clean{1}+clean{2}+unclean{1}+unclean{2});

 fprintf("Total coverage efficiency: %.2f%%",covEff*100)

 deadlock = [deadlock_cntr{:}]; deadlock = cell2mat(deadlock);

 fprintf("Robot 1 deadlock events: %d",deadlock(1))

 fprintf("Robot 2 deadlock events: %d",deadlock(2))

 fprintf("Strategy planning algorithm runtime: %.2fs",programTime)

 fprintf("Number of triangles within mesh: %d",length(tri.list))

 fprintf("Number of tasks: %d",length(task_list))

 else

 disp("Current program can only account for 1 or 2 robots")

 end

128

end

II. roomStrategyReal

Setup

clearvars; close all; % clear all workspace variables and close all figures

% INPUT PARAMETERS

rob.size = 12; % distance from robot center to edge midpoint in IJ coordinates

rob.diag = 14; % distance from robot center to corner in IJ coordinates

min_triEdge = 2; % target minimum edge length for triangulation mesh

cornerLoc = 1; % desired starting location of path planning algorithm.

Valid values for this parameter are:

% 1 (farthest valid starting corner from polyshape centroid)

% 2 (closest valid starting corner from polyshape centroid)

% 3 (polyshape centroid)

editedPGM_path = "X"; % file path of post-edited lidar map in PGM format

numRobots = 1; % number of robots to be utilized in decomposed work area

% ADDITIONAL PARAMETERS

mergeTri = true; % false skip triangle merging, true perform triangle merging (default)

if mergeTri; minTri.base = .5; minTri.height = .5; end % minumum values for base and height

when determining triangles to merge

rosSetup = true; % false skip connecting to ROS network, true connect to ROS network (default)

% due to potential differences between the raw occupancy map origin and

% the default occupancy map origin in MATLAB (0,0), this difference can be

% corrected by importing the raw occupancy map

importRawMap = false; % false skip importing raw occupancy map (default), true import raw

occupancy map

wholeRoom = false; % false perform map decomposition (default), true do not perform map

decomposition

enableRetasking = true; % false do not reallocate tasks, true reallocate tasks (default)

129

resolution = 50; % occupancy map resolution in cells per meter

mergeRob.size = rob.size+3; % padded robot size to consider when identifying polygons to merge

mergeRob.diag = rob.diag+3; % padded robot diagonal length to consider when identifying

polygons to merge

% CONNECT TO ROS NETWORK

if rosSetup

 rosshutdown() % make sure any ROS sessions are closed

 rosinit("http://X.X.X.X:11311") % initialize ROS network and connect to host

end

% IMPORT RAW MAP

if importRawMap

 try

 % try to subscribe to /map topic and receive the sent message

 sub = rossubscriber("/map",DataFormat='struct');

 msg = receive(sub);

 % generate an occupancy map with the received map message

 rawMap = rosReadOccupancyGrid(msg);

 show(rawMap) % visually inspect the imported raw occupancy map

 catch

 % if unable to subscribe to /map topic, load raw map from local save

 savedMap = load('ros_occMap.mat');

 rawMap = savedMap.occupancyMapObj;

 show(rawMap); clear savedMap;

 end

else

 rawMap = [];

end

Image Processing

tic

editedPGM = imread(editedPGM_path); % load in pgm image of post edited lidar scan

% normalize the image to values between 0 and 1 then convert to occupancy

% values by subtracting from 1

editedMap_occ = 1 - double(editedPGM)/255;

% generate an occupancy map from the occupancy values

130

editedMap = occupancyMap(editedMap_occ,resolution);

show(editedMap) % visually inspect the generated occupancy map

% IDENTIFY EXTERIOR BOUNDARY AND INTERIOR OBSTACLE BOUNDARIES

[exteriorIJ, interiorIJ] = identifyBoundaries(editedPGM);

% determine if the exterior boundary has been misidentified as an interior obstacle,

% if so set the interior obstacle as the exterior boundary

obsNum = fieldnames(interiorIJ); % determine number of identified interior obstacles

if (length(exteriorIJ) < 10) && (numel(obsNum) == 1)

 % reduce the number of points describing the exterior boundary

 exteriorIJ = reducepoly(interiorIJ.obs1,.01);

 removeObs = 0; % do not remove interior obstacles

else

 removeObs = 1; % do remove interior obstacles

end

% convert the exterior boundary points from IJ to XY coordinates

exteriorXY = grid2world(editedMap,exteriorIJ);

% POLYSHAPE REPRESENTATION

% generate a polyshape of the room from the exterior boundary points

room = polyshape(exteriorXY(:,1),exteriorXY(:,2));

plot(room)

% if applicable, remove the identified interior obstacles from the room polyshape

if removeObs == 1

 for i = 1:numel(obsNum)

 % convert the identifed interior obstacles points from IJ to XY coordinates

 interiorXY = grid2world(editedMap,interiorIJ.(obsNum{i}));

 % reduce the number of points describing the obstacle

 reducedObs = reducepoly(interiorXY,.01);

 % generate a polyshape representing the obstacle

 obs = polyshape(reducedObs(:,1),reducedObs(:,2));

 % remove the obstacle polyshape from the room polyshape

 room = subtract(room,obs);

 end

 plot(room); % visually inspect the resulting polyshape

131

end

Map Decomposition

if wholeRoom

 programTime = toc;

 % set up ROS publishers

 localMap_pub = rospublisher("/localMap","nav_msgs/OccupancyGrid",DataFormat='struct');

 goal_pub = rospublisher("/goal","geometry_msgs/PoseStamped","DataFormat","struct");

 % set up ROS publisher messages

 localMap_msgType = rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct");

 goal = rosmessage("geometry_msgs/PoseStamped","DataFormat","struct");

 % set up ROS subscribers

 localMap_sub = rossubscriber("/map/local_coverage_map",DataFormat='struct');

 taskFlag_sub = rossubscriber("/taskFlag",'std_msgs/Int32');

 taskFlag = 0; % initialize task flag to 0

 % get occupancy map and starting location of room

 [localMap, startXY] = poly2occgrid(room, 0, rawMap, rob, cornerLoc, resolution);

 % format ROS messages

 localMap_msg = rosWriteOccupancyGrid(localMap_msgType,localMap);

 localMap_msg.Header.FrameId = 'map';

 goal.Header.FrameId = 'map';

 goal.Pose.Position.X = startXY(1,1);

 goal.Pose.Position.Y = startXY(1,2);

 heading = eul2quat([0,0,pi],'XYZ');

 goal.Pose.Orientation.W = heading(1);

 goal.Pose.Orientation.X = heading(2);

 goal.Pose.Orientation.Y = heading(3);

 goal.Pose.Orientation.Z = heading(4);

 % send ROS messages

 send(localMap_pub,localMap_msg)

 send(goal_pub,goal)

 % wait for flag to signal task complete

 while taskFlag ~= 1

 taskFlag_msg = receive(taskFlag_sub);

132

 taskFlag = taskFlag_msg.Data;

 end

 % receive cleaned map message

 localMap_msg = receive(localMap_sub);

 cleanedMap = rosReadOccupancyGrid(localMap_msg);

 show(cleanedMap)

 % determine the number of cleaned and uncleaned cells

 localOcc = occupancyMatrix(cleanedMap);

 clean = length(find((localOcc>.4)&(localOcc<.6)));

 unclean = length(find(localOcc<.1));

 % display data

 covEff = clean / (unclean+clean);

 fprintf("Coverage efficiency: %.2f%%",covEff*100)

 fprintf("Strategy planning algorithm runtime: %.2fs",programTime)

else

 % decompose polyshape using triangular mesh

 tri = triDecomposition(room, min_triEdge);

 % determine an initial optimal path passing through all triangle centroids using

 % Traveling Salesman Problem (TSP) algorithm

 [Gdir, tri.nodeList] = directedTSP(tri, room.Vertices);

 % overlay triangular mesh and identified optimal path on the edited map

 show(editedMap); hold on;

 plot(tri.shape)

 hGraph =

plot(Gdir,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2),'LineStyle','none','NodeLabel',{})

;

 highlight(hGraph,Gdir,'LineStyle','-')

 hold off

 if mergeTri

 % determine if a triangle needs to be merged

 tri2merge = identifyTri2merge(tri, minTri)

% MERGE IDENTIFIED TRIANGLES

 % configure waitbar to monitor merging process

 triWait = waitbar(0,'Initializing Merging Process','Name','Merging Triangles...',...

 'CreateCancelBtn','setappdata(gcbf,''canceling'',1)');

133

 % configure a cancel button on waitbar

 setappdata(triWait,'canceling',0);

 offset = 0; % counter to track the number of nodes removed from the original node list

 for i = 1:length(tri2merge)

 % check if cancel button has been pressed

 if getappdata(triWait,'canceling'); break; end

 % identify node to be merged by subtracting the offset from the current node value

 node2merge = tri2merge(i,1)-offset;

 % update waitbar and message

 waitbar(i/length(tri2merge),triWait,sprintf('Merging triangle %d of

%d',i,length(tri2merge)))

 % fprintf('%d\n',node2merge+offset) % display current node being merged

 % get current polygon connectivity

 Gtri = polyConn(tri.shape);

 % determine which neighboring node to merge with

 neighbor2merge = polyNeighbor(Gtri, node2merge, tri.shape);

 % merge neighbor node with current triangle node

 neighborTri = tri.shape(neighbor2merge);

 currentTri = tri.shape(node2merge);

 tri.shape(neighbor2merge) = union(neighborTri,currentTri); % save resulting

merged polygon to neighbor node index in shape list

 offset = offset+1; % increment offset value

 tri.shape(node2merge) = []; % remove merged triangle node from shape list

 end

 delete(triWait) % delete waitbar

 % get current polygon connectivity post merge

 Gtri = polyConn(tri.shape);

 % update centroid values of new polyshapes

 [x,y] = centroid(tri.shape);

 tri.centroid = [x;y]';

134

 % visually inspect polygon connectivity

 show(editedMap); hold on;

 plot(tri.shape)

 plot(Gtri,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2))

 hold off;

 % determine a final optimal path passing through all triangles using TSP algorithm

 [Gdir, tri.nodeList] = directedTSP(tri, room.Vertices);

 % visually inspect resulting TSP path

 show(editedMap); hold on;

 plot(tri.shape)

 hGraph =

plot(Gdir,'XData',tri.centroid(:,1),'YData',tri.centroid(:,2),'LineStyle','none');

 highlight(hGraph,Gdir,'LineStyle','-')

 hold off

 end

% GENERATE BOUNDING BOXES

 tri.nodeList(end,:) = []; % remove repeated node at end of node list

 % convert merged triangle polygons into bounding boxes

 for i = 1:length(tri.nodeList)

 % obtain bounding box XY limits

 [xlim,ylim] = boundingbox(tri.shape(tri.nodeList(i,1)));

 % identify min and max of XY limits

 xmin = min(xlim); xmax = max(xlim);

 ymin = min(ylim); ymax = max(ylim);

 % generate a polyshape of the bounding box and add to shape list

 polyMin = [xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax];

 polybox.shape(i) = polyshape(polyMin);

 end

 % determine centroid values of bounding boxes

 [x,y] = centroid(polybox.shape);

 polybox.centroid = [x;y]';

 % create a polyshape representing the area outside the room

 [xlim,ylim] = boundingbox(room);

135

 xmin = min(xlim); xmax = max(xlim);

 ymin = min(ylim); ymax = max(ylim);

 polyMin = polyshape([xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax]);

 roomOutside = subtract(polyMin,room);

 % plot(roomOutside)

% CLEAN UP BOUNDING BOXES

 % configure waitbar to monitor clean up process

 cleanWait = waitbar(0,'Initializing Clean Up Process','Name','Cleaning Up Bounding

Boxes...',...

 'CreateCancelBtn','setappdata(gcbf,''canceling'',1)');

 % configure a cancel button on waitbar

 setappdata(cleanWait,'canceling',0);

 % clean up bounding boxes by removing overlaps and areas outside the room

 figure; show(editedMap); hold on;

 offset = 0; % counter to track the number of bounding boxes removed from the original

shape list

 for i = 1:length(polybox.shape)-offset

 % check if cancel button has been pressed

 if getappdata(cleanWait,'canceling'); break; end

 % identify bounding box to be cleaned up by subtracting the offset from the current

index value

 polyIdx = i - offset;

 % update waitbar and message

 waitbar(i/length(polybox.shape)-offset,cleanWait,sprintf('Cleaning up bounding box %d

of %d',i,length(polybox.shape)-offset))

 % fprintf('%d\n',polyIdx+offset) % display current bounding box index being cleaned

 currentpoly = polybox.shape(polyIdx); % identify the current bounding box

 % determine the region of intersection (ROI) between the current bounding box

 % and the area outside the room then remove it from the current bounding box

 roomintsec = intersect(currentpoly,roomOutside);

 currentpoly = subtract(currentpoly,roomintsec);

 Gbox = polyConn(polybox.shape); % get current polygon connectivity

136

 % determine current bounding box neighbors

 [row,col] = find(Gbox.Edges.EndNodes==polyIdx);

 index = [row col]; neighbors = [];

 for j = 1:height(index)

 if index(j,2) == 1

 neighbors(j,1) = Gbox.Edges.EndNodes(index(j,1),2);

 elseif index(j,2) == 2

 neighbors(j,1) = Gbox.Edges.EndNodes(index(j,1),1);

 end

 end

 % remove current bounding box neighbor overlaps

 for k = 1:height(neighbors)

 % determine the ROI between current bounding box and neighbor

 polyintsec = intersect(currentpoly,polybox.shape(neighbors(k)));

 % check if the ROI is valid

 if height(polyintsec.Vertices) == 0

 continue;

 else

 % remove the ROI from the current bounding box if its area is

 % greater than the neighbor, else remove the ROI from the neighbor

 if area(currentpoly) > area(polybox.shape(neighbors(k)))

 currentpoly = subtract(currentpoly,polyintsec);

 else

 polybox.shape(neighbors(k)) =

subtract(polybox.shape(neighbors(k)),polyintsec);

 end

 end

 end

 % check if the current bounding box is valid following removal of neighbor overlaps

 if height(currentpoly.Vertices) == 0

 polybox.shape(polyIdx) = []; % remove current bounding box from list

 offset = offset+1; % increment offset counter by 1

 continue;

 else

 polybox.shape(polyIdx) = currentpoly; % save the cleaned up bounding box to the

original shape list index

 plot(currentpoly)

 end

 end

137

 hold off;

 delete(cleanWait) % delete waitbar

 % update centroid values of bounding boxes

 [x,y] = centroid(polybox.shape);

 polybox.centroid = [x;y]';

 % get current bounding box connectivity post clean up

 Gbox = polyConn(polybox.shape);

 % visually inspect bounding box connectivity

 figure; show(editedMap); hold on;

 plot(polybox.shape)

 plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2))

 hold off;

% PREPARE AND IDENTIFY BOUNDING BOXES TO MERGE

 % identify any slivers formed during the clean up process

 for i = 1:length(polybox.shape)

 currentpoly = polybox.shape(i); % identify current bounding box

 polynosliver = rmslivers(currentpoly,.05); % remove any slivers from current bounding

box

 polysliver = subtract(currentpoly,polynosliver); % save the polyshape consisting of

the removed slivers

 % check if the removed slivers polyshape is valid, if so append to end

 % of shape list

 if height(polysliver.Vertices) == 0

 continue;

 else

 polybox.shape(1,end+1) = polysliver;

 end

 % check if the polygon with slivers removed is valid, if so save

 % to the original polygon index

 if height(polynosliver.Vertices) == 0

 continue;

 else

 polybox.shape(i) = polynosliver;

 end

 end

138

 % ensure that each polygon has one region

 for i = 1:length(polybox.shape)

 % if multiple regions are identifed, append these regions to polygon list

 if polybox.shape(i).NumRegions > 1

 polyRegions = regions(polybox.shape(i));

 for j = 1:length(polyRegions)

 % check if the polygon region is valid

 if height(polyRegions(j).Vertices) == 0

 continue;

 % save the first region to the original polygon index

 elseif j == 1

 polybox.shape(i) = polyRegions(1);

 % append following regions to end of shape list

 else

 polybox.shape(end+1) = polyRegions(j);

 end

 end

 end

 end

 % update centroid values

 [x,y] = centroid(polybox.shape);

 polybox.centroid = [x;y]';

 % get current polygon connectivity

 Gbox = polyConn(polybox.shape);

 % visually inspect polygon connectivity

 figure;

 show(editedMap); hold on;

 plot(polybox.shape)

 plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2))

 hold off;

 % determine an optimal path passing through all polygons using TSP algorithm

 [~, polybox.nodeList] = directedTSP(polybox, room.Vertices);

 % identify the polygons that need to be merged

 box2merge = identifyBox2merge(mergeRob, polybox, editedMap);

139

% MERGE BOUNDING BOXES

 % configure waitbar to monitor merging process

 boxWait = waitbar(0,'Initializing Merging Process','Name','Merging Bounding Boxes...',...

 'CreateCancelBtn','setappdata(gcbf,''canceling'',1)');

 % configure a cancel button on waitbar

 setappdata(boxWait,'canceling',0);

 offset = 0; % counter to track the number of nodes removed from the original node list

 for j = 1:length(box2merge)

 % check if cancel button has been pressed

 if getappdata(boxWait,'canceling'); break; end

 % identify node to be merged by subtracting the offset from the current node value

 node = box2merge(j,1)-offset;

 % update waitbar and message

 waitbar(j/length(box2merge),boxWait,sprintf('Merging polygon %d of

%d',j,length(box2merge)))

 % fprintf('%d\n',node+offset) % display current node being merged

 Gbox = polyConn(polybox.shape); % get current polygon connectivity

 try

 % determine which neighbor to merge with

 neighbor2merge = polyNeighbor(Gbox, node, polybox.shape);

 % merge neighbor with current node

 polybox.shape(neighbor2merge) =

union(polybox.shape(neighbor2merge),polybox.shape(node));

 offset = offset+1; % increment offset value

 polybox.shape(node) = []; % remove merged node from shape list

 catch

 fprintf('Node %d has no identified neighbors',node+offset)

 offset = offset+1; % increment offset value

 polybox.shape(node) = []; % remove neighborless node from shape list

 end

 end

 delete(boxWait) % delete waitbar

140

% FINALIZE RESULTING POLYGONS

 % ensure that each polygon has one region and no unnecessary holes

 for i = 1:length(polybox.shape)

 % if multiple regions are identifed, create a bounding box to merge them together

 if polybox.shape(i).NumRegions > 1 || polybox.shape(i).NumHoles >= 1

 currentpoly = polybox.shape(i); % identify the current polygon

 % obtain bounding box XY limits

 [xlim,ylim] = boundingbox(currentpoly);

 % identify min and max of XY limits

 xmin = min(xlim); xmax = max(xlim);

 ymin = min(ylim); ymax = max(ylim);

 % generate a polyshape of the bounding box and replace the current

 % polygon with the bounding box

 polyMin = [xmin,ymin;xmax,ymin;xmax,ymax;xmin,ymax];

 currentpoly = polyshape(polyMin);

 % identify and remove any areas of the current polygon outside the room

 roomintsec = intersect(currentpoly,roomOutside);

 currentpoly = subtract(currentpoly,roomintsec);

 % remove any overlaps between other polyshapes

 for before = 1:i-1

 currentpoly = subtract(currentpoly,polybox.shape(before));

 end

 for after = i+1:length(polybox.shape)

 currentpoly = subtract(currentpoly,polybox.shape(after));

 end

 % remove any resulting slivers

 currentpoly = rmslivers(currentpoly,.05);

 % save the edited polygon to the original polygon index

 polybox.shape(i) = currentpoly;

 end

 end

 % update centroid values

 [x,y] = centroid(polybox.shape);

141

 polybox.centroid = [x;y]';

 % get current polygon connectivity

 Gbox = polyConn(polybox.shape);

 % visually inspect polygon connectivity

 figure; show(editedMap); hold on;

 plot(polybox.shape)

 plot(Gbox,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2))

 hold off;

 % determine a final optimal path passing through all polygons using TSP algorithm

 [Gdir, polybox.nodeList] = directedTSP(polybox, room.Vertices);

 % visually inspect the generated optimal path

 figure; show(editedMap); hold on;

 plot(polybox.shape)

 hGraph =

plot(Gdir,'XData',polybox.centroid(:,1),'YData',polybox.centroid(:,2),'LineStyle','none');

 highlight(hGraph,Gdir,'LineStyle','-')

 hold off

 programTime = toc; % record strategy planning algorithm runtime

 % if the number of robots is 1 assign all tasks to one robot

 if numRobots == 1

 % set up ROS publishers

 localMap_pub = rospublisher("/localMap","nav_msgs/OccupancyGrid",DataFormat='struct');

 goal_pub = rospublisher("/goal","geometry_msgs/PoseStamped","DataFormat","struct");

 stopFlag_pub = rospublisher("/stop",'std_msgs/Int32');

 % set up ROS publisher messages

 localMap_msgType = rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct");

 goal = rosmessage("geometry_msgs/PoseStamped","DataFormat","struct");

 stopFlag = rosmessage(stopFlag_pub);

 stopFlag.Data = 0; % initialize stop flag to 0

 send(stopFlag_pub,stopFlag) % send stop flag status

 % set up ROS subscribers

 localMap_sub = rossubscriber("/map/local_coverage_map",DataFormat='struct');

 taskFlag_sub = rossubscriber("/taskFlag",'std_msgs/Int32');

 taskFlag = 0; % initialize task flag to 0

142

 % loop through each task for complete coverage

 for i = 1:length(polybox.shape)

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox, i, rawMap, rob, cornerLoc, resolution);

 % format ROS messages

 localMap_msg = rosWriteOccupancyGrid(localMap_msgType,localMap);

 localMap_msg.Header.FrameId = 'map';

 goal.Header.FrameId = 'map';

 goal.Pose.Position.X = startXY(1,1);

 goal.Pose.Position.Y = startXY(1,2);

 heading = eul2quat([0,0,pi],'XYZ');

 goal.Pose.Orientation.W = heading(1);

 goal.Pose.Orientation.X = heading(2);

 goal.Pose.Orientation.Y = heading(3);

 goal.Pose.Orientation.Z = heading(4);

 % send ROS messages

 send(localMap_pub,localMap_msg)

 send(goal_pub,goal)

 % wait for flag to signal task complete

 while taskFlag ~= 1

 taskFlag_msg = receive(taskFlag_sub);

 taskFlag = taskFlag_msg.Data;

 end

 % receive cleaned map message

 localMap_msg = receive(localMap_sub);

 cleanedMap = rosReadOccupancyGrid(localMap_msg);

 show(cleanedMap)

 % determine the number of cleaned and uncleaned cells of current task

 localOcc = occupancyMatrix(cleanedMap);

 clean(i,1) = length(find((localOcc>.4)&(localOcc<.6)));

 unclean(i,1) = length(find(localOcc<.1));

 taskFlag = 0; % reset task flag to 0

 end

143

 stopFlag.Data = 1; % set stop flag to 1 to signal all tasks complete

 send(stopFlag_pub,stopFlag) % send stop flag status

 % display data

 covEff = sum(clean) / (sum(unclean)+sum(clean));

 fprintf("Coverage efficiency: %.2f%%",covEff*100)

 fprintf("Strategy planning algorithm runtime: %.2fs",programTime)

Task Allocation

 elseif numRobots == 2

 task_list = polybox.nodeList(:,1); % assign the node list first column to the task list

 task_list(end,:) = []; % remove the repeated node at bottom of list

 % divide the task list into segments according to the number of robots

 task_segments = allocateTasks(task_list, numRobots)

 delete(gcp('nocreate')); % end any background parallel pool processes

 parpool(2); % start a parallel pool process

 % tag naming reference

 % tag 1 -> robot1retask

 % tag 2 -> robot2retask

 % tag 3 -> robot1done

 % tag 4 -> robot2done

 % tag 5 -> robot1onetaskleft

 % tag 6 -> robot2onetaskleft

 % set flag variables

 finished = 0;

 otherFinished = 0;

 reAllocateTasks = 0;

 robot1onetaskleft = 0;

 robot2onetaskleft = 0;

 % initialize simulation data variables

 tot_time = 0;

 tot_turnCount = 0;

 tot_overlap = 0;

 tot_pathLength = 0;

 clean = 0;

 unclean = 0;

144

 if enableRetasking

 spmd

 if spmdIndex == 1

 try

 disp('Robot 1: Cleaning in progress')

 % set ROS node constant

 nodeConstant{spmdIndex} =

parallel.pool.Constant(ros.Node('/Robot1',"http://X.X.X.X:11311"));

 % set ROS publisher constants

 map_pubConstant{spmdIndex} =

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/localMapRobot1',"nav_msgs/O

ccupancyGrid","DataFormat","struct"));

 goal_pubConstant{spmdIndex} =

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/goalRobot1',"geometry_msgs/

PoseStamped","DataFormat","struct"));

 % set ROS message types

 map_msgType{spmdIndex} =

rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct");

 goal{spmdIndex} =

rosmessage("geometry_msgs/PoseStamped","DataFormat","struct");

 % loop through the assigned tasks for complete coverage

 for currentTask = 1:height(task_segments{spmdIndex})

 % check if any message received from other robot

 if spmdProbe

 otherFinished = spmdReceive('any',4) % receive robot2done

with tag 4

 % check if the received message indicates the other robot has

finished

 if otherFinished == 1

 disp('Robot 1: Robot 2 has finished')

 % check if the number of remaining tasks is greater than 1

 if (height(task_segments{spmdIndex}) - currentTask) > 1

 reAllocateTasks = 1; % set reAllocateTasks flag to 1

 robot1onetaskleft = 0; % set robot1onetaskleft flag to

0

145

 spmdSend(robot1onetaskleft,2,5) % send

robot1onetaskleft to robot 2 with tag 5

 spmdBarrier % barrier #1; update robot 2 there is

more than 1 task remaining for robot 1

 break; % break out of current loop

 else

 disp("Robot 1: 1 task remaining")

 robot1onetaskleft = 1; % set robot1onetaskleft to 1

 spmdSend(robot1onetaskleft,2,5) % send

robot1onetaskleft to robot 2 with tag 5

 spmdBarrier % barrier #1; update robot 2 there is 1

task remaining for robot 1

 end

 end

 end

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution);

 % set ROS messages

 map_msg{spmdIndex} =

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap);

 goal{spmdIndex}.Header.FrameId = 'map';

 goal{spmdIndex}.Pose.Position.X = startXY(1,1);

 goal{spmdIndex}.Pose.Position.Y = startXY(1,2);

 heading = eul2quat([0,0,pi],'XYZ');

 goal{spmdIndex}.Pose.Orientation.W = heading(1);

 goal{spmdIndex}.Pose.Orientation.X = heading(2);

 goal{spmdIndex}.Pose.Orientation.Y = heading(3);

 goal{spmdIndex}.Pose.Orientation.Z = heading(4);

 % send ROS messages

 send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex})

 send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex})

 % report cleaning progress

 fprintf('Robot %d: Task %d complete. Progress: %d of %d\n', ...

 spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex}))

 end

146

 % enter this code block if the reAllocateTasks flag is set to 1

 if reAllocateTasks

 % report task reallocation is occurring and task stopped on

 fprintf('Robot %d: Reallocating tasks. Stopped on Task %d\n', ...

 spmdIndex,task_segments{spmdIndex}(currentTask))

 % remove already completed tasks from current task list

 for i = 1:currentTask-1

 task_segments{spmdIndex}(1,:) = [];

 end

 % reallocate remaining tasks

 retasked_segments =

allocateTasks(task_segments{spmdIndex},num_robots)

 spmdSend(retasked_segments,2,1) % send robot1retask to robot 2

with tag 1

 spmdBarrier % barrier #2; send robot 1 retask to robot 2 and wait

 % loop through the reassigned tasks for complete coverage

 for currentTask = 1:length(retasked_segments{1})

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

retasked_segments{1}(currentTask), rawMap, rob, cornerLoc, resolution);

 % set ROS messages

 map_msg{spmdIndex} =

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap);

 goal{spmdIndex}.Header.FrameId = 'map';

 goal{spmdIndex}.Pose.Position.X = startXY(1,1);

 goal{spmdIndex}.Pose.Position.Y = startXY(1,2);

 heading = eul2quat([0,0,pi],'XYZ');

 goal{spmdIndex}.Pose.Orientation.W = heading(1);

 goal{spmdIndex}.Pose.Orientation.X = heading(2);

 goal{spmdIndex}.Pose.Orientation.Y = heading(3);

 goal{spmdIndex}.Pose.Orientation.Z = heading(4);

 % send ROS messages

 send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex})

147

 send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex})

 % report cleaning progress

 fprintf('Robot %d: Reallocated Task %d complete\nProgress: %d

of %d\n', ...

spmdIndex,retasked_segments{1}(currentTask),currentTask,length(retasked_segments{1}))

 end

 end

 finished = 1; % set finished flag to 1

 disp('Robot 1: Done') % report robot 1 has completed its assigned

tasks

 % enter this code block if the finished flag is set to 1 and the

otherFinished flag is set to 0

 if (finished == 1) && (otherFinished == 0)

 spmdSend(finished,2,3) % send robot1done to robot 2 with tag 3

 spmdBarrier % barrier #3; communicate robot 1 has finished

before robot 2; wait for task remaining update from robot 1

 robot2onetaskleft = spmdReceive("any",6) % receive2onetaskleft

with tag 6

 % check status of one task remaining flag

 if robot2onetaskleft == 0

 disp("Robot 1: Receiving reallocated tasks from Robot 2")

 spmdBarrier % barrier #4; wait for robot 2 retask update

 retasked_segments = spmdReceive("any",2) % receive

robot2retask with tag 2

 % loop through the received reassigned tasks for complete

coverage

 for currentTask = 1:length(retasked_segments{2})

 % get local occupancy map and starting location of current

task

 [localMap, startXY] = poly2occgrid(polybox,

retasked_segments{2}(currentTask), rawMap, rob, cornerLoc, resolution);

 % set ROS messages

148

 map_msg{spmdIndex} =

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap);

 goal{spmdIndex}.Header.FrameId = 'map';

 goal{spmdIndex}.Pose.Position.X = startXY(1,1);

 goal{spmdIndex}.Pose.Position.Y = startXY(1,2);

 heading = eul2quat([0,0,pi],'XYZ');

 goal{spmdIndex}.Pose.Orientation.W = heading(1);

 goal{spmdIndex}.Pose.Orientation.X = heading(2);

 goal{spmdIndex}.Pose.Orientation.Y = heading(3);

 goal{spmdIndex}.Pose.Orientation.Z = heading(4);

 % send ROS messages

 send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex})

 send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex})

 % report cleaning progress

 fprintf('Robot %d: Reallocated Task %d complete\nProgress:

%d of %d\n', ...

spmdIndex,retasked_segments{2}(currentTask),currentTask,length(retasked_segments{2}))

 end

 else

 disp("Robot 1: Bypassing retask since 1 task remaining on Robot

2")

 end

 end

 spmdBarrier % barrier #0; wait for both robots to complete assigned

tasks

 catch

 disp("Both robots have finished at the same time")

 end

 end

 if spmdIndex == 2

 try

 disp('Robot 2: Cleaning in progress')

 % set ROS node constant

 nodeConstant{spmdIndex} =

parallel.pool.Constant(ros.Node('/Robot2',"http://X.X.X.X:11311"));

 % set ROS publisher constants

149

 map_pubConstant{spmdIndex} =

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/localMapRobot2',"nav_msgs/O

ccupancyGrid","DataFormat","struct"));

 goal_pubConstant{spmdIndex} =

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/goalRobot2',"geometry_msgs/

PoseStamped","DataFormat","struct"));

 % set ROS message types

 map_msgType{spmdIndex} =

rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct");

 goal{spmdIndex} =

rosmessage("geometry_msgs/PoseStamped","DataFormat","struct");

 % loop through the assigned tasks for complete coverage

 for currentTask = 1:height(task_segments{spmdIndex})

 % check if any message received from other robot

 if spmdProbe

 otherFinished = spmdReceive("any",3) % receive robot1done

with tag 3

 % check if the received message indicates the other robot has

finished

 if otherFinished == 1

 disp('Robot 2: Robot 1 has finished')

 % check if the number of remaining tasks is greater than 1

 if (height(task_segments{spmdIndex}) - currentTask) > 1

 reAllocateTasks = 1; % set reAllocateTasks flag to 1

 robot2onetaskleft = 0; % set robot2onetaskleft flag to

0

 spmdSend(robot2onetaskleft,1,6) % send

robot2onetaskleft to robot 1 with tag 6

 spmdBarrier % barrier #3; update robot 1 there is

more than 1 task remaining for robot 2

 break;

 else

 disp("Robot 2: 1 task remaining")

 robot2onetaskleft = 1; % set robot1onetaskleft to 1

 spmdSend(robot2onetaskleft,1,6) % send

robot2onetaskleft to robot 1 with tag 6

 spmdBarrier % barrier #3; update robot 1 there is 1

task remianing for robot 2

150

 end

 end

 end

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution);

 % set ROS messages

 map_msg{spmdIndex} =

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap);

 goal{spmdIndex}.Header.FrameId = 'map';

 goal{spmdIndex}.Pose.Position.X = startXY(1,1);

 goal{spmdIndex}.Pose.Position.Y = startXY(1,2);

 heading = eul2quat([0,0,pi],'XYZ');

 goal{spmdIndex}.Pose.Orientation.W = heading(1);

 goal{spmdIndex}.Pose.Orientation.X = heading(2);

 goal{spmdIndex}.Pose.Orientation.Y = heading(3);

 goal{spmdIndex}.Pose.Orientation.Z = heading(4);

 % send ROS messages

 send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex})

 send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex})

 % report cleaning progress

 fprintf('Robot %d: Task %d complete\nProgress %d of %d\n', ...

 spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex}))

 end

 % enter this code block if the reAllocateTasks flag is set to 1

 if reAllocateTasks

 % report task reallocation is occurring and task stopped on

 fprintf('Robot %d: Reallocating tasks. Stopped on Task %d\n', ...

 spmdIndex,task_segments{spmdIndex}(currentTask))

 % remove already completed tasks from current task list

 for i = 1:currentTask-1

 task_segments{spmdIndex}(1,:) = []; % remove already

completed tasks

 end

151

 % reallocate remaining tasks

 retasked_segments =

allocateTasks(task_segments{spmdIndex},num_robots)

 spmdSend(retasked_segments,1,2) % send robot2retask to robot 1

with tag 2

 spmdBarrier % barrier #4; send robot 2 retask to robot 1 and

wait

 % loop through the reassigned tasks for complete coverage

 for currentTask = 1:length(retasked_segments{1})

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

retasked_segments{1}(currentTask), rawMap, rob, cornerLoc, resolution);

 % set ROS messages

 map_msg{spmdIndex} =

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap);

 goal{spmdIndex}.Header.FrameId = 'map';

 goal{spmdIndex}.Pose.Position.X = startXY(1,1);

 goal{spmdIndex}.Pose.Position.Y = startXY(1,2);

 heading = eul2quat([0,0,pi],'XYZ');

 goal{spmdIndex}.Pose.Orientation.W = heading(1);

 goal{spmdIndex}.Pose.Orientation.X = heading(2);

 goal{spmdIndex}.Pose.Orientation.Y = heading(3);

 goal{spmdIndex}.Pose.Orientation.Z = heading(4);

 % send ROS messages

 send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex})

 send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex})

 % report cleaning progress

 fprintf('Robot %d: Reallocated Task %d complete\nProgress %d of

%d\n', ...

spmdIndex,retasked_segments{1}(currentTask),currentTask,length(retasked_segments{1}))

 end

 end

 finished = 1; % set finished flag to 1

152

 disp('Robot 2 done') % report robot 2 has completed its assigned

tasks

 % enter this code block if the finished flag is set to 1 and the

otherFinished flag is set to 0

 if (finished == 1) && (otherFinished == 0)

 spmdSend(finished,1,4) % send robot2done to robot 1 with tag 4

 spmdBarrier % barrier #1; communicate robot 2 has finished

before robot 1; wait for task remaining update from robot 1

 robot1onetaskleft = spmdReceive("any",5) % receive

robot1onetaskleft with tag 5

 % check status of one task remaining flag

 if robot1onetaskleft == 0

 disp("Robot 2: Receiving reallocated tasks from Robot 1")

 spmdBarrier % barrier #2; wait for robot 1 retask update

 retasked_segments = spmdReceive("any",1) % receive

robot1retask with tag 1

 % loop through the received reassigned tasks for complete

coverage

 for currentTask = 1:length(retasked_segments{2})

 % get local occupancy map and starting location of current

task

 [localMap, startXY] = poly2occgrid(polybox,

retasked_segments{2}(currentTask), rawMap, rob, cornerLoc, resolution);

 % set ROS messages

 map_msg{spmdIndex} =

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap);

 goal{spmdIndex}.Header.FrameId = 'map';

 goal{spmdIndex}.Pose.Position.X = startXY(1,1);

 goal{spmdIndex}.Pose.Position.Y = startXY(1,2);

 heading = eul2quat([0,0,pi],'XYZ');

 goal{spmdIndex}.Pose.Orientation.W = heading(1);

 goal{spmdIndex}.Pose.Orientation.X = heading(2);

153

 goal{spmdIndex}.Pose.Orientation.Y = heading(3);

 goal{spmdIndex}.Pose.Orientation.Z = heading(4);

 % send ROS messages

 send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex})

 send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex})

 % report cleaning progress

 fprintf('Robot %d: Reallocated Task %d complete\nProgress

%d of %d\n', ...

spmdIndex,retasked_segments{2}(currentTask),currentTask,length(retasked_segments{2}))

 end

 else

 disp("Robot 2: Bypassing retask since 1 task remaining on Robot

1")

 end

 end

 spmdBarrier % barrier #0; wait for both robots to complete assigned

tasks

 catch

 disp("Both robots have finished at the same time")

 end

 end

 end

 else

 spmd

 if spmdIndex == 1

 disp('Robot 1: Cleaning in progress')

 % set ROS node constant

 nodeConstant{spmdIndex} =

parallel.pool.Constant(ros.Node('/Robot1',"http://X.X.X.X:11311"));

 % set ROS publisher constants

 map_pubConstant{spmdIndex} =

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/localMapRobot1',"nav_msgs/O

ccupancyGrid","DataFormat","struct"));

 goal_pubConstant{spmdIndex} =

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/goalRobot1',"geometry_msgs/

PoseStamped","DataFormat","struct"));

 % set ROS message types

154

 map_msgType{spmdIndex} =

rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct");

 goal{spmdIndex} =

rosmessage("geometry_msgs/PoseStamped","DataFormat","struct");

 % loop through the assigned tasks for complete coverage

 for currentTask = 1:height(task_segments{spmdIndex})

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution);

 % set ROS messages

 map_msg{spmdIndex} =

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap);

 goal{spmdIndex}.Header.FrameId = 'map';

 goal{spmdIndex}.Pose.Position.X = startXY(1,1);

 goal{spmdIndex}.Pose.Position.Y = startXY(1,2);

 heading = eul2quat([0,0,pi],'XYZ');

 goal{spmdIndex}.Pose.Orientation.W = heading(1);

 goal{spmdIndex}.Pose.Orientation.X = heading(2);

 goal{spmdIndex}.Pose.Orientation.Y = heading(3);

 goal{spmdIndex}.Pose.Orientation.Z = heading(4);

 % send ROS messages

 send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex})

 send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex})

 % report cleaning progress

 fprintf('Robot %d: Task %d complete. Progress: %d of %d\n', ...

spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex}))

 end

 disp('Robot 1: Done') % report robot 1 has completed its assigned tasks

 spmdBarrier % barrier #0; wait for both robots to complete assigned tasks

 end

 if spmdIndex == 2

 disp('Robot 2: Cleaning in progress')

 % set ROS node constant

155

 nodeConstant{spmdIndex} =

parallel.pool.Constant(ros.Node('/BK',"http://192.168.8.178:11311"));

 % set ROS publisher constants

 map_pubConstant{spmdIndex} =

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/localMapBK',"nav_msgs/Occup

ancyGrid","DataFormat","struct"));

 goal_pubConstant{spmdIndex} =

parallel.pool.Constant(ros.Publisher(nodeConstant{spmdIndex}.Value,'/goalBK',"geometry_msgs/Pose

Stamped","DataFormat","struct"));

 % set ROS message types

 map_msgType{spmdIndex} =

rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct");

 goal{spmdIndex} =

rosmessage("geometry_msgs/PoseStamped","DataFormat","struct");

 % loop through the assigned tasks for complete coverage

 for currentTask = 1:height(task_segments{spmdIndex})

 % get local occupancy map and starting location of current task

 [localMap, startXY] = poly2occgrid(polybox,

task_segments{spmdIndex}(currentTask), rawMap, rob, cornerLoc, resolution);

 % set ROS messages

 map_msg{spmdIndex} =

rosWriteOccupancyGrid(map_msgType{spmdIndex},localMap);

 goal{spmdIndex}.Header.FrameId = 'map';

 goal{spmdIndex}.Pose.Position.X = startXY(1,1);

 goal{spmdIndex}.Pose.Position.Y = startXY(1,2);

 heading = eul2quat([0,0,pi],'XYZ');

 goal{spmdIndex}.Pose.Orientation.W = heading(1);

 goal{spmdIndex}.Pose.Orientation.X = heading(2);

 goal{spmdIndex}.Pose.Orientation.Y = heading(3);

 goal{spmdIndex}.Pose.Orientation.Z = heading(4);

 % send ROS messages

 send(map_pubConstant{spmdIndex}.Value,map_msg{spmdIndex})

 send(goal_pubConstant{spmdIndex}.Value,goal{spmdIndex})

 % report cleaning progress

156

 fprintf('Robot %d: Task %d complete\nProgress %d of %d\n', ...

 spmdIndex,task_segments{spmdIndex}(currentTask),currentTask,length(task_segments{spmdIndex}))

 end

 disp('Robot 2 done') % report robot 2 has completed its assigned tasks

 spmdBarrier % barrier #0; wait for both robots to complete assigned tasks

 end

 end

 end

 else

 disp("Current program can only account for 1 or 2 robots")

 end

end

157

APPENDIX C: REQUIRED FUNCTIONS

I. allocateTasks

function task_segments = allocateTasks(task_list, numRobots)

% due to limitations of the below process with 3 tasks divided between 2

% robots, check if the number of tasks is equal to 3

if height(task_list) == 3

 task_segments = {task_list(1:2,:)}; % assign tasks 1 and 2 to segment 1

 task_segments(2,:) = {task_list(3,:)}; % assign task 3 to segment 2

else

 % calculate the number of tasks per segment and round down to the nearest integer

 num_task_per_segment = fix(height(task_list)/numRobots);

 % calculate the number of segments with an equal number of tasks and

 % round down to the nearest integer

 num_equal_segments = fix(height(task_list)/num_task_per_segment);

 % generate an array of ones with length equivalent to the number of equal

 % segments and multiply each array element by the number of task per segment

 segment_array = num_task_per_segment*ones(1,num_equal_segments);

 % determine the number of remaining tasks

 rem_tasks = rem(height(task_list),num_task_per_segment);

 % for each remaining task, increase the number of tasks within the

 % current segment index by 1

 for i = 1:rem_tasks

 segment_array(i) = segment_array(i)+1;

 end

 % convert the task list matrix to a cell array

 task_segments = mat2cell(task_list,segment_array,1);

end

% for every other task segment, flip the task order

for i = 1:length(task_segments)

 if mod(i,2) == 1, continue; else, task_segments{i} = flip(task_segments{i}); end

end

end

158

II. directedTSP

function [Gdir,nodeList] = directedTSP(poly, roomOutline)

%%% MATLAB TSP Solver Based Example Code with some edits %%%

centroidx = poly.centroid(:,1);

centroidy = poly.centroid(:,2);

x = roomOutline(:,1);

y = roomOutline(:,2);

% calculate distances between points

num_points = length(poly.centroid);

idxs = nchoosek(1:num_points,2);

dist = hypot(centroidy(idxs(:,1)) - centroidy(idxs(:,2)), ...

 centroidx(idxs(:,1)) - centroidx(idxs(:,2)));

lendist = length(dist);

% create and draw graph

G = graph(idxs(:,1),idxs(:,2));

figure

hGraph = plot(G,'XData',centroidx,'YData',centroidy,'LineStyle','none','NodeLabel',{});

hold on

% Draw the outside border

plot(x,y,'r-')

hold off

% Constraints

Aeq = spalloc(num_points,length(idxs),num_points*(num_points-1)); % Allocate a sparse matrix

for ii = 1:num_points

 whichIdxs = (idxs == ii); % Find the trips that include stop ii

 whichIdxs = sparse(sum(whichIdxs,2)); % Include trips where ii is at either end

 Aeq(ii,:) = whichIdxs'; % Include in the constraint matrix

end

beq = 2*ones(num_points,1);

% Binary bounds

intcon = 1:lendist;

lb = zeros(lendist,1);

ub = ones(lendist,1);

% Optimize using intlinprog

opts = optimoptions('intlinprog','Display','off');

159

[x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,[],[],Aeq,beq,lb,ub,opts);

x_tsp = logical(round(x_tsp));

Gsol = graph(idxs(x_tsp,1),idxs(x_tsp,2),[],numnodes(G));

% Visualize solution

hold on

highlight(hGraph,Gsol,'LineStyle','-')

title('Solution with Subtours')

% subtour constraints

tourIdxs = conncomp(Gsol);

numtours = max(tourIdxs); % Number of subtours

fprintf('# of subtours: %d\n',numtours);

A = spalloc(0,lendist,0); % Allocate a sparse linear inequality constraint matrix

b = [];

while numtours > 1 % Repeat until there is just one subtour

 % Add the subtour constraints

 b = [b;zeros(numtours,1)]; % allocate b

 A = [A;spalloc(numtours,lendist,num_points)]; % A guess at how many nonzeros to allocate

 for ii = 1:numtours

 rowIdx = size(A,1) + 1; % Counter for indexing

 subTourIdx = find(tourIdxs == ii); % Extract the current subtour

 % The next lines find all of the variables associated with the

 % particular subtour, then add an inequality constraint to prohibit

 % that subtour and all subtours that use those stops.

 variations = nchoosek(1:length(subTourIdx),2);

 for jj = 1:length(variations)

 whichVar = (sum(idxs==subTourIdx(variations(jj,1)),2)) & ...

 (sum(idxs==subTourIdx(variations(jj,2)),2));

 A(rowIdx,whichVar) = 1;

 end

 b(rowIdx) = length(subTourIdx) - 1; % One less trip than subtour stops

 end

 % Try to optimize again

 [x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,A,b,Aeq,beq,lb,ub,opts);

 x_tsp = logical(round(x_tsp));

 Gsol = graph(idxs(x_tsp,1),idxs(x_tsp,2),[],numnodes(G));

 % Visualize result

 hGraph.LineStyle = 'none'; % Remove the previous highlighted path

 highlight(hGraph,Gsol,'LineStyle','-')

160

 drawnow

 % How many subtours this time?

 tourIdxs = conncomp(Gsol);

 numtours = max(tourIdxs); % number of subtours

 fprintf('# of subtours: %d\n',numtours)

end

title('Solution with Subtours Eliminated');

hold off

disp(output.absolutegap)

%%% End MATLAB code %%%

% convert outputted undirected graph Gsol edge table to array

Esol = Gsol.Edges;

Esol_array = table2array(Esol);

% separate undirected edge array into source and target nodes

s_undir = Esol_array(:,1);

t_undir = Esol_array(:,2);

% create a directed graph to be manipulated later from undirected source

% and target nodes

Gdir = digraph(s_undir,t_undir);

% figure; plot(Gdir,'Layout','force'); % visualize arrows pointing in different directions

% extract directed graph Gdir edge table and convert to array

Edir = Gdir.Edges; % observe that 1 source node can point to multiple targe nodes

Edir_array = table2array(Edir);

% define initial conditions for following loop

current_node = s_undir(1,1); % starting node

nodeList = [current_node... % array to track node path with starting node set

 poly.centroid(current_node,1)...

 poly.centroid(current_node,2)];

nodeList_idx = 2; % index value for node path

% set to position 2 given starting node is in positon 1

% iterate through directed edge array Edir_array such that each source node

% points to only 1 target node

while length(nodeList) <= length(Edir_array)

161

 [row,col] = find(Edir_array==current_node); % locate the indices of the current node wihin

the edge array

 index = [row col]; % horizontally concatenate row and col vars into one 2x2 index variable

 % read by row, col 1 value denotes the corresponding edge within the array

 % the current node belongs to

 % col 2 value denotes whether the current node is the source (1) or

 % target (2) node of the edge (source -> target)

 % if the current node is a first edge target AND is not in the source

 % node column, flip the second edge such that the current node is now

 % the second edge source

 if (index(1,2)==2) && (~ismember(Edir_array(index(2,1)),nodeList(:,1)))

 Gdir = flipedge(Gdir,index(2,1)); % flip second edge direction

 Edir_updated = table2array(Gdir.Edges); % update array with new flipped edge

 Edir_array = Edir_updated;

 % if the current node is a first edge target AND is in the source node

 % column, flip the first edge such that the current node is now the

 % first edge source

 elseif (index(1,2)==2) && (ismember(Edir_array(index(2,1)),nodeList(:,1)))

 Gdir = flipedge(Gdir,index(1,1)); % flip first edge direction

 Edir_updated = table2array(Gdir.Edges); % update array with new flipped edge

 Edir_array = Edir_updated;

 end

 % update current node indices following flips

 [row,col] = find(Edir_array==current_node);

 index = [row col];

 % determine next node using first edge index value and target node col of array

 next_node = Edir_array(index(1,1),2);

 % check if the value of the next node is not the same as the current node

 if next_node ~= current_node

 nodeList(nodeList_idx,1:3) = [next_node... % add next node to node list

 poly.centroid(next_node,1)...

 poly.centroid(next_node,2)];

 current_node = next_node; % update current node to next node

 nodeList_idx = nodeList_idx+1; % increment node list index value

 end

end

figure; plot(Gdir,'Layout','force'); % visually inspect directed graph output

end

162

III. identifyBoundaries

function [exterior, interior] = identifyBoundaries(editedPGM)

binaryPGM = imbinarize(editedPGM); % binarize the edited PGM image

[B,~,N,A] = bwboundaries(binaryPGM);

obs_idx = 1; % variable to count the number of identified obstacles

%%% MATLAB bwboundaries example code with some edits %%%

imshow(binaryPGM); hold on;

% loop through object boundaries

for k = 1:N

 % boundary k is the parent of a hole if the k-th column

 % of the adjacency matrix A contains a non-zero element

 if (nnz(A(:,k)) > 0)

 exterior = B{k};

 plot(exterior(:,2),...

 exterior(:,1),'r','LineWidth',2);

 % loop through the children of boundary k

 for l = find(A(:,k))'

 intBoundary = B{l};

 % additional code to save the points associated with each

 % identified interior obstacle

 tempVar = strcat('obs',num2str(obs_idx)); % update name of obstacle

 interior.(tempVar)= intBoundary; % save current obstacle to struct variable

 obs_idx = obs_idx+1; % update obstacle count

 plot(interior.(tempVar)(:,2),...

 interior.(tempVar)(:,1),'g','LineWidth',2);

 end

 end

end

hold off;

%%% End MATLAB example code %%%

% reduce the number of points describing the exterior boundary

exterior = reducepoly(exterior,.015);

end

163

IV. identifyBox2merge

function box2merge = identifyBox2merge(rob, polybox, map)

toMerge = []; % initialize an empty array to store node values to be merged

robSize = rob.size; diag = rob.diag; % set robot size and diagonal parameters

for i = 1:length(polybox.nodeList)-1

 currentpoly = polybox.shape(polybox.nodeList(i,1)); % identify the current polygon

 % create a test point to locate the top left vertex of the current polygon

 minx = min(currentpoly.Vertices(:,1));

 maxy = max(currentpoly.Vertices(:,2));

 testpoint = [minx maxy];

 % identify the top left vertex of the current polygon by locating the

 % nearest vertex to the test point

 [~,~,ind] = nearestvertex(currentpoly,testpoint);

 TL = currentpoly.Vertices(ind,:);

 V = world2grid(map,TL); % convert vertex XY coordinates to IJ

 % using the identified vertex as the robot center since this point

 % would result in portions of the robot outside the boundaries of the

 % current polygon, translate the robot center in each of the four

 % cardinal and ordinal directions

 pV.N = [V(1,1)+robSize V(1,2)];

 pV.NE = [V(1,1)+diag V(1,2)+diag];

 pV.E = [V(1,1) V(1,2)+robSize];

 pV.SE = [V(1,1)-diag V(1,2)+diag];

 pV.S = [V(1,1)-robSize V(1,2)];

 pV.SW = [V(1,1)-diag V(1,2)-diag];

 pV.W = [V(1,1) V(1,2)-robSize];

 pV.NW = [V(1,1)+diag V(1,2)-diag];

 % for each robot center point, determine the robot corner points and generate a polyshape

 dir = fieldnames(pV);

 for j = 1:numel(dir)

 vcheck = pV.(dir{j});

 vNE = [vcheck(1,1)+robSize vcheck(1,2)+robSize];

 vSE = [vcheck(1,1)-robSize vcheck(1,2)+robSize];

 vSW = [vcheck(1,1)-robSize vcheck(1,2)-robSize];

 vNW = [vcheck(1,1)+robSize vcheck(1,2)-robSize];

 vpoly(j) = polyshape([vNE;vSE;vSW;vNW]);

 end

164

 % convert the vertices of each polyshape from IJ to XY coordinates

 for k = 1:numel(dir)

 verts = vpoly(k).Vertices;

 vpoly(k).Vertices = grid2world(map,verts);

 end

 % for each polyshape determine if each corner is in or outside the

 % boundaries of the current polygon

 in = [];

 for l = 1:length(vpoly)

 in(l,:) =

inpolygon(vpoly(l).Vertices(:,1),vpoly(l).Vertices(:,2),currentpoly.Vertices(:,1),currentpoly.Ve

rtices(:,2));

 end

 % determine if all corners of any of the polyshapes are inside the current polygon

 for m = 1:length(in)

 % if so the current polygon is large enough for

 % the robot to fit and does not need to be merged

 if all(in(m,:)==1)

 toMerge(i,1) = 0; % set merge flag to 0 and break the loop

 break;

 else

 toMerge(i,1) = 1; % if no polyshapes are completely enclosed by the current

polygon set merge flag to 1

 end

 end

end

% check the merge status of each polygon

idx = 1; % initialize an index variable

for i = 1:length(toMerge)

 if toMerge(i) == 1

 box2merge(idx,:) = polybox.nodeList(i,1); % identify the node value of the polygon to

be merged and store to list

 idx = idx+1; % increment index variable

 end

end

box2merge = sortrows(box2merge,'ascend'); % sort the list of polygon node values into

ascending order

end

165

V. identifyTri2merge

function tri2merge = identifyTri2merge(tri, minTri)

idx = 1; tri2merge = [];

% loop through triangle node list except for last node as it is the same

% as the first node

for i = 1:length(tri.nodeList)-1

 % obtain points A,B,C of each triangle by referenceing the column

 % values of the connectivity list row corresponding to the node value

 % of the ith row of the node list to the correlating row

 % within the list of points to retrieve the corresponding coordinate

 A = [tri.points(tri.list(tri.nodeList(i,1),1),1)

tri.points(tri.list(tri.nodeList(i,1),1),2)];

 B = [tri.points(tri.list(tri.nodeList(i,1),2),1)

tri.points(tri.list(tri.nodeList(i,1),2),2)];

 C = [tri.points(tri.list(tri.nodeList(i,1),3),1)

tri.points(tri.list(tri.nodeList(i,1),3),2)];

 % calculate the triangle edge lengths

 AB = pdist([A;B]); BC = pdist([B;C]); CA = pdist([C;A]);

 % calculate the minimum triangle height using the equation h = 2A/b

 % where b is the maximum base length

 shapeArea = area(polyshape([A;B;C]));

 base = max([AB BC CA]);

 h = (2*shapeArea)/base;

 % determine the minimum triangle base value

 base = min([AB BC CA]);

 % determine if the current triangle minimum base and height values are below the

 % criteria values

 if (base < minTri.base) || (h < minTri.height)

 tri2merge(idx,1) = tri.nodeList(i,1); % if so, add node value of current triangle to

list to be merged

 idx = idx+1;

 else

 continue;

 end

end

tri2merge = sortrows(tri2merge,'ascend'); % sort node values into ascending order

end

166

VI. poly2occgrid

function [localMap, startXY] = poly2occgrid(poly, idx, rawMap, rob, cornerLoc, resolution)

% obtain the work area polyshape vertices

if idx == 0 % an idx value of 0 denotes a single polyshape object

 localPoints = poly.Vertices;

else

 localPoints = poly.shape(poly.nodeList(idx,1)).Vertices;

end

% check if the raw occupancy map is supplied or is empty

if ~isempty(rawMap), rawMapShift = 1; else, rawMapShift = 0; end

% if the raw occupancy map is available, shift the polyshape vertex points

% to align with the raw map origin

if rawMapShift == 1

 localx = localPoints(:,1) + rawMap.LocalOriginInWorld(1,1);

 localy = localPoints(:,2) + rawMap.LocalOriginInWorld(1,2);

else

 localx = localPoints(:,1); localy = localPoints(:,2);

end

% concatenate and update work area polyshape vertex points

localPoints = [localx,localy];

% identify the minimum and maximum XY coordinates of the work area polyshape

xmin = min(localx); xmax = max(localx);

ymin = min(localy); ymax = max(localy);

% LOCAL OCCUPANCY MAP GENERATION

% generate an occupancy map of the work area polyshape with a padding of .5

localMap = occupancyMap(xmax-xmin+.5,ymax-ymin+.5,resolution);

localMap.GridLocationInWorld = [xmin,ymin]; % update origin of occupancy map

updateOccupancy(localMap,1); % set all cells within occupancy map to 1 (occupied)

% create a grid of x by y check points to compare against the work area polyshape

step = 1/(2*resolution); % calculate the step value between each check point

% if the raw occupancy map is available, include additional check point values

% beyond the maximum value

if rawMapShift == 1

 localx_check = xmin:step:xmax+abs(rawMap.LocalOriginInWorld(1,1)/4);

 localy_check = ymin:step:ymax+abs(rawMap.LocalOriginInWorld(1,2)/4);

else

167

 localx_check = xmin:step:xmax;

 localy_check = ymin:step:ymax;

end

% generate grid of check points

[localx_grid,localy_grid] = meshgrid(localx_check,localy_check);

% determine which grid points are in or outside the work area polyshape

[in,on] = inpolygon(localx_grid,localy_grid,localx,localy);

% set the cell value to 0 if inside the work area polyshape

setOccupancy(localMap,[localx_grid(in & ~on),localy_grid(in & ~on)],0);

% IDENTIFY STARTING LOCATION

% generate a new work area polyshape based on the updated polyshape vertex points

localShape = polyshape(localPoints);

[x,y] = centroid(localShape); % determine the polyshape centroid coordinate

% set robot size and diagonal parameters

robSize = rob.size; diag = rob.diag;

% if the desired starting location is the polygon centroid, set the

% starting location to the centroid value

if cornerLoc == 3

 startXY = [x,y];

else

 idx = 1; % initialize index variable

 % generate a test point for each occupancy map corner

 for corner = 1:4

 % for each loop change the corner location

 switch corner

 case 1 % Top Left

 testpoint = [xmin ymax];

 case 2 % Top Right

 testpoint = [xmax ymax];

 case 3 % Bottom Right

 testpoint = [xmax ymin];

 case 4 % Bottom Left

 testpoint = [xmin ymin];

 end

 % identify the closest work area polyshape vertex to the test point

 [~,~,ind] = nearestvertex(localShape,testpoint);

168

 testCorner = localShape.Vertices(ind,:);

 V = world2grid(localMap,testCorner); % convert vertex XY coordinates to IJ

 % using the identified vertex as the robot center since this point

 % would result in portions of the robot outside the boundaries of the

 % current work area, translate the robot center in each of the four

 % cardinal and ordinal directions

 pV.N = [V(1,1)+robSize V(1,2)];

 pV.NE = [V(1,1)+diag V(1,2)+diag];

 pV.E = [V(1,1) V(1,2)+robSize];

 pV.SE = [V(1,1)-diag V(1,2)+diag];

 pV.S = [V(1,1)-robSize V(1,2)];

 pV.SW = [V(1,1)-diag V(1,2)-diag];

 pV.W = [V(1,1) V(1,2)-robSize];

 pV.NW = [V(1,1)+diag V(1,2)-diag];

 % for each robot center point, determine the robot corner points and

 % generate a polyshape representative of the possible starting location

 dir = fieldnames(pV);

 for j = 1:numel(dir)

 vcheck = pV.(dir{j});

 vNE = [vcheck(1,1)+robSize vcheck(1,2)+robSize];

 vSE = [vcheck(1,1)-robSize vcheck(1,2)+robSize];

 vSW = [vcheck(1,1)-robSize vcheck(1,2)-robSize];

 vNW = [vcheck(1,1)+robSize vcheck(1,2)-robSize];

 vpoly(j) = polyshape([vNE;vSE;vSW;vNW]);

 % convert polyshape vertices from IJ to XY coordinates

 verts = vpoly(j).Vertices;

 vpoly(j).Vertices = grid2world(localMap,verts);

 end

 % check if each of the possible starting location polyshapes are completely

 % within the work area polyshape

 for k = 1:length(vpoly)

 % check by subtracting the work area polyshape from the

 % possible starting location polyshape

 testpoly = subtract(vpoly(k),localShape);

 % the possible starting location is completely within the work

 % area if the resulting test polyshape has no vertices (no longer exists)

 if height(testpoly.Vertices) == 0

169

 viableStart(idx) = vpoly(k); % append the current possible starting location

to a viable starting location list

 idx = idx+1; % increment the index value

 end

 end

 end

 % visualize the identified viable starting locations within the work area

 clf; figure; hold on; show(localMap); plot(viableStart); hold off

 % calculate centroids of viable starting locations

 [vsX,vsY] = centroid(viableStart);

 % transpose and concatenate centroid coordinates

 startPoints = [vsX',vsY'];

 % calculate the distance between the work area centroid and viable

 % starting location centroids

 dist = pdist2([x,y],startPoints);

 % sort the distance list according to the desired starting location

 if cornerLoc == 1

 [~,I] = sort(dist,'descend'); % farthest viable starting location from work area

centroid

 elseif cornerLoc == 2

 [~,I] = sort(dist,'ascend'); % closest viable starting location to work area centroid

 end

 % make sure starting location is within the work area polyshape

 for j = 1:length(startPoints)

 checkStart = startPoints(I(j),:); % obtain the current check point based on the

sorted distance index

 % check if current check point is within the work area polyshape

 in =

inpolygon(checkStart(1,1),checkStart(1,2),localShape.Vertices(:,1),localShape.Vertices(:,2));

 % if so, set this coordinate as the starting location

 if in; startXY = checkStart; break; end

 end

end

end

170

VII. polyConn

function Gpoly = polyConn(pshape)

pbuff = polybuffer(pshape,.0001); % add a buffer to each polyshape

pborder = zeros(length(pshape)); % allocate an adjacency matrix of zeros of size NxN where N

is equal to the number of polyshapes

% loop through each polyshape object and determine which other polyshapes border it

for i = 1:length(pshape)

 for j = (i+1):length(pshape)

 % if the area of intersection between the current polyshape and another exceeds the

 % set threshold, set the corresponding adjacency matrix location to true

 pborder(j,i) = area(intersect(pbuff(j),pbuff(i))) > 3e-6;

 end

end

Gpoly = graph(pborder,'lower'); % generate a connectivity graph of the filled in adjacency

matrix

end

171

VIII. polyNeighbor

function neighbor2merge = polyNeighbor(Gpoly, node2merge, pshape)

% determine the row locations of the input polygon within the connectivity graph

[row,col] = find(Gpoly.Edges.EndNodes==node2merge);

index = [row col];

% for each identified row, determine the neighboring polygon by examining

% the other node within the row

for i = 1:height(index)

 if index(i,2) == 1

 neighbors(i) = Gpoly.Edges.EndNodes(index(i,1),2);

 elseif index(i,2) == 2

 neighbors(i) = Gpoly.Edges.EndNodes(index(i,1),1);

 end

end

% add a buffer to the current polygon and identified neighbors

neighborBuff = polybuffer(pshape(neighbors),.01);

nodeBuff = polybuffer(pshape(node2merge),.01);

% for each identified neighbor, determine the area of intersection between

% it and the current polygon

for k = 1:length(neighbors)

 border(k) = area(intersect(nodeBuff,neighborBuff(k)));

end

% determine which neighbor borders the current polygon the most and merge

% with this neighbor

[~,I] = max(border);

neighbor2merge = neighbors(I);

end

172

IX. triDecomposition

function tri = triDecomposition(room, min_triEdge)

% perform initial triangulation on room

TR = triangulation(room);

figure; triplot(TR); axis padded; % visually inspect initial triangulation

% generate a geometric model based on initial triangulation

model = createpde;

tnodes = TR.Points';

telements = TR.ConnectivityList';

geometryFromMesh(model,tnodes,telements);

% generate triangular mesh

room_mesh = generateMesh(model,'GeometricOrder','linear','Hmin',min_triEdge);

% regulate the number of generated triangles in the mesh to 250 or less

if length(room_mesh.Elements') >= 250

 num_triangles = length(room_mesh.Elements');

 min_triEdge = min_triEdge+.1; % increment target minimum edge length to create larger

triangles

 loop_count = 1; % initialize loop counter

 while (num_triangles > 250) && (loop_count <= 500)

 % regenerate triangular mesh

 room_mesh = generateMesh(model,'GeometricOrder','linear','Hmin',min_triEdge);

 num_triangles = length(room_mesh.Elements'); % update number of triangles within

mesh

 min_triEdge = min_triEdge+.1; % increment target minimum edge length

 loop_count = loop_count+1; % increment loop counter

 end

end

figure; pdeplot(room_mesh); % visually inspect triangular mesh

tri.list = room_mesh.Elements'; % save connectivity list of mesh to struct

tri.points = room_mesh.Nodes'; % save list of triangle points to struct

% loop through each triangle within the mesh and generate a polyshape of

% each triangle

for i = 1:length(tri.list)

 % obtain points A,B,C of each triangle by referenceing the column

173

 % values within the ith row of the connectivity list to the correlating row

 % within the list of points to retrieve the corresponding coordinate

 A = [tri.points(tri.list(i,1),1) tri.points(tri.list(i,1),2)];

 B = [tri.points(tri.list(i,2),1) tri.points(tri.list(i,2),2)];

 C = [tri.points(tri.list(i,3),1) tri.points(tri.list(i,3),2)];

 pgon = polyshape([A;B;C]); % generate polyshape using points A,B,C

 tri.shape(i) = pgon; % save generated polyshape to struct

 [tri.centroid(i,1),tri.centroid(i,2)] = centroid(pgon); % save polyshape centroid to struct

end

end

174

APPENDIX D: SUPPLEMENTARY FUNCTION

I. cleanRoomSimTest

function [map,timeElapsed,turn_count,overlap,pathLength,deadlock_cntr] = cleanRoomSimTest(map,

start,deadlock_cntr)

tic

show(map)

n = zeros(map.GridSize(1), map.GridSize(2)); %generate array to store neural activity values

% For plotting

%%%

% indicator for robot heading direction on map

up_dir = '^r';

down_dir = 'vr';

left_dir = '<r';

right_dir = '>r';

hold on

pc = start; %starting grid location

xy = grid2world(map,pc); %convert starting grid location to xy coordinates

plot(xy(1), xy(2), down_dir) %plot starting location xy coordinates on map

%%%

go = 1;

deadlockSearch = 0;

%Building neural network of map

%%

prevHeading = 0; turn_count = 0; overlap = 0;

prevPC = []; pathLength = 0;

while go == 1

 %find top left corner points in all directions

 TL = [pc(1)-6, pc(2)-12];

 NW_TL = [pc(1)-25, pc(2)-37];

 N_TL = [pc(1)-25, pc(2)-12];

 NE_TL = [pc(1)-25, pc(2)+13];

 E_TL = [pc(1)-6, pc(2)+13];

 SE_TL = [pc(1)+13, pc(2)+13];

175

 S_TL = [pc(1)+13, pc(2)-12];

 SW_TL = [pc(1)+13, pc(2)-37];

 W_TL = [pc(1)-6, pc(2)-37];

 %update status of current grid

 for tl_j = TL(2):1:TL(2)+24

 for tl_i = TL(1):1:TL(1)+18

 setOccupancy(map,[tl_i, tl_j],0.5,'grid')

 end

 end

 pause(0.005)

 show(map)

 %--------------------PATH SELECTION ALGORITHM-------------------------------%

 %%

 %Heuristic sequence

 %left -> bottom -> top -> right -> right bottom -> right top

 %Find status of all possible next positions

 kN = directionStatus(N_TL);

 kNE = directionStatus(NE_TL);

 kE = directionStatus(E_TL);

 kSE = directionStatus(SE_TL);

 kS = directionStatus(S_TL);

 kW = directionStatus(W_TL);

 % modify check the status of all possible next locations

 pn =[kW, kS, kN, kE, kSE, kNE]; %don't change order of this array

 %check the status of all possible next locations

 for value = 1:1:length(pn)

 if pn(value) < 0

 pn(value) = -1; %indicate cell is obstacle

 elseif pn(value) > 0.5

 pn(value) = 1; %indicate cell is uncovered

 elseif (pn(value) > 0) && (pn(value) < 0.5)

 pn(value) = 0; %indicate cell is covered

 end

 end

 %modify deadlock event

 if sum(pn==1) == 0 %check to for deadlock event

 kSW = directionStatus(SW_TL);

176

 kNW = directionStatus(NW_TL);

 deadlockSearch = deadlockSearch+1;

 search = [kN,kNE,kE,kSE,kS,kSW,kW,kNW]; %search for uncovered location in closest

neighbors using neural propagation

 switch max(search)

 case search(1)

 pc = moveNextDirection(N_TL,up_dir);

 heading = 1;

 %disp('north is next')

 case search(2)

 pc = moveNextDirection(NE_TL,up_dir);

 heading = 2;

 %disp('ne is next')

 case search(3)

 pc = moveNextDirection(E_TL,right_dir);

 heading = 3;

 %disp('east is next')

 case search(4)

 pc = moveNextDirection(SE_TL,down_dir);

 heading = 4;

 %disp('se is next')

 case search(5)

 pc = moveNextDirection(S_TL,down_dir);

 heading = 5;

 %disp('south is next')

 case search(6)

 pc = moveNextDirection(SW_TL,down_dir);

 heading = 6;

 %disp('sw is next')

 case search(7)

 pc = moveNextDirection(W_TL,left_dir);

 heading = 7;

 %disp('west is next')

 case search(8)

 pc = moveNextDirection(NW_TL,up_dir);

 heading = 8;

 %disp('nw is next')

 end

 %once uncovered location is found revert back to heuristic path selection

 else %continue on with heuristic path selection

 deadlockSearch = 0;

 switch max(pn)

177

 case pn(1)

 pc = moveNextDirection(W_TL,left_dir);

 heading = 7;

 %disp('west is next')

 case pn(2)

 pc = moveNextDirection(S_TL,down_dir);

 heading = 5;

 %disp('south is next')

 case pn(3)

 pc = moveNextDirection(N_TL,up_dir);

 heading = 1;

 %disp('north is next')

 case pn(4)

 pc = moveNextDirection(E_TL,right_dir);

 heading = 3;

 %disp('east is next')

 case pn(5)

 pc = moveNextDirection(SE_TL,down_dir);

 heading = 4;

 %disp('se is next')

 case pn(6)

 pc = moveNextDirection(NE_TL,up_dir);

 heading = 2;

 %disp('ne is next')

 end

 end

 % Stop condition

 %check if map/environment is completely covered and end operation

 if sum(n>=0.5, 'all') == 0

 disp("Coverage complete, stopped at...")

 disp(grid2world(map, pc))

 go = 0;

 end

 % collect simulation data

 if deadlockSearch > 30

 disp("Deadlock max reached. Terminating Sim");

 deadlock_cntr = deadlock_cntr+1;

 break;

 end

 if prevHeading ~= heading; turn_count = turn_count+1; end

178

 prevHeading = heading;

 checkPC = checkOccupancy(map,pc,'grid');

 if checkPC == -1; overlap = overlap+1; end

 pcXY = grid2world(map,pc);

 if ~isempty(prevPC)

 dist = pdist2(pcXY,prevPC);

 pathLength = pathLength+dist;

 end

 prevPC = pcXY;

end %end of while loop

timeElapsed = toc;

return

 function y = directionStatus(x)

 %Use a try block to iterate through and calcuate n-values for all cells eqauting to the

size of bot in specified direction

 try

 for j = x(2):1:x(2)+24 %{Reference; j is cols (goes left to right)}

 for i = x(1)-1:1:x(1)+18 %{Reference; i is rows (goes up and down)}

 status = checkOccupancy(map, [i,j], "grid"); %check status of current grid

position

 %convert grid values to 'I' values

 if status == 1

 i = x(1) + 6;

 j = x(2) + 12;

 I = -100;

 calculateNeuralActivity

 return

 end

 end

 end

 %if no cell in the group is an obstacle, check the status of cell where COG is

located and use it's n-value for the specified direction

 i = x(1)+6;

 j = x(2)+12;

 %ab = grid2world(map, [i,j]);

 status = checkOccupancy(map, [i,j], "grid");

 switch status

179

 case -1 %uncovered

 I = 0;

 calculateNeuralActivity

 return

 case 0 %covered

 I = 100;

 calculateNeuralActivity

 return

 end

 catch %Catch "index out of bounds" errors and assign n-value of specified direction as

obstacle (-0.6)

 y = -0.6;

 return

 end %for the try/catch

 function calculateNeuralActivity

 I_plus = max([I 0]);

 I_neg = max([-1*I 0]);

 %check neural activity level of neighboring neurons, evaluate using ReLu, and

calcuate euclidean distance

 %input the correct displacement values for the COG of the neighboring direction

 [North, dNorth] = ReLu(-19,0); %n(i, j-1)

 [South, dSouth] = ReLu(19,0); %n(i+1, j)

 [West, dWest] = ReLu(0,-25); %n(i, j-1)

 [East, dEast] = ReLu(0,25); %n(i, j+1)

 [NW, dNW] = ReLu(-19,-25); %n(i-1, j-1)

 [NE, dNE] = ReLu(-19,25); %n(i-1, j+1)

 [SW, dSW] = ReLu(19,-25); %n(i+1, j-1)

 [SE, dSE] = ReLu(19,25); %n(i+1, j+1)

 %store evaluated neural activity values for neighboring neurons (8x1 matrix/array)

 xplus = [North, South, West, East, NW, NE, SW, SE];

 %store euclidean distances (1x8 matrix/array)

 wij = [dNorth; dSouth; dWest; dEast; dNW; dNE; dSW; dSE];

 %calculate the weight

 weight = xplus * wij; % Matrix operation calculating for the weight (order of

operation should not be changed)

 %set variables

180

 A = 80;

 B = 1;

 D = 1;

 %define & evaluate equation using ODE solver

 eqn = @(t,Xi) ((-A*Xi) + (B-Xi)*(I_plus + weight) - (D+Xi)*I_neg);

 [t,Xi] = ode45(eqn, [0:1], n(i,j));

 n(i,j) = Xi(end);

 y = n(i,j);

 end

 % function to check neural activity level of neighboring neurons, evaluate using ReLu,

and calcuate euclidean distance

 function [dir, dir_dist] = ReLu(RowDisp,ColDisp)

 %input the correct displacement values for the COG of the neighboring direction

 ab = grid2world(map, [i,j]); %current grid position for neural activity calculation

 try

 dir = max([n(i + RowDisp, j + ColDisp) 0]);

 dir_dist = 0.7/((norm(ab - grid2world(map, [i + RowDisp, j + ColDisp]))));

 catch

 dir = 0;

 dir_dist = 0;

 end

 end

 end %for the function directionStatus()

 function pc = moveNextDirection(pTL,heading)

 pc = [pTL(1)+6, pTL(2)+12];

 gpc = grid2world(map, pc);

 plot(gpc(1), gpc(2),heading)

 end

end

