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ABSTRACT

Exploring Optimizations in Multi-task Recommendation via Manipulating Auxiliary Gradients

Ronald Lee
Department of Computer Science & Engineering

Texas A&M University

Faculty Research Advisor: Dr. James Caverlee
Department of Computer Science & Engineering

Texas A&M University

Auxiliary Task Learning has proven to be an effective way to transfer knowledge between

tasks. This is the case in many personalized recommendation scenarios, where many auxiliary

tasks can boost the performance of the primary task via a shared layer in a multi-task network.

However, we often encounter a gradient imbalance issue when updating the parameters of the

neural network. For example, the gradient magnitudes for an auxiliary task could vary significantly

compared to the target task which leads to imbalanced information transfer between tasks. This

could cause a particular auxiliary task to over or under influence the output of the target task.

Multiple works have been done to resolve the gradient imbalance issues. Some methods

include directly manipulating the gradients with respect to the shared parameters in order to bal-

ance gradient magnitudes. Other approaches identify conflicting gradient direction between tasks

and dynamically scale auxiliary gradients depending on their direction agreement with the target

task. This thesis seeks to understand the baseline benchmark techniques that exist and to combine

multiple techniques to improve recommendation accuracy. Current methods of direct gradient

manipulation are not combined as they have shown sub-optimal performance. In this work, we

evaluate and compare these different methods on a large, public recommendation data set. We

explore various ways to combine both methods with the aim of achieving boosted performance. In
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our analysis, we learn that naively combining gradient balancing methods with gradient direction

based methods yield sub-optimal results; however, they outperform the baseline methods which

suggests that more refined techniques could improve upon state-of-the-art performance.
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NOMENCLATURE

NDCG Normalized Discounted Cumulative Gain

TAMU Texas A&M University

NN Neural Network

PV Page view

A2C Add-to-Cart

MTL Multi-task Learning

ATL Auxiliary-task Learning

UB-2017 User Behvior 2017 Dataset
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1. INTRODUCTION

Traditionally, personalized recommendations have been determined through methods of

collaborative filtering, which rely on past user-item interactions and assumes that these interactions

are explainable via a latent model. These models have traditionally ignored using neural networks

since simpler methods, such as Matrix Factorization [1], have proven to be effective in personalized

recommendations. However, advances in deep learning [2], a technique that is used to extract

hidden features from data to make predictions, have accelerated progress in many fields across

machine learning, including recommendation. This has led to the integration of Neural Networks

(NNs) to encode user and item features and be used in recommendation via approaches like Neural

Collaborative Filtering [3].

In these neural collaborative filtering models, the performance accuracy and training time

can often be boosted through transfer learning from related auxiliary information. This is due to

multiple reasons. First, NNs are supervised models that rely on quality labels in order to make

accurate predictions. The acquisition to generate these labels can be expensive, but auxiliary task

information extracts additional training labels to aid model performance [4]. Second, learning

multiple tasks has been shown to create more robust representations of the data to generalize better

on unseen data [5]. This has proven to be true in many sub-domains, including natural language

processing [6] and computer vision [7] [8].

In personalized recommendation, Auxiliary Task Learning (ATL) has been used to improve

prediction accuracy and data efficiency. For example, e-commerce and online-ad platforms such

as Amazon and Facebook aim to boost the performance of purchase prediction, a target task, by

transferring knowledge from user auxiliary tasks, such as predicting whether a user will “like” an

item or predicting the likelihood of a user clicking on an item.
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Figure 1: Transfer Learning from 2 auxiliary tasks improving the target task.

1.1 Auxiliary-task Transfer Learning

Transfer learning is often done using a multi-task neural network. Typically, this is com-

posed of 2 parts: a shared bottom layer and multiple, task-specific layers. In the shared bottom

layer, inputs are fed into a neural network with shared parameters that return an output embedding

of the inputs. Then, this output embedding, which was generated using the shared parameters in

the bottom layer, is fed to multiple, task-specific neural networks. This way, information from the

auxiliary task layers can be shared with the target task through the shared parameters of the bottom

layer, which is illustrated in Figure 1.

1.2 Shortcomings of Auxiliary-Task Transfer Learning

1.2.1 Gradient Magnitude Imbalance Issue

The potential presence of the imbalance of gradient magnitudes poses a key challenge

when attempting to transfer knowledge from auxiliary tasks to the main task. During the training

process, each task has a corresponding loss and each loss has a corresponding gradient with respect

to the shared parameters in the bottom layer of our neural network. These shared parameters are

updated based on the sum of the gradients which could pose several issues. First, in the case where

an auxiliary task has a much larger magnitude than the target task, the auxiliary task will have a

much greater impact on how the shared parameters are updated than the target task, effectively

dominating the impact of the target task loss. Second, converse to the first issue, an auxiliary task

with a much smaller magnitude than the target task will have a very weak influence over how the
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shared parameters are updated, effectively masking out the impact of the auxiliary task. Either of

these scenarios could lead to sub-optimal model performance at test time.

1.2.2 Conflicts in Gradient Direction with the Target Task

Another hypothesis in regards to the multi-task learning is that conflicting gradient direc-

tions between tasks is one of the key issues to the multi-task optimization problem, as conflicting

gradient directions could hypothetically update the shared parameters in a way that is detrimental

to making progress. The conflicting direction of gradients is often measured by comparing the co-

sine similarities between tasks, with a negative cosine similarity indicating conflicting gradients.

Though much of this work has been done in the realm of multi-task learning, it is easily adaptable

to the auxiliary task scenario, where we can simply choose a single, target task, and compare each

auxiliary gradient to the target gradient.

1.2.3 Comparison with Learning Tasks Individually

When encountering a multi-task problem, it is natural to train a network that jointly predicts

each task. This way, we can ideally discover some shared structure across some or all tasks such

that we can realize higher performance and better efficiency. However, multi-task learning results

in a complex optimization problem which can lead to worse overall performance and efficiency

compared to learning each task individually [9] [10]. This provides the motivation for exploring

potential solutions to tackle this multi-task optimization problem effectively, as doing so could lead

to achieving the hypothesized performance gains at test time.

1.3 Overview

Though we’ve seen the benefits of ATL in the scenario where we auxiliary information is

available, it’s clear that the gradient imbalance problem hinders the overall performance of multi-

task models. In this study, we seek to understand the current state-of-the-art methods that address

this gradient imbalance problem. In particular, we look closely at MetaBalance [11], an algorithm

that scales auxiliary gradient magnitudes towards the target task, and GradSurgery [12], which

adjusts the auxiliary gradient values based on the direction agreement with the target task. We

7



plan to run these methods on a comprehensive and public dataset, and compare the performances

of these methods with a baseline model with no gradient adjustments. Finally, we further explore

the gradient imbalance problem by combining these two methods and see if optimal performance

is achievable.
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2. RELATED WORK

2.1 Multi-Task Learning

Multi-task Learning (MTL) [13] has been used to boost training efficiency and robustness

of multiple tasks by jointly training them. This means that, during training, the losses of each task

are concatenated, and the total loss across all tasks are used to update the shared parameters of

the model. In multi-task models, the Shared-bottom model [14] is most-widely used to capture

these shared parameters. It’s structure has task-specific NN layers that receive the common hidden

embedding that comes from a shared bottom network. The difference between MTL and Auxiliary

Task Learning is that, in Auxiliary Task Learning, we care only about the error in the target task.

In MTL, we aim to jointly optimize to lower the loss across all tasks.

2.2 Auxiliary Task Learning in Recommendation

In many recommendation scenarios, we’ve seen the testing performance of a target task be

enhanced via transfer of knowledge from auxiliary tasks. At Facebook [15] and Google [16], mul-

tiple tasks have been incorporated to improve the target task of post-click conversion rate (CVR)

for their targeted ads. In other recommendation scenarios, such as song-recommendation, we’ve

seen predictive and contrasting auxiliary tasks [17] be adapted to improve the performance of the

target task.

2.3 Gradient Balancing Methods in Auxiliary-task Learning

While many methods exist for gradient-balancing in multi-task learning [18], these methods

mostly down weight gradient magnitudes that dominate the target task. Further, since they are

designed for multi-task learning, they care about the performance of all tasks equally. For Auxiliary

Task Learning, MetaBalance [11] is a method that dynamically adjusts gradient weights either up

or down depending on a specified relax-factor. It is also created for auxiliary task learning, where

only the performance of the target task is considered during evaluation.
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2.4 Adapting Auxiliary Tasks via Gradient-Direction based methods

Similar to some of the gradient balancing methods, many methods exist to adjust the

weights of auxiliary tasks based on its direction with respect to the target task. In many of these

scenarios, the auxiliary task gradients are completely ignored or masked out [19] if its direction

conflicts with the direction of the target gradient. In other cases, such as GradientSurgery, the auxil-

iary tasks are adjusted or down weighted if their directions conflict [12]. This differs from gradient

magnitude balancing methods, such as MetaBalance, because it solely focuses on direction rather

than magnitude. Individually, gradient magnitude balancing seems to have better performance than

direction-based methods, but in our experiments, we aim to apply both of these methods together.
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3. METHODS

In this section, we clarify our design choices for experimental set-up, as well as explain our

reasoning for choosing such methods. Many of our practices are standard and align with current,

baseline research in this domain. However, active research in areas such as neural collaborative

filtering, data sampling, and more can impact future design choices for similar experiments.

3.1 Dataset

UserBehavior-2017* is a public dataset of anonymized user activities and interactions from

Alibaba. The data is sourced from Taobao, and it contains over 100M interactions across 4 different

user behaviors: purchase, page view (PV), add to cart (A2C), and favorite. Many e-commerce and

content recommendation platforms generate revenue via purchase conversions through their rec-

ommendations. Thus, we will consider the purchase behavior to be the primary task and consider

PV, A2C, and favorite to be the auxiliary tasks assisting purchase performance. We represent the

prediction of each behavior as a binary classification problem, where a user either does or does not

interact with a particular item. Considering that this dataset only contains positive samples (e.g.,

only instances of interaction), negative interactions will be randomly sampled from user-item pairs

with no interaction.

The size of this dataset is sufficient to capture the detailed interaction and transfer of infor-

mation across tasks. It is also comparable with other benchmark datasets for similar recommenda-

tion studies. In future works, we can expand our methods across many datasets with different user

behaviors.

3.2 Data Preprocessing

Since collaborative filtering in personalized recommendation relies on past user-item inter-

actions to make predictions, we preprocess the data to ensure that each item and each user has suf-

ficient individual information. For UserBehavior-2017, we filter out users that purchase fewer than

10 unique items. Similarly, we filter our items that are purchased by fewer than 10 unique users.

*https://tianchi.aliyun.com/dataset/649
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We then split our interactions randomly into a standard trainnig set (70%), validation set (15%),

and evaluation set (15%). Another consideration we make is the high relation between auxiliary

tasks, such as add-to-cart, and our target task, purchase prediction. We avoid any possible infor-

mation leakage in our experiment by filtering out user-item pairs from the auxiliary information if

the user-item pair also exists in the validation or testing set for purchase interactions. In Table 1

below, we’ve presented the overall statistics of the raw and pre-processed datasets. An important

consideration to note is that we are using a very small subset of the original data, as it ensures that

each unique user and item has sufficient samples to train a model on. We will further discuss the

tradeoffs and implications of our data pre-processing in later sections.

Table 1: Statistics of the Pre-processed dataset

Dataset # Users # Items # Purchase # A2C # PV # Favorite

Raw UB-17 987,994 4,162,024 2,015,839 5,530,446 89,716,264 2,888,258
Pre-processed UB-17 16,012 24,608 87,179 51,985 383,648 19,039

3.3 Model Architecture

While this experiment requires a multi-task network in order to test our hypothesis, design-

ing an improved multi-task network is not the emphasis of this thesis. Thus, we will adopt the

combination of MLP layer and Matrix Factorization layer as a shared bottom network, which has

been widely adopted for many recommendation tasks [3]. This model is based on the Pytorch†

implementation and be compatible with GPUs to accelerate the training process. In this model, we

create a user and item embedding for both the MLP and Matrix Factorization layers respectively.

Each embedding is fed through it’s respective layer and concatenated in a concatenation layer in the

shared bottom of the NN. Finally, this concatenated embedding is fed multiple to the task-specific

towers, which are each identical in architecture. Since we treat each task as a binary classification

problem, the task-specific architecture is simply a collection of linear layers outputting a single

number, interpreted as a probability. The specific architecture is shown in Figure 2.

†https://github.com/guoyang9/NCF
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Figure 2: Implemented Multi-Task recommendation network used in training and evaluation.

3.4 Proposed Method

3.4.1 Problem Statement

Our goal of this experiment is to improve the performance of the target task (i.e., purchase

prediction) via predicting auxiliary tasks (i.e., add-to-cart) alongside the target task on this neural

network. Ideally, we can transfer useful knowledge from these auxiliary tasks to update the shared

parameters of the model to converge towards more robust features for predicting our target task. To

illustrate this objective, let θ denote a subset shared parameters of our model, outlined in Figure 2.

Thus, θ could be the bias vector or weights matrix in any component of the shared bottom layer of

the network, including the One-hot Embeddings or MLP layer. θ is learned by jointly minimizing

the target loss Ltar with the auxiliary losses Laux,i .. Laux,K i = 1, .., K where i represents the i-th

auxiliary task for K total auxiliary tasks such that:

Ltotal = Ltar +
K∑
i=1

Laux,i (1)

Assuming that we update the shared parameter θ via gradient descent with step size of α,

then at step t:

θt+1 = θt − α ∗Gt
total (2)

13



where Gt
total is the gradient of Lt

total with respect to the shared parameter θ:

Gt
total = ∇θLt

total = ∇θLt
tar +

k∑
i=1

∇θLt
aux,i (3)

and Gtotal is determined by adding up the gradients of the target task and auxiliary task. For

simplicity, we can abbreviate the notations to mean:

• Gtar (e.g., ∇θLtar): the gradient of the target task loss Ltar with respect to the shared pa-

rameters θ

• Gaux,i (e.g., ∇θLaux,i): the gradient of the i-th auxiliary task loss Laux,i with respect to the

shared parameters θ, where i = 1, .., K

• ||G||: The L2 norm of the corresponding gradient

However, two key issues arise in the optimization of the shared parameters using auxiliary

tasks. First comes the scenario where there is a significant magnitude imbalance in the auxiliary

task with respect to the target task. As seen from Equation 3 above, the total gradient of step t,

Gt
total is determined by the cumulative sum of the target gradient and auxiliary gradient. Thus, if

||Gaux,i|| is significantly greater than the target gradient ||Gtar||, then the auxiliary gradients will

have more influence in how the shared parameters θ are updated, thus leading to lower overall

performance. In the converse scenario, if ||Gaux,i|| is much smaller than ||Gtar||, the the auxiliary

gradient will have very little influence on updating the shared parameters θ, thus becoming too

weak to assist the target task.

Another key issue is the scenario where there is a direction dispute in how to update the

shared parameter θ. In this case, gradients from different tasks will point away from each other,

indicated by a negative inner product between the gradient vectors. This disagreement is visualized

in Figure 3. While the existence of direction disagreements can cause optimization problems, they

are not detrimental on their own. A simple average of the gradients could, theoretically, provide the

correct direction and step to descend the multi-task objective. It is the co-occurence of direction

14



disagreements with other scenarios, such as a gradient magnitude imbalance or a high curvature

in the multi-task landscape that can lead to significant degradations in optimization performance.

For example, if a gradient magnitude imbalance co-occurs with direction disagreements, the task

gradient with higher magnitude will dominate the optimization direction. In the case where high

positive curvature co-occurs with a direction disagreement, then the improvement in performance

from the dominating auxiliary task may be significantly overestimated, while the degradation in

performance from the dominated target task may be significantly underestimated. We look to

solve these 2 key optimization issues using existing, well-tested algorithms introduced in the next

section.

Figure 3: In (a), the target task and auxiliary task i have conflicting gradient directions, which
can lead to destructive interference. In (b), the target task and auxiliary task have

direction agreement, leading to constructive interaction in updating θ

3.4.2 MetaBalance for Gradient-Magnitude Balancing

While there are many methods for directly adjusting the gradient magnitudes during train-

ing, MetaBalance [11] proves to be one of the most effect methods that dynamically adjusts gradi-

ent magnitudes to yield better performance results. Thus, in this experiment, we utilize MetaBal-

ance as our method to adjust the gradient weights. MetaBalance calculates the gradient magnitudes

within each training iteration before applying a strategy (either reducing and/or enlarging) to ma-

nipulate the magnitude proximity of auxiliary gradients.

The key issue with auxiliary task optimization comes from the gradient magnitude imbal-

ance of the gradients Gtar and Gaux,i ... Gaux,K . This magnitude imbalance may negatively effect

15



the optimization of the target task performance in many ways. MetaBalance proposes an algorithm

to adapt auxiliary gradients from the perspective of gradient magnitude. The basic formula for

MetaBalance is as follows:

1. Calculate the gradients. In each training iteration, we calculate the losses of Gt
tar and Gt

aux,i

with respect to the shared parameter θ (e.g., ∇θLtar and ∇θLaux,i).

2. Applying the optimization strategy. After calculating the target and auxiliary gradients,

we can choose which optimization strategy to apply. We can scale up the auxiliary gradients

with smaller magnitude compared to the target task, reduce the auxiliary gradients with

larger magnitude compared to the target task, or apply both strategies in conjunction with one

another. Typically, this strategy can be selected based on the performance of each respective

strategy on the validation set.

3. Balancing the gradients. Each auxiliary gradient Gt
aux,i is balanced by first dividing by the

norm ||Gt
aux,i|| to create a unit vector, then scaled to have the same magnitude as the target

gradient by multiplying by ||Gt
tar||. We can control the magnitude proximity to the target

task via the relax factor [11], r, that is a hyper-parameter. Thus, we balance Gt
aux,i with the

following equation:

Gt
aux,i = (Gaux,i ∗

||Gt
tar||

||Gt
aux,i||

) ∗ r +Gt
aux,i ∗ (1− r) (4)

4. Calculate Gradient Moving Averages. Rather than using the ||Gt
tar|| and ||Gt

aux,i||, we

apply the moving averages of the gradients, mt
tar and mt

aux,i respectively, to account for the

variance in magnitudes across training iterations. Overall, this results in better performance

and stability in the training as seen in [20].

5. Updating Shared Parameters. After Gt
total is calculated by summing Gt

tar together with

the balanced Gt
aux,1..G

t
aux,K , Gt

total is used to update the shared parameters θ via gradient

descent.
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3.4.3 Gradient Surgery for direction based manipulation

In order to address the potential issue of direction disagreements between task gradients,

there are many potential solutions. Cosine similarity between the gradient vectors of multiple tasks

is a common measurement used to determine whether there is a direction disagreement [19]. A

common solution is to mask out gradients with a direction disagreement with the target task. How-

ever, we still aim to use this conflicting information between the gradients to achieve better con-

vergence for our model and masking out these gradients entirely would, in theory, remove all this

information from our parameter updates during back-propagation. Thus, for this study, we will ad-

dress conflicting gradient direction using Gradient Surgery [12]. Gradient Surgery (GradSurgery)

is a multi-task algorithm that manipulates the gradients of each task based on their direction dis-

agreement with all other tasks by projecting the gradients of a disagreeing task onto the normal

plane of the current task. The basic implementation of GradSurgery is as follows:

1. Compute Cosine Similarity. In each training iteration, for each pair of tasks, T t
i and T t

j ,

the cosine similarity between gradients Gt
i and Gt

j is computed to determine whether or not

there is a direction disagreement, with negative cosine similarities indicating disagreement.

2. Applying Projection. If the cosine similarity is negative, we adjust the gradient Gt
i via its

projection onto the normal plane of the complimentary gradient Gt
j such that:

Gt
i = Gt

i − (Gt
j ∗

Gt
i ∗Gt

j

||Gt
j||2

) (5)

If the cosine similarity is positive, then there is no direction disagreement and the inital

gradient Gt
i remains the same.

3. Repeating Projection on all Tasks. This process is then repeated across all task pairs T t
i

and T t
j where i ̸= j, where the tasks are sampled in random order in the current batch

iteration.

The original implementation of GradSurgery was created for the multi-task scenario where
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the evaluation performance of all tasks is equally important. In our case, we only care about the

performance of the target task (e.g., purchase prediction), so we can easily adjust GradSurgery to

update the auxiliary task gradients with respect to the target task gradient, rather than updating all

task gradients. We can see a visual representation of our GradSurgery in Figure 4.

Figure 4: In (a), we see there is a negative cosine similarity between auxiliary and target
gradients. In (b), we adjust the auxiliary gradient via projection onto the norm of the

target gradient. In (c), since the cosine similarity is positive, no change is made to
auxiliary gradients.

When evaluating our results, we are also curious to see if the original implementation of

GradSurgery, which updates the gradients of every task via projection onto the normal of every

other task gradient, can perform well. We will include these results in the next section, where we

compare the effectiveness of our adjusted GradSurgery (i.e., all auxiliary tasks are projected onto

the normal of the target task) vs the original GradSurgery (all gradients, inluding the target task,

are adjusted with respect to all other gradients).

3.5 Evaluation Criteria

To evaluate our model, we first consider and rank all items for each user according to the

purchase probability, with the top-K items being compared against the ground-truth. Then, we

adopt three metrics: Normalized Discounted Cumulative Gain (NDCG@K), Precision (P@K),

and Recall@K (R@K)
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3.5.1 Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG) is a well-known metric that measures

the ranking quality of web searches and recommendation. We first consider the Discounted Cumu-

lative Gain (DCG), which penalizes relevant items being ranked lower in the query by reducing the

relevance logarithmically proportional to the ranking position of the item itself. In this scenario,

since we treat each task as a binary classification problem, the relevance score for item i, reli, will

be 0 or 1:

DCG@K =
K∑
i=1

2reli − 1

log2(i+ 1)
(6)

NDCG@K =

∑K
i=1

2reli−1
log2(i+1)∑RELK

i=1
2reli−1
log2(i+1)

(7)

3.5.2 Precision

Precision at K is a common metric in information retrieval and recommendation. Precision

at k is the proportion of recommended items in the top-k set that are relevant. Mathmatically, it

can be represented as the number of relevant items in top k divided by k:

P@K =

∑K
i=1 reli
K

(8)

3.5.3 Recall

Recall is often used in conjunction with Precision to evaluate recommendation algorithms.

Recall at k is the proportion of relevant items found in the top-k recommendations. Thus, as our

K grows towards the total number of items in our item set, recall is monotonically increasing.

Assuming we have M items that are relevant to our user, then:

R@K =

∑K
i=1 reli
M

(9)
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3.5.4 Final Metrics

In the final experiments, we will use NDCG@10, NDCG@20, P@10, P@20, R@10, and

R@20 to measure the robustness and performance of our model. This will give us a better sense

of model performance, as the top 10-20 entries are likely to be seen by an end-user. Furthermore,

the presence of position bias in recommender systems make it likely that a higher ranked item

(regardless of true relevance) is more likely to be selected. We will show our metric outcomes in

the next section.
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4. RESULTS

To accurately measure the potential improvements of our experimental methods, we must

have a sound baseline from which we can compare our results. In this section, we will specify our

baseline model, a vanilla multi-task model with no gradient adjustments, and present how each of

our experimental methods compare to the performance of the baseline method. We also analyze

which method has the highest performance as well as interpret our findings and how they differ

from our initial hypothesis.

4.1 Hyper-parameters

Here we outline the specifics of the model architecture as well as the hyper-parameters

defined in training. In the multi-task network, the size of the user and item embeddings is 64.

The shared MLP layer has 3 linear layers of size {32, 16, 8}. The size of the task-specific MLP

layers are {64, 32} and then predicted via binary classification. We also specify a 50% dropout

rate for each layer to prevent overfitting [21] and apply a decay rate of e−7. Furthermore, we use

a Rectified Linear Unit (ReLU) as our activation function for each layer. We trained the model

with batch size 256. For MetaBalance, we selected our relax factor by choosing the value that

had the highest performance on the validation set. The results for this hyperparameter tuning can

be seen in Table 1. Interestingly, the vanilla multi-task baseline, r = 0.0, seemed to have high

performance for NDCG metrics. We also see that the lower values for relax factor tended to have

higher performance, so for the experiments, we selected the relax factor to be 0.5, as it had the best

overall performance on the validation set for the metrics of the top 10 items, while remaining a

top 2 performer in all other categories. Further, we set the value β, which controls the exponential

decay rate of the moving average of MetaBalance, to be empirically set to 0.9 based on the original

study.
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4.2 Experimental Trials

For this experiment, we are curious as to the performance of both MetaBalance and GradSurgery

on the dataset. All experimental trials trained the model on the training set, and evaluation metrics

were computed using the holdout test set. For comparison, we use a baseline method, Vanilla-

Multi, that is a simple, multi-task network with no adjustment to it’s gradient values. We then

run a version of MetaBalance with the optimal relax factor selected over the validation set, which

can be seen in Table 1 below. Our third experiment uses GradSurgery as the gradient optimiza-

tion method, adjusted from the original implementation to fit the auxiliary task scenario where we

only care about the performance of the target task. Finally, we are curious as to whether these two

methods can be used together in a collaborative way to achieve higher performance that when these

methods are used individually. For these combined methods, we try using MetaBalance in con-

junction with adjusted version of GradSimilariy, as well as the original implementation of Grad-

Similarity. The results of these experiments are shown in Table 2. The original implementation of

GradSurgery was implemented for the multi-task scenario with the aim to improve performance

across all task predictions. Thus, in the original version of GradSurgery, we also project the target

task’s gradients onto the gradients of auxiliary tasks.

Table 2: MetaBalance Relax Factor on Validation Set

Metric(%) NDCG@10 R@10 P@10 NDCG@20 R@20 P@20

r = 0.0 1.0486 1.8175 0.2785 1.4142 3.1027 0.2445
r = 0.3 0.9479 1.8091 0.2801 1.3641 3.3174 0.2564
r = 0.5 1.0431 1.8783 0.3007 1.3950 3.1397 0.2485
r = 0.7 1.0049 1.7701 0.2722 1.3278 2.9320 0.2271
r = 1.0 0.9955 1.8427 0.2817 1.3458 3.0729 0.2445

4.3 Analysis

Naturally, the training over time has a significant impact on the performance of the model.

We train the model using all of our training data, updating the parameters on a per-batch basis.

After 20 epochs of training our model, we select the epoch with the best overall performance.
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Table 3: Comparison of Methods

Metric(%) NDCG@10 R@10 P@10 NDCG@20 R@20 P@20

Vanilla Multi 1.0407 1.7377 0.3732 1.4109 2.9271 0.3258
MetaBalance 1.2844 2.1099 0.4408 1.6899 3.4426 0.3657
GradSurgery 1.0662 1.7585 0.3884 1.4355 2.9739 0.3243

MB + GS (adj) 1.0331 1.6737 0.3642 1.3568 2.7219 0.3001
MB + GS (orig) 1.0825 1.8438 0.3843 1.3862 2.8362 0.3031

From the results, we observe that MetaBalance significantly outperformed all other meth-

ods tried. Further, the adjusted implementation of GradSurgery was able to outperform the base-

line vanilla multi-task network by a significant amount, though only marginally outperformed the

baseline compared to MetaBalance. Interestingly, when combining these methods together, we

achieved worse overall performance compared to the baseline, indicating that combining these

strategies in tandem is an ineffective way to achieve performance gains. This strategy of naively

combining these methods can lead to either method interfering with each-other, leading to sub-

optimal gains. We also decided to run an iteration of MetaBalance and GradSurgery together

where we use the original implementation of GradSurgery that treats the problem as a multi-task

recommendation rather than an auxiliary-task recommendation. We suspected that the multi-task

implementation of GradSurgery can create a more robust model that is less likely to overfit in favor

of the target task and, when combined with MetaBalance, could yield optimal results. Ultimately,

we found that this method yielded similar sub-optimal results compared to running MetaBalance

alone, but outperformed the use of MetaBalance with the adjusted implementation of gradient-

surgery, suggesting that Gradient Surgery may not need adjustment in the auxiliary-task scenario.

The original, multi-task implemetation of GradSurgery can be found here*.

*https://github.com/WeiChengTseng/Pytorch-PCGrad
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5. CONCLUSION

5.1 Perspectives

Recently, large investments have been made in the space of improving recommendation

performance using neural network architectures. Multi-task learning has been a focal point of

improving recommendation accuracy, as it helps alleviate some of the limitations of collecting

quality labeled data by allowing the model to train on auxiliary data that was previously unused.

From our experimental results, a relevant question would be to mention the low value ranges of

NDCG, Recall, and Precision. After all, recommendation is naturally a complex problem and it is

difficult to interpret implicit signals. For example, in our training, we sample unobserved user-item

interactions and interpret them to be negative examples; however, it is possible that a user has a

positive interaction with this item and simply has not seen it. Nonetheless, improvements in bottom

line metrics such as purchase prediction, which we treated as a target task, can yield compounding

returns at the scale of a large enough user base.

Advances in the field neural recommendation with multi-task learning would stand to share

the breakthroughs of gradient optimization in multi-task networks, which would immensely cat-

alyze and support research efforts outside of recommendation, such as object detection and local-

ization, machine translation, etc. The gain to be made in this field is a deeper understanding of

gradient interpretation and how to optimize the influence that each task has on the global optimiza-

tion of a multi-task network.

While multi-task learning is clearly an exciting field with more discoveries to be made,

it is also key to mention the importance of consistency across different studies, such as proper

dataset benchmarking, consistent train-test split requirements, and standard data pre-processing

techniques. Multi-task data tends to be difficult to acquire, and a non-standard benchmark dataset

makes it difficult to compare the performance of different methods on a singular dataset. Similarly,

some studies split their train, validation, and test datasets using different requirements, such as
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requiring a test user-item sample to have at minimum number of corresponding training samples

for that particular user and/or item. This can skew the results of some studies, and it also avoids the

cold start issue that is a common challenge for recommending new items and users. Finally, data

preprocessing differences across studies make it difficult to compare methods, since some studies

will do minimal pre-processing and others may filter out a subset of users or items according to

different thresholds. After all, the performance of a particular method or model is based on the data

that it is trained on. While smaller datasets may have advantages such as faster training times and

manageability, they come at the risk of being an unrepresentative distribution of user-item samples.

Thus, a common benchmark could prove useful in accelerating progress in the field.

5.2 Thesis Outcome

Both MetaBalance and GradSimilarity outperformed the baseline multi-task model on the

UserBehavior dataset, indicating that careful and intelligent manipulation of auxiliary gradients

can help neural recommendation systems converge to optimal solutions. In fact, both of these

methods outperformed the baseline model in nearly all metrics that were considered. However,

we also showed that naively joining these two methods together will achieve sub-optimal results

that can perform even worse than the baseline model. This leads us to suspect that performing

direction-based adjustments with magnitude based adjustments interferes with each other and off-

sets the initial gains compared to using methods independently. We also discovered that using the

original implementation of GradSurgery in conjunction with MetaBalance leads to improved per-

formance over the baseline and the sole implementation of GradSurgery, which suggests potential

for MetaBalance to help boost the performance of GradSurgery.

Overall, this study makes it clear that a more targeted and complex approach must be con-

sidered if we seek to achieve significant out performance of current, industry-leading methods.

These methods should also be applied to larger, more representative datasets in the future.
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5.3 Directions for Future Work

Recommendation performance has been boosted by the innovative ideas in multi-task learn-

ing, specifically in gradient balancing and manipulation techniques to achieve better convergence

when training neural-based recommendation engines. While it is widely used in industry today,

there is still much work to be done. As this thesis has shown, the collaborations and interactions

of gradients for different tasks, each with their own loss functions, is incredibly complex. Future

works that aim to gain a deeper interoperability of these interactions could lead to more intelligent

experiments being run, and a better optimization strategy could be applied.

Another key challenge that can be addressed in future works is a more standardized and

widely used dataset for multi-task recommendation. A lack of consistency in datasets is one of

the greatest disparity in terms of neural-recommendation research and industry needs. This is

likely because these two groups are optimizing for different outcomes; in industry, the top-line

metrics are the ultimate priority, leading them to keep their datasets proprietary and only exposing

limited data, typically within a short time window and using very few interaction categories, for

the purposes of academic research. In other fields such as computer vision, widely accepted public

datasets, such as CIFAR-10 or ImageNet, has provided the community with reliable benchmarks

that accelerate the progress in the field. Similar datasets exist in the recommendation domain;

however, they are not suitable for the multi-task scenario. In the future, a public benchmark with

adequate representation of a user-item population as well as significant amounts of data could

similarly accelerate the research in auxiliary-task and multi-task problems. Furthermore, data

pre-processing is another area that lacks consensus and where the strategies and practices vary

depending on the study. For example, as noted in this paper, we used a very small subset of the

original data that was provided to us to ensure that there was sufficient data for our model to learn

about each unique user and item. While this avoids the cold-start problem in recommendation (i.e.,

the issue of recommending a new item or recommending to a new user with no prior history), it is

not truly representative of the data at our disposal. Future works could look to improve upon this

shortcoming, ideally through a proper benchmarking of recommendation datasets.
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