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1 Introduction

Using 50-50 compound lotteries, Eeckhoudt and Schlesinger (2006) define decision makers

with a preference for risk apportionment as those who would rather apportion an inde-

pendent risk in the state with a good lottery than in the state with a bad lottery. They

show that, under expected utility theory, the preference for risk apportionment is implied

by risk aversion of various degrees.1 The risk apportionment framework of Eeckhoudt and

Schlesinger (2006) helps deepen the understanding of higher-degree risk increases. Despite

the time that has passed since Ekern’s (1980) definition of an nth-degree risk increase, little

is known beyond the fact that the nth-degree risk increase is a special case of the nth-degree

stochastic dominance in which the first n − 1 moments of the two random variables are

kept the same. The risk apportionment framework makes it very easy to decompose a

higher-degree risk increase into lower-degree risk increases, thereby providing an intuitive

interpretation of nth-degree risk increases in terms of the well-understood 1st-degree risk

increases (leftward shifts in the probability mass) and/or 2nd-degree risk increases (mean-

preserving spreads). The risk apportionment framework also facilitates a general treatment

in a large category of models regarding the effects of exogenous changes in a risky environ-

ment (Menegatti and Peter, 2020; Nocetti, 2016). In addition, this framework has been

extended to characterize preferences for disaggregating two multiplicative risks (Chiu et

al., 2012; Wang & Li, 2010), to study multiattribute risk preferences (Denuit & Rey 2013;

Gollier 2019; Jokung, 2011; Tsetlin & Winkler, 2009), to better understand the relation-

ship between stochastic dominance and the corresponding preferences (Courbage et al.,

2018; Ebert et al., 2018; Huang et al., 2020; Tsetlin & Winkler, 2018), and to shed light

on nth-degree risk aversion in non-EU models (Eeckhoudt et al., 2020).

1As the opposite of risk apportionment, Crainich et al. (2013) study preferences for combining two
independent risk increases of various degrees in a single state, as opposed to putting them in separate
states, and show that these preferences can be characterized by risk loving at all even degrees and risk
aversion at all odd degrees. See also Ebert (2013).
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To the best of our knowledge, however, there exists almost no analysis on how to

measure the strength of the preference for risk apportionment.2 While the notion of risk

aversion was mathematically formalized by Daniel Bernoulli in the 1700s (Bernoulli, 1954),

our understanding of decision making under risk has been greatly enhanced by the more

recent research on the measurement of risk aversion by Arrow (1971) and Pratt (1964).

The present paper sets out to quantify the strength of the preference for risk apportion-

ment, extending the literature on risk apportionment to include an analysis of comparative

risk apportionment. Thus, our framework can be useful in applied work as well as in ex-

perimental settings when researchers try to compare the strength of risk apportionment

preferences between different individuals. For n ≥ 3, we define a measure of preference for

nth-degree risk apportionment, called the nth-degree probability premium and denoted by

pn. This is a generalization of Pratt’s (1964) probability premium, which is defined as p

such that a decision maker is indifferent when choosing between 0 and a lottery that yields

k > 0 with probability 1/2 + p and −k with probability 1/2− p. Pratt proves that p > 0

for a risk averter and p is larger for a decision maker who is more risk averse. We find

that, under an expected utility representation of preferences, if a decision maker is risk

averse and nth-degree risk averse (Ekern, 1980), the corresponding nth-degree probability

premium, pn, will be positive. Moreover, an nth-degree generalization of Ross more risk

aversion (Ross, 1980) is a sufficient condition for the interpersonal comparison of the nth-

degree probability premiums, whereas the corresponding nth-degree Arrow-Pratt more risk

aversion is a necessary condition.

We also adopt the generalized framework of nth-degree risk apportionment developed

2In his Geneva Risk Economics Lecture in 2012, Louis Eeckhoudt distinguished between research ad-
dressing the direction of risk attitudes and research addressing their intensity (Eeckhoudt, 2012). Much
progress has been made on understanding risk apportionment as a directional preference, but less is known
about how to measure its intensity. Jindapon (2010) and Watt (2011) theoretically investigate the intensity
of 3rd-degree risk apportionment, while Ebert and Wiesen (2014) experimentally elicit dollar measures of
the intensity of 3rd- and 4th-degree risk apportionment.
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by Eeckhoudt et al. (2009), based on mutual aggravation of mth- and (n − m)th-degree

risks, where n > m ≥ 1, and define another measure of preference for nth-degree risk

apportionment, called (n/m)th-degree probability premium, or pn/m. We find that, under

an expected utility representation of preferences, if decision makers are nth- and mth-

degree risk averse, the corresponding (n/m)th-degree probability premium will be positive.

Moreover, the (n/m)th-degree Ross more risk aversion, as defined by Liu and Meyer (2013),

is a sufficient condition for the interpersonal comparison of the (n/m)th-degree probability

premiums, whereas the corresponding (n/m)th-degree Arrow-Pratt more risk aversion is a

necessary condition.

Since the original concept of nth-degree risk apportionment in Eeckhoudt and Schlesinger

(2006) is a special case of Eeckhoudt et al. (2009) with m = 2, this generalization allows

us to compare the strength of preference for nth-degree risk apportionment in a broader

set of situations. For example, we can compare the strength of the nth-degree risk ap-

portionment preference between two decision makers without the assumption that both

are risk averse. As an alternative, we propose a variation of the 50-50 lottery pairs with

m = 1, so we can use the concept of the (n/1)th-degree probability premium, or pn/1, as a

measure of the nth-degree risk apportionment of an individual who may be risk averse, risk

loving, or neither. For example, given n = 3, we have two possible measures of 3rd-degree

risk apportionment preference: p3/2 and p3/1. To compare the strength of the 3rd-degree

risk apportionment preferences of two individuals, the former measure, p3/2, requires both

individuals to be risk averse, while the latter measure, p3/1, requires only monotonicity.

The paper is organized as follows. Section 2 provides definitions and preliminary results

related to nth-degree risk aversion and nth-degree risk apportionment. In Section 3, we

introduce the concept of the nth-degree probability premium, based on Eeckhoudt and

Schlesinger (2006), i.e., pn, and show how it can be characterized by the nth-degree Ross

and Arrow-Pratt measures of higher-order risk aversion. In Section 4, we define a more
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general nth-degree probability premium, i.e., pn/m, using the risk-apportionment frame-

work by Eeckhoudt et al. (2009), and derive analogous results regarding comparative risk

apportionment. We focus on the case of prudence (i.e., n = 3) in Section 5 and conclude

in Section 6.

2 Risk Apportionment

Throughout the paper, we let [L1, p1;L2, p2] denote a binary compound lottery that yields

lottery Li with probability pi for i = 1, 2. In this section, we first review Eeckhoudt and

Schlesinger’s (2006) definition of nth-degree risk apportionment. For n = 3, we consider

two lotteries, A3 = [−k + ε̃3, 1/2; 0, 1/2] and B3 = [−k, 1/2; ε̃3, 1/2], where k > 0 and ε̃3 is

a nondegenerate zero-mean risk. A decision maker who prefers more to less and dislikes

risk would regard both −k and ε̃ as “bads.” A decision maker who displays a preference

for risk apportionment—a preference for putting two independent bads in separate states,

as opposed to combining them in a single state—prefers lottery B3 to lottery A3, for any

k and ε̃3. To put it differently, the only difference between lotteries A3 and B3 is that the

zero-mean risk ε̃ occurs in the high-wealth state of B3 and in the low-wealth state of A3.

According to Menezes et al. (1980), A3 has more downside risk than B3. Therefore, a

preference for risk apportionment in this example is the same as an aversion to downside

risk increases. See Figure 1.

B3

ε̃3

1
2

−k
1
2

A3

0

1
2

−k + ε̃3
1
2

≻

Figure 1: 3rd-degree risk apportionment
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This notion of a preference for 3rd-degree risk apportionment does not require the exis-

tence of an expected-utility representation of a decision maker’s preferences. If a decision

maker has an initial wealth of w and his preferences are represented by utility function u,

however, both Menezes et al. (1980) and Eeckhoudt and Schlesinger (2006) demonstrate

that Eu(w+B3) > Eu(w+A3) for all w, k, and ε̃ if and only if u′′′(x) > 0 for all x in the

wealth domain. For a larger value of n, Eeckhoudt and Schlesinger (2006) define lotteries

An and Bn to represent nth-degree risk apportionment as follows.

Definition 1. (Eeckhoudt & Schlesinger, 2006) Let k be a strictly positive real number,

ε̃n, for n ≥ 2, be a zero-mean nondegenerate random variable, and all ε̃n be mutually

independent. Define lotteries B1 = B2 = 0, A1 = −k, and A2 = ε̃2. For n ≥ 3,

An = [An−2 + ε̃n, 1/2;Bn−2, 1/2]

Bn = [An−2, 1/2;Bn−2 + ε̃n, 1/2]

A decision maker prefers nth-degree risk apportionment if

(i) For n = 1, B1 ≻ A1 for all k > 0.

(ii) For n = 2, B2 ≻ A2 for all ε̃n.

(iii) For n ≥ 3, Bn ≻ An for all An−2, Bn−2, and ε̃n.

Eeckhoudt and Schlesinger’s (2006) definition of a preference for nth-degree risk appor-

tionment is illustrated in Figure 2. Let F (x) andG(x) represent the cumulative distribution

functions (CDFs) of two random variables whose supports are contained in a finite interval

denoted [a, b] with no probability mass at point a. This implies that F (a) = G(a) = 0 and

F (b) = G(b) = 1. Let F [1](x) = F (x) and F [j](x) =
! x

a
F [j−1](y)dy for any integer j ≥ 2.

Similar notation applies to G(x). Ekern (1980) gives the following definition.
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Bn

Bn−2 + ε̃n

1
2

An−2
1
2

An

Bn−2

1
2

An−2 + ε̃n
1
2

≻

Figure 2: nth-degree risk apportionment

Definition 2. (Ekern, 1980)

1. For any integer n ≥ 1, G(x) has more nth-degree risk than F (x) if

(i) G[j](b) = F [j](b) for j = 1, 2, ..., n, and

(ii) G[n](x) ≥ F [n](x) for all x ∈ [a, b] with “>” holding for some x ∈ (a, b).

2. A decision maker exhibits nth-degree risk aversion if F (x) ≻ G(x) for all F (x) and

G(x) such that G(x) has more nth-degree risk than F (x).

Condition (i) guarantees that the first n − 1 moments of F (x) and G(x) are held the

same across the two distributions, and conditions (i) and (ii) together imply that F (x)

dominates G(x) by nth-degree stochastic dominance. Thus, the nth-degree risk increase

is a special case of nth-degree stochastic dominance in which the first n − 1 moments

are kept the same. Also note that an increase in 1st-degree risk is equivalent to a first-

degree stochastically dominated shift, that an increase in 2nd-degree risk is equivalent to

a sequence of mean-preserving spreads, as in Rothschild and Stiglitz (1970), and that an

increase in 3rd-degree risk is equivalent to a downside risk increase, as in Menezes et al.

(1980). A decision maker who always prefers any distribution with less nth-degree risk is

said to be nth-degree risk averse.

Under expected utility theory, Ekern (1980) proves that a decision maker is nth-degree

risk averse if and only if (−1)n−1u(n)(x) > 0 for all x ∈ [a, b]. Eeckhoudt and Schlesinger
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(2006) find that, under expected utility theory, a decision maker has a preference for nth-

degree risk apportionment if and only if (−1)n−1u(n)(x) > 0 for all x ∈ [a, b], and hence a

preference for nth-degree risk apportionment is equivalent to nth-degree risk aversion.

3 Comparative Risk Apportionment

In this section, we define the nth-degree probability premium, based on Eeckhoudt and

Schlesinger (2006), to compare the intensity of preference for nth-degree risk apportionment

between two decision makers. Like Definition 1, the following definition of the probabil-

ity premium does not rely on the existence of an expected utility representation of the

preferences.3

Definition 3. Given An and Bn in Definition 1, a decision maker’s nth-degree probability

premium is pn such that A′
n ∼ B′

n where

A′
n = [An−2 + ε̃n, 1/2− pn;Bn−2, 1/2 + pn]

B′
n = [An−2, 1/2− pn;Bn−2 + ε̃n, 1/2 + pn]

for n ≥ 3.

The definition of nth-degree probability premium, denoted by pn, is illustrated in Figure

3. The intuition for using pn as a measure of the strength of nth-degree risk apportionment

is the following. According to Figure 2, nth-degree risk apportionment is characterized

by Bn ≻ An. Note that for a risk-averse individual, the lower (upper) random wealth in

lottery An is better (worse) than the lower (upper) random wealth in lottery Bn. Therefore,

the attractiveness of lottery An relative to lottery Bn can be improved by moving some

3Note that the preference relation over lotteries, in general, must satisfy continuity and monotonicity
to guarantee the existence of a unique probability premium defined in Definition 3. Note also that the
utility functions considered in this paper satisfy the required continuity and monotonicity.
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probability mass from the upper state to the lower state in both lotteries. The required

probability mass that makes the two sides equally attractive, as in Figure 3, indicates how

difficult it is to offset the individual’s preference for nth-degree risk apportionment by such

a movement of probability mass and, therefore, serves as a measure of the strength of

nth-degree risk apportionment.

B′
n

Bn−2 + ε̃n

1
2
+ pn

An−2
1
2
− pn

A′
n

Bn−2

1
2
+ pn

An−2 + ε̃n
1
2
− pn

∼

Figure 3: nth-degree probability premium

Under expected utility theory, we can derive u’s probability premium, denoted by pun,

according to Definition 3 as

"
1

2
− pun

#
Eu(w + An−2 + ε̃n) +

"
1

2
+ pun

#
Eu(w +Bn−2)

=

"
1

2
− pun

#
Eu(w + An−2) +

"
1

2
+ pun

#
Eu(w +Bn−2 + ε̃n) (1)

where w is initial wealth. We define the utility premium of ε̃n, given random wealth w̃, as

∆u
ε̃n(w̃) = Eu(w̃)− Eu(w̃ + ε̃n). (2)

Using (1) and (2), we can write pun as

pun =
1

2

$
∆u

ε̃n(w + An−2)−∆u
ε̃n(w +Bn−2)

∆u
ε̃n
(w + An−2) +∆u

ε̃n
(w +Bn−2)

%
(3)

and find that it is positive for any decision maker who is risk averse and nth-degree risk
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averse.

Theorem 1. If u is risk-averse and nth-degree risk averse for n ≥ 3, then 0 < pun < 1
2
.

Proof. See Appendix A.

Now we study the relationship between the interpersonal comparison of our proposed

strength measure of nth-degree risk apportionment, namely the nth-degree probability

premium, and two related concepts of comparative nth-degree risk aversion under expected

utility theory.

Theorem 2. Suppose that u and v are risk averse decision makers who are also nth-degree

risk averse for n ≥ 3. Then, statements (i) ⇒ (ii) ⇒ (iii).

(i) (−1)nu(n)(x)
u′′(y) ≥ (−1)nv(n)(x)

v′′(y) for all x, y ∈ [a, b].

(ii) pun ≥ pvn for all w, ε̃n, An−2, and Bn−2 defined in Definition 1.

(iii) (−1)nu(n)(x)
u′′(x) ≥ (−1)nv(n)(x)

v′′(x) for all x ∈ [a, b].

Proof. See Appendix B.

In Theorem 2, we derive a sufficiency condition and a necessary condition for u to

have a larger nth-degree probability premium than v. The sufficiency condition (i) is a

generalization of Ross more risk aversion (Ross 1981) while the necessary condition (iii)

is a generalization of Arrow-Pratt more risk aversion (Arrow 1971 and Pratt 1964) to the

nth degree (n ≥ 3). While it is obvious that condition (i) is stronger than condition (iii),

we find that it is possible for conditions (ii) and (iii) to be equivalent. See Remark 1 and

the discussion at the end of Section 5.

10



4 Generalization

In the previous section, we analyze the nth-degree probability premium based on Eeck-

houdt and Schlesinger’s (2006) definition of nth-degree risk apportionment. Eeckhoudt

and Schlesinger’s (2006) framework has been generalized by Eeckhoudt et al. (2009) who

adopt a more general class of 50-50 lottery pairs that differ by nth-degree riskiness. In

this section, we extend our results to this class of lotteries and show how to generalize the

proposed intensity measure of an individual’s preference for nth-degree risk apportionment.

4.1 (n/m)th-degree risk apportionment

Based on Eeckhoudt et al. (2009), we define lotteries An,m and Bn,m as follows.

Definition 4. For n > m ≥ 1,

An,m = [ỹn−m + ỹm, 1/2; x̃n−m + x̃m, 1/2]

Bn,m = [ỹn−m + x̃m, 1/2; x̃n−m + ỹm, 1/2]

are compound binary lotteries such that

(i) x̃n−m and ỹn−m are independent of x̃m and ỹm, and

(ii) ỹi has more ith-degree risk than x̃i for i = m,n−m.

If the preference ordering satisfies both mth- and (n − m)th-degree risk aversion, we

have

x̃n−m + x̃m ≻

&
'(

')

ỹn−m + x̃m

x̃n−m + ỹm

*
'+

',
≻ ỹn−m + ỹm.

Note that the two inner risks in the above rankings (i.e., ỹn−m + x̃m and x̃n−m + ỹm)

cannot be ranked without further information. Eeckhoudt et al. (2009) point out that for
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a decision maker to prefer B to A, he must prefer the 50-50 lottery of two “inner risks” to

the 50-50 lottery of two “outer risks.”4 They further prove that An,m has more nth-degree

risk than Bn,m.
5 Using the lotteries An,m and Bn,m defined in Definition 4, a more general

definition of nth-degree risk apportionment than Definition 1 can be given below.

Definition 5. For any integer n ≥ 3, preferences are said to satisfy nth-degree risk appor-

tionment if Bn,m ≻ An,m for all An,m and Bn,m given in Definition 4 and for every positive

integer m < n.

Bn,m

x̃n−m + ỹm

1
2

ỹn−m + x̃m
1
2

An,m

x̃n−m + x̃m

1
2

ỹn−m + ỹm
1
2

≻

(a) Generalized nth-degree risk apportionment

B′
n,m

x̃n−m + ỹm

1
2
+ pn/m

ỹn−m + x̃m
1
2
− pn/m

A′
n,m

x̃n−m + x̃m

1
2
+ pn/m

ỹn−m + ỹm
1
2
− pn/m

∼

(b) (n/m)th-degree probability premium pn/m

Figure 4: Generalized probability premium

The preference relation defining the nth-degree risk apportionment is depicted in Figure

4 (a). Note that the lottery pair used to show nth-degree risk apportionment in Eeckhoudt

4The terminology is from Menezes and Wang (2005).
5Eeckhoudt et al. (2009) present theorems both for the case where the relatively bad is an nth-degree

risk increase from the relatively good, and for the case where the relatively bad is nth-degree stochastically
dominated by the relatively good. For the purpose of the present paper, we only need to consider the case
of risk increases.
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and Schlesinger (2006) in Definition 1 is a special case of An,m and Bn,m in Definition 4

with m = 2. Even though this preference relation does not hinge on the existence of an

expected utility representation, when the decision maker’s preferences satisfy the expected

utility axioms and can be represented by utility function u(x), the general notion of nth-

degree risk apportionment is also characterized by (−1)n−1u(n)(x) > 0 for all x ∈ [a, b].

Moreover, the preference relation B ≻ A is equivalent to the following inequality:

Eu(w+ ỹn−m+ x̃m)−Eu(w+ ỹn−m+ ỹm) > Eu(w+ x̃n−m+ x̃m)−Eu(w+ x̃n−m+ ỹm). (4)

Both sides in the above inequality represent the utility loss from anmth-degree risk increase

(i.e., from x̃m to ỹm), with the left-hand side being associated with ỹn−m and the right-hand

side with x̃n−m. Therefore, the above inequality states that the pain from an mth-degree

risk increase in one asset component increases as the other asset component undergoes an

(n−m)th-degree risk increase (i.e., from x̃n−m to ỹn−m). See Denuit and Rey (2010) and

Ebert et al. (2018).

4.2 (n/m)th-degree probability premiums

Using the concept of nth-degree risk apportionment given in Definition 5, we are now ready

to define the (n/m)th-degree probability premium to measure the intensity of preference for

nth-degree risk apportionment illustrated in Figure 4 (a). Like Definition 5, the following

definition of pn/m, which is illustrated in Figure 4 (b), does not rely on the existence of an

expected utility representation of the preferences.6

6The remarks in Footnote 3 also apply here.
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Definition 6. Given

A′
n,m = [ỹn−m + ỹm, 1/2− pn/m; x̃n−m + x̃m, 1/2 + pn/m]

B′
n,m = [ỹn−m + x̃m, 1/2− pn/m; x̃n−m + ỹm, 1/2 + pn/m],

a decision maker’s (n/m)th-degree probability premium is pn/m such that A′ ∼ B′.

The intuition for using pn/m defined above as a measure of the strength of nth-degree risk

apportionment is the following. According to Definition 5, nth-degree risk apportionment

is characterized by Bn,m ≻ An,m. Note that for an mth-degree risk averse individual,

the lower (upper) random wealth in lottery A is better (worse) than the lower (upper)

random wealth in lottery B. Therefore, the attractiveness of lottery A relative to lottery

B can be improved by moving some probability mass from the upper state to the lower

state in both lotteries. The required probability mass that makes the two sides equally

attractive, denoted by pn/m, indicates how difficult it is to offset the individual’s preference

for nth-degree risk apportionment by such a movement of probability mass, and can serve

as a measure of the strength of nth-degree risk apportionment. Note that the nth-degree

probability premium pn defined in the previous section is a special case of pn/m givenm = 2.

Under expected utility theory, we can derive u’s (n/m)th-degree probability premium,

denoted by pun/m, given an initial wealth w as follows.

"
1

2
− pun/m

#
Eu(w + ỹn−m + ỹm) +

"
1

2
+ pun/m

#
Eu(w + x̃n−m + x̃m)

=

"
1

2
− pun/m

#
Eu(w + ỹn−m + x̃m) +

"
1

2
+ pun/m

#
Eu(w + x̃n−m + ỹm) (5)

Let z̃m = ỹm − x̃m. Using (5) and (2), we can write pun/m as

pun/m =
1

2

$
∆u

z̃m(w + ỹn−m + x̃m)−∆u
z̃m(w + x̃n−m + x̃m)

∆u
z̃m
(w + ỹn−m + x̃m) +∆u

z̃m
(w + x̃n−m + x̃m)

%
(6)
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and find that it is positive for any decision maker who is nth- and mth-degree risk averse.

Theorem 3. If u is nth- and mth-degree risk averse, then 0 < pun/m < 1/2.

Proof. See Appendix C.

Consider the mixed risk averters defined by Cabellé and Pomansky (1996) as our special

case. If the decision maker is mixed risk averse, then he is both mth- and nth-degree risk

averse, and hence 0 < pun/m < 1/2 for every pair of A and B satisfying Definition 4, for

all n and m such that n > m ≥ 1. It is also possible for the mixed risk lovers defined by

Crainich et al. (2013) to have a positive pun/m since they are nth-degree risk averse for an

odd n. So if both m and n are odd, a mixed risk lover will be both mth- and nth-degree

risk averse, and his corresponding pun/m will be positive.

As we argued after Theorem 1 in Section 2, although both nth-degree risk apportion-

ment and nth-degree risk aversion are characterized by (−1)n−1u(n) > 0 when the prefer-

ences of a decision maker have an expected utility representation, this does not necessarily

imply that the intensity measure for nth-degree risk apportionment must be the same as

the intensity measure for nth-degree risk aversion. Indeed, it is clear upon examination

that our general measure of nth-degree risk apportionment, pun/m, is different from all the

measures of nth-degree risk aversion proposed in Liu and Meyer (2013) and Liu and Neil-

son (2019). Nevertheless, it is interesting to compare pun/m with the “rate of substitution”

measure of nth-degree risk aversion, denoted by Tu, in Liu and Meyer (2013). First, note

that (6) can be rewritten as

pun/m =
1

2

$
Eu(w +Bn,m)− Eu(w + An,m)

Eu(w +Dn,m)− Eu(w + Cn,m)

%
(7)
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where

Cn,m = [ỹn−m + ỹm, 1/2; x̃n−m + ỹm, 1/2]

Dn,m = [ỹn−m + x̃m, 1/2; x̃n−m + x̃m, 1/2]

and lotteries An,m and Bn,m are given in Definition 4. Since An,m has more nth-degree

risk than Bn,m, and Cn,m has more mth-degree risk than Dn,m, pn/m can be interpreted

as a half of the ratio of the utility premium of an nth-degree risk reduction to the utility

premium of an mth-degree risk reduction. In contrast,

Tu =
Eu(w + F )− Eu(w +G)

Eu(w + F )− Eu(w +H)
(8)

where G has more nth-degree risk than F and H has more mth- degree risk than F . While

both pun/m and Tu are ratios of an nth-degree utility premium to an mth-degree utility

premium, there are two subtle differences between them. First, the nth- and the mth-

degree risk increases happen to the same F in Tu, which is not the case for pun/m. Second,

F , G, and H in (8) can be any random variables as long as G has more nth-degree risk

than F and H has more mth-degree risk than F , but the risk comparisons among An,m,

Bn,m, Cn,m, and Dn,m in (7) are based on the risk apportionment framework.7

In a related study, Liu and Neilson (2019) define an mth-degree probability premium

for an nth-degree risk increase, which, in the framework of expected utility, can be written

7It is impossible to find lotteries An,m, Bn,m, Cn,m, and Dn,m so that pun/m in (7) coincides with 1/2 of

Tu in (8). If we assume that Bn,m and Dn,m in (7) are identical so that both lotteries can be represented
by F in (8), then we impose that x̃m = ỹm which in turn contradicts An,m and Bn,m defined in Definition
4.
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as

pu =
Eu(w + F )− Eu(w +G)

Eu(w + Z)− Eu(w +G)

=
Eu(w + F )− Eu(w +G)

[Eu(w + Z)− Eu(w + F )] + [Eu(w + F )− Eu(w +G)]
. (9)

where G has more nth-degree risk than F , and Z has less mth-degree risk than F . Besides

the fact that 1/2 is present in (7) but not in (9), the two versions of probability premium

have two main differences. First, although the numerators in (7) and (9) are both nth-

degree utility premiums, the denominator in (7) is an mth-degree utility premium whereas

the denominator in (9) is the sum of an mth-degree utility premium and an nth-degree

utility premium. Second, and more importantly, F , G and Z in (9) can be any random

variables as long as G has more nth-degree risk than F and F has more mth-degree risk

than Z, but the four random variables in (7) are more restricted 50-50 compound lotteries.

4.3 Comparative risk apportionment

In this section, we study the relationship between the interpersonal comparison of our

proposed strength measure of nth-degree risk apportionment, namely the (n/m)th-degree

probability premium, and two related concepts of comparative nth-degree risk aversion un-

der expected utility theory. First, we introduce the two generalized concepts of comparative

nth-degree risk aversion defined by Liu and Meyer (2013).

Definition 7. (Liu & Meyer 2013) For n > m ≥ 1, u is (n/m)th-degree Arrow-Pratt more

risk averse than v on [a, b] if

(−1)(n−1)u(n)(x)

(−1)(m−1)u(m)(x)
≥ (−1)(n−1)v(n)(x)

(−1)(m−1)v(m)(x)
(10)

for all x ∈ [a, b].
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Definition 8. (Liu & Meyer 2013) For n > m ≥ 1, u is (n/m)th-degree Ross more risk

averse than v on [a, b] if

(−1)(n−1)u(n)(x)

(−1)(m−1)u(m)(y)
≥ (−1)(n−1)v(n)(x)

(−1)(m−1)v(m)(y)
(11)

for all x, y ∈ [a, b].

By choosing y = x in Definition 8, it follows immediately that (n/m)th-degree Ross

more risk averse is a stronger condition than (n/m)th-degree Arrow-Pratt more risk averse.8

The theorem below states how the interpersonal comparison of our proposed measure of

the strength of nth-degree risk apportionment–the (n/m)th-degree probability premium–is

related to the above two notions of (n/m)th-degree more risk averse.

Theorem 4. Let pun/m and pvn/m be (n/m)th-degree probability premiums for decision mak-

ers u and v respectively. If both are mth- and nth-degree risk averse, then statements (i)

⇒ (ii) ⇒ (iii).

(i) u is (n/m)th-degree Ross more risk averse than v.

(ii) pun/m ≥ pvn/m for all w, x̃m, ỹm, x̃n−m, ỹn−m.

(iii) u is (n/m)th-degree Arrow-Pratt more risk averse than v.

Proof. See Appendix D.

According to Theorem 4, pun/m ≥ pvn/m is necessary but not sufficient for u being

(n/m)th-degree Ross more risk averse than v. This result is not as strong as Liu and

8The notion of (n/m)th-degree Arrow-Pratt more risk averse given by Definition 7 includes many lower-
degree versions as special cases: Arrow (1971) and Pratt (1964) for n = 2 and m = 1, Kimball (1990) and
Chiu (2005) for n = 3 and m = 2, Crainich and Eeckhoudt (2008) for n = 3 and m = 1, and Crainich and
Eeckhoudt (2011) for n = 4 and m = 1, 2, 3. Similarly, the notion of (n/m)th-degree Ross more risk averse
given by Definition 8 also includes many lower-degree versions as special cases: Ross (1981) and Machina
and Neilson (1987) for n = 2 and m = 1, Modica and Scarsini (2005) for n = 3 and m = 1, and Jindapon
and Neilson (2007), Li (2009), and Denuit and Eeckhoudt (2010) for n ≥ 2 and m = 1. Crainich et al.
(2020) further extend Definition 8 to bivariate situations.
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Neilson’s (2019) finding regarding the mth-degree probability premium for an nth-degree

risk increase, which is proved to be larger for u than for v if and only if u is (n/m)th-degree

Ross more risk averse than v. The reason for this difference is that the random variables

determining pun/m in (7) are 50-50 lotteries which are more restricted than the random

variables determining pu in (9).

5 Prudence

The focus of this section is a preference for 3rd-degree risk apportionment, which is also

known as prudence and downside risk aversion. A prudent decision maker prefers B3 =

[−k, 1/2; ε̃, 1/2] to A3 = [−k + ε̃, 1/2; 0, 1/2], as illustrated in Figure 1. Using Definition

6 with n = 3, we can define two prudence probability premiums, p3/1 and p3/2, which

are illustrated in Figures 5 (a) and 5 (b). Given a utiliy function u, the two probability

premiums can be expressed under expected utility theory as

pu3/1 =
1

2

$
∆u

−k(w + ε̃)−∆u
−k(w)

∆u
−k(w + ε̃) +∆u

−k(w)

%
(12)

and

pu3/2 =
1

2

$
∆u

ε̃ (w − k)−∆u
ε̃ (w)

∆u
ε̃ (w − k) +∆u

ε̃ (w)

%
. (13)

In the literature, two studies have previously used a probability premium to measure

the strength of prudence or downside risk aversion; Watt (2011) proposed a probability

premium concept similar to p3/2, while Jindapon’s (2010) probability premium is defined

slightly different. Specifically, Jindapon’s prudence probability premium is q such that

B3 ∼ A∗
3 where

A∗
3 = [−k + ε̃, 1/2− q; 0, 1/2 + q].

See Figure 5 (c) for an illustration of q. The key difference between q and the first two
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B′
3,1

−k

1
2
+ p3/1

ε̃31
2
− p3/1

A′
3,1

0

1
2
+ p3/1

ε̃3 − k
1
2
− p3/1

∼

(a) Prudence probability premium p3/1

B′
3,2

ε̃3

1
2
+ p3/2

−k
1
2
− p3/2

A′
3,2

0

1
2
+ p3/2

−k + ε̃31
2
− p3/2

∼

(b) Prudence probability premium p3/2

B3

ε̃3

1
2

−k
1
2

A∗
3

0

1
2
+ q

−k + ε̃3
1
2
− q

∼

(c) Prudence probability premium q

Figure 5: Various concepts of prudence probability premium
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probability premiums is that the probability of each state in B3 that we use to derive q

is unchanged. To compare prudence probability premiums between two expected-utility

maximizers, Jindapon (2010) identifies a sufficient condition for qu > qv. However, its

application is quite limited, because his sufficient condition depends not only on the utility

functions, but also on ε̃. Watt’s (2011) sufficient condition for pu3/2 > pv3/2 is considered

incomplete for the same reason. Based on our results from the previous section, we can

provide a sufficient condition for comparing each probability premium concept without a

restriction on ε̃.

Under expected utility theory, we have

qu =
1

2

$
∆u

ε̃ (w − k)−∆u
ε̃ (w)

u(w)− Eu(w − k + ε̃)

%
=

1

2

$
∆u

ε̃ (w − k)−∆u
ε̃ (w)

∆u
−k(w) +∆u

ε̃ (w − k)

%
. (14)

Consider the ratio inside the last brackets. Each of these conditions, u′(x) > 0, u′′(x) < 0,

and u′′′(x) > 0, implies ∆−k(w) > 0, ∆ε̃(w − k) > 0, and ∆ε̃(w − k) − ∆ε̃(w) > 0,

respectively. Thus, qu is positive for any prudent risk averter. Following the proof of

Theorem 4, we can derive a sufficient condition for qu ≥ qv given any ε̃. We summarize

sufficient conditions for comparing prudence probability premiums between two decision

makers as follows.

Corollary 1. Suppose that u and v are prudent.

(i) If u′′′(x)
u′(y) ≥ v′′′(x)

v′(y) for all x, y ∈ [a, b], then pu3/1 ≥ pv3/1 for all w, k, and ε̃.

(ii) If both u and v are risk averse and −u′′′(x)
u′′(y) ≥ −v′′′(x)

v′′(y) for all x, y ∈ [a, b], then pu3/2 ≥

pv3/2 for all w, k, and ε̃.

(iii) If both u and v are risk averse, u′′′(x)
u′(y) ≥ v′′′(x)

v′(y) and −u′′′(x)
u′′(y) ≥ −v′′′(x)

v′′(y) for all x, y ∈ [a, b],

then qu ≥ qv for all w, k, and ε̃.
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Note that the comparison between pu3/1 and pv3/1 does not need both agents to be risk

averse. The sufficient condition in Corollary 1 (i), i.e., more (3/1)th-degree Ross more risk

averse, is actually equivalent to being more strongly downside risk averse, as defined by

Modica and Scarsini (2005). Parts (ii) and (iii) provide sufficient conditions for comparing

Watt’s and Jindapon’s probability premiums, respectively. Based on the derivation of each

probability premium concept in (12), (13), and (14), we can see how we obtain such

sufficient conditions. Specifically, p3/1 is half of the ratio of the utility premium of a third-

degree risk increase to the utility premium of a first-degree risk increase; p3/2 is half of

the ratio of the utility premium of a third-degree risk increase to the utility premium of

a second-degree risk increase; and q is half of the ratio of the utility premium of a third-

degree risk increase to the utility premium of a second-degree stochastically dominated

change (of which both the first-degree risk increase and the second-degree risk increase are

special cases).9

Finally, we focus on the case of constant absolute risk aversion (CARA), i.e., u(x) =

−e−αx. We find that, between two CARA decision makers, the one with a larger risk

preference parameter α has a larger 3rd-degree probability premium.

Remark 1. Suppose that u(x) = −e−αx and v(x) = −e−βx. The following three statements

are equivalent:

(i) α > β > 0.

(ii) pu3/1 ≥ pv3/1 for any w > k > 0, and any zero-mean risk ε̃.

(iii) pu3/2 ≥ pv3/2 for any w > k > 0, and any zero-mean risk ε̃.

Proof. See Appendix E.

9In general, the utility premium refers to the reduction in expected utility caused by a change in the
random wealth variable. While it has long been recognized that the utility premium is not interpersonally
comparable, the ratio of two utility premiums is. See, for example, Crainich and Eeckhoudt (2008),
Eeckhoudt and Schlesinger (2009), Denuit and Rey (2010), Menegatti (2011), and Li and Liu (2014).
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Note that, given a CARA utility function, pu3/1 and pu3/2 do not depend on w or ε̃.

Therefore, Given n = 3 and the CARA functional form, (ii) ⇔ (iii) in Theorem (4). This

unambiguous positive effect of the preference parameter in the CARA utility function on

both versions of the prudence probability premium is in fact not obvious. While the CARA

parameter has a positive effect on the measure of absolute prudence (Kimball, 1990) and

the measure of downside risk aversion (Crainich and Eeckhoudt, 2008; Modica and Scarsini,

2005), it has a negative effect on the Schwarzian derivative of Keenan and Snow (2002,

2012) and no effect on Liu and Meyer’s (2012) measure of decreasing absolute risk aversion

(DARA). Peter (2020) discusses these four measures in the context of comparative downside

risk aversion and optimal prevention. Using CARA utility as an example, Peter (2020) finds

that the change in optimal prevention depends not only on the direction of a change in the

CARA parameter, but also on the magnitude of the change.

6 Conclusion

In this paper, we propose a concept of probability premium that can be used to com-

pare the strength of preference for nth-degree risk apportionment between two individuals.

Specifically, based on the general framework of Eeckhoudt et al. (2009), we define the

(n/m)th-degree probability premium, where n > m ≥ 1, denoted by pn/m, and prove that,

under expected utility theory, the (n/m)th-degree Ross more risk aversion of Liu and Meyer

(2013) is a sufficient condition for comparative nth-degree risk apportionment, whereas the

corresponding (n/m)th-degree Arrow-Pratt more risk aversion is a necessary condition.

While there are n − 1 ways to measure the strength of nth-degree risk apportionment

by using probability premiums pn/m where m = 1, 2, ..., n−1, the special case of m = 2 can

be dealt with in the original risk apportionment framework of Eeckhoudt and Schlesinger

(2006), where pn/2 or simply pn emerges as a measure of preference for nth-degree risk
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apportionment. For example, we can use p3/2 as a measure of prudence and p4/2 as a

measure of temperance. As Eeckhoudt and Schlesinger (2006) point out, the preference

relation between two 50-50 lotteries—which involve two independent risks—that they use

to define temperance can also be used to define proper risk aversion (Pratt & Zeckhauser,

1987), risk vulnerability (Gollier & Pratt, 1996), and standard risk aversion (Kimball,

1993), as long as the risks in the 50-50 lotteries are given appropriate reinterpretations.

Therefore, the way we define the p4/2 measure for temperance can be used to formulate

measures of proper risk aversion, risk vulnerability, and standard risk aversion. Such

extensions/applications of our comparative risk apportionment approach are left for future

research.
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Appendix

A. Proof of Theorem 1

The result is a special case of Theorem 3 and can be obtained by letting x̃m = 0 and

ỹm = ε̃n so that m = 2.

B. Proof of Theorem 2

The result is a special case of Theorem 4 and can be obtained by letting x̃m = 0 and

ỹm = ε̃n so that m = 2.

C. Proof of Theorem 3

Since u is mth-degree risk averse and x̃ has more mth-degree risk than ỹ, then,

∆u
z̃m(w + x̃m + x̃n−m) = Eu(w + x̃m + x̃n−m)− Eu(w + ỹm + x̃n−m) > 0 (15)

and

∆u
z̃m(w + x̃m + ỹn−m) = Eu(w + x̃m + ỹn−m)− Eu(w + ỹm + ỹn−m) > 0. (16)

Since u is nth-degree risk averse and A has more nth-degree risk than B, then B ≻ A.

Under expected utility theory, we can write

1

2
[Eu(w+ x̃m+ ỹn−m)+Eu(w+ ỹm+ x̃n−m)] >

1

2
[Eu(w+ ỹm+ ỹn−m)+Eu(w+ x̃m+ x̃n−m)]

(17)

which is equivalent to

∆u
z̃m(w + x̃m + ỹn−m)−∆u

z̃m(w + x̃m + x̃n−m) > 0. (18)
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Given pn/m in (6), we find that (15), (16), and (18) jointly imply 0 < pun/m < 1/2.

D. Proof of Theorem 4

Part 1. (i) ⇒ (ii)

Given pn/m in (6), we can write

pvn/m =
s

2t
(19)

where

s = ∆v
z̃m(w + x̃m + ỹn−m)−∆v

z̃m(w + x̃m + x̃n−m) (20)

and

t = ∆v
z̃m(w + x̃m + ỹn−m) +∆v

z̃m(w + x̃m + x̃n−m). (21)

Since v is nth- and mth-degree risk averse, both s and t are positive (see the proof of

Theorem 3). Given that u is Ross more risk averse than v, we can write

u(n)(x)

v(n)(x)
≥ λ ≥ u(m)(y)

v(m)(y)
(22)

for all x, y ∈ [a, b] and some λ > 0. Liu and Meyer (2013) show that this condition is

equivalent to

u(x) = λv(x) + φ(x) (23)

where (−1)m−1φ(m)(x) ≤ 0 and (−1)n−1φ(n)(x) ≥ 0 for all x ∈ [a, b]. By substituting (23)

into (6), we can write

pun/m =
1

2

-
λs+∆φ

z̃m
(w + x̃m + ỹn−m)−∆φ

z̃m
(w + x̃m + x̃n−m)

λt+∆φ
z̃m
(w + x̃m + ỹn−m) +∆φ

z̃m
(w + x̃m + x̃n−m)

.
. (24)
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It follows from (19) and (24) that pun/m ≥ pvn/m if and only if

t[∆φ
z̃m
(w + x̃m + ỹn−m)−∆φ

z̃m
(w + x̃m + x̃n−m)] ≥

s[∆φ
z̃m
(w + x̃m + ỹn−m) +∆φ

z̃m
(w + x̃m + x̃n−m)]. (25)

Since (−1)m−1φ(m)(x) ≤ 0 and (−1)n−1φ(n)(x) ≥ 0 for all x ∈ [a, b], then

∆φ
z̃m
(w + x̃m + ỹn−m) ≤ 0, (26)

∆φ
z̃m
(w + x̃m + x̃n−m) ≤ 0, (27)

∆φ
z̃m
(w + x̃m + ỹn−m)−∆φ

z̃m
(w + x̃m + x̃n−m) ≥ 0. (28)

As a result, the inequality in (25) always holds and, therefore, pun/m ≥ pvn/m.

Part 2. (ii) ⇒ (iii)

Suppose that (iii) is false, i.e., u(x) is not (n/m)th-degree Arrow-Pratt more risk averse

than v(x). Then, there exists x ∈ [a, b] such that

(−1)n−1un(x)

(−1)m−1um(x)
<

(−1)n−1vn(x)

(−1)m−1vm(x)
. (29)

Since both u and v are mth- and nth-degree risk averse, the above inequality implies

u(n)(x)

v(n)(x)
<

u(m)(x)

v(m)(x)
. (30)

Due to continuity, there exists µ > 0 and [c, d] ⊂ [a, b] such that

u(n)(y)

v(n)(y)
< µ <

u(m)(z)

v(m)(z)
(31)
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for all y, z ∈ [c, d]. Define ψ(x) = u(x)− µv(x). Differentiating yields

(−1)m−1ψm(x) = (−1)m−1um(x)− µ(−1)m−1vm(x) > 0 (32)

and

(−1)n−1ψn(x) = (−1)n−1un(x)− µ(−1)n−1vn(x) < 0 (33)

for all x ∈ [c, d]. If we pick w, k, and ε̃ so that the support of all possible levels of final

wealth is a subset of [c, d], then we have

∆ψ
z̃m
(w + x̃m + ỹn−m) > 0, (34)

∆ψ
z̃m
(w + x̃m + x̃n−m) > 0, (35)

∆ψ
z̃m
(w + x̃m + ỹn−m)−∆φ

z̃m
(w + x̃m + x̃n−m) < 0. (36)

It follows that the inequality in 25 is reversed so that pun/m < pvn/m. Therefore, (ii) is false.

E. Proof of Remark 1

Given ∆u
−k(w) = (eαk − 1)e−αw and ∆u

−k(w + ε̃) = (eαk − 1)E[e−αε̃], we can write pu3/1 in

(6) as

pu3/1 =
1

2

$
∆u

−k(w + ε̃)−∆u
−k(w)

∆u
−k(w + ε̃) +∆u

−k(w)

%
=

1

2

"
E[e−αε̃]− 1

E[e−αε̃] + 1

#
. (37)

Since E[ε̃] = 0 and α > 0, then dE[e−αε̃]/dα = −E[αe−αε̃] > 0. Given α > β > 0, then

pu3/1 =
1

2

"
E[e−αε̃]− 1

E[e−αε̃] + 1

#
>

1

2

"
E[e−βε̃]− 1

E[e−βε̃] + 1

#
= pv3/1. (38)

Given ∆u
ε̃ (w) = e−αw(1 − E[e−αε̃]) and ∆u

ε̃ (w − k) = e−α(w−k)(1 − E[e−αε̃]), we can write
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pu3/2 in (6) as

pu3/2 =
1

2

$
∆u

ε̃ (w − k)−∆u
ε̃ (w)

∆u
ε̃ (w − k) +∆u

ε̃ (w)

%
=

1

2

"
eαk − 1

eαk + 1

#
. (39)

Since α > β > 0, then

pu3/2 =
1

2

"
eαk − 1

eαk + 1

#
>

1

2

"
eβk − 1

eβk + 1

#
= pv3/2. (40)
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