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ABSTRACT 

Motor vehicle crashes (MVCs) are a leading cause of death for law enforcement officers (LEOs) 

in the U.S. LEOs and more specifically novice LEOs (nLEOs) are susceptible to high cognitive 

workload while driving which can lead to fatal MVCs. To help address this issue, machine learning 

algorithms (MLAs) can be used for predicting the workload of nLEOs. These MLAs can then be 

implemented into adaptive in-vehicle technology that will better be able to manage the cognitive 

workload of LEOs in police operations. A naturalistic ride-along study was conducted with 24 

novice nLEOs. Participants performed their normal patrol operations while their physiological 

responses such as heart rate variation (HRV) and percentage change in pupil size (PCPS) were 

recorded. After data collection was completed, an MLA was developed and trained based on these 

data using subjective responses collected from participants and pre-established thresholds for the 

features extracted from the physiological signals as the ground truth. It was found that the 

developed MLA could predict cognitive workload with relatively high accuracy given that it was 

entirely reliant on physiological signals. Future studies should implement the developed MLA into 

adaptive in-vehicle technology for the prediction of cognitive workload in real-time. Having this 

technology adapt to the cognitive workload of drivers should reduce cognitive workload of nLEOs 

and improve road safety. 
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1. INTRODUCTION

Motor vehicle crashes (MVCs) are one of the most prevalent causes of death in the U.S. About 

46,000 people lost their lives in car crashes and roughly 5.2 million people were seriously injured 

due to crashes in 2022 alone (NSC, 2022). Furthermore, crash rates for younger, inexperienced 

drivers are significantly higher in the months immediately following getting their license compared 

to crash rates several years after getting a license (Curry et al., 2017). Current cognitive 

performance models (CPMs) used to design technology for vehicles make the critical assumption 

that the user performing a task is an expert and will never make mistakes or decisions that are not 

optimal (Kieras & Butler, 1997). This assumption has prevented models from being effectively 

designed around the cognitive processes of a novice or focusing on how those processes differ 

from expert cognition. As novice drivers deal with higher cognitive workload (the mental effort 

an individual exerts to complete a task) compared to experienced drivers, they are also more 

vulnerable to the risk of MVCs while driving (Moray, 2013). To better aid in the design of 

technology to reduce cognitive workload, novice performance must be more effectively accounted 

for. 

One way that this issue can be addressed is through adaptive technology, or in-vehicle technology 

that will adjust its function or presentation in response to the current state of the driver. This could 

involve displaying less information on a user interface (UI) when the driver has a high cognitive 

workload or giving the driver warnings to indicate that they are operating in a high-stress condition 

and making recommendations accordingly. Knowing the cognitive workload of a driver based on 

their physiological responses is one way to allow adaptive technology to respond to the state of 

the driver.   
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1.1 Law Enforcement Officers 

Law enforcement officers (LEOs) and more specifically novice LEOs (nLEOs) were selected as 

the focus of this study because they are the at the highest risk among all drivers to be involved in 

crashes (Maguire et al., 2002). MVCs are the leading cause of line-of-duty deaths for public safety 

workers and more specifically LEOs (BLS, 2020). Compared to firefighters and emergency 

medical services workers, LEOs are involved in a significantly higher number of fatal MVCs 

overall (BLS, 2019). Additionally, compared to all other occupations, LEOs get into MVCs at a 

rate of 2.5 times more than the national average (Maguire et al., 2002). Primary reasons for this 

include the frequent use of in-vehicle technology while driving (Yager et al., 2015), fatigue (Vila 

& Kenney, 2002), and lack of sufficient training in handling high-demand situations (e.g., pursuit 

situations, multi-tasking) (Hembroff, Arbuthnott, & Krätzig, 2018).  

Use of in-vehicle technology while driving is one of the major causes of LEO crashes. This 

includes the technology that civilian drivers interact with frequently such as cell phones and global 

positioning systems (GPS) as well as LEO-specific technology such as mobile computer terminals 

(MCTs) (a laptop that provides real-time navigation and case information to LEOs) and dispatch 

radios. The myriad technologies required for LEO patrol activity highlights another issue that 

increases the MVC rate for novice drivers versus more experienced drivers. nLEOs are an ideal 

subject for designing driving MLAs due to their naturalistic patrol environment being more likely 

to induce high workload than a normal driving environment. In prior investigations (Park et al., 

2020; Shupsky et al., 2021; Zahabi & Kaber, 2018a, 2018b; Zahabi, Pankok Jr, & Park, 2020) it 

was found that the mobile computer terminal (MCT) and radio are the most important and 

frequently used in-vehicle technologies while driving. Note that while LEOs also use this 

technology when not driving, these studies only considered the portion of the patrolling task when 
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LEOs were also actively driving their vehicles. Use of these technologies has increased LEOs’ 

distraction and cognitive load while driving (Shahini et al., 2020). In spite of this problem of LEOs 

and novice drivers being at large risk of MVCs, research on the development of technology to aid 

them that incorporates their CW or performance has been insufficient. 

1.2 Cognitive Workload Classification 

To understand how the CW for novice LEOs can be modelled and calculated by a MLA, the 

differences between novices and experts have to be understood in a cognitive context. A literature 

review on the gaps in the application of novice cognition to cognitive performance models was 

conducted, with the results revealing some of the major differences between novice and expert 

cognition. These differences can be summarized using Wickens’ human information processing 

model (Wickens, 2008). For example, with regards to attentional resources, novices are more likely 

to be impaired by distractions due to higher attentional resource demands, while experts are less 

likely to be impaired and can rely on non-visual signals more easily (Regan, Deery, & Triggs, 

1998) (Mourant & Rockwell, 1970).   With regards to memory, the chunking process for novices 

is less effective compared to experts, and novices tend to attempt to make decisions before they 

finish processing all the information they have (Bruer, 1993) (Hutton & Klein, 1999). Most 

importantly, novices have been found to exhibit higher mental workload than experts when faced 

with critical decisions like those needed to prevent a MVC. (Ouddiz, Paubel, & Lemercier, 2020). 

In contrast, experts have better recall than novices, allowing them to more effectively rely on their 

long-term memory and experiences to make decisions and better manage their overall CW 

(Horswill & McKenna, 2004). These are some examples that highlight the difference in the 

cognitive processes of novice and experts in the driving domain that lead to higher risk of high 

CW for novices. 
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Because of these differences, technology, CPMs, and MLAs that target novices specifically have 

rarely been able to capture all the idiosyncrasies between novices and experts to effectively model 

or predict their mental workload in various driving situations. While there have been plenty of 

attempts to model driver cognitive workload using MLAs in the past, these approaches relied on 

physiological variables that would be cumbersome to implement for naturalistic driving tasks or 

rely entirely on driving simulator data to develop their MLAs (Islam et al., 2020; Son, Oh, & Park, 

2013). The approach taken here is novel in that it relies on physiological variables captured while 

the nLEO is performing their normal patrol duties. These physiological variables were collected 

using non-intrusive devices and included heartrate variability (HRV), percentage change in pupil 

size (PCPS), blink rate (BR) and galvanic skin activity (GSR). These physiological variables have 

all been validated as effective indicators of workload, and when combined under a single algorithm 

can be used to effectively determine an individual’s cognitive workload at a given moment 

(McDonald, Ferris, & Wiener, 2019; Singh, Conjeti, & Banerjee, 2013; Zahabi et al., 2022). 

Because of the way this algorithm functions, it is able to circumvent many of the issues facing 

current MLAs with implementation into in-vehicle technology and is able to be effectively 

incorporated into adaptive systems that can help reduce crash rates for vulnerable driving 

populations. 

1.3 Adaptive Technology 

Adaptive technology refers to technology that will change its presentation or function in response 

to some change in the environment. In this case, it refers to in-vehicle technology that detects the 

driver’s workload and responds accordingly, generally by adjusting the salience of information 

that is presented to the driver. As mentioned in section 1.2, the salience of information is one of 

the main factors contributing to how novices determine what information to focus on regardless of 



5 

importance, and in driving situations even very brief lapses in attention can lead to fatal MVCs. 

While performance on tasks has been shown to be most effective when an optimal level of arousal 

is maintained under the Yerkes-Dodson law (Yerkes & Dodson, 1908), the goal of this technology 

is to reduce the impact on the driving task as much as possible. Because of this, not all of the 

traditional rules of maximizing efficiency apply, and the changes made are more focused on 

maintaining optimal levels of cognitive workload for the driving task. Adaptive technology 

therefore has the dual goal of maximizing driver safety and making information as accessible as 

possible for the driver when their CW allows for it. This is why a MLA that can monitor the CW 

of a driver is essential to ensuring that the technology can respond quickly and effectively in the 

crucial seconds that a driver has to make decisions to avoid potential MVCs. 

1.4 Problem Statement and Research Objectives 

Novice LEOs are at a significantly higher risk of getting into MVCs compared to other occupations 

and the general population. Taking advantage of adaptive technology that accounts for the CW of 

the driver might help reduce these crash rates. This technology could also be generalizable to 

novice drivers that struggle with higher CW than expert drivers as well. Therefore, it is necessary 

to develop and integrate MLAs that can detect and predict CW for nLEOs in real time and provide 

that information to adaptive technology. 

The objective of this study was to develop a MLA that could predict the cognitive workload of 

nLEOs using features that could be measured in real time while the patrol task is being performed. 
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2. METHOD

2.1 Participants 

Twenty-four (24) participants were recruited (age: M = 30.76, SD = 5.07; gender: 6 females, 18 

males). In order to qualify for this study, participants needed to have normal or corrected-to-normal 

vision without glasses (glasses prevented the eye tracking device from working properly), have 

less than 5 years of primary patrol experience (Hillerbrand, 1989), and have more than 1.5 years 

of driving experience. On average, participants had 3.04 years of primary patrol experience with 

standard deviation of 2.39. The required driving experience was included to mitigate the potential 

effects of having the participants be novices at both driving and primary patrol activity, as the 

intent of this study was to observe how secondary tasks could affect the CW of nLEOs while they 

are performing their duties in the vehicle. From this pool of participants, four participants were 

excluded from the final count due to failing to collect enough useful data (reasons such as 

equipment failures or participants choosing to end the study early due to needs associated with 

their jobs). All participants read and signed the provided informed consent form before 

participating in the study. As the study took place during the participants’ normal working hours, 

they were not compensated for their time. The study protocol was approved by Texas A&M 

Institutional Review Board (IRB2021-0757D). 

2.2 Equipment 

To measure all the physiological responses necessary for this experiment, several different types 

of measurement equipment were employed. The Empatica E4 (Empatica) device was used to 

measure the HRV and GSR data from the participant. To measure the pupillometry data, the Pupil 

Labs Eye Tracking glasses (Pupil Labs) were used. These devices are validated for use in 

measuring these physiological measures and were synchronized before data were collected by 
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plugging the E4 watch into the laptop used to run the eye tracking software (Fuhl et al., 2016; 

Schuurmans et al., 2020). The ride-alongs were also recorded using a dash camera attached behind 

the front seats of the police vehicle. Figure 1 illustrates the details on how the naturalistic 

observation study set-up looked in the police vehicles. Note that the charging port used to power 

the dash camera came from the ports in the police vehicle itself. 

Figure 1: Naturalistic Observation Equipment Set-up 

2.3 Study Procedure 

Upon arriving at the police station with all the required equipment, the researcher presented the 

participant with an informed consent form that explained the details of the study and potential risks 

and benefits. Once this was signed, the Empatica E4 was attached to the wrist of the participant 

and activated to give the device time to calibrate while other set-up procedures were completed. 

Figure 2 shows how the E4 was attached to the participants’ wrists. 
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Figure 2: E4 Attachment Procedure (Empatica, 2020) 

While the E4 calibrated itself, the participant was asked to fill out a demographic questionnaire. 

This was to ensure that the participant met the requirements for the study (see section 2.1) and to 

ensure that the participant did not participate in demanding physical activity while the E4 

calibrated itself. If the participant did not remain in a resting state during the calibration process, 

then the E4 would not be able to reliably calibrate itself to the normal physiological responses of 

the participant. The researcher used this time to set up the eye tracking glasses and the dash camera 

in the participant’s police vehicle as shown in Figure 1. Apriltags were attached to surfaces that 

participants frequently looked at (MCT, radio, windshield, etc.) to improve tracking quality. Once 

this was completed, the participant was asked to put on the eye tracking device and a calibration 

procedure was executed where the participant was asked to look at each of the four apriltags placed 

on the windshield without blinking as directed by the researcher. Following this step, a baseline 

pupil diameter was collected by running the eye tracking software for two minutes (Zahabi et al., 

2021) while the participant remained in the vehicle without doing anything.  
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Once the calibration was completed, the study was initiated. A unique synchronization technique 

explained in section 2.3 was performed to ensure that data from the E4, dash camera, and the eye 

tracking glasses could be synchronized after the data collection. The participant was then 

instructed to perform their normal patrol duties while wearing the eye tracking glasses and 

Empatica E4. The researcher remained in the passenger seat of the vehicle to monitor the 

equipment and ensure that data collection proceeded smoothly. The researcher did not initiate 

interactions with the participant to ensure that the patrol was as naturalistic as possible. Figure 3 

illustrates the set-up for the experiment, with a participant in the driver’s seat on the left and a 

researcher on the right. Note the myriad technologies that the participant has to interact with during 

their patrols and the apriltags that can be seen on the MCT for tracking eye movements. 

Figure 3: Study Set-up 
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Once the experiment began, the researcher was responsible for taking note of important events that 

happened during data collection. This included equipment failures, changes in the weather that 

could affect the quality of eye tracking data collection, and any event that could potentially affect 

the driving situation, such as the initiation of a police chase. In the event of equipment failure, the 

researcher was required to stop the experiment and address the issue with the piece of equipment 

that failed when the vehicle had stopped. Once the issue was resolved, the experiment could be 

resumed once all necessary calibration and synchronization steps were taken. Weather issues that 

caused significant lapses in eye tracking quality were documented and accounted for in post-

processing by adjusting confidence thresholds or removing these sections of data entirely. In the 

event of severe weather, a timestamp could be taken on the E4 to indicate the pausing of data 

collection until conditions allowed for data of higher quality to be collected.  

The most important role of the researcher was to verify and maintain the integrity of the data 

collection equipment in the event of emergency situations like police chases. While data would 

still be collected during emergency maneuvers when possible, the high speed and sudden changes 

in direction required a prioritization of the safety of the study equipment over the quality of data. 

The times of the start and stops of these instances were recorded and examined separately from 

the rest of the data to determine whether the raw data would be useful for MLA development. As 

this was a naturalistic observation study, the role of the researcher before the data analysis step 

was primarily administrative, with the goal of making the impact of the measuring equipment on 

the participants as low as possible. This method allowed for data collection that more accurately 

represented real-world changes in novice CW compared to previous studies that employed driving 

simulators for data collection. 
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Data collection continued until at least three hours of data were collected or the participant chose 

to stop the experiment for any reason. When participants were required to stop and exit their 

vehicle to do their police duties, data collection was paused, and the participant removed their eye 

tracking glasses (but not the Empatica E4). After the participant finished any required tasks for 

their job and was ready to drive again, the synchronization technique discussed below in section 

2.4 was repeated and the naturalistic observation resumed.  

Once the study was concluded, the participant returned to their police station and the equipment 

used for the observation was removed. A Driver Activity Load Index (DALI) questionnaire was 

given to participants to evaluate their CW during the driving part of their patrol. Once this was 

filled out, the participant was given a copy of the informed consent form for their records and 

thanked for their participation. Figure 4 outlines how data were collected and moved from the 

devices used for data collection and transformed into a useable format. Note the Empatica E4 and 

Pupil Labs eye tracking glasses both rely on the same laptop for gathering and synchronizing data 

streams. 
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Figure 4: Data Movement Chart 

2.4 Synchronization Technique 

The first step in the synchronization process was ensuring that the internal clock of the Empatica 

E4 was synchronized with the internal clock of the computer used to run the eye tracking software. 

This could be accomplished by simply plugging the E4 into the computer in question to charge. 

Once this was done and the observation was ready to be conducted, the dash camera and eye 

tracking software were turned on to record and a timestamp was taken with the E4 by pressing the 

button on the face shown in Figure 2. Doing this caused a red LED to flash on the E4 for three 

seconds. This procedure was done in view of both the dash camera and the world camera of the 

eye tracking software. A file within the E4’s data storage was used to hold the timestamp that 

occurred each time the button was pressed. In post-processing, the data collected by all devices 

before this timestamp could be discarded to ensure that all data were synchronized. 
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When the participant had to stop the observation to conduct police activities, a similar procedure 

was executed. Before turning off any devices, another timestamp was taken with the E4 to signal 

that no data beyond that timestamp was to be collected for the observation. Then, the eye tracking 

glasses could be removed, and the participant could freely leave the vehicle to conduct their 

business. Upon returning, another timestamp was taken with the E4 once all devices were 

reactivated to indicate that data from beyond that timestamp was to be used for the experiment. 

This procedure repeated itself until data collection was complete, upon which a final timestamp 

could be taken from the E4 to ensure that no further data was considered and the end time for all 

devices was synchronized. This synchronization procedure was accurate down to the millisecond 

and UNIX time was used as the metric for synchronization of all data streams. More information 

about the synchronization approach can be found from Wozniak et al. (2022) 

2.5 Data Analysis 

Once data collection was completed, the data were post-processed and the synchronized data 

streams were combined in order to create usable lines of data for training the MLA. The data were 

combined by using the synchronization method explained in section 2.4 to create a data frame for 

each participant. Data points that fell within periods where the police vehicle was stopped or 

occurred before or after the start and end timestamps respectively were removed. Rows of data 

were found in five-minute intervals starting from where the observation began. This interval was 

chosen because it is the standard interval used for collecting root mean squared standard deviation 

(RMSSD) data (Electrophysiology, 1996). Additionally, this interval increased the resistance of 

data rows to sudden spikes from some features like PCPS that may artificially indicate high 

workload due to minor data collection errors. In the event that a break in the data occurred before 
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a full five-minute interval elapsed, the partial interval was examined to determine if it contained 

enough data to be useful. If this was the case, it was included in the final data set.  

From the raw physiological data, several features were extracted that were validated measures of 

cognitive workload. The baseline data collected before and after the observation period for each 

participant was used to calculate PCPS from the averaged pupil diameter over time for each 

participant. RMSSD and the low frequency/high frequency (LF/HF) ratio for each participant were 

calculated using HRV data. From the GSR data statistics, the skin conductance level (SCL) and 

skin conductance response (SCR) in the form of the SCLm, SCLc, SCRh, SCRa, and SCRr were 

extracted. Blink rate was calculated within each five-minute interval using the number of blinks 

recorded during that period by the Pupil Labs eye tracking software. The PCPS was also calculated 

using Pupil Labs data and the baseline pupil diameters recorded before and after the data collection 

period. Each of these values were then put together in a table to create a set of five-minute intervals 

for each participant.  

Due to errors encountered in data collection as a result of naturalistic observations, not every five-

minute data interval was able to be used. In the example of one participant, data collection failed 

completely due to the participant adjusting the Empatica E4 such that it was unable to accurately 

record data while the participant was away from the vehicle and out of sight of the researcher. For 

this and other instances where one of the four raw data streams could not be collected, the five-

minute intervals associated with that set of data were discarded. In the case missing only one or 

two raw data streams for only some intervals within a participant, the missing values were 

approximated using a decision tree. This decision tree looked at all of the values for the missing 

data value from the other five-minute intervals and made an estimate of the missing value using 
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that participant’s other data. This process was only used for data values within participants due to 

the natural differences that exist between participants with regards to average physiological values. 

The final step in data analysis before MLA development could begin was to establish ground truth 

workload values for each of the five-minute intervals. Because it would be unreasonable to assign 

DALI values taken for the overall ride-along as the CW for each interval, these ratings were 

weighted against the physiological features themselves to establish a ground truth. The 

classification of CW was divided into two groups, high and low. This number of groups was chosen 

based on using fuzzy logic in MATLAB to separate the collected physiological data into 2 CW 

groups, 3 CW groups, and 5 CW groups to see which separation resulted in the most even split of 

data (based on pre-established thresholds for each physiological feature). It was found that 2 CW 

groups resulted in the most even split of the data, with 40.1% of data rows being classified as low 

CW. This was also considered to be reasonable due to the naturally high CW that was expected to 

be experienced by nLEOs during their patrol task. 

Each feature, including DALI ratings, was assigned to be either a high impact, medium impact, or 

low impact feature for establishing ground truth CW. High impact variables included DALI, 

RMSSD, SCLm and SCLc due to their resistance to environmental factors, high number of 

validating studies, and ability to detect minute changes in workload (Cinaz et al., 2013; Fallahi et 

al., 2016; Mehler, Reimer, & Coughlin, 2010; Mehler, Reimer, & Wang, 2011; Pauzié, 2008a, 

2008b; Reimer & Mehler, 2011; Shimomura et al., 2008; Zakerian et al., 2018). These features 

had a weight of 0.125 for determining the ground truth workload, with the thresholds for these 

physiological variables were established by previous studies (Abhishekh et al., 2013; Abusharha, 

2017; Arthur, 1990; De Waard & Brookhuis, 1996; Pfleging et al., 2016; Zahabi et al., 2021). 

Medium impact variables include the LF/HF ratio, SCRh, SCRa, and SCRr, due to lower resilience 
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to environmental factors and high correlation to other physiological measures (Cinaz et al., 2013; 

Fallahi et al., 2016; Hsu et al., 2015; Novak, Mihelj, & Munih, 2011; Rodriguez Paras, 2015; 

Verwey & Veltman, 1996). These features had a weight of 0.075 each in determining ground truth 

workload. Finally, PCPS, BR, and avgGSR were assigned as low impact features due to the nature 

of data collection impeding the quality of eye tracking data and the noise factor associated with 

raw avgGSR values (Cardona & Quevedo, 2014; Faure, Lobjois, & Benguigui, 2016; Iqbal et al., 

2005; Johns, Sibi, & Ju, 2014; Kahng & Mantik, 2002; Kosch et al., 2019; Pfleging et al., 2016; 

Stern, Boyer, & Schroeder, 1994). These features were assigned an importance weight of 0.0667 

each. The specific weights chosen for each group were selected to keep the weight gap between 

feature groups relatively low while still maintaining a significant difference between the high 

impact and low impact features. While there is no literature exploring how these features should 

be prioritized over each other for machine learning or specific weighting guidelines, the weights 

selected here were inferred based on the above literature and thorough examination of the collected 

data. Figure 5 illustrates the breakdown in feature weight assignment between all of the features. 

Once these weights were applied to all of the five-minute intervals, ground truths could be 

established and an MLA could be developed.  
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Figure 5: Weights for Features for Ground Truth 

2.6 MLA Development 

Development of an MLA to predict novice cognitive workload was completed first by developing 

MLAs that were found to be prevalent in the prediction of CW in the driving domain, which 

included decision trees, random forests, naïve bayes algorithms, and support vector machines 

(McDonald, Ferris, & Wiener, 2019). The quality of each of these MLAs was assessed across 

multiple seeds on the metrics of receiver operating characteristic (ROC) area under the curve 

(AUC), precision, and accuracy. The classification dataset used for validation and testing consisted 

of a randomly selected set of 20% of the overall collected data, with the remaining 80% of the data 

being used to train the model. All of the extracted features were considered in the final 

classifications made by each model, though the feature importance varied from model to model. 
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The algorithm that performed the best was then evaluated based on existing criteria for effective 

MLA performance to determine whether it was successfully able to predict the cognitive workload 

of nLEOs in the driving domain.  
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3. RESULTS

3.1 Data Screening 

After grouping all of the raw data into 5-minute intervals, a total of 769 rows of data were initially 

created. Of those rows, only 328 had all metrics filled in with no missing values. Before missing 

data could be filled in, outliers in the data had to be removed. This was done by finding for each 

column all rows that had a value more than two standard deviations larger or smaller than the mean 

for that column with the value in question removed. This led to the removal of 75 rows of data, 

with an additional 66 rows of data being removed from participants that did not complete the 

experiment in a way that allowed the raw data to be salvageable. This includes issues such as but 

not limited to tampering with the E4 and failing to comply with instructions to ensure that data 

was synchronized. Once these rows were removed, the next step in the filtering process was to 

remove rows for which there were no values to extrapolate average values within the participant 

for that column. This caused the removal of one participant’s data entirely due to the E4 failing to 

record GSR values for that participant and the subsequent removal of 22 other rows from different 

participants due to similar reasons. As 229 rows of data needed some form of extrapolation in 

order to fill in missing values, a decision tree algorithm was created to predict the missing values 

for each missing data entry for these rows. To prevent individual differences from confounding 

the predictions for these missing values, the algorithm only considered values within participants 

when filling in data. Figure 6 below illustrates this data cleaning process visually.  
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Figure 6: Data cleaning process 

From the original 24 recruited participants, the data for 4 participants were excluded due to errors 

in data collection that occurred as a result of the study taking place in a naturalistic setting. This 

left 20 participants’ worth of raw data to be grouped into 5-minute sections. After removing 

outliers and filling in missing values, a total of 557 rows of data were captured. Once ground truths 

had been assigned to each data row, there were 228 rows with the high workload classification and 

329 rows with the low workload classification, meaning that approximately 59% of the rows were 

classified as being low workload. Given the nature of naturalistic observation, this can be 

considered a successful split of the data.  

Not all participants contributed the same number of rows of data. Some participants contributed 

around 10 data rows while others contributed over 30. These differences were once again due to 

differences in both the length of data collection and the quality of the data collected due to the 

limitations of naturalistic observations. It is also important to note that the participant number was 
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used only for filling in missing data entries and establishing the ground truth for all data rows. All 

participant data were combined for the final MLA training to ensure that as much data could be 

used for training the algorithm as possible and to accommodate for a large range of potential high 

and low CW data rows. 

3.2 MLA Performance 

Based on previous studies on effective MLAs in the driving domain that relied on physiological 

variables, the following MLAs were selected to be trained by the collected data: decision trees 

(DT), random forests (RF), naïve bayes algorithms, and support vector machines (McDonald, 

Ferris, & Wiener, 2019). Table 1 summarizes the performance of these algorithms on the basis of 

their accuracy in classifying a randomly selected set of 20% of the total dataset with the rest being 

used to train the algorithm. For the MLAs besides naïve bayes, hyperparameters were selected and 

tuned using 10-fold cross validation sets from the training data repeated three times, with the best 

set of hyperparameters in terms of test data accuracy being selected. The support vector machine 

MLAs are split into radial and polynomial kernels indicated by SVMr and SVMp respectively. 

These two kernels were selected based on their use in a previous study evaluating MLAs in the 

driving domain using physiological variables only (McDonald, Ferris, & Wiener, 2019). 

Additionally, the no information rate (NIR) refers to the rate of success at guessing the 

classification of a row of data with no other information available. Tuned hyperparameters for 

each seed include minimum n value, cost complexity, and tree depth. 

A trained MLA was considered successful if it had a higher accuracy than the NIR with at least 

95% confidence. The results displayed the average of 5 seeds that performed the best from a total 

of 50 seed tests for each MLA in order to showcase their most effective performance. If an MLA 

had fewer than 5 seeds perform better than the NIR within a 95% confidence interval (CI), then 
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only seeds that met this condition were considered when averaging results. Overall, success rates 

were 42% for RF, 34% for SVMr, 8% for naïve bayes, 6% for SVMp, and 4% for DT. This does 

not mean that the other tested seeds were necessarily worse than the NIR (the vast majority of 

seeds performed better than the NIR on average), but it means they failed to meet the 95% 

benchmark used to define success in this context. From these results it was found that the RF model 

performed the best both in terms of high accuracy and consistent performance when compared to 

the NIR across multiple seeds.  

TABLE 1 

 Accuracy results for most successful seeds of each MLA trained on physiological data. 

Metric Accuracy (%) NIR (%) 95% CI (%) 

RF 73.21 59.24 (64, 81.1) 

SVMr 67.7 56.25 (58.22, 76.20) 

SVMp 68.62 57.4 (59.2, 77.02) 

DT 62.5 52.23 (52.86, 71.45) 

NB 71.4 53.57 (57.81, 82.69) 

* RF = Random Forest, SVMr = Support Vector Machine radial, SVMp = Support Vector

Machine Polynomial, DT = Decision Tree, NB = Naïve Bayes, NIR = No information rate.

Additional metrics that were evaluated to determine the best MLA include the AUC and precision. 

AUC is a measure of model performance at any given threshold that evaluates the predictive ability 

of learning algorithms (Huang & Ling, 2005) while precision refers to the degree of difference 

between various samples. For both metrics, high values indicate a more effective model. It was 
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found that the RF model performed the best on average for AUC while NB performed the best on 

precision when looking at the best performing seeds overall. The results of the AUC and precision 

comparisons are shown in Table 2. Note that no AUC was calculated for the naïve bayes MLA 

because no hyperparameters were manipulated. 

TABLE 2 

  Precision and AUC results for most successful seeds of each MLA trained on physiological 

data. 

Metric AUC (%) Precision (%) 

RF 79.48 73.16 

SVMr 69.8 68.12 

SVMp 72.4 71.99 

DT 64.84 66.33 

NB N/A 76.03 

* RF = Random Forest, SVMr = Support Vector Machine radial, SVMp = Support Vector

Machine Polynomial, DT = Decision Tree, NB = Naïve Bayes, ROC AUC = Receiver Operator

Characteristics Area Under the Curve.

Another factor to keep in mind when evaluating the MLA performance was training time and test 

time. These terms refer to the amount of time on average it took to train and run test data through 

the MLAs respectively. Test time is often used as a method of computational cost, and in the case 

of this MLA a small test time is a good indication that the MLA will be easier to implement in 

real-time. Once again, the RF MLA outperformed the other MLAs in test time with an average test 

time roughly 0.06 seconds faster than the second fastest MLA. On the other hand, RF performed 

the worst by far in training time, taking nearly five minutes longer than the next slowest MLA to 

finish training. Though NB had a much faster training time than the other MLAs, this performance 



24 

is not enough to overlook the poor results in the other considered metrics. Another reason that a 

small testing time is critical has to do with the speed at which data were collected. GSR data were 

collected at 4 Hz, but HRV and pupillometry data were collected much faster, at 64 Hz and around 

130 Hz, respectively. To account for these frequent value updates, the developed MLA needed to 

have a testing time able to at least match these data intake rates combined, and only the NB and 

RF MLAs were able to accomplish this. Table 3 below displays the average training time and 

testing time for each MLA. Note that training time is in minutes and testing time is in seconds. 

TABLE 3 

Average training time and testing time for each MLA 

Machine Learning Algorithm Training Time (minutes) Test Time (seconds) 

RF 6.97 0.02 

SVMr 1.48 0.28 

SVMp 2.34 0.31 

DT 2.20 0.15 

NB 0.62 0.08 

* RF = Random Forest, SVMr = Support Vector Machine radial, SVMp = Support Vector

Machine Polynomial, DT = Decision Tree, NB = Naïve Bayes

3.3 Feature Importance 

In addition to developing the MLA for future incorporation to in-vehicle technologies, the 

importance of each of the features for all of the different algorithms was considered. This 

information is summarized in Table 4 and contains the feature importance for the best results from 
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each of the tested MLAs. Note that while the different algorithms had their own individual scales 

for identifying which features were important, they have been adjusted to a weighting factor that 

sums to 1 for more convenient comparisons here. This means that the features with the highest 

value between all the others in a column is considered the most important for classification by the 

MLA in that column. Note that for SVMp and SVMr some feature importance ratings were 

negative, indicating that those features were not useful in predicting CW, so the scaling in the table 

below is adjusted accordingly. For every MLA except for NB, SCRr was found to be the most 

important feature, with features such as avgEDA and SCLc being considered less important.   

TABLE 4 

Feature Importance for Best MLA Results 

Model RF DT SVMp SVMr NB 

SCRr 0.21 0.41 3.90 3.90 0.26 

LF/HF 0.11 0.16 0.54 0.54 0.0052 

SCLm 

0.10 0.15 0.11 0.11 8.86E-06 

Blink 

Rate 0.092 0.080 -0.49 -0.49 0.41 

SCRa 0.073 0.044 -3.63 -3.63 0.0045 

SCRh 

0.060 0.042 -0.90 -0.90 0.18 

RMSSD 0.067 0.039 0.63 0.63 0.0041 

SCLc 0.12 0.030 0.053 0.053 0.00097 

avgGSR 0.067 0.025 0.59 0.59 0.10 

PCPS 0.11 0.024 0.20 0.20 0.022 
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4. DISCUSSION

4.1 MLA Selection 

Out of all of the MLAs tested, only the RF MLA consistently performed better than the NIR rate 

in terms of accuracy while meeting the precision and AUC guidelines found for creating effective 

MLAs, which include precision ratings on average of at least 0.7 as well as AUC values of around 

0.85 (Lee, Lessler, & Stuart, 2010; Pencina et al., 2008). Specific values for good accuracy are not 

standardized, so 0.7 was used as a general benchmark in line with the precision recommendation. 

These values are general guidelines, as the effectiveness of a MLA is primarily determined by its 

ability to learn as it obtains more data, meaning that future data collection should be able to 

improve this MLA to validate its effectiveness in predicting cognitive workload (El Naqa & 

Murphy, 2015). Of the MLAs, the DT algorithm performed the worst, failing to perform 

significantly better than the NIR rate roughly 96% of the time. Naïve bayes and SVMp algorithms 

performed poorly as well. As naïve bayes assumes full independence of features and it was 

reasonable to assume that at least some of the features in this dataset were related to each other, 

this result was expected for naïve bayes (Lewis, 1998). However, it was anticipated that DT and 

SVMp would perform much better than they actually did. One possible reason for this discrepancy 

would be the use of data collected in a naturalistic setting rather than in a laboratory or in a 

simulator study. This could also be due to the stringent requirements placed on tested MLAs in 

order to be considered successful in terms of accuracy with regard to the NIR. The incorporation 

of other variables into future iterations of both these MLAs and the most successful MLA, RF, in 

future studies could yield more satisfactory results.  

To validate the selection of the RF algorithm, several factors were considered, most notably the 

accuracy, precision, and AUC on average of all the seeds tested. As the RF algorithm performed 
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better than its other competitors, it was the final MLA selected. Note that while specific seeds 

might have had other MLAs perform better than the RF, the RF algorithm provided the most 

consistent results.  Another point of note is that RF algorithms are popular in the driving domain 

and have been used in several studies in the past, making incorporation to other technologies and 

comparisons easier to make (Das & Khilar, 2019; Ferreira et al., 2017; Rahman, Saleem, & Iyer, 

2019). These studies investigated several different avenues of application such as using phones or 

in-vehicle GPS for the implementation of adaptive technology, and the advantages of a MLA like 

this that can collect and use data for training and prediction while driving would be invaluable to 

the development of these technologies. 

4.2 Real-time Workload Classification 

The primary reason that physiological variables alone were considered in the naturalistic 

observation ride-along study design was because one of the end goals for the developed MLA was 

to be able to classify workload in real-time. The applications of this classification would be to 

implement them into technology that can use the current workload of the driver to adjust the in-

vehicle technology to accommodate them. Given that novice drivers are more prone to high 

workload and this higher workload can lead to more potentially fatal mistakes, understanding when 

these risks might happen using MLAs is critical. To offset the potential issues in accuracy of the 

MLA, new samples need to consistently be taken to have the workload update as frequently as 

possible. Individual differences also need to be accounted for by having the MLA be trained 

specifically with data collected for an individual participant and supplemented by the already 

collected data. To test this, a real-time algorithm was developed in python and tested in a lab 

setting to see if data could be recorded and run through the developed MLA in real-time. This was 

proven to be the case and the developed MLA was able to predict cognitive load in real-time with 
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data collected without having to stop data collection. This finding is crucial when considered in 

tandem with the test times for the developed MLAs.  

In addition to being the most accurate on average, the RF algorithm was by far the fastest in 

calculating the output when fed the same amount of test data as the other MLAs. Though the 

difference of a few hundredths of a second might seem insignificant, the longer it takes a MLA to 

output results in real-time, the higher the risk that the output it provides will be too late to be useful. 

If output calculation is unable to keep up with the rate at while physiological signals are processed, 

then this delay can continue to build until the output is many seconds, possibly even minutes 

behind the original reading in the worst case scenario. To prevent this, a MLA that can calculate 

output as quickly as possible is essential, giving RF more credence as an optimal choice among 

the tested MLAs. Note that for the purposes of this study, the final products included the developed 

MLA and the identification of the common scenarios experienced by nLEOs while on patrol, but 

future studies should be able to use the proposed model to create new technology that can improve 

the safety of nLEOs. 

4.3 Technology Applications 

Adaptive technology has the most potential to take full advantage of the real-time workload 

classification MLA developed from this study. An example of this can be found in the information 

that police officers receive about a suspect on their MCT screens. During ride-alongs, the LEOs 

interacted with their in-vehicle technologies in four complex scenarios. These scenarios refer to 

secondary tasks that the LEO completes while driving that are likely to induce high CW. The 

scenarios included talking on the phone, searching for or inputting directions onto a GPS device, 

communicating on a walkie-talkie, and searching for information on the MCT that requires 

physical contact with the MCT. For the last task in particular, LEOs are frequently confronted with 
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overwhelming amounts of text-based information that obscure important information and make it 

difficult to determine the nature of the situation they are driving to while focusing on the road. At 

the same time, this information might be important and more experienced officers would have 

fewer problems processing this information. To address this issue, adaptive technology based on 

workload can be implemented. One example of what this could look like is illustrated in Figures 

7 and 8. These images show a prototype using an augmented reality heads-up display (AR HUD) 

that would automatically adjust its appearance based on the CW of LEOs. If the LEO is 

experiencing high workload, then a simpler version of the information they need for their current 

patrol task will be displayed similar to Figure 7. Note that the red pictures indicate the violations. 

Figure 7: High Cognitive Workload AR HUD 

Conversely, when the LEO’s CW is low, more information can be made available to them without 

increasing the risk of a MVC. In this case, a display similar to Figure 8 could be shown. This is 

just a single example of how adaptive technology could effectively be integrated with real-time 

CW classification from the developed MLA to improve LEO safety and reduce MVCs. Future 

studies should validate this proposed MLA with additional user-testing and then implement it in 

real-world scenarios to evaluate the effectiveness of this technology in reducing cognitive 

workload. To that end, the feature importance findings of this study can be useful. Given the 

difficulty of implementing a multitude of physiological measures into in-vehicle technology, 
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prioritizing GSR in accordance with the findings on feature importance may allow for more 

effective implementation than trying to accomplish everything at once.  

Figure 8: Low Cognitive Workload AR HUD 
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5. CONCLUSION

In this ride-along study, an MLA for classifying the workload of nLEOs was developed. This MLA 

used physiological variables in the form of HRV, GSR, BR, PCPS, and extracted features from 

these responses to classify cognitive workload. One of the key contributions of this MLA over 

other MLAs in the domain is its ability to be implemented without impeding the normal patrol 

duties of a LEO. Because of this, the results can be used to develop technology that can predict the 

workload of users in real-time and adapt the functions of a vehicle accordingly, either to emphasize 

or de-emphasize secondary tasks. Common scenarios that nLEOs contend with during their normal 

patrol duties were also identified and can serve as a starting point for the design of more realistic 

simulator studies. These scenarios included complex scenarios shown to induce high CW such as 

inputting directions on a GPS device and searching for information on a MCT that requires 

physical contact with the MCT. Future studies should seek to implement this MLA into adaptive 

technology in both real world and simulated settings to evaluate how effective it is at predicting 

CW for both low-risk and high-risk scenarios respectively. Through this, the MLA can be refined 

with the incorporation of performance variables gathered from existing in-vehicle technology to 

improve MLA accuracy and precision, providing faster, more accurate readings. Incorporating the 

developed MLA with adaptive technology can help nLEOs to better manage their tasks in the 

vehicle and can improve their safety in police operations. 

5.1. Limitations 

There were several limitations of this study that should be addressed when conducting further 

experiments to develop MLAs for this domain. First, the nature of naturalistic observation caused 

significant amounts of data to be lost over the course of the experiment. Mitigation techniques that 

were found to be effective to maximize the amount of data collected included only performing 
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data collection in the daytime, targeting cloudy days to avoid the amount of eye data lost to sunlight 

glare, and ensuring that all devices are properly secured to avoid data loss that goes undetected 

until the experiment is over. Because subjective workload evaluations could only be collected at 

the end of the observation period, they might not have accurately represented the entire ride-along 

with regards to the cognitive workload. The development of a method for establishing ground truth 

workload was implemented to help circumvent this limitation. Using physiological features only 

for classification allowed for real-time algorithms to potentially make use of this MLA, but it also 

does not account for subjective measures and task performance that were also shown to be effective 

predictors of cognitive workload. This sort of limitation could be overcome by implementing 

technology that is able to track user performance and already exists in the form of technology like 

lane-keep assist and cruise control.  

5.2. Future Work 

Future experiments need to continue testing the developed MLA with different scenarios to see 

how effective it is at predicting CW in scenarios other than the ones identified in this study. This 

could be done with driving simulator studies or further naturalistic observation studies. An 

advantage of non-naturalistic observation studies is the potential to incorporate other measures of 

CW such as task performance thanks to the experiment being performed in a controlled 

environment. One goal of the developed MLA is to eventually incorporate the performance of the 

LEO on the task they are currently performing to more accurately evaluate their CW. The results 

of these future experiments should be a more robust and adaptive MLA that can take advantage of 

the driving performance of LEOs to adjust how adaptive in-vehicle technology interacts with the 

driver. Ideally, wearable devices that are less intrusive without sacrificing effectiveness should be 

employed. While the Pupil Labs eye tracking device did not impede the patrol task of LEOs 
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significantly, implementing a wireless version of the glasses or one that functions as sunglasses 

that most officers wear while on duty would improve the quality of implemented MLAs while 

reducing any induced cognitive load by the system on LEOs. Development and implementation of 

this technology would greatly improve the quality of data collection and real-time MLA 

implementation overall. 
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