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ABSTRACT 

 

 

Limb amputation can cause severe functional disability for the performance of 

activities of daily living (ADLs). Amputee patients use prosthetic devices (PDs) to 

perform ADLs. PDs require a substantial amount of cognitive resources, and some users 

reject their devices due to poor usability. However, very few studies have investigated 

usability issues, and they mainly used subjective methods such as questionnaires. In 

addition, no prior studies classified cognitive workload of using PDs in early stage of the 

design process. To fill out these research gaps, the objectives of this work were to: 1) 

Provide an objective usability evaluation of prosthetic devices, 2) Develop a human 

performance modeling tool to assess the usability and cognitive workload of upper limb 

PDs (i.e., HPM-UP: Human Performance Model for Upper limb Prostheses) and (3) 

Validate the model with experimental data. 

Chapters 1 and 2 provide a review of literature on usability evaluation of prosthetic 

devices and human performance modeling approaches. In Chapter 3, the computational 

formulations for each dimension of HPM-UP was developed based on the literature and 

existing theories: (1) adaptive learning curve formulation was used for calculating 

learnability; (2) based on the learnability formula, error rate was calculated using a natural 

exponential function, (3) memorability was calculated based on the ACT-R declarative 

module, (4) efficiency was formulated based on user task performance, (5) satisfaction 
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was formulated based on the expectation confirmation theory, and (6) cognitive workload 

classification model was developed with the Naïve Bayes algorithm.  

Chapters 4 and 5 focused on validating the HPM-UP. A human subject experiment 

(Experiment 1) was conducted with 30 able-bodied participants using three types of PDs. 

Hypotheses were formulated for each dimension of HPM-UP to test if there was any 

significant difference among the human-subject data, HPM-UP estimates, and the 

benchmark model estimates. A second human subject study (Experiment 2) was conducted 

with 20 able-bodied participants to validate the HPM-UP in a virtual environment. The 

findings of both experiments suggested that there were no significant differences between 

the human subject data and HPM-UP estimates. However, there were significant 

differences between human subject data and benchmark model. Also, there were 

significant differences between the HPM-UP estimates and the benchmark model 

outcomes. 

HPM-UP can be run using a graphical user interface (GUI) and do not require 

hard-coding to run the model. It is a first comprehensive usability evaluation package 

developed in an R Shiny package format and released on GitHub, which can be used by 

other researchers, designers, or clinicians. The outcomes of this research are expected to 

be useful for both researchers and practitioners as this is the first computational modeling 

approach to assess the usability of prosthetic devices early in the design cycle. In addition, 

the results are expected to provide a basis to enhance the design of prosthetic devices to 

reduce cognitive workload and improve device usability.  
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1. INTRODUCTION* 

 

1.1. Background 

Amputee patients experience severe functional disability in activities of daily living (ADL) 

due to the lack of prosthetic device usability. More than 2 million amputees live in the U.S., and 

about 185,000 amputations occur each year; this number is expected to be doubled by 2050 due to 

the increasing rates of contributing diseases (Amputee Coalition, 2021). Amputees use prosthetic 

devices regularly to perform ADL. These activities may not be possible without prosthetic devices 

or require additional effort and time (Gaskins et al., 2018; Lusardi et al., 2013). However, existing 

devices are often reported to be challenging to use, leading to reduced utilization and device 

rejection (Engdahl et al., 2015; Kannenberg and Zacharias, 2014). A study assessing the usability 

of different prosthetic devices found that 53% of passive hand users, 50% of body-powered hook 

users, and 39% of myoelectric hand users rejected prosthetic arms. The main reasons for rejection 

were poor dexterity, glove durability, and lack of sensory feedback (Biddiss et al., 2007; Bowker, 

2004; Montagnani et al., 2015). 

Using upper limb prostheses requires substantial cognitive resources (Geurts and Mulder, 

1994; Geurts et al., 1991; Heller et al., 2000; Hofstad et al., 2009; Williams et al., 2006). Cognitive 

resources are used to compensate for the loss of motor control and mitigate the damage of 

somatosensory feedback from the amputated limb (Childress, 1980; Heller et al., 2000; Herberts 

and Körner, 1979; Krewer et al., 2007; Williams et al., 2006; Witteveen et al., 2012). Therefore, 

using prostheses can cause a lack of cognitive capacity to conduct other mental activities (Heller 

 

* Part of this chapter is reprinted with permission from J. Park and M. Zahabi, "Cognitive Workload Assessment of Prosthetic Devices: A Review 
of Literature and Meta-Analysis," in IEEE Transactions on Human-Machine Systems, vol. 52, no. 2, pp. 181-195, April 2022, doi: 

10.1109/THMS.2022.3143998. Copyright 2023 by IEEE. 
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et al., 2000; Williams et al., 2006). The high mental workload can also reduce the primary task 

performance (Duysens et al., 2012). For example, a patient may find it difficult to avoid obstacles 

or walk uneven terrain. In case of upper limb amputation, most of the current control strategies use 

limited information (i.e., shoulder movements or recorded electromyography (EMG) signals) for 

activating several degrees of freedom (DoF) of the prosthetic devices, which is non-intuitive and 

unnatural, and can result in high cognitive workload (CW) (Cordella et al., 2016). By assessing 

CW, the analyst can explain the underlying attentional resources engaged during task execution 

and support the evaluation/development of prosthetic devices (Gaskins et al., 2018). 

 

1.2. Literature Review 

1.2.1. Usability Evaluation of Prosthetic Devices 

1.2.1.1. Usability Dimensions  

The International Standard Organization (ISO) defines usability as "The extent to which 

specified users can use a product to achieve specified goals with effectiveness, efficiency, and 

satisfaction in a specified context of use." (ISO, 2019) The word "usability" also refers to how easy 

and pleasant the features are to use. Nielsen (2012) proposed five dimensions of usability, 

including:  

• Learnability: How easy is it for users to accomplish basic tasks the first time they encounter 

the design? 

• Efficiency: Once users have learned the design, how quickly can they perform tasks? 

• Memorability: When users return to the design after a period of not using it, how easily can 

they re-establish proficiency? 
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• Errors: How many errors do users make, how severe are these errors, and how easily can they 

recover from the errors? 

• Satisfaction: How pleasant is it to use the design? 

Learnability is an indicator that shows how users reach optimal performance in interacting 

with a system (Joyce, 2019). Alternatively, it can be interpreted as how easy it is for users to 

accomplish a task the first time they encounter the interface and how many repetitions it takes to 

become efficient at that task. Learnability can be measured using learning time or the number of 

trials in a training session. However, different learning times are acceptable, depending on the type 

or purpose of the system.  

Efficiency refers to how fast users can perform tasks once they have learned to use the 

system and is typically measured using the task completion time (TCT) (Dix et al., 2000).  There 

are similarities between learnability and efficiency in that both dimensions use time as their 

measurement. However, there are some differences between them (Joyce, 2019). First, learnability 

is related to the first use, while efficiency focuses on the performance after users get used to the 

system. Second, learnability aims to assess if the system is learnable for target group users with 

learning curve estimation. Once the level of plateau is found, an analyst can evaluate learnability 

with the curve's slope, or the number of trials needed to pass a training session. However, when 

calculating efficiency, the analyst assumes that the users have already learned the system.  

Memorability means the system should be easy to remember so that the users can return to 

the system after some time without learning everything all over again. This dimension requires the 

users to have some experience with the system; however, there is a gap between the last time they 

used the system and the time they are using it again. Thus, having users recognize the system rather 

than recalling it is recommended (Nielsen, 2005).  
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An error can be defined as a function performed by a user that does not lead to the aimed 

result. There are three categories under the error dimension with regards to usability. The first 

category is error frequency (Dix et al., 2000), which can be calculated as the number of errors in 

one trial and is used to measure the error ratio. The second category is error severity, which refers 

to the time duration between when the error happens and when that error ends (Albert and Tullis, 

2013; Kim, 2005). The last category is error recovery, which can be part of error severity because 

it is related to how a user can effectively and efficiently return from the wrong track to the regular 

track to complete the task.  

Finally, satisfaction refers to how pleasant the system is to use. Also, it refers to the level 

of comfort and acceptability of the system to its users and other people affected by its use (Dix et 

al., 2000). Thus, this usability dimension affects the motivation of use and is usually measured by 

rating scales such as the 7-point scale in Usefulness, Satisfaction, and Ease of Use (USE) survey 

(Lund, 2001). There are seven questions under the “Satisfaction” category of USE survey. Users 

need to evaluate a product or service using a score from 1 (strongly disagree) to 7 (strongly agree). 

1.2.1.2. Usability of upper limb prosthetic devices 

Usability of prosthetic devices has been measured by several subjective questionnaires 

such as the Client Satisfaction with Device module of the Orthotics and Prosthetic Users’ Survey 

(CSD-OPUS) (Bravini et al., 2014). This is a self-report instrument for evaluating the outcomes 

(satisfaction) of prosthetics and orthotics. Another questionnaire used in this domain is Quebec 

User Evaluation of Satisfaction with assistive Technology (QUEST 2.0) (Demers et al., 2002). 

This questionnaire is designed for a person's evaluation of those distinct dimensions of the assistive 

device that are influenced by one's expectations, perceptions, attitudes, and personal values. The 

third questionnaire is USE, which measures subjective usability and has been applied for 
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evaluating prosthetic devices and other products (e.g., wearable devices, smartphones, website). 

Finally, the System Usability Scale (SUS), which is also designed for products or services (Brooke, 

1996), has been used to assess the usability of prosthetic devices. SUS evaluates various products 

and services, including hardware, software, mobile devices, and websites. 

Usability dimensions of each questionnaire are summarized in Table 1. These dimensions 

are categorized in terms of device appearance and subjective attributes. It was found that SUS and 

USE surveys are more focused on subjective attributes such as comfort, ease of use, satisfaction, 

and willingness to use as they are heavily used in assessing the usability of websites or software. 

Meanwhile, CSD-OPUS and QUEST 2.0 surveys incorporate physical attributes such as weight or 

aesthetic aspects of prosthetic devices. 

Table 1. Comparison of usability surveys 

Usability dimension CSD-OPUS QUEST 2.0 SUS USE 

Device  

appearance 

Dimension        

Weight           

Durability           

Aesthetic        

Subjective 

attributes 

Comfort                 

Ease of use              

Satisfaction           

Willingness to use              

  

1.2.2. Cognitive Workload Assessment of Prosthetic Devices 

CW of prosthetic devices can be measured using physiological measures, subjective 

measures, performance measures, and cognitive performance models (CPM) (Figure 1) (Park and 

Zahabi, 2022a). Physiological measures include various types of brain activity measures such as 

functional near-infrared spectroscopy (fNIRS), P200 (which represents some aspect of higher-

order perceptual processing, modulated by attention), P300 (an event-related potential (ERP) 

component elicited in the process of decision making), late positive potential (LPP; an event-
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related potential that reflects facilitated attention to emotional stimuli), and frontal theta/parietal 

alpha (FT/PA)   (Deeny et al., 2014b; Leeb et al., 2015; Rezazadeh et al., 2011; Rupp et al., 2013; 

Shaw et al., 2018; Shaw et al., 2019a; Shaw et al., 2019b; Zhang et al., 2015; Zhang et al., 2018). 

A few studies used cardiac (Crea et al., 2017; Gonzalez et al., 2012a; Knaepen et al., 2015), 

respiratory (Gonzalez et al., 2012a), skin, and eye-tracking measurements (Parr et al., 2019). Skin 

measurements included skin conductance and temperature (Crea et al., 2017; Gonzalez et al., 

2012a; Gonzalez et al., 2012b). Eye-tracking measures included the blink rate and pupil diameter 

(White et al., 2017; Zahabi et al., 2019b; Zhang et al., 2016b). Among all the CW measures, NASA 

Task Load Index (NASA-TLX) was the most frequently used method (Carlson et al., 2013; 

Davidson, 2017; Khalid, 2014; Pruziner et al., 2019; Ruiz Ramírez, 2016; Saraiji et al., 2018; 

Volkmar et al., 2019). The main reasons for the frequent use of NASA-TLX include its capability 

to assess CW in motor tasks (Berntsson, 2019; Hart, 2006; Hart and Staveland, 1988), the measure 

being non-intrusiveness, and its consideration of overall workload as well as the magnitude of each 

factor (Arenas, 2015; Bark et al., 2014).  

Primary task measures were mainly used when the participants performed ADLs and were 

defined in terms of TCT and the number of transported items (e.g., clothespins) (Hargrove et al., 

2018; Hargrove et al., 2017; Kuiken et al., 2015; Kuiken et al., 2016; Olsen et al., 2019; Raveh et 

al., 2018). CW was also measured using secondary task performance measures when the 

participants were asked to perform verbal, semantic, or numerical cognitive tasks along with the 

ADLs or other primary tasks during the experiment (e.g., participants counted backward from 100 

to 1 with three steps while they were moving an object with their prosthetic device (Resnik et al., 

2018)).  
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One study used the CPM approach to determine the CW of prosthetic devices (Zahabi et 

al., 2019b). The finding of this study comparing DC and PR control modes suggested that CPM 

approaches such as GOMS language (GOMSL) models can be used to predict cognitive demands 

of using upper-limb prostheses (Zahabi et al., 2019b). 

 
Figure 1. Cognitive workload measurements in prosthesis studies (Reprinted from Park, J., & Zahabi, M. 
(2022a). © 2023 IEEE) 

 

A detailed comparison of these techniques based on sensitivity, intrusiveness, cost, and 

accuracy can be found in Park and Zahabi (2020). Physiological measures allow understanding of 

psychological processes through their effect on the body, rather than through task performance or 

perceptual ratings (Cain, 2007). Therefore, the principal advantage of physiological measures is 

that these measures are continuous and objective. However, some signals can be contaminated by 

head or body movements (e.g., neuroimaging or EEG measures), especially in experiments using 

prosthetic devices or electrode caps (Zahabi et al., 2019b). 

Most studies used NASA-TLX to measure CW since the method is unobtrusive and can be 

easily collected after the experiment sessions. Subjective measurement techniques such as NASA-

TLX quantify humans’ understanding and judgments of their experienced demand. While these 
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methods have high face validity, their interpretation and ability to predict performance are 

uncertain (Cain, 2007). These measures also provide discrete rather than continuous values, and 

prior studies have found a dissociation between subjective and performance measures (Yeh and 

Wickens, 1988). Furthermore, subjective measures are limited due to recall bias and substantial 

individual differences (Hart, 2006).   

Performance measures are classified into two major categories, including primary and 

secondary task measures. Primary task measures evaluate the operator’s performance on the task 

of interest. Examples of primary task measures of workload include speed, accuracy, reaction or 

response time, and error rate. Secondary task measures provide an index of the remaining operator 

capacity while performing primary tasks and are more diagnostic than primary task measures 

(Cain, 2007). Examples of secondary tasks include n-back, verbal shadowing, and pursuit tracking 

tasks. Performance measures have advantages in that they evaluate participants’ performance on 

the task of interest directly, and this is useful where the demands exceed operators’ capacity such 

that performance degrades from baseline or ideal level (Cain, 2007). However, the complexity of 

the secondary tasks or environmental conditions can reduce walking performance or the primary 

task (Morgan et al., 2014). In addition, if the amputees are acclimated to the prosthesis and the 

environment is stable, cognitive load can be limited. Therefore, physiological measurements can 

be used instead of task performance measurements to capture subtle changes in CW under these 

conditions. Performance measures often lack scientific rigor, making interpretation of the results 

difficult. Unknown or uncontrolled factors may affect results rather than the intended 

manipulations in the study. Also, due to the protective (or compensatory) effect of increased effort 

in the task, measuring performance might not be sufficient to evaluate the participant's state. For 
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example, the performance does not reflect information about the costs involved in the adaptive 

response to stress (Cain, 2007). 

One possible alternative to assess CW is the CPM method. Although CPM was used only 

in a case study with one amputee participant under DC and PR conditions, the method can be 

applied to other configurations and experimental conditions, considering its capability to predict 

task performance and calculate memory chunks (Zahabi et al., 2019b). The models can calculate 

task performance, the number of cognitive/perceptual/motor operators, and memory chunks to 

identify bottlenecks in the task. These models have been widely applied in other domains such as 

human-computer interaction research, aviation, health care, usability testing, and cybersecurity 

(Din, 2015; Prada and Boehm-Davis, 2004; Rosyidah et al., 2019; Stanley et al., 2019; Zahabi and 

Lyman, 2019; Zahabi and McCollum, 2019; Zahabi et al., 2019a). However, it is essential to note 

that CPM approaches assume expert performance, and therefore, the methods might have limited 

application to novice prosthetic users. Table 2 summarizes the comparison among different CW 

assessment techniques. 

Table 2. Comparison of CW assessment techniques (Reprinted from Park, J., & Zahabi, M. (2022a). © 
2023 IEEE) 

 

Technique Pros Cons 

Physiological 

measures 

Continuous & objective  

(Cain, 2007; Zahabi et al., 

2019b) 

Intrusiveness, susceptible to temperature and 

humidity (Charles and Nixon, 2019) 

Subjective measures High face validity (Zahabi et 

al., 2019b) 

Discrete, ability to predict task performance is 

uncertain (Cain, 2007; Yeh and Wickens, 

1988), recall bias and individual differences 

(Hart, 2006) 

Task performance 

measures 

Useful to test changes of CW 

using direct modification on 

the task (Zahabi et al., 2019b) 

Lack of interpretability (Cain, 2007), lack of 

scientific rigor, and plausible compensatory 

effect (Zahabi et al., 2019b) 

Human performance 

modeling 

High interpretability, non-

intrusive, high versatility (can 

be edited and embedded in 

various situations) (Zhang and 

Wu, 2017) 

Need time and effort to learn the modeling 

techniques, need to be validated with human 

subject data 
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1.2.3. Human Performance Models 

Human performance models (HPM) were reviewed as a basis for the proposed method and 

due to the following reasons. First, conducting human subject experiments with prosthetic users is 

difficult due to the intrusiveness of study equipment (e.g., cables and sensors). This could be a 

reason why most previous studies relied on questionnaires. Second, HPM has the potential to 

assess the usability of prosthetic devices without human-subject experiments. Some prior studies 

illustrated HPM’s capability to predict device usability and cognitive workload (Zahabi et al., 

2019b). Third, HPM can compensate for the limitations of physiological and subjective 

measurement techniques. HPM is a modeling approach that can be generated by observing the user 

performing some tasks without any interruption and therefore is a non-intrusive approach. 

Therefore, in the following sub-sections, a review of HPM approaches is provided. 

1.2.3.1. Human performance modeling approaches – GOMS family 

There are five major approaches in HPM (Gil, 2010; Kotseruba and Tsotsos, 2016; Van 

Rijn et al., 2011; Yuan et al., 2020), including Goals, Operators, Methods, and Selection rules 

(GOMS) (Card et al., 1983), Adaptive Control of Thought (ACT-R) (Anderson et al., 1997), 

Executive-Process Interactive Control (EPIC) (Kieras and Meyer, 1995), Queueing Network – 

Model Human Processor (QN-MHP) (Liu et al., 2006), and State, Operator, And Result (SOAR) 

(Laird et al., 1991). Among these methods, GOMS language was the only method applied in the 

prosthetic device domain. 

GOMS is a human information processor model for human-system interaction that explains 

a user's cognitive process using four components: Goals, Operators, Methods, and Selection rules 

(Card et al., 1983). GOMS works based on the Model Human Processor (MHP) theory (Card et 

al., 1986b). Goals are symbolic structures that establish a state to be achieved and determine a set 
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of possible methods by which it may be accomplished. Operators are fundamental perceptual, 

motor, or cognitive acts whose execution is needed to change any aspect of the user's mental state 

or affect the task environment. Methods describe a procedure for accomplishing a goal. Finally, 

Selection Rules are needed when a goal is attempted, but more than one method is available to the 

user to accomplish it. There are numerous extensions from GOMS, including Keystroke-Level 

Model (KLM) (Card et al., 1980), Cognitive-Perceptual-Motor GOMS (CPM-GOMS) (John, 

1990), GOMS Language (GOMSL) (Kieras, 2006; Kieras, 1988), Natural GOMSL (NGOMSL) 

(Kieras, 1994), and Enhanced GOMSL (E-GOMSL) (Gil, 2010).  Using an interactive computer 

system, KLM predicts how long it takes an expert user to accomplish a routine task without errors. 

CPM-GOMS is an advanced method in that it can model parallel processes. NGOMSL is a high-

level (natural language) syntax for GOMS representation, whereas GOMSL is an executable form 

of NGOMSL and a computationally realized version of MHP. 

Methods in the GOMS family are fast and straightforward to use as compared to other 

modeling approaches. User-defined operators can be added. However, the models do not include 

errors and their resolution is low (i.e., describes interaction broadly). Also, GOMS family does not 

involve detailed calculation of memory chunks.  

1.2.3.2. Other modeling approaches 

ACT-R provides models of elementary and irreducible cognitive and perceptual operations 

that enable human information processing. In theory, each task that humans can perform consists 

of a series of these discrete operations (Anderson et al., 1997). ACT-R’s primary time unit is 50ms 

which can describe human information processing in a fine-grained resolution. In addition, ACT-

R can generate essential outcomes such as time to perform a task and accuracy. There are several 

advantages of using ACT-R, such as modeling of parallel activities (Yuan et al., 2020), memory 
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lapse and loss (Leiden et al., 2001), reinforcement learning (Van Rijn et al., 2011), memory 

retrieval (Samsonovich, 2015), and emotions (Ritter et al., 2019). However, this method has 

several limitations including: (1) it takes a long time to model (at least several days to weeks of 

using the system and takes months to years to become an expert in its use) (Salvucci and Lee, 

2003); (2) ACT-R is suitable to model tasks under ten seconds (Ritter, 2009); (3) it is a rule-based 

system which requires analysts’ manual input (Jang et al., 2011). 

QN-MHP is a computational cognitive architecture that integrates the mathematical 

framework of queueing network theory with the Model Human Processor (Liu et al., 2006). Based 

on a network structure of twenty process units, different cortical areas of the human brain and 

corresponding functional modules of human information acquisition, processing, and 

implementation are simulated. Because of this “brain-like” structure, QN-MHP can visualize 

internal information flows during the simulation of related activities. However, its inability to 

generate or model complex cognition such as language comprehension or problem-solving 

requires creating new rules by the model itself rather than relying only on the rules preprogrammed 

by the model developer (Liu et al., 2009).  

EPIC is a general framework, represented as a simulation modeling environment, in which 

models of human performance in specific tasks may be constructed (Kieras and Meyer, 1995). 

EPIC focuses on perception and motion (Taatgen and Anderson, 2010; Yuan et al., 2020). The 

detailed description on perception and motion was influential for ACT-R and SOAR that 

incorporated perceptual and motor components into the models (Ritter et al., 2019). Similar to 

ACT-R and SOAR, EPIC encompasses a production-rule system (a “cognitive processor”) that 

provides procedural knowledge. There are also “perceptual processors” that process different 

sensory (tactile, visual, and auditory) information. The outputs of the perceptual processors are 
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sent to the working memory. In addition, there are two types of working memory (unrelated to the 

sensory-motor information): one storing the current goals and steps to reach them (“control store”), 

and a “general” working memory for miscellaneous information.  

SOAR is a functional approach to understand what cognitive mechanisms underlie 

intelligent human behavior (Laird et al., 1991). Also, it is an architecture for human cognition 

expressed in the form of a production system. SOAR can represent extensive and complex rule 

sets (Kieras, 2005). Its primary use is in artificial intelligence (AI) but also in cognitive modeling. 

In addition, it has been combined with EPIC’s perceptual-motor processors. The method focuses 

on problem-solving mechanisms and can develop AI agents that solve problems based on different 

types of knowledge, whether programmed or learned by the system. Table 3 provides a comparison 

of these models. 

Table 3. HPM model comparison 

CPM 

 

Factors 

CMN-

GOMS 

NGOMSL CPM- 

GOMS 

ACT-R EPIC Soar QN-

MHP 

Resolution Low Low Moderate High High High Low 

Parallel 

processing 
✕ ✕     ✕             

User-defined 

operator 
            ✕             

Modeling 

difficulty 

Low Low Low ~ 

Medium 

High High High Medium 

Open source                         ✕ 

Applied in 

prosthetic device 

domain 

✕     ✕ ✕ ✕ ✕ ✕ 

 

1.3. Research Gaps 

This study aims to fill several research gaps in the literature. The first research gap is 

regarding the limitations of the nature of subjective usability and CW assessments. Current 
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approaches for measuring usability of prosthetic devices with questionnaires are simple, easy to 

administer, and have high face validity. In addition, they do not interfere with the study since the 

data are collected after the experiment sessions. However, their interpretation and ability to predict 

performance are uncertain (Cain, 2007). These measures also provide discrete rather than 

continuous values, and prior studies have found a dissociation between subjective and objective 

performance measures (Yeh and Wickens, 1988). Furthermore, subjective measures are limited 

due to recall bias and substantial individual differences (Hart, 2006).  

The second gap is the lack of using an advanced HPM approach to assess the usability and 

CW of prostheses. As mentioned in Section 1.2.2., only GOMSL has been used to measure TCT 

and the number of cognitive, perceptual, and motor operators. However, the model still lacks 

consideration of parallel operations and memory processes. Other advanced modeling techniques 

might be more suited to this application, such as ACT-R and CPM-GOMS.  

The third gap is regarding the usability of the HPM tool itself. Although there are a number 

of software applications for HPM, many of them are difficult to use for analysts. Unlike general 

programming languages such as C, C++, or Java, modelers in the HPM domain need to study a 

specific programming grammar and should be familiar with human factors concepts and theories 

(e.g., perception, cognition). Although there are some graphical user interface (GUI)-based 

modeling tools (e.g., CogTool), they are not directly applicable for prosthetic device analysis but 

for applications such as mobile devices or surface transportation (John, 2005; Salvucci et al., 

2005). Therefore, there is a need to have a user-friendly interface to use HPM for prosthetic device 

usability analysis. 
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1.4. Research Objectives 

Based on the identified gaps from the literature review, the main objective of this research 

was to develop a model with an advanced HPM approach to assess the usability of prosthetic 

devices via a user-friendly interface. The model was validated with two human subject 

experiments (one with a physical prosthetic device and another using virtual reality simulations) 

and the performance of the model was compared with a benchmark model. Figure 2 illustrates the 

research objectives stemmed from the research gaps. 

 

Figure 2. Identified research gaps and the plan to address those gaps 

 

 

① Subjective usability evaluation of 

prosthetic devices  

② Lack of advanced human 

performance modeling approaches to 

assess cognitive workload and usability 

of upper-limb prosthetic devices 

③ Lack of a user-friendly interface 

for modeling 

Identified Research Gaps Research objectives 

① Provide an objective usability 

evaluation of prosthetic devices 

② Develop an advanced human 

performance model and validate it with 

experimental data  

③ Develop a user-friendly platform for 

modeling  
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2. RESEARCH SCOPE 

 

2.1. HPM-UP Development 

The Human Performance Model for Upper-limb Prosthesis (HPM-UP) was developed 

based on a hybrid modeling approach including top-down (theories in human factors, ergonomics, 

and psychology) and bottom-up (data-driven) approaches. The HPM-UP uses CPM-GOMS and 

ACT-R declarative memory modules. For example, participants might frequently adjust the hook 

while they are looking at it. In this case, perception and motor operators work simultaneously, 

which is an example of parallel activities that CPM-GOMS can model. In addition to the CPM-

GOMS logic, declarative memory module functions from ACT-R 7.0 were used for simulating the 

number of memory chunks (Bothell, 2017; Leiden and Best, 2005). For example, while performing 

ADLs, participants had to remember a particular device configuration to adjust the hook and 

complete the tasks.  

R software package 4.0.5 was used for model development. R is a worldwide package for 

research, especially for statistical analysis. The HPM-UP package can be downloaded for free and 

therefore, is accessible for researchers and usability analysts. In addition, the package includes a 

GUI for analysts to use. The Details of the model development process are described in Chapter 

3. 

 

2.2. Usability Dimensions in HPM-UP 

The HPM-UP evaluates six usability dimensions. The dimensions came from Nielsen’s 

usability principles (Nielsen, 2012) as they have been frequently used in evaluating the usability 

of other products and services. In addition, “cognitive workload” was explicitly included in the 
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HPM-UP as a sixth dimension. For the HPM-UP, there was a need to convert the general 

definitions of Nielsen’s definition to computational variables related to prosthetic device 

application. Therefore, the modified usability dimensions were defined as follows: 

 

• Learnability: The number of training trials required to pass the training criteria 

• Error (Error Rate): The error rates in performing a task with a prosthetic device  

• Memory Load: The number of memory chunks stored in working memory when performing 

a task with a prosthetic device  

• Efficiency: Task completion time of one ADL cycle (e.g., moving one pin from one bar to 

another bar) 

• Satisfaction: The relationship among perceived performance, expectation, and desire 

• Cognitive Workload: Classified cognitive workload level (e.g., “High”, “Moderate”, “Low”)  

 

2.3. Model Validation 

To validate the HPM-UP, two human subject experiments were conducted. A recent 

literature review found that there are two types of output controls for the upper limb prosthetic 

studies including: (1) physical devices, and (2) virtual environment (Park and Zahabi, 2022a). 

Therefore, the first experiment used a physical prosthetic device (Chapter 4), and the second 

experiment was conducted using a virtual reality (VR) simulation (Chapter 5).  
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3. MODEL DEVELOPMENT 

 

3.1. Overview 

Although several existing questionnaires such as the SUS and USE survey can be used to assess 

the usability of prosthetic devices, and CW of these device can be measured subjectively using 

validated subjective ratings such as NASA-TLX, these methods are mainly used toward the later 

stages of the design and development process when there is a functional prosthetic device and 

there is a need for conducting a human subject study which can be costly and time consuming. 

Furthermore, there could be self-report biases with survey responses. The main motivations for the 

HPM-UP approach are to overcome these limitations with subjective usability and CW 

measurement techniques in prosthetic assessments and to predict usability and CW of prostheses 

in early stages of the design process before conducting human subject experiments. This can save 

time and energy and reduce the workload of experimenters, clinicians, and amputee patients. 

HPM-UP can also provide usability and CW estimates for future prostheses with novel control 

schemes before entering the physical device development phase. At this stage, conducting human 

subject experiments may not be feasible. The logic behind the HPM-UP methods is based on 

theories and is transparent so that other researchers can update the parameters or configurations of 

prostheses with collaborations with clinicians or device designers to better fit their needs.  

Figure 3 illustrates an overview of how HPM-UP works. Methods including CPM-GOMS, 

error probability modeling technique, memory function (from ACT-R), learning curve, machine 

learning algorithms, and satisfaction formulas have been developed and integrated into the HPM-

UP. Users of HPM-UP can run the model using a scenario (i.e., by conducting a task analysis) and 
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selecting the parameters (e.g., prosthetic device control). Then, the HPM-UP generates six 

usability dimensions. Each usability dimension is described in detail in the following sub-sections. 

 

Figure 3. HPM-UP overview 

 

 

 

3.2. Usability Dimensions 

3.2.1. Learnability 

3.2.1.1. Learning curve equation 

The learnability dimension in HPM-UP is defined as the number of training trials to pass 

the training threshold level. This definition came from the original definition of learnability: 

“Learnability considers how easy it is for users to accomplish a task the first time they encounter 

the interface and how many repetitions it takes for them to become efficient at that task” (Albert 

and Tullis, 2013; Newell and Rosenbloom, 1981). Thus, learnability in HPM-UP can be defined 

as the number of trials required to reach a plateau.  
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The original learnability equation is based on the learning curve’s unit theory (Camm, 

1985; Mislick and Nussbaum, 2015; Zhang et al., 2016a) which is defined as Equation (1). 

 Y𝑥 = 𝐴𝑥𝑏 ( 1 ) 

   

In equation (1), Yx is the cost of unit x, A is the theoretical cost of unit 1, x is the unit 

number, and b is a constant representing a slope. In HPM-UP, x is the number of training trials 

which is the outcome of learnability. A is the task completion time for the first trial. Yx can be 

replaced with the task completion time in each trial and can be gathered from training trials. The 

approach used to calculate A and b will be discussed in the following subsections. 

3.2.1.2. Patterns of task completion times during training trials 

The training data from 10 participants were used to investigate the patterns in TCT (Figure 

4). Then, average of the past three datapoints were plotted in Figure 4. In this figure, the X-axis 

indicates the required training trial numbers. For example, the task completion time in trial 5 refers 

to the average task completion time of trial numbers 3, 4, and 5. Thus, a total of five trials were 

needed for training. 

 

Figure 4. Task completion time pattern in training trials 
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The TCT in training trials indicates three distinct trends (Figure 4). Case 1 is illustrated as 

a single point, which means the participant required only three trials to pass the training threshold 

(best case scenario). Case 2 illustrates a monotonous decrease (i.e., the TCT continuously 

decreases, which is desirable). Finally, case 3 is the most complex trend (i.e., both increasing and 

decreasing trend, the worst case). 

3.2.1.3. Modified A (i.e., task completion time for the first trial) 

As shown in Figure 4, TCT of the first trial (i.e., A) is different across participants, which 

might be due to the device calibration quality (DCQ). There are two types of DCQ including: 

Objective DCQ (ODCQ) and subjective DCQ (SDCQ). ODCQ can be calculated using Equation 

(2) (Music, 2022).  

 
𝑂𝐷𝐶𝑄 =

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑝𝑢𝑡 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠
 

( 2 ) 

   

ODCQ can be used to estimate A for each participant, however, it requires collecting data 

from all participants and conducting a detailed video analysis, which might not be suitable for the 

HPM-UP package as the goal of this package is to use it in early stages of the design and 

development process of prosthetic devices. Additionally, video analysis cannot guarantee if 

specific activities were intended or not by the participants. For example, although a gesture in the 

video looks erroneous, that could have been exerted intentionally by the participants.  

Therefore, the SDCQ was used to adjust A. Having high SDCQ could result in small A (i.e., 

high subjective level of device calibration quality could lead to shorter TCT in the first trial). 

However, subjective evaluations can have self-report bias (VandenBos, 2007). To mitigate the 

self-report bias, the first impression of the prosthesis was also considered. First impression (FI) 

refers to one’s initial perception of a person (or object), typically involving a positive or negative 
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evaluation as well as a sense of physical (or psychological) characteristics (VandenBos, 2007). In 

this study, although all of the participants passed the training criteria, the number of required 

training trials were different among participants, which led to having different error rates, or 

efficiency in the experimental trials. These differences could have been caused from different first 

impressions of the device. 

The FI was quantified based on the findings of previous studies. Human builds impression 

from a set of personality traits resulting from incomplete information – implicit personality theory 

(Beauvois, 1982; Schneider, 1973). Second, the built impression formation can be classified or 

unified – impression formation of personality (Asch, 1946). Third, one salient characteristics in 

one area (i.e., FI ) can affect other dimensions (i.e., halo effect) (Clifford and Walster, 1973; 

Thorndike, 1920). Fourth, humans tend to seek or interpret any evidence in favor of his or her FI 

- confirmation bias (Nickerson, 1998; Snyder and Swann, 1978). Thus, if the first impression is 

positive, the individual will tend to minimize the negative aspects of the surrounding elements and 

exaggerate the positive aspects. Conversely, the more negative FI, the more the individual will 

tend to minimize the positive and accentuate the negative aspects. Lastly, the time to form the first 

impression has been studied and it was found that the impression formation can be done quickly 

(i.e., at the very early stage of the exposure to the stimulus) (e.g., 100 milliseconds) (Fiske and 

Neuberg, 1990).  

The concept of FI is also applied in the human-computer interaction (HCI) domain. Some 

studies assessed the first impression of websites using a 7-point Likert scale within 5 seconds of 

its use (i.e., 5 Second Test; 5ST) (Gronier, 2016). The study suggested that there was no significant 

difference between some typical usability tests (i.e., questionnaires asked after the entire 

experiment) and the 5ST approach. Furthermore, based on the confirmation bias, the direction of 
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the first impression (i.e., positive or negative) can affect the usability of a product (Michalco et al., 

2015; Raita and Oulasvirta, 2011), including easiness (Hassenzahl and Monk, 2010), satisfaction 

(Liu et al., 2010), and reliability (Kim and Fesenmaier, 2008). 

Therefore, the A factor was adjusted (𝐴′) based on the FI and SDCQ (Equations (3)). If 

SDCQ is 1, which means users think the DCQ is perfect or has no errors, the FI is the only concern. 

However, if SDCQ is for example 0.5 (e.g., 5 out of 10 gesture inputs were correct), the A factor 

will be doubled. The FI factor is a number between 0 and 2. If the FI is less than 1 (i.e., the first 

impression is negative), A will be decreased. If FI is greater than 1 (i.e., the first impression is 

positive), A will be increased. 

 
𝐴′ = 𝐴 ×

𝐹𝐼

𝑆𝐷𝐶𝑄
 

( 3 ) 

   

SDCQ in this study was calculated based on the average of the responses to questions Q3 

(easiness in adjusting the device (fixing, fastening)), Q6 (easiness of using the device), and Q8 

(effectiveness of using the device (the degree to which the device meets a user’s needs)) of the 

USE questionnaire. FI was calculated from the difference between the SDCQ and participant’s 

training performance. This indirect approach was used to avoid self-report bias (VandenBos, 2007) 

that could have occurred if FI was measured directly. 

3.2.1.4. Modified slope 

The slope is represented by b as shown in Equation (4). 

 
slope of learning curve =  

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑢𝑛𝑖𝑡 2𝑛

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑛
=

𝐴(2𝑛)𝑏

𝐴(𝑛)𝑏
= 2𝑏  

( 4 ) 

ln(𝑠𝑙𝑜𝑝𝑒) = 𝑏 × 𝑙𝑛(2) 

∴ 𝑏 =
ln (𝑠𝑙𝑜𝑝𝑒)

ln2
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Previous studies found that the slope could be estimated from the reference value for each 

industrial domain (Mislick and Nussbaum, 2015) such as:  

• 85% Aircraft industry 

• 80~85% Shipbuilding 

• 75~85% Electrical 

• 90~95% Electronics 

• 90~95% Machining 

• 88~92% Welding 

 

Also, it can be estimated based on the degree of automation. 

• 70% = entirely manual operations 

• 80% = 75% manual + 25% automated 

• 85% = 50% manual + 50% automated 

• 90% = 25% manual + 75% automated 

 

Since the tasks in this study were performed by prostheses, ideally, the slope could be 0.7 

(i.e., entirely manual operation) when the calibration quality is perfect (Mislick and Nussbaum, 

2015) (i.e., the prosthesis could always be controlled based on user’s input). However, since 

calibration quality could be varied, there is a need to adjust the slope. If SDCQ becomes 0, the 

slope changes to 0.90 which means there is almost no learning occurred between the trials (Mislick 

and Nussbaum, 2015). Therefore, Equation (5) shows the linear relationship between the SDCQ 

and slope.    

 𝑠𝑙𝑜𝑝𝑒 =  −0.2 × SDCQ + 0.9    ( 5 ) 
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Equation (5) does not include a potential effect of physical and/or mental workload on 

device learnability. Therefore, two parameters were added to differentiate the slope based on the 

level of workload as shown Equation (6).  

 𝑠𝑙𝑜𝑝𝑒 =  −0.2 × 𝑅1 × SDCQ + (0.9 + 𝑅2) ( 6 ) 

   

The initial values for 𝑅1and 𝑅2 parameters were determined based on the pilot study with 

10 participants. 𝑅2 refers to the baseline physical and mental workload of participants before the 

experiment. 𝑅1 was determined based on the changes of physical and mental workload from the 

baseline. 

3.2.1.5. Revised learning curve 

Based on the changes in slope and A factor described earlier, the learning curve equation 

was revised to estimate learnability as shown in Equation (7). 

𝐿 = 𝐴′𝑥𝑏 = 𝐴
𝐹𝐼

𝑆𝐷𝐶𝑄
𝑥

ln (−0.2𝑅1𝑆𝐷𝐶𝑄+(0.9+𝑅2))
𝑙𝑛2     

( 7 ) 

 

 

3.2.2. Error Rate 

3.2.2.1. Limitations of previous studies 

Including errors in the HPM-UP for analysis of prosthetic devices is necessary since unlike 

the direct human interaction with a mouse or keyboard controlled with high precision, a prosthesis 

device uses an EMG signal that does not always correctly project user’s intentions to the outcome 

(i.e., hook movement). That is, there is a mediator (prostheses) between the human and the task, 

which can affect the task performance. There can be unintended or due to wrong hook movements 
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(e.g., due to the EMG signals not correctly classified or muscle fatigue). To have a more precise 

task performance calculation, it was necessary to account for errors in HPM-UP. 

Some prior studies tried to estimate errors in using protheses (Hargrove et al., 2007; Lock 

et al., 2005; Scheme and Englehart, 2011). For example, Scheme and Englehart (2011) suggested 

to use active and total error to evaluate pattern recognition LDA classifiers instead of using offline 

classification accuracy, as prior work has shown that offline classification accuracy, while easy to 

calculate, has a weak correlation to prosthesis usability (Lock et al., 2005). Active error is 

calculated by the ratio of the number of incorrect active decisions and the number of total active 

decisions (Music, 2022). Total error rate is the ratio between the number of incorrect decisions 

(i.e., mismatches between the input gesture and hook movement) and the number of total decisions. 

Active error rate reflects the negative effects of corrective actions to the total error rate (Scheme 

and Englehart, 2011). These corrective actions must occur after a prosthesis user has made an 

inadvertent action that is not required to complete the task and therefore, can increase frustration 

(Hargrove et al., 2007). Therefore, active error rate can provide a useful metric for measuring this 

frustration and can be informative when assessing prosthesis usability. 

However, this approach to estimate errors has some limitations. First, it is challenging to 

clearly figure out whether a specific gesture is an active or inactive decision from the human 

subject experiment. Even by analyzing the log data which were generated from software such as 

MATLAB or videos after our pilot tests, it was not possible to differentiate which hook movement 

came from active decisions. For example, sometimes participants needed to intentionally test the 

synchronization between their hand gestures and hook movement, therefore, they performed some 

gestures. These actions should not be counted as errors. In addition, there were some circumstances 

that the hook moved correctly without the related hand gestures. Unlike the training, in the 
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experimental trials, participants were able to discover their individual strategies to complete tasks 

efficiently (i.e., minimal hand or muscle movements). These also could not be considered in 

counting the active error rate or total error rate. The second limitation of the previous approach to 

calculate errors was that it only considered the pattern recognition (PR) configuration, which again 

might limit the generalizability of the approach to another prosthetic device configuration such as 

DC or CC.  

3.2.2.2. Error rate based on learnability 

To address the identified limitations, the error rate in HPM-UP was formulated differently 

from the Scheme and Englehart (2011) study . The error rate in HPM-UP depends on learnability 

(e.g., participants who reached the training criteria faster exhibited few numbers of errors in 

experimental trials)  

Error rate was estimated based on learnability (i.e., Err(L)) because of the causal 

relationship between two dimensions. If L = 1, (i.e., learnability is 100%), the estimated error rate 

in the experimental trials will be 0 (i.e., Err(1) = 0). If L = 0, Err(0) will be 1 which means that 

participants will make errors during the experimental trials since they failed to learn how to use 

the device during the training. The error rate follows the natural exponential function as shown in 

Equation (8).  This exponential curve was fitted based on the results of pilot testing using the 

calculated learnability and error rate observed during the experiment.  

Err(L) = 𝑚𝑎𝑥 {
1

1−𝑒
(𝑒𝐿 − 𝑒), 0} 

( 8 ) 

  

 

3.2.3. Memory Load 

Declarative memories are the kind of memories that can be declared (e.g., the name of 

one’s fifth grade math teacher). This section describes efforts of humans when they retrieve 
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information from declarative module (or a particular region of the brain), including activation, 

memory load, and recall probability. The equations are based on the declarative memory structure 

implemented in ACT-R (Dehban et al., 2016). 

Activation is a degree of association between previous experiences and current context 

which describes whether a chunk will be helpful at any given moment (Bothell, 2017). Chunks are 

the elements of declarative knowledge in the ACT-R theory and are used to communicate 

information among modules through the buffer (Bothell, 2020). The activation of a memory trace 

is calculated using the Equation (9) based on Altmann and Schunn (2019) and Estes (2015): 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ln (
𝑛

√𝑇
) 

( 9 ) 

 

where n is the number of times that chunk is rehearsed, and T is the total time the trace is held in 

memory (or age of the item). The number of rehearsals refers to the familiarity of a chunk. The 

default value of this parameter was set as 3, a plausible level of rehearsal that exhibited the best 

overall fit (Estes, 2015). However, for the information from long-term memory (LTM), or recall 

information, the number of rehearsals was set to 10 to indicate that a chunk from LTM is difficult 

to be forgotten (Estes, 2021). This number can be updated while the model is running. For example, 

if the number of rehearsals increases, the activation also increases, leading to higher recall 

probability. 

In order to mimic the division of activation across all working memory chunks, the 

activation was reduced as a function of the number of chunks in the problem span based on the 

logic in Cogulator software (Estes, 2021). Therefore, the divided activation in HPM-UP was 

calculated as Equation (10) (Estes, 2015). 
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𝐷𝑖𝑣𝑖𝑑𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 +
1

𝑠𝑡𝑎𝑐𝑘 𝑑𝑒𝑝𝑡ℎ
− 1 

( 10 ) 

 

“Stack depth” is the location or address of the chunk in the memory. For example, if a 

chunk was added as a third chunk in the memory, stack depth becomes 3. It also refers to the 

number of chunks that activation must be divided into. The idea of limited activation source pools 

and their distribution among all the chunks held in working memory has been previously 

documented in the literature (Anderson et al., 1996). Equations (10) and (11) allows HPM-UP to 

model a relationship between the number of chunks to be memorized and decay of chunks over 

time. Memory load was defined as the overall occupancy of chunks in the entire task and was 

calculated using Equation (11), which divides the summation of the duration of all chunks by the 

total task duration (Estes, 2015; Estes, 2021).  

𝑀𝑒𝑚𝑜𝑟𝑦 𝑙𝑜𝑎𝑑 =
∑ (𝑐ℎ𝑢𝑛𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)𝑖

7
𝑖=1

𝑡𝑜𝑡𝑎𝑙 𝑡𝑎𝑠𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 

( 11 ) 

 

3.2.3.1. Chunk structure and lifecycle 

As shown in Figure 5, there are seven slots for chunks in Cogulator (Miller, 1956). The 

first chunk of information goes to the bottom, and the next chunk can be stacked on the top of the 

first chunk. Once all slots are filled with chunks and a new chunk of information arrives, the chunk 

with the lowest activation decays and the chunks' positions after the decayed chunk are updated. 

Then, the new chunk is added to the last slot (i.e., top stack).  
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Figure 5. Memory chunk structure in Cogulator 

 

The HPM-UP shows the lifecycle of a chunk in a table format in its output window. The 

table includes the chunk's name, the time when it was first stored in the short-term memory, the 

time when it decayed, and its duration (Figure 6).  

 

Figure 6. Memory chunk structure in HPM-UP 

 

3.2.3.2. Recall probability 

Based on the divided activation calculated from Equation (10), recallability was calculated 

as Equation (12) (Dehban et al., 2015; Estes, 2021). 

𝑃𝑖 =
1

1 + 𝑒
𝜏−𝐴𝑖

𝑠

 
( 12 ) 

 

In this equation, τ is a threshold to forget the chunk (-1), s is the noise or the variance from 

one scenario (refers to perceptual/cognitive/motor operators, methods, and selection rules used by 
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an individual to accomplish a specific goal) to another (Bothell, 2017), which is set to 0.8 based 

on Estes and Masalonis (2003), and 𝐴𝑖 is the divided activation value from equation (10). Finally, 

𝑃𝑖 refers to the recall probability of the ith chunk. The default value of threshold and noise came 

from the Cogulator software as the model assumes the user is an expert.  

 

3.2.4. Efficiency 

Efficiency was calculated using Equation 13 and based on the task completion time and 

considering error rate. HPM-UP calculates the efficiency of an expert (without errors) based on 

the task completion time estimates from the CPM-GOMS method and inflates the task time based 

on error rate to estimate efficiency for all users. 

𝐸𝑓𝑓(𝐸𝑟𝑟) = 𝐸𝑓𝑓{𝐸𝑟𝑟(𝐿)} = (𝐸𝑥𝑝𝑒𝑟𝑡′𝑠 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) × {1 + 𝐸𝑟𝑟(𝐿)} ( 13 ) 

3.2.4.1. Perceptual and cognitive operators 

The duration of general operators follows the established time durations in Cogulator 

(Estes, 2017). Table 4 includes some of the perceptual and cognitive operators with their 

established time durations.  

Table 4. Perceptual and cognitive operators 

Operator Duration (ms) Operator Duration (ms) 

Look 550 Recall 550 

Attend 50 Think 1250 

Store 50 Verify 1250 

 

3.2.4.2. Specific motor operators for prosthetic devices 

Unlike perceptual and cognitive operators, specific motor operators for modeling human 

interaction with prosthetic devices do not exist. Thus, the HPM-UP incorporated operators 

including “Reach,” “Grasp,” “Move,” and “Turn” from the literature and estimated their time from 

the Motion-Time Measurement (MTM) technique. The MTM is an analysis procedure that 
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analyzes any manual operation into basic motions required to perform it. Then, it assigns a 

predetermined time standard to each motion, determined by the influencing factors under a specific 

task. Among various MTM approaches, MTM-1 was selected as it has the most fine-grained level 

of description for human movements (Maynard et al., 1948). QN-MHP also used MTM-based 

equations for calculating movement time (Feyen, 2003).  

“Reach” operator was defined as the time to reach an object in a fixed location. In 

performing ADLs, the user requires to pick up or hold an item in a fixed location. The distance 

between the hook and the object was measured as 12 inches in our experiment. Thus, it can be 

matched to “R12A” in Table 5 (i.e., R: reaching movement, 12: distance in inches, A: Reach to 

object in a fixed location, or to object in other hand or on which other hand rests). In Table 5, the 

time measurement unit (TMU) for this operator is equal to 0.036 seconds, or 36 milliseconds. 

Thus, the time to reach an object in HPM-UP was calculated as Equation (14). 

Time for Reach = R12A = 9.6 × 36 ms = 345.6 ms 

 

(  14  ) 
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Table 5. MTM-1 - REACH 

 

“Grasp” operator is defined as the time to pick up an item. Since the item in our 

experimental tasks is clothespin and doorhandle, the object's diameter was between 0.25 and 0.5 

inches. Based on Table 6, this operator was matched with “1C2” and its time was calculated based 

on Equation (15).  

Time for Grasp = 1C2 = 8.7 × 36 ms = 313.2 ms ( 15 ) 
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Table 6. MTM-1 - GRASP 

 

 

The “Move” operator in the CRT requires moving an object to an exact location. The 

distance between the two locations was 20 centimeters in our experiment. Since the HPM-UP 

supposes users are wearing a prosthetic device, the device's weight should also be included in the 

equation. Since the device's weight was close to 4.54lb, a dynamic factor of 1.06 was applied 

(Table 7). Thus, the time to move the upper limb was calculated as Equation (16). 

Time for Move (no weight) = M20C = 22.1 × 36 ms = 795.6 ms 

Time for Move (including weight) =  795.6 × 1.06 = 843.3 ms 

( 16 ) 
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Table 7. MTM-1 - MOVE 

 

 

The “Turn” operator is used to model hook rotation for 90 degrees. In addition, this 

operator is used for pronation and supination of the hand in the PR and CC configurations. 

Although the object (i.e., clothespin) is small (0 to 2lbs), the task takes more time (based on our 

observations of video recordings) than the estimate in Table 8 because the operator is turning the 
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hook while sustaining the position of the prosthetic device above the desk with some system delay 

(120ms). Thus, the time was calculated as Equation (17). 

Time for Turn = 5.4 × 36 ms + 120 ms = 314.4 ms ( 17 ) 

Table 8. MTM-1 - TURN 

 

 

For modeling the DC configuration, the HPM-UP needed to include two additional hand 

flexion and extension operators that were not in the MTM-1 library. Thus, the time for “flexion” 

was added to the HPM-UP as 209.5ms (SD = 61.4ms) based on Sheng and Wan (2013), and the 

time for “extension” was added to the model as 201.4ms (SD = 51.9ms) (Sheng and Wan, 2013). 

Table 9 provides a summary of motor operators in HPM-UP. 

Table 9. List of motor operators in HPM-UP 

Operator Duration (ms) Operator Duration (ms) 

Reach 345.6 Grasp 313.2 

Move 819.5 Turn (supination or 

pronation) 

314.4 

Flexion 209.5± 61.4 Extension 201.4 ± 51.9 

 

 

3.2.5. Satisfaction 

3.2.5.1. Expectation confirmation theory 

The theoretical background to formulate satisfaction came from the expectation 

confirmation theory (ECT) which is a cognitive theory that explains satisfaction as a function of 

expectations and perceived performance (Oliver, 1977, 1980). Although the theory originally 
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appeared in psychology and marketing studies, it has been applied in other scientific fields, 

including consumer research and information systems (Bhattacherjee, 2001).  

Once users accumulate experience on a product or service, they can subjectively evaluate 

their performance with the device (Lowry et al., 2006). The user compares the desire and 

expectations against the perceived performance of the product. Expectation is a belief or subjective 

prediction about a product’s attributes or performance at some point in the future (Bhattacherjee, 

2001). Perceived performance is a user’s perception of the degree to which a product can fulfill 

his or her expectation in actual usage. Desire is the level of attributes and benefits that leads to 

attaining the user’s desired outcomes (Spreng et al., 1996). The relationship between these three 

concepts, disconfirmation of beliefs, and satisfaction is shown in Figure 7. ECT posits that 

satisfaction is directly influenced by disconfirmation of beliefs and perceived performance and is 

indirectly influenced by both expectations and perceived performance by means of a mediational 

relationship which passes through the disconfirmation construct. 

When a product outperforms user’s original expectations, the disconfirmation becomes 

positive, which leads to increase post-purchase or post-adoption satisfaction. However, when a 

product underperforms the user’s original expectations, the disconfirmation becomes negative, 

which decreases post-purchase or post-adoption satisfaction (or increase dissatisfaction). 

Therefore, satisfaction can be determined by the amount of difference between perceived 

performance and expectation. In addition, there is an inverse relationship between expectation and 

satisfaction. If expectation increases, the possibility to reduce satisfaction increases. Reversely, if 

expectation decreases, the possibility to reduce satisfaction decreases.  
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Figure 7. Expectation-confirmation theory 

 

3.2.5.2. Satisfaction in HPM-UP 

Expectation (𝑓) in the HPM-UP was defined based on the expected task performance after 

passing the training session (or expected performance before the experiment trials). Desire was 

determined with q that was used in the calculation of learnability dimension. Perceived 

performance was calculated from the Efficiency dimension. Based on these concepts, 

disconfirmation of beliefs was formulated as Equation (18). 

 𝑑𝑖𝑠𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑒𝑙𝑖𝑒𝑓𝑖  

= 𝑍 {𝑃𝑖
⃑⃑  − 𝑓(𝐿𝑖

⃑⃑  ⃑,  𝑞𝑖⃑⃑⃑  )} 

= 𝑍 {𝑃𝑒𝑟𝑐𝑒𝑣𝑖𝑒𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖  −  
𝐸𝑛𝑡𝑖𝑟𝑒 𝑡𝑎𝑠𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (120 𝑠𝑒𝑐𝑜𝑛𝑑𝑠)

min 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖+𝐿𝑒𝑎𝑟𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ×(max 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 −min 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖)
× 𝑞𝑖} 

( 18 ) 

 

In this equation, 𝑃𝑖
⃑⃑  is a matrix or vector of participants’ perceived performance, which is 

calculated from the efficiency module of HPM-UP. Expectation (𝑓) is a function of learnability 

(𝐿𝑖
⃑⃑  ⃑) and desire (𝑞𝑖⃑⃑⃑  ) because expectation can be estimated using the training performance or 

learnability as it is a belief or subjective prediction of performance in the future. For example, if 

users pass the training criteria only with 3 or 4 trials, they may perform well during the 

experimental trials. Thus, learnability was used as a variable to determine expectation (i.e., 

Expectations 

Perceived 

performance 

Disconfirmation of 

beliefs 
Satisfaction 

Desire 
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expected performance) before the experimental trials based on the thresholds defined for each 

configuration (i.e., DC:20-35s, PR: 15-25s, and CC: 16-23s). Based on the definition of desire 

(i.e., the level of attributes and benefits that leads to attaining the user’s desired outcomes), q ranges 

between 0 and 1 and is multiplied by expectation. 

Effort, which is one of the dimensions in NASA-TLX and is defined as the level of 

difficulty (mentally and physically) in performing an activity  (Hart and Staveland, 1988), could 

also affect perceived performance. Therefore, the ECT was revised to include the level of effort 

needed to perform the tasks (Figure 8). 

Figure 8. Revised expectation-confirmation theory for this study 

 

Satisfaction was formulated with Equation 19 based on the disconfirmation of beliefs and 

effort. In addition, a constant value (c) was added which refers to the minimum level of 

satisfaction.   

 
𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛𝑖 = (𝐷𝑖𝑠𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑒𝑙𝑖𝑒𝑓𝑖) × (1 −

𝐸𝑓𝑓𝑜𝑟𝑡

100
) + 𝑐 

( 19 ) 
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3.2.6. Cognitive Workload Classification 

Previous software packages and models included cognitive workload as one of the outputs 

of the model. For example, Cogulator uses S-shaped curve fitting (Estes, 2015) based on memory 

chunks and QN-MHP uses a computational approach based on the dimensions of NASA-TLX 

(Jeong and Liu, 2018). HPM-UP can predict cognitive workload using machine learning (ML) 

algorithms. Variables such as pupil size, task performance, number of cognitive/perceptual/motor 

operators, and number of memory chunks can be used as inputs for the ML algorithm. The 

algorithm classifies CW of using prosthetic devices in different classes (e.g., “High” or “Low”) 

To classify CW, ML algorithms can be used with several advantages compared to 

inferential statistics (Park et al., 2022). First, ML algorithms can be used to find relationships 

among features in high dimensional spaces and deal with non-linear factors and uncertainty 

without strict assumptions in inferential statistics (Moustafa et al., 2017). Second, the method 

allows for classification of CW in near real-time (Braarud et al., 2021). With these advantages, 

several ML algorithms have been used to classify CW of operators in various domains such as 

construction or aviation.  

The most frequently used ML methods for classifying CW were support vector classifier 

(SVC) (Meyer, 2017), random forest (RF) (Liaw and Wiener, 2002), and Naïve Bayes (NB) 

algorithms (Majka, 2018). A majority of studies used physiological measurements (e.g., heart rate) 

as input features to classify CW (Meteier et al., 2021; Walambe et al., 2021) and some used task 

performance outcomes (e.g., response time to secondary task) (Ding et al., 2020; Li et al., 2020). 

However, prior studies had several limitations. First, there has not been any investigation on 

classification of CW for prosthetic devices, although high CW is one of the major challenges with 

existing prosthetic devices. Second, although several measures such as physiological responses, 
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task performance, and subjective responses have been used as input features in CW classification 

algorithms, no study used CPM generated outcomes as input features to classify CW. CPM models 

and their outcomes can be generated by observation of different tasks and using knowledge 

elicitation approaches with small sample size and do not require extensive human subject 

experiments, and therefore can be used in early stages of the design cycle (Park and Zahabi, 

2022a). Third, there were limited number studies exploring the effect of a subset of features on the 

ML outcomes. Some studies tested subsets of features, however, they are limited to only 

physiological (Ding et al., 2020) or task performance data (Braarud et al., 2021). Therefore, this 

research aimed to investigate multimodal input features to classify CW in using EMG-based 

prosthetic devices. 

3.2.6.1. Data labeling 

Participants’ NASA-TLX scores and weights for each dimension were collected based on 

the procedure described in Hart and Steveland (1988). The weights were captured before the first 

trial of the experiment by asking the participants to complete the pairwise comparison rating form. 

After each trial, participants completed the workload ratings for each dimension based on what 

they experienced during that trial. Using these weights, the weighted average was calculated for 

each trial to have a single and overall score of NASA-TLX and then the overall scores were 

clustered into different classes. Since this target variable (i.e., the overall NASA-TLX score (0-

100%)) was a continuous variable, there was a need to group the data into different categories 

before classification.  

A clustering analysis was conducted on all participants’ NASA-TLX scores to find the 

optimal number of classes of CW using the NbClust package in R. There are several clustering 

analysis approaches, and each algorithm generates different results based on specific indices or 
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methods (e.g., kmeans). We tested all the combinations of clustering methods and indices and 

found that the most frequent optimal number of classes determined from different methods were 

two, four, and three clusters respectively. Although we could simply select the most frequent 

optimal number of classes (which was having two classes of workload), we decided to include the 

top three selected classes as having more detailed classification (e.g., low, medium, high workload) 

would provide more precise estimate of workload. However, due to the lack of sufficient number 

of data points in some of these classes, only two or three classes of CW were used in the analysis. 

3.2.6.2. Algorithm Selection 

Three algorithms of Random Forest (RF), Support Vector Classifier (SVC), and Naïve 

Bayes (NB) were selected to classify CW since (1) they were used extensively in recent studies 

(Braarud et al., 2021; Kaczorowska et al., 2021; Meteier et al., 2021; Shao et al., 2021; Sharma et 

al., 2021; Walambe et al., 2021), (2) included physiological data (e.g., pupillometry) and task 

performance (e.g., response time on secondary task) measures as their input features, and (3) 

exhibited high prediction accuracy (> 80%) in small datasets (Kaczorowska et al., 2021). 

3.2.6.3. Optimization and Validation 

Given the small dataset (i.e., 90 datapoints for each task = 10 participants per each control 

scheme ✕ 3 control schemes ✕ 3 trials), overfitting was the major concern for establishing the ML 

structure. Therefore, we first split our dataset into training (70% of the data) and testing (30% of 

the data) groups. We randomly partitioned the data from 30 participants into the training and 

testing datasets (i.e., the data points of one participant only appeared either in training or testing 

dataset). Then, 10-fold CV was employed to optimize the hyperparameters (Götze et al., 2020b). 

A hyperparameter grid search method was conducted using the sklearn Python library (Pedregosa 

et al., 2011) and a Pipeline function to streamline testing across three different model types (i.e., 
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RF, SVC, and NB).  RF has a wide range of applications and can have good performance even 

with the default hyperparameters (Donges, 2021). Among the different hyperparameters of RF, the 

three most notable and influential parameters are the number of trees in the model forest, the 

maximum tolerable depth of each tree, and the number of features necessary at each branching 

point (Probst, 2019). Limiting the number and depth of trees reduces overfitting of the data; 

otherwise, though a model may be ideal for the training data if allowed to infinitely grow, out-of-

sample performance would be extremely poor. Considering the number of data points at each 

branching point in the tree is another means of limiting the shunting of model performance towards 

narrow-minded behavior. In preliminary testing, however, the number of features necessary at each 

breaking point continuously output its default value of 2, and thus it was not considered in the final 

grid search.  

SVC employs a spatial approach to delineating class margins and has a reputation for being 

computationally expedient in rudimentary modeling. Many studies with similar dataset challenges 

have employed SVC to classify data efficiently (Braarud et al., 2021; Raihan-Al-Masud and 

Mondal, 2020). In these situations, a linear kernel type was used, specifying which subtype of SVC 

to employ (Meteier et al., 2021). In doing so, the chief remaining hyperparameter was the 

regularization variable (‘c’ in Table 10). This parameter calculates the amount of tolerable error 

the algorithm considers before passing a model as output. Like the tree count for random forest, a 

regularization constant that is too small could massively overfit the data. 

For NB, given our small and unbalanced dataset, a complement NB model was 

implemented (Rennie et al., 2003). Hyperparameter grid searching was performed only for the 

“alpha” parameter (Table 10) as it determines the portion of the largest variance of all features that 

is added to variances for calculating stability (Jain, 2021; Rennie et al., 2003). Controlling the 
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degree of smoothness permitted by the model in delineating different classes allowed a balance to 

be obtained between cross validated performances in the grid search k-folding.  

Table 10. Classifiers and hyperparameters 

Classifier Hyperparameter Definition Range References 

RF n_estimators Number of trees in the 

forest 

[start: 100, end: 1000, 

step size: 100] 

Götze et al. (2020a); Götze et 

al. (2020b) 

max_depth Maximum number of 

layers of decisions 

tolerated 

[1, 13, 1] Mullainathan and Spiess 

(2017); Nadi and Moradi 

(2019) 

min_samples_split Number of samples 

necessary to be present 

in the creation of a 

branching point in the 

tree (default: 2) 

Fixed as default value 

2 

Götze et al. (2020a); Götze et 

al. (2020b) 

SVC c Regularization 

parameter - i.e., how 

much error tolerable in 

producing model 

[0.5, 0.6, 0.7, 0.8, 0.9, 

1, 2, 3, 4, 5, 6, 7, 8, 9, 

10] 

Raihan-Al-Masud and Mondal 

(2020) 

kernel Specifies which kernel 

to use in the program 

Fixed as linear Braarud et al. (2021); Meteier 

et al. (2021) 

Naive-

Bayes 

alpha Additive 

(Laplace/Lidstone) 

smoothing parameter 

20 points from [1, 10] 

spaced evenly in log-

space 

Jain (2021); Rennie et al. 

(2003) 

 

3.2.6.4. Feature Selection 

To make modeling more efficient, feature selection methods were used to eliminate less-

contributory features from the training data set. Each of the selection methods attempted to 

increase testing performance. The K-Best method of selection was employed as the representative 

method of the univariate filter class of selectors (Aggarwal, 2018). For more multivariate methods, 

the recursive feature selection (RFE) and forward feature selection methods were employed 

(Ferreira and Figueiredo, 2012; Raihan-Al-Masud and Mondal, 2020). RFE considers multivariate 

feature contribution as a whole and iteratively eliminates the least contributory features until the 

desired count is obtained (Guyon et al., 2002). Sequential forward selection (SFS) adds features 
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by order of significance until the number of features is obtained. RFE and SFS have demonstrated 

a decent performance in improving model accuracy and efficiency in prior studies (Ferreira and 

Figueiredo, 2012). Each of the three algorithms was employed for each model type and was 

executed and tested for specified feature counts 1 to 13 (i.e., the total number of features in the 

data set). 

3.2.6.5. Model Evaluation 

The test dataset was used for model evaluation. Classification accuracy, area under the 

receiver operating characteristic curve (AUC), precision, recall and F1-score were also calculated 

as measures of model performance (Ding et al., 2020; Skaramagkas et al., 2021). Accuracy is the 

ratio of correctly classified samples. F1-score is the harmonic mean of recall (i.e., probability of 

detecting each class) and precision (i.e., reliability of results in each class). The final F1-score was 

obtained by calculating recall and precision separately for each class and averaging them, weighted 

by the number of samples in each class. We used F1, recall, and precision because they are useful 

metrics for both balanced and imbalanced dataset, while accuracy is usually a good metric for a 

balanced dataset (Jeni et al., 2013). In addition, computation time for grid search was calculated 

(Intel® Core i7-8700 @ 3.20Ghz). We calculated grid search time because grid search was the 

most demanding and the dataset was extremely small. To improve the reliability and 

generalizability of ML results, we ran each of the models with 15 random seeds per suggestion 

from Colas et al. (2019) and calculated the average prediction performance.  

 

3.3. HPM-UP in Action 

3.3.1. Overview 

An overview of HPM-UP graphical user interface (GUI) is illustrated in Figure 9.  
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Figure 9. An example of HPM-UP GUI  
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47 

 

Analysts can start using HPM-UP by either using the “Develop a Scenario” tab or loading 

an already developed scenario (Microsoft CSV format) (Figure 9). Then, input parameters should 

be determined from the “Input parameters” tab. Lastly, the model will assess the usability of the 

prosthetic device based on dimensions including learnability, error rate, memory load, efficiency, 

satisfaction, and classified workload as shown in the “Results” tab. 

 

3.3.2. Scenario Development 

3.3.2.1. Using the “Develop a Scenario” Tab 

If the analysts would like to develop a scenario manually, they can click the “Develop a 

Scenario” tab (Figure 10).  

 

Figure 10. “Develop a Scenario” tab 
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Analysts can choose one of the appropriate operators or memory chunks from the radio 

buttons on the screen. If they would like to unselect radio buttons, they can click on the “Remove 

current selections” button. First, analysts should define a goal for their model (by clicking the 

“Add Goal?” check box). Once the goal is described in the text box “Describe the use of the 

operator,” the analysts can click “Add new line to Code” to add a line of code to the scenario 

(Figure 11). 

 

Figure 11. “Develop a Scenario” tab – Define a goal 
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The analyst can continuously develop the scenario by clicking one of the operators and 

describing the operator in the related textbox (Figure 12).  Whenever analysts click “Add line new 

to Code,” the screen shows the added lines under the “Code” column.  

 

Figure 12. “Develop a Scenario” tab – Add an operator to the scenario 

 

Parallel activities can be added by clicking the “Parallel?” check box when adding a line 

to the scenario (Figure 13).  
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Figure 13. “Develop a Scenario” tab – Defining a parallel activity 

 

The parallel operators will be added to the code with a line starting with “Also:” (Figure 

14). 
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Figure 14. “Develop a Scenario” tab – Added parallel operator 

 

A chunk can be added to the scenario once analysts choose an operator, click one of the 

chunks under the “Chunks” column, describe the operator, and click “Add new line to Code” 

(Figure 15). 
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Figure 15. “Develop a Scenario” tab – Adding a chunk to the code 

 

The added chunk will be displayed with a bracket (< and >) in the code (Figure 16). 
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Figure 16. “Develop a Scenario” tab – Added a chunk to a line 

 

Analysts can also add a custom chunk to the scenario. Without clicking a specific chunk 

under the Chunks column, a new chunk can be added directly when describing an operator (Figure 

17). The added custom chunk will also be shown with brackets in the code column (Figure 18). 
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Figure 17. “Develop a Scenario” tab – Adding a custom chunk 
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Figure 18. “Develop a Scenario” tab – Added custom chunk 

 

If there is a need to add new or customized operators, the analyst can choose “custom” at the 

bottom of each column of perceptual, cognitive, or motor operators (Figure 19). Then, the name 

of operator and duration can be specified. Once this information is added, the operator will be 

added to the scenario if analyst clicks the “Confirm Custom Operator” button.  
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Figure 19. “Develop a Scenario” tab – Custom operator 

 

Once the analyst completes the draft model, they can click “Move to editing” to finalize 

the scenario development. Then, the “Edit a Scenario” tab will be shown on the screen (Figure 20) 

where they can add/delete a specific line of code. 

 

Figure 20. “Edit a Scenario” tab 
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The scenario can also be downloaded in a CSV format (Figure 21). This is useful because 

working or editing directly on a CSV format file might be necessary when the analysts are 

developing more complex scenarios. The CSV format file can also be loaded from the HPM-UP 

main screen. 

 

Figure 21. Downloaded scenario 

 

3.3.2.2. Loading an existing scenario 

HPM-UP can also be run with a developed scenario in a CSV format or downloaded from 

Cogulator. In creating these scenarios, the analyst should follow the grammar in the Cogulator 

software (Figure 22). 
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Figure 22. A sample HPM-UP scenario developed in Cogulator for moving a clothes pin from a horizontal 
bar to a vertical bar using the PR configuration 

 

Once the analyst completes the scenario in a CSV format, that scenario can be loaded from 

the main screen of HPM-UP by clicking the “Browse” button, choosing the scenario file, and 

clicking the “File uploaded?” button (Figure 23). 

 

Figure 23. Loading an existing scenario 
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3.3.3. Input Parameters 

To calculate the usability dimensions, user input is required (Figure 24). First, the output 

control mode (physical or virtual prosthetic device), tasks (e.g., CRT or SHAP), and control 

scheme (DC, PR, or CC) should be selected. The minimum and maximum training time duration 

should be specified based on analysts’ previous knowledge or pilot test results. Device calibration 

quality (0-1), first impression (a number between -1 and 1), and effort (0-1) should be determined 

based on the end users’ interaction with the device. 

Two questions are related to end users’ perception of physical and mental workload when 

using the device (e.g., after conducting some pilot tests with the prosthetic device). They can also 

answer these questions based on the provided information, photos, or videos of the prostheses 

without the actual usage. 
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Figure 24. Input parameters  

 

To classify cognitive workload, the variables mentioned in section 3.2.6.1 (Data labeling) 

should be added as input measures including: PCPS, blink rate, task performance, number of 

cognitive/perceptual/motor operators, memory load, and number of training trials (Figure 24). 

Experimental data (i.e., PCPS, blink rate, task performance, and time to accomplish one cycle) can 

be gathered from pilot tests. CPM outcomes (i.e., number of cognitive/perceptual/motor operators, 
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memory load) can be generated once the analysts develop a scenario from the scenario 

development tab or load a developed scenario (CSV format file). 

 

3.3.4. Model Output 

3.3.4.1. Six usability dimensions 

Once all the input parameters are added, analysts can see the outcomes in terms of the six 

usability dimensions (Figure 25). 

 

 

Figure 25. Results – Six usability dimensions 

 

A literature review was conducted to provide a rule of thumb to interpret the outcomes of 

HPM-UP (Table 11). However, it is important to note that the outcomes depend on several factors 
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such as individuals’ physical condition, the amount of time they spend using the prosthesis per 

day, and the complexity of the tasks they are performing with it. For example, if the users pass the 

training criteria in 3-5 training trials, the device has acceptable learnability (Park et al., 2020). The 

error rate refers to the percentage of times the device fails to perform a task correctly. A previous 

study with the PR configuration found that the error rate reduced from 12.85% to 11.55% after 

using the device in a home trial (Mohebbian et al., 2021). The threshold of memory load was 

defined as 3 to 5 chunks of information (Cowan, 2010). For the efficiency dimension, prior studies 

recommended to have at least 80% of experts’ performance (without errors) (Park et al., 2022; 

White et al., 2017). The minimum satisfaction scores were defined based on clinicians’ evaluation 

of different prosthetic device types (Rekant et al., 2022) as shown in Table 11. Lastly, the desired 

CW was set to “low” as CW is one of the challenges with using prosthetic devices. 

Table 11. Thresholds to interpret the findings 

Dimension Threshold Reference 

Learnability ≤ 3-5 training trials  Park et al. (2020) 

Error Rate < 15% Mohebbian et al. (2021) 

Memorability 3-5 chunks of information Cowan (2010) 

Efficiency ~ 80% of the experts’ 

performance 

Park et al. (2022); White et al. 

(2017) 

 

Satisfaction Body powered device: > 45% 

Myoelectric device: > 50% 

Cosmetic device: > 50% 

Rekant et al. (2022) 

Cognitive workload Low Geurts et al. (1991); Heller et al. 

(2000) ; Hofstad et al. (2009);  

 

3.4. Benchmark Model Development 

A benchmark model was developed using the CPM-GOMS method and ACT-R (working 

memory module) in Cogulator software (Estes, 2017) to be compared with HPM-UP and human-

subject experiment outcomes.  
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4. MODEL VALIDATION WITH EXPERIMENT 1: HUMAN SUBJECT EXPERIMENT 

WITH A PHYSICAL PROSTHESIS** 

 

4.1. Objective 

The objective of this experiment was to collect human-subject data with a physical 

prosthetic device for performing ADLs and use these data as a basis for the validation of the HPM-

UP.  

 

4.2. Participants 

Thirty (Males=18, Females=12) able-bodied participants were recruited for this experiment 

(Age: M=22.4 yrs.; SD=2.4 yrs.) from North Carolina State University. All participants had 20/20 

or corrected vision with no prior experience using a prosthetic arm or a myoelectric exoskeleton 

for upper limbs. The study protocol was approved by Texas A&M institutional review board (IRB) 

(IRB2021-0665). 

Based on our prior literature review (Park and Zahabi, 2022a), it was found that about 60% 

of prior studies were conducted with able-bodied participants using bypass devices. 

Approximately 12% of the studies included both able-bodied and amputee participants. About 

28% of the studies were conducted with amputees. For those studies with able-bodied participants, 

bypass devices were developed using various input signals such as EMG, IMU, FMG, and motion 

tracking. In addition, bypass devices were used to study the effects of feedback modality and 

training schedule on cognitive workload. Therefore, bypass devices with able-bodied participants 

 

** Part of this chapter is reprinted with permission from J. Park et al., "Cognitive Workload Classification of Upper-limb Prosthetic Devices," 2022 
IEEE 3rd International Conference on Human-Machine Systems (ICHMS), Orlando, FL, USA, 2022, pp. 1-6, doi: 

10.1109/ICHMS56717.2022.9980676. Copyright 2023 by IEEE. 
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were included in this study as they are devices that allow an able-bodied user to activate a terminal 

device with similar controls that an amputee would use to operate a custom-made prosthesis 

(Bloomer et al., 2020). Furthermore, based on our literature review and previous studies on 

prosthetic devices, recruiting amputee participants for human subject experiments is challenging, 

and therefore, several studies used able-bodied participants to assess prosthetic devices' usability 

and cognitive workload (White et al., 2017; Zhang et al., 2016b). 

A priori power calculations were conducted using G*Power 3.1 to determine the sample 

size (Buchner et al., 2017; Faul et al., 2009; Serdar et al., 2021) for repeated measures ANOVA 

statistical test, with α=.05, power (1−β) of .8, effect size of .25, and correlation among repetitive 

measures of .5. The effect size was determined based on prior studies assessing the usability of 

upper limb prosthetic devices (White et al., 2017). In addition, the sample size was larger than the 

average number of participants used in prior studies assessing cognitive workload of prosthetic 

devices with able-bodied subjects (i.e., M=13.46, SD=6.49) (Park and Zahabi, 2022a).  

 

4.3. Apparatus  

4.3.1. Prosthetic Device 

The experiment used the North Carolina State University Neuromuscular Rehabilitation 

Engineering Laboratory Lab prosthetic devices (i.e., Utah Motion Control Standard Electric 

Terminal Device) as shown in Figure 26. The open/close and pronation/supination motions could 

be controlled via wrist flexion and extension in the DC mode. To switch between the modes (e.g., 

open/close to pronation/supination), the user must co-contract their muscles, i.e., make a fist. Thus, 

two EMG signal inputs are required for this mode, including one on a wrist extensor muscle and 

the other on a wrist flexor muscle.  
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In the PR mode, the open/close and pronation/supination motions are controlled via their 

natural hand motions (e.g., prosthesis pronation is achieved by pronation of the intact hand for 

able-bodied subjects or imagined pronation of the missing hand for amputees). Four EMG signal 

inputs are typically used for this mode. Electrodes’ locations were selected via palpation of the 

forearm during hand open/close and wrist pronation/supination.  

The CC mode was generally similar to the PR configuration. The major difference was that 

the PR is a classifier that can only predict one gesture at a time (i.e., hand open, hand close, wrist 

pronate, wrist supinate, no movement), however, the CC can continuously predict velocities for 

both degrees of freedom, which means that a participant can control both the hand and wrist at the 

same time. The CC configuration uses a neural network algorithm that constantly and 

simultaneously predicts joint angles for open/close and pronation/supination. The number of 

hidden layers and number of neurons used in each hidden layer of the neural networks was 

increased during the setup by using feedback from participants until they reported good and 

consistent performance. Velocity was estimated at each time stamp (every 100ms) by taking the 

difference between the current and last predicted angles and dividing by the update period (100ms). 

The voltage to the motors was set proportional to the estimated velocity. 

 

Figure 26. The prosthetic device used for the human subject experiment (Reprinted from Park et al., 
(2022). © 2023 IEEE) 
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4.3.2. EMG Sensors 

To capture the EMG signals, Motion Lab Systems MA300 Desktop Unit was used. Four-

channel surface EMG signals were acquired from four extrinsic hand- and wrist-related muscles, 

including extensor carpi radialis longus (ECRL), extensor digitorum (ED), flexor carpi radialis 

(FCR), and flexor digitorum (FD), as shown in Figure 27.  

 

 

Figure 27. EMG sensor placement 

 

Surface EMG was used to capture input signals for each control scheme. EMG signals were 

measured using gelled bipolar electrodes. Selected EMG recording sites were cleaned with alcohol 

wipes before electrode placement. A ground electrode was placed over the subject’s right collar 

bone. The analog EMG signals were sampled at 1,000 Hz. 

For the DC scheme, two EMG electrodes were placed over the belly of the extensor and 

flexor digitorum muscles based on palpation and the anatomical locations, respectively. Electrode 

placement was checked to capture clear EMG signals with sufficient signal-to-noise ratios and that 

Extensor carpi 
radialis longus 
(ECRL) Extensor digitorum 

(ED) 

Flexor digitorum 
(FD) 

Flexor carpi 
radialis (FCR) 



 

67 

 

individual muscle activations could be identified by various recording channels. Signals were 

filtered with a 20–450 Hz bandpass filter. The signal magnitude was estimated by calculating the 

mean absolute value (MAV) of 50ms samples of EMG data. If the magnitude of one muscle was 

more prominent than a predefined threshold value, a corresponding prosthetic motor was activated; 

the speed of the motor was proportional to the magnitude of the EMG signal. If the magnitudes of 

both EMG signals were above threshold values, the prosthesis control mode (either wrist rotator 

or hand) was switched. Hence, the prosthesis user controlled two directions of movement with one 

DOF (e.g., wrist pronate and supinate) using finger extension and flexion, whereas forearm muscle 

co-contraction (power grip/making a fist) was used to switch between DOFs. 

For the EMG PR control scheme, the targeted muscles included the flexor carpi ulnaris, 

flexor carpi radialis, extensor carpi ulnaris, extensor carpi radialis, extensor pollicis longus, and 

palmaris longus. The EMG PR algorithm was insensitive to EMG crosstalk, therefore, targeting 

the exact muscles’ EMG recording was unnecessary. Instead, selected EMG electrode sites were 

accepted if EMG patterns during hand open, hand close, supination, and pronation were visually 

distinguishable from one another. The input EMG signals were filtered first and then segmented 

by overlapped sliding windows. In each window, the EMG signals extracted four time-domain 

features (MAV, number of zero crossings, waveform length, and number of slope sign changes) 

from each input channel. 

All features were connected as vectors and then fed into a linear discriminant analysis 

(LDA) classifier. The classifier determined a user’s intended movement. There were four active 

classes of movement (hand open, hand close, wrist pronation, and wrist supination) and one static 

class (no movement). The LDA classification decision was passed to a prosthesis motor selector, 

which activated the motor according to the intended movement, and set the speed of the motor 
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proportional to the magnitude of EMG signals. In addition, a sensor fault-tolerant mechanism was 

included to ensure system robustness against disturbances at the sensor level. Movement decisions 

were made every 50ms on features extracted from 150ms of the EMG data using the PR control 

strategy. The users controlled the DOF of the prosthesis using intuitive muscle contractions. Note 

that the LDA methodology and TD features were selected based on previous research (Butt et al., 

2018). They indicated comparable EMG pattern classification accuracy, as compared to other 

classifiers and EMG features. In addition, the LDA method is simple to compute and requires less 

computational power for real-time implementation. Hand gestures and hook movements for each 

control scheme is summarized in Table 12. 

 

Table 12. Hand gestures and its hook movement 
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4.3.3. Eye Tracker 

A pupil-core eye-tracking system was used to capture pupillometry measures as a basis for 

inferring the CW of participants while using prosthetic devices and performing ADLs (Figure 28). 

The Pupil-core system consisted of two cameras and an infrared light-emitting pod. When reflected 

on the eyes, the light emitted from the pod is captured by the cameras and the pupil's outline. Eye 

movements were captured at a frequency of 120 Hz for each pupil with a gaze accuracy of 0.6°.  

 

Figure 28. Eye-tracking glasses  

 

4.4. Task 

Previous studies on usability evaluation of prosthetic devices used a variety of testbeds, 

such as Box & Block (B&B), Clothespin Relocation Task (CRT), Jebsen Hand Function Test 

(JHFT), and Southampton Hand Assessment Procedure (SHAP). In this experiment, the CRT and 

SHAP tasks were selected based on their coverage of various upper-limb movements (Park et al., 

2020), such as (a) Shoulder abduction-adduction; (b) Shoulder flexion-extension; (c) Shoulder 

internal-external rotation; (d) Flexion-extension of the elbow; (e) Pronation-supination of the 

forearm; (f) Flexion-Extension of the wrist; and (g) Radial-Ulnar deviation.  
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4.4.1. Clothespin Relocation Task 

CRT is a commonly applied ADL for assessing upper limb prostheses (Stubblefield et al., 

2005; Zahabi et al., 2019b). It requires participants to move as many pins as possible from one bar 

to another within 2 minutes. The experiment included three trials. Between each trial, there was a 

2-minute rest. The CRT workstation (Figure 29) was mounted on a table and was adjusted to a 

comfortable height for the participant. 

 

Figure 29. The clothespin relocation task (Reprinted from Park et al., (2022). © 2023 IEEE) 

 

4.4.2. Southampton Hand Assessment Procedure – Door Handle 

The SHAP task required participants to rotate the door handle using a power grip until it 

was fully open, then release the handle as quickly as possible. The participants were asked to do 

this task five times as quickly as possible. Similar to the CRT, the experiment included three trials. 

Between each trial, there was a 2-minute rest (Figure 30). 

For the SHAP door handle task, the participant’s elbows should be at a 90° angle. The 

SHAP form-board was placed in front of the participant with the blue side facing upward, 

approximately 8cm from the front edge of the table. The door handle task was demonstrated to the 
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participant using slow, precise movements, ensuring that the participant is aware of the proper grip 

for completing the task. The demonstration was carried out using the corresponding hand under 

assessment to avoid any confusion for the participant. 

 

Figure 30. The SHAP door handle task 

 

4.5. Experiment Design 

The experiment followed a between-subject design in which each participant was randomly 

assigned to one of three types of prosthesis (i.e., DC, PR, or CC). This approach was selected to 

reduce learning effects that might occur for participants as a result of working with different 

prostheses across multiple test trials. It is recommended to use a between-subjects design to avoid 

“demand effects” in behavioral studies (Zahabi, 2017). Participants can develop a sense of an 

experimenter’s intention during the progress of the experiment as a result of being exposed to all 

manipulations and may adapt their behavior accordingly (Rosenthal, 1976). In addition, between-

subject designs are more conservative than within-subject designs in terms of potential subject-

condition bias (Charness et al., 2012). Another motivation for using a between-subject design is 

that this design is more appropriate for long experiments in that it only provides one manipulation 
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to a participant. In the present study, if participants were exposed to all three control schemes, the 

duration of the experiment would exceed 5 or 6 hours, which could increase the potential for 

fatigue. Upon being assigned to a specific type of prosthesis, all participants experienced two tasks 

(i.e., CRT and SHAP door handle tasks), including three trials for each task. 

 

4.6. Independent Variables 

The only independent variable in this study was the device configuration with three levels 

including (1) DC, (2) PR, and (3) CC.  

 

4.7. Dependent Variables 

The dependent variables can be categorized into four types: task performance, eye-tracking 

measures, usability measures, and perceived workload ratings. Task performance measures 

included the number of pins moved within 2 minutes for the CRT and time to rotate the door handle 

five times sequentially for the SHAP task.  

 Eye-tracking measures included the percent change in pupil size (PCPS) and blink rate. 

PCPS has been used in previous studies to assess the effect of device configurations on cognitive 

workload (Zhang et al., 2016b). It was found that the PCPS has a higher value in mentally complex 

tasks than in more manageable tasks (Palinko et al., 2010). Blink rate has also been frequently 

used as an indicator of cognitive workload (Cardona and Quevedo, 2014; Fogarty and Stern, 1989; 

Martins and Carvalho, 2015). Blink rate is defined as the number of eye closures in a given period 

(White et al., 2017). Blink rate can be used to measure cognitive workload (Sirevaag et al., 1993; 

Van Orden et al., 2001), however, some studies found it to be more sensitive to assess visual 



 

73 

 

workload (Brookings et al., 1996). Eye blinks and blink duration decrease as visual workload 

increases (De Waard and Brookhuis, 1996).  

Usability was measured using two questionnaires, including (1) QUEST 2.0 (Appendix A) 

(Demers et al., 2002), which assesses a person’s positive or negative evaluation of those distinct 

dimensions of the assistive device that are influenced by one's expectations, perceptions, attitudes, 

and personal values, and (2) USE (Appendix B) (Lund, 2001) which measures the subjective 

usability of a product or service, thus, it can be applied not only for prosthetic devices but also 

other domains. Participants were asked to rate the usability of the device after the last trial.  

NASA-TLX (Appendix C) was used to measure subjective workload, as this measure has 

been used extensively in prior studies in the prosthesis device context (Connan et al., 2016; Deeny 

et al., 2014a; Markovic et al., 2018). Participants were asked to rate their perceived workload using 

the NASA-TLX questionnaire after each trial.  

 

4.8. Procedure 

 Both the University of North Carolina and Texas A&M Institutional Review Boards 

approved the experiment protocol, and all participants signed informed consent before any 

experimental procedure. The experiment took place in a laboratory without windows to limit the 

effect of illuminance on pupillometry data. The illuminance level was relatively consistent over 

time with photometer readings of 170–200 lx in the area where participants experimented.  The 

experimental setup included the prosthesis device, CRT workstation, SHAP workstation, and the 

eye-tracking system (Pupil-core, Germany).  

At first, participants signed the informed consent form, an informed consent form 

addendum for research during the COVID-19 pandemic, and a demographic questionnaire. After 



 

74 

 

the participants signed all documents, they were asked to complete the Edinburgh Handedness 

Test (Oldfield, 1971) and the Purdue Pegboard Test (PPT) (Tiffin and Asher, 1948; White et al., 

2017). The PPT was conducted three times to determine if they fell within the range of “normal” 

manipulative dexterity. Participants were recruited for the experiment if they received a right-hand 

dominance score of 0.7 or greater based on the Edinburgh Handedness Test, and their PPT score 

was no more than one standard deviation below the normal mean dexterity for their age and gender 

group (Tiffin and Asher, 1948) (Figure 31). 

 

Figure 31. A participant is on dexterity test with Purdue Pegboard Test kit 

 

Participants donned the prosthetic adapter during the experiment, and EMG electrodes 

were placed on their skin based on the assigned control mode. A verbal description of the 

prosthesis DOF and control strategy was provided. For participants assigned to the DC group, the 

prosthesis was activated during the EMG threshold configuration procedure. Participants were 

allowed to practice controlling the device until they reported comfort with the DC control. 

Participants then advanced to the formal training period. Participants assigned to the PR group 

were instructed to perform specific arm motions and to observe a feedback display (hand open, 
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hand closed, wrist pronated, wrist supinated, and relaxed hand and wrist). In total, 5 s of rest were 

allowed between each posture. Two sets of data were acquired, with the subject maintaining 

different arm positions in the sagittal plane. In total, 5 s of rest were enforced between sets of data 

collection. Participants assigned to the CC group were asked to perform 10s trials three times for 

each movement type - isolated hand open/close, isolated wrist pronation/supination, and 

simultaneous movements - at a 0.25Hz tempo set on a metronome, resulting in 9 total trials. Angles 

of the metacarpophalangeal joints and the wrist's rotation angle were recorded using a Leap Motion 

Controller placed approximately 4” below the subject’s hand at 120Hz simultaneously with EMG 

data. The MAV of the EMG was calculated with a 200ms sliding window adjusted in 10ms 

increments, and the joint angle data were down-sampled to 100Hz to match the EMG data. The 

processed EMG and motion data were used to train two neural networks for the 2 DOF. Gains for 

the controller's output and thresholds to reduce small unintentional movements from the user were 

adjusted using feedback from them. After the classifier was trained, users were allowed to practice 

controlling the device until they reported comfort with the control.  

Participants received training for their assigned control mode. The task-specific training 

assessed participant mastery of device handling and the respective control mode while completing 

the CRT. The training session required participants to use the prosthesis to move three clothespins 

from a horizontal bar at the base of the workstation to a vertical bar extending upward on the 

clothespin apparatus. They began with the movement of the rightmost clothespin and, as quickly 

as possible, completed all pins. An experimenter recorded the time to move the three consecutive 

clothespins. If a participant dropped a clothespin, they were required to restart the trial. A training 

criterion was established based on pilot test data generated from learning curve analysis, including 

when participants achieved asymptotic performance with the device and at what level (task time). 
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If the average task completion time of three sequential trials was within 15–25s for the PR, 20–

35s for the DC, and 16-23s for the CC mode, the participant passed the training and proceeded to 

the actual experimental trials. Upon completion of the training trials, the eye-tracking system was 

calibrated for the participants, and they could begin the experiment trials after having 5 minutes of 

rest. During the training and actual trials, participants were standing in front of the task 

workstation. 

Participants were provided instructions on how to complete the two tasks for experiment 

trials. For CRT trials, the instruction included moving as many clothespins as possible from the 

horizontal rod to the vertical rod and back within 2 minutes. The number of successfully relocated 

clothespins was recorded at the end of each trial. For SHAP – Door Handle, participants were 

instructed to rotate the handle five times as fast as possible. The participant’s eyes were tracked 

throughout each trial. All participants completed a total of three trials for each task and were 

provided with a 2-min rest period after each trial. After each actual trial, participants filled out the 

NASA-TLX questionnaire. After all trials, they also filled out the QUEST 2.0 and USE forms. 

 

4.9. Hypotheses 

The following hypotheses (H) were formulated for this study. Since both human subject 

data and benchmark model do not generate all usability dimensions, hypotheses were generated to 

enable comparisons between the HPM-UP and either human data or the benchmark model. 

• Learnability: The results of HPM-UP learnability dimension would be similar to the human-

subject data (H1) 
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• Error rate: Use of the CC configuration would lead to the lowest error rate followed by the 

PR and DC configurations (i.e., CC < PR < DC) (H2) (White et al., 2017; Zahabi et al., 

2019b; Zhang et al., 2016b) 

• Memorability: The results of HPM-UP memorability dimension would be similar to the 

benchmark model (H3) 

• Efficiency: The results of HPM-UP efficiency dimension would be similar to the human 

subject data (H4-1) but would be significantly different from the benchmark model results 

(H4-2). 

• Satisfaction: The results of HPM-UP satisfaction dimension would be similar to the human-

subject data (H5) 

 

4.10. Data Analysis 

Due to the limited number of data points for each device configuration, nonparametric 

analysis was conducted to assess the differences in usability dimensions among the human subject 

data, HPM-UP, and benchmark model. For the comparison between two sets of data, Wilcoxon 

rank sum test was conducted (Wilcoxon, 1992). The Wilcoxon test statistic “W” was used to 

determine the significance of the difference. Kruskal-Wallis rank sum test was conducted if there 

were more than two groups of data (Kruskal and Wallis, 1952). “H” statistic was used to determine 

the significance of the difference of the median of each group. “H” statistics was compared with a 

critical cutoff point determined by the chi-square distribution (chi-square is used because it is a 

good approximation of H, especially if each group’s sample size is bigger than 5).  For the post-

hoc analysis, Dunn’s Kruskal-Wallis multiple comparison was used (Dunn, 1964). All the 

statistical analysis was conducted using R 4.0.5. Effect size for Wilcoxon signed-rank test was 
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calculated with 𝑟 =
𝑍

√𝑛
, where Z-score is a test statistic and standardized score of U-value 

calculated from Mann-Whitney U-test (Tomczak and Tomczak, 2014) and n is the total number of 

observations. The effect size of Kruskal-Wallis test was calculated using Eta-squared (Rosenthal, 

1986).  

 

4.11. Results 

4.11.1. Hypothesis Test Results  

Table 13 illustrates the descriptive statistics results regarding the comparison among the 

human subject data, the HPM-UP modeling approach, and the benchmark model. The benchmark 

model does not provide learnability, error rate, satisfaction, and CW, and therefore, these cells are 

marked with “N/A” in Table 13. However, HPM-UP was able to generate all six dimensions.  

Table 13. Descriptive statistics from Experiment 1 (mean (sd)) 

Factors (definition) Human subject data HPM-UP Benchmark model 

DC PR CC DC PR CC DC PR CC 
Learnability  7.8 

(3.46) 

5.50 

(1.50) 

9.80 

(4.40) 

8.20 

(6.54) 

7.00 

(3.87) 

10.00 

(5.00) 

N/A 

Error rate N/A 36.43 

(3.36) 

25.8 

(3.55) 

28.14 

(8.76) 

N/A 

Memorability N/A 4.79 

(0.04) 

0 0 4.80 

(0.00) 

0 0 

Efficiency  CRT  17.91 

(6.76) 

12.90 

(5.77) 

13.40 

(2.30) 

19.03 

(2.48) 

11.19 

(3.91) 

14.19 

(5.62) 

13.3 

(0.00) 

6.9 

(0.00) 

6.9 

(0.00) 

SHAP  11.03 

(2.31) 

11.26 

(4.95) 

18.91 

(7.10) 

11.96 

(0.70) 

12.22 

(1.42) 

13.18 

(1.71) 

8.2 

(0.00) 

8.6 

(0.00) 

8.6 

(0.00) 

Satisfaction (0-1) 0.75 

(0.12) 

0.64 

(0.23) 

0.65 

(0.18) 

0.61 

(0.06) 

0.61 

(0.11) 

0.56 

(0.16) 

N/A 

Accuracy of Cognitive 

Workload Classification 

(%) 

N/A 88.89 66.67 77.78 N/A 

 

A summary of hypothesis test results is shown in Table 14. All the hypotheses were 

supported except for H2. For the learnability dimension (H1), there was no significant difference 

between the human subject data and HPM-UP generated data based on the Wilcoxon Signed-

Ranks Sum test (W = 436.5, p > .05). On average, all configurations required 7 to 10 training trials 
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to pass the device training criteria. The benchmark model does not have this functionality and 

therefore, was marked as “Not Applicable (N/A)”.  

Table 14. Summary hypothesis test results (Experiment 1) 

Hypothesis 

ID 

Hypothesis Test Result Test statistics, p-value, 

effect size 

H1 

(Learnability) 

The results of HPM-UP learnability 

dimension would be similar to the human-

subject data. 

Supported W = 436.5, p = .85, r = .03 

H2 

(Error rate) 

Use of the CC configuration would lead to 

the lowest error rate followed by the PR 

and DC configurations. 

Refuted 

(DC=PR=CC) 
H(2) = 1.57, p = .47, 𝜂2 = .06 

H3 

(Memorability) 

The results of HPM-UP memorability 

dimension would be similar to the 

benchmark model 

Supported W = 65, p = .23, r = .28 

H4 

(Efficiency) 

(H4-1) The results of HPM-UP efficiency 

dimension would be similar to the human 

subject data 

Supported Z = 0.26, p = .79, r = .03 

(H4-2) There would be a significant 

difference between the HPM-UP efficiency 

dimension results and the benchmark 

model results 

Supported Z = -4.54, p < .001, r = .64 

H5 

(Satisfaction) 

The results of HPM-UP satisfaction 

dimension would be similar to the human-

subject data 

Supported W=413, p = .59, r = .07 

 

H2 was refuted as there was no significant difference among configurations in terms of 

error rate (H(2) = 1.57, p > .05). According to the computational logic of error rate in HPM-UP, 

the error rate depends on learnability. There was no significant difference in learnability among 

different configurations from the human subject data, which led to not having any significant 

difference in error rate as well. This trend was also found from the HPM-UP outcomes (H(2) = 

1.57, p > .05). The benchmark model does not provide error rate and therefore, was not included 

in this comparison. 

There was no significant difference in memorability between the HPM-UP and the 

benchmark model (H3) (W = 65, p > .05). In the DC configuration, participants needed to 

memorize and recall two mode changes (supination/pronation or open/close) and three gestures 

(open, close, rotation). Using the PR and CC configurations did not involve memory chunks as 
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these configurations were intuitive. This information could not be captured from the human subject 

data or video analysis, and therefore, was not included in the comparison. 

For efficiency, both hypotheses (i.e., H4-1 and H4-2) were supported. Based on Dunn’s 

Kruskal-Wallis multiple comparison, there was no significant difference between the human 

subject data and HPM-UP efficiency outcomes (H4-1) (Z = 0.26, p > .05). However, there was a 

significant difference between HPM-UP and the benchmark model (H4-2) (Z = -4.54, p < .001). 

There was also no significant difference in satisfaction between the human subject data (USE 

questionnaire – Satisfaction dimension) and HPM-UP (W=41, p > .05).  

 

4.11.2. Cognitive Workload Classification  

The outcomes of each classifier with different targets and tasks are presented in Table 15. 

The best model was NB with two classes and it resulted in 76% of classification accuracy for the 

CRT (model No. 3 in Table 15), considering all metrics including AUC, precision, recall, and F1 

score (Grandini et al., 2020; Sokolova and Lapalme, 2009). In addition, RF models with two 

classes showed 70% classification accuracy in CRT (model No. 1) and SHAP (model No 4) tasks. 

The selected features in the best performance models included pupillometry data, training and task 

performance measures, some CPM generated outcomes such as the number of memory chunks, 

and device configuration.  

To improve the reliability and generalizability of ML results, each model was run with 15 

random seeds per suggestion from Colas et al. (2019) and the average prediction performance was 

calculated. In 12 out of 15 NB runs, the model showed significantly higher classification accuracy 

than random guessing (0.56) (McDonald et al., 2019).  
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Regarding the target variable, in general, classifying the NASA-TLX scores into smaller 

number of classes led to better algorithm performance than having larger number of classes under 

the clustering algorithms (i.e., algorithms in NbClust package).  

Table 15. Summary of classification results by taking different classes as targets 

Task  No. Classifier Target Accuracy  AUC Precision  Recall  F1-Score  

CRT 

1 RF Two classes  0.70 0.61 0.66 0.66 0.64 

2 SVC Two classes 0.55 0.48 0.49 0.55 0.46 

3 NB Two classes  0.76 0.67 0.67 0.70 0.67 

SHAP 

4 
RF 

Two classes  0.70 0.74 0.70 0.71 0.68 

5 Three classes 0.53 0.44 0.29 0.39 0.31 

6 
SVC 

Two classes 0.60 0.45 0.54 0.58 0.51 

7 Three classes 0.55 0.49 0.32 0.41 0.33 

8 
NB 

Two classes 0.62 0.61 0.56 0.60 0.54 

9 Three classes 0.48 0.55 0.43 0.44 0.40 

 

The grid search time for every combination of classifiers, targets, and feature selectors 

suggested that the SVC and NB algorithms outperformed the RF in terms of computational cost 

(Table 16). Both SVC and NB performed within a few seconds. Among the three features selectors, 

SFS exhibited significantly longer computational time as compared to other two selectors. 

Overall, the NB algorithm with two classes was selected as the best model (model No. 3 in 

Table 15). However, if the training time is not restricted, RF with two classes can also be a good 

model (models No. 1 and 4 in Table 15). 
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Table 16. Grid search time (seconds) 

Classifier Class 
Feature selector 

RFE K-Best SFS 

RF 
Two 4,092.6 1,282.2 21767.4 

Three 5,107.2 2,023.2 13,851.6 

SVC 
Two 25.2 22.8 747.6 

Three 33.6 35.4 428.4 

NB 
Two 23.4 26.4 582 

Three 20.4 19.8 303.6 

 

4.12. Discussion 

Overall, the hypothesis test results revealed that the HPM-UP generated outcomes were 

similar to the human subject data. This implies that the logic behind HPM-UP worked properly to 

estimate each usability dimension. However, the findings of the benchmark model were 

significantly different from the HPM-UP model and human subject data. The focus of the 

benchmark model was for modeling expert behavior without any errors. Unlike the benchmark 

model, HPM-UP showed closer results to the human data, especially for the TCT, as HPM-UP 

incorporated error rates based on the learnability dimension. 

In the HPM-UP, learnability was used as an input for calculating other usability 

dimensions. This concept was based on the halo effect (Clifford and Walster, 1973; Thorndike, 

1920). Including the SDCQ and FI in the equation was appropriate because the training criteria 

could not capture the individual differences. This means that although all the participants could 

pass the training sessions, they were not on the same level of the expertise in terms of controlling 

the prosthesis. Therefore, the SDCQ and FI factors were used to capture these individual 

differences. Furthermore, incorporating the physical and mental workload into the learning curve 

slope was effective to customize the model.  
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In general, the CC control scheme was similar to the PR configuration, in terms of error 

rate and efficiency. Although the capability of CC to drive multiple DOFs simultaneously was 

expected to allow participants to adopt more natural motion strategies to efficiently complete tasks, 

participants had a hard time to control the device. This was because sometimes the hook was 

rotating even though the participants had a neutral gesture and therefore, it was difficult for them 

to recover from errors. The other reason might be that the ADL tasks were too simple and therefore, 

could not show the differences between these configurations. Although the CC mode allowed 

simultaneous joint operations and natural arm motion in control, since the number of controllable 

joints in our study was limited to two and the task duration was short, the perceptual, cognitive, 

and motor demand in operating CC and PR control could be similar. There might be differences 

between the PR and CC configurations if the tasks become more complicated.  

Not surprisingly, the overall performance of the CRT between PR and CC was similar. 

This is because the gestures to control the hook was the same in both configurations. In the SHAP 

task, however, the PR configuration exhibited better performance than the CC mode. In CRT, to 

pick up or release a pin, participants could either pronate or supinate. However, the SHAP task 

demanded participants to rotate the hook only in one direction in order to grab the door handle. 

Therefore, participants needed to spend more time adjusting the hook using the CC configuration 

than the PR.  

4.12.1. Classification Performance 

The findings suggested that CW of using prosthetic devices can be classified with 

reasonable accuracy and low computational cost. This study is the first investigation that included 

CPM outcomes as input features in ML algorithms. Some CPM outcomes (i.e., number of 

cognitive operators) and task performance features were included in the best models. This can 
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suggest the possibility of predicting CW of prosthetic devices without conducting human-subject 

experiments because task performance can also be modeled from the CPM outcomes. Some CPM 

outcomes such as the number of perceptual operators were not selected in the best models. This 

might be because the perceptual operators only appeared in the DC control scheme. In PR and CC 

configurations, there was no perceptual operators in the outcome of cognitive models because all 

perceptual operators were in parallel with cognitive or motor operators. However, if the task is 

more complex or with other prosthetic device configurations, more CPM outcomes might be 

included as important features in the algorithm.  

There are several advantages of using CPM over human-subject experiments. For example, 

the analyst can conduct CPM in the early design process. It is a faster and safer approach than the 

experimental approach as it can minimizes human participant’s involvement. It can also quantify 

and predict human behavior in natural tasks with simple tools such as Cogulator (Estes, 2017) or 

CogTool (John and Suzuki, 2009) based on human information processing theory. Lastly, CPM 

can also generate task performance related features without the need of conducting human-subject 

experiment and by using the results of task analysis and operator times from the literature (Estes, 

2017).   

This study suggested that multiple metrics should be considered to evaluate the ML 

algorithms and find the best model(s). For example, although the accuracy of some models was 

above 70% (e.g., model No. 1 in Table 15), their AUC was relatively low (e.g., 0.65). Precision 

and recall were also helpful to test the robustness of ML algorithms and to avoid “accuracy 

paradox” (due to unbalanced classes) (Afonja, 2017; Valverde-Albacete et al., 2013). For example, 

model 24 exhibited reasonable accuracy (0.67) among other algorithms for the SHAP task. 

However, its recall percentage was low (around 0.5), which implies that those models are not 
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useful for classifying CW when the target variable is not well-balanced. Considering only 

precision or recall scores individually is also not sufficient for evaluating ML algorithms. For 

example, we can have a recall score of 100% even though the accuracy of the model is low. In this 

case, precision will be close to 0. Thus, F1-score should be used to reflect the imbalance between 

precision and recall because it is a harmonic average between these two measures.  

The results also revealed that task performance measures were more promising in 

predicting CW as compared to other features that were collected from the experiment. This finding 

is in line with the results of prior studies that found primary task measures as a key indicator of 

CW for prosthetic devices. Wood and Parr (2022) recently developed a questionnaire for 

measuring CW of prostheses as an extension of NASA-TLX, which is called prosthesis task load 

index (PROS-TLX). While validating their questionnaire, the authors used task performance as an 

indicator of CW as there was a high correlation between the task performance and the evaluated 

scores on PROS-TLX. Deeny et al. (2014a) also found high positive correlation under the 

complicated task condition between the task performance and the self-report workload score. Task 

performance measures have advantages in that they evaluate participants’ performance on the task 

of interest directly. However, these measures often lack scientific rigor, making interpretation of 

the results difficult as unknown or uncontrolled factors may affect results rather than the intended 

manipulations in the study (Park and Zahabi, 2022a; Wilson and Schlegel, 2004; Wood and Parr, 

2022). Therefore, some studies suggested using physiological measures of workload instead (Cain, 

2007). We found that pupillometry measures especially the blink rate was selected as important 

features in the models. The results support the findings of previous studies that used eye-tracking 

data for measuring CW of prosthetic devices (White et al., 2017; Zahabi et al., 2019b; Zhang et 

al., 2016b). Eye-tracking measures have been widely applied to other domains to measure CW of 
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operators such as simulations for emergency responders (Appel et al., 2019), construction (Li et 

al., 2020), and fetal ultrasound examination (Sharma et al., 2021). One possible explanation why 

PCPS was not included as an important feature is that the task (e.g., moving a pin from one bar to 

another bar) was so rudimentary that the pupillometry data were not sensitive enough to 

differentiate the degree of CW among different device control schemes. This is in line with a 

previous study that found PCPS has a higher value in mentally complex tasks than in more 

manageable tasks (Palinko et al., 2010). Siegle et al. (2008) also suggested that pupil dilation can 

better reflect sustained information processing. 

It was also found that the models with two classes performed better than models with three 

classes. This is intuitive from a general classification stance, since two classes are simpler than 

several classes to be classified as it has only one threshold. This is in line with previous studies 

that found smaller number of labels led to high classification accuracy (Nourbakhsh et al., 2013a; 

Wang et al., 2013).  

Although the sample size was small, the NB algorithm exhibited reasonable average 

performance across multiple runs, which is in line with prior studies that found NB was more 

accurate than the SVM algorithm in classifying CW (Nourbakhsh et al., 2013b; Raufi, 2019).  

There are several advantages of NB that resulted in classification accuracy above 70%. First, NB 

can compensate for class imbalance (Murphy, 2006). Second, NB can perform well with small 

datasets (Huang and Li, 2011) and it is a fast and computationally effective approach (Jadhav and 

Channe, 2016; McCallum and Nigam, 1998). Third, the complement NB classifier used in this 

study were accurate in classifying CW, which suggests the possibility of using this classifier for 

other small datasets in the future. 
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The RF model did not perform as well as NB and some of the models had overfitting issues, 

which was mainly due to the detailed hyperparameter tuning on an extremely small dataset. Prior 

studies found that with small and imbalanced datasets, RF could generate either poor results due 

to a lack of diversity in the dataset or might cause overfitting (Tang et al., 2018). SVC also 

performs poorly when the dataset is imbalanced. This is mainly due to the weakness of the soft 

margin optimization (Batuwita and Palade, 2013) that allows SVC to make a certain number of 

mistakes and keep margin as wide as possible so that other points can still be classified correctly. 

This could result in the hyperplanes being skewed to the minority class when imbalanced data is 

used for training. The second reason is related to the issue of an imbalanced support vector ratio. 

That is, the ratio between the positive and negative support vectors becomes imbalanced and as a 

result, datapoints at the decision boundaries of the hyperplanes have a higher chance of being 

classified as negative. The major reason why RF generated longer computational time is that it 

included more hyperparameters, especially the number of trees in the forest and their levels, than 

the other two algorithms. Basically, training time complexity of RF is faster than SVC (Kumar, 

2019). However, RF took much longer time than SVC due to the burden in hyperparameter tuning. 

In addition, the main limitation of RF is that a large number of trees can make the algorithm too 

slow and ineffective for real-time predictions (Donges, 2021). SFS demanded extensive 

computational time because it is a wrapper method which needs to train the classifier for each 

feature subset, and therefore the method can be impractical.  

The findings suggested two ML algorithms (RF or NB) for classification of CW for 

prostheses. Our intention was not to propose one specific algorithm or feature selector which 

should be used for all types of tasks mainly because depending on the characteristics of the dataset, 

several factors can affect the algorithm performance, including size and quality of the dataset, 
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complexity of the models, and potential biases in the dataset (Dietterich, 2000; Goodfellow et al., 

2016; Murphy, 2012). We suggest researchers to use the findings of this study as a starting point 

in estimating CW of prosthetic devices and explore other models depending on the characteristics 

of their dataset.  

4.12.2. Limitations and Future Work 

The first limitation of this study was the small dataset that was used for training the models. 

Future studies with larger dataset are necessary to validate the findings of this investigation. 

Second, the models were generated based on the performance of able-bodied participants. The 

decision to work with an able-bodied population was made due to the limited number of trans-

radial amputees in the surrounding area. In addition, since most patients currently use devices with 

DC modes (commonly used in myoelectric control), recruiting such patients could have produced 

a bias in their performance. Therefore, there is a need for further investigation with amputees, as 

an actual user population, to validate the models. 

 

4.13. Contributions of Experiment 1 

Evaluating usability of prosthetic devices early in the design process is crucial considering 

the cost and difficulty of testing with human subjects. Previous studies relied on questionnaires 

after conducting human subject experiments. Furthermore, recruiting amputee participants for 

human subject experiments are challenging and therefore, several studies used able-bodied 

participants to assess usability and cognitive workload of prosthetic devices (Park and Zahabi, 

2022a).  

The most unique contribution of this research was that it provided a method for early and 

objective usability evaluation of prosthetic devices. Previous studies focused on human subject 
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experiment and subjective evaluations for usability and mental workload assessment of amputees 

(Park and Zahabi, 2020; Park and Zahabi, 2022a). HPM-UP can be used to improve the usability 

of prosthetic devices using pilot tests and early-stage prototypes especially since conducting 

human subject experiments with amputee participants can be time-consuming and challenging.  

The second contribution of this research is that it developed a human performance model 

for upper limbs (HPM-UP) based on top-down (theories) and bottom-up (data driven) approaches 

and the model was validated with a human subject experiment. Although previous HPMs such as 

ACT-R or QN-MHP could generate task completion time, memory load, or cognitive workload 

(i.e., NASA-TLX score), they were not able to provide estimation on learnability, error rate, and 

satisfaction. Furthermore, the dimensions in HPM-UP are interconnected. Learnability is the key 

to compute other dimensions, as the theoretical background to calculate all dimensions in HPM-

UP is based on the learning performance. This connectivity has not been captured in previous 

methods. The third contribution of this study is that HPM-UP is the first HPM that has been 

developed in R-shiny package format. This can help researchers, designers, or practitioners use 

HPM-UP easily with a GUI without the need for hard coding.  

The HPM-UP developed in this research has several advantages as compared to the 

benchmark human performance model. Including the Learnability dimension provided the 

possibility of measuring learning efforts of prosthesis devices.  The model was successful as it 

could predict learnability accurately even for cases where participants needed more training (i.e., 

more than 10 trials) due to fatigue or low device calibration quality.  

Error rate estimation feature of HPM-UP is closely related to learnability. The unique 

contribution of HPM-UP with error rates is that it tried to model the effect of errors not only on 

task performance (i.e., efficiency) but also satisfaction because the efficiency was used as an input 
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for the satisfaction dimension. The predicted satisfaction scores from the HPM-UP were similar 

to the results from human data and were significantly different from the benchmark model 

outcomes. Calculating the number of errors manually (by watching videos) was not feasible for 

the HPM-UP as the analysis on two minutes of the task requires more than several hours of work 

in millisecond. Also, it was not possible to figure out whether the specific hand gestures were 

errors as the videos did not provide any information on participants’ intention. 

In addition, since error rate affects efficiency, the model outcomes became closer to the 

human subject data than the benchmark model. In a previous cognitive modeling study (Zahabi et 

al., 2019b), it was assumed that participants were experts (which means that they do not have 

errors) in a certain task after they passed the training sessions, which is one of the main 

assumptions of many HPMs (Park and Zahabi, 2022b). However, this research found that 

participants could still make errors even after passing the training sessions. These errors were 

added to estimate the TCT and to calculate the efficiency dimension. Therefore, the model 

outcomes were closer to the human subject data than the benchmark model. 

The benchmark model could calculate memory chunks. However, it only enables one cycle 

of the task, which is a limitation in simulating repetitive routine tasks. For example, the benchmark 

model was not capable of setting the end of the task with a time parameter. To do that, “for-loop” 

or “while-loop” are needed to set the time limitation (e.g., 2 minutes). However, there is no 

grammar for this in the benchmark model. Hence, to make comparisons, the same cycle of task 

was copied and pasted many times to calculate the number of memory chunks for 2 minutes. Also, 

fitting the task completion time exactly to 2 minutes in the benchmark model required removal of 

some lines of the code manually. 
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Another unique feature of HPM-UP is using a computational approach for quantifying 

satisfaction based on theories. Unlike previous studies that used questionnaires with a Likert-scale 

(QUEST 2.0 or USE), HPM-UP calculates satisfaction based on the expectation-confirmation 

theory.  

Classification of cognitive workload with ML was another unique feature of HPM-UP. 

Although the dataset was extremely small, it was possible to train and generate models which 

could have a reasonable classification accuracy (i.e., above 70%). This module can shed light on 

the prosthetic device development with emphasis on cognitive workload as previous studies were 

mainly focused assessing physical workload of these devices. 
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5. MODEL VALIDATION WITH EXPERIMENT 2: HUMAN SUBJECT EXPERIMENT 

WITH A VIRTUAL PROSTHESIS 

 

5.1. Objective 

The objective of this experiment was to collect human-subject data in a virtual reality (VR) 

setting when performing ADLs and use these data as a basis for validating the results of HPM-UP. 

 

5.2. Participants 

Twenty (Males=13, Females=7) able-bodied participants were recruited for this 

experiment (Age: M=26.9 yrs.; SD=4.6 yrs.). The study was conducted at Texas A&M University. 

All participants had 20/20 or corrected vision with no prior experience using a prosthetic arm or a 

myoelectric exoskeleton for upper limbs. The study protocol was approved by Texas A&M IRB 

(IRB2021-0990D). This validation experiment was conducted with the DC and PR configurations 

since there was no significant difference between the CC and PR modes from Experiment 1 results.  

 

5.3. Apparatus  

The experiment setup included three modules: 1) the EMG/kinematic data collection and 

processing module, 2) the server module, and 3) the VR module. The expected input and output 

data formats for each module are described in the following sections to allow researchers to modify 

or replace any module while maintaining compatibility with the others.  

Figure 32 provides an overview of the system architecture and is presented in the form of 

a flowchart to visualize the progression of generated EMG signals to virtual action commands. 
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Arrows pointing to and from the Ultraleap Leap Motion Controller and the HTC VIVE controller 

are dotted to indicate optional use within the system. 

Module 1 is responsible for collecting the necessary physiological signals for different 

configurations as well as applying the respective algorithms to implement each method. The most 

recently detected action classification is then sent to the server module, which delivers it to the VR 

application module. Module 3 is responsible for translating the action command into animations 

and state changes for the virtual prosthesis. A data logging script records the various interactions 

within the VR application, action commands received from the server, and eye tracking data. The 

log file is represented by the session data element in Module 3 of Figure 34. Detailed hardware, 

software, and server implementation are described in Music (2022). 
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Figure 32. Flowchart of complete system architecture for EMG-based VR human-machine interface 

 

5.3.1. Virtual Prosthesis Development 

For the VR simulation, an HTC VIVE Pro Eye head-mounted interface (HMD) was chosen 

as the optimal VR system as it affords built-in eye tracking technology capable of recording gaze 

and pupillometry data at 120 Hz. The virtual reality application was developed on the Unity Game 
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Engine v2019.4.28f, a real-time development platform for 2D, 3D, VR, and augmented reality 

(AR) interactive applications (Music, 2022). 

The virtual prosthesis was modeled after the Fillauer Motion Control Electric Terminal 

Device (ETD) 2. The ETD 2 was chosen as the model for the virtual prosthesis as it affords two 

degrees of freedom, and this is the minimum number of degrees of freedom required to make 

meaningful comparisons between the compatible prosthesis control modes. A side-by-side view 

of the virtual prosthesis model and the ETD 2 is shown in Figure 33. 

 

Figure 33. The Motion Control ETD 2 prosthesis. The real-world ETD 2 prosthetic device (A) and the 
virtual ETD 2 model (B) are in the inactive motion state. Source: https://fillauer.com/products/proplus-mc-
etd2/ 

 

The virtual model of the ETD 2 prosthetic device can perform the same motions as its real-

world counterpart. The VR application provides mirrored models to support left- or right-handed 

subjects. A VIVE Tracker 3.0 device is secured to the dorsal side of the hand with athletic tape to 

track the position of the prosthetic model in virtual space to the position of an able-bodied user’s 

hand, as shown in Figure 34. For transradial or wrist disarticulation amputees, the VIVE Tracker 

can be secured to the end of the vestigial limb in a similar manner.  
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Figure 34. VIVE Tracker 3.0 secured to the dorsal side of the hand via athletic tape for virtual prosthesis 
position tracking 
 

The VIVE Tracker 3.0 provides only positional data to the virtual prosthesis, and the 

prosthesis rotation is locked so that the prosthesis extends from the user’s body perpendicularly. 

This constraint is in place to allow supination and pronation to be controlled manually through the 

various control algorithms. 

When the DC or PR control configurations are enabled, one of the five possible action 

commands are received from the server module at a time. These commands are received by a C# 

script that acts as an input manager, which updates five Boolean values which correspond to the 

five motion classes. A simple switch statement determines which Boolean value should be set to 

true and sets all others to false based on the most recently received command. All other scripts 

responsible for the virtual prosthesis animations and interactions determine their internal state 

based on these five Booleans in the input manager. The current implementation allows the system 

operator to choose whether to use proportional control or ON-OFF control. Proportional control is 
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enabled by default. Traditional ON-OFF control does not take EMG signal magnitude into account, 

meaning the speed of the prosthesis motion is constant and not controlled by the user.  

5.3.2. EMG Sensors 

For EMG signal collection, a Delsys Trigno Wireless Biofeedback system was used in 

conjunction with four Trigno Avanti Sensors. The sampling rate of the Trigno Avanti sensors was 

set to 1,111 Hz. The sensor placement was the same with Experiment 1. As DC only requires 

analysis of EMG signals from an agonist-antagonist muscle pair (Resnik et al., 2018), one sensor 

is placed on the flexor carpi radialis, and another is placed on the extensor carpi radialis longus for 

this method (Figure 35).  

 

Figure 35. EMG sensor placement on flexor carpi radialis (1), extensor carpi radialis longus (2), flexor 
digitorum (3), and extensor digitorum (4) 
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5.3.3. VR Headset and Eye Tracker 

The VIVE Pro Eye HMD provides built-in eye tracking features, making it the optimal VR 

hardware for this system (Figure 36). Eye tracking data is retrieved from the hardware using the 

SRanipal SDK at the maximum frequency of 120 Hz. The system automatically detects and logs 

blink rate and pupil diameter in millimeters to generate the necessary data to estimate the level of 

CW required when performing virtual ADLs.  

 

Figure 36. HTC VIVE Pro Eye HMD 

 

5.4. Task 

5.4.1. CRT 

The VR application features virtual versions of the CRT and SHAP. The virtual prosthesis 

must be in the open position and close enough to a clothespin to see the highlighted outline cue to 

pick up a clothespin in the VR environment (Figure 37). This yellow outline is a visual indicator 

that the virtual prosthesis is close enough to grip a clothespin. Visual cues for interaction are 

necessary features as there is no tactile feedback afforded by the VR environment. The participant 
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must then generate the command to close the hand to grip the clothespin. Clothespins in hand can 

be released by generating another open command. If a clothespin is released in a position in which 

it clamps onto any one of the bars of the base station, it will lock to that position until it is gripped 

again. If a clothespin is released anywhere other than onto one of the four bars, it will automatically 

respawn in the last valid position in which it was placed. If a clothespin is dropped immediately 

after removing it from the start position, it will return to the starting position. 

 

Figure 37. Highlighted outline of virtual clothespin. Serves as a visual cue to alert user of proximity to 
interactable object 
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Figure 38. A participant performing the virtual CRT task 
 

5.4.2. SHAP 

Similar to Experiment 1, the virtual SHAP door handle task shown in Figure 39 and 40 

required participants to initiate a close action close enough to the door handle to grip it. Then, they 

must rotate the handle clockwise 90° via wrist supination, rotate it counterclockwise 90° back to 

the original position via wrist pronation, and finally perform an open action to release the handle. 

Meeting the above criteria (90 degrees) defined one successful rotation of the door handle. If the 

handle was released before these criteria were met or if the user moves the virtual prosthesis away 

from the door handle after gripping it, the system will recognize this as a drop or failed attempt 

and generate an appropriate log. Like the virtual CRT task, a highlighted outline of the door handle 

appears as a visual cue to indicate a close enough proximity to manipulate the handle (Figure 39). 
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Figure 39. Highlighted outline of virtual door handle. Serves as a visual cue to alert user of proximity to 
interactable object 
 

 

Figure 40. A participant is performing the virtual SHAP-Door handle task 
 

5.5. Experiment Design and Variables 

The experiment design and variables were similar to Experiment 1. Please see Sections 4.5, 

4.6, and 4.7. 



 

102 

 

5.6. Procedure 

The experiment procedure was similar with Experiment 1 (Section 4.8). The experimental 

setup included a VR headset and PC to run the experiment and collect raw data. For participants 

assigned to the DC group, participants needed to exert maximum strength for five seconds with 

dynamometer to measure MVC of each muscle. Using the MVC instead of MAV resulted in having 

more consistent EMG signals (Sabri et al., 2014). Therefore, we decided to collect MVC to define 

appropriate thresholds to activate or deactivate gestures in Experiment 2. During MVC 

measurement, the participant placed their feet on the dynamometer chassis as shown in Figure 41. 

The experimenter then adjusts the length of the chain so that the participant can still hold the chain 

while the muscles are relaxed. Three MVCs were collected and there was 1-minute break between 

each trial. 

 

Figure 41. A participant is raising a handle to exert maximum strength 
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All participants were instructed to perform specific arm motions and to observe a feedback 

display (hand open, hand closed, wrist pronated, wrist supinated, and relaxed hand and wrist). The 

training and test sessions were the same as Experiment 1 (section 4.8). However, there was a need 

to develop a new training threshold for the VR setting. Based on the pilot test data, if the average 

task completion time of three sequential trials was within 17-27s for the PR and within 44-54s for 

the DC in the virtual CRT task, the participant passed the training and proceeded to the 

experimental trials. During the training and actual trials, participants were seated on a chair without 

an armrest to avoid any interference with upper limb motions. 

 

5.7. Hypotheses 

The following hypotheses (H) were formulated for this study. Since both human subject 

data and benchmark model do not generate all usability dimensions, hypotheses were generated to 

enable comparisons between the HPM-UP and either human data or the benchmark model. 

 

• Learnability: The results of HPM-UP learnability dimension would be similar to the human-

subject data (H1) 

• Error rate: Use of the PR configuration would lead to the lower error rate than DC (H2) 

(White et al., 2017; Zahabi et al., 2019b; Zhang et al., 2016b) 

• Memorability: The results of HPM-UP memorability dimension would be similar to the 

benchmark model (H3) 

• Efficiency: The results of HPM-UP efficiency dimension would be similar to the human 

subject data (H4-1) but would be significantly different from the benchmark model results 

(H4-2). 
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• Satisfaction: The results of HPM-UP satisfaction dimension would be similar to the human-

subject data (H5) 

 

5.8. Data Collection and Analysis 

Data collection and analysis were similar to Experiment 1. Pupil size and the number of 

blinks was captured at a frequency of 200 Hz from HTC VIVE headset. The VR system also 

automatically logged the task performance of each task. The same non-parametric and post-hoc 

analysis methods were applied in Experiment 2.  

 

5.9. Results 

5.9.1. Hypothesis Test Results  

The data were collected from twenty able-bodied participants (10 participants for DC and 

10 for PR), and the results were compared with outcomes generated from the benchmark model 

and the HPM-UP. Table 17 illustrates the descriptive statistics results regarding the comparison 

among the data from human subject experiment (Experiment 2), the HPM-UP, and the benchmark 

model.  All the hypotheses were supported. The PR configuration led to a significantly lower error 

rate than the DC mode (H(1)=5.47, p < .05). Table 18 summarized the result of the hypothesis 

tests. 
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Table 17. Descriptive statistics from Experiment 2 (mean (sd)) 

Factors (definition) Human subject data HPM-UP Benchmark model 

DC PR 

 

DC PR 

 

DC PR 

 
Learnability  

 

5.5 

(2.33) 

3.6 

(0.49) 

3.4 

(0.92) 

4.3 

(1.10) 

N/A 

Error rate N/A 0.25 (0.06) 0.30 

(0.07) 

N/A 

Memorability 

 

N/A 3.48 

(0.13) 

0 3.60  

(0.00) 

0 

Efficiency  CRT 26.27 

(10.19) 

9.05 

(3.06) 

17.83 

(1.67) 

8.42 

(0.94) 

13.3 

(0.00) 

5.6 

(0.00) 

SHAP  10.65 

(3.19) 

7.97 

(2.36) 

9.85 

(0.52) 

7.30 

(0.38) 

7.5 

(0.00) 

5.1 

(0.00) 

Satisfaction 0.68 

(0.16) 

0.74 

(0.14) 

0.74 

(0.12) 

0.75 

(0.11) 

N/A 

Accuracy of Cognitive 

Workload Classification 

(%) 

N/A 65.00 80.00 N/A 

 

Table 18. Summary hypothesis test results (Experiment 2) 

Hypothesis ID Hypothesis Test Result Test statistics, p-value, 

effect size 
H1 

(Learnability) 

The results of HPM-UP learnability 

dimension would be similar to the 

human data. 

Supported W = 236, p = .31, r = .16 

H2 

(Error rate) 

Use of the PR configuration would lead 

to the lower error rate than DC. 

Supported H(1) = 5.47, p = .02, r = .52 

H3 

(Memorability) 

The results of HPM-UP memorability 

dimension would be similar to the 

benchmark model. 

Supported W = 65, p = .23, r = .28 

H4 

(Efficiency) 

(H4-1) The results of HPM-UP 

efficiency dimension would be similar 

to the human subject data. 

Supported Z = -0.68, p = .50, r = .12 

(H4-2) There would be a significant 

difference between the HPM-UP 

efficiency dimension results and the 

benchmark model results. 

Supported Z = -2.64, p = .02, r = .33 

H5 

(Satisfaction) 

The results of HPM-UP satisfaction 

dimension would be similar to the 

human data. 

Supported W=258, p = .12, r = .25 

 

5.9.2. Cognitive Workload Classification  

The trained model NB model from the Experiment 1 was used to classify CW of the data 

collected from Experiment 2. The model exhibited 73.83% average classification performance (SD 
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= 6.96%) across 15 random seeds (Colas et al., 2019). Similar to Experiment 1 results, the NB 

model exhibited a decent performance across multiple runs.  

5.9.3. Discussion 

Experiment 2 results revealed that the HPM-UP can also be used in to assess the usability 

of virtual prosthetic controls. Although the hypothesis test results were similar to Experiment 1 

findings, the descriptive results in Experiment 2 were better than that of Experiment 1, especially 

for the learnability dimension. In Experiment 2, participants reached the training threshold much 

faster than Experiment 1. This might be because the VR could improve learning for participants. 

Previous studies revealed the effectiveness of using VR in different domains including: prosthetic 

device control (Lambrecht et al., 2011), prosthetic rehabilitation training (Dhawan et al., 2019), 

fire response training (Sankaranarayanan et al., 2018), surgery (Seymour et al., 2002), and rescue 

team training (Katz et al., 2020). Another reason is the effect of fatigue. Unlike Experiment 1, 

participants did not use the physical prosthetic device in Experiment 2 and therefore, were much 

faster in mastering the control schemes.  

The usability of virtual prosthetic device in Experiment 2 was superior to the physical 

prosthetic device used in Experiment 1 based on the outcomes of the HPM-UP. For example, the 

efficiency was high when performing both the CRT and SHAP tasks. Even with the DC 

configuration, participants’ performance in the SHAP task substantially improved as compared to 

the performance in Experiment 1. The relationship among learnability, error rate, and efficiency 

dimensions existed in both Experiment 1 and 2 results. For example, in Experiment 2, high 

learnability led to having high efficiency in performing the tasks and eventually led to high 

satisfaction levels. 
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The CW classification model developed from Experiment 1 was validated with data from 

the Experiment 2. The trained ML model in HPM-UP could accurately predict the CW in use of 

the virtual prosthetic device. This is an indication of model’s generalizability as the model has 

learned meaningful patterns and relationships in the training data. It also means the hyperparameter 

setting and the ML modeling structure (e.g., having feature selectors or cross validation) was 

effective in finding the best model. However, future studies should validate the model with other 

ADL tasks and experiment settings. 

 

5.10. Contributions of Experiment 2 

HPM-UP is the first human performance model that can estimate usability of prosthetic 

devices and has been validated with the data from both physical and virtual environments.  Results 

of Experiment 2 also supported the merits of using VE for training as suggested by prior studies 

(Hargrove et al., 2018). Unlike previous prosthetic device studies that used 2D-displays (Deeny et 

al., 2014a; Deeny et al., 2014b; Rezazadeh et al., 2012; Rezazadeh et al., 2011), this study used an 

immersive VE (i.e., virtual reality headset). VE could be used for testing the capability of human, 

through practice, to acquire new sensorimotor mappings to adapt to novel kinematics or dynamics 

as well as to learn how to manipulate a device (Park and Zahabi, 2022a).  

The ML algorithm can provide valuable inputs regarding the CW of prosthetic devices to 

designers, clinicians, and researchers. First, the algorithm exhibited its generalizability to different 

circumstances (i.e., physical or virtual environments). Thus, designers or clinicians can run the 

model only with EMG sensors to predict the level of CW with a reasonable accuracy. This could 

reduce experimental cost which has been normally accompanied by human-subject experiments 

(Park et al., 2022). From the users’ point of view, prosthetic device users can also easily test the 
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level of CW with the immersive VE. No prior ML algorithm has been validated in both physical 

and VE. Thus, the developed algorithm can be a starting point for future research. For example, 

the model can be tested with other tasks or additional datasets to improve its versatility. Other 

researchers could improve the accuracy of the classification with modifications on the model or 

with additional data. Third, the ML model can improve prosthetic device control and experience 

if the model is expanded to provide CW in real-time. For instance, prosthetic device users can be 

notified with the current level of CW and can adjust the device control strategy. Clinicians can 

also use the model to estimate the level of CW during a task. Tracking the fluctuation of the level 

of CW is possible and the trajectory of the change of CW can also be plotted on the screen in real-

time to inform clinicians which part of the task is demanding for amputee patients.  

 

5.11. Practical Implications of HPM-UP 

There are several practical implications of HPM-UP for clinicians, device developers, or 

researchers in the cognitive modeling domain. The model can be used by clinicians and device 

developers using the GUI and with mouse-clicks. This feature can be especially useful for those 

without any knowledge of programming. In addition, in the “Results” tab, a guideline table is 

provided, which can provide practical recommendations regarding the range of each usability 

dimension score. With this table, clinicians can determine whether to recommend a certain 

prosthesis to a patient. Finally, under the “Help” tab of HPM-UP, several tutorial videos are 

provided on how to use the model. The model is available on Github 

(https://github.com/hsilab/hpmup/tree/master) and other researchers can modify or update it. Once 

they have added all the data and created the scenario, they could assess the usability and CW of 

any prosthetic device.  

https://github.com/hsilab/hpmup/tree/master
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Whenever clinicians have new amputee patients and before recommending any prosthetic 

device to patients, they can test or predict which device could be the best in terms of the usability 

and CW for the amputee. That is, HPM-UP could reduce the work of clinicians to find, test, 

analyze, and recommend a prosthetic device. Once clinicians collect the input parameters (e.g., 

first impression) for each prosthetic device from the patients, they could run the model and see the 

predicted usability and CW values. Then, based on the results and the guideline table, they can 

recommend the best device to amputees. 

For designers of prosthetic devices, HPM-UP could be a quick and practical guidance for 

a prototype-level usability and CW assessment. Once they have defined tasks and concept for the 

prosthetic devices, they could predict the human performance of the device at the early stages of 

the design process. They can also change the input parameters based on the characteristics of the 

target group. Based on the results, they can make changes to the device configurations. Designers 

could do this iterative process at the early stage of the design process to adjust the usability and 

CW of prosthetic devices to improve human use. 
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6. CONCLUSION 

 

Previous studies for measuring performance of prosthetic device users relied on human 

subject experiments and subjective evaluations. Especially for cognitive workload or usability 

assessments, subjective evaluation methods were heavily employed. While these methods could 

provide useful outcomes, early estimation of usability and CW is critical to reduce future device 

rejection due to high CW or usability issues.  

This research advanced the fundamental knowledge of estimating usability and CW of 

upper-limb prostheses in EMG-based human-machine interfaces. Established methodologies, 

theories, and experimental methods were used to formulate the equations to quantify usability and 

cognitive workload of upper-limb prosthetic devices. This research not only quantified each 

usability dimension (learnability, errors, memorability, efficiency, and satisfaction) but also 

connected them in a computational way.  

The HPM-UP model was developed with top-down and bottom-up approaches. Especially 

for estimating the level of CW, machine learning algorithms were trained, tested, and incorporated 

in HPM-UP. The model was validated by experimental studies. The findings of Experiment 2 also 

supported previous studies that argued potential merits of having virtual environment instead of 

physical environment to train prosthetic device users. HPM-UP can be run using a GUI and does 

not require hard-coding. It is the first HPM that was developed in R Shiny package format and 

released to GitHub to be used by other researchers, designers, or clinicians. HPM-UP provides the 

capability to predict human performance of prostheses at the early stage of the design process. 

Clinicians can test and analyze the human performance of several commercial prostheses to find 

and recommend a best device(s) for the patients.  
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6.1. Limitations and Future Research 

There are several aspects of this study that may limit the generalizability of findings. First, 

HPM-UP has some free parameters, especially in learnability and satisfaction dimensions. The 

reason to include them in the models was to personalize the outcome of the model to improve 

model performance. The initial/default values included in the current version of HPM-UP was 

calculated based on the pilot tests in this research. Although this approach has been used in other 

HPMs such as QN-MHP (e.g., preliminary estimates of the perceptual memory access time) 

(Feyen, 2003), MHP (Card et al., 1986a), or ACT-R (Bothell, 2020), the outcomes of the model 

depend on these values.  

To quantify qualitative dimensions such as learnability and satisfaction, some assumptions 

have been made. For example, SDCQ was calculated based on the average of the responses to 

questions Q3 (easiness in adjusting the device (fixing, fastening)), Q6 (easiness of using the 

device), and Q8 (effectiveness of using the device (the degree to which the device meets a user’s 

needs) of the USE questionnaire. FI was calculated from the difference between the SDCQ and 

participant’s training performance. Furthermore, HPM-UP estimates the immediate learnability 

and satisfaction after using prostheses, which is different from the retention effect or long-

term/sustained satisfaction, which is the original concept behind the ECT. Future studies should 

validate these assumptions with additional experiments and considering long-term satisfaction 

with prosthetic devices. 

The decision to work with an able-bodied population was made due to the limited number 

of trans-radial amputees in the surrounding area. In addition, since most patients currently use 

devices with DC modes (commonly used in myoelectric control), recruiting such patients could 

have produced a bias in their performance. There is a need to validate the results of this research 
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with amputee patients. In addition, the dataset used to train ML algorithms and to find the best 

model to classify cognitive workload in the HPM-UP was small. Future studies with larger datasets 

are necessary to validate the accuracy of the model.  

Although with the GUI analysts can develop scenarios only with mouse clicks, they need 

to have basic knowledge of human performance modeling. If not, they need to have external 

support to validate the codes for accuracy. In addition, clinicians might need help to set up the 

software. That is, to run HPM-UP, they should install R, R-studio, and several packages. This 

could be challenging for clinicians who do not have backgrounds in statistics. Although the 

installation guidelines are available on GitHub, the process could still be challenging for some 

individuals.  

The HPM-UP introduced in this dissertation was mainly designed for assessing upper-limb 

prosthetic devices while performing CRT and SHAP tasks, which are widely used testbeds of 

ADLs. Considering the generalizability of the logic behind HPM-UP (CPM-GOMS and ACT-R), 

it is possible to expand the scope and application of HPM-UP. Future research should extend HPM-

UP to other tasks in the SHAP testbed such as food cutting, glass jug pouring, or lifting a tray. 

After validating or updating HPM-UP for other tasks, it is also desirable to apply the model to 

naturalistic ADL tasks such as eating or dressing at home.  

HPM-UP simulated the “transradial (below elbow) upper-limb” amputee behavior, 

although there exists a wide range of amputations. Possible target populations are related to trans-

humeral (above elbow), forequarter amputation, shoulder disarticulation, or wrist disarticulation. 

HPM-UP can be further extended to model cognitive workload of lower limb prostheses. For 

example, transtibial (below the knee), transfemoral (above knee), foot amputations, knee 

disarticulation, and hip disarticulation can be modeled in the extended HPM-UP. 
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Although HPM-UP provides estimates of device usability and CW, it cannot guarantee the 

fitness or feeling of embodiment of a prosthesis to amputees. Therefore, future studies could 

consider incorporating the fitness into the model, as it is one of the critical factors in acceptance 

of prostheses (Hagberg et al., 2004; Stratford, 2001). To enable this, researchers can collect data 

with established questionnaires such as QUEST 2.0, CSD-OPUS, questionnaires for persons with 

a transfemoral amputation (Q-TFA) (Hagberg et al., 2004), or upper extremity functional index 

(UEFI) as a ground-truth after amputees perform some ADLs. Then, some of the factors in these 

questionnaires can be added as parameters to the equation to calculate the satisfaction dimension 

of HPM-UP. The model’s outcome can then be compared with the ground-truth to for validation. 

Lastly, the current version of HPM-UP only estimates usability and CW. While validating 

the model under various conditions mentioned above, future studies should enhance HPM-UP with 

the capability to estimate physical workload. To enable this, there is a need to collect 

anthropometry data and EMG signals and analyze the pattern of signals to identify physically 

demanding activities. Then, the task scenario should be compared with the analyzed EMG pattern. 

In this process, we could match each motor operator with EMG signals, which could lead to an 

estimate of muscle activities or physical workload during the task. Studying ACT-Phi 

(physiological measurement) (Dancy, 2018; Dancy and Kaulakis, 2013; Dancy et al., 2015) or 

ACT-R/F (Fatigue) (Gunzelmann et al., 2009; Gunzelmann and Gluck, 2008) which are some of 

the family members of ACT-R could be good starting points for this integration.  
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APPENDIX A 

QUEST 2.0 

Quebec User Evaluation of Satisfaction with assistive Technology  

Participant number:                      

Device configuration (select one):   DC/ PR/  CC   

 

Date:                              
 

The purpose of the QUEST questionnaire is to evaluate how satisfied you are 

with your assistive device. The questionnaire consists of 8 satisfaction items. 

• For each of the 8 items, rate your satisfaction with your assistive device by 

using the following scale of 1 to 5. 
 
 

1 2 3 4 5 
not satisfied at all not very satisfied more or less 

satisfied 

quite satisfied very satisfied 

 
 

• Please circle or mark the one number that best describes your degree of 

satisfaction with each of the 8 items. 

• Do not leave any question unanswered. 

• For any item that you were not "very satisfied", please comment in the 

section 

comments. 

 

Thank you for completing the QUEST 

questionnaire. 
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How satisfied are you with, 

ASSISTIVE DEVICE 
     

1. the dimensions (size, height, length, width) of 

your assistive device? 
Comments: 

 
 

1 

 
 

2 

 
 

3 

 
 

4 

 
 

5 

2. the weight of your assistive device? 

Comments: 

 

1 

 

2 

 

3 

 

4 

 

5 

3. the ease in adjusting (fixing, fastening) the parts 

of your assistive device? 

Comments: 

 
 

1 

 
 

2 

 
 

3 

 
 

4 

 
 

5 

4. how safe and secure your assistive device is? 

Comments: 

 

1 

 

2 

 

3 

 

4 

 

5 

5. the durability (endurance, resistance to wear) of 

your assistive device? 
Comments: 

 
 

1 

 
 

2 

 
 

3 

 
 

4 

 
 

5 

6. how easy it is to use your assistive device? 

Comments: 

 

1 

 

2 

 

3 

 

4 

 

5 

7. how comfortable your assistive device is? 

Comments: 

 

1 

 

2 

 

3 

 

4 

 

5 

8. how effective your assistive device is (the degree to 

which your device meets your needs)? 

Comments: 

 
 

1 

 
 

2 

 
 

3 

 
 

4 

 
 

5 
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• Below is the list of the same 8 satisfaction items. PLEASE SELECT THE 

THREE ITEMS that you consider to be the most important to you. Please 

put an X in the 3 boxes of your choice. 

 

□ 1. Dimensions □ 7. Comfort 

□ 2. Weight □ 8. Effectiveness 

□ 3. Adjustments □  

□ 4. Safety □  

□ 5. Durability □  

□ 6. Easy to use □  
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APPENDIX B 

USE 

Participant number: 

Device (Select one): DC/ PR/ CC 

Date:  

Please rate your agreement with these statements. 

 

• Respond to all the items 

• For items that are not applicable, use: NA 

 
USEFULNESS                1    2    3     4    5    6    7                     NA 
1. It helps me be more effective. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

2. It helps me be more productive. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

3. It is useful. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                   agree 

4. It gives me more control over the 

activities in my life. 
Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

5. It makes the things I want to 

accomplish easier to get done. 
Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

6. It saves me time when I use it. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                   agree 

7. It meets my needs. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

8. It does everything I would expect it to 

do. 
Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

  

EASE OF USE                 1     2     3     4     5     6    7                       NA 

9. It is easy to use. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

10. It is simple to use. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

11. It is user friendly. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

12. It requires the fewest steps possible to 

accomplish what I want to do with it. 
Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

13. It is flexible Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

14. Using it is effortless Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 
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15. I can use it without written 

instructions 
Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

16. I don't notice any inconsistencies as I 

use it. 
Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

17. Both occasional and regular users 

would like it. 
Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

18. I can recover from mistakes quickly 

and easily. 
Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

19. I can use it successfully every time. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

  

EASE OF LEARNING                 1     2     3     4     5     6    7                       NA 

20. I learned to use it quickly. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

21. I easily remember how to use it. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

22. It is easy to learn to use it. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

23. I quickly became skillful with it. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

  

SATISFACTION                 1     2     3     4     5     6    7                       NA 

24. I am satisfied with it. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

25. I would recommend it to a friend. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

26. It is fun to use. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

27. It works the way I want it to work. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

28. It is wonderful.  Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

29. I feel I need to have it. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 

30. It is pleasant to use. Strongly  ○  ○  ○  ○  ○  ○  ○  Strongly      ○ 

disagree                                                  agree 
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APPENDIX C 

 

NASA-TLX 

 

During the test you have just completed you may have experienced some difficulties and 

constraints with regard to the task. 

 

You will be asked to evaluate this experience with regard to 6 factors, which are described 

below. Please read each factor and its description carefully and ask the experimenter to explain 

anything you do not fully understand. 

 

Title Endpoints Description 

Mental demand Low/high How much mental and perceptual acdtivity was 

required (e.g., thinking, deciding, calculating, 

remembering, looking, searching, etc)? Was the 

task easy or demanding, simple or complex, 

exacting or forviging? 

Physical demand Low/high How much physical acitvity was required (e.g., 

pushing, pulling, turning, controlling, 

activating, etc)? Was the task easy or demading, 

slow or brisk, slack or strenuous, restful or 

laborious? 

Temporal demand Low/high How much time pressure did you feel due to the 

rate or pace at which the tasks or task elements 

occurred? Was the pace slow and leisurely or 

rapid and frantic? 

Performance Low/high How successful do you think you were in 

accomplisihng the goals of the task set by the 

experimenter (or yourself)? How satisfied were 

you with your performance in accomplishing 

these goals? 

Effort Low/high How hard did you have to work (mentally and 

physically) to accomplish your level of 

performance? 

Frustration level Low/high How insecure, discouraged, irritated, stressed 

and annoyed versus secure, gratified , content, 

relaxed and complacent did you feel during the 

task? 
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For each of the pairs below, circle the scale title that represents the more important contributor to 

workload when you are performing the task. 

 

 

Pair 1 

 

Effort      or      Performance 

Pair 2 

 

Temporal Demand      or      Frustration 

Pair 3 

 

Temporal Demand      or      Effort 

Pair 4 

 

Physical Demand      or      Frustration 

Pair 5 

 

Performance      or      Frustration 

Pair 6 

 

Physical Demand     or     Temporal Demand 

Pair 7 

 

Physical Demand      or      Performance 

Pair 8 

 

Temporal Demand      or      Mental Demand 

Pair 9 

 

Frustration      or      Effort 

Pair 10 

 

Performance      or      Mental Demand 

Pair 11 

 

Performance      or      Temporal Demand 

Pair 12 

 

Mental Demand      or      Effort 

Pair 13 

 

Mental Demand      or      Physical Demand 

Pair 14 

 

Effort      or      Physical Demand 

Pair 15 

 

Frustration      or      Mental Demand 
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For each factor you will be required to rate the level of constraint felt during the test on a scale 

from “Very low (0)” to “Very high (100)”, with regard to the task. Please circle one of tick 

marks in each factor. 

 

 

Mental demand: 

How mentally demading was the task? 

 
Physical demand: 

How physically demading was the task? 

 
 

Temporal demand: 

How hurried or rushed was the pace of the task? 

 
 

Performance: 

How successful were you in accomplishing what you were asked to do? 

 
 

Effort: 

How hard did you have to work to accomplish your level of performance? 

 
 

Frustration: 

How insecure, discouraged, irritated, stressed, and annoyed were you? 

 


