

WAVELET BASED APPROACH TO 3D GEOMETRY POINT CLOUD COMPRESSION

AT TEXAS A&M UNIVERSITY

A Thesis

by

MAX MICHAEL JAKOB LESSER

Submitted to the Graduate and Professional School of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Zixiang Xiong

Committee Members Serap Savari

 Sunil Khatri

 Raktim Bhattacharya

Head of Department, Miroslav Begovic

May 2023

Major Subject: Electrical Engineering

Copyright 2023 Max Lesser

ii

ABSTRACT

Proposed is a method of 3D point cloud geometry compression. Point clouds find applications in

autonomous driving, education, and other fields. The approach proposed here hopes to improve

on existing quantization techniques by segmenting each coordinate axis into continuous regions

of arbitrary size and preforming a wavelet transformation on these regions. This Thesis describes

a means of finding these regions, taking the transform, quantizing, concatenating acquired data in

a bitstream, recovering data from the bitstream, and reconstructing the point cloud. Results

presented on solid, dense, and sparse point clouds show improvements relative to Quantization-

Inverse Quantization at low bitrates but exhibit poor performance at higher bitrates and lower

densities. A better sorting approach is expected to increase performance, but the need for

continuous regions, and possible latency incurred when sorting for them imposes higher quality

requirements on this approach.

iii

DEDICATION

Fur Hans, du frisst rostige Nägel und scheist fertige Lokomotiven aus, ich fress ganze objekte

und scheiss einsen und nullen, mog good mien Fründ.

Special thanks go to Yalong Pi and Max Witek and Brent Matthews for their technical support,

for their input, for their compassion and for sharing in my frustration and success during this

work. To oscillating frequencies and bottoms of bottles, and may your cones always have

splendid tippities. I want to thank my Mom and my Dad for everything they’ve done to put me

into the position to get myself to where I am today. I want to thank the Askey clan, for being an

amazing, loving family, and the Kimbell-Morans, for accepting me into their midst and of course

Emma, for her love, support and compassion during this time. I want to thank John Travis, for

being an all-around good friend and good person. Felix, Rustam ey bauma. Atze mach ma weiter

so.

Many other people I want to thank, Andy, Collin, Q, Jack, Cezar, Edik, Roman, Dennis, Rachel,

Ruby, Ryan there are far too many to list here, but all were part in getting me to where I am, and

for that I am thankful.

To Emma: I love you more, it’s in an official document now, I win.

“We’re going all the way ‘til the wheels fall off and burn”

iv

ACKNOWLEDGEMENTS

I want to thank Dr. ZX for his continued support not just during this academic work, but also

over the course of my entire graduate career and for motivating me to attend Grad School in the

first place. Thank you.

I want to thank Xu Jizheng, for this support and guidance in this work, and for the wealth of

knowledge he brought to this cooperation.

I’d like to thank the committee members for affording me this opportunity, for many valuable

lessons learned in the classroom and outside, and for guiding me along this academic journey in

the pursuit of knowledge.

I want to thank the ECEN Capstone Team, especially Dr. Kalafatis, for my teaching

assistantship, for the flexibility to allow me an optimal usage of time, and their general support.

I’d finally like to thank the many wonderful faculty members in the ECEN department and

College of Engineering whom I’ve had the pleasure to learn from during my time at Texas

A&M. Every class and every interaction has pushed me closer to being able to complete this

work, and for that I am thankful.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of my Advisor, Professor Zixiang

Xiong and Professors Serap Savari, and Sunil Khatri of the Department of Electrical and

Computer Engineering and Professor Raktim Bhattacharya of the Department of Aerospace

Engineering.

The Point cloud data used to generate graphs and visualizations throughout this work was

provided by Xu Jizheng and generated for MPEG by authors as cited in the Reference section.

The GRASP framework used as an anchor was authored by J. Pang, M. Lodhi and D. Tian, as

noted in the Reference section. All images, figures, graphs and tables used in this Thesis were

generated by the author using datasets and publications cited in the reference section.

Funding Sources

Graduate study was supported by a Graduate Assistant position from Texas A&M University.

The contents of this work are solely the responsibility of the authors and do not necessarily

represent the official views of Texas A&M University.

vi

TABLE OF CONTENTS

Page

ABSTRACT .. ii

DEDICATION ... iii

ACKNOWLEDGEMENTS ... iv

CONTRIBUTORS AND FUNDING SOURCES .. v

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

1. INTRODUCTION AND MOTIVATION .. 1

1.1 Introduction to Point Cloud data ... 3

1.2 Use cases and motivation .. 4

1.3 MPEG standardization efforts... 6

1.4 Current work and related approaches ... 6

2. BACKGROUND .. 12

2.1 Notation and point cloud structure .. 12

2.2 Wavelet transform and Arbitrary Region Of Support wavelet transform 13

2.3 Quantization .. 21

2.4 Geometry Entropy Coding .. 21

2.5 Symbol stream parsing .. 22

2.6 Objective quality assessment .. 24

3. WAVE-GRASP .. 28

3.1 Overview ... 28

3.2 Preprocessing: Sorting and isolated point remove .. 30

vii

3.3 Transform block identification ... 35

3.4 AROS wavelet transform .. 38

3.5 Quantization, Duplicate point removal and SEI update.. 39

3.6 Entropy Coding ... 41

3.7 Decoder steps .. 42

3.8 Quality measurement with PC-Error .. 42

4 RESULTS .. 44

4.1 Dataset overview ... 44

4.2 Solid Point Clouds .. 46

4.3 Dense Point Clouds ... 48

4.4 Sparse Point clouds ... 52

4.6 Number of isolated points removed .. 55

5. DISCUSSION ... 57

5.1 Results discussion ... 57

5.2 Possible improvements and future work ... 58

5.3 Conclusion .. 58

REFERENCES ... 60

viii

LIST OF FIGURES

FIGURE Page

Figure 1: Sample Point Clouds.. ... 1

Figure 2 WAVE-GRASP System Overview. ... 29

Figure 3 RD at Different Sorting Schemes for Longdress_vox10_1080. 31

Figure 4 Staue-klimt With and Without Isolated Points in the Low Pass Component 33

Figure 5 Soldier vox-12 With and Without Isolated Points in the Low Pass Component............ 34

Figure 6 Transform Block Identification and AROS Transform Closeup. 35

Figure 7 Longdress-vox10 With Different Continuity Conditions. .. 37

Figure 8 Single axis Wavelet Transforms. .. 38

Figure 9 Point Clouds Used for Testing. .. 45

Figure 10 RD Curve for 10-bit Soldier Point Cloud. .. 46

Figure 11 Side by Side Geometry Compression Results for Redandblack-vox10-1460. 47

Figure 12 RD Curve for 10-bit Redandblack-vox10-1460. .. 48

Figure 13 RD Curve for 12-bit Soldier Point Cloud. .. 50

Figure 14 Boxer_viewdep_vox12 Compression Results.. .. 51

Figure 15 RD Curve for 12-bit Boxer Point Cloud... 52

Figure 16 RD Curve for 12-bit Staue-klimt Point Cloud. ... 53

Figure 17 Reconstructed point clouds for Shiva_00035. .. 54

Figure 18 RD Curve for 12-bit Shiva_00035 Point Cloud. .. 55

ix

LIST OF TABLES

TABLE Page

Table 1: Cases Resulting in 2 Received Symbols. .. 17

Table 2: Original 5/3 Biorthogonal Filter Values. .. 19

Table 3: 5/3 Biorthogonal Filters as Used in this Work. .. 20

Table 4: Number and Percentage of Points Removed as Isolated. ... 56

1

1. INTRODUCTION AND MOTIVATION

Figure 1: Sample Point Clouds. From left to right: Redandblack-vox10, soldier-vox10, boxer-

vox12 and Staue-Klimt-vox12, where density decreases as we move right. These are the original,

colored version of some of the point clouds we will use to test out compression scheme on.

One morning in the 17th century Rene Descartes laid in bed and observed a fly on the ceiling. In

a letter he described the fly’s location by taking steps along the orthogonal walls of the room,

and thus invented cartesian coordinates. Or so goes the legend told to many young

mathematicians, engineers, and scientists. Had Descartes described the position of two flies, he

would have described the object of study in this Thesis, point clouds. Some sample point clouds

are shown in figure 1. In the most basic view these are nothing but collections of points in 3D

space. In a narrower view, the use of 3D-pointcluds as a computing tool have risen in parallel

2

with a means to capture them. Point clouds can be generated in several ways, one popular option

being LIDAR sensors, as first invented by Hughes Aircraft Company [1]. In their 1972 paper on

lunar laser altimetry Kaula et. al described the use of LIDAR Sensors aboard Apollo 15 to

capture the spacecrafts altitude above the moons surface. Using earth-based tracking the

spacecrafts location above the lunar surface could be determined [2]. Combining LIDAR

altimeter data with spacecraft positional data yields a point cloud, although the term was not in

use at the time. Smith et. al were able to create a topological map of the moon using this data [3].

Point clouds have been used in other areas since, for example by Slob et. al, who used 3D point

clouds in their 1980 work to measure rock faces [4], by Sharr et. al. to store and process plants

3D structure in 1987 [5], and in 2001 Hoppe et. al. proposed an approach to use 3D point clouds

to assist in surgery [6]. Given the ubiquity of 3 dimensional structures it is hard to point to a

single origin of point clouds, but the above shows a computational use for over 50 years and one

may surely find applications for 3D positional data reaching back much further. These

applications listed above however are narrow use cases and scientific in nature, and hence can

afford large data volumes. For point clouds to become broadly applicable efficient storage and

representation is needed.

To provide standards for point cloud compression, we look to the ISO/IEC, and particularly

MPEG. MPEG first started investigations into point clouds in 2014 when the 3D Graphics

Coding Group began research into immersive technologies. This prompted a Call for Proposals

in 2017 for 3D coding tools suitable to a wide range of applications culminating in the first 3D

coding standards, V-PCC and G-PCC, published in 2020 [7]. However, as with any compression

standard, work to find more efficient tools is ongoing, with PCGC published in 2021 [8] and

grasp net published in 2022 [9]. Just as in Video Coding, where MPEG 1 was released in the

3

early 1990s [10], and nearly 30 years later new advances are still made, such as MPEGs H.266-

VVC published in 2019 [11], Point Cloud compression can look forward to many years of

development yet to come. We hope that this work can provide a small steppingstone on this path.

1.1 Introduction to Point Cloud Data

Point clouds are a primary means of representing 3D structures digitally. Point clouds consist of

coordinate information and may include attribute information, for example color, opacity, or

reflectivity. Point clouds may be captured in the real word using LIDAR or other distance

sensors, or synthetically generated. Regardless of origins a point cloud consist of a collection of

points (x0, x1,x2, . . ., xN) where each xi consists of at least (x,y,z) coordinates, and may include

any number of attributes ai,0 – ai,K. As this work concerns itself with geometry compression, we

will ignore attribute values going forward.

Given a set of captured coordinates in the world frame, we first transform them into a reference

frame or internal frame system. To achieve this, we must fix a Geometry bit depth n, the number

of bits we want to allocate to each axis element of the geometry. We next determine the

maximum distance in the world frame from the origin and divide this length into 2n segments.

Thus, the resolution is set. We finally take the point volume in the world frame and rotate it such

that the maximum distance is achieved along at least one coordinate axis. The resultant volume is

then divided into cubes of size (2-nx2-nx2-n), where all points falling within one such cube are

associated with its center, and duplicates removed. We now can describe points via integer

coordinates values indicating the cube in which they fall. We have thus voxelized the point

4

cloud. This transformation can be undone by storing the rotation information, geometry bit

depth, and maximum distance in the world coordinate system.

Depending on the value of n, the total number of points and their distribution, point clouds are

classified as either Solid, Dense, Sparse, or Scant. Typically, both geometry bit depth and

number of points increase as point clouds get sparser, however the ultimate decision rests on

density, number of points per smallest volume containing all points. Density is generally around

10-3 for dense point clouds and decreases by an order of magnitude or more for each sparser

category [12]. This reference also lists MPEG approved datasets, which will be drawn from for

our own testing.

Dense and solid point clouds typically represent a single object of focus, while sparser point

clouds are more commonly used to represent scenes, or LIDAR scans for autonomous

navigation. This distinction is not firm and can vary by use case. Next, we will give some

information on possible applications of point clouds.

1.2 Use Cases and Motivation

1.2.1 Artifact Preservation

In cultural preservation, 3D imagining may be used to create realistic renderings of artifacts or

scenes [13]. These can be more immersive and offer greater detail than simple images or video,

and thus allow historians to study objects and scenes in detail without being present, allow us to

preserve cultural heritage for future generation, and enable sharing of cultural goods, such as

museum exhibits, over great distance and in greater detail.

5

1.2.2 Industry

The construction industry also has use for 3D point clouds, as explained in [14], 3D point clouds

may be used to generate accurate 3D models of structures, as well as geometry quality

inspection.

1.2.3 Education

Point clouds for emotional analysis of students, as presented in [15], show promise for

recognizing emotions of learners. This technology could be used to inform an instructor when a

topic is understood or more review is needed, which may be of particular use in remote learning

applications where an instructor might not be able to see the learners.

1.2.4 Autonomous Navigation and Autonomous Vehicles

Use of 3D point clouds in autonomous vehicles is described in [16]. 3D point clouds may be

used to create environment maps and localize a vehicle within an existing map, 3D point clouds

may further be applied in environment perception, for example to locate pedestrians.

6

1.3 MPEG Standardization Efforts.

Having discussed possible applications of point clouds, the need for efficient storage and

transmission becomes evident. As shown on the MPEG-pcc website [7] there is an ongoing

effort to develop coding tools for 3D point clouds, some results, such as V-PCC and G-PCC, are

briefly described below. Point clouds can range in size from less than 1 million data points at 10-

bit geometry or less, up to many millions of points at bit depths of 16 or more bits per axis

element. This can result in uncompressed sizes ranging from 3.07 MB for

longdress_vox10_1300 up to 456.8 MB for ulb_unicorn_hires_vox20 for the geometry alone

[12]. Compared to 23.73 MB for a 4K UHD RGB image with 8-bit color per channel.

(3840x2160x24 bits per frame). Given the possibly very large sizes of point clouds, the need for

efficient representation is clear.

1.4 Current Work and Related Approaches

1.4.1 Video Point Cloud Compression V-PCC

One approach for point cloud compression is to leverage existing 2D image and video

compression tools. This has the advantage of drawing on decades long experience and work in

these fields, however the translation layer of 3D into 2D objects may fail to exploit some of the

structures of the problem that a native 3D approach could. None the less Video based point cloud

coding (V-PCC) is an effective approach with good results.

7

In short V-PCC, as explained in [17], takes a 3D point cloud and projects it onto a 2D surface

from different directions. The thus resulting projections, called patches, can then be coded using

traditional 2D video or image coding standards. At the decoder the 2D coding is first undone to

recover the patches, and finally using metadata about the captured patches the original point

cloud can be recovered.

To lend more detail: The normal vector of each point is estimated and compared with the

available projection directions to group points based on which projection direction best matches

their normal vector. These groups of points are then projected onto a 2D plane where patches are

generated to encode the distance of the point to the projection plane, while the other 2

coordinates of the point remain the same. To overcome auto-occlusions, as more than 1 point

may be mapped to one location on the reference plane, this approach allows for multiple

remedies: A near and far image may be created, encoding geometry points at different distance

intervals from the reference plane. The number of projection directions may be increased, instead

of for example using the 6 faces of a bounding cube, planes at 45-degree angles may be added.

Additionally, any points that are still left uncoded at the end of the regular coding process may

be added to auxiliary patches and coded directly. The exact choice of which tools to use depends

on the desired encoding complexity and performance. Once the 2D patches are generated, they

are packed into 2D images. For efficient 2D coding they must be packed as tight as possible.

Empty space between Patches is filled in a manner to improve compression.

Once this is done an occupancy map is generated to indicate which pixels in the 2D image are

valid and which were filled to aid 2D coding. Finally, Meta data about patch orientation and

projection direction is encoded. If attribute information is to be transmitted as well, it can be

mapped into 2D patches and images in a similar manner, taking advantage of the geometry

8

projections determined above. The resulting images can then be coded using any image or video

coding standard.

1.4.2 Sparse Tensor Point Cloud Geometry Compression Sparse-PCGC

Point Cloud Geometry compression using Sparse Tensor based Multiscale Representation is

proposed in [18]. This is a down sampling-based approach, where only level i-1 and i are

considered at a time. Level i-1 is the down sampled version of level i by 2 in every direction. The

approach considers Positively Occupied Voxels (POV), Negatively Occupied Voxels (NOV),

and Most-Probable Positive Occupied Voxels (MP-POV). If a voxel at level i is a POV then the

down sampled group of 8 voxels at level i-1 this voxel belongs to is also a POV. Likewise for

NOVs.

The decoder receives the down-sampled version of the point cloud from level i-1, as well as a

local neighborhood geometry feature stream. This information is passed to a sparse CNN where

features from level i-1 are aggregated, the point cloud is up sampled from level i-1 to level i,

converting every POV at level i-1 to 8 MP-POV at level i. Geometry features are again

aggregated here, and occupation probability for MP-POVs is estimated, a threshold can be

applied to finally decide on occupation status.

At the encoder, along with down sampling, a Sparse Local Neighborhood Estimation is

preformed which attempts to encode the local neighborhood information into features to be sent

to the decoder along with the down sampled point cloud.

9

Different variations exists where parts of MP-POV groups are treated differently, for example an

8-stage mode is presented that treats each of the 8MP-POVs in an up sampled block

independently and uses information from previously decoded MP-POV for the next MP-POV.

This improves results but increases complexity.

This method only requires 2 adjacent levels of a point cloud and uses the same architecture for

all adjacent levels. This greatly improves efficiency compared to a model using all resolution

layers of a point cloud but may fail to account for changing distributions at different scales.

1.4.3 Geometry Point Cloud Compression G-PCC and MPEGs TMC-13

G-PCC is the basis for the current MPEG test model for Geometry point cloud compression. It is

implemented as MPEGs TMC-13 [19,20] We will briefly describe the geometry coding portion

of G-PCC, both to give background, and as TMC-13 will perform the encoding and decoding of

point clouds after processing via the proposed method.

Point cloud coordinates are first transformed from world coordinated to frame coordinates, as

described above. Points are vowelized, that is a resolution, d, is chosen and the bounding box is

divided into 2d segments in each direction resulting in unit cubes. This forms the 3D analog to

pixels. Coordinate points are then grouped with the center of the voxel into which they fall, if

more than 1-point falls into a voxel it is removed, and we are effectively down sampling the

point cloud.

To code this information the point cloud is represented as an octree, the original bounding box

containing all points is the root of the octree, it is then divided into 8 cubes, each of these 8 cubes

10

is again divided into 8, until a desired level of depth is reached. At each level occupancy of each

cube can be signaled using 1 bit. A cube is empty if no occupied voxels are contained within it, it

then receives 0 in the octree and its branch is terminated. This fashion proceeds until a certain

level of depth, where the leaves indicate individual voxels. If the depth of the tree is equal to the

resolution d chosen for voxelization then no down sampling is preformed, if it is less a down

sampling occurs, and a tree depth larger then voxel resolution has no benefit.

The thus generated octree symbols are then entropy coded. The tree may be coded either in a

tree-fashion, where occupancy at each level is coded sequentially, or in a Direct coding mode

(DCM), where the location of individual points is signaled directly. DCM is useful to code

outlying nodes in otherwise empty neighborhoods, as it reduces overhead for those points and

allows for better estimation of distributions in areas where points are grouped densely. Entropy

coding of Octrees is complex, and not directly at the heart of this work, therefore we will not go

beyond this brief overview.

1.4.4 Geometric Residual Analysis and Synthesis for Point Clouds: GRASP

The approach proposed in [21] was selected as the framework into which this work will

eventually be integrated, although our approach presented here may be useful in other

frameworks or in a stand-alone fashion. Here we will introduce the GRASP-NET approach.

GRASP exhibits some similarity to intra prediction in video and image coding but adapts this to

3D geometry and applies ML to handle the irregular structure. In brief: an incoming Geometry

point cloud (GPC) is first quantized, and the quantized version is transmitted to the decoder. At

11

the encoder the quantized version is dequantized to create a coarse version of the GPC. The

coarse version is subtracted from the input point cloud to generate a residual. This residual is

processed by an ML architecture, the output of which is then entropy coded and sent to the

decoder as a refinement bitstream. Here the process is performed in reverse and the point

reconstructed

To provide more detail: Consider an incoming geometry point cloud and quantize it. The

quantized point cloud is entropy coded and sent to the decoder; at the encoder it is dequantized to

obtain a coarse point cloud.

This coarse point cloud and the original point cloud are passed to a geometry subtraction module

using kNN to associate groups of points in the input cloud with points in the coarse point cloud.

These sets of points are then passed to a Point Analysis Network to generate latent features for

each point in the coarse point cloud. These latent features are down sampled using CNN

architecture to remove redundancy, and finally the down sampled feature set is entropy coded

and sent to the decoder.

At the decoder the coarse point cloud is constructed by dequantizing the quantized version, as

was done in the encoder. Down sampled latent feature bitstream is passed to a CNN with de-

convolutional layers and then passed through a Point syntheses network consisting of multiple

MLPs to reconstruct an approximation of the residual obtained in the encoder. This

approximated residual, along with the coarse point cloud are passed to a geometry addition

model, the output of which is the reconstructed point cloud. For comparison purposes in this

work we will use the quantized-dequantized point cloud generated by grasp-net as an anchor, as

this is the component we aim the replace in later integration.

12

2. BACKGROUND

2.1 Notation and Point Cloud Structure

Geometry point clouds can be viewed as collections of length 3 vectors. Each such vector

describes one point. In the frame coordinate system, all components are integers with the

maximum value fixed by the bit depth. For a bit-depth n, the greatest value of any component is

2n-1. We define the axes as X, Y and Z, where the first point in a vector is assigned the X-axis,

the second the Y-axis and the 3rd the Z-axis. For the purpose of compression, this assignment is

arbitrary so long as it is consistent.

Let us now define some notation: Input point clouds in the frame coordinate system will be

denoted 𝒳 with indexing space 𝐼(𝒳), its axis wise components we will denote as X, Y and Z.

Let 𝒴 be the point cloud after wavelet transform, with indexing space 𝐼(𝒴), and denote its axis

wise elements as 𝓍, 𝓎 and 𝓏

Further consider axis wise transform blocks ℬ𝑎,𝑖 where a denotes the axis and i the transform

block number. Elements in each axis are split into transform blocks such that all elements in a

Transform block are continuous, where continuity will be defined below.

Using this definition each Axis can be written as a collection of transform blocks, that is

𝑋 = {ℬ𝑥,0, ℬ𝑥,1, ℬ𝑥,2, . . . ℬ𝑥,𝐾}, 𝑌 = {ℬ𝑦,0, ℬ𝑦,1, ℬ𝑦,2, . . . ℬ𝑦,𝐾}, 𝑍 = {ℬ𝑧,0, ℬ𝑧,1, ℬ𝑧,2, . . . ℬ𝑧,𝐾}

13

Where ℬ𝑥,𝑖, ℬ𝑦,𝑖, ℬ𝑧,𝑖 contain the X, Y, Z coordinate components for all points in transform block

i and are ordered. We denote transform blocks after wavelet transform as ℬ̂𝑥,0 where the letter

subscript denotes the axis and the number the index of the transform block.

2.2 Wavelet Transform and Arbitrary Region Of Support Wavelet Transform

2.2.1 Wavelet Transform

We will begin this section by reviewing a standard wavelet transform and expand to the AROS

wavelet transform used in this work. Sub Band coding schemes are described in detail in [22].

The 5/3 filters chosen for this work are developed in [23], where the authors note the 5/3 filters

ability to create “visually pleasant and smooth outputs” and additionally point out that 5/3 filters

may be implemented with a limited number of shifts and adds, resulting in a lower computational

complexity, a valuable property for any compression approach. We will thus move forward with

the 5/3 filters.

Consider a signal S of even length and define analysis low and high pass filters h and g.

The standard wavelet transform is performed by first odd symmetrically extending S, then

filtering by both h and g, and finally down sampling the filtered results into Low-Pass and High-

Pass components, where the Low-Pass filtered result retains elements on even indices and the

High-Pass filtered result those on odd indices.

Let: 𝑆 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑁), ℎ = (ℎ0, ℎ1, ℎ2, ℎ3, ℎ4), 𝑔 = (𝑔0, 𝑔1, 𝑔2)

14

Where N is even, and h and g are the biorthogonal 5/3 filters analysis filters. First, we odd-

symmetrically extend S by 2 samples on each side.

𝑆𝑒𝑥𝑡 = (𝑥2, 𝑥1, 𝑥0, 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑁−2, 𝑥𝑁−1, 𝑥𝑁 , 𝑥𝑁−1, 𝑥𝑁−2)

Next, we filter by convolution

𝑆𝑙𝑝−𝑐𝑜𝑛𝑣 = 𝑆𝑒𝑥𝑡 ∗ ℎ and 𝑆ℎ𝑝−𝑐𝑜𝑛𝑣 = 𝑆𝑒𝑥𝑡 ∗ 𝑔 giving:

𝑆𝑙𝑝−𝑐𝑜𝑛𝑣[𝑖] = ∑ 𝑆𝑒𝑥𝑡[𝑛 + 𝑖]ℎ[𝑛]

5

𝑛=0

; 𝑖 ∈ [0,1, . . . , 𝑁]

𝑆ℎ𝑝−𝑐𝑜𝑛𝑣[𝑖] = ∑ 𝑆𝑒𝑥𝑡[𝑛 + 𝑖 + 1]𝑔[𝑛]; 𝑖 ∈ [0,1, . . . , 𝑁]

3

𝑛=0

We note first that we’ve used symmetry in the filters to simplify the convolution sum, secondly

by adding an offset of 1 in the summation for the shorter high pass filter we can use the same

extended signal for both convolutions. The result of the convolution will have the same length as

the input.

After convolution we must down sample to obtain 𝑆𝐿𝑃 = 𝑆𝑙𝑝−𝑐𝑜𝑛𝑣[0: : 2] and 𝑆𝐻𝑃 =

𝑆ℎ𝑝−𝑐𝑜𝑛𝑣[1 ∷ 2]. Where we use the notation [a::b] to signify that we retain the sample at index a,

and every b-th sample thereafter.

Reconstruction is the opposite of decomposition, we first up sample high and low pass signals,

inserting 0s at odd indices for Low-Pass and at even indices for High-Pass. Next, we odd-

symmetrically extend and filter by the Synthesis high and low pass filters. The results are added

element wise, and the original signal is recovered.

15

To achieve compression in this approach we transmit and reconstruct using only the Low-Pass

components. Thus, we only need to generate the Low-Pass component.

To describe the method used here: consider Sext as the odd-symmetrically extended input signal,

filter as described above and retain only those samples on even indices.

𝑆𝑙𝑝 = (𝑆𝑒𝑥𝑡 ∗ ℎ)[𝑖]; 𝑖 𝑒𝑣𝑒𝑛

Slp can be transmitted or processed further. To recover the input from Slp we must first up sample

and then extend odd-symmetrically, and finally filter by the synthesis Low-Pass, denoted ℎ̅:

 𝑆𝑙𝑝−𝑢𝑠[𝑖] = {
𝑆𝑙𝑝 𝑖 𝑒𝑣𝑒𝑛

0 𝑖 𝑜𝑑𝑑

 𝑆𝑙𝑝−𝑒𝑥𝑡 = (𝑆𝑙𝑝−𝑢𝑠[2], 𝑆𝑙𝑝−𝑢𝑠[1], 𝑆𝑙𝑝−𝑢𝑠[0], 𝑆𝑙𝑝−𝑢𝑠[1], . . .,

𝑆𝑙𝑝−𝑢𝑠[𝑁 − 2], 𝑆𝑙𝑝−𝑢𝑠[𝑁 − 1], 𝑆𝑙𝑝−𝑢𝑠[𝑁], 𝑆𝑙𝑝−𝑢𝑠[𝑁 − 1], 𝑆𝑙𝑝−𝑢𝑠[𝑁 − 2])

𝑆𝑟𝑒𝑐 = 𝑆𝑙𝑝−𝑒𝑥𝑡 ∗ ℎ̅

Srec is now an approximation of the input signal recovered from the Low-Pass component only.

This manner of wavelet transform is suited for even length signals with 4 or more samples, in the

next section we will extend it to arbitrary length signals.

2.2.2 AROS Wavelet Transform

Above we explained the standard wavelet transform. This transform is suitable for continuous

signals, but if large discontinuities exist within a signal, intermediate points to bridge the

discontinuity will be introduced by the filtering operation. For point cloud geometry compression

16

this would create outlying points where previously there were none. Hence, we need an approach

to only consider signals with values that are close.

We will use the transform blocks ℬ of continuous regions in each axis introduced in 2.1. To

prevent creation of outlier points we will perform wavelet transforms on these Blocks

independently, and then concatenate the results from all such blocks in an axis to create the

transformed coordinate axis. This presents 2 immediate problems. Blocks may have odd or even

length, and furthermore if we always started down sampling at the first element in a block, as

we’ve done in the standard wavelet transform, the number of points in the low pass component

can vary widely. To see this, consider the case where all transform blocks are length 3, the

resultant Low-Pass signal would have 2/3 the length of the input signal instead of half.

Thus, we apply the AROS wavelet transform as described in [24], where down and up sampling

indices are informed by the original index space 𝐼(𝒳) and not the index space 𝐼(ℬ) of transform

blocks. In a sentence: we start down and up sampling at those points that occupy even indices in

𝒳, regardless of their index parity in the transform block ℬ. The difference is then:

 𝑆𝑙𝑝[𝑗] = 𝑆𝑐𝑜𝑛𝑣[𝑖] 𝑖𝑓 𝐼(𝑖) 𝑖𝑠 𝑒𝑣𝑒𝑛

 𝑆𝑙𝑝−𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒[𝑗] = {
𝑆𝑙𝑝 𝐼(𝑗) 𝑒𝑣𝑒𝑛

0 𝐼(𝑗) 𝑜𝑑𝑑

Where, in a slight abuse of notation we take 𝑖 ∈ 𝐼(ℬ) and 𝐼(𝑖) to be the mapping of 𝑖 to 𝐼(𝒳),

that is i is the index within the transform block, and 𝐼(𝑖) maps this index to the original point

cloud.

This new means of Down and Up sampling brings with it the need for an additional parameter

we will call Transform Parity, or T-parity for short. In the standard wavelet transform the length

17

of the reconstructed signal can be inferred from the number of received Low-Pass components

alone, however with the AROS up/down sampling scheme the number of received Low-Pass

components does not fix the number of elements in the input signal. Depending on the parity of

the start index in the original indexing space and the number of elements in the transform block 4

different cases exist for the same number of received Low-pass coefficients. They are listed in

Table 1.

Table 1: Cases Resulting in 2 Received Symbols. the filtered signal shows the filtered transform

block and the preceding / following values needed to explain the different cases, assume that this

is the very start of the overall input signal. The transform block in question is indicated by using

Capital, Bold letters, values not in the current transform block are lower case letters. The Down

sampled column shows the result after down sampling the current transform block only. Ideal up

sampled components shows the result we should obtain after up sampling for ideal

reconstruction. T-parity of current block and T-parity of next block show the parity of the start

index of the current and next block respectively, in the input indexing space. These quantities

allow us to correctly infer reconstructed length.

Case Filtered signal in

original indexing

space

Down

sampled

components

Ideal up

sampled

components

T-parity of

current

block

T-parity of

next block

Even-start,

Even-length

[A, B, C, D, e, f, . . .] [A, C] [A, 0, B, 0] Even Even

Odd-start

Even-length

[a, B, C, D, E, f, g, . .

.]

 [C, E] [0, C, 0, E] Odd Odd

Even-start

Odd-length

[A, B, C, d, e, g, . . .] [A, C] [A, 0, C] Even Odd

Odd-start

Odd-length

[a, B, C, D, E, F, g, h,

. . .]

[C, E] [0, C, 0,

E,0]

Odd Even

18

We see that the 4 cases listed all produce the same number of low pass coefficients, but that 3

different lengths of the input signal are possible. Furthermore, the placement of 0s in up

sampling is not consistent either. If we track the parity of the start index of all transform blocks

in the original index space, as shown in the table under the T-parity columns, we can infer the

given case by looking at the current and next transform parity. Thus T-Parity must be either

signaled or inferred at the decoder. Section 2.5 gives details on how this is done.

The nature of point clouds give rise to 2 special cases. Transform blocks are unrestricted in

length. Since our longest filter is length 5, we need to extend at most by 2 elements on either

side. Hence any signal of at least 3 elements can be odd-symmetrically extended in a normal

fashion. Signals of length 2 or less cannot.

Length 1 signals cannot be filtered using wavelet transforms, as we require at least 1 Low-Pass

and 1 High-Pass component, even if we do not send the High-Pass component. Hence the only

way to treat isolated points is to scale and copy them directly to the High-Pass or Low-Pass

components, depending on the parity in 𝐼(𝒳) they occur at, or remove them in pre-processing.

Length 2 signals can be filtered but need a special extension procedure. The extension used here

is as follows: we first perform odd-symmetric extension by the 1 sample available to us, then

repeat the procedure on the result. This is shown below, where the original signal is marked in

bold

𝑆𝑖𝑛 = (𝒙𝟎, 𝒙𝟏)

𝑆𝑒𝑥𝑡−1 = (𝑥1, 𝒙𝟎, 𝒙𝟏, 𝑥0)

𝑆𝑒𝑥𝑡−2 = (𝑥1, 𝑥0, 𝑥1, 𝒙𝟎, 𝒙𝟏, 𝑥0, 𝑥1, 𝑥0)

19

Since we need at most an extension by 2 elements the result is:

𝑆𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 = (𝑥0, 𝑥1, 𝒙𝟎, 𝒙𝟏, 𝑥0, 𝑥1)

Which has the convenient property of being 3 concatenated copies of the input signal. Other

filter choices beyond the 5/3 filter are possible, only the extension would have to be adjusted.

A final challenge in filtering point clouds is bit-expansion. Given the 5/3 filters a bit expansion

may occur for higher value signals. The 5/3 filters in their original form are given in table 2

below.

Table 2: Original 5/3 Biorthogonal Filter Values.

Filter name Values

Analysis Low pass h
√2 (

−1

8
,
1

4
,
3

4
,
1

4
,
−1

8
)

Analysis High pass g
√2 (

1

4
,
−1

2
,
1

4
)

Synthesis Low Pass ℎ̅
√2 (

1

8
,
1

4
,
−3

4
,
1

4
,
1

8
)

Synthesis High Pass 𝑔̅
√2 (

1

4
,
1

2
,
1

4
)

This produces a gain of more than 1 for some signals in the low pass components. This is

problematic for higher values. An example of a constant signal k will illustrate the problem.

Let ℬ𝑥,𝑙 = (𝑘, 𝑘, 𝑘)

20

 𝑡ℎ𝑒𝑛 ℬ̂𝑥,𝑙 = √2 [(
−1

8
𝑘 +

1

4
𝑘 +

3

4
𝑘 +

1

4
𝑘 +

−1

8
𝑘) , (

−1

8
𝑘 +

1

4
𝑘 +

3

4
𝑘 +

1

4
𝑘 +

−1

8
𝑘) , (

−1

8
𝑘 +

1

4
𝑘 +

3

4
𝑘 +

1

4
𝑘 +

−1

8
𝑘)] = √2(𝑘, 𝑘, 𝑘)

where we omitted to show the odd-symmetric extension for simplicity.

if k = 2n-1, the largest possible value for the given geometry bit depth, the resultant transform has

values exceeding the geometry bit depth. This is problematic in entropy coding. The solution is

simple: Since the condition we want to enforce is DC-gain of 1 in the reconstructed point cloud,

we can apply our scaling in either analysis or synthesis. If we push all scaling to the decoder, we

can keep a scaling of at most 1 in the Low-pass component on the synthesis side, and DC-gain of

1 in the reconstructed point cloud. This can be achieved by multiplying the filter coefficients by

1/√2 in the encoder, and by √2 in the decoder. The filter values used here are shown in table 3.

Table 3: 5/3 Biorthogonal Filters as Used in this Work.

Filter name Values

Analysis Low pass h
 (

−1

8
,
1

4
,
3

4
,
1

4
,
−1

8
)

Analysis High pass g
 (

1

4
,
−1

2
,
1

4
)

Synthesis Low Pass ℎ̅
2 (

1

8
,
1

4
,
−3

4
,
1

4
,
1

8
)

Synthesis High Pass 𝑔̅
2 (

1

4
,
1

2
,
1

4
)

21

2.3 Quantization

To achieve variable rate, we must quantize our filtered results. The quantization approach used

here is a version of the approach from [9] adapted to work with our code. If we consider the

Transformed point cloud 𝒴 the quantization applies a scaling of less than 1 to two of the three

coordinates. Suppose we have a point

𝒚𝜖𝒴, 𝒚 = (𝑦1, 𝑦2, 𝑦3)

and wish to quantize if by a factor s, the resultant point will be

𝑄(𝒚) = 𝒚̃ = (𝑦1, 𝑠𝑦2, 𝑠𝑦3), 𝑠 ≤ 1.

We do this for all points. Inverse quantization is achieved by

𝑄−1(𝒚̃) = 𝒚̅ = (𝑦1,
1

𝑠
𝑦2,

1

𝑠
𝑦3),

where s is shared across the encoder and decoder. In addition to creating duplicate points that can

be removed this approach forces points closer to each other, which is beneficial in entropy

coding, as the next section will explain.

2.4 Geometry Entropy Coding

The entropy coder used here is MPEGs TMC-13 software, source code obtained from [20] and

complied locally, details on the approach are listed in [19]. TMC-13 is an Oct-tree encoding

scheme that successively subdivides the space into 8 cubes, and signals occupancy for each cube

22

using 1 bit. Thus, a tree is formed, where the leaf nodes represent individual points, and the root

captures the whole space. The value of the Quantization approach in combination with this

entropy coding scheme is that points are concentrated in fewer cubes as scaling by less than 1

“pushes” cubes toward the origin in the y and z directions. This reduces the number of occupied

cubes per level.

Given that at each level we subdivide all cubes into 8 octants, each eliminated cube reduces the

number of bits in all subsequent layers by up to 8d where d is the depth wise distance from the

removed node. This saving can be substantial and reduces the entropy under the given coding

scheme compared with uniform down sampling or other approaches that remove points in a less

systematic fashion. This approach is also described in 1.4.3.

2.5 Symbol Stream Parsing

As stated in 2.2.2, we need the parity of start indices in the original index space to reconstruct to

the proper length, and with proper up sampling. Additionally, since we concatenate all the

transform blocks after the AROS transform, we need to determine where one block ends and the

next begins. We do this by explicitly sending start indices and T-parity symbols. Depending on

the chosen continuity condition these quantities may or may not be inferable from the bitstream.

The strictest continuity condition is to allow adjacent values to be none decreasing only and

differ by at most one.

∀𝑥𝑖 , 𝑥𝑖+1 ∈ ℬ𝑖 ∶ 𝑥𝑖+1 𝜖{𝑥𝑖, 𝑥𝑖 + 1}

23

For this strict definition start indices of transform blocks cannot be inferred from the Low-Pass

symbol stream alone, to show this consider 2 adjacent transform blocks

ℬ0 = (𝑛, 𝑛 + 1, 𝑛 + 2, 𝑛 + 3, 𝑛 + 4, 𝑛 + 4)

ℬ1 = (𝑛 + 6, 𝑛 + 6, 𝑛 + 7, 𝑛 + 8, 𝑛 + 9, 𝑛 + 10)

𝑛 ∈ ℤ+

And their Low-Pass Wavelet transforms

ℬ0̂ = (. . . , 𝑛 + 2, 𝑛 +
25

8
, 𝑛 + 4, 𝑛 +

17

4
)

ℬ1̂ = (𝑛 +
21

4
 , 𝑛 +

23

4
, 𝑛 +

55

8
, 𝑛 + 8, . . .)

Consider first the case where ℬ0 has even T-parity, that is the first value occurs on an even index

in the original index space. The Low-Pass symbol stream after down sampling would then be:

𝒳𝑇−𝑒𝑣𝑒𝑛 = (. . . , 𝑛 + 2, 𝑛 + 4, 𝑛 +
21

4
, 𝑛 +

55

8
, …)

and the element wise difference is

𝒳𝑑𝑖𝑓𝑓−𝑒𝑣𝑒𝑛 = (. . . ,2,
𝟓

𝟒
,
13

8
, …) = (2, 𝟏. 𝟐𝟓, 1.625)

For Odd T-parity we obtain

𝒳𝑇−𝑜𝑑𝑑 = (. . . , 𝑛 +
25

8
, 𝑛 +

17

4
, 𝑛 +

23

4
, 𝑛 + 8, …)

24

𝒳𝑑𝑖𝑓𝑓−𝑜𝑑𝑑 = (. . . ,
9

8
,
𝟑

𝟐
,
9

4
, …) = (1.125, 𝟏. 𝟓, 2.25)

Where the difference value at the block boundary is marked in bold for both cases.

In both parity cases we see that we have differences internal to the blocks that are greater than

the difference at the block boundary. This means we cannot infer block boundaries using a lower

bound on the differences at block boundaries. Since differences across block boundaries can be

large for far separated blocks, we cannot use an upper bound here either. Hence block boundaries

are not distinguishable by difference alone for all cases. As we have no other way of knowing

how long a transform block is at the decoder, we cannot in general tell which value is at the

boundary of a transform block. Therefore, we must signal this quantity explicitly, at least for the

continuity definition described above. A similar counter example can be constructed to show

Transform parity cannot be inferred in all cases either, so we choose to signal explicitly. The

continuity condition chosen was ultimately less strict than the one used in this example.

However, we tested several definitions, and explicitly signaling Start Index and T-Parity

simplified testing greatly. Once an optimal continuity condition is decided the ability to infer

these quantities from the symbol stream should be tested again.

2.6 Objective Quality Assessment

Objective quality measurements for point clouds are defined by the ISO in [25] and further listed

on the reporting template [26]. MPEG currently considers two different quality metrics and one

rate metric, rate, PSNR D1 and PSNR-D2.

25

The rate is defined as

𝑅𝑎𝑡𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑒𝑛𝑐𝑜𝑑𝑒𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑

measured in bits per point (bpp). Here the number of bits produced by the encoder should

include all information needed to reconstruct the point cloud. For this approach that includes the

bits in the base geometry bitstream as well as 2 streams of SEI, whose generation will be

explained in section 3. As the base geometry bitstream is saved after entropy coding its size can

be read directly from the file or gathered via pythons os library. SEI information will be

estimated at the Shannon entropy limit, details are provided in section 3.6.

In addition to bpp metrics to assess the accuracy of reconstruction are also defined. In [25] the

ISO proposed Common Training and Test Conditions to evaluate point cloud compression

schemes submitted. For geometry only 2 objective quality metrics are proposed: PSNR-D1 and

PSNR D2. We will briefly explain both and then justify our choice.

PSNR-D1 considers a point cloud to be evaluated, P2, and a reference point cloud P1. Using the

nearest neighbor algorithm every point in P2 is associated with a point in P1. Euclidian distance

between the points is measured as the difference vector between them and denoted 𝑉(𝑖, 𝑗). The

MSE is calculated as

𝑒𝑃1,𝑃2(𝑖) = ||𝑉(𝑖, 𝑗)||
2

2
; 𝑚𝑠𝑒𝑃1,𝑃2 =

1

𝑁
∑ 𝑒𝑃1,𝑃2(𝑘)𝑁

𝑘=0 ;

This process is repeated with the roles of P1 and P2 reversed, to find 𝑚𝑠𝑒𝑃2,𝑃1. PSNR-D1 is

finally defined as

𝑃𝑆𝑁𝑅 − 𝐷1 = 10 log10 (
3 ∗ (2𝑛)2

max(𝑚𝑠𝑒𝑃1,𝑃2, 𝑚𝑠𝑒𝑃2,𝑃1)
)

26

where n is the geometry bit-depth. This definition is chosen such that quality results are

consistent regardless of submission order of point clouds.

A second metric, called PSNR-D2, or point to plane metric exists. As PSNR-D1 it considers a

test point cloud and a reference point cloud and associates each point in the test-cloud with a

point in the reference cloud using the nearest neighbor algorithm. However instead of calculating

the error between these points directly a surface plane in the reference point cloud is defined in

the local neighborhood of the identified point and the planes normal vector calculated. The

distance vector between the reference point and the test point is then projected onto the normal

vector. The resultant vector forms the basis for MSE calculation, and the remainder of the

procedure is as in D1 metric.

The quality measurement tool used here is pc_error, it is used in PCGC [8] and Grasp net [9]. To

produce PSNR-D2 pc_error requires a file with surface normals. The data we have available

does not include these normal vectors, and hence we are limited to presenting RD results using

the D1 metric only.

Additional Objective Metrics are proposed in [30]. Four basic groups of features are considered,

Geometry based, Normal based, Curvature based, and Color based, where each feature type

considers 6 different statistical measures to assess content quality, applied on group sizes of

6,12,24 and 48. Of all considered features Color based features correlate best with Subjective

opinion scores, however our work does not include color, making these results of little use to us.

The authors of [30] tested their methods using 2 datasets, and the performance of different

metrics varies. Overall curvature-based metrics are successful, as is the standard deviation within

a local group. Assessing the quality of the proposed result via these metrics may lead to

27

additional insights, however given only the consideration of MSE based metrics in

standardization work we have elected to present only those.

28

3. WAVE-GRASP

This section will first give an overview of WAVE-GRASP and then explain the different

components in detail. Wave GRASP is a lossy wavelet geometry compression approach that

aims to improve on the quantization-inverse quantization approach for coarse point cloud

compression used in [9]. The core principle is to replace simple quantization-inverse

quantization with an Arbitrary Region of Support (AROS) wavelet transform along coordinate

axes followed by quantization. The wavelet transform not only reduces the number of input

points overall, but also causes an energy concentration, allowing us to cover more energy of the

point cloud in fewer points. This comes at the cost of higher latency and requires us to sort the

geometry to create continuous regions for good results.

3.1 Overview

The input to wave-grasp is the geometry component of a point cloud transformed to the frame

coordinate system. This gets passed to a pre-processing block to facilitate the AROS transform.

Here the cloud is sorted to reduce to total number of transform blocks and isolated points can be

removed. Next, transform blocks are identified jointly in all 3 axes. The values within each

transform block for each axis are then transformed using the AROS wavelet transform where

Supplemental Encoder Information (SEI) regarding start indices in the symbol stream of the

different transform blocks, as well whether the transform blocks start on indices with odd or even

29

parity is generated. The result is concatenated back into a point cloud and quantized by scaling 2

of the 3 axis components by a factor less than 1. Duplicate values thus created need to be

removed and the SEI updated accordingly. Once this is done, we can entropy code the result. The

base geometry will be encoded using the TMC-13 codec. To report RD results, we estimate the

bits needed for SEI as the entropy limit. The decoder first decodes the bitstream, then inverse-

quantizes the result, and finally performs the inverse wavelet transform, resulting in a

Reconstructed point cloud. An overview of this process is provided in figure 2, and the

individual steps will be explained in the following sections.

Figure 2 WAVE-GRASP System Overview. Green blocks are core components of WAVE-GRASP,

while quantization (purple) and entropy coding(red) can be replaced with any quantization and

entropy coding scheme respectively, so long as input-output relationships are maintained.

Yellow blocks are pre-preprocessing blocks. Input and output blocks are colored blue, and the

theoretical bitstream size estimation occurs in the grey block.

30

3.2 Preprocessing: Sorting and Isolated Point Removal

Geometry components of point clouds are in general order agnostic, to visualize a point cloud we

simply occupy the signaled points. However, to successfully implement an AROS-wavelet

transform we require continuous segments. The continuity will be defined in section 3.3, for now

it suffices to say that each continuous segment requires 2 symbols of SEI, and furthermore

segments of length 1, i.e. isolated points, pose issues in transform. Therefore, we need to sort the

point cloud to minimize the total number of continuous segments and isolated points.

The sorting algorithm used here first sorts all points in the Point cloud jointly, first sorting in

ascending order by the X-component, then Y then Z. We will call this sorting “Ascending sort”,

as it will be used throughout this process. Ascending sort creates an array where the X-

component is non-decreasing, Y-components are non-decreasing within each constant X-

segment, and Z-components are non-decreasing within each constant Y-segment. This approach

exhibits good continuity in the X and Y axes, but very poor continuity in the Z-axis.

The next step in sorting we will refer to as “Sort for Transform” here we take the first point in

the ascending point cloud and find all points where the Y and Z components are continuous. Off

all these points we then select the first one found.

In practice, since we sort by X-first, even if we only check the Y and Z components for

continuity the first selected point is likely to also be continuous in the X-axis, but computational

cost is reduced by only checking 2 of the 3 components. Experiments show that this approach

yields results comparable to checking all 3 axes explicitly. In figure 3 below we can see that

checking all 3 axes instead of just the Y and Z has little effect, as shown by the blue and grey

31

curves, but allowing a decrease between adjacent points does yield some benefit. Note that base

grasp can achieve perfect reconstruction at 1.02 bpp for this test case, so the far-right side of this

graph is not relevant.

Figure 3 RD at Different Sorting Schemes for Longdress_vox10_1080. The blue curve sorts by

X, Y and Z axis, and allows adjacent values to decrease by 1. The Orange curve sorts X, Y and Z

as well but does not allow decreases, Grey, and Yellow repeat this pattern but only consider the

Y and Z axis. Under the proposed approach sorting by X in addition to Y and Z has little effect,

however allowing decreases between adjacent points yields gains around 2dB at low bit rates.

60.0

62.0

64.0

66.0

68.0

70.0

72.0

74.0

76.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

D
1

-P
SN

R

bpp

different sorting schemes for longdress-vox10

X,Y,Z, allow decrease X,Y,Z no decrease Y,Z allow decrease Y,Z no decrease

32

Once we have selected a point that is continuous, we append it to the current transform block and

delete it form the input array. We then search for a point continuous to the point we just found, in

the same fashion. This approach continuous until we can no longer find continuous points. Now

the current transform block is complete and gets written out to the sorted array. We resort the

input array with all processed points removed using Ascending sort described above and repeat

the Sort for transform process. This continues until all points in the input have been processed.

After the sorted point cloud is obtained in the above manner, we remove all isolated points. An

isolated point is defined as a continuous segment of length 1. These are disadvantageous to the

AROS transform, as they incur large SEI overhead and increase geometry bitstream size for little

improvement. Two examples, one for the sparse staue-klimt (sic) and another for the dense

soldier vox-12 Point Clouds are shown in figures 4 and 5 respectively. These plots show that

including isolated points leads to worse results. This is caused not only by increased SEI, but

also by the increased size of the base geometry bitstream, as the entropy coder now needs to

contend with a number of isolated points that are inefficient to represent.

33

Figure 4 Staue-klimt With and Without Isolated Points in the Low Pass Component. Neither case

is superior to base-grasp here, the SEI the case with isolated points yields nearly no benefit,

while excluding isolated points is at least beneficial in the low bitrate regime. Thus, we conclude

removing isolated points is beneficial here. Note that iso-pts stands for isolated points

45.0

50.0

55.0

60.0

65.0

70.0

75.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

D
1

-P
SN

R

bpp

staue-klimt effect of including isolated points

wave-grasp Shannon SEI No iso-pts wave-grasp No SEI No iso-pts

wave-grasp Shannon SEI w. iso-pts wave-grasp No SEI w. iso-pts

base-grasp

34

Figure 5 Soldier vox-12 With and Without Isolated Points in the Low Pass Component. This plot

clearly shows that removing isolated points is beneficial. Note that this graph only considers

quantizer scales between 0.1 and 1, while the results graph presented below considers quantizer

scales as low as 0.01. We choose to include less scale points here to create an easier to follow

graph.

The sorting applied here is not necessarily optimal but is reasonably computationally efficient

and provides satisfying results for Solid point clouds. Future iterations of this work should first

focus on improving the sorting. Furthermore, sorting can be computationally expensive, but this

step may be pushed to the capture side and removed from the encoding process if desired. Once a

sorted point cloud is obtained it does not have to be sorted again.

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

D
1

-P
SN

R

bpp

soldier-vox12 effect of including isolated points

wave-grasp Shannon SEI No iso-pts wave-grasp No SEI No iso-pts

wave-grasp Shannon SEI w. iso-pts wave-grasp No SEI w iso-pts

base grasp

35

3.3 Transform Block Identification

Figure 6 Transform Block Identification and AROS Transform Closeup.

Once the point cloud has been sorted, we can identify transform blocks. The AROS transform

preforms an independent wavelet transform on blocks of arbitrary length; this unit, shown on the

36

left side of figure 6, is intended to furnish those blocks. As long as points within transform

blocks do not differ substantially in value and the transform block is longer than 1 element the

reconstruction quality from the block is not greatly affected by length. However, the amount of

SEI needed and the length of the geometry bitstream itself may increases with number of

transform blocks. Hence, we want as few as possible.

Components will be transformed axis wise, as shown in the right half of figure 6. It may be

tempting to define different transform blocks for each axis individually as a discontinuity in one

axis does not necessarily imply a discontinuity in all axes. This is not advisable as it causes an

index drift in the SEI update function.

Transform blocks are identified by finding all indices where adjacent values in any axis differ by

more than 3. While a stricter definition of continuity would lead to a more accurate wavelet

transform, it would also increase the number of continuous sections and isolated points, which

adversely affects bpp. Having a continuity threshold of +-3 allows points that would otherwise

be isolated to be sorted into transform blocks. Figure7 shows the effects of different continuity

definition on the RD curve for a 10-bit dense point cloud. Tested are continuities of [+3, -3], [+2,

-2], [+1, -1] and {0,1}. We see that the continuity of {0,1} performs significantly worse than

others. We chose the +-3 continuity condition in the hopes that it would help reduce isolated

points in lower density point clouds, while it achieves comparable performance in in solid point

clouds compared to +-1 and +-2 conditions.

37

Figure 7 Longdress-vox10 With Different Continuity Conditions. A discontinuity is found if the

difference between points is greater than the indicated values. For example, for the blue curves

any points with absolute difference of greater than 3 are discontinuous. Note that the blue,

orange and grey curves are overlapping.

Once we have identified all breaks in continuity in any axis, we concatenate the indices where

these occur into one array. We also insert indexes that point to the first element and the N+1th

element. This array then gets sorted in ascending order. The result is start indices for all

transform blocks, where we can simply select the portion of the point cloud bounded by 2

consecutive entries in the start index array to obtain a transform block. This information along

with the presorted point cloud is passed to the AROS transform unit.

55

57.5

60

62.5

65

67.5

70

72.5

75

77.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

D
1

-P
SN

R

bpp

Different continuity condisitons for longdress_vox10 with
Shannon SEI

Cont: [+3,-3] Cont: [+2, -2] Cont: [+1, -1] Cont: {1,0}

38

3.4 AROS Wavelet Transform

AROS transform is performed axis wise; we first need to separate the point cloud into its X, Y

and Z axes. We then select transform blocks using the start indices found above. We will explain

the process in detail here for one axis, but note that all 3 axes operate identically and only differ

in the values of the transform block they take in. Figure 8 below shows detail.

Figure 8 Single axis Wavelet Transforms. Note that we include a portion to handle isolated

points. Above we show that it is beneficial to remove isolated points in preprocessing, but we

retain the ability to handle them here should we want to.

39

Once a transform block is selected, we first determine if we have an isolated point. As discussed

in 3.2 isolated point removal is an optional pre-processing step. Hence, we need to be able to

accommodate isolated points if they occur. Points at even indices are copied to the Low-Pass

symbol stream, while those occurring at odd indices in the input signal index space are

discarded. This is in accordance with the AROS transform described in section 2.2.2. If the

current block is not an isolated point, we first perform odd-symmetric extension. We then filter

the result with only the Low-Pass filter, as High-Pass components are discarded we can omit

High-Pass filtering.

After we have obtained the Low-Pass version of the transform block we need to down sample.

Here we retain all Low-Pass coefficients that occur at even indices in the input point cloud

indexing space. The resulting Low-Pass signal is appended to the Low-Pass symbol stream. We

save the start index of the current block in the Low-Pass symbol stream as start index SEI, and

the parity in the input index space of the first element of the block in T-parity SEI. Since all axes

use the same transform blocks only SEI for one axis needs to be produced and sent. Once all

axes are transformed, we concatenate them together to form the Low-Pass point cloud.

3.5 Quantization, Duplicate Point Removal and SEI Update

From 3.4 we receive the Low-Pass symbol streams concatenated into a Low-Pass point cloud,

and 2 arrays with SEI information. The Low-Pass point cloud will be quantized as described in

section 2, with the result containing duplicate points. Naturally we must remove these for

efficient coding, but to successfully reconstruct we must also update the SEI.

40

To do so, we find all the indices of the first occurrence of unique points in the Quantized point

cloud, these are the indices of points to be retained. We also take the compliment of these indices

to find all the points that must be removed.

We then loop over the old start indices in the cloud with duplicates and consider one transform

block at a time. By comparing the indices of points to be removed, we can determine how many

points in the current transform block will be removed. Three cases exist here, they and the

needed actions are listed below

1. No points to remove in the current block: update start index if needed and skip to next

block

2. All points removed in the current block: Remove the start index and T-parity symbol for

the current block, track number of removed points to update all following start indices

3. Some points removed in the current block: Update T-parity and all following start

indices, update current start index if needed and track number of removed points.

Case 1 requires only an update of the start index if points have been removed in preceding

blocks, in case 2 we need to remove the start index and T-parity symbol corresponding to the

current block. In case 3 we may need to change the T-parity if an odd number of points was

removed, otherwise it remains the same. If points in preceding blocks were removed, we must

shift the start index forward by the number of removed points. If the start index is a removed

point, we need to assign the next retained point as the new start index for this block. To update

start indices, we must also track to total number of points removed thus far as we progress

through the SEI-list. The output of this block is the quantized point cloud without duplicates, and

SEI information updated such that it is relevant to the quantized point cloud.

41

3.6 Entropy Coding

Entropy coding of the geometry is done using MPEGs TMC-13 [19,20]. This is an Octree coding

algorithm where the input space is repeatedly separated into octants. Occupancy of each octant is

signaled using 1 bit, resulting in 8 bits for the first level, 8x8 bits for the 2nd level and so on, until

we reach the leaf nodes. Therefore, concentrating points into fewer high depth octants increases

coding efficiency, which motivates the use of grasp style quantization.

SEI is not directly coded, but the number of bits needed are estimated as the Shannon entropy

limit.

To find this value for T-parity we simply calculate the binary entropy in the T-parity array and

multiply the result by the number of symbols. For the start indices we use a differential coding

scheme. We send the first start index directly, and for all subsequent indices we only send the

difference to the previous index. Entropy is calculated by finding all unique differences and their

respective probabilities. From here we can calculate the entropy per symbol and the total number

of bits in the start index SEI as

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑑𝑒𝑥 𝑏𝑖𝑡𝑠

= 𝑆𝑦𝑚𝑏𝑜𝑙 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑦𝑚𝑏𝑜𝑙𝑠

+ ⌈ log2 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠⌉

𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑡𝑠 = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑑𝑒𝑥 𝑏𝑖𝑡𝑠 + 𝑇 − 𝑝𝑎𝑟𝑖𝑡𝑦 𝑏𝑖𝑡𝑠 + 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 𝑏𝑖𝑡𝑠

MPEGs TMC-13 is not order preserving. After encoding-decoding the points may be in a

different order. Clearly this is detrimental to the proposed scheme. For testing purposes, we

create a bitstream using TMC-13 and use its size for bit per point calculations as we feel this is a

42

good estimate for achievable base-geometry bitrate. For reconstruction we use a version of the

point cloud saved in code just prior to entropy coding. The encoded-decoded cloud and the saved

cloud are equivalent except for the order of points. If this approach is to be fully implement an

order preserving entropy coder would be required. This may be achieved by differentially coding

points in each axis, as the high correlation should lead to good results given a well sorted point

cloud. We feel that an investigation into the compression performance should precede work to

tailor an entropy coder to this approach, as such no detailed order preserving entropy coding

approach is proposed or implemented at this time.

3.7 Decoder Steps

The decoder operates in reverse of the encoder, except we do not need a duplicate point removal

or SEI update unit here. We simply decode and dequantize the geometry bitstream then perform

the inverse AROS using the SEI from the Encoder. The result is an approximated geometry point

cloud. No post processing is proposed at this time, however there may exist beneficial post

processing schemes.

3.8 Quality Measurement with PC-Error

To compare the quality of the reconstructed point cloud with the input point cloud we use the

PC-error software provided by Nanjing University Vision Lab in their GitHub [8]. This is the

same software Grasp-net uses. It takes 2 .ply files as inputs and computes MSE and D1- PSNR

43

using both files as reference and a final symmetric version. The symmetric version is reported for

all wave-grasp and base grasp results. Details on quality measurement are provided in 2.6.

44

4. RESULTS

The following section will present the achieved results divided by Point cloud class. As stated

above point clouds are divided into Solid, Dense, Sparse and Scant Point clouds, where the

number of points per unit volume decrease as we move to sparser classes [12].

Tested here are Solid, Dense and Sparse point clouds. Due to this approach requiring continuous

segments we expect the performance to decrease as point clouds get sparser. This suspicion

largely holds, but we observe good gains in the low bitrate regime. Scant point clouds are not

tested as performance on Sparse Point Clouds suggests that further decreases in density are not

worth testing.

4.1 Dataset Overview

Figure 9 below shows the datasets used to generate the results presented here. We show both a

colored version and a version with arbitrary coloring applied. The Color is for illustrative

purposes as it is difficult to properly visualize 3D structures with uniform color. However, no

color attributes were processed in this approach. All results presented below show our RD

performance alongside with using base-grasp quantization alone. Dataset classification follows

[12] datasets are obtained from [27-29].

45

Redandblack_vox10_1460

soldier_vox10_0690

Boxer_viewdep_vox12

Staue-klimt-vox12

Shiva_00035_vox12

Figure 9 Point Clouds Used for Testing. Presented both in full color and with artificial color

scheme. Color is presented only for visualization purposes and was not coded or processed in

any way.

46

4.2 Solid Point Clouds

The following results were produced on Solid Point clouds soldier_vox10 and

redandblack_vox10 [28]. The RD curve for Soldier-vox10 is shown in figure 10, figure 11

redandblack-vox10 reconstructed at different scales and figure 12 shows the RD curve for the

redandblack-vox10 dataset. For illustrative purposes we show RD curves of the geometry

bitstream only, along with those where the SEI is estimated at the Shannon limit and added to the

geometry bitstream. No-SEI curves are not decodable and only included to show how the amount

of SEI varies as the rate changes, and to give a theoretical upper limit.

Figure 10 RD Curve for 10-bit Soldier Point Cloud. The figure shows the decodable base grasp

and Wave-grasp with SEI estimated at the Shannon limit, and the non-decodable reference curve

for the wave-grasp geometry component only.

50.0

52.0

54.0

56.0

58.0

60.0

62.0

64.0

66.0

68.0

70.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

D
1

-P
SN

R

bpp

soldier-vox10

wave-grasp Shannon SEI wave-grasp No SEI base-grasp

47

Original geometry

56.8dB wave 52.6dB base

Scaling factor of 0.1

64.2dB wave 61.9dB base

Scaling factor of 0.3

68.1dB wave 66.6dB base

Scaling factor of 0.7

Figure 11 Side by Side Geometry Compression Results for Redandblack-vox10-1460. Wave

grasp on left and base grasp on right at each scale factor, for Quantizer scales of 0.1, 0.3 and

0.7 (left to right), with original at the top. Wave Grasp has 56.8dB, 64.2dB and 68.1dB to the

Original while base grasp has 52.6dB, 61.9dB and 66.6dB for the scale points respectively. Note

that we present results at a fixed quantizer scale to show reconstruction behavior, but the

achieved bpp rate at those scales may differ for the two approaches.

48

Figure 12 RD Curve for 10-bit Redandblack-vox10-1460. The grey and blue curves are

decodable, the orange curve shows wave-grasp with the base geometry component only. This is

not decodable but intended to show the trend of SEI as the rate changes.

4.3 Dense Point Clouds

These results were produced on 12-bit dense point clouds soldier-vox12 and boxer-vox12 [27].

Presented in figures 13 and 15 are concave rate points for soldier-vox12 and boxer-vox12

respectively, while figure 14 shows the reconstructed boxer-vox12 dataset at different

quantization rates. Plotting all generated datapoints leads to a convex shape, however we can

improve coding performance with timesharing between all points that form a concave line. This

concave line is presented here. We again show undecodable No-SEI curves and decodable curves

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

D
1

-P
SN

R

bpp

redandblack-vox10

wave-grasp Shannon SEI wave-grasp No SEI base-grasp

49

with SEI estimated at the Shannon limit, along with base-grasp quantization. We see that as

density decreases the amount of SEI needed increases and stays relatively constant even at higher

bit rates. This is due to Dense point clouds having more discontinuities than Solid Point clouds

after the input sorting, and discontinuities are inherent to the data and not primarily caused by

quantization. We also see an interesting behavior here that Wave-grasp performs worse at low-

bitrates but begins to exceed base-grasp at higher bit rates. More experiments are needed to

investigate this behavior. However isolated point removal combined with strong quantization

may not leave enough data at low bit rates for accurate reconstruction, while at higher bit rates

the effects of quantization are not as extreme and enough distinct Low-Pass points are

transmitted to make their higher energy density valuable.

50

Figure 13 RD Curve for 12-bit Soldier Point Cloud. Grey and blue curves are decodable, the

orange curve is provided for reference and shows the wave-grasp base geometry component

only, omitting any SEI. Note that the amount of SEI is relatively constant at all displayed rate

points.

47.5

52.5

57.5

62.5

67.5

72.5

77.5

82.5

87.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

D
1

-P
SN

R

bpp

soldier-vox12

wave-grasp Shannon SEI wave-grasp No SEI base-grasp

51

Original geometry

69.2dB wave 68.9dB base

Scaling factor 0.1

81.7dB wave 82.2dB base

Scaling factor 0.5

84.6dB wave 82.8dB base

Scaling factor 0.9

Wave-grasp

base-grasp

Wave-grasp

base-grasp

Wave-grasp

base-grasp

Figure 14 Boxer_viewdep_vox12 Compression Results. The Top shows the original input

geometry, the center row shows the full reconstructed point clouds, with Wave Grasp and the left

and base grasp on the right for each rate point. The bottom row shows detail, where wave grasp

is on top and base grasp on the bottom. Tested quantizer scales are 0.1, 0.5 and 0.9 where wave

grasp has a PSNR to the original of 69.2dB, 81.7dB and 84.6dB respectively, while base grasp

has PSNRs of 68.9dB, 82.2dB and 82.8dB. Note that we may have different bpp for a given

quantizer scale for the 2 approaches.

52

Figure 15 RD Curve for 12-bit Boxer Point Cloud. Grey and blue curves are decodable, the

orange curve is provided for reference and shows the wave-grasp base geometry component

only, omitting any SEI. Note that the amount of SEI is relatively constant at all displayed rate

points.

4.4 Sparse Point Clouds

Results on Sparse point clouds are presented on staue-klimt-vox12 (sic) and Shiva-00035-vox12

[29], shown in figures 16 and 18 respectively. Figure 17 shows the reconstructed Shiva-00035-

vox12 dataset at different quantizer rates. Sparse point clouds are very detrimental to the

proposed approach due to the high number of isolated points which constitute upward of 80% of

47.5

52.5

57.5

62.5

67.5

72.5

77.5

82.5

87.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

D
1

-P
SN

R

bpp

boxer-vox12

wave-grasp Shannon SEI wave-grasp No SEI base-grasp

53

all points. Wave-grasp still outperforms base-grasp at very low bitrates. As in the Dense case

more testing is needed to thoroughly explain this behavior, and especially why the trend from

Dense point clouds reverses. An initial suspicion is that now the number of isolated points is so

large that base-grasp quantization is removing significant detail at low bit rates, and energy

concentration of the wavelet-based approach becomes useful again as both base and wave grasp

lose significant detail at the lower rates. Here we only present decodable RD curves and elected

not to include a No-SEI version. The difference between wave-grasp and base grasp is

sufficiently strong here that we feel additional data does not yield more insight only makes the

graph harder to read as the difference between No SEI and Shannon SEI is negligible compared

to the distance to base-grasp.

Figure 16 RD Curve for 12-bit Staue-klimt Point Cloud.

50.0

52.0

54.0

56.0

58.0

60.0

62.0

64.0

66.0

68.0

70.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

D
1

-P
SN

R

bpp

staue-klimt-vox12

wave-grasp Shannon SEI base-grasp

54

 Original geometry

Wave grasp Wave grasp Wave grasp

Scaling factor 0.01, 50.7dB

Scaling factor 0.1, 63.7dB

Scaling factor 0.5, 64.3dB

Base grasp

Scaling factor 0.01, 50.1dB

Base grasp

Scaling factor 0.1, 69dB

Base grasp

Scaling factor 0.5, 81.2dB

Figure 17 Reconstructed point clouds for Shiva_00035. Original (Top), Wave-grasp (Middle),

and Base-Grasp (bottom), Quantizer scale for both Wave and Base grasp were 0.01, 0.1 and

0.5. Where wave grasp has PSNRs of 50.7dB, 63.7dB and 64.3dB respectively while base grasp

has 50.1dB, 69dB and 81.2dB. Note that to illustrate the reconstruction behavior we present

images at the same quantizer scale point, the bpp for each approach at a given quantizer scale

can vary widely. One can clearly see Wave-grasp suffering from isolated point removal,

especially at higher rates.

55

Figure 18 RD Curve for 12-bit Shiva_00035 Point Cloud.

4.5 Number of Isolated Points Removed

Presented in table 4 below are the number of input points, non-isolated points and percentage of

points removed in wave-grasp pre-processing. We see that as density decreases number of

removed points increases drastically, until the majority of points are removed as isolated for

sparse clouds. Section 3 shows that sending isolated points does not improve RD performance, as

any gain in quality is absorbed by the increases in bpp.

50.0

52.0

54.0

56.0

58.0

60.0

62.0

64.0

66.0

68.0

70.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

D
1

-P
SN

R

bpp

Shiva_vox12

wave-grasp Shannon SEI base-grasp

56

Table 4 Number and Percentage of Points Removed as Isolated.

Dataset name Number of points

in input cloud

Number of not

isolated points

Number of

removed isolated

points

Percentage of

points

removed

Solider-vox10-

0690

1089091 1085914 3177 0.29%

Redandbalck-

vox10-1460

710964 708192 2772 0.39%

Solider-vox12-

viewdep

4001754 2769601

1232153 30.8%

Boxer-vox12-

viewdep

3493085 2690014 803071 23.0%

Staue-klimt-

vox12

499660 55856 443804 88.8%

Shiva-00035-

vox12

1009132 184959 824173 81.7%

57

5. DISCUSSION

5.1 Results Discussion

We immediately notice that our approach is best suited to denser point clouds. This is intuitive

due to our need for continuous segments. Our performance gains at low bitrates are believed to

be due to energy concentration, when sending few points wave-grasp excels as its points contain

more energy. At higher bitrates energy concentration becomes less useful compared to sending

the non-transformed points as we simply have enough points available such that missing points

are of reduced importance.

Interesting is also that wave grasp performs better at high bit rates for Dense point clouds but

favors low bit rates for all other point cloud classes. The immediate cause for this phenomenon is

not clear. A first suspicion is that Dense point clouds form an intermediate regime where simple

grasp-style quantization still produces good results at lower bit rates, but the number of isolated

points is large enough to prevent wave grasp from performing well, while at higher rates and

lower quantization scales, enough unique points are produced to allow energy concentration in

wave grasp to be effective. Points in Solid point clouds are close enough together that they are

shifted more as a unit at all scales, allowing base-grasp to exceed energy concentration benefits

at high rates. Finally for Sparse point clouds the vast majority of points are isolated and removed

in wave-grasp, in order to achieve any gain over base-grasp we need to test at extremely low

bitrates, such that the number of removed points in base-grasp is large enough for energy

58

concentration to offset the effects of isolated point removal in wave grasp. These suspicions may

be confirmed by modifying the approach to reduce the number of isolated points.

5.2 Possible Improvements and Future Work

As can be seen in the results section, the largest detriment of wave grasp is it’s need for (long)

continuous sections. The fewer continuous sections the better the entropy performance and the

less SEI we incur. Additionally sparser point clouds lead to more isolated points, which can only

be coded at high SEI costs for even indices, and not at all for odd indices. This suggests an

immediate area of improvement: Sorting. A more sophisticated sorting algorithm that finds an

optimal solution in terms of either minimum number of isolated points, minimum number of

continuous sections, or a combination thereof may lead to significant improvements. Hand in

Hand with this are possibly different definitions of continuity, some of which were investigated

in section 3. Coupled with more sophisticated sorting this should be a primary area of

investigation for future work. Additionally, once an optimal continuity condition is found,

renewed attempts can be made to infer start indices and T-parity from the bitstream itself and not

explicitly signal them.

5.3 Conclusion

We have shown a wavelet-based method for geometry point cloud compression. Our proposed

approach shows gains in the low bitrate regime but exhibits poor performance on low density

59

point clouds. Nonetheless Low bitrate applications may benefit from this approach and future

work may yield modifications more suitable for low density point clouds.

60

REFERENCES

[1] Geo-Plus inc., "A short story about LIDAR technology - geo-plus: LIDAR, Land Surveying

and Civil Engineering Software Solutions," Geo-Plus, Jun. 1, 2022. [Online]. Available:

https://geo-plus.com/blog-a-short-story-of-lidar-technology/. [Accessed: Mar. 6, 2023].

[2] W. M. Kaula, et al., "Analysis and interpretation of lunar laser altimetry," Proceedings of the

Lunar Science Conference, vol. 3, p. 2189, 1972.

[3] D. E. Smith, et al., "Topography of the Moon from the Clementine lidar," Journal of

Geophysical Research: Planets, vol. 102, no. E1, pp. 1591-1611, 1997.

[4] R. Hack, A. Turner, and S. Slob, "An approach to automate discontinuity measurements of

rock faces using laser scanning techniques," in EUROCK2002, Runchal, Maderia Island,

Portugal, 1980, pp. 87-94.

[5] H. Scharr, et al., "Fast Visual Hull Extraction at High Resolution," Computer Vision,

Graphics, and Image Processing, vol. 40, no. 1, pp. 1-29, 1987.

[6] H. Hoppe, et al., "Projector based intraoperative visualization of surgical planning data,"

Proceedings of ISRACAS, 2001.

[7] "Introduction to the MPEG-PCC project," MPEG Point Cloud Compression. [Online].

Available: https://mpeg-pcc.org/. [Accessed: Jan. 18, 2023].

[8] Njuvision, "NJUVISION/pcgcv2: Multiscale point cloud geometry compression," GitHub.

[Online]. Available: https://github.com/NJUVISION/PCGCv2. [Accessed: Jan. 18, 2023].

[9] J. Pang, M. A. Lodhi, and D. Tian, "GRASP-Net: Geometric Residual Analysis and Synthesis

for Point Cloud Compression," in ACM MM Workshop on APCCPA, 2022.

[10] "ISO/IEC 11172-2:1993," International standards organization. [Online]. Available:

https://www.iso.org/standard/22411.html.

[11] "Information technology — Coded representation of immersive media — Part 3: Versatile

video coding," ISO/IEC JTC 1/SC29/WG11, N18692, 2019. [Online]. Available:

https://mpeg.chiariglione.org/standards/mpeg-i/versatile-video-coding/text-isoiec-cd-23090-3-

versatile-video-coding.

https://geo-plus.com/blog-a-short-story-of-lidar-technology/
https://mpeg-pcc.org/
https://github.com/NJUVISION/PCGCv2
https://www.iso.org/standard/22411.html
https://mpeg.chiariglione.org/standards/mpeg-i/versatile-video-coding/text-isoiec-cd-23090-3-versatile-video-coding
https://mpeg.chiariglione.org/standards/mpeg-i/versatile-video-coding/text-isoiec-cd-23090-3-versatile-video-coding

61

[12] A. Zaghetto, D. Graziosi, and A. Tabatabai, "Dataset Split for AI-PCC," ISO/IEC JTC 1/SC

29/WG 7, m58754, Virtual, Jan. 2022.

[13] Elkhrachy, "3D structure from 2D dimensional images using structure from motion

algorithms," MDPI, Apr. 30, 2022. [Online]. Available: https://www.mdpi.com/2071-

1050/14/9/5399. [Accessed: Jan. 18, 2023].

[14] Q. Wang and M.-K. Kim, “Applications of 3D point cloud data in the construction industry:

A fifteen-year review from 2004 to 2018,” Sciencedirect, 15-Feb-2019. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1474034618304683?casa_token=f1NipUOXx

UwAAAAA%3A-aa71Qyx6IIXsMSLK8eTe8Dq8OMOnFcJa30KSCnp61XyfI51UBcqhhh-

6JNDN0BLRkMpFvPoegY. [Accessed: 18-Jan-2023].

[15] S. Chickerur and K. Joshi, “3D face model dataset: Automatic detection of facial

expressions and emotions for educational environments,” British Educational Research

Association, 13-Aug-2015. [Online]. Available: https://bera-journals.onlinelibrary.wiley.com/.

[Accessed: 18-Jan-2023].

[16] S. Chen, B. Liu, C. Feng, C. Vallespi-Gonzalez, and C. Wellington, “3D Point Cloud

Processing and Learning for Autonomous Driving: Impacting Map Creation, Localization, and

Perception,” IEEEexplore, 01-Jan-2021. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9307334/references#references. [Accessed: 18-Jan-

2023].

[17] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai, “An

overview of ongoing point cloud compression standardization activities: Video-based (V-PCC)

and geometry-based (G-PCC): APSIPA Transactions on Signal and Information Processing,”

Cambridge Core, 03-Apr-2020. [Online]. Available:

https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-

processing/article/an-overview-of-ongoing-point-cloud-compression-standardization-activities-

videobased-vpcc-and-geometrybased-gpcc/56FCAF660DD44348BCB1BCA9B5EC56CF.

[Accessed: 18-Jan-2023].

[18] J. Wang, Z. Ma, H. Wei, Y. Yu, V. Zakharchenko, and D. Wang, “Point Cloud Geometry

Compression using Sparse Tensor-based Multiscale Representation,” ISO/IEC

JTC1/SC29/WG7, m59035, Virtual, 1/2022.

[19] MPEG, “G-PCC codec description,” ISO/IEC JTC1/SC29/WG7, output document N0151,

Virtual, 7/2021, Sep. 24, 2021.

[20] MPEGGroup, “MPEGGroup/MPEG-PCC-TMC13: Geometry Based Point Cloud

Compression (G-PCC) test model,” GitHub. [Online]. Available:

https://github.com/MPEGGroup/mpeg-pcc-tmc13. [Accessed: 18-Jan-2023].

[21] J. Pang, M. A. Lodhi, and D. Tian, “Geometric Residual Analysis and Synthesis for PCC,”

ISO/IEC JTC 1/SC 29/WG 7m59649, Apr-2022.

https://www.mdpi.com/2071-1050/14/9/5399
https://www.mdpi.com/2071-1050/14/9/5399
https://www.sciencedirect.com/science/article/pii/S1474034618304683?casa_token=f1NipUOXxUwAAAAA%3A-aa71Qyx6IIXsMSLK8eTe8Dq8OMOnFcJa30KSCnp61XyfI51UBcqhhh-6JNDN0BLRkMpFvPoegY
https://www.sciencedirect.com/science/article/pii/S1474034618304683?casa_token=f1NipUOXxUwAAAAA%3A-aa71Qyx6IIXsMSLK8eTe8Dq8OMOnFcJa30KSCnp61XyfI51UBcqhhh-6JNDN0BLRkMpFvPoegY
https://www.sciencedirect.com/science/article/pii/S1474034618304683?casa_token=f1NipUOXxUwAAAAA%3A-aa71Qyx6IIXsMSLK8eTe8Dq8OMOnFcJa30KSCnp61XyfI51UBcqhhh-6JNDN0BLRkMpFvPoegY
https://bera-journals.onlinelibrary.wiley.com/
https://ieeexplore.ieee.org/abstract/document/9307334/references#references
https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing/article/an-overview-of-ongoing-point-cloud-compression-standardization-activities-videobased-vpcc-and-geometrybased-gpcc/56FCAF660DD44348BCB1BCA9B5EC56CF
https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing/article/an-overview-of-ongoing-point-cloud-compression-standardization-activities-videobased-vpcc-and-geometrybased-gpcc/56FCAF660DD44348BCB1BCA9B5EC56CF
https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing/article/an-overview-of-ongoing-point-cloud-compression-standardization-activities-videobased-vpcc-and-geometrybased-gpcc/56FCAF660DD44348BCB1BCA9B5EC56CF
https://github.com/MPEGGroup/mpeg-pcc-tmc13

62

[22] M. Vetterli and J. Kovačević, Wavelets and Subband Coding, Prentice Hall, Englewood

Cliffs, NJ, 1995.

[23] D. Le Gall and A. J. Tabatabai, "Sub-band coding of digital images using symmetric short

kernel filters and arithmetic coding techniques," in Proc. ICASSP-88., International Conference

on Acoustics, Speech, and Signal Processing, 1988, vol. 2, pp. 761-764.

[24] G. Minami, Z. Xiong, A. Wang, and S. Mehrotra, " 3-D Wavelet Coding of Video With

Arbitrary Regions of Support” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 11, no. 9, pp. 1063-1068, Sep. 2001.

[25] L. Cruz, "JPEG Pleno Point Cloud Coding Common Training and Test Conditions v1.3,"

ISO/IEC JTC1/SC29/WG1. N100276, 2022.

[26] A. Zaghetto, D. Graziosi, and A. Tabatabai, "AI-PCC Evaluation Framework," ISO/IEC

JTC1/SC29/WG7 m58753, 2022.

[27] M. Krivokuća, P. A. Chou, and P. Savill, "8i Voxelized Surface Light Field (8iVSLF)

Dataset," ISO/IEC JTC1/SC29 WG11 (MPEG) input document m42914, Ljubljana, July 2018,

Boxer-viewdep-vox12, soldier-viewdep-vox12.

[28] E. d'Eon, B. Harrison, T. Myers, and P. A. Chou, "8i Voxelized Full Bodies - A Voxelized

Point Cloud Dataset," ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document

WG11M40059/WG1M74006, Geneva, January 2017, Longdress_vox10, soldier_vox10,

redandblack_vox10.

[29] C. Tulvan, A. Gabrielli, and M. Preda, "Datasets update on Point Cloud compression for

cultural objects," ISO/IEC JTC1/SC29/WG11 (MPEG/JPEG) input document m38678, Geneva,

2016, Shiva and Staue Klimt datasets.

[30] E. Alexiou and T. Ebrahimi, "Towards a Point Cloud Structural Similarity Metric,"

Multimedia Signal Processing Group.

