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ABSTRACT 

 

 

Proposed is a method of 3D point cloud geometry compression. Point clouds find applications in 

autonomous driving, education, and other fields. The approach proposed here hopes to improve 

on existing quantization techniques by segmenting each coordinate axis into continuous regions 

of arbitrary size and preforming a wavelet transformation on these regions. This Thesis describes 

a means of finding these regions, taking the transform, quantizing, concatenating acquired data in 

a bitstream, recovering data from the bitstream, and reconstructing the point cloud. Results 

presented on solid, dense, and sparse point clouds show improvements relative to Quantization-

Inverse Quantization at low bitrates but exhibit poor performance at higher bitrates and lower 

densities. A better sorting approach is expected to increase performance, but the need for 

continuous regions, and possible latency incurred when sorting for them imposes higher quality 

requirements on this approach.  
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1. INTRODUCTION AND MOTIVATION 

 

 

    

Figure 1: Sample Point Clouds. From left to right: Redandblack-vox10, soldier-vox10, boxer-

vox12 and Staue-Klimt-vox12, where density decreases as we move right. These are the original, 

colored version of some of the point clouds we will use to test out compression scheme on. 

 

One morning in the 17th century Rene Descartes laid in bed and observed a fly on the ceiling. In 

a letter he described the fly’s location by taking steps along the orthogonal walls of the room, 

and thus invented cartesian coordinates. Or so goes the legend told to many young 

mathematicians, engineers, and scientists. Had Descartes described the position of two flies, he 

would have described the object of study in this Thesis, point clouds.  Some sample point clouds 

are shown in figure 1. In the most basic view these are nothing but collections of points in 3D 

space. In a narrower view, the use of 3D-pointcluds as a computing tool have risen in parallel 
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with a means to capture them.  Point clouds can be generated in several ways, one popular option 

being LIDAR sensors, as first invented by Hughes Aircraft Company [1]. In their 1972 paper on 

lunar laser altimetry Kaula et. al described the use of LIDAR Sensors aboard Apollo 15 to 

capture the spacecrafts altitude above the moons surface. Using earth-based tracking the 

spacecrafts location above the lunar surface could be determined [2]. Combining LIDAR 

altimeter data with spacecraft positional data yields a point cloud, although the term was not in 

use at the time. Smith et. al were able to create a topological map of the moon using this data [3]. 

Point clouds have been used in other areas since, for example by Slob et. al, who used 3D point 

clouds in their 1980 work to measure rock faces [4], by Sharr et. al. to store and process plants 

3D structure in 1987 [5], and in 2001 Hoppe et. al. proposed an approach to use 3D point clouds 

to assist in surgery [6]. Given the ubiquity of 3 dimensional structures it is hard to point to a 

single origin of point clouds, but the above shows a computational use for over 50 years and one 

may surely find applications for 3D positional data reaching back much further. These 

applications listed above however are narrow use cases and scientific in nature, and hence can 

afford large data volumes. For point clouds to become broadly applicable efficient storage and 

representation is needed. 

To provide standards for point cloud compression, we look to the ISO/IEC, and particularly 

MPEG. MPEG first started investigations into point clouds in 2014 when the 3D Graphics 

Coding Group began research into immersive technologies. This prompted a Call for Proposals 

in 2017 for 3D coding tools suitable to a wide range of applications culminating in the first 3D 

coding standards, V-PCC and G-PCC, published in 2020 [7]. However, as with any compression 

standard, work to find more efficient tools is ongoing, with PCGC published in 2021 [8] and 

grasp net published in 2022 [9]. Just as in Video Coding, where MPEG 1 was released in the 
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early 1990s [10], and nearly 30 years later new advances are still made, such as MPEGs H.266- 

VVC published in 2019 [11], Point Cloud compression can look forward to many years of 

development yet to come. We hope that this work can provide a small steppingstone on this path. 

 

1.1 Introduction to Point Cloud Data  

 

Point clouds are a primary means of representing 3D structures digitally. Point clouds consist of 

coordinate information and may include attribute information, for example color, opacity, or 

reflectivity. Point clouds may be captured in the real word using LIDAR or other distance 

sensors, or synthetically generated. Regardless of origins a point cloud consist of a collection of 

points (x0, x1,x2, . . ., xN) where each xi consists of at least (x,y,z) coordinates, and may include 

any number of attributes ai,0 – ai,K. As this work concerns itself with geometry compression, we 

will ignore attribute values going forward.  

Given a set of captured coordinates in the world frame, we first transform them into a reference 

frame or internal frame system. To achieve this, we must fix a Geometry bit depth n, the number 

of bits we want to allocate to each axis element of the geometry. We next determine the 

maximum distance in the world frame from the origin and divide this length into 2n segments. 

Thus, the resolution is set. We finally take the point volume in the world frame and rotate it such 

that the maximum distance is achieved along at least one coordinate axis. The resultant volume is 

then divided into cubes of size (2-nx2-nx2-n), where all points falling within one such cube are 

associated with its center, and duplicates removed. We now can describe points via integer 

coordinates values indicating the cube in which they fall. We have thus voxelized the point 
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cloud. This transformation can be undone by storing the rotation information, geometry bit 

depth, and maximum distance in the world coordinate system.  

Depending on the value of n, the total number of points and their distribution, point clouds are 

classified as either Solid, Dense, Sparse, or Scant. Typically, both geometry bit depth and 

number of points increase as point clouds get sparser, however the ultimate decision rests on 

density, number of points per smallest volume containing all points. Density is generally around 

10-3 for dense point clouds and decreases by an order of magnitude or more for each sparser 

category [12]. This reference also lists MPEG approved datasets, which will be drawn from for 

our own testing.  

Dense and solid point clouds typically represent a single object of focus, while sparser point 

clouds are more commonly used to represent scenes, or LIDAR scans for autonomous 

navigation. This distinction is not firm and can vary by use case. Next, we will give some 

information on possible applications of point clouds.  

 

1.2 Use Cases and Motivation  

1.2.1 Artifact Preservation  

 

In cultural preservation, 3D imagining may be used to create realistic renderings of artifacts or 

scenes [13]. These can be more immersive and offer greater detail than simple images or video, 

and thus allow historians to study objects and scenes in detail without being present, allow us to 

preserve cultural heritage for future generation, and enable sharing of cultural goods, such as 

museum exhibits, over great distance and in greater detail.  
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1.2.2 Industry  

 

The construction industry also has use for 3D point clouds, as explained in [14], 3D point clouds 

may be used to generate accurate 3D models of structures, as well as geometry quality 

inspection.  

 

1.2.3 Education  

 

Point clouds for emotional analysis of students, as presented in [15], show promise for 

recognizing emotions of learners. This technology could be used to inform an instructor when a 

topic is understood or more review is needed, which may be of particular use in remote learning 

applications where an instructor might not be able to see the learners.  

 

1.2.4 Autonomous Navigation and Autonomous Vehicles  

 

Use of 3D point clouds in autonomous vehicles is described in [16]. 3D point clouds may be 

used to create environment maps and localize a vehicle within an existing map, 3D point clouds 

may further be applied in environment perception, for example to locate pedestrians.  
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1.3 MPEG Standardization Efforts.  

 

Having discussed possible applications of point clouds, the need for efficient storage and 

transmission becomes evident. As shown on the MPEG-pcc website [7] there is an ongoing 

effort to develop coding tools for 3D point clouds, some results, such as V-PCC and G-PCC, are 

briefly described below. Point clouds can range in size from less than 1 million data points at 10-

bit geometry or less, up to many millions of points at bit depths of 16 or more bits per axis 

element. This can result in uncompressed sizes ranging from 3.07 MB for 

longdress_vox10_1300 up to 456.8 MB for ulb_unicorn_hires_vox20 for the geometry alone 

[12]. Compared to 23.73 MB for a 4K UHD RGB image with 8-bit color per channel. 

(3840x2160x24 bits per frame). Given the possibly very large sizes of point clouds, the need for 

efficient representation is clear.   

 

1.4 Current Work and Related Approaches  

1.4.1 Video Point Cloud Compression V-PCC 

 

One approach for point cloud compression is to leverage existing 2D image and video 

compression tools. This has the advantage of drawing on decades long experience and work in 

these fields, however the translation layer of 3D into 2D objects may fail to exploit some of the 

structures of the problem that a native 3D approach could. None the less Video based point cloud 

coding (V-PCC) is an effective approach with good results.  
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In short V-PCC, as explained in [17], takes a 3D point cloud and projects it onto a 2D surface 

from different directions. The thus resulting projections, called patches, can then be coded using 

traditional 2D video or image coding standards. At the decoder the 2D coding is first undone to 

recover the patches, and finally using metadata about the captured patches the original point 

cloud can be recovered.  

To lend more detail: The normal vector of each point is estimated and compared with the 

available projection directions to group points based on which projection direction best matches 

their normal vector. These groups of points are then projected onto a 2D plane where patches are 

generated to encode the distance of the point to the projection plane, while the other 2 

coordinates of the point remain the same. To overcome auto-occlusions, as more than 1 point 

may be mapped to one location on the reference plane, this approach allows for multiple 

remedies: A near and far image may be created, encoding geometry points at different distance 

intervals from the reference plane. The number of projection directions may be increased, instead 

of for example using the 6 faces of a bounding cube, planes at 45-degree angles may be added. 

Additionally, any points that are still left uncoded at the end of the regular coding process may 

be added to auxiliary patches and coded directly. The exact choice of which tools to use depends 

on the desired encoding complexity and performance. Once the 2D patches are generated, they 

are packed into 2D images. For efficient 2D coding they must be packed as tight as possible. 

Empty space between Patches is filled in a manner to improve compression.  

Once this is done an occupancy map is generated to indicate which pixels in the 2D image are 

valid and which were filled to aid 2D coding. Finally, Meta data about patch orientation and 

projection direction is encoded. If attribute information is to be transmitted as well, it can be 

mapped into 2D patches and images in a similar manner, taking advantage of the geometry 
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projections determined above. The resulting images can then be coded using any image or video 

coding standard.  

 

1.4.2 Sparse Tensor Point Cloud Geometry Compression Sparse-PCGC 

 

Point Cloud Geometry compression using Sparse Tensor based Multiscale Representation is 

proposed in [18]. This is a down sampling-based approach, where only level i-1 and i are 

considered at a time. Level i-1 is the down sampled version of level i by 2 in every direction. The 

approach considers Positively Occupied Voxels (POV), Negatively Occupied Voxels (NOV), 

and Most-Probable Positive Occupied Voxels (MP-POV). If a voxel at level i is a POV then the 

down sampled group of 8 voxels at level i-1 this voxel belongs to is also a POV. Likewise for 

NOVs.  

The decoder receives the down-sampled version of the point cloud from level i-1, as well as a 

local neighborhood geometry feature stream. This information is passed to a sparse CNN where 

features from level i-1 are aggregated, the point cloud is up sampled from level i-1 to level i, 

converting every POV at level i-1 to 8 MP-POV at level i. Geometry features are again 

aggregated here, and occupation probability for MP-POVs is estimated, a threshold can be 

applied to finally decide on occupation status.  

At the encoder, along with down sampling, a Sparse Local Neighborhood Estimation is 

preformed which attempts to encode the local neighborhood information into features to be sent 

to the decoder along with the down sampled point cloud.  
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Different variations exists where parts of MP-POV groups are treated differently, for example an 

8-stage mode is presented that treats each of the 8MP-POVs in an up sampled block 

independently and uses information from previously decoded MP-POV for the next MP-POV. 

This improves results but increases complexity.  

This method only requires 2 adjacent levels of a point cloud and uses the same architecture for 

all adjacent levels. This greatly improves efficiency compared to a model using all resolution 

layers of a point cloud but may fail to account for changing distributions at different scales.  

 

1.4.3 Geometry Point Cloud Compression G-PCC and MPEGs TMC-13  

 

G-PCC is the basis for the current MPEG test model for Geometry point cloud compression. It is 

implemented as MPEGs TMC-13 [19,20] We will briefly describe the geometry coding portion 

of G-PCC, both to give background, and as TMC-13 will perform the encoding and decoding of 

point clouds after processing via the proposed method.  

Point cloud coordinates are first transformed from world coordinated to frame coordinates, as 

described above. Points are vowelized, that is a resolution, d, is chosen and the bounding box is 

divided into 2d segments in each direction resulting in unit cubes. This forms the 3D analog to 

pixels. Coordinate points are then grouped with the center of the voxel into which they fall, if 

more than 1-point falls into a voxel it is removed, and we are effectively down sampling the 

point cloud.  

To code this information the point cloud is represented as an octree, the original bounding box 

containing all points is the root of the octree, it is then divided into 8 cubes, each of these 8 cubes 



 

10 

 

is again divided into 8, until a desired level of depth is reached. At each level occupancy of each 

cube can be signaled using 1 bit. A cube is empty if no occupied voxels are contained within it, it 

then receives 0 in the octree and its branch is terminated. This fashion proceeds until a certain 

level of depth, where the leaves indicate individual voxels. If the depth of the tree is equal to the 

resolution d chosen for voxelization then no down sampling is preformed, if it is less a down 

sampling occurs, and a tree depth larger then voxel resolution has no benefit.  

The thus generated octree symbols are then entropy coded. The tree may be coded either in a 

tree-fashion, where occupancy at each level is coded sequentially, or in a Direct coding mode 

(DCM), where the location of individual points is signaled directly. DCM is useful to code 

outlying nodes in otherwise empty neighborhoods, as it reduces overhead for those points and 

allows for better estimation of distributions in areas where points are grouped densely. Entropy 

coding of Octrees is complex, and not directly at the heart of this work, therefore we will not go 

beyond this brief overview.  

 

1.4.4 Geometric Residual Analysis and Synthesis for Point Clouds: GRASP 

 

The approach proposed in [21] was selected as the framework into which this work will 

eventually be integrated, although our approach presented here may be useful in other 

frameworks or in a stand-alone fashion. Here we will introduce the GRASP-NET approach. 

GRASP exhibits some similarity to intra prediction in video and image coding but adapts this to 

3D geometry and applies ML to handle the irregular structure. In brief: an incoming Geometry 

point cloud (GPC) is first quantized, and the quantized version is transmitted to the decoder. At 
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the encoder the quantized version is dequantized to create a coarse version of the GPC. The 

coarse version is subtracted from the input point cloud to generate a residual. This residual is 

processed by an ML architecture, the output of which is then entropy coded and sent to the 

decoder as a refinement bitstream. Here the process is performed in reverse and the point 

reconstructed  

To provide more detail: Consider an incoming geometry point cloud and quantize it. The 

quantized point cloud is entropy coded and sent to the decoder; at the encoder it is dequantized to 

obtain a coarse point cloud.  

This coarse point cloud and the original point cloud are passed to a geometry subtraction module 

using kNN to associate groups of points in the input cloud with points in the coarse point cloud.  

These sets of points are then passed to a Point Analysis Network to generate latent features for 

each point in the coarse point cloud. These latent features are down sampled using CNN 

architecture to remove redundancy, and finally the down sampled feature set is entropy coded 

and sent to the decoder.  

At the decoder the coarse point cloud is constructed by dequantizing the quantized version, as 

was done in the encoder. Down sampled latent feature bitstream is passed to a CNN with de-

convolutional layers and then passed through a Point syntheses network consisting of multiple 

MLPs to reconstruct an approximation of the residual obtained in the encoder. This 

approximated residual, along with the coarse point cloud are passed to a geometry addition 

model, the output of which is the reconstructed point cloud. For comparison purposes in this 

work we will use the quantized-dequantized point cloud generated by grasp-net as an anchor, as 

this is the component we aim the replace in later integration. 
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2. BACKGROUND 

2.1 Notation and Point Cloud Structure  

 

 

Geometry point clouds can be viewed as collections of length 3 vectors. Each such vector 

describes one point. In the frame coordinate system, all components are integers with the 

maximum value fixed by the bit depth. For a bit-depth n, the greatest value of any component is 

2n-1. We define the axes as X, Y and Z, where the first point in a vector is assigned the X-axis, 

the second the Y-axis and the 3rd the Z-axis. For the purpose of compression, this assignment is 

arbitrary so long as it is consistent.  

Let us now define some notation: Input point clouds in the frame coordinate system will be 

denoted 𝒳 with indexing space 𝐼(𝒳), its axis wise components we will denote as X, Y and Z.  

Let 𝒴 be the point cloud after wavelet transform, with indexing space  𝐼(𝒴), and denote its axis 

wise elements as 𝓍, 𝓎  and 𝓏 

Further consider axis wise transform blocks ℬ𝑎,𝑖 where a denotes the axis and i the transform 

block number. Elements in each axis are split into transform blocks such that all elements in a 

Transform block are continuous, where continuity will be defined below.  

Using this definition each Axis can be written as a collection of transform blocks, that is 

𝑋 =  {ℬ𝑥,0, ℬ𝑥,1, ℬ𝑥,2, . . .  ℬ𝑥,𝐾}, 𝑌 =  {ℬ𝑦,0, ℬ𝑦,1, ℬ𝑦,2, . . .  ℬ𝑦,𝐾}, 𝑍 =  {ℬ𝑧,0, ℬ𝑧,1, ℬ𝑧,2, . . .  ℬ𝑧,𝐾} 
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Where ℬ𝑥,𝑖, ℬ𝑦,𝑖, ℬ𝑧,𝑖 contain the X, Y, Z coordinate components for all points in transform block 

i and are ordered. We denote transform blocks after wavelet transform as  ℬ̂𝑥,0 where the letter 

subscript denotes the axis and the number the index of the transform block.  

 

2.2 Wavelet Transform and Arbitrary Region Of Support Wavelet Transform  

2.2.1 Wavelet Transform  

 

We will begin this section by reviewing a standard wavelet transform and expand to the AROS 

wavelet transform used in this work. Sub Band coding schemes are described in detail in [22]. 

The 5/3 filters chosen for this work are developed in [23], where the authors note the 5/3 filters 

ability to create “visually pleasant and smooth outputs” and additionally point out that 5/3 filters 

may be implemented with a limited number of shifts and adds, resulting in a lower computational 

complexity, a valuable property for any compression approach. We will thus move forward with 

the 5/3 filters.  

Consider a signal S of even length and define analysis low and high pass filters h and g. 

The standard wavelet transform is performed by first odd symmetrically extending S, then 

filtering by both h and g, and finally down sampling the filtered results into Low-Pass and High-

Pass components, where the Low-Pass filtered result retains elements on even indices and the 

High-Pass filtered result those on odd indices. 

Let: 𝑆 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑁), ℎ = (ℎ0, ℎ1, ℎ2, ℎ3, ℎ4), 𝑔 = (𝑔0, 𝑔1, 𝑔2) 
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Where N is even, and h and g are the biorthogonal 5/3 filters analysis filters. First, we odd-

symmetrically extend S by 2 samples on each side.  

𝑆𝑒𝑥𝑡 = (𝑥2, 𝑥1, 𝑥0, 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑁−2, 𝑥𝑁−1, 𝑥𝑁 , 𝑥𝑁−1, 𝑥𝑁−2) 

Next, we filter by convolution 

𝑆𝑙𝑝−𝑐𝑜𝑛𝑣 = 𝑆𝑒𝑥𝑡 ∗ ℎ and  𝑆ℎ𝑝−𝑐𝑜𝑛𝑣 = 𝑆𝑒𝑥𝑡 ∗ 𝑔 giving: 

𝑆𝑙𝑝−𝑐𝑜𝑛𝑣[𝑖] = ∑ 𝑆𝑒𝑥𝑡[𝑛 + 𝑖]ℎ[𝑛]

5

𝑛=0

; 𝑖 ∈ [0,1, . . . , 𝑁] 

𝑆ℎ𝑝−𝑐𝑜𝑛𝑣[𝑖] =  ∑ 𝑆𝑒𝑥𝑡[𝑛 + 𝑖 + 1]𝑔[𝑛]; 𝑖 ∈ [0,1, . . . , 𝑁]

3

𝑛=0

 

We note first that we’ve used symmetry in the filters to simplify the convolution sum, secondly 

by adding an offset of 1 in the summation for the shorter high pass filter we can use the same 

extended signal for both convolutions. The result of the convolution will have the same length as 

the input.  

After convolution we must down sample to obtain 𝑆𝐿𝑃 = 𝑆𝑙𝑝−𝑐𝑜𝑛𝑣[0: : 2] and 𝑆𝐻𝑃 =

𝑆ℎ𝑝−𝑐𝑜𝑛𝑣[1 ∷ 2]. Where we use the notation [a::b] to signify that we retain the sample at index a, 

and every b-th sample thereafter.  

Reconstruction is the opposite of decomposition, we first up sample high and low pass signals, 

inserting 0s at odd indices for Low-Pass and at even indices for High-Pass. Next, we odd-

symmetrically extend and filter by the Synthesis high and low pass filters. The results are added 

element wise, and the original signal is recovered.  
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To achieve compression in this approach we transmit and reconstruct using only the Low-Pass 

components. Thus, we only need to generate the Low-Pass component.  

To describe the method used here: consider Sext as the odd-symmetrically extended input signal, 

filter as described above and retain only those samples on even indices.   

𝑆𝑙𝑝 = (𝑆𝑒𝑥𝑡 ∗ ℎ )[𝑖];   𝑖 𝑒𝑣𝑒𝑛 

Slp can be transmitted or processed further. To recover the input from Slp we must first up sample 

and then extend odd-symmetrically, and finally filter by the synthesis Low-Pass, denoted ℎ̅:  

 𝑆𝑙𝑝−𝑢𝑠[𝑖] = {
𝑆𝑙𝑝   𝑖 𝑒𝑣𝑒𝑛 

0    𝑖 𝑜𝑑𝑑 
 

 𝑆𝑙𝑝−𝑒𝑥𝑡 =  (𝑆𝑙𝑝−𝑢𝑠[2], 𝑆𝑙𝑝−𝑢𝑠[1], 𝑆𝑙𝑝−𝑢𝑠[0], 𝑆𝑙𝑝−𝑢𝑠[1], . . .,

𝑆𝑙𝑝−𝑢𝑠[𝑁 − 2], 𝑆𝑙𝑝−𝑢𝑠[𝑁 − 1], 𝑆𝑙𝑝−𝑢𝑠[𝑁], 𝑆𝑙𝑝−𝑢𝑠[𝑁 − 1], 𝑆𝑙𝑝−𝑢𝑠[𝑁 − 2]) 

𝑆𝑟𝑒𝑐 = 𝑆𝑙𝑝−𝑒𝑥𝑡 ∗ ℎ̅ 

Srec is now an approximation of the input signal recovered from the Low-Pass component only. 

This manner of wavelet transform is suited for even length signals with 4 or more samples, in the 

next section we will extend it to arbitrary length signals.  

 

2.2.2 AROS Wavelet Transform  

 

Above we explained the standard wavelet transform. This transform is suitable for continuous 

signals, but if large discontinuities exist within a signal, intermediate points to bridge the 

discontinuity will be introduced by the filtering operation. For point cloud geometry compression 
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this would create outlying points where previously there were none. Hence, we need an approach 

to only consider signals with values that are close.  

We will use the transform blocks ℬ of continuous regions in each axis introduced in 2.1. To 

prevent creation of outlier points we will perform wavelet transforms on these Blocks 

independently, and then concatenate the results from all such blocks in an axis to create the 

transformed coordinate axis. This presents 2 immediate problems. Blocks may have odd or even 

length, and furthermore if we always started down sampling at the first element in a block, as 

we’ve done in the standard wavelet transform, the number of points in the low pass component 

can vary widely. To see this, consider the case where all transform blocks are length 3, the 

resultant Low-Pass signal would have 2/3 the length of the input signal instead of half.  

Thus, we apply the AROS wavelet transform as described in [24], where down and up sampling 

indices are informed by the original index space 𝐼(𝒳)  and not the index space 𝐼(ℬ) of transform 

blocks. In a sentence: we start down and up sampling at those points that occupy even indices in 

𝒳, regardless of their index parity in the transform block ℬ. The difference is then: 

 𝑆𝑙𝑝[𝑗] = 𝑆𝑐𝑜𝑛𝑣[𝑖] 𝑖𝑓  𝐼(𝑖) 𝑖𝑠 𝑒𝑣𝑒𝑛 

 𝑆𝑙𝑝−𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒[𝑗] = {
𝑆𝑙𝑝   𝐼(𝑗) 𝑒𝑣𝑒𝑛 

0     𝐼(𝑗) 𝑜𝑑𝑑 
 

Where, in a slight abuse of notation we take  𝑖 ∈ 𝐼(ℬ) and 𝐼(𝑖) to be the mapping of 𝑖 to 𝐼(𝒳), 

that is i is the index within the transform block, and 𝐼(𝑖) maps this index to the original point 

cloud.  

This new means of Down and Up sampling brings with it the need for an additional parameter 

we will call Transform Parity, or T-parity for short. In the standard wavelet transform the length 



 

17 

 

of the reconstructed signal can be inferred from the number of received Low-Pass components 

alone, however with the AROS up/down sampling scheme the number of received Low-Pass 

components does not fix the number of elements in the input signal. Depending on the parity of 

the start index in the original indexing space and the number of elements in the transform block 4 

different cases exist for the same number of received Low-pass coefficients. They are listed in 

Table 1.   

 

Table 1: Cases Resulting in 2 Received Symbols. the filtered signal shows the filtered transform 

block and the preceding / following values needed to explain the different cases, assume that this 

is the very start of the overall input signal. The transform block in question is indicated by using 

Capital, Bold letters, values not in the current transform block are lower case letters. The Down 

sampled column shows the result after down sampling the current transform block only. Ideal up 

sampled components shows the result we should obtain after up sampling for ideal 

reconstruction. T-parity of current block and T-parity of next block show the parity of the start 

index of the current and next block respectively, in the input indexing space. These quantities 

allow us to correctly infer reconstructed length.    

Case  Filtered signal in 

original indexing 

space 

Down 

sampled 

components  

Ideal up 

sampled 

components  

T-parity of 

current 

block  

T-parity of 

next block  

Even-start, 

Even-length  

[A, B, C, D, e, f, . . .] [A, C] [A, 0, B, 0] Even  Even  

Odd-start 

Even-length  

[a, B, C, D, E, f, g, . . 

.] 

 [C, E] [0, C, 0, E] Odd Odd 

Even-start 

Odd-length  

[A, B, C, d, e, g, . . .]  [A, C]  [A, 0, C] Even  Odd 

Odd-start 

Odd-length  

[a, B, C, D, E, F, g, h, 

. . .]  

[C, E]  [0, C, 0, 

E,0]  

Odd Even  
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We see that the 4 cases listed all produce the same number of low pass coefficients, but that 3 

different lengths of the input signal are possible. Furthermore, the placement of 0s in up 

sampling is not consistent either. If we track the parity of the start index of all transform blocks 

in the original index space, as shown in the table under the T-parity columns, we can infer the 

given case by looking at the current and next transform parity. Thus T-Parity must be either 

signaled or inferred at the decoder. Section 2.5 gives details on how this is done.  

The nature of point clouds give rise to 2 special cases. Transform blocks are unrestricted in 

length. Since our longest filter is length 5, we need to extend at most by 2 elements on either 

side. Hence any signal of at least 3 elements can be odd-symmetrically extended in a normal 

fashion. Signals of length 2 or less cannot. 

Length 1 signals cannot be filtered using wavelet transforms, as we require at least 1 Low-Pass 

and 1 High-Pass component, even if we do not send the High-Pass component. Hence the only 

way to treat isolated points is to scale and copy them directly to the High-Pass or Low-Pass 

components, depending on the parity in 𝐼(𝒳) they occur at, or remove them in pre-processing.  

Length 2 signals can be filtered but need a special extension procedure. The extension used here 

is as follows: we first perform odd-symmetric extension by the 1 sample available to us, then 

repeat the procedure on the result. This is shown below, where the original signal is marked in 

bold  

𝑆𝑖𝑛 = (𝒙𝟎, 𝒙𝟏) 

𝑆𝑒𝑥𝑡−1 = (𝑥1, 𝒙𝟎, 𝒙𝟏, 𝑥0) 

𝑆𝑒𝑥𝑡−2 = (𝑥1, 𝑥0, 𝑥1, 𝒙𝟎, 𝒙𝟏, 𝑥0, 𝑥1, 𝑥0) 
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Since we need at most an extension by 2 elements the result is:  

𝑆𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 = (𝑥0, 𝑥1, 𝒙𝟎, 𝒙𝟏, 𝑥0, 𝑥1) 

Which has the convenient property of being 3 concatenated copies of the input signal. Other 

filter choices beyond the 5/3 filter are possible, only the extension would have to be adjusted.  

A final challenge in filtering point clouds is bit-expansion. Given the 5/3 filters a bit expansion 

may occur for higher value signals. The 5/3 filters in their original form are given in table 2 

below. 

 

Table 2: Original 5/3 Biorthogonal Filter Values. 

Filter name  Values  

Analysis Low pass h  
√2 (

−1

8
,
1

4
,
3

4
,
1

4
,
−1

8
) 

Analysis High pass g  
√2 (

1

4
,
−1

2
,
1

4
) 

Synthesis Low Pass ℎ̅ 
√2 (

1

8
,
1

4
,
−3

4
,
1

4
,
1

8
) 

Synthesis High Pass 𝑔̅ 
√2 (

1

4
,
1

2
,
1

4
) 

 

 

This produces a gain of more than 1 for some signals in the low pass components. This is 

problematic for higher values. An example of a constant signal k will illustrate the problem.  

Let ℬ𝑥,𝑙 = (𝑘, 𝑘, 𝑘) 
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 𝑡ℎ𝑒𝑛  ℬ̂𝑥,𝑙 =  √2 [ (
−1

8
𝑘 +

1

4
𝑘 +

3

4
𝑘 +

1

4
𝑘 +

−1

8
𝑘) , (

−1

8
𝑘 +

1

4
𝑘 +

3

4
𝑘 +

1

4
𝑘 +

−1

8
𝑘) , (

−1

8
𝑘 +

1

4
𝑘 +

3

4
𝑘 +

1

4
𝑘 +

−1

8
𝑘)] =  √2(𝑘, 𝑘, 𝑘)  

where we omitted to show the odd-symmetric extension for simplicity.  

if k = 2n-1, the largest possible value for the given geometry bit depth, the resultant transform has 

values exceeding the geometry bit depth. This is problematic in entropy coding. The solution is 

simple: Since the condition we want to enforce is DC-gain of 1 in the reconstructed point cloud, 

we can apply our scaling in either analysis or synthesis. If we push all scaling to the decoder, we 

can keep a scaling of at most 1 in the Low-pass component on the synthesis side, and DC-gain of 

1 in the reconstructed point cloud. This can be achieved by multiplying the filter coefficients by 

1/√2 in the encoder, and by  √2 in the decoder.  The filter values used here are shown in table 3.  

 

Table 3: 5/3 Biorthogonal Filters as Used in this Work. 

Filter name  Values  

Analysis Low pass h 
 (

−1

8
,
1

4
,
3

4
,
1

4
,
−1

8
) 

Analysis High pass g 
 (

1

4
,
−1

2
,
1

4
) 

Synthesis Low Pass ℎ̅ 
2 (

1

8
,
1

4
,
−3

4
,
1

4
,
1

8
) 

Synthesis High Pass 𝑔̅ 
2 (

1

4
,
1

2
,
1

4
) 
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2.3 Quantization 

 

To achieve variable rate, we must quantize our filtered results. The quantization approach used 

here is a version of the approach from [9] adapted to work with our code. If we consider the 

Transformed point cloud 𝒴 the quantization applies a scaling of less than 1 to two of the three 

coordinates. Suppose we have a point 

𝒚𝜖𝒴, 𝒚 = (𝑦1, 𝑦2, 𝑦3)  

and wish to quantize if by a factor s, the resultant point will be 

𝑄(𝒚) =  𝒚̃ = (𝑦1, 𝑠𝑦2, 𝑠𝑦3), 𝑠 ≤ 1. 

We do this for all points.  Inverse quantization is achieved by  

𝑄−1(𝒚̃) =  𝒚̅ = (𝑦1,
1

𝑠
𝑦2,

1

𝑠
𝑦3),  

where s is shared across the encoder and decoder. In addition to creating duplicate points that can 

be removed this approach forces points closer to each other, which is beneficial in entropy 

coding, as the next section will explain. 

 

2.4 Geometry Entropy Coding  

 

The entropy coder used here is MPEGs TMC-13 software, source code obtained from [20] and 

complied locally, details on the approach are listed in [19].  TMC-13 is an Oct-tree encoding 

scheme that successively subdivides the space into 8 cubes, and signals occupancy for each cube 
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using 1 bit. Thus, a tree is formed, where the leaf nodes represent individual points, and the root 

captures the whole space. The value of the Quantization approach in combination with this 

entropy coding scheme is that points are concentrated in fewer cubes as scaling by less than 1 

“pushes” cubes toward the origin in the y and z directions. This reduces the number of occupied 

cubes per level.  

Given that at each level we subdivide all cubes into 8 octants, each eliminated cube reduces the 

number of bits in all subsequent layers by up to 8d where d is the depth wise distance from the 

removed node. This saving can be substantial and reduces the entropy under the given coding 

scheme compared with uniform down sampling or other approaches that remove points in a less 

systematic fashion. This approach is also described in 1.4.3.  

 

2.5 Symbol Stream Parsing  

 

As stated in 2.2.2, we need the parity of start indices in the original index space to reconstruct to 

the proper length, and with proper up sampling. Additionally, since we concatenate all the 

transform blocks after the AROS transform, we need to determine where one block ends and the 

next begins. We do this by explicitly sending start indices and T-parity symbols. Depending on 

the chosen continuity condition these quantities may or may not be inferable from the bitstream. 

The strictest continuity condition is to allow adjacent values to be none decreasing only and 

differ by at most one.  

∀𝑥𝑖 , 𝑥𝑖+1 ∈ ℬ𝑖 ∶    𝑥𝑖+1 𝜖{𝑥𝑖, 𝑥𝑖 + 1} 
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For this strict definition start indices of transform blocks cannot be inferred from the Low-Pass 

symbol stream alone, to show this consider 2 adjacent transform blocks 

ℬ0 = (𝑛, 𝑛 + 1, 𝑛 + 2, 𝑛 + 3, 𝑛 + 4, 𝑛 + 4) 

ℬ1 = (𝑛 + 6, 𝑛 + 6, 𝑛 + 7, 𝑛 + 8, 𝑛 + 9, 𝑛 + 10) 

𝑛 ∈ ℤ+ 

And their Low-Pass Wavelet transforms  

ℬ0̂ =  (. . . , 𝑛 + 2, 𝑛 +
25

8
, 𝑛 + 4, 𝑛 +

17

4
) 

ℬ1̂ =  (𝑛 +
21

4
 , 𝑛 +

23

4
, 𝑛 +

55

8
, 𝑛 + 8, . . . ) 

Consider first the case where ℬ0 has even T-parity, that is the first value occurs on an even index 

in the original index space. The Low-Pass symbol stream after down sampling would then be:  

 

𝒳𝑇−𝑒𝑣𝑒𝑛 =  (. . . , 𝑛 + 2, 𝑛 + 4, 𝑛 +
21

4
, 𝑛 +

55

8
, … )  

and the element wise difference is  

𝒳𝑑𝑖𝑓𝑓−𝑒𝑣𝑒𝑛 =  (. . . ,2,
𝟓

𝟒
,
13

8
, … ) =  (2, 𝟏. 𝟐𝟓, 1.625) 

For Odd T-parity we obtain  

𝒳𝑇−𝑜𝑑𝑑 =  (. . . , 𝑛 +
25

8
, 𝑛 +

17

4
, 𝑛 +

23

4
, 𝑛 + 8, … ) 
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𝒳𝑑𝑖𝑓𝑓−𝑜𝑑𝑑 =  (. . . ,
9

8
,
𝟑

𝟐
,
9

4
, … ) =  (1.125, 𝟏. 𝟓, 2.25) 

Where the difference value at the block boundary is marked in bold for both cases.  

In both parity cases we see that we have differences internal to the blocks that are greater than 

the difference at the block boundary. This means we cannot infer block boundaries using a lower 

bound on the differences at block boundaries. Since differences across block boundaries can be 

large for far separated blocks, we cannot use an upper bound here either. Hence block boundaries 

are not distinguishable by difference alone for all cases. As we have no other way of knowing 

how long a transform block is at the decoder, we cannot in general tell which value is at the 

boundary of a transform block. Therefore, we must signal this quantity explicitly, at least for the 

continuity definition described above. A similar counter example can be constructed to show 

Transform parity cannot be inferred in all cases either, so we choose to signal explicitly. The 

continuity condition chosen was ultimately less strict than the one used in this example. 

However, we tested several definitions, and explicitly signaling Start Index and T-Parity 

simplified testing greatly. Once an optimal continuity condition is decided the ability to infer 

these quantities from the symbol stream should be tested again.  

 

2.6 Objective Quality Assessment  

 

Objective quality measurements for point clouds are defined by the ISO in [25] and further listed 

on the reporting template [26]. MPEG currently considers two different quality metrics and one 

rate metric, rate, PSNR D1 and PSNR-D2.  
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The rate is defined as 

𝑅𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑 
 

measured in bits per point (bpp). Here the number of bits produced by the encoder should 

include all information needed to reconstruct the point cloud. For this approach that includes the 

bits in the base geometry bitstream as well as 2 streams of SEI, whose generation will be 

explained in section 3. As the base geometry bitstream is saved after entropy coding its size can 

be read directly from the file or gathered via pythons os library. SEI information will be 

estimated at the Shannon entropy limit, details are provided in section 3.6.  

In addition to bpp metrics to assess the accuracy of reconstruction are also defined. In [25] the 

ISO proposed Common Training and Test Conditions to evaluate point cloud compression 

schemes submitted. For geometry only 2 objective quality metrics are proposed: PSNR-D1 and 

PSNR D2. We will briefly explain both and then justify our choice.  

PSNR-D1 considers a point cloud to be evaluated, P2, and a reference point cloud P1. Using the 

nearest neighbor algorithm every point in P2 is associated with a point in P1. Euclidian distance 

between the points is measured as the difference vector between them and denoted 𝑉(𝑖, 𝑗). The 

MSE is calculated as  

𝑒𝑃1,𝑃2(𝑖) =  ||𝑉(𝑖, 𝑗)||
2

2
;  𝑚𝑠𝑒𝑃1,𝑃2 =  

1

𝑁
∑ 𝑒𝑃1,𝑃2(𝑘)𝑁

𝑘=0 ; 

This process is repeated with the roles of P1 and P2 reversed, to find 𝑚𝑠𝑒𝑃2,𝑃1. PSNR-D1 is 

finally defined as 

𝑃𝑆𝑁𝑅 − 𝐷1 = 10 log10 (
3 ∗ (2𝑛)2

max(𝑚𝑠𝑒𝑃1,𝑃2, 𝑚𝑠𝑒𝑃2,𝑃1)
) 
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where n is the geometry bit-depth. This definition is chosen such that quality results are 

consistent regardless of submission order of point clouds.  

A second metric, called PSNR-D2, or point to plane metric exists. As PSNR-D1 it considers a 

test point cloud and a reference point cloud and associates each point in the test-cloud with a 

point in the reference cloud using the nearest neighbor algorithm. However instead of calculating 

the error between these points directly a surface plane in the reference point cloud is defined in 

the local neighborhood of the identified point and the planes normal vector calculated. The 

distance vector between the reference point and the test point is then projected onto the normal 

vector. The resultant vector forms the basis for MSE calculation, and the remainder of the 

procedure is as in D1 metric.  

The quality measurement tool used here is pc_error, it is used in PCGC [8] and Grasp net [9]. To 

produce PSNR-D2 pc_error requires a file with surface normals. The data we have available 

does not include these normal vectors, and hence we are limited to presenting RD results using 

the D1 metric only.  

Additional Objective Metrics are proposed in [30]. Four basic groups of features are considered, 

Geometry based, Normal based, Curvature based, and Color based, where each feature type 

considers 6 different statistical measures to assess content quality, applied on group sizes of 

6,12,24 and 48. Of all considered features Color based features correlate best with Subjective 

opinion scores, however our work does not include color, making these results of little use to us. 

The authors of [30] tested their methods using 2 datasets, and the performance of different 

metrics varies. Overall curvature-based metrics are successful, as is the standard deviation within 

a local group. Assessing the quality of the proposed result via these metrics may lead to 
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additional insights, however given only the consideration of MSE based metrics in 

standardization work we have elected to present only those.  
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3. WAVE-GRASP 

 

 

This section will first give an overview of WAVE-GRASP and then explain the different 

components in detail. Wave GRASP is a lossy wavelet geometry compression approach that 

aims to improve on the quantization-inverse quantization approach for coarse point cloud 

compression used in [9]. The core principle is to replace simple quantization-inverse 

quantization with an Arbitrary Region of Support (AROS) wavelet transform along coordinate 

axes followed by quantization. The wavelet transform not only reduces the number of input 

points overall, but also causes an energy concentration, allowing us to cover more energy of the 

point cloud in fewer points. This comes at the cost of higher latency and requires us to sort the 

geometry to create continuous regions for good results.  

 

3.1 Overview  

 

The input to wave-grasp is the geometry component of a point cloud transformed to the frame 

coordinate system. This gets passed to a pre-processing block to facilitate the AROS transform. 

Here the cloud is sorted to reduce to total number of transform blocks and isolated points can be 

removed. Next, transform blocks are identified jointly in all 3 axes. The values within each 

transform block for each axis are then transformed using the AROS wavelet transform where 

Supplemental Encoder Information (SEI) regarding start indices in the symbol stream of the 

different transform blocks, as well whether the transform blocks start on indices with odd or even 
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parity is generated. The result is concatenated back into a point cloud and quantized by scaling 2 

of the 3 axis components by a factor less than 1. Duplicate values thus created need to be 

removed and the SEI updated accordingly. Once this is done, we can entropy code the result. The 

base geometry will be encoded using the TMC-13 codec. To report RD results, we estimate the 

bits needed for SEI as the entropy limit. The decoder first decodes the bitstream, then inverse-

quantizes the result, and finally performs the inverse wavelet transform, resulting in a 

Reconstructed point cloud. An overview of this process is provided in figure 2, and the 

individual steps will be explained in the following sections.  

 

 

Figure 2 WAVE-GRASP System Overview. Green blocks are core components of WAVE-GRASP, 

while quantization (purple) and entropy coding(red) can be replaced with any quantization and 

entropy coding scheme respectively, so long as input-output relationships are maintained. 

Yellow blocks are pre-preprocessing blocks. Input and output blocks are colored blue, and the 

theoretical bitstream size estimation occurs in the grey block.  
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3.2 Preprocessing: Sorting and Isolated Point Removal  

 

Geometry components of point clouds are in general order agnostic, to visualize a point cloud we 

simply occupy the signaled points. However, to successfully implement an AROS-wavelet 

transform we require continuous segments. The continuity will be defined in section 3.3, for now 

it suffices to say that each continuous segment requires 2 symbols of SEI, and furthermore 

segments of length 1, i.e. isolated points, pose issues in transform. Therefore, we need to sort the 

point cloud to minimize the total number of continuous segments and isolated points.  

The sorting algorithm used here first sorts all points in the Point cloud jointly, first sorting in 

ascending order by the X-component, then Y then Z. We will call this sorting “Ascending sort”, 

as it will be used throughout this process. Ascending sort creates an array where the X-

component is non-decreasing, Y-components are non-decreasing within each constant X-

segment, and Z-components are non-decreasing within each constant Y-segment. This approach 

exhibits good continuity in the X and Y axes, but very poor continuity in the Z-axis.  

The next step in sorting we will refer to as “Sort for Transform” here we take the first point in 

the ascending point cloud and find all points where the Y and Z components are continuous. Off 

all these points we then select the first one found.  

In practice, since we sort by X-first, even if we only check the Y and Z components for 

continuity the first selected point is likely to also be continuous in the X-axis, but computational 

cost is reduced by only checking 2 of the 3 components. Experiments show that this approach 

yields results comparable to checking all 3 axes explicitly.  In figure 3 below we can see that 

checking all 3 axes instead of just the Y and Z has little effect, as shown by the blue and grey 
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curves, but allowing a decrease between adjacent points does yield some benefit. Note that base 

grasp can achieve perfect reconstruction at 1.02 bpp for this test case, so the far-right side of this 

graph is not relevant. 

 

 

Figure 3  RD at Different Sorting Schemes for Longdress_vox10_1080. The blue curve sorts by 

X, Y and Z axis, and allows adjacent values to decrease by 1. The Orange curve sorts X, Y and Z 

as well but does not allow decreases, Grey, and Yellow repeat this pattern but only consider the 

Y and Z axis. Under the proposed approach sorting by X in addition to Y and Z has little effect, 

however allowing decreases between adjacent points yields gains around 2dB at low bit rates.  
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Once we have selected a point that is continuous, we append it to the current transform block and 

delete it form the input array. We then search for a point continuous to the point we just found, in 

the same fashion. This approach continuous until we can no longer find continuous points. Now 

the current transform block is complete and gets written out to the sorted array. We resort the 

input array with all processed points removed using Ascending sort described above and repeat 

the Sort for transform process. This continues until all points in the input have been processed.  

After the sorted point cloud is obtained in the above manner, we remove all isolated points. An 

isolated point is defined as a continuous segment of length 1. These are disadvantageous to the 

AROS transform, as they incur large SEI overhead and increase geometry bitstream size for little 

improvement.  Two examples, one for the sparse staue-klimt (sic) and another for the dense 

soldier vox-12 Point Clouds are shown in figures 4 and 5 respectively. These plots show that 

including isolated points leads to worse results. This is caused not only by increased SEI, but 

also by the increased size of the base geometry bitstream, as the entropy coder now needs to 

contend with a number of isolated points that are inefficient to represent.  
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Figure 4 Staue-klimt With and Without Isolated Points in the Low Pass Component. Neither case 

is superior to base-grasp here, the SEI the case with isolated points yields nearly no benefit, 

while excluding isolated points is at least beneficial in the low bitrate regime. Thus, we conclude 

removing isolated points is beneficial here. Note that iso-pts stands for isolated points 
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Figure 5 Soldier vox-12 With and Without Isolated Points in the Low Pass Component. This plot 

clearly shows that removing isolated points is beneficial. Note that this graph only considers 

quantizer scales between 0.1 and 1, while the results graph presented below considers quantizer 

scales as low as 0.01. We choose to include less scale points here to create an easier to follow 

graph.  

 

The sorting applied here is not necessarily optimal but is reasonably computationally efficient 

and provides satisfying results for Solid point clouds. Future iterations of this work should first 

focus on improving the sorting. Furthermore, sorting can be computationally expensive, but this 

step may be pushed to the capture side and removed from the encoding process if desired. Once a 

sorted point cloud is obtained it does not have to be sorted again.  
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3.3 Transform Block Identification  

 

 

Figure 6 Transform Block Identification and AROS Transform Closeup. 

 

Once the point cloud has been sorted, we can identify transform blocks. The AROS transform 

preforms an independent wavelet transform on blocks of arbitrary length; this unit, shown on the 
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left side of figure 6, is intended to furnish those blocks. As long as points within transform 

blocks do not differ substantially in value and the transform block is longer than 1 element the 

reconstruction quality from the block is not greatly affected by length. However, the amount of 

SEI needed and the length of the geometry bitstream itself may increases with number of 

transform blocks. Hence, we want as few as possible.  

Components will be transformed axis wise, as shown in the right half of figure 6. It may be 

tempting to define different transform blocks for each axis individually as a discontinuity in one 

axis does not necessarily imply a discontinuity in all axes. This is not advisable as it causes an 

index drift in the SEI update function.  

Transform blocks are identified by finding all indices where adjacent values in any axis differ by 

more than 3. While a stricter definition of continuity would lead to a more accurate wavelet 

transform, it would also increase the number of continuous sections and isolated points, which 

adversely affects bpp. Having a continuity threshold of +-3 allows points that would otherwise 

be isolated to be sorted into transform blocks. Figure7 shows the effects of different continuity 

definition on the RD curve for a 10-bit dense point cloud. Tested are continuities of [+3, -3], [+2, 

-2], [+1, -1] and {0,1}. We see that the continuity of {0,1} performs significantly worse than 

others. We chose the +-3 continuity condition in the hopes that it would help reduce isolated 

points in lower density point clouds, while it achieves comparable performance in in solid point 

clouds compared to +-1 and +-2 conditions.  
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Figure 7 Longdress-vox10 With Different Continuity Conditions. A discontinuity is found if the 

difference between points is greater than the indicated values. For example, for the blue curves 

any points with absolute difference of greater than 3 are discontinuous. Note that the blue, 

orange and grey curves are overlapping.  

 

Once we have identified all breaks in continuity in any axis, we concatenate the indices where 

these occur into one array. We also insert indexes that point to the first element and the N+1th 

element. This array then gets sorted in ascending order. The result is start indices for all 

transform blocks, where we can simply select the portion of the point cloud bounded by 2 

consecutive entries in the start index array to obtain a transform block. This information along 

with the presorted point cloud is passed to the AROS transform unit.  
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3.4 AROS Wavelet Transform  

 

AROS transform is performed axis wise; we first need to separate the point cloud into its X, Y 

and Z axes. We then select transform blocks using the start indices found above. We will explain 

the process in detail here for one axis, but note that all 3 axes operate identically and only differ 

in the values of the transform block they take in. Figure 8 below shows detail.  

 

 

Figure 8 Single axis Wavelet Transforms. Note that we include a portion to handle isolated 

points. Above we show that it is beneficial to remove isolated points in preprocessing, but we 

retain the ability to handle them here should we want to. 
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Once a transform block is selected, we first determine if we have an isolated point. As discussed 

in 3.2 isolated point removal is an optional pre-processing step. Hence, we need to be able to 

accommodate isolated points if they occur. Points at even indices are copied to the Low-Pass 

symbol stream, while those occurring at odd indices in the input signal index space are 

discarded. This is in accordance with the AROS transform described in section 2.2.2. If the 

current block is not an isolated point, we first perform odd-symmetric extension. We then filter 

the result with only the Low-Pass filter, as High-Pass components are discarded we can omit 

High-Pass filtering.  

After we have obtained the Low-Pass version of the transform block we need to down sample. 

Here we retain all Low-Pass coefficients that occur at even indices in the input point cloud 

indexing space. The resulting Low-Pass signal is appended to the Low-Pass symbol stream. We 

save the start index of the current block in the Low-Pass symbol stream as start index SEI, and 

the parity in the input index space of the first element of the block in T-parity SEI. Since all axes 

use the same transform blocks only SEI for one axis needs to be produced and sent. Once all 

axes are transformed, we concatenate them together to form the Low-Pass point cloud.  

 

3.5 Quantization, Duplicate Point Removal and SEI Update  

 

From 3.4 we receive the Low-Pass symbol streams concatenated into a Low-Pass point cloud, 

and 2 arrays with SEI information. The Low-Pass point cloud will be quantized as described in 

section 2, with the result containing duplicate points. Naturally we must remove these for 

efficient coding, but to successfully reconstruct we must also update the SEI.  
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To do so, we find all the indices of the first occurrence of unique points in the Quantized point 

cloud, these are the indices of points to be retained. We also take the compliment of these indices 

to find all the points that must be removed.  

We then loop over the old start indices in the cloud with duplicates and consider one transform 

block at a time. By comparing the indices of points to be removed, we can determine how many 

points in the current transform block will be removed. Three cases exist here, they and the 

needed actions are listed below  

1. No points to remove in the current block: update start index if needed and skip to next 

block  

2. All points removed in the current block: Remove the start index and T-parity symbol for 

the current block, track number of removed points to update all following start indices  

3. Some points removed in the current block: Update T-parity and all following start 

indices, update current start index if needed and track number of removed points.   

Case 1 requires only an update of the start index if points have been removed in preceding 

blocks, in case 2 we need to remove the start index and T-parity symbol corresponding to the 

current block. In case 3 we may need to change the T-parity if an odd number of points was 

removed, otherwise it remains the same. If points in preceding blocks were removed, we must 

shift the start index forward by the number of removed points. If the start index is a removed 

point, we need to assign the next retained point as the new start index for this block. To update 

start indices, we must also track to total number of points removed thus far as we progress 

through the SEI-list. The output of this block is the quantized point cloud without duplicates, and 

SEI information updated such that it is relevant to the quantized point cloud.  



 

41 

 

3.6 Entropy Coding  

 

Entropy coding of the geometry is done using MPEGs TMC-13 [19,20]. This is an Octree coding 

algorithm where the input space is repeatedly separated into octants. Occupancy of each octant is 

signaled using 1 bit, resulting in 8 bits for the first level, 8x8 bits for the 2nd level and so on, until 

we reach the leaf nodes. Therefore, concentrating points into fewer high depth octants increases 

coding efficiency, which motivates the use of grasp style quantization.  

SEI is not directly coded, but the number of bits needed are estimated as the Shannon entropy 

limit.  

To find this value for T-parity we simply calculate the binary entropy in the T-parity array and 

multiply the result by the number of symbols. For the start indices we use a differential coding 

scheme. We send the first start index directly, and for all subsequent indices we only send the 

difference to the previous index. Entropy is calculated by finding all unique differences and their 

respective probabilities. From here we can calculate the entropy per symbol and the total number 

of bits in the start index SEI as 

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑑𝑒𝑥 𝑏𝑖𝑡𝑠 

=  𝑆𝑦𝑚𝑏𝑜𝑙 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑦𝑚𝑏𝑜𝑙𝑠

+ ⌈ log2 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠⌉ 

𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑡𝑠 = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑑𝑒𝑥 𝑏𝑖𝑡𝑠 + 𝑇 − 𝑝𝑎𝑟𝑖𝑡𝑦 𝑏𝑖𝑡𝑠 + 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 𝑏𝑖𝑡𝑠 

MPEGs TMC-13 is not order preserving. After encoding-decoding the points may be in a 

different order. Clearly this is detrimental to the proposed scheme. For testing purposes, we 

create a bitstream using TMC-13 and use its size for bit per point calculations as we feel this is a 
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good estimate for achievable base-geometry bitrate. For reconstruction we use a version of the 

point cloud saved in code just prior to entropy coding. The encoded-decoded cloud and the saved 

cloud are equivalent except for the order of points. If this approach is to be fully implement an 

order preserving entropy coder would be required. This may be achieved by differentially coding 

points in each axis, as the high correlation should lead to good results given a well sorted point 

cloud. We feel that an investigation into the compression performance should precede work to 

tailor an entropy coder to this approach, as such no detailed order preserving entropy coding 

approach is proposed or implemented at this time.  

 

3.7 Decoder Steps  

 

The decoder operates in reverse of the encoder, except we do not need a duplicate point removal 

or SEI update unit here. We simply decode and dequantize the geometry bitstream then perform 

the inverse AROS using the SEI from the Encoder. The result is an approximated geometry point 

cloud. No post processing is proposed at this time, however there may exist beneficial post 

processing schemes.  

 

3.8 Quality Measurement with PC-Error 

 

To compare the quality of the reconstructed point cloud with the input point cloud we use the 

PC-error software provided by Nanjing University Vision Lab in their GitHub [8]. This is the 

same software Grasp-net uses. It takes 2 .ply files as inputs and computes MSE and D1- PSNR 
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using both files as reference and a final symmetric version. The symmetric version is reported for 

all wave-grasp and base grasp results. Details on quality measurement are provided in 2.6.  
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4. RESULTS 

 

 

The following section will present the achieved results divided by Point cloud class. As stated 

above point clouds are divided into Solid, Dense, Sparse and Scant Point clouds, where the 

number of points per unit volume decrease as we move to sparser classes [12].  

Tested here are Solid, Dense and Sparse point clouds. Due to this approach requiring continuous 

segments we expect the performance to decrease as point clouds get sparser. This suspicion 

largely holds, but we observe good gains in the low bitrate regime. Scant point clouds are not 

tested as performance on Sparse Point Clouds suggests that further decreases in density are not 

worth testing.  

 

4.1 Dataset Overview  

 

Figure 9 below shows the datasets used to generate the results presented here. We show both a 

colored version and a version with arbitrary coloring applied. The Color is for illustrative 

purposes as it is difficult to properly visualize 3D structures with uniform color. However, no 

color attributes were processed in this approach. All results presented below show our RD 

performance alongside with using base-grasp quantization alone. Dataset classification follows 

[12] datasets are obtained from [27-29].  
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Redandblack_vox10_1460 
 

soldier_vox10_0690 

 

 

Boxer_viewdep_vox12 

  

Staue-klimt-vox12 
 

    

 

Shiva_00035_vox12 

 

 

 

 

 

 

 

Figure 9 Point Clouds Used for Testing. Presented both in full color and with artificial color 

scheme. Color is presented only for visualization purposes and was not coded or processed in 

any way.  
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4.2 Solid Point Clouds  

 

The following results were produced on Solid Point clouds soldier_vox10 and 

redandblack_vox10 [28]. The RD curve for Soldier-vox10 is shown in figure 10, figure 11 

redandblack-vox10 reconstructed at different scales and figure 12 shows the RD curve for the 

redandblack-vox10 dataset. For illustrative purposes we show RD curves of the geometry 

bitstream only, along with those where the SEI is estimated at the Shannon limit and added to the 

geometry bitstream. No-SEI curves are not decodable and only included to show how the amount 

of SEI varies as the rate changes, and to give a theoretical upper limit.  

 

 

Figure 10 RD Curve for 10-bit Soldier Point Cloud. The figure shows the decodable base grasp 

and Wave-grasp with SEI estimated at the Shannon limit, and the non-decodable reference curve 

for the wave-grasp geometry component only. 
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Original geometry  

 

 

56.8dB wave        52.6dB base  

Scaling factor of 0.1 

 

64.2dB wave        61.9dB base 

Scaling factor of 0.3 

 

68.1dB wave      66.6dB base 

Scaling factor of 0.7 

Figure 11 Side by Side Geometry Compression Results for Redandblack-vox10-1460. Wave 

grasp on left and base grasp on right at each scale factor, for Quantizer scales of 0.1, 0.3 and 

0.7 (left to right), with original at the top. Wave Grasp has 56.8dB, 64.2dB and 68.1dB to the 

Original while base grasp has 52.6dB, 61.9dB and 66.6dB for the scale points respectively.  Note 

that we present results at a fixed quantizer scale to show reconstruction behavior, but the 

achieved bpp rate at those scales may differ for the two approaches.  
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Figure 12 RD Curve for 10-bit Redandblack-vox10-1460. The grey and blue curves are 

decodable, the orange curve shows wave-grasp with the base geometry component only. This is 

not decodable but intended to show the trend of SEI as the rate changes. 

 

4.3 Dense Point Clouds  

 

These results were produced on 12-bit dense point clouds soldier-vox12 and boxer-vox12 [27]. 

Presented in figures 13 and 15 are concave rate points for soldier-vox12 and boxer-vox12 

respectively, while figure 14 shows the reconstructed boxer-vox12 dataset at different 

quantization rates. Plotting all generated datapoints leads to a convex shape, however we can 

improve coding performance with timesharing between all points that form a concave line. This 

concave line is presented here. We again show undecodable No-SEI curves and decodable curves 
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with SEI estimated at the Shannon limit, along with base-grasp quantization. We see that as 

density decreases the amount of SEI needed increases and stays relatively constant even at higher 

bit rates. This is due to Dense point clouds having more discontinuities than Solid Point clouds 

after the input sorting, and discontinuities are inherent to the data and not primarily caused by 

quantization. We also see an interesting behavior here that Wave-grasp performs worse at low-

bitrates but begins to exceed base-grasp at higher bit rates. More experiments are needed to 

investigate this behavior. However isolated point removal combined with strong quantization 

may not leave enough data at low bit rates for accurate reconstruction, while at higher bit rates 

the effects of quantization are not as extreme and enough distinct Low-Pass points are 

transmitted to make their higher energy density valuable.  
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Figure 13 RD Curve for 12-bit Soldier Point Cloud. Grey and blue curves are decodable, the 

orange curve is provided for reference and shows the wave-grasp base geometry component 

only, omitting any SEI. Note that the amount of SEI is relatively constant at all displayed rate 

points.  
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Original geometry 

 

 
69.2dB wave       68.9dB base 

Scaling factor 0.1 

 
81.7dB wave   82.2dB base 

Scaling factor 0.5 

 
84.6dB wave    82.8dB base 

Scaling factor 0.9 

Wave-grasp

base-grasp 

 

Wave-grasp 

base-grasp 

 

Wave-grasp 

base-grasp

 

Figure 14 Boxer_viewdep_vox12 Compression Results. The Top shows the original input 

geometry, the center row shows the full reconstructed point clouds, with Wave Grasp and the left 

and base grasp on the right for each rate point. The bottom row shows detail, where wave grasp 

is on top and base grasp on the bottom. Tested quantizer scales are 0.1, 0.5 and 0.9 where wave 

grasp has a PSNR to the original of 69.2dB, 81.7dB and 84.6dB respectively, while base grasp 

has PSNRs of 68.9dB, 82.2dB and 82.8dB. Note that we may have different bpp for a given 

quantizer scale for the 2 approaches.  
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Figure 15 RD Curve for 12-bit Boxer Point Cloud. Grey and blue curves are decodable, the 

orange curve is provided for reference and shows the wave-grasp base geometry component 

only, omitting any SEI. Note that the amount of SEI is relatively constant at all displayed rate 

points.  

 

4.4 Sparse Point Clouds  

 

Results on Sparse point clouds are presented on staue-klimt-vox12 (sic) and Shiva-00035-vox12 

[29], shown in figures 16 and 18 respectively. Figure 17 shows the reconstructed Shiva-00035-

vox12 dataset at different quantizer rates. Sparse point clouds are very detrimental to the 

proposed approach due to the high number of isolated points which constitute upward of 80% of 
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all points. Wave-grasp still outperforms base-grasp at very low bitrates. As in the Dense case 

more testing is needed to thoroughly explain this behavior, and especially why the trend from 

Dense point clouds reverses. An initial suspicion is that now the number of isolated points is so 

large that base-grasp quantization is removing significant detail at low bit rates, and energy 

concentration of the wavelet-based approach becomes useful again as both base and wave grasp 

lose significant detail at the lower rates. Here we only present decodable RD curves and elected 

not to include a No-SEI version. The difference between wave-grasp and base grasp is 

sufficiently strong here that we feel additional data does not yield more insight only makes the 

graph harder to read as the difference between No SEI and Shannon SEI is negligible compared 

to the distance to base-grasp.  

 

 

Figure 16 RD Curve for 12-bit Staue-klimt Point Cloud. 
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 Original geometry 

 
 

 

Wave grasp  Wave grasp  Wave grasp  

Scaling factor 0.01, 50.7dB 

 
 

Scaling factor 0.1, 63.7dB 

 
 

Scaling factor 0.5, 64.3dB 

 
 

Base grasp  

Scaling factor 0.01, 50.1dB  

Base grasp  

Scaling factor 0.1, 69dB  

Base grasp  

Scaling factor 0.5, 81.2dB  

 
 

 
 

 

 

Figure 17 Reconstructed point clouds for Shiva_00035. Original (Top), Wave-grasp (Middle), 

and Base-Grasp (bottom), Quantizer scale  for both Wave and Base grasp were 0.01, 0.1 and 

0.5. Where wave grasp has PSNRs of 50.7dB, 63.7dB and 64.3dB respectively while base grasp 

has 50.1dB, 69dB and 81.2dB. Note that to illustrate the reconstruction behavior we present 

images at the same quantizer scale point, the bpp for each approach at a given quantizer scale 

can vary widely. One can clearly see Wave-grasp suffering from isolated point removal, 

especially at higher rates.    
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Figure 18 RD Curve for 12-bit Shiva_00035 Point Cloud. 

 

4.5 Number of Isolated Points Removed   

 

Presented in table 4 below are the number of input points, non-isolated points and percentage of 

points removed in wave-grasp pre-processing. We see that as density decreases number of 

removed points increases drastically, until the majority of points are removed as isolated for 

sparse clouds. Section 3 shows that sending isolated points does not improve RD performance, as 

any gain in quality is absorbed by the increases in bpp.  
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Table 4 Number and Percentage of Points Removed as Isolated.  

Dataset name  Number of points 

in input cloud  

Number of not 

isolated points  

Number of 

removed isolated 

points 

Percentage of 

points 

removed  

Solider-vox10-

0690  

1089091 1085914 3177 0.29% 

Redandbalck-

vox10-1460  

710964 708192 2772 0.39% 

Solider-vox12-

viewdep  

4001754 2769601 

 

1232153 30.8% 

Boxer-vox12-

viewdep  

3493085 2690014 803071 23.0% 

Staue-klimt-

vox12 

499660 55856 443804 88.8% 

Shiva-00035-

vox12 

1009132 184959 824173 81.7% 
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5. DISCUSSION 

5.1 Results Discussion 

 

 

We immediately notice that our approach is best suited to denser point clouds. This is intuitive 

due to our need for continuous segments. Our performance gains at low bitrates are believed to 

be due to energy concentration, when sending few points wave-grasp excels as its points contain 

more energy. At higher bitrates energy concentration becomes less useful compared to sending 

the non-transformed points as we simply have enough points available such that missing points 

are of reduced importance.  

Interesting is also that wave grasp performs better at high bit rates for Dense point clouds but 

favors low bit rates for all other point cloud classes. The immediate cause for this phenomenon is 

not clear. A first suspicion is that Dense point clouds form an intermediate regime where simple 

grasp-style quantization still produces good results at lower bit rates, but the number of isolated 

points is large enough to prevent wave grasp from performing well, while at higher rates and 

lower quantization scales, enough unique points are produced to allow energy concentration in 

wave grasp to be effective. Points in Solid point clouds are close enough together that they are 

shifted more as a unit at all scales, allowing base-grasp to exceed energy concentration benefits 

at high rates. Finally for Sparse point clouds the vast majority of points are isolated and removed 

in wave-grasp, in order to achieve any gain over base-grasp we need to test at extremely low 

bitrates, such that the number of removed points in base-grasp is large enough for energy 
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concentration to offset the effects of isolated point removal in wave grasp. These suspicions may 

be confirmed by modifying the approach to reduce the number of isolated points.  

 

5.2 Possible Improvements and Future Work  

 

As can be seen in the results section, the largest detriment of wave grasp is it’s need for (long) 

continuous sections. The fewer continuous sections the better the entropy performance and the 

less SEI we incur. Additionally sparser point clouds lead to more isolated points, which can only 

be coded at high SEI costs for even indices, and not at all for odd indices. This suggests an 

immediate area of improvement: Sorting.  A more sophisticated sorting algorithm that finds an 

optimal solution in terms of either minimum number of isolated points, minimum number of 

continuous sections, or a combination thereof may lead to significant improvements. Hand in 

Hand with this are possibly different definitions of continuity, some of which were investigated 

in section 3. Coupled with more sophisticated sorting this should be a primary area of 

investigation for future work. Additionally, once an optimal continuity condition is found, 

renewed attempts can be made to infer start indices and T-parity from the bitstream itself and not 

explicitly signal them.  

 

5.3 Conclusion  

 

We have shown a wavelet-based method for geometry point cloud compression. Our proposed 

approach shows gains in the low bitrate regime but exhibits poor performance on low density 
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point clouds. Nonetheless Low bitrate applications may benefit from this approach and future 

work may yield modifications more suitable for low density point clouds. 
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