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ABSTRACT

Background: Diabetes is a condition when the body doesn’t produce enough insulin or fails to

use it as efficiently as it should. As per American Diabetes Association, in 2019 about 12.84%

Americans were children and adolescents who had type-I diabetes. For patients with diabetes, hy-

poglycemia is a condition in which blood sugar (glucose) is lower than the standard range whereas

hyperglycemia is a condition in which blood sugar (glucose) is higher than the standard range.

Hypoglycemic events can lead to serious life threatening consequences whereas hyperglycemic

events can lead to slow and permanent damage to internal organs for patients with type I diabetes.

Objective: This research is aimed to develop a model to predict the probability of hypoglycemia

in the next 1 hour at each 5 minute intervals. The model is expected to have accuracy comparable

to the ML models, better interpretability, and ability to forecast events like hypoglycemia, hyper-

glycemia, glucose values, etc.

Methods: The research implements the Hidden semi-Markov model with the help of the R package

mhsmm, and custom user defined distributions and applies a Monte Carlo approach for forecasting.

Results: Patient-specific and Population-level models are developed and the results are explained

by comparing the predicted probability of hypoglycemia with the observed glucose values. For

a specific threshold on the population-level model, the sensitivity, and specificity for 30 minute

ahead forecast are 91.35% and 75.03% and for 60 minute ahead forecast are 89.76% and 65.27%,

respectively. The 30 minute ahead forecast and 60 minute ahead forecast ROC-AUC for the popu-

lation level model are 0.9035 and 0.8214, respectively. In literature the 30 minute ahead prediction

sensitivity, specificity, and ROC-AUC are generally in the range 74%-95%, 79%-96%, and 0.73-

0.93, respectively. The GitHub repository links for these models are provided in Appendix A.

Conclusions: For hypoglycemia prediction, the HSMM model provides better explainability of a

patient’s physiological latent states compared to the ML models and comparable sensitivity and

specificity. The prediction accuracy can be further improved by introducing other parameters like

carbohydrates and insulin as covariates directly into the model.
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1. INTRODUCTION AND LITERATURE REVIEW

Maintaining steady and appropriate blood glucose levels is essential to proper health and func-

tioning. A hypoglycemic event occurs when blood glucose drops below typical levels and can be

fatal. Alternatively, hyperglycemia can occur when blood glucose levels rise to unusually high

levels, which can lead to organ damage if not controlled. Accurate predictions of hypoglycemic

events will allow physicians to be aggressive with the insulin administration process. This will

serve two purposes: (1) Higher insulin amounts will ensure that the patient spends less time with

unusually high blood glucose. (2) Accurate hypoglycemic predictions will instill confidence in the

physicians and the patients that the hypoglycemic events arising due to high insulin administration

or any other reason won’t prove to be fatal. Absence of hypoglycemic data is not only a challenge

for predictive models but also an indication of a patient’s blood glucose level control as absence of

hypoglycemic data might suggest either very strong glycemic control or very high blood glucose

levels. Handelsman and Turtle [1] concluded that the absence of any mild hypoglycemia is a strong

pointer of poor glycemic control. A study by Ary et al. [2] showed that patients with Type II di-

abetes reported adhering about 53% the time to exercise prescriptions whereas patients with Type

I diabetes adhered about 31% the time and Type II diabetes patients who were prescribed insulin

reported adhering to the regimen 90.3% of the time compared to 78.3% adherence by the Type I

diabetes patients. Such behaviors by patients with Type I diabetes makes hypoglycemia prediction

more significant for this group of individuals.

Real-time continuous glucose monitoring is essential for diabetes management and is generally

used to establish baselines to classify a event as hypoglycemic. The data set used in this project

contained approximately 2.42% glucose readings in the hypoglycemic range. In this study glucose

values below 70 mg/dL are defined as hypoglycemic, glucose values from 70 mg/dL to 180 mg/dL

are defined as normal, and glucose values of 180 mg/dL and above are defined as hyperglycemic.

The major problem in hypoglycemia prediction is the high False Alert Rate (FAR) of these models,

this damages the confidence of a patient and a physician in the predictions and thus, makes their
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real-time application inefficient. The underlying reason for high FAR of these models is generally

the imbalanced nature of the data set containing continuous glucose values [3]. For best glycemic

control and to avoid serious hypoglycemia, education of patient and advice not to miss meals and

to cover periods of unusual exercise with additional carbohydrate intake usually suffice.

The first attempt to predict present and future glucose values using the recent past blood glu-

cose history was made in 1999 by Bremer et al. [4]. Since then many time-series (like ARIMA-

ARIMAX, state-space model, etc.), machine learning (like Logistic Regression, Support Vector

Machine, Random Forests, Decision Trees, etc.), Artificial Neural Networks, and other kernel

based models have been proposed to analyze, understand, and predict present & future glucose,

insulin, hypoglycemia, and hyperglycemia events in adolescents and adults with type 1 as well as

type 2 diabetes [5–20].

As described by ElMoaqet et al. [21], the fundamental problem in standard modeling and

evaluation method used in analyzing engineering dynamic systems is to minimize the (mean) error

between the real and predicted systems. These models are applied to multi-step ahead predictions

of physiological signals, but clinically predicting relevant physiological events is as important as

predicting the signals. Machine Learning models provide a high accuracy in predicting such events

but lack in explaining the physiological state of the patient which lead to the specific signal. These

models generally use multiple input variables like insulin intake, carbohydrate intake, glucose,

heart rates, etc. while making predictions. All these variables are mostly not available from a

single data source which makes real-time applications of these models difficult. As stated by

Dave et al. [5], these models generally can be broken down as classification-based models for

predicting future hypoglycemic events or regression-based models for predicting future glucose

values. That is, these models generally have specific targeted outcomes and cannot be used for

multiple simultaneous applications.

In order to appropriately characterize blood glucose dynamics, we propose the use of a hidden-

semi Markov model using gamma distributions to flexibly model the emission and sojourn distri-

butions for each of the latent states. This project applies Hidden semi-Markov model to develop

2



this probabilistic prediction approach with the help of the mhsmm R package explained in the jour-

nal paper by O’Connell and Højsgaard [22]. The mhsmm package allows custom distributions and

uses EM algorithm for parameter estimation. O’Connell and Højsgaard [22] described two other

software packages available for Hidden semi-Markov models. The first was AMAPmod software

by Godin and Guédon [23] and the second was hsmm package by Bulla, Bulla, and Nenadić [24].

Compared to these two packages, the flexibility to estimate parameters and to create custom distri-

butions make the mhsmm package a good choice for this project. The developed HSMM model is

expected to have accuracy comparable to the Time-Series and Machine Learning models available

in the literature for similar applications. In this project, the physiological state of a patient which

result in specific glucose levels is of high clinical importance. It is also expected to better explain

the physiological characteristics of the patients leading to specific glucose levels. Latent states

are posited that characterize different physiological characteristics associated with different blood

glucose levels. We also use a Monte Carlo approach to generate multiple latent state sequences

for future time points that can be used to forecast various clinically-relevant outcomes, such as

hypoglycemic events, hyperglycemic events, future glucose values, etc. The proposed model uses

CGM values alone which is easily available and thus, makes real-time application simpler.

The following manuscript is organized as follows: Chapter 2 presents the theory of the models

and the EM algorithm for HSMM. Chapter 3 explains the latent states, and their initialization

process. Chapter 4 describes the dataset, the model parameters, some user-defined functions, and

the types of models developed. Chapter 5 defines the prediction approach, the training and test

datasets, and the model interpretation. Chapter 6 contains the evaluation process. Finally Chapter

7 contains the project summary and future work.
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2. THEORY OF HIDDEN MARKOV AND HIDDEN SEMI-MARKOV MODELS

2.1 Discrete Markov Chains

A discrete Markov chain is a sequence of discrete random states of a system where the prob-

ability of entering a state at time n + 1 depends only on the state at time n. Figure 2.1 shows a

generic diagram of a 3 state discrete Markov chain. As stated by O’Connell and Højsgaard [22],

mathematically it can be represented as,

P (Sn+1 = sn+1|S0 = s0, S1 = s1, S2 = s2, . . . , Sn = sn) = P (Sn+1 = sn+1|Sn = sn) (2.1)

where Sn+1 is the state of the discrete Markov chain at time n+ 1.

Figure 2.1: Generic representation of a 3 state discrete Markov chain. Here p(sij) represents the
probability of a transition from state i to state j.
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2.2 Hidden Markov Models

Discrete Markov chains as described above are used in many mathematical models as the driv-

ing mechanism for characterizing the dynamics of stochastic processes. For example, hidden

Markov models (HMMs) use a discrete Markov chain is a latent, unobserved process that fully

governs the characteristics of a stochastic process through modeling of state-specific stochastic

dynamics. More specifically, Yu, Shun-Zheng [25] describes HMM as a doubly stochastic process

where the underlying stochastic process is a discrete-time finite-state homogeneous Markov chain

and the state sequence influences another stochastic process that produces a sequence of observa-

tions. In HMMs, the transition of state at time i to state at time i+1 is dependent only on the state

at time i, hence HMMs are also regarded as a memoryless processes. Also, HMM has a non-zero

self-transition property. Similar to the notation of O’Connell and Højsgaard [22], we have:

• P (S0) is the initial distribution and it is represented as a vector π. Initial Distribution repre-

sents the probability of being in a particular state at time 0.

• P (St|St−1) is the transition distribution given the state in the previous time point. This

distribution can be represented as a collection of transition probabilities from state i to state

j for i, j = 1, 2, . . . ,M where M represents the number of latent states in matrix form.

• P (Xt|St) is the emission distribution which is represented by b. Emission distribution rep-

resents the distribution of the observed stochastic process given the current state.

Here, S represents the latent discrete Markov chain and X corresponds to the stochastic process

of interest that depends on S. Similarly, Xt represents the stochastic process of interest at time t

and St represents the latent discrete Markov chain at time t. Figure 2.2 shows a generic diagram

of a Hidden Markov model. O’Connell and Højsgaard [22] have specified HMM by a triple

θ = (π, P, b) and presented its mathematical functional form as,

P (S,X) = P (S0)
T∏
t=1

P (St|St−1)
T∏
t=1

P (Xt|St) (2.2)
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Figure 2.2: Generic representation of a hidden Markov model.

2.3 Hidden Semi-Markov Models

The limitation in using HMMs for this application is that the sojourn distribution for HMMs

is generally geometrically distributed. A flexible approach to solve this problem is to use hidden

semi-Markov models (HSMMs). In HSMMs, the distribution of the sojourn time varies both in

shape and form (geometric, normal, gamma, etc.) depending upon the application. Zucchini,

MacDonald and Roland [26] describe HMM as a special case of HSMM in which the sojourn

distributions of the HSMM are geometrically distributed. The unobservable state sequence in

HSMM is semi-Markov in nature, that is, the probability of transition to a new state is dependent on

the previous state and a transition occurs when the system has spent the required time derived from

the sojourn distribution associated with the previous state. Since HSMMs consider the sojourn time

to determine when a transition will occur, they are no longer memoryless and the self-transition

probabilities of all the states are zero. Along with the notations presented in the above section,

O’Connell and Højsgaard [22] have used one additional notation in HSMM which is as follows:

• d(u) is the sojourn distribution and it is represented by d. Sojourn distribution is a dis-

tribution of a set of values for individual states in the system representing the number of

timepoints the system stays in a state once it enters the state.

Figure 2.3 shows a generic diagram of a Hidden semi-Markov model. Mathematically, in

the mhsmm package, O’Connell and Højsgaard [22] have specified HSMM by a quadruple θ =
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(π, P, b, d) and stated the complete likelihood of a HSMM is,

P (X = x, S = s; θ) = πs∗1
ds∗1(u1){

R∏
r=2

ps∗r−1
s∗rds∗r(ur)}ps∗R−1

s∗RDs∗R
(uR)

T∏
t=1

bst(xt) (2.3)

where s∗r is the rth visited state, ur is the time spent in that state, and Di(u) is the survivor function.

Figure 2.3: Generic representation of a hidden semi-Markov model.

2.4 The EM Algorithm for Hidden Semi-Markov Models

The EM algorithm for HSMM implemented in the mhsmm package by O’Connell and Højs-

gaard [22] is as follows:

2.4.1 E-step

The E-step implemented in the mhsmm package involves estimating three terms:

1. The probability of being in state i at time t given the observed sequence,

γt(i) = P (St = i|X = x; θ) (2.4)
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2. The probability that the system left state i at time t and entered state j at time t+1 given the

observed sequence,

ξt(i, j) = P (St = i, St+1 = j|X = x; θ) (2.5)

3. The expected number of times a system spends u time steps in state j,

ηiu = P (Su ̸= i, Su−υ = i, υ = 1, . . . , u|X = x; θ)

+
T∑
t=1

P (St+u+1 ̸= i, St+u−υ = i, υ = 0, . . . , u− 1, St ̸= i|X = x; θ)

(2.6)

2.4.2 M-step

The M-step implemented in the mhsmm package involves estimating the following terms:

1. Estimating the initial and transition probabilities,

π̂′
i = γ0(i) (2.7)

p̂′ij =

∑T−1
t=1 ξt(i, j)∑T−1

t=1

∑
i ̸=j ξt(i, j)

(2.8)

2. Estimating the parameter for the emission distribution: The mhsmm package offers multiple

distributions and also the ability for users to define custom distributions. In this case, we use

a custom defined gamma emission distribution which is further explained in section 4.2.

3. Estimating the state duration density: In this package, the author has implemented an ad-

hoc solution for using parametric distributions with ηiu proposed by Guédon [27]. Just like

emission distribution, the package offers multiple distributions for sojourn times and the
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ability for users to define custom distributions. In this case, we use a custom defined gamma

emission distribution which is further explained in section 4.2.

To better understand the development, implementation, and complexities of the EM algorithm for

HMM and HSMM, one can refer to Rabiner [28] and Guédon [27], respectively.

Throughout this study instead of shape and scale, mean and standard deviation are used to

describe gamma distribution (Emission and Sojourn Distributions). For calculating the shape and

scale parameters of the distributions, following equations can be used,

shape =
( mean

standard deviation

)2

(2.9)

scale =
(standard deviation)2

mean
(2.10)
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3. LATENT STATES

Latent states or hidden states are inferred based on the developed Hidden semi-Markov model

and the observable sequence. In this project, we are interested in the probability of hypoglycemic

event based on the predicted latent state by the trained Hidden semi-Markov model using the ob-

served glucose values. Latent states are dependent on the physiological state of a patient. These

physiological states are affected by factors like activity level, insulin in-take and individual absorp-

tion capacity, sleep cycle, carbohydrate consumption, stress levels, etc. These individual factors

have different independent influence on CGM levels, for example, carbohydrates boosts blood

glucose levels, insulin reduces CGM levels by helping glucose enter body’s cells which is then

converted into energy, exercise reduces CGM levels by burning blood glucose, etc. Although these

factors have a significant effect on a patient’s glucose levels, these data values can be less reliable

as they’re generally an approximate estimation as per the patient’s input (which can be inaccurate)

or are very noisy or are not easily available. On the other hand, CGM values are a set of continu-

ous data streams recorded by a standardized device approved by the FDA. Thus, we seek to build

a predictive model based on CGM alone as it is highly reliable, a long continuous data stream, and

existing data all patients have for physicians.

As glucose levels change, physiological behavior also changes, so we are characterizing our

latent states through potential physiological mechanisms associated with varying glucose levels.

Based on this, we define the latent states as,

• Latent State 1: Physiological state that results in low glucose values. This physiological

state can be a result of multiple factors like high insulin intake, low carbohydrate intake,

high activity levels, etc. occurring together.

• Latent State 2: Physiological state that results in low-normal glucose values. This physi-

ological state can be a result of occurrence of one or more factor like high to normal-high

insulin intake, low to low-normal carbohydrate intake, high to normal-high activity levels,
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etc. This is an intermediate state between normal and low glucose levels.

• Latent State 3: Physiological state that results in normal glucose values. This physiological

state can be a result of a well-balanced and controlled combination of multiple factors.

• Latent State 4: Physiological state that results in normal-high glucose values. This phys-

iological state can be a result of occurrence of one or more factor like low to low-normal

insulin intake, high to normal-high carbohydrate intake, low to low-normal activity levels,

etc. This is an intermediate state between normal and high glucose levels.

• Latent State 5: Physiological state that results in high glucose values. This physiological

state can be a result of multiple factors like low insulin intake, high carbohydrate intake, low

activity levels, etc. occurring together.

We have initialized the latent states using the glucose values from the data set which are de-

scribed in Table 3.1. This initialization is further used to define emission distribution, sojourn

distribution, and transition probabilities.

Table 3.1: Glucose ranges used for parameter initialization.

State Glucose Range (G)
1 G < 15th percentile
2 15th percentile ≤ G < 37.5th percentile
3 37.5th percentile ≤ G < 62.5th percentile
4 62.5th percentile ≤ G < 85th percentile
5 G ≥ 85th percentile
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4. GENERAL MODEL SPECIFICATIONS

4.1 Dataset

The data set used in this project consisted of glucose values recorded every 5 minutes for

20 patients with the help of Dexcom G6 CGM devices. The device measures glucose using the

interstitial fluids. This data set is a part of the data set described and used by Dave et al. [5] where

data was obtained for 112 patients over a range of 90 days under normal living conditions. This

study comprised of 6 male and 14 female patients. Baseline characteristics for the patients included

in this study are described in Table 4.1. Table 4.2 gives descriptive statistics of the glycemic values

in data sets.

Table 4.1: Patient baseline characteristics when the data was recorded.

Metric Mean ± Standard Deviation Median Range
Size of Data set (Days) 27.55 ± 4.40 28.65 14.87 - 34.74
Age of Patient (Years) 10.95 ± 5.65 11.00 1.00 - 19.00

Duration of Diabetes (Years) 3.99 ± 3.50 2.22 0.32 - 14.53
HbA1c (%) 7.9 ± 1.5 7.4 5.6 - 10.7

Table 4.2: CGM metrics.

Metric Mean ± Standard Deviation Median Range
Hypoglycemic values/day1 6.86 ± 6.01 5.90 0.14 - 23.55
% hypoglycemic values2 2.38 ± 2.09 2.05 0.05 - 8.18

Hyperglycemic values/day3 117.84 ± 68.02 114.31 0.00 - 244.59
% hyperglycemic values4 40.92 ± 23.62 39.69 0.00 - 84.93

1Mean number of a patient’s glycemic values below 70 mg/dL in one day.
2Percent of a patient’s glycemic values below 70 mg/dL.
3Mean number of a patient’s glycemic values above 180 mg/dL.
4Percent of a patient’s glycemic values above 180 mg/dL.
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4.2 Parameters of Hidden Semi-Markov Models

4.2.1 Initial Distribution

In HSMM, the initial distribution provides the probability of being in a state when we start the

model training process. In this project, the initial probability of all states is set to be equal. We

also tried another approach to set the initial distribution as per the quantiles used for state param-

eter initialization (that is, 0.15, 0.225, 0.25, 0.225, 0.15 for states 1 to 5, respectively). A change

in the initial probability did not give any notable change in the predictions or the trained model

parameters, indicating that the model is not sensitive to initial distribution (π).

4.2.2 Emission Distribution

This is the distribution of the observed values for each state in the system. The threshold for

each state in the emission distribution is determined using 15th, 37.5th, 62.5th, and 85th percentile

of Glucose values. Gamma distribution showed the best fit for each individual state within the

set of emission values (Glucose values). Figure 4.1 shows the gamma density distribution plot of

all the states. The plot was developed using the trained emission distribution parameters from the

population-level model. Table 4.3 shows the before and after training (population-level model)

mean and standard deviation values for the gamma emission distribution parameter for all the

states. Table 4.5 shows the mean and standard deviation values for the gamma emission distribution

parameter for states 1 and 5. The table helps to describe the variation in state distributions in

different models, thus explaining the physiological state of a patient. This point is further explained

in section 5.3.

4.2.3 Sojourn Distribution

Sojourn distribution is a distribution of the time the system spends in individual states once it

enters the state. Using the initialization thresholds for each state (described in Table 3.1), the set of

time values the system spends in a state is determined. Figure 4.4 shows the fit of a Gamma Distri-

bution using the trained model shape and scale sojourn distribution parameters of the population-
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Table 4.3: Gamma emission distribution parameters for the population-level model.

State
Initialized Values (mg/dL) Trained Values (mg/dL)

Mean ± Standard Deviation Mean ± Standard Deviation
1 80.12 ± 11.17 85.96 ± 13.24
2 113.18 ± 11.22 121.93 ± 11.62
3 159.52 ± 15.78 163.18 ± 14.22
4 221.22 ± 20.03 214.58 ± 17.45
5 305.34 ± 38.12 294.20 ± 40.83

level model. Figure C.1 shows the sojourn distribution for all the latent states after the final iteration

while training the population level model for 288 timepoints. The plot shown is a replication of

the plot generated with the help of the graphical argument in the hsmmfit function present in the

mhsmm R package. Table 4.4 shows the before and after training (population-level model) mean

and standard deviation values for the gamma sojourn distribution parameter for all the states.

Table 4.4: Gamma sojourn distribution parameters for the population-level model.

State
Initialized Values Trained Values

Mean ± Standard Deviation Mean ± Standard Deviation
1 14.26 ± 20.76 25.64 ± 29.45
2 10.26 ± 12.62 11.87 ± 11.91
3 11.80 ± 12.62 12.39 ± 11.66
4 14.21 ± 15.59 15.26 ± 13.87
5 24.34 ± 31.57 38.76 ± 35.56

4.2.4 Transition Matrix

Transition matrix P = (pij) represents the probability matrix of having a transition from state

si at any time tn to state sj at time tn+1. Equation 4.1 represents the generic form of such a tran-

sition matrix. The initial transition matrix was estimated by calculating the fractions of transition

from each state available in the data set in consideration with the help of the thresholds defined in

Table 3.1. Glucose values of a patient increase or decrease gradually and hence, transitions only
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Figure 4.1: Density plot of glucose values based on trained model (population-level) emission
distribution parameters for all the latent states.

occur when i− j = ±1. In HSMM, the transition probability within the same state (self-transition

probability) is zero (p(sij) = 0 when i = j). Figure 4.3 shows all possible state transitions in this

project. Equation 4.2 and Equation 4.3 show the initialized and trained transition matrix for the

population-level model. For presentation purposes, the numbers in these two matrices have been

rounded upto 3 digits after the decimal point.
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Figure 4.2: Density plot of time points based on trained model (population-level) sojourn distribu-
tion parameters for all the latent states.
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Figure 4.3: All possible transitions in this model.

Generic Transition Matrix =

State 1 2 3 4 5



1 p(s11) p(s12) p(s13) p(s14) p(s15)

2 p(s21) p(s22) p(s23) p(s24) p(s25)

3 p(s31) p(s32) p(s33) p(s34) p(s35)

4 p(s41) p(s42) p(s43) p(s44) p(s45)

5 p(s51) p(s52) p(s53) p(s54) p(s55)

(4.1)

Initialized Transition Matrix =

State 1 2 3 4 5



1 0 1 0 0 0

2 0.463 0 0.537 0 0

3 0 0.553 0 0.447 0

4 0 0 0.612 0 0.388

5 0 0 0 1 0

(4.2)
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Trained Transition Matrix =

State 1 2 3 4 5



1 0 1 0 0 0

2 0.467 0 0.533 0 0

3 0 0.546 0 0.454 0

4 0 0 0.613 0 0.387

5 0 0 0 1 0

(4.3)

4.3 User-Defined Functions

The following are the user defined functions which are used during the prediction and the model

development process.

4.3.1 Time to State

A function to determine the time a patient has already spent in a state as per the observed

glucose sequence. With the help of this function and sojourn distribution, we determine when a

transition will occur.

4.3.2 Re-estimation of Parameters (mstep.gamma)

This function is used to re-estimate the parameters for the emission distribution as part of the

M-step of the EM algorithm defined in Section 2.4. In this case, we’ve developed a function to

generate the shape and scale parameters of the gamma distribution for all the states.

4.3.3 Generate Random Deviates (rgamma)

This function is used to generate random deviates of the emission distribution. In this case,

we’ve used the in-built rgamma() function of R.
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4.3.4 Density Calculation (dgamma)

This function is used to calculate the density of the emission distribution observations. In this

case, we’ve used the in-built dgamma() function of R.

4.4 Model Types

Two types of models were developed in this study.

1. Population-Level Model: This model uses parts of data set from all the patients and joins

them together in series for the model training and initial parameter estimation process. Refer

to Figure 5.2 and section 5.1 to understand how the data from different patients is sliced

and used for training the population level model. This model gives better predictions as it is

generated on the basis of diverse learning from multiple patients. The parameters generated

here are a great representation of the group of patients and the general behavior of a patient

with type 1 diabetes.

2. Patient-Level Model: This model uses part of data set from a single patient for model training

and initial parameter estimation process. The data slicing process here is the same as it is for

the population-level model. The only difference in the slicing process is that we are using

only 1 patient’s data set. This model gives better explainability of the physiological latent

states as the parameters generated from the model are based only on the data set of the patient

under consideration. This is further explained in Section 5.3. The parameters generated with

the help of this model are a good representation of the glycemic behavior of individual

patients and how their body reacts to carbohydrates, insulin, and different activities.

Table 4.5 shows the variation in gamma emission distribution parameters of latent state 1 and latent

state 5 for the population-level model and the patient-level model of each patient.
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Table 4.5: Variation in gamma emission distribution: trained model parameters.

Model
Latent State 1 Latent State 5

Mean ± Standard Deviation Mean ± Standard Deviation
Population 85.96 ± 13.24 294.20 ± 40.83
Patient 1 146.11 ± 31.99 312.11 ± 21.05
Patient 2 143.04 ± 27.41 355.88 ± 25.78
Patient 3 82.05 ± 12.35 233.01 ± 27.41
Patient 4 80.54 ± 14.40 299.21 ± 38.63
Patient 5 75.98 ± 9.95 250.41 ± 41.03
Patient 6 82.77 ± 15.05 279.29 ± 37.51
Patient 7 67.86 ± 9.99 217.76 ± 39.04
Patient 8 103.26 ± 17.02 313.75 ± 44.51
Patient 9 92.25 ± 16.03 293.38 ± 37.49

Patient 10 74.95 ± 13.80 290.95 ± 42.74
Patient 11 105.53 ± 25.39 338.60 ± 32.90
Patient 12 90.51 ± 14.98 299.24 ± 40.32
Patient 13 83.93 ± 14.21 257.35 ± 35.44
Patient 14 84.00 ± 15.10 262.13 ± 33.99
Patient 15 75.37 ± 4.75 109.04 ± 4.99
Patient 16 90.90 ± 11.91 237.50 ± 31.15
Patient 17 159.06 ± 35.17 386.07 ± 14.27
Patient 18 90.94 ± 14.64 264.34 ± 34.54
Patient 19 93.31 ± 13.17 322.98 ± 47.66
Patient 20 82.12 ± 8.20 167.43 ± 19.49
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5. PREDICTION

The user-defined predict function developed for this project uses the trained Hidden semi-

Markov model, the glucose sequence, and the number of time-points for which predictions are to

be made (usually 30 minutes (6 time-points) or 60 minutes (12 time-points)). To replicate real-time

conditions, only 1 prediction of 12 time-points is made based on the glucose sequence immediately

following the last value on the training data set. This process is repeated 288 times to generate a

prediction data set, representing a day worth of predictions, to evaluate the prediction accuracy.

The user-defined predict function uses the in-built predict function from the mhsmm package to

generate the underlying latent state sequence for a given series of CGM values up to time t. This

in-built predict function uses Viterbi algorithm to generate the above stated latent state sequence

which serves the following purposes in this study:

• To identify the latent state for the last CGM observation of the patient’s training dataset.

• To identify how long the patient has been in the latent state identified in the above point. This

is done by passing the generated latent state sequence for the training data to the user-defined

Time to State function described in Section 4.3.1.

The time already spent in the current latent state and the sojourn distribution for that latent state

help us determine how many additional time points the system will stay in the current latent state or

when will a transition occur. Once we reach the point of transition a random draw is made from a 0

to 1 uniform distribution and random value is compared with the outgoing transition probabilities

from the current latent state. Figure 4.3 shows all the possible transitions in this study. Once a

transition is made, the sojourn distribution of the new latent state helps us determine how long

we’ll stay in the new latent state. This process is repeated till we’ve a prediction for the next 12

timepoints (1 hour).

A Monte Carlo approach is used where this simulation of generating a prediction for the next

12 timepoints is repeated 10000 times. Through this approach we generate a 5 x 12 matrix which
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gives us the probability of being in latent states (1 to 5) at future timepoints (1 to 12). Additionally,

a 3 x 5 matrix is developed with the help of the in-built pgamma R function and the trained model

emission distribution parameters. This new matrix gives us the probability of glucose values being

less than 70 mg/dL (hypoglycemic state), between 70 mg/dL to 180 mg/dL (normal state), and

more than 180 mg/dL (hyperglycemic state) given that the system is in a particular latent state (1

to 5). These two matrices are then multiplied to generate a total probability (a 3 x 12 matrix) which

gives us the probability of being in hypoglycemic, normal, and hyperglycemic states for each of

the 12 future timepoints. Mathematically, this multiplication can be represented as follows:

P (Hypoglycemia | A timepoint) = P (Hypoglycemia | A latent state)

∗ P (A latent state | A timepoint)

(5.1)

Similarly, we can mathematically represent the probability of being in a normal state and a hyper-

glycemic state. The calculated probability is then compared with a selected threshold to classify

the prediction as a state of hypoglycemia or not. The threshold values and prediction evaluation

process is described in Section 6.1. This method can be extended to classify the prediction as a

state of hyperglycemia or not and to predict the glucose values. Figure 5.1 shows the predicted

probability for the latent state of hypoglycemia against the observed glucose values for 30 minute

ahead prediction generated using the population-level model.

5.1 Training Dataset

A moving window approach was implemented to develop 288 models. Each model was trained

on a constant size of data set. The length of the training data set for model 1 is given by Equation

5.2. Similarly, the length of the training data set for the remaining 287 models can be shown.

Through this process, we’ve a constant length of the training data set. Unequal sizes of the data

from individual patient used for training purpose did not affect the model parameters or make

the fit bias for any one patient as there was a small difference in the sizes of individual data sets

(as described in section 4.1) and the glycemic levels of all the patients was spread across the

22



Figure 5.1: Predicted probability of hypoglycemia (from the population-level model) versus the
observed glucose values (mg/dL).

entire range of values (as shown in Tables 4.3 and 4.5). The sliced data set from each patient was

combined in series and passed as a single glucose sequence for training the population-level model.

Figure 5.2 shows how the data set of individual patient was divided for training 288 models.
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Total length of dataset for training model 1 = (N1 − 299) + (N2 − 299)

+ . . . + (N19 − 299) + (N20 − 299)

= N1 + N2 + . . . + N20 − 20 ∗ 299

(5.2)

where N1 is the total number of records in the data set for patient 1, N2 is the total number of

records in the data set for patient 2, and so on.

Figure 5.2: The division of data set for training and testing each model for a patient i (with Ni

records).
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5.2 Test Dataset

The same moving window approach was implemented to generate the predictions. From each

model, 1 set of prediction was made for each patient for the 12 records immediately next to the

last record used for training from the patient’s data set. Thus, a total of 288 sets of predictions

of 12 time-points each was made for every patient. To do this the training glucose sequence for

individual patient, as shown in Figure 5.2, was passed to the user-defined predict function and a

prediction for next 12 time-points was generated. The size of predictions from every population-

level model has been shown in Equation 5.3.

Total length of predictions from every model = 20 ∗ 12 (5.3)

5.3 Model Interpretation

As it can be seen in Table 4.5 the patient specific models better captures the true nature of

distributions instead of approximating it for a group. Hence, when predicting a latent state the

patient specific model is better able to explain the physiological state of a patient. The sensitivity,

specificity, and AUC values described in Table 6.2 and Table 6.3 compared to the values described

in Table 5.1 show us that the population-level model has a better predictability for hypoglycemia

compared to the patient-specific model. At the same time, the high false alert rates (as shown in

Figure 5.1) is a result of the unbalanced nature of the data set. Out of the total test data set of the 20

patients, only 1.77% glucose observations were below the hypoglycemic threshold of 70 mg/dL.

One patient has been left out in the calculation of the data represented in Table 5.1, as the patient’s

test data set had no hypoglycemic instances and out of 288 predictions 2 were False Positives and

286 were True Negatives.

1Prediction Threshold = 0.01
2Number of values under 70 mg/dL in the test data (1 day for each patient)
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Table 5.1: Analysis of output for the 19 patient specific models for 30 minute ahead prediction.

Metric Mean ± Standard Deviation Median Range
Sensitivity(%)1 67.15 ± 35.22 80.95 0.00 - 100.00
Specificity(%)1 80.25 ± 16.16 83.57 40.30 - 100.00

AUC 0.8569 ± 0.0818 0.8504 0.7112 - 0.9926
Hypoglycemia Count2 5.37 ± 9.29 0.00 0.00 - 36.00
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6. ANALYSIS OF THE OUTPUT

6.1 Evaluation Metrics

6.1.1 Threshold Values

If the predicted probability of hypoglycemia was greater than or equal to the selected threshold

value then the patient is predicted to be in a state of hypoglycemia. The focus of this effort is iden-

tification of hypoglycemia. But due to class imbalance (typically 2.42% hypoglycemia values),

the threshold value for identifying hypoglycemic event will need to be adjusted for better sensitiv-

ity. Due to these reasons, the use of a threshold to predict a hypoglycemic event gives better and

accurate predictions.

6.1.2 Confusion Matrix

Using the above described threshold values, confusion matrix was defined for a state of hypo-

glycemia. Table 6.1 gives the generic view of a confusion matrix.

Table 6.1: Generic view of the confusion matrix in tabular form.

True state
Positive Negative Total

Predicted state
Positive TP FP TP + FP
Negative FN TN FN + TN

Total TP + FN FP + TN

The confusion matrix was used to calculate the true positive rates and the false positive rates

for various threshold values which were then used to develop the ROC curves at each time point (or

every 5 minutes). Mathematically, true positive rate and false positive rates are defined as follows:

True Positive Rate =
TP

TP + FN

= Sensitivity

(6.1)
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False Positive Rate =
FP

TN + FP

= 1− Specificity

(6.2)

With the help of Table 6.1 and Equations 6.1 and 6.2, we determined the sensitivity and specificity

values for specific thresholds, one of which for the population-level model is shown in Table 6.2

along with the values available in the literature for various models used for the same application for

30 minute prediction horizon. A extended version of this table showing sensitivity and specificity

at various prediction horizons is shown in Table B.1. Table 5.1 shows the approximate distribution

and range of the sensitivity and specificity of various patient-specific models.

Table 6.2: Sensitivity and specificity of various models presented in the literature for a 30 minute
prediction horizon.

Source Model Sensitivity (%) Specificity (%)

HSMM 1,2 91.35 75.03

HSMM - Day Time 1,2 89.11 73.56

HSMM - Night Time 1,2 95.34 78.19

Dave et al. [5]

LASSO Optimized LR 2 73.75 94.87

VIP Optimized RF 2 90.93 93.65

RF - Day 2 88.43 92.9

RF - Night 2 94.92 95.85

Palerm et al.

[29]

Kalman Filter-Based Ap-

proach 2

90 79

Berikov et

al. [30]

RF (NS) 2 87.1 87.1

LogRLasso (NS) 2 87.1 90.8

ANN (NS) 2 86.6 88.7

1Prediction Threshold = 0.01
2At Prediction Horizon
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6.1.3 ROC Curve

The receiver operating characteristic curve (or ROC curve) helps us to identify a threshold

which helps in improving the prediction of a model and it also helps define the classification

efficiency of a model. For the population-level model, Figure 6.2 gives us the area under the ROC

curves (along with their 95% confidence interval) for each time point (up to 60 minutes) and Figure

6.1 gives us the ROC curve for 30 minute ahead prediction along with it’s 95% confidence interval.

Similarly, for day time predictions (06:00 to 21:59) ROC and area under the ROC curve plots are

shown in Figures C.2 and C.3, respectively and for night time predictions (22:00 to 05:59) ROC

and area under the ROC curve plots are shown in Figures C.4 and C.5, respectively. Table 6.3

gives area under the curve (overall, day time, and night time) for the 30 minute ahead prediction

ROC curve along with the values available in the literature for various models used for the same

application for 30 minute prediction horizon. A extended version of this table showing the area

under the curve for ROC curves at various prediction horizons is shown in Table B.2.

Table 6.3: AUC of ROC curves of various models presented in the literature for a 30 minute
prediction horizon.

Source Model AUC

HSMM 1,2 0.9035

HSMM - Day Time 1,2 0.8890

HSMM - Night Time 1,2 0.9277

Mo et al. [31]
RELM 2 0.74

ELM 2 0.731

Berikov et al. [30]

RF (NS) 2 0.92

LogRLasso (NS) 2 0.928

ANN (NS) 2 0.924
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Figure 6.1: The ROC curve of the population-level model at time point 6 (30 minutes ahead pre-
diction).
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Figure 6.2: The AUC of the population-level model at all time points for a prediction threshold of
0.05 along with its 95% confidence intervals.
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7. SUMMARY

The developed Hidden semi-Markov model showed comparable performance and better ex-

planability compared to the other Machine Learning models available in the literature for hypo-

glycemia prediction. The population-level model showed better predictability whereas the patient-

level model showed better explanability of the latent states. The population-level model better

showed the trend of a generic patient with type 1 diabetes whereas patient-level model better

showed the trends of individual patients and the impact of their circadian cycles. Carbohydrate

to insulin ratios are another group of important variables that help explain the predicted outputs

and have a significant impact on the glycemic thrends and transitions of the latent states. The

population-level model sensitivity and specificity for 30 minute ahead forecast using a specific

threshold was 93.03% and 72.50% whereas the same for 60 minute ahead forecast using the same

threshold was 89.76% and 65.27%, respectively. The ROC-AUC values greater than 0.9 for 30

minute ahead forecast and greater than 0.82 for 60 minute ahead forecast show the efficiency of

the model for separating positive hypoglycemic and negative hypoglycemic events.

7.1 Future Work

A larger group of patients and larger individual datasets will provide better opportunities to

understand the patient-level model which is now restricted due to fewer individual hypoglycemic

events. This study only uses each patient’s glucose sequence while developing the model, including

carbohydrate, basal insulin, and bolus insulin information as covariates is expected to give better

results. We plan to incorporate carbohydrate to insulin ratios by using the explanations and calcu-

lation methodology explained by Oerum [32], Oerum [33], and on OpenAPS [34] to explain state

transitions and in the model validation process. The analysis of these ratios and their applicability

as per the model output was carried out by another member of the team. Similarly, incorporating

type of activity, sleep cycle, and time of day information will help to better predict special cases

that arise majorly due to circadian cycles and individual patterns.
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APPENDIX A

URL FOR CODE

A.1 GitHub Repository

https://github.com/mohit-chhaparia/Health-Behavior-Inference-from-Continuous-Blood-Glucose-Data-

A-Hidden-Semi-Markov-Approach

A.2 Population - Level Model

https://github.com/mohit-chhaparia/Health-Behavior-Inference-from-Continuous-Blood-Glucose-Data-

A-Hidden-Semi-Markov-Approach/blob/main/Population%20Level%20Model.R

A.3 Patient - Specific Model

https://github.com/mohit-chhaparia/Health-Behavior-Inference-from-Continuous-Blood-Glucose-Data-

A-Hidden-Semi-Markov-Approach/blob/main/Patient%20Specific%20Model.R
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APPENDIX B

TABLES

Table B.1: Sensitivity and specificity of various models presented in the literature for various
prediction horizons.

Source Model PH (min) Sensitivity (%) Specificity (%)

HSMM 1,2 15 / 30 / 45 / 60 89.66 / 91.35 /

94.22 / 89.76

91.20 / 75.03 /

65.99 / 65.27

HSMM - Day Time 1,2 15 / 30 / 45 / 60 86.69 / 89.11 /

91.94 / 86.41

90.22 / 73.56 /

63.55 / 62.61

HSMM - Night Time 1,2 15 / 30 / 45 / 60 94.96 / 95.34 /

98.23 / 95.49

93.32 / 78.19 /

71.25 / 71.01

Dave et

al. [5]

LASSO Optimized LR 2 15 / 30 / 45 / 60 91.85 / 73.75 /

55.06 / 43.28

96.25 / 94.87 /

95.5 / 95.25

VIP Optimized RF 2 15 / 30 / 45 / 60 94.2 / 90.93 /

88.04 / 86.28

96.67 / 93.65 /

92.68 / 93.07

RF - Day 2 15 / 30 / 45 / 60 93.08 / 88.43 /

84.1 / 82.92

96.25 / 92.9 /

91.96 / 92.97

RF - Night 2 15 / 30 / 45 / 60 96.18 / 94.92 /

94.77 / 93.85

97.57 / 95.85 /

94.44 / 93.97

Eren-

Oruklu et

al. [7]

SSRTSM: Absolute Predicted

Glucose Values 3

30± 5.51 89 67

SSRTSM: Cumulative-Sum

Control Chart 3

25.8± 6.46 87.5 74

1Prediction Threshold = 0.01
2At Prediction Horizon
3Mean value for time to detection

39



Continuation of Table B.1

Source Model PH (min) Sensitivity (%) Specificity (%)

SSRTSM: Exponentially

Weighted Moving-Average

Control Chart 3

27.7± 5.32 89 78

Palerm et

al. [29]

Kalman Filter-Based Ap-

proach 2

30 90 79

Berikov et

al. [30]

RF (NS) 2 15 / 30 91.8 / 87.1 91.1 / 87.1

LogRLasso (NS) 2 15 / 30 93.6 / 87.1 91.2 / 90.8

ANN (NS) 2 15 / 30 88.6 / 86.6 92.6 / 88.7

Zhu et al.

[35]

ARISES with an embedded

DL algorithm 4

60 70.3

Oviedo et

al. [36]

SVM 4 240 71 79

Yang et al.

[37]

ARIMA with Adaptive Identi-

fication Algorithm 5

24.8 100 FAR - 10.7

Jensen et

al. [38]

Linear Discriminant Analysis

6

195 75 70

Vehí et

al. [39]

SVM 4 240 69 80

ANN 4 360 44 85.9

End of Table B.1

4Over / Within Prediction Horizon
5Average time for action
6At Prediction Horizon (average)
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Table B.2: AUC of various models presented in the literature at various prediction horizons.

Source Model PH (min) AUC

HSMM 1,2 15 / 30 / 45 / 60 0.9441 / 0.9035 / 0.8581 /

0.8214

HSMM - Day

Time 1,2

15 / 30 / 45 / 60 0.9389 / 0.8890 / 0.8321 /

0.7867

HSMM -

Night Time 1,2

15 / 30 / 45 / 60 0.9521 / 0.9277 / 0.9025 /

0.8775

Mo et al. [31]
RELM 2 10 / 20 / 30 0.932 / 0.838 / 0.74

ELM 2 10 / 20 / 30 0.935 / 0.817 / 0.731

Berikov et

al. [30]

RF (NS) 2 15 / 30 0.959 / 0.92

LogRLasso

(NS) 2

15 / 30 0.957 / 0.928

ANN (NS) 2 15 / 30 0.934 / 0.924

End of Table B.2
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APPENDIX C

FIGURES

Figure C.1: Sojourn density plot of time points based on the trained population-level model for all
the latent states.
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Figure C.2: The ROC curve of the population-level model at time point 6 (30 minutes ahead
prediction) for day time predictions (06:00 to 21:59).
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Figure C.3: The AUC of the population-level model at day time (06:00 to 21:59) for a prediction
threshold of 0.05 along with its 95% confidence intervals.
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Figure C.4: The ROC curve of the population-level model at time point 6 (30 minutes ahead
prediction) for night time predictions (22:00 to 05:59).
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Figure C.5: The AUC of the population-level model at night time (22:00 to 05:59) for a prediction
threshold of 0.05 along with its 95% confidence intervals.
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