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ABSTRACT 

Computer vision and image processing algorithms work well under strong 

conditions. Unexpected computer vision results may harm pipeline modules, reducing 

solution efficacy. A predictor framework that was simultaneously trained with a 

hardness predictor network to mitigate such effects was used. The performance of this 

framework is guaranteed to be better than that of images with lower "hardness" levels, 

which improves the efficiency of modules using computer vision algorithms. There is a 

clear understanding of why neural networks perform well. Images with less complex 

patterns produced relatively stronger activations in the initial convolutional layers. This 

study also examined how well a convolutional neural network worked when training, 

validating, and testing eliminated irrelevant convolutional layers for a single image. This 

enhanced CNNs’ efficiency. 

Predictive modeling of complex time-dependent processes is erroneous in many 

image-based machine learning applications due to the absence of early data. Predictive 

agriculture uses this frequently. From early growth until harvest, cotton crop factors 

must be monitored. Because cotton crop output is significantly correlated with growth 

parameter management during a cultivation season, researchers are interested in 

developing forecasting models to predict canopy and vegetative indices. This study 

utilized a multi-layer stacked LSTM model on cotton plant canopy and vegetative 

attributes obtained from unmanned aerial vehicle survey images from the 2020 growing 

season. Based on the 2021 cultivation year canopy and vegetative index data, the 
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weights of the final few layers of the trained LSTM model were fine-tuned to predict 

canopy and vegetative indices. Deep Transfer Learning improved UAS canopy and 

vegetative indices’ accuracy. 
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1. INTRODUCTION* 

 

This study deals with techniques and methods for improved effectiveness and 

increased accuracies in computer vision applications. Algorithms for computer vision 

and image processing perform well when certain conditions are met. Not all types of 

inputs are anticipated to perform well for computer vision algorithms. For instance, 

computer vision algorithms may not produce the best results for images that are overly 

noisy. Solution effectiveness may suffer due to unexpected results from the computer 

vision module having detrimental effects on subsequent pipeline modules. A predictor 

framework that was simultaneously trained with a hardness predictor network to mitigate 

such effects was developed. The hardness predictor network outputs hardness values for 

inputs. The performance of this framework is guaranteed to be better than that of images 

with lower "hardness" levels, which improves the efficiency of modules using computer 

vision algorithms. 

Likewise, for a long time, neural networks were viewed as mysterious black 

boxes. To aid in matching of model to data, Zeiler et al. [1] identified the characteristics 

of a picture that were crucial for convolutional layers at various points in the network. 

Deconvolutional networks were used for this. This work looked at how well a 

 

* Parts of this chapter are reprinted with permission from "A Deep Transfer Learning 

based approach for forecasting spatio-temporal features to maximize yield in cotton 

crops" by K. C. Gadepally, S. B. Dhal, M. Bhandari, J. Landivar, S. Kalafatis and K. 

Nowka, 2023 57th Annual Conference on Information Sciences and Systems (CISS), 

Baltimore, MD, USA, 2023, pp. 1-4, doi: 10.1109/CISS56502.2023.10089748. 
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convolutional neural network performed when the training, validating, and testing 

processes omitted convolutional layers that were comparatively irrelevant for a specific 

image (i.e., the image did not create one of the strongest activations). This method 

improved the performance of CNNs. 

Finally, in many applications of image-based machine learning, predictive 

modeling of complex time-dependent processes suffer in predictive accuracy due to lack 

of data early in the time series. This is especially prevalent in predictive agriculture use 

cases.  In this work, we concentrated on developing a predictive yield modeling machine 

learning methodology for cotton production. In the United States, cotton is a significant 

crop for economic reasons. It is crucial to monitor cotton crop growth parameters 

throughout the growing season, from early season growth until harvest. Given that 

management decisions made to control growth parameters during a cultivation season 

have a significant impact on cotton crop production, researchers are interested in 

applying forecasting models to predict future values of the canopy and surplus green 

index. The earlier yield can be predicted accurately, the better. This study applied a 

multi-layer stacked LSTM model using data on cotton plant canopy and vegetative 

features and vegetative indices, including canopy cover, canopy height, and excess green 

index, which were obtained from unmanned aerial vehicle survey images from the 2020 

growing season. In order to forecast the canopy and vegetative features from the 28th 

day of culture until the conclusion of the harvesting season, the weights of the final few 

layers of the trained LSTM model were fine-tuned based on the 2021 and 2022 

cultivation years’ canopy and vegetative index data. This was done using a Deep 
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Transfer Learning technique [2], which boosted the accuracy of canopy and vegetative 

features obtained from UAS data. 
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2. BACKGROUND* 

 

2.1. Realistic Predictors For Regression And Semantic Segmentation 

            Systems for computer vision (CV) are used in fields where error margins are 

getting smaller. One such sector is the military. Unmanned aircraft systems (UAS), for 

instance, are utilized in this industry for reconnaissance, attacks, and surveys. A UAS 

has navigation, safety, control, and perception subsystems. Perception systems 

frequently include CV systems. 

            The framework and design of CV algorithms are based on strict presumptions. 

Decent image quality, minimal noise, good vision, and little motion blurring are only a 

few examples of these assumptions regarding the caliber of input photographs. A UAS's 

CV system should have undergone thorough validation and testing using both "real 

world" data and datasets that are considered industry standards. It is a fact that the "real 

world" data utilized to test computer vision systems only represents a small portion of 

the vast array of sensory inputs that are available to UAS while they are in use. Such a 

diverse range of sensory inputs is beyond the capabilities of CV systems. Other 

subsystems receive the output of perception subsystems. As a result, it is possible to say 

that perception systems interact with the environment and other subsystems. 

 

* Parts of this chapter are reprinted with permission from "A Deep Transfer Learning 

based approach for forecasting spatio-temporal features to maximize yield in cotton 

crops" by K. C. Gadepally, S. B. Dhal, M. Bhandari, J. Landivar, S. Kalafatis and K. 

Nowka, 2023 57th Annual Conference on Information Sciences and Systems (CISS), 

Baltimore, MD, USA, 2023, pp. 1-4, doi: 10.1109/CISS56502.2023.10089748. 
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            Some of the novel and uncharted data points might cause CV systems to react in 

ways that have disastrous consequences for other subsystems in the pipeline. Despite 

built-in safety features, this can still occur. This motivates us to employ this technique 

for feature extraction from the imagery dataset, which aids in the development of a more 

reliable model for regression on images as well as for semantic segmentation while 

enhancing the bias-variance tradeoff. Identifying each pixel in an image from a preset set 

of classes is the problem of semantic image segmentation. 

            A number of studies, including Zhang et al. [3] and Daftry et al. [4], developed 

frameworks to assess the CV module's suitability for making decisions on the current set 

of imagery inputs. Both of these approaches rely on post-hoc evaluations of the predictor 

performance, where a regressor or classifier is simply taught from its errors. The 

framework presented by Wang et al. [5] is different from the two presented above. It is 

independent of post-hoc evaluations of the predictor's effectiveness. The unique feature 

of this framework is the simultaneous training of two networks. The goal of our method 

is to simultaneously train a predictor framework for image segmentation or regression 

and a hardness predictor network that generates hardness values for inputs. 

            There are two networks trained simultaneously. A Hardness Predictor network, 

which outputs hardness values for inputs, is trained simultaneously with the predictor 

our approach. The hardness predictor is an independent network that is trained in tune 

with the predictor but operates independently after training. The roles of hardness 

predictor network and predictor cannot be performed by a single network. It cannot be 

trained independently of the predictors. Attempts to train hardness predictor network and 
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predictor independently of each other or non-simultaneously would yield suboptimal 

outcomes. A single network cannot serve as both a predictor and a hardness predictor 

network. Because hardness values are arbitrary, attempts to produce training data for 

hardness predictors would be unsuccessful. Therefore, attempting to train the hardness 

predictor network and predictor separately or not at the same time would result in less-

than-ideal results. This work extended the machine learning classification framework of 

Wang et al. to develop a methodology for specifying realistic predictors for additional 

machine learning frameworks for semantic segmentation and regression.  

 

 

Figure 1 Block Diagram For Hardness Prediction (Regression And Semantic 

Segmentation) 

 

2.2. Systematic Model Complexity Reduction by Elimination of Irrelevant Layers 

            Zeiler et al. [1] have provided a good explanation of why neural networks 

operate successfully. Zeiler et al. [1] demonstrated using deconvolutional networks that 
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images with simpler patterns generated substantially stronger activations in the initial 

convolutional layers. In Zeiler et al. [6], the mathematics underlying deconvolutional 

networks were thoroughly illustrated. 

            On the other hand, deeper convolutional layers showed considerably stronger 

activations in images with more intricate patterns and forms. 

This implied that for simple images, the earliest convolutional layers were significantly 

more significant, whereas for complex images, the inverse was true. 

            Convolutional neural networks may perform better as a result of this information. 

For instance, if the network struggled with images of comparatively lower complexity, 

the settings relating to the early convolutional layers may be changed appropriately. 

These modifications might alter the number of feature maps, kernel size, or activation 

function. 

            This study investigated the performance of a convolutional neural network when 

the training, validating, and testing phases are skipped for convolutional layers that are 

comparatively irrelevant for a given image (i.e., the image does not yield one of the 

strongest activations). 

 

2.3. Deep Transfer Learning For Forecasting Spatio-Temporal Features For Yield 

Prediction In Cotton Crops 

            One of the most significant agricultural products and cash crops in the United 

States and around the globe is cotton. After China and India, the United States is the 

third-largest cotton producer in the world. In 2021, cotton was produced in the United 
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States in 17.62 million bales. By 2022, 12.2 million acres of cotton are anticipated to be 

farmed in the United States, with around 7 million of those acres being planted in Texas 

alone [7]. Cotton plants can be examined and used as a test subject for managerial, 

environmental, and genetic factors. Sensors are used to measure the effects of such 

interaction on plant growth and development. In the past, Zhao et al. [8] forecasted 

growth and production in irrigated cotton using canopy spectral reflectance and leaf area 

index, highlighting the significance of reflectance data from early blooming in yield 

prediction. According to this pattern, unmanned aerial systems may easily obtain and 

evaluate these reflectance characteristics and agronomic parameters (UAS). 

            In order to plan and manage production wisely in sustainable agriculture, it is 

essential to have reliable and accurate forecasting models. Historically, a wide range of 

models have been built using historical information amassed over time. To build 

agricultural pest and disease warning systems, various models have been developed and 

evaluated, including within-year models, between-year models, spectral data models, 

and farmer assessment models [9]. To estimate yield in non-linear olive orchards in 

mountainous terrains, Normalized Difference Vegetation Indices (NDVI) were 

recovered from orthomosaics using feature extraction techniques [10]. 

            Recently, some work has been done to predict the yield using time-series data. 

As inputs to the linear models that predicted final soybean output, the data was modeled 

to include the sum of the NDVI and EVI vegetation indices for the entire growth period, 

up to 70 days of growth phase, up to 85 days of growth phase, and up to 98 days of 

growth phase [11]. Similar to this, time-series data was obtained to forecast sugarcane 
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harvest at the field scale by combining information from crop growth models, expert 

knowledge, and satellite images [12]. 

            Researchers at Texas A&M Agrilife Center compared various Long Short-Term 

Memory (LSTM) models to predict canopy cover, canopy height, and excess green 

indices of cotton crops using training datasets produced by K-Means clustering and 

Dynamic Time Warping (DTW) techniques of data modeling. The predictions were of 

limited accuracy. 

            With the help of a multi-layer stacked LSTM model that was trained using the 

canopy and vegetative indices collected for the cultivation year 2020, we employed a 

deep transfer learning strategy in this study. The weights of the final few layers of the 

stacked LSTM were adjusted based on the data gathered throughout the 2021 and 2022 

cultivation years by freezing the weights of the first few layers. From the 28th day of 

cultivation through the conclusion of the cultivation period, the canopy and vegetative 

indices were predicted, and based on these values, in-season management choices were 

made in order to maximize the yield at the end of the cultivation period. 
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3. METHODS AND RESULTS* 

 

3.1 Realistic Predictors For Regression And Semantic Segmentation 

3.1.1. Realistic Predictors For Regression 

            In this framework, the convolutional networks of AlexNet [13] and LeNet [14] 

with 2 and 4 dense layers were used for regression and hardness prediction respectively. 

Both the networks were fully trained. Multiple splits of the Places database [15] was 

used for training, validation, and testing the results. Weighted Mean Squared Error (W-

MSE) was used as the loss function for the regressor which is computed as follows in 

Eqn (1). 

 

            Outputs of the hardness predictor network were the weights. Binary Cross 

Entropy (BCE) of the hardness predictor network was used as the error metric and was 

compared against the ideal outputs which are calculated by taking the sigmoid of the 

regressor outputs. The calculated BCE was then used as the loss function for the 

hardness predictor which is computed as follows in Eqn (2). 

 

* Parts of this chapter are reprinted with permission from "A Deep Transfer Learning 

based approach for forecasting spatio-temporal features to maximize yield in cotton 

crops" by K. C. Gadepally, S. B. Dhal, M. Bhandari, J. Landivar, S. Kalafatis and K. 

Nowka, 2023 57th Annual Conference on Information Sciences and Systems (CISS), 

Baltimore, MD, USA, 2023, pp. 1-4, doi: 10.1109/CISS56502.2023.10089748. 
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3.1.2. Realistic Predictors For Semantic Segmentation 

            In this framework, the convolutional layers of SegNet [16] and LeNet with 0 and 

4 dense layers were used for semantic segmentation and hardness prediction 

respectively. The hardness prediction framework used in this case followed the same 

framework as the one used for extracting the realistic predictors for regression. Several 

splits of the Oxford-IIIT Pet Database [17] and PASCAL VOC-2012 Database [18] were 

used for training the dual architecture. 

            The output of SegNet was an image of the same height and width as the input but 

with three channels. Softmax activation function was applied to the output. For each 

pixel in the output, the channel number (0, 1 or 2 in this case) with the highest 

probability value was the output value for that pixel. The performance metric for SegNet 

was the probability that for a pixel, the channel number at which the high probability 

occurs is equal to the value of the pixel at the same position in the ground truth. 

Weighted Sparse Categorical Cross Entropy (WSCCE) with outputs of the Hardness 

Predictor Network as weights was used as the loss function for SegNet. Those images 

with high Hardness values were incentivized by the loss function to improve their 

performance. The WSCCE of the SegNet framework is calculated as follows in Eqn (3). 
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            On the other hand, similar to that of the regression framework, BCE was used as 

the loss function for the Hardness predictor. For each image, the performance metric 

subtracted from 1 was used as the ground truth value, which was a good proxy indicator. 

Greater the performance metric (which lies between 0 and 1), lower is the value of 

hardness for that image. BCE for the hardness predictor network in the case of semantic 

segmentation is represented as in Eqn (4). 

 

            For our experimentation, the Grace cluster belonging to Texas A&M University 

HPRC was used which was a 48 core Linux machine with 2 nodes to obtain the results. 

The Places database (comprising 3000 data points) was used for training, validation, and 

testing. A batch size of 256 was used for training both the networks. L1 and L2 

regularizations were used for training the regressor. The dual network was trained for 

100 epochs. After training, it was found that the hardness values for the test set ranged 

from 0.328 to 0.977. 
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Figure 2 Mae Vs Percentage Of Data Points From The Test Set With The Lowest 

Hardness Values Used For Testing 

 

            The results are as shown in Figure 2. The x-axis represents the percentage of data 

points from the test set with the lowest hardness values used for testing. The y-axis 

represents the Mean Absolute Error (MAE) scores of those data points from the test set. 

For example, 60 on the x-axis means that data points with 40 percent of the highest 

hardness values were removed from testing. Only the bottom 60 percent were used. 

            Oxford-IIIT Pet Dataset was used for training, validation, and testing our analysis 

on semantic segmentation. The SegNet-LeNet dual network was trained for 100 epochs 

SegNet-LeNet dual network was trained for 100 epochs with a batch size of 32.  

            The validation set was given as input to the Hardness Predictor network after 

training. The corresponding hardness values ranged from 0.495 to 0.644. Images that 

were easier to segment had relatively lower hardness values (outputs of Hardness 

Predictor), while those that were relatively harder to segment had higher values. 
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            Figure 3 shows how the custom performance metric varies with the cut-off value 

of Hardness scores (Oxford-IIIT Pets Dataset). We expect the custom performance 

metric value to decrease with increase in cut-off. 

 

 

Figure 3 Custom Performance Metric Value Vs Hardness Values Cutoff For 

Oxford-IIIT Pets Dataset 

 

            Here, in case of semantic segmentation, two different cut-offs a and b are 

considered, where a > b. Those images with hardness values between a and b would be 

additionally included for testing in the case of the cut-off changing from b to a. Clearly, 

additional harder images are included when cut-offs increase, and the performance is 

expected to worsen.  

            Hardness value ranged from 0.3374 to 0.5182 in the case of PASCAL VOC-2012 

Dataset. 
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Figure 4 Custom Performance Metric Value Vs Hardness Values Cutoff For Pascal 

VOC-2012 Dataset 

 

3.2 Systematic Model Complexity Reduction by Elimination of Irrelevant Layers 

            In order to train, validate, and test a three-layered convolutional neural network 

“CNN 1” with one dense layer, the MNIST dataset [19] was employed. It is significant 

to note that just the number of feature mappings distinguished the three convolutional 

layers; there were no max pooling layers. The first ten feature maps for each of the three 

convolutional layers were chosen. Images that provided the top 10 activations for each 

of the three convolutional layers for each of the ten feature maps were picked. This 

indicated that 100 photos were selected for each of the three convolutional layers. 
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Figure 5 Architecture Of CNN 1 In Which All Convolutional Layers Are Utilized 

 

            Depending on which convolutional layer an image produced one of the top 10 

activations, it was given a label. Since that convolutional layer was important in 

processing the image, the higher label was chosen in the event of repetition. 

            Based on these training data, a convolutional neural network “CNN 2” was 

trained to predict the convolutional layer at which the input image resulted in one of the 

strongest activations. CNN 2 had three convolutional layers and one dense layer. CNN 2 

had 128, 64 and 32 neurons for its three convolutional layers respectively. ReLU 

activation function was used for all three activation layers. 
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            The final phase was training a second convolutional neural network with the 

aforementioned images and labels “CNN 3”. CNN 1 and CNN 3 have the same 

architecture. It should be noted that the designations 0, 1, and 2 were all used three 

times. The images with the strongest activations in the first convolutional layer were 

given a score of 0. Similar to labels 1 and 2, labels 1 and 2 were for images that, in the 

second and third convolutional layers, respectively, produced the strongest activations. 

 

 

Figure 6 Architecture Of CNN 3 In Which Not All Convolutional Layers Are 

Utilized 

 

            Weights were initialized for the convolutional neural network (CNN 3). The 

second and third convolutional layers for pictures with label 0 were not included in the 



 

18 

 

forward pass. Only the thick layer and the first convolutional layer were used in the 

forward pass. Thus, weights for the dense layer and the first convolutional layer were 

modified. The second and third convolutional layer's weights were not changed. The 

third convolutional layer's weights for the images corresponding to label 1 were 

similarly ignored, and other weights were changed following the forward pass that 

skipped the third convolutional layer. No layer was skipped in the forward pass for the 

photos with label 2, therefore all weights were updated. 

            It was necessary to ensure that all the convolutional layers in CNN 3 had the 

same height and width for this to occur, i.e., skipping convolutional layers in forward 

pass. 

            Using the RMSprop optimizer, ReLU activation function, sparse categorical 

cross entropy loss function, and accuracy performance metric for 20 iterations, the 

aforementioned convolutional neural network was trained. The CIFAR-10 dataset 

underwent the same replication procedure as above. 

            CNN 2 was trained based on this training data to predict the convolutional layer 

at which the input image produced one of the strongest activations had a test accuracy of 

62 percent.  

            Those results were used to train, validate, and test the convolutional neural 

network mentioned in the previous section (CNN 3). It had a test accuracy of 62 percent. 

Those results were used to train, validate, and test the convolutional neural network 

mentioned in the previous section (CNN 3). It had a test accuracy equal to 99.2 percent, 

marginally higher than 98 percent when a convolutional neural network was used to 
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train, validate, and test the MNIST dataset without any caveats (CNN 1). This result was 

validated using the CIFAR-10 dataset too. There was a slight fall in performance by 1.1 

percent when CNN 3 was used instead of CNN 1.  

 

3.3 A Deep Transfer Learning Based Approach For Forecasting Spatio-Temporal 

Features To Maximize Yield In Cotton Crop 

            In this study, data on canopy variables, including as canopy cover, canopy 

height, and excess green index, that were acquired in the year 2020 were used to train a 

multi-layer stacked LSTM model. The weights of the last few layers of the trained 

LSTM model were adjusted based on the 2021 cultivation year canopy and vegetative 

index data to forecast the canopy and vegetative features from the fourth week of the 

harvesting season to the tenth week. This was accomplished utilizing a multi-layer 

stacked LSTM model and the Deep Transfer Learning approach. 

3.3.1 Construction Of The Dataset 

            The experimental site is located at Driscoll in Corpus Christi, Texas, USA 

(latitude of 27°40'06.2"N and longitude of 97°97°41'22.6"W). The information was 

gathered at weekly intervals. Data was collected by taking raw photos while flying a 

UAS over a cotton field. The DJI Phantom 4 RTK (DJI-P4RTK) with an RGB sensor 

(20 M) was used in this experiment. The first flight took place shortly following the 

planting. This trip was critical because it was used to generate a digital terrain model 

(DTM) that was used to estimate canopy height from UAS imagery [20].  
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            Following the completion of the UAS data collection, the imagery was 

photogrammetrically processed to provide dense 3D point cloud data. The structure from 

motion approach (SfM) was used to generate 3D point cloud data, which approximates a 

three-dimensional structure using two-dimensional images. A digital surface model 

(DSM) and orthorectify imagery were created using the 3D point cloud data. The final 

one was then utilized to make an orthomosaic.  

There are numerous commercial and open-source SfM software options available for 

processing UAS imagery. The imaging datasets in this research were processed with the 

Agisoft Metashape PRO software version 1.8.2 (AgiSoft LLC, St. Petersburg, Russia). 

            In its workflow, the Agisoft Metashape program followed a sequence of phases 

(fig. 5). During the initial step of the structure from motion method, a low-level 

procedure termed feature detection was employed to extract features with different 

patterns from neighbor pictures. Camera pose (position and orientation of the camera in 

relation to a reference coordinate system) and scene geometry were recreated at the same 

time in this method. During the keypoint correspondence procedure, the detected 

characteristics were then matched across, allowing an estimate of the camera's 

calibration matrix and prediction of camera motion. Feature points were sometimes 

mismatched. When this occurred, keypoint filtering was useful in removing low-quality 

keypoint matches.  

            Georeferencing was also involved in the procedure. Ground control points 

(GCPs) were utilized to anchor the map to the ground, matching the position of the 

drone photos to the location of the measured GCP. To georeference the photos for this 
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project, one GCP and real-time kinematics (RTK) were used. SfM bundle adjustment 

recreated the 3D environment using the matched/filtered keypoints and camera settings 

as part of the processing phase. The 3D point set was utilized to create a triangulated 

irregular network (TIN) and the DSM. In addition, the DSM was utilized to project 

every pixel in the photos in order to compute a geometrically corrected image mosaic 

with uniform scale [21].  

            After generating the DSM and orthomosaics for each After generating the DSM 

and orthomosaics for each flight, phenotyping data extraction commenced. A 10x10 

meter grid was first created across the cotton field. The AgriLife center's Python 

programs were then used to do pixel analysis on the drawn boundaries. The plant height 

was then estimated by subtracting the pixel height-above-earth recorded during the first 

flight from the original ground layer. Finally, CHM was used to estimate the volume of 

objects on the ground by taking the height-above-ground value and multiplying it by the 

pixel area [22]. 
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Figure 7 Agisoft Metashape Software Workflow For Generating Canopy Features 

From Orthomosaics 

 

3.3.2. Training The LSTM Model 

            Long Short-Term Memory models have historically been used extensively in 

forecasting crop output [23], [24], commodity price [25], occurrence of pests and 

diseases [26], and other agronomic applications [27]. Due to its non-linear properties and 

ability to run parallel input series and discover causal linkages, LSTM models primarily 

function as predictive models [28].  

In this case, we used a multi-layer stacked LSTM to train the model based on the values 

of the canopy and vegetative indices i.e., CC, CH and EXG recorded during the 2020 

cultivation year. The stacked LSTM model had four LSTM layers with 100, 50, 25 and 

12 neurons respectively, and one dense layer with a single neuron. A RMSprop 
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optimizer with learning rate of 0.01 was used for training the data. Mean Squared Error 

(MSE) and MAE were used as the loss function and performance metric of the algorithm 

respectively. The model was trained 1000 epochs with a batch size of 32 and validation 

split of 0.2. 

3.3.3. Predictions Based On Transfer Learning 

            Reusing a model that has already been trained on a different problem is known as 

transfer learning [29]. With transfer learning, a machine can use its understanding of one 

activity to better generalize about another. There have been many papers on applications 

of deep transfer learning in agriculture like identification of plant diseases [30], 

identification system for mildew disease in pearl millet [31], and prediction of soybean 

crop yields in Brazil [32].  

            In this paper, a multi-layer stacked LSTM model was trained on the entire 2020 

cultivation data. The last few layers were fine-tuned using initial cultivation data of 

2021. This model was then used to predict the corresponding canopy and vegetative 

indices for the post training cultivation time of 2021. This was repeated for the year 

2022 too. 

            The fine-tuned LSTM model was used to predict canopy and vegetative indices 

for the post training part of 2021 and 2022 cultivation years. Fig. 7, Fig. 8., and Fig. 9, 

Fig. 10., Fig. 11. were used to depict real and predicted Canopy Cover, Canopy Height, 

and Excess Green Index values for the remaining cultivation period. The validation 

accuracies recorded for each of the canopy and vegetative indices have been shown in 

Table 1. 
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Table 1 Validation Accuracies Recorded For CC, CH And EXG For The Year 2021 

Reprinted with permission from "A Deep Transfer Learning based approach for 

forecasting spatio-temporal features to maximize yield in cotton crops" by K. C. 

Gadepally, S. B. Dhal, M. Bhandari, J. Landivar, S. Kalafatis and K. Nowka, 2023 57th 

Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 

2023, pp. 1-4, doi: 10.1109/CISS56502.2023.10089748. 

 

 

 

 

Sl. 

No.  

Number of weeks after 

cultivation in the testing set 

Canopy 

Cover 

Canopy 

Height 

Excess Green 

Index 

1 4 93 90 84 

2 5 93.2 90.12 84.2 

3 6 93.25 90.14 84.28 

4 7 93.8 90.38 84.6 

5 8 93.92 90.56 84.78 

6 9 94.1 90.78 85.35 

7 10 94.28 91.2 85.8 
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Figure 8 Predicted Vs Real Values Of Canopy Cover For 2021 

Reprinted with permission from "A Deep Transfer Learning based approach for 

forecasting spatio-temporal features to maximize yield in cotton crops" by K. C. 

Gadepally, S. B. Dhal, M. Bhandari, J. Landivar, S. Kalafatis and K. Nowka, 2023 57th 

Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 

2023, pp. 1-4, doi: 10.1109/CISS56502.2023.10089748. 

 

             

From Figure 8, it was observed that as the training time of LSTM increases, 

predicted values of Canopy Cover converged to the real values, with accuracy values 

going from 93 to 94.28. 
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Figure 9 Predicted Vs Real Values Of Canopy Height For 2021 

Reprinted with permission from "A Deep Transfer Learning based approach for 

forecasting spatio-temporal features to maximize yield in cotton crops" by K. C. 

Gadepally, S. B. Dhal, M. Bhandari, J. Landivar, S. Kalafatis and K. Nowka, 2023 57th 

Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 

2023, pp. 1-4, doi: 10.1109/CISS56502.2023.10089748. 

             

From Figure 9, it can be observed that the accuracy values of Canopy Height 

started at 90 in the case of training time being 4 weeks and improved to 91.2 as the 

training time reached 10 weeks. 
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Figure 10 Predicted Vs Real Values Of Excess Green Index For 2021 

Reprinted with permission from "A Deep Transfer Learning based approach for 

forecasting spatio-temporal features to maximize yield in cotton crops" by K. C. 

Gadepally, S. B. Dhal, M. Bhandari, J. Landivar, S. Kalafatis and K. Nowka, 2023 57th 

Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 

2023, pp. 1-4, doi: 10.1109/CISS56502.2023.10089748. 

 

             

From Figure 10, it was observed that as the training time of LSTM increases, 

predicted values of Excess Green Index converged to the real values, with accuracy 

values going from 84 to 85.8.  

        The fine-tuned LSTM model was also used to predict canopy and vegetative indices 

for the post training part of 2022 cultivation year. Fig. 10, and Fig. 11 were used to 

depict real and predicted Canopy Cover and Excess Green Index values for the 

remaining cultivation period. The validation accuracies recorded for each of the canopy 

and vegetative indices have been shown in Table 2. 
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Table 2 Validation Accuracies Recorded For CC And EXG For The Year 2021 

Reprinted with permission from "A Deep Transfer Learning based approach for 

forecasting spatio-temporal features to maximize yield in cotton crops" by K. C. 

Gadepally, S. B. Dhal, M. Bhandari, J. Landivar, S. Kalafatis and K. Nowka, 2023 57th 

Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 

2023, pp. 1-4, doi: 10.1109/CISS56502.2023.10089748. 

 

 

 

 

  

Sl. 

No. 

Number of weeks after cultivation 

in the testing set 

Canopy Cover Excess Green 

Index 

1 4 94.1 85.2 

2 5 94.25 85.45 

3 6 94.8 85.67 

4 7 95.3 85.8 

5 8 95.43 86.1 

6 9 95.89 86.2 

7 10 95.97 86.5 
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Figure 11 Predicted Vs Real Values Of Canopy Cover For 2022 

Reprinted with permission from "A Deep Transfer Learning based approach for 

forecasting spatio-temporal features to maximize yield in cotton crops" by K. C. 

Gadepally, S. B. Dhal, M. Bhandari, J. Landivar, S. Kalafatis and K. Nowka, 2023 57th 

Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 

2023, pp. 1-4, doi: 10.1109/CISS56502.2023.10089748. 

 

 

             

From Figure 11, it was observed that as the training time of LSTM increases, 

predicted values of Canopy Cover converged to the real values, with accuracy values 

going from 94.1 to 95.28. 
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Figure 12 Predicted Vs Real Values Of Excess Green Index For 2022 

Reprinted with permission from "A Deep Transfer Learning based approach for 

forecasting spatio-temporal features to maximize yield in cotton crops" by K. C. 

Gadepally, S. B. Dhal, M. Bhandari, J. Landivar, S. Kalafatis and K. Nowka, 2023 57th 

Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 

2023, pp. 1-4, doi: 10.1109/CISS56502.2023.10089748. 

 

             

From Figure 12, it was observed that as the training time of LSTM increases, 

predicted values of Excess Green Index converged to the real values, with accuracy 

values going from 85.2 to 86.5.  
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4. SUMMARY* 

 

            Approaches and methods for better efficiency and accuracy in computer vision 

applications are the subject of this study. Studies on hardness predictor and image 

complexity dealt with improving efficiency of computer vision algorithms. On the other 

hand, improving agricultural drone image-based predictive spatiotemporal models for 

early season yield prediction through the use of transfer learning on a multilayer, stacked 

LSTM neural network model was related to enhancing accuracy. 

            For regression and semantic segmentation, the hardness predictor is effective at 

assigning hardness values to test images. As the cut off for hardness values increases, 

harder images are taken as inputs by the computer vision module. As a result, a general 

decrease in the performance is observed. Further study could be done on designing a 

common convex loss function for both computer vision application and hardness 

predictor. 

             In section 3.3, CNN 2 was trained based on this training data to predict the 

convolutional layer at which the input image produced one of the strongest activations 

had a test accuracy of 62 percent. It had a test accuracy of 62 percent. Those results were 

used to train, validate, and test the convolutional neural network mentioned in the 

 

* Parts of this chapter are reprinted with permission from "A Deep Transfer Learning 

based approach for forecasting spatio-temporal features to maximize yield in cotton 

crops" by K. C. Gadepally, S. B. Dhal, M. Bhandari, J. Landivar, S. Kalafatis and K. 

Nowka, 2023 57th Annual Conference on Information Sciences and Systems (CISS), 

Baltimore, MD, USA, 2023, pp. 1-4, doi: 10.1109/CISS56502.2023.10089748. 
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previous section (CNN 3). It had a test accuracy equal to 99.2 percent, marginally higher 

than 98 percent when a convolutional neural network was used to train, validate, and test 

the MNIST dataset without any caveats (CNN 1). This result was validated using the 

CIFAR-10 dataset too. There was a slight fall in performance by 1.1 percent when CNN 

3 was used instead of CNN 1. This could be supplemented by research on CNNs with 

max pooling layers present. 

            In the Deep Transfer Learning study, we trained a multi-layer stacked LSTM 

model using data on canopy and vegetative features, including canopy cover, canopy 

height, and excess green index, which were obtained in the year 2020. In order to 

forecast the canopy and vegetative features from the fourth week until the tenth week of 

harvesting season, the weights of the final few layers of the trained LSTM model were 

fine-tuned based on the 2021 and 2022 cultivation years’ canopy and vegetative index 

data. This was done using a Deep Transfer Learning technique using a multi-layer 

stacked LSTM model. As expected, accuracy increased with increase in the time used 

for fine-tuning of LSTM for all three canopy and vegetative indices. In the case of 

Canopy Cover, Canopy Height and Excess Green Index, validation accuracy varied 

between 93 - 95.28 %, 90 - 91.2 % and 84 – 86.5 % respectively.  
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