
PROCESSOR MEMORY SYSTEM DESIGN FOR PERFORMANCE AND SECURITY

A Dissertation

by

GINO AUGUSTO CHACON

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Paul V. Gratz
Committee Members, Daniel Jiménez

Jeyavijayan Rajendran
Ulisses Braga-Neto

Head of Department, Miroslav Begovic

May 2023

Major Subject: Computer Engineering

Copyright 2023 Gino Augusto Chacon

ABSTRACT

The benefits of Moore’s Law are waning and effects of Dennard Scaling are ending, resulting

in modern computing designs improving performance through new and creative designs. These

designs target modern performance barriers but introduce new threat vectors that bad actors may

exploit to compromise the design and manufacturing process.

Server and database computing system performance can improve by increasing machines’

ability to facilitate fast instruction memory accesses to overcome the front-end bottleneck, gen-

erally through prefetching. Prefetching is a technique to predict future instruction accesses and

place them in the caches before use. In this dissertation, we propose a framework for combining

pre-existing hardware prefetchers into a single composite prefetcher to target different instruction

stream behaviors during execution.

Software prefetching has recently resurfaced as an alternative to hardware prefetching. While

promising, recent proposals do not model industry-standard front-ends in their evaluation. In

this dissertation we identify the potential states the front-end can be in and software instruction

prefetching’s effect on the front-end that degrades performance.

Industry is moving toward chiplet-based designs, which divide systems into chiplets and in-

tegrate them onto an interposer via 2.5D integration. This design flow disaggregates the manu-

facturing and design process between multiple vendors with varying trustworthiness, increasing

hardware Trojans’ potential insertion and threat. These systems rely on cache coherence for data

communication, making coherence an attractive target. Trojan attacks exploiting coherence can

modify data in memory that the compromised chiplet never touched or owned. Further, the Trojan

need not be physically between the victim and the memory controller to attack a victim’s mem-

ory transactions. This dissertation explores the fundamental coherence attack vectors possible in

chiplet-based systems. Further, we provide an example Trojan implementation capable of directly

modifying victim data in memory without disrupting system execution.

To counter coherence threats, we propose a defense mechanism leveraging an active interposer

ii

to produce a generic, secure-by-construction platform forming a physical root of trust for 2.5D

systems. The scheme has limited overhead, restricted to the active interposer, allowing the chiplets

and the coherence system to remain unmodified. This scheme prevents coherence attacks with little

impact on system performance, ∼4%, which reduces as workloads increase, ensuring scalability.

iii

DEDICATION

To my family and friends that offered unending support.

iv

ACKNOWLEDGMENTS

First and foremost, I wish to express my gratitude to my advisor, Paul V. Gratz. He has pro-

vided endless support and advice along my Ph.D. journey. As an eager undergraduate looking for

research, Paul allowed me to work on exciting problems alongside great researchers and people.

This work was only possible with his insight and encouragement to explore and tackle challeng-

ing problems, even if it did not always work out. I also thank Daniel Jimènez for his advice and

encouragement throughout the years. Furthermore, I would like to thank my committee for their

feedback: Ulisses Braga-Neto, J. V. Rajendran, and Krishnendra Nathella.

I also thank my former and present colleagues at the Computer Architecture, Memory Sys-

tems and Interconnection Networks (CAMSIN) and Texas Architecture and Compiler Optimiza-

tion (TACO) research groups. Eric Garfinkle, Luke McHale, Elvira Teran, Nathan Gober, Jinchun

Kim, Charles Williams Jr., and Elba Garza. It has been a wonderful experience working with all

of you and fighting through deadlines, bugs, and lockdowns. Special thanks to my collaborators in

industry and abroad: Chris Wilkerson (Intel), Alaa Alameldeen (Simon Fraiser University), Seth

Pugsley (Intel), and Krishnendra Nathella (Microsoft).

Finally, I would like to thank my family and friends, who have been overwhelmingly supportive

during my time as a student. Without their kindness, understanding, and willingness to listen to

me rant about broken simulations for hours, I would not be in this position. I’d also like to thank

Becka for her seemingly endless patience when dealing with a stressed-out engineer. Thank you

to Fabian, Larissa, and Russel for giving me some social life in lockdown and some of the best

backyard barbequing I’ve had.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Paul V. Gratz,

Professor Jeyavijayan Rajendran, and Professor Ulisses Braga-Neto of the Department of Electri-

cal and Computer Engineering and Professor Daniel A. Jimenéz of the Department of Computer

Science and Engineering and external committee member Krishnendra Nathella.

Chapter II was collaborated with Elba Garza and Daniel Jimenéz of the Department of Com-

puter Science and Engineering, Paul V. Gratz of the Department of Electrical and Computer Engi-

neering, Alberto Ros and Alexandra Jimborean of the Computer Engineering Department at Uni-

versity of Murcia, and Samira Mirbagher-Ajorpaz of the Department of Electrical and Computer

Engineering at North Carolina State University. Chapter III was collaborated with Nathan Gober

of the Department of Electrical and Computer Engineering, Daniel Jimenéz of the Department of

Computer Science and Engineering, and Krishnendra Nathella while he was employed at ARM

Inc. Chapter IV was collaborated with Tapojyoti Mandal of NVIDIA while he was a graduate stu-

dent of the Department of Electrical and Computer Engineering, and Johann Knechtel and Ozgur

Sinanoglu of the Division of Engineering at New York Unversity Abu Dhabi, and Vassos Soteriou

of the Department of Electrical and Computer Engineering at Cyprus University of Technology.

Chapter V was collaborated with Charles Williams and Paul V. Gratz of the Department of Elec-

trical and Computing Engineering, and Johann Knechtel and Ozgur Sinangolu of the Division of

Engineering at New York University Abu Dhabi.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a College of Engineering fellowship from Texas A&M Uni-

versity, by the Michael W. Powell Electrical Engineering Graduate Fellowship, by the National

Science Foundation which supports this work through grant FoMR-1823403, and a generous gift

vi

from Intel.

vii

NOMENCLATURE

APU Address Protection Unit

AsmDB Assembly Database

BER Backward Error Recovery

BTB Branch Target Buffer

CFG Control Flow Graph

CMC Coherence Message Checker

CVP Championship Value Prediction

ECC Error Correction Codes

EIP Entangling Instruction Prefetcher

FDP Fetch Directed Prefetching

FER Forward Error Recovery

FNL Footprint Next Line

FTQ Fetch Target Queue

GHR Global Histroy Buffer

IPC Instructions Per Cycle

L1-I First Level Instruction Cache

L2C Second Level Cache

LBR Last Branch Record

LLC Last-Level Cache

LRU Least Recently Used

MC Memory Controller

MOESI Modified-Owner-Exclusive-Shared-Invalid

viii

MPKI Misses-per-Thousand-Instructions

MSHR Miss Status Handling Register

NoC Network on Chip

NI Network Interface

PCM Packet Checker/Modifier

PFC Post-Fetch Correction

PC Program Counter

RAS Return Address Stack

RMT Redundant Multithreading

SPFB Subprefetcher Buffer

TAP Temporal Ancestry Prefetcher

TEE Trusted Execution Environment

SWIP Software Instruction Prefetch

TMR Triple Modular Redundancy

ix

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . viii

TABLE OF CONTENTS . x

LIST OF FIGURES . xiv

LIST OF TABLES. .xviii

1. INTRODUCTION. 1

1.1 Memory System Performance Challenges . 1
1.1.1 Front-End Bottleneck . 2

1.1.1.1 Hardware Instruction Prefetching . 2
1.1.1.2 Decoupled Front-Ends . 3
1.1.1.3 Software Instruction Prefetching . 4

1.2 Security Challenges in Cache Coherent 2.5D Chiplet Environments. 5
1.2.0.1 Cache Coherence as a Vulnerable Subsystem. 5
1.2.0.2 Hardware Trojans . 6

1.3 Dissertation Statement . 7
1.4 Dissertation Organization . 8

2. SELECTING AND EVALUATING INSTRUCTION PREFETCHERS WITH COM-
PLEMENTARY BEHAVIOR FOR THE DESIGN OF A COMPOSITE INSTRUCTION
PREFETCHER . 9

2.1 Introduction. 9
2.2 Background and Motivation . 11

2.2.1 Modern Instruction Prefetchers . 11
2.2.1.1 Control-Flow-Graph Recreation . 11
2.2.1.2 Temporal Prefetchers . 12
2.2.1.3 Branch-Oriented Prefetchers . 13

2.2.2 Complementary Prefetchers. 13

x

2.2.3 Composite Prefetching . 14
2.3 Design and Implementation . 15

2.3.1 Composite Prefetcher Organization . 15
2.3.2 L1-I Cache Metadata and Subprefetcher Training . 17
2.3.3 Composite Prefetcher Operation . 17

2.4 Evaluation . 18
2.4.1 Methodology. 18
2.4.2 Hardware Constraints and Instruction Prefetcher Performance 19

2.4.2.1 Budget Sensitive Prefetchers. 20
2.4.2.2 Low-Budget Friendly Prefetchers . 21
2.4.2.3 Budget Indifferent Prefetchers . 21

2.4.3 Selecting Composite Prefetcher Subprefetchers . 21
2.4.4 Full Results Comparison . 23
2.4.5 Subprefetcher Behavior . 24

2.4.5.1 Accuracy and Issued Prefetches . 24
2.4.5.2 Measuring Subprefetchers’ Individual Contributions 25

2.5 Related Work . 27
2.5.1 Hardware Instruction Prefetching . 27
2.5.2 Software Instruction Prefetching . 28
2.5.3 Composite Prefetching . 29

2.6 Summary . 30

3. PERFORMANCE EFFECTS OF SOFTWARE INSTRUCTION PREFETCHING IN
THE PRESENCE OF AN AGGRESSIVE FRONT-END . 31

3.1 Introduction. 31
3.1.1 Contributions . 33

3.2 Background and Motivation . 34
3.2.1 Decoupled Front-Ends . 34
3.2.2 AsmDB: Modern Software Instruction Prefetching . 35

3.2.2.1 Selecting High-Impact Instructions . 36
3.2.2.2 Inserting Software Instruction Prefetches . 37
3.2.2.3 AsmDB and Industry-Standard Decoupled Front-Ends 37

3.3 Characterizing Front-End Behavior . 38
3.3.1 Scenario 1: Shoot Through . 38
3.3.2 Scenario 2: Stalling Head Instruction . 39
3.3.3 Scenario 3: Shadow Stalls . 41
3.3.4 FTQ State and Software Instruction Prefetches . 42

3.4 Methodology . 43
3.5 Front-End Analysis . 44

3.5.1 Code Bloat . 45
3.5.2 Changes in Stalling Head FTQ Entries . 46
3.5.3 AsmDB’s Impact on the Occurrence of Scenario 2 . 47
3.5.4 Software Instruction Prefetching Impact on Scenario 3 . 50

3.6 Related Works . 50

xi

3.6.1 Hardware Prefetching . 50
3.6.2 Software Prefetching . 50

3.7 Summary . 51

4. HARDWARE TROJANS CAPABLE OF EXPLOITING CACHE COHERENCE IN 2.5D
CHIPLET SYSTEMS . 53

4.1 Introduction. 53
4.2 Design of Hardware Trojans Targeting Coherence Systems . 54

4.2.1 Coherence Protocols. 54
4.2.2 Basic Trojan Attacks on Coherence Systems . 55
4.2.3 The GETXspy Attack . 57

4.2.3.1 Working Principle . 58
4.2.3.2 Target System. 60
4.2.3.3 GETXspy Case Study . 61

4.2.4 Limitations of Basic Attacks . 62
4.3 Multistage Complex Hardware Trojans . 63

4.3.1 Target System . 63
4.3.2 Working Principle . 63
4.3.3 Operation . 64
4.3.4 Results . 66

4.4 Summary . 67

5. COHERENCE COUNTERMEASURES IN INTERPOSER-BASED SYSTEMS 68

5.1 Introduction. 68
5.1.1 Security Promise, Our Contributions . 70

5.2 Background and Contributions . 70
5.2.1 Interposer Technology. 71
5.2.2 Hardware Security . 72

5.2.2.1 IC Manufacturing. 72
5.2.2.2 Hardware Trojans . 72
5.2.2.3 Secure Interconnect Fabrics. 73
5.2.2.4 Hardware Support for Root of Trust . 74

5.2.3 Cache Coherence . 75
5.3 System Architecture Overview . 75

5.3.1 Chiplet and Interconnects Architecture. 76
5.3.2 Principles for System-Level Security . 76
5.3.3 Cache Coherence Protocol . 78

5.4 Threat Model . 78
5.4.1 Scope and Assumptions . 78
5.4.2 Threat Vectors . 79

5.5 System Design. 80
5.5.1 Microarchitecture . 81

5.5.1.1 CMC Overview . 81
5.5.1.2 CMC Types and Placement . 82

xii

5.5.1.3 APU Table . 83
5.5.2 OS Support and Memory Organization. 84

5.5.2.1 Representing Memory Regions . 84
5.5.2.2 Memory Allocation and OS Modifications . 85

5.5.3 Implementation Details . 86
5.5.3.1 NoC Configuration . 86
5.5.3.2 Cache Coherence Protocol . 86
5.5.3.3 Protocol Compliance . 87
5.5.3.4 Design Cost . 87

5.6 Evaluation . 88
5.6.1 Methodology. 88
5.6.2 Security Analysis . 89

5.6.2.1 Threat Model Coverage . 89
5.6.2.2 Security Testing . 90

5.6.3 Single-Threaded Performance Impact . 91
5.6.4 Multi-Programmed Performance Impact . 93

5.7 Summary . 94

6. CONCLUSION. 95

REFERENCES . 97

xiii

LIST OF FIGURES

FIGURE Page

2.1 The overlap between individual prefetchers at the smallest (10KB) and largest
(128KB) hardware budgets. The higher the percentage, the more the two prefetch-
ers overlap. 15

2.2 Overview of the composite prefetcher’s organization. 16

2.3 Prefetcher performance versus hardware budget, including the best performing
combined prefetcher at each hardware budget. At each budget, the composite
prefetcher outperforms not only its subprefetcher components but the best per-
forming single-prefetcher. 20

2.4 Miss coverage, in a Composite-2 of Barça & FNL+MMA covered by Barça, FNL+MMA
or both at various hardware budgets. 22

2.5 Performance comparison of best composites of 2, 3 and 4 prefetchers for different
metadata storage state. 22

2.6 Accuracy vs. Hardware Storage (KB) at each metadata storage point for all prefetch-
ers and Composite-2.. 24

2.7 Percentage of prefetches issued from each component prefetcher in the best per-
forming Composite-2 prefetcher at each storage overhead. Generally, one sub-
prefetcher does not tend to dominate the prefetches Composite-2 produces. 25

2.8 Coverage breakdown for Composite-2 prefetchers. 26

3.1 Comparison of front-end performance of AsmDB, an industry-standard FDP im-
plementation, and EIP with an industry-standard FDP implementation over a con-
servative front-end 2-entry FTQ. 31

3.2 Overview of FDP implementation and optimizations from Ishii et al. [1]. 33

3.3 An example of the CFG generated by AsmDB’s software analysis to select loca-
tions to insert software instruction prefetches. 36

3.4 Scenario 1 for conservative and industry-standard FDP implementations. 39

3.5 Scenario 2 for conservative and industry-standard FDP implementations. 40

xiv

3.6 Scenario 3 for conservative and industry-standard FDP implementations. 41

3.7 Static and dynamic code bloat . 45

3.8 The number of cycles to cover a head instruction tends to be larger versus an FTQ
entry not at the head, indicating that the head of the FTQ tends to be a miss in the
L1-I. 46

3.9 Number of stalls incurred by the head entries fro the 24-entry and 2-entry imple-
mentations of FDP. 47

3.10 This figure illustrates the number of FTQ entries that are forced to wait on a stalling
head instruction before progressing through the FTQ. While the conservative FDP
has more waiting instructions overall, the increase in waiting instructions in the
24-entry FDP represents a loss of potential performance. 48

3.11 . 49

4.1 Masquerading: Trojan acts as another core. (1) Miss causes GETX to directory;
(2) broadcast invalidations to each chiplet; (3) Trojan blocks local observation,
replies with different core ID; (4) requesting core proceeds, leaving local caches
incoherent. 56

4.2 Modifying: Trojan modifies a message to achieve incoherent state. (1) Chiplet A
sends GETS to directory; (2) directory forwards request to Trojan’s core which has
line in ‘E’ state. Trojan blocks GETS and (3) replies with GETX to requestor, (4)
invalidating Chiplet A’s cache entry, leaving attacker in control of another cache’s
contents. 57

4.3 Diverting: Trojan diverts invalidation requests. (1) Chiplet A sends GETX to the
directory; (2) directory broadcasts invalidations. (3) Trojan blocks message and
diverts a request to another core, (4) which responds with a negative-acknowledge
or acknowledgment resulting in (5) the directory allowing original requestor to
continue. 58

4.4 Passive Reading: Trojan passively observes write traffic for other chiplets. (1)
Misses from Chiplet A cause (2) broadcast invalidations to all chiplets; (3) Trojan
snoops invalidation addresses. 59

4.5 The GETXspy attack, executed as spy process in Chiplet 0’s core 0, sending covert-
channel messages to the hardware Trojan located in Chiplet 8’s core 0. 60

4.6 Addresses the hardware Trojan sees, as GETX requested from the spy process. The
attack occurs later in execution when the spy targets specific addresses to trigger
misses in the L2 and the MC’s directory. 61

xv

4.7 As the Trojan observes addresses requested, it awaits a synchronization message
pattern, labelled as “Attack Region.” This message pattern means the spy begins a
transmission.. 61

4.8 The attack region is zoomed-in here, showing the sets the Trojan considers as part
of a synchronization message. The higher set represents ‘1’ bits and the lower set
represents ‘0’ bits. 62

4.9 Phase 1 of the Forging attack in which the Trojan gains control of the target address. 64

4.10 Phase 2 of the Forging attack that enables the Trojan to mimic the steps required to
write back maliciously formed data to main memory. 65

4.11 Data received by the victim when the Trojan is not activated. The application reads
an alternating sequence of ‘1’ and ‘0.’ . 66

4.12 Data received after the Trojan has completed its attack. The first entry in the array
is now set to ‘5,’ instead of the expected ‘1.’ . 67

5.1 Secure system. Routers 64–71 lie within chiplets, connecting them to the interposer
NoC. Routers 0–63 connect the CPU cores within their respective chiplet’s NoC
(see zoom-in). The proposed Coherence Message Checkers (CMCs), marked in
yellow, are embedded in the interposer and placed along the ports connected to
chiplets (CMC-1, red arrows) and memory controllers (CMC-2, blue arrows). Also
note the secure co-processor embedded in the interposer. 77

5.2 A CMC, embedded within an interface router of the interposer NoC, monitoring
the incoming packets. 81

5.3 Exemplary entry of the APU table, covering some region of the physical mem-
ory. The entry describes access permissions for each chiplet individually; here, the
related region is read-write shared between Chiplets 0 and 1. 83

5.4 Structure of messages. Request messages do not include the ‘CurOwner’ or ‘Dirty’
fields. Flits 3-10 are only sent for response messages in response to a request
message. Fields highlighted are to be checked by CMCs. 87

5.5 Slowdown for the CMC-enabled system for vc_per_vnet of 4 compared to the non-
secure baseline. 90

5.6 L2 cache miss rate [%]. 91

5.7 Change in packet latency induced by CMCs [%]. 92

5.8 Slowdown for different VC configurations. 93

5.9 Slowdown for 64- versus 128-bit interposer links. 93

xvi

5.10 Speedup/slowdown for multi-program workloads. 94

xvii

LIST OF TABLES

TABLE Page

2.1 Simulated Baseline System Configuration . 19

2.2 Best performing prefetcher combinations for Composite-2 for hardware budgets of
20KB, 30KB, 40KB, 64KB, and 128KB divided evenly between subprefetchers. 19

3.1 Simulation parameters based on previous work [1, 2] evaluating the efficacy of
hardware prefetchers in a decoupled front-end environment. 44

4.1 GETXspy Covert-Channel Characteristics . 62

5.1 System Architecture Configuration . 88

xviii

1. INTRODUCTION

Moore’s Law has slowed in recent years while the demand for computing continues to increase.

The commercial demand for computing leads to more creative design solutions. Memory system

performance and operations heavily impact the performance and security of a system. Creative

design solutions improve emerging designs’ cost and manufacturing efficiency but must address

specific memory performance and security concerns. In this section, we provide an introduction to

the performance and security challenges associated with modern systems.

First, we provide an overview of the performance challenges associated with modern mem-

ory system design, explicitly concerning instruction memory. We then discuss emerging systems

based on 2.5D integration technology, which divides designs into chiplets from various vendors of

various levels of trust that could potentially insert hardware Trojans targeting these systems’ com-

munication fabric (i.e., coherence protocol). Following this, we provide the goal and organization

of this dissertation.

1.1 Memory System Performance Challenges

An ongoing challenge in modern systems is the “Memory Wall” [3], which results from the

disparity between the processor and memory speeds. This speed gap presents a bottleneck for

processors at the memory level. To alleviate this bottleneck, modern processors incorporate large

memory hierarchies with various capacities and speeds to maintain frequently accessed memory in

faster memory caches closer to the processor and prevent memory requests from being serviced by

slower main memory devices. However, the Memory Wall continues to pose a challenge in modern

systems despite the prevalence of deep, fast cache hierarchies. In particular, it forms a bottleneck

in the delivery and execution of instructions by a processor’s front-end. In the following sections,

we introduce the Memory Wall’s effect on the front-end, or fetch stage, of modern processors and

provide background on two forms of instruction prefetching, which attempt to bring instructions

into the fastest cache level before the front-end demands them.

1

1.1.1 Front-End Bottleneck

The Memory Wall [3] manifests in the superscalar core front-end as a lack of instructions avail-

able for fetch, as the front-end’s resources are encumbered by waiting for the memory hierarchy

to service instruction requests [4, 5, 6]. Recent work demonstrates that the front-end has become

a significant bottleneck for modern server workloads due to the availability of instructions [7, 8].

This bottleneck results from increased instruction memory footprint in server workloads with ever-

deeper software stacks where even simple user requests traverse multiple software layers, touching

megabytes of code in the process [9]. Large footprints further exacerbate the disparity between

processor and memory performance as the L1 instruction (L1-I) cache of modern processors can-

not capture an application’s behavior resulting in significant critical-path stalls.

Recent studies have found that large footprints are endemic to modern server workloads and

will only grow more significant over time—at a rate of 20% per year—as software stacks deepen to

accommodate more complex applications [10]. This overwhelming use of front-end resources is a

well-known phenomenon dubbed the front-end bottleneck [9]. The front-end bottleneck challenges

hardware architects as programs’ long-term behaviors can no longer be fully mapped in the L1-

I cache nor captured by branch prediction structures [11]. Thus, microarchitects must limit the

effects of the front-end bottleneck while keeping to strict timing, area, and power constraints.

Instruction prefetching has been a solution to memory bottlenecks for decades, with a plethora

of prior art in instruction prefetching. Instruction prefetching techniques have been proposed at

the L1 instruction cache level, as a form of speculative run ahead based on existing prediction

structures in the front-end, and at the software level based on some profile of a target application.

We further elaborate on each of these instruction prefetching techniques below.

1.1.1.1 Hardware Instruction Prefetching

Prefetching has been heavily studied to alleviate data and instruction memory bottlenecks.

A large body of work has emerged to explore different mechanisms to improve the instruction

memory performance to address this performance bottleneck. Prefetching a technique that can

2

effectively mask memory access latencies by speculating on future memory reference streams, to

reduce costly cache misses [12, 13]. Prefetching is a viable mechanism for reducing misses in

both instruction and data caches. Prefetching requires predicting upcoming memory accesses and

issuing preemptive memory requests before explicit requests by memory are necessary [14, 12, 15,

16, 17].

Most instruction accesses are sequential as a program is iterated through, making next-line

prefetchers fairly effective [18]. However, discontinuities exist as control-flow instructions. Hard-

ware instruction prefetcher designs commonly use existing control-flow related microarchitectural

structures to provide a context to the application’s current behavior and prefetch along a speculative

execution path.

We find that, due to their independent implementations, recently proposed instruction prefetch-

ers [19, 20, 21, 22, 23, 24, 25, 26] often behave differently dependent on workload and program

phase, leading to different prefetch suggestions at different times, and thus they vary in terms

of timeliness, coverage, and accuracy. Interestingly, we also find that as the hardware budget of

each prefetcher is reduced to make the prefetcher more practical in a production environment, they

behave more distinctively and complementarily. This finding argues for the benefits of leverag-

ing multiple prefetchers in combination, particularly when implemented in reasonable, buildable

hardware budgets. In Chapter II we will propose a methodology for selecting prexisting hard-

ware instruction prefetchers with complementary behavior to combine into composite prefetcher

capable of outperforming its subcomponents even at a lower hardware budget.

1.1.1.2 Decoupled Front-Ends

Fetch-Directed Prefetching (FDP) [27] is an important form of instruction prefetching, heavily

used in current, aggressive, superscalar processor cores [1]. FDP speculates using the branch

prediction structures to aggressively fill the Fetch Target Queue (FTQ) ahead of the instruction

stream with the predicted execution path. Entries in the FTQ are sent to the L1-I as soon as their

addresses are known to fill the cache ahead of the demand request. The larger the FTQ, the more

and earlier requests can be issued to the L1-I, increasing instruction throughput. An important

3

aspect of FDP is that it allows a decoupling of the front-end from the rest of the processor, allowing

the front-end to run as far ahead as the branch predictor allows by holding multiple outstanding

instruction requests to the L1-I in the FTQ [28, 29, 30, 31]. We discuss decoupled front-ends in

more detail in Chapter III.

1.1.1.3 Software Instruction Prefetching

To avoid the higher overheads and constraints of learning instruction stream access patterns

at the L1-I, software instruction prefetchers are also a potential solution to alleviate the front-

end bottleneck. Software instruction prefetchers perform some of profiling of an application’s

instruction stream behavior to build a model of the instruction stream behavior.

Recent works in alleviating the front-end bottleneck have proposed using software prefetching

techniques to profile a workload’s behavior and identify regions or accesses with a high impact on

performance [32, 33, 34, 35, 36], prefetching these high-impact memory accesses ahead of time.

Profiling ahead of execution allows for the hardware to have prior knowledge of what accesses

are compulsory or have long-term reuse without obvious short-term locality. These techniques

do not require hardware overhead other than an ISA implementation of a prefetching instruction.

Software instruction prefetching is an attractive solution as it can improve production binaries

that can be modified and updated. Recent work in software instruction prefetching demonstrates

high potential in implementing schemes such as the state-of-the-art AsmDB [32] prefetcher, seeing

benefits as high as ∼15 % performance improvement.

Despite the potential benefit of software instruction prefetching, we note that prior work in this

area evaluates their proposals in systems without FDP or a very conservative FDP implementation.

Recent work emphasizes the importance of modeling a realistic FDP implementation to accurately

evaluate a proposal [2]. A conservative implementation of FDP limits the ability of the prefetcher

to runahead of the instruction stream, inflating the reported benefit of an L1-I prefetcher.

In Chapter III we evaluate a modern software instruction prefetching technique in an industry-

standard front-end, finding that it causes a degradation in performance. We characterize the front-

end’s behavior and identify the effects of inserting new instructions into the instruction stream by

4

a software instruction prefetcher that results in the degradation.

1.2 Security Challenges in Cache Coherent 2.5D Chiplet Environments

A recent trend in computing systems is the adoption of hardware organization based on chiplets

and interposers [37, 38, 39, 40]. Instead of implementing a monolithic system-on-chip (SoC), this

approach disaggregates the functional components across multiple smaller chips, i.e., chiplets,

which are designed and manufactured separately. These chiplets serve as hard intellectual property

(IP) modules, possibly sourced from a variety of vendors, and consolidated on an integration and

interconnects carrier, i.e., the interposer [37, 38, 39, 40, 41, 42]. This approach is also known as

2.5D integration.

The adoption of chiplet and interposer integration raises design reuse to the level of the phys-

ical system, optimizing yields and streamlining time to market, resulting in significant cost ben-

efits. Such 2.5D integration is already adopted by industry in products such as the AMD Epyc

processors [39, 40] or the Intel Embedded Multi-Die Interconnect Bridge technology [43]. Recent

industry talks herald this design style as the next iteration of Moore’s law [44]. While such 2.5D

designs provide many benefits, they also increase the exposure risk to Trojan attacks, explicitly

targeting the coherence scheme of the overall system.

1.2.0.1 Cache Coherence as a Vulnerable Subsystem

Coherence is an essential mechanism that ensures all components maintain a consistent view

of the system’s memory, not only for interposer-based systems but interconnected SoCs in general.

Coherence protocols ensure updates to cached copies of data are visible to all cores and other IP

blocks in modern multi-core designs [45, 37, 40]. Coherence schemes can be broadly categorized

as broadcast (or snooping) protocols [46, 47, 48] and directory protocols [49, 50, 51]. While

simple to implement, broadcast protocols suffer from high traffic due to the amount of messages

multi-core systems require to maintain coherence. Directory protocols allow for fine-grained state

tracking and unicast messages, making them highly scalable but difficult to implement and have

higher access latencies.

5

Given that coherence protocols act only based on rules for how memory is updated across

multiple parties, attackers may exploit the protocol’s low-level behavior. Coherence is a hardware-

managed, micro-architectural feature which is neither influenced by, nor exposed to, the software

executing on the system, rendering software-based defenses ineffective.

1.2.0.2 Hardware Trojans

Hardware Trojans, or Trojans for short, are a hardware-centric threat in which an attacker in-

filtrates some level of the design or fabrication process to insert malicious circuitry into a design.

Trojans can cause disastrous system failures via confidentiality, integrity, and/or availability viola-

tions. Prior work has shown that Trojans can leak data from memory [52], disrupt cryptographic

security features [53], and induce denial-of-service attacks [54]. Trojans can be difficult to detect;

an ongoing area of research is to create hardened systems resilient to Trojan effects.

While the industry moves towards 2.5D designs, specific IPs used in building these systems

may not be trustworthy. Even when considering an IP vendor as trustworthy, the manufacturing

processes involved are open to infiltration and the insertion of Trojans. For chiplet designs, memory

coherence is a crucial design point, as large designs require each component to maintain an up-to-

date view of the system’s memory. Thus, coherence systems are an attractive target for Trojans.

Despite their attractiveness, there has yet to be a deeper exploration of coherence exploits beyond

instigating a system deadlock [54].

In Chapter IV, we explore the threat vectors available to a bad actor attempting to exploit the

cache coherence mechanisms in 2.5D chiplet environments. Furthermore we use the fundamental

attacks available to a hardware Trojan designer as stages within a more complex hardware Trojan

attack capable of modifying memory that the hardware Trojan’s compromised chiplet would not

have access to during execution.

In Chapter V, we propose using the active interposer as the root of trust due to its properties

as the underlying interconnect between chiplets. We assume that the active interposer can be

fabricated at a trusted and controlled facility, not only guarenteeing that the active interposer is

uncompromised but that any security features embedded within it are also uncompromised by

6

a hardware Trojan. Based on this assumption, we propose a security monitoring system which

verifies coherence messages traversing the network on chip against the memory regions chiplets

are permitted to access and verify the integrity of coherence messages.

1.3 Dissertation Statement

In this dissertation, we explore hardware instruction prefetching as a solution to the front-end

bottleneck and characterize its behavior for future software instruction prefetcher designs. We

then identify the threat of hardware Trojans to coherent 2.5D chiplet-based designs and propose

countermeasures against these attacks.

First, we propose a composite prefetching framework to identify state-of-the-art instruction

prefetchers with different, but complementary, prefetching behaviors to combine into a better per-

forming prefetcher. Each subprefetcher present in the composite prefetcher takes an equal portion

of the hardware budget and allows for each prefetcher to operate in a black-box to reduce the de-

sign complexity overhead and permit each prefetcher to cover cache misses that its counterparts

are unable to identify. We then identify that previously proposed software instruction prefetching

solutions do not evaluate their techniques in decoupled environments standard in industry. Our

evaluation shows that the evaluated technique, AsmDB [32], degrades performance in a realistic

front-end model. We perform a characterization of the state the front-end can be in at a given

time and identify the sources of degredation due to the software instruction prefetcher introducing

additional instructions into the instruction stream.

Following this, we recognize that industry is moving towards a disagregated design flow based

on 2.5D integrated designs that source multiple hard IPs as chiplets that are then integrated through

an interposer medium. We identify this design flow as a potential threat vector for bad actors

to insert hardware Trojans that may violate the confidentiality, integrity, and avaialability of the

entire system by targeting the vulnerable cache coherence subsystem. We propose fundamental

coherence-oriented attacks a hardware Trojan may mount and further emphasize this threat by us-

ing the fundamental attacks to build a complex attack capable of accessing and modify memory the

compromised chiplet would otherwise be unable to access. Once we have identified the potential

7

threats hardware Trojans pose to coherence subsystems in 2.5D chiplet environments, we propose

leveraging the active interposers as the root of trust to embed security features to harden and secure

the coherence communication within the system.

1.4 Dissertation Organization

In the following chapters, we demonstrate, evaluate, and characterize our work through a range

of experiments. Chapter II proposes a methodology and analysis to select state-of-the-art instruc-

tion prefetchers with complementary prefetching behavior to compose a composite prefetcher. In

Chapter III we perform a characterization of the software instruction prefetching technique in

ChampSim with a modified front-end representative of an industry-standard frontend. Chapter

IV explores the types of attacks a hardware Trojan can mount in chiplet-based environments if

it compromises and exploits the coherence subsystem, specifically demonstrating the ability of a

hardware Trojan to modify data its compromised device does not normally have access to. Chapter

V addresses the threat of coherence-targeting hardware Trojans by establishing the chiplet sys-

tem’s active interposer as the root of trust to embed security monitors to enforce correct and secure

coherence communications.

8

2. SELECTING AND EVALUATING INSTRUCTION PREFETCHERS WITH

COMPLEMENTARY BEHAVIOR FOR THE DESIGN OF A COMPOSITE

INSTRUCTION PREFETCHER 1

This chapter presents a methodology for combining multiple instruction prefetchers that cap-

ture different instruction stream behaviors into a single composite prefetcher capable of identify-

ing instruction stream behavior better than its subcomponents. We first introduce a background of

modern hardware instruction prefetching and recently proposed instruction prefetchers’ behavior.

We then present the design of a composite prefetcher composed of multiple prefetchers. Following

this, we discuss the methodology for selecting orthogonal subprefetchers capable of complement-

ing one another’s instruction prefetching behavior. The evaluation of a composite prefetcher, and

our selection methodology, compares the performance of the best-performing combinations of

instruction prefetchers to their individual performance to demonstrate that a composite prefetcher

composed of prefetchers outperforms its subcomponents at the same amount of metadata overhead.

2.1 Introduction

Due to their independent implementations, we find that recently proposed instruction prefetch-

ers [19, 20, 21, 22, 23, 24, 25, 26] often behave differently dependent on workload and program

phase, leading to different prefetch suggestions at different times. Thus they vary in terms of time-

liness, coverage, and accuracy. Interestingly, as we reduce the hardware budget of each prefetcher

to make the prefetcher more practical in a production environment, they behave more distinctively

and complementarily. This finding argues for the benefits of leveraging multiple prefetchers in

combination, specifically when implemented in reasonable, buildable hardware budgets.

While prior work has meticulously integrated simple prefetchers to create composite prefetch-

ers for both instruction [55] and data [17, 56], such component-based composite prefetchers do not

1Reprinted with permission from "Composite Instruction Prefetching," G. Chacon, E. Garza, A. Jimborean, A.
Ros, P. V. Gratz, D. A. Jiménez, and S. Mirbagher-Ajorpaz. 2022 IEEE 40th International Conference on Computer
Design (ICCD), Olympic Valley, CA, USA, 2022, pp. 471-478, doi: 10.1109/ICCD56317.2022.00076.

9

allow for interchangeability of components. Each prefetcher must be tuned extensively to ensure

each component captures specific application behaviors. This tuning requires in-depth knowledge

of the prefetching behavior of each component and an idea of how they may complement each

other regarding coverage and precision. These works also require a mechanism to identify whether

recent accesses fit a particular pattern attributed to a specific component, increasing the likelihood

of the prefetcher misidentifying the application’s behavior. By contrast, this work seeks to coor-

dinate and interchange multiple complex instruction prefetchers, allowing for broader coverage to

overcome the timing constraints of traditional composite prefetchers.

Based on the increasing instruction footprint size of modern server workloads and the suc-

cess of individual prefetchers, we propose a new approach to composite prefetching that requires

no knowledge of the component prefetchers and allows for interchangeable components to enable

prefetching design space exploration. Our approach integrates preexisting complex prefetchers as

components within a single composite prefetcher. Each prefetcher design may capture different

instruction streams, and their combined prefetch behavior results in higher coverage and perfor-

mance than an individual prefetcher at an equivalent size. Aside from varying the metadata storage

required by each prefetcher, each component is considered a black box. This approach mitigates

the burden of creating tailor-made components to capture specific application behavior when cre-

ating a composite prefetcher. As a practical design methodology, our approach would enable

industry to easily interchange any desired prefetcher from the academic literature and study them

in combination without spending valuable design time evaluating each component’s advantages or

shortcomings. In summary, our contributions in this chapter are as follows:

• We characterize prior work, a selection of complex instruction prefetchers, to understand

their complementary nature and composability at differing sizes.

• We study the feasibility of combining a set of state-of-the-art hardware prefetchers to better

capture instruction stream behavior.

• We identify a simple hybridization scheme for combining existing prefetchers to leverage

10

their complementary behavior. Our scheme can integrate multiple complex prefetchers with

no prior knowledge of function.

• We perform a full design-space exploration for the set of hardware prefetchers to identify

their best performing combinations at various hardware budgets.

• Using our scheme, we demonstrate that a combination of multiple state-of-the-art prefetchers

can outperform its components at the same hardware budget.

2.2 Background and Motivation

This section provides a background on the component prefetchers we consider for generating

composite prefetchers, and our motivation for exploring composite prefetching as a solution to the

front-end bottleneck.

2.2.1 Modern Instruction Prefetchers

Recently proposed instruction prefetchers speculate on future references using varying under-

lying mechanisms. Due to their differences, they are more or less efficient at predicting future

references for particular workloads and program phases. By combining these existing prefetchers,

we can create a single unified prefetcher better than the sum of its parts. Here we examine several

recently proposed prefetchers and classify them based on function.

Each class of prefetcher operates based on specific principles surrounding an application’s

behavior to predict future instructions. Recently proposed prefetchers can be classified based on

how they train, represent instruction stream behavior, and select prefetch candidates. This is similar

to recent classifications of data prefetchers [57]. Recent work we consider for our composite

prefetchers falls into the following classes of prefetchers:

2.2.1.1 Control-Flow-Graph Recreation

These prefetchers recreate an application’s control-flow graph (CFG). Nodes represent basic

blocks within a graph, with edges representing control-flow (branch) instructions. The prefetcher

uses the address of L1-I accesses to find a starting point to traverse the CFG to find prefetch

11

candidates. Confidence is generally assigned based on observations of the control flow to indicate

the application’s likelihood to take a particular execution path.

Barça: The Branch Agnostic Region Searching Algorithm, or Barça [21], creates a control-

flow graph to map regions of instruction blocks and their relative control flow.

PIPS: Prefetching Instructions with Probabilistic Scouts, or PIPS [26] recreates an applica-

tion’s CFG using a Line-History Table to connect cache lines recently accessed together, tracking

the probability of traversing a particular edge.

2.2.1.2 Temporal Prefetchers

These prefetchers attempt to predict the future instruction stream by identifying accesses that

cause cache misses, recording the following misses, and replaying them when a triggering access

is seen. This style of prefetcher emphasizes timeliness by prefetching misses in an instruction

stream well before the front-end requests them. We classify the following prefetchers as temporal

prefetchers:

EIP: The Entangling Instruction Prefetcher [19, 58] “entangles" instructions together to pro-

vide prefetch timelines, accounting for the prefetch latency to identify the suitable instruction to

trigger the prefetch.

FNL-MMA: FNL-MMA [22] combines a Footprint Next Line Prefetcher (FNL) to predict

the “not so distant" future, while the Multiple Miss Ahead Predictor (MMA) takes advantage of

predictable cache miss sequences.

TAP: The Temporal Ancestry Prefetcher [23] augments a next-line prefetcher with temporal-

based histories leading to a program counter (PC) based on the observation that most cache lines

are not rereferenced once they fill the cache.

MANA: MANA [24] creates spatial regions in a set-associative table, tracking a triggering

address and a footprint to indicate which blocks within a region are accessed. MANA traverses its

table when prefetching, loading a stream address buffer with prefetch candidates.

12

2.2.1.3 Branch-Oriented Prefetchers

Unlike CFG-based prefetchers, these prefetchers do not recreate the CFG but rather use branch-

related information to make predictions about future accesses and cover branch targets. This in-

formation includes the branch-target-buffer, the return-address-stack (RAS), or other branch struc-

tures. We use the following branch-oriented prefetchers in our work:

D-JOLT: D-JOLT [20] consists of multiple simple prefetchers of varying characteristics. It

uses a long-range prefetcher to cover the distant future with higher coverage, a short-range prefetcher

to cover the near future with higher accuracy, and a "fall-back" prefetcher.

JIP: JIP [25] is composed of multiple prefetchers that target specific instruction stream behav-

ior, such as sequential accesses within basic-blocks, branches with a single target, and branches to

multiple targets.

2.2.2 Complementary Prefetchers

While some prefetchers have high performance at lower hardware budgets, they cannot lever-

age more storage to achieve higher performance. Each prefetcher’s performance varies and op-

erates on different principles, which can be broadly classified (Sec. 2.4.2), but their classification

does not predict their performance at various hardware budgets. Figure 2.1 illustrates this by

showing the overlap of unique addresses targeted by each prefetcher at sizes of 10KB and 128KB.

Ideally, complementary prefetchers have lower overlap to facilitate different instruction stream

behaviors. Lower hardware budgets limit the misses each prefetcher learns and targets, resulting

in a low overlap between most prefetchers except for FNL+MMA and JIP, PIPS, and TAP. At

higher storage budgets, the prefetchers are less constrained, capture more misses, and thus con-

verge towards similar behavior. This indicates that at different hardware budgets, a combination of

prefetchers have vastly different prefetching behavior and potentially capture different instruction

streams. However, if prefetch streams are too dissimilar, there is a potential for destructive interfer-

ence between the prefetchers as they could each aggressively prefetch different instruction streams,

resulting in a high amount of thrashing in the already encumbered L1-I. To this end, we propose a

13

composite prefetching framework and methodology for searching for the best-performing combi-

nation of prefetchers at various hardware budgets.

2.2.3 Composite Prefetching

Prior work in composite prefetching has been mainly in the data prefetching domain, with little

work applying it to instruction prefetching. Division of Labor, or DOL [17], attempts to exploit

both simple and complex access patterns using a collaboration of specialized subcomponents for

each pattern. DOL is extendable with additional components as more access patterns are identified.

Note that the hardware designer must identify missing or necessary access patterns, making DOL

limited by the designer’s knowledge.

Bouquet of Instruction Pointers [56] creates a composite L1 data prefetcher that uses a “bou-

quet" of pointers to classify instruction pointers and issue data requests based on the classification.

This technique covers and identifies a handful of memory access patterns that drive prefetches.

The above works focus on data prefetching that relates specific instructions to data they ac-

cess. While instruction prefetching and data prefetching are similar, as they attempt to hide access

latencies, their access patterns and relationships to data diverge. Instruction prefetchers target

instructions themselves, causing control flow to be an important factor. Divide and Conquer Fron-

tend Bottleneck [55] warns against BTB-directed instruction prefetches, presenting the “harmful

effects" of making instruction prefetchers dependent on BTB content. Instead, it proposes dividing

the front-end bottleneck into a sequential prefetcher to cover sequential misses, a discontinuity

prefetcher, and pre-decoding prefetch blocks to reduce BTB misses. This divide-and-conquer

method has the same area overhead as a BTB-directed prefetcher but outperforms it by 5% on

average for their selected workloads.

As seen by the works described above, the concept of combining prefetchers, both in data

and instruction prefetching, is not novel in itself. However, these component prefetchers are non-

interchangeable and tuned for hardware size and prefetch specialty by the designer, requiring in-

depth knowledge of each component. In contrast, our proposition requires no knowledge of the

prefetcher components and allows for previously unexplored component interchangeability.

14

Barca D-JOLT FNL-MMA EIP JIP PIPS TAP Mana
Barca 100.0% 33.5% 34.2% 34.1% 34.2% 34.2% 34.2% 34.2%

D-JOLT 33.5% 100.0% 42.9% 42.4% 42.9% 42.9% 42.8% 42.7%
FNL-MMA 34.2% 42.9% 100.0% 48.6% 69.2% 68.8% 66.8% 51.5%

EIP 34.1% 42.4% 48.6% 100.0% 48.6% 48.6% 48.6% 47.5%
JIP 34.2% 42.9% 69.2% 48.6% 100.0% 74.4% 78.5% 51.6%

PIPS 34.2% 42.9% 68.8% 48.6% 74.4% 100.0% 71.7% 51.6%
TAP 34.2% 42.8% 66.8% 48.6% 78.5% 71.7% 100.0% 51.4%

Mana 34.2% 42.7% 51.5% 47.5% 51.6% 51.6% 51.4% 100.0%

(a) Percent overlap of unique prefetch targets between two prefetchers sized at roughly 10KB each for a
subset of CVP traces.

Barca D-JOLT FNL-MMA EIP JIP PIPS TAP Mana
Barca 100.0% 62.7% 62.7% 62.6% 63.2% 63.2% 63.0% 62.6%

D-JOLT 62.7% 100.0% 66.9% 68.1% 71.0% 70.9% 69.9% 69.1%
FNL-MMA 62.7% 66.9% 100.0% 67.1% 68.8% 68.8% 67.9% 67.4%

EIP 62.6% 68.1% 67.1% 100.0% 71.7% 71.7% 70.3% 70.0%
JIP 63.2% 71.0% 68.8% 71.7% 100.0% 99.6% 77.8% 77.2%

PIPS 63.2% 70.9% 68.8% 71.7% 99.6% 100.0% 77.8% 77.2%
TAP 63.0% 69.9% 67.9% 70.3% 77.8% 77.8% 100.0% 73.3%

Mana 62.6% 69.1% 67.4% 70.0% 77.2% 77.2% 73.3% 100.0%

(b) Percent overlap of unique prefetch targets between two prefetchers sized at roughly 128KB each for a
subset of CVP traces.

Figure 2.1: The overlap between individual prefetchers at the smallest (10KB) and largest (128KB)
hardware budgets. The higher the percentage, the more the two prefetchers overlap.

2.3 Design and Implementation

This section describes our proposed design of a composite prefetcher, consisting of two or

more prefetchers. We begin by describing the hardware framework that enables the integration of

multiple prefetchers. We then discuss how the composite prefetcher generates and issues prefetch

candidates to the L1-I.

2.3.1 Composite Prefetcher Organization

A key design goal of our composite prefetcher is that it should be comparable to a single

prefetcher using the same hardware budget. Thus, we scale down the budget used in the various

prefetchers described in Section 2.2 to use multiple prefetchers with a comparable total budget of

15

Prefetch Queue

Sub-prefetcher
1

Sub-prefetcher
2

Sub-prefetcher
3

Prefetch Buffer 1

Prefetch Buffer 2

Prefetch Buffer 3

Composite Prefetcher

L1 Instruction Cache

Cache Access
and

Cache Fill Metadata

Selection
Mechanism

Branch Access Metadata

Figure 2.2: Overview of the composite prefetcher’s organization.

a single prefetcher. For instance, integrating two 10KB prefetchers will have comparable hardware

overhead as a single 20KB prefetcher. A goal when integrating prefetcher components is for their

individual operation to remain intact. Thus, other than modifying their structures to reduce their

metadata state storage, we make no further changes to any prefetcher component.

In this chapter, we explore integrating mixes of two to four prefetchers. Figure 2.2 illustrates

the hardware framework for prefetchers. Each complex prefetcher component, or subprefetcher,

receives metadata from the L1-I cache regarding cache accesses, misses, and fills. Following the

subprefetchers, a subprefetcher buffer (SPFB) is available to each prefetcher that is the same size

as the L1-I prefetch queue allowing the prefetchers to operate as they would individually without

being affected by each other’s prefetch queue’s bandwidth pressure. Finally, a selection mechanism

is placed at the head of the buffers to select a prefetcher’s buffer based on a selection policy. Beyond

the state required per prefetcher, this buffering and selection mechanism requires 32 entries per

SPFB to hold 56-bit prefetch cache line addresses (assuming 64B cache lines), resulting in a 224B

overhead per subprefetcher. Further discussion on the operation of the composite prefetcher is

provided below in Section 2.3.3.

An essential property of a composite prefetcher organization is that although the subprefetchers

16

are technically not aware of each other when run in tandem, they adapt to each other’s behavior

through the misses that are covered versus uncovered during execution. Since most prefetchers are

trained only on cache misses, once one prefetcher learns to cover a given miss, other subprefetchers

can quickly adapt to disregard the metadata state needed to cover that miss since it is no longer

considered a miss from their perspective. As we will show, this is desirable since this allows

subprefetchers to use their limited storage to focus on the misses not covered by the accompanying

subprefetchers.

2.3.2 L1-I Cache Metadata and Subprefetcher Training

We provide each prefetcher information on cache demand accesses, prefetch hits, branch infor-

mation and results, and the effects of cache fills, such as the filling cache address and the victim

cache line’s address. Each prefetcher is treated as a “black box" with regards to the metadata it re-

ceives and is not tuned to cover specific instruction stream behavior, as opposed to prior composite

prefetcher work [55, 17, 56]. Each subprefetcher trains based on their individual training policy

and may disregard any provided information.

2.3.3 Composite Prefetcher Operation

Each prefetcher generates a set of prefetch candidates on a cache access that it places in the

SPFBs. Each cycle following generation, the prefetch selection mechanism transfers the head of

a particular SPFB into the L1-I cache’s prefetch queue using a round-robin selection mechanism.

We explored other selection mechanisms but found that round-robin was sufficient because much

of the time, only one prefetcher is filling its SPFB while the other SPFBs are empty. If the prefetch

queue is full or there is no available Miss Status Handling Register (MSHR), the selection mech-

anism does not continue to move prefetches into the queue. When generating a new stream of

prefetches, the head of the SPFB is set to the first free buffer entry, and new prefetches fill the

buffer. Newly generated prefetches overwrite the current contents of the SPFB if it is full, remov-

ing stale prefetches from the previous generation that could pollute the L1-I.

17

2.4 Evaluation

This section describes the design space exploration and evaluation of a composite prefetcher.

We begin by describing our simulation environment and evaluation methodology. Next, we eval-

uate composite prefetching schemes composed of two, three, and four subprefetchers and the de-

sign space surrounding subprefetcher selection at different hardware budgets. We then describe the

evaluation of individual subprefetchers’ contribution to performance. Finally, we discuss the best

performing combination of subprefetchers at hardware budgets of 20KB, 30KB, 40KB, 64KB, and

128KB.

2.4.1 Methodology

We perform design-space exploration and evaluation of the composite-prefetcher framework

using the ChampSim simulator [59]. Featuring an aggressive front-end similar to Fetch-Directed

Prefetching [60, 61] and models a Branch Target Buffer (BTB) that includes an indirect BTB and

return address stack. We configure the simulator to reflect recent Intel’s Sunny Cove microarchi-

tecture with the parameters in Table 2.1.

For our evaluation, we employ a subset of the traces from the 1st Championship Value Predic-

tion (CVP-1) [62], provided by Qualcomm Datacenter Technologies and ported to the ChampSim

format. We select CVP traces that show at least one MPKI (miss per kilo-instruction) at the L1-

I and L2C in our baseline configuration and demonstrated high performance potential beyond a

next-line L1-I prefetcher regarding the maximum performance as measured by an Oracle L1-I

prefetcher. The selected CVP traces demonstrate MPKIs ranging from 3 to 48 at the L1-I cache.

All benchmarks maintain low MPKIs in the L1-D, indicating that L1-I miss limits these work-

loads’ performance. As many recent works point to the instruction cache misses becoming more

critical in cloud and server workloads, we chose this subset to represent emerging, high instruction

cache pressure applications. Each benchmark shown is executed for 50M instructions to warm up

the predictors and caches, with another 50M instructions executed to measure performance. De-

spite the short simulation lengths, we emphasize that these traces demonstrate high L1-I miss rates

18

Table 2.1: Simulated Baseline System Configuration

Processor Configuration
Clock Frequency 4GHz

Fetch Queue 64 entries
Decode Queue 32 entries

Dispatch Queue 32 entries
Reorder Buffer 352 entries

Load Queue 128 entries
Store Queue 72 entries
Fetch width 6 instructions

Decode width 6 instructions
Dispatch width 6 instructions

Memory Configurations
L1 I-Cache 32KB, 8 ways, 64 sets, no prefetcher
L1 D-Cache 48KB, 12 ways, 64 sets, next line prefetcher

L2 Cache 512KB, 8 ways, 1024 sets, spp
LLC Cache 2MB, 16 ways, 2048 sets

Table 2.2: Best performing prefetcher combinations for Composite-2 for hardware budgets of
20KB, 30KB, 40KB, 64KB, and 128KB divided evenly between subprefetchers.

Hardware Budget Subprefetcher-1 Subprefetcher-2
20KB Barça FNL+MMA
30KB FNL+MMA MANA
40KB FNL+MMA EIP-ISCA
64KB D-JOLT FNL+MMA
128KB FNL+MMA EIP-ISCA

analogous to the high miss rates seen in modern data center workloads.

2.4.2 Hardware Constraints and Instruction Prefetcher Performance

Existing academic instruction prefetchers have significant coverage when their metadata stor-

age state is unconstrained. However, when implemented with more realistic amounts of storage

than industrial designs expect, they struggle. Figure 2.3 shows the individual performance of the

prefetchers described in Section 2.2.1 as the storage budget for the prefetcher increases. We com-

pare each prefetcher’s performance against a baseline system with no instruction prefetching, an

19

1.251

1.172
1.194

1.217

1.243
1.260

0.98

1.03

1.08

1.13

1.18

1.23

1.28

1.33

0 16 32 48 64 80 96 112 128

IP
C

 Im
pr

ov
em

en
t o

ve
r B

as
el

in
e

Hardware Storage (KB)

Barça
DJOLT
FNL-MMA
EIP-IPC1
EIP-ISCA
JIP
PIPS
TAP
Mana
Composite-2
Oracle L1i

Figure 2.3: Prefetcher performance versus hardware budget, including the best performing com-
bined prefetcher at each hardware budget. At each budget, the composite prefetcher outperforms
not only its subprefetcher components but the best performing single-prefetcher.

SPP [63] data prefetcher in the L2 cache, and a least-recently-used (LRU) replacement policy used

in all cache levels.

We include an Oracle instruction prefetcher that covers all non-compulsory L1-I misses. The

Oracle also fills the unified L2 and L3 caches to mimic the data interference an L1-I prefetch stream

would have. The oracle represents a reasonably tight upper bound on the attainable performance

from instruction prefetching. As Figure 2.3 shows, at the maximum hardware budget evaluated,

EIP comes within 5% of Oracle’s performance. As expected, all prefetchers suffer lower perfor-

mance benefits at lower hardware storage budgets and enjoy increased performance benefits as the

hardware budget increases. Performance tends to fall significantly at hardware budgets of 64KB

and less, and several prefetchers take turns showing the best performance at different points in the

space. In general, we observe three specific trends in Figure 2.3 based on the prefetchers’ perfor-

mance at various hardware budgets: low-budget friendly, budget-sensitive, or budget indifferent.

2.4.2.1 Budget Sensitive Prefetchers

These prefetchers (i.e., EIP, D-JOLT, and TAP) experience heavy performance degradation at

lower hardware budgets, with performance substantially increasing with the hardware budget. In

20

particular, EIP sees ∼20% performance improvement from increasing the hardware budget from

15KB to 128KB. These prefetchers are ideal for high-budget designs but may not be reasonable

for smaller designs.

2.4.2.2 Low-Budget Friendly Prefetchers

These prefetchers experience a drop in performance at lower hardware budgets while still ex-

hibiting high performance gains from increased hardware budgets. Barça, FNL+MMA, JIP, and

PIPS follow this trend, seeing moderate performance benefits at sizes of 10-30KB and scaling

as the hardware budget increases. Though their improvements from increasing hardware budgets

are not as drastic as EIP, these prefetchers provide consistent performance benefits as their design

scales, indicating they are viable options for low-budget and high-budget designs.

2.4.2.3 Budget Indifferent Prefetchers

This trend is observed when prefetchers perform well at lower hardware budgets, but only expe-

rience modest benefits from an increase in hardware budget. MANA follows this trend, being less

affected by a lower hardware budget of 10-15KB. This prefetcher is resilient to lower storage but

does not benefit significantly from an increased hardware budget, seeing only a 5% performance

benefits from an increased budget of 15KB to 128KB, making it better suited for low hardware

budget designs with consistent performance as the prefetcher’s hardware budget scales.

2.4.3 Selecting Composite Prefetcher Subprefetchers

The design space of exploring an N-composite scheme, with the possibility of 8 different

prefetchers filling any one slot within an N-composite scheme, with prefetchers of various hard-

ware budgets to meet an overall hardware budget is exceedingly large. Given 8 possible sub-

prefetchers of various sizes, the design space increases exponentially as the overall hardware bud-

get increases. For our experiments, each subprefetcher’s size is determined by the overall hardware

budget divided evenly between the subprefetchers. For example, a 30KB composite prefetcher may

be composed of two 15KB prefetchers or three 10KB prefetchers. The results of Figure 2.3 direct

the design exploration for the composite design based on a prefetcher’s performance relative to its

21

3.49% 3.60% 3.50% 2.97%

9.54% 9.21% 8.43% 7.63%
10.59% 10.60% 12.41% 14.35%

0.00%

5.00%

10.00%

15.00%

20.00%

20 30 64 128
Hardware Budget (KB)

Barça FNL+MMA Barça and FNL+MMA

Figure 2.4: Miss coverage, in a Composite-2 of Barça & FNL+MMA covered by Barça,
FNL+MMA or both at various hardware budgets

hardware budget.

1.172
1.194

1.217
1.186 1.190

1.00

1.05

1.10

1.15

1.20

1.25

CVP

Pe
rf

or
m

an
ce

 o
ve

r
B

as
el

in
e Composite-2 (20KB)

Composite-2 (30KB)
Composite-2 (40KB)
Composite-3 (30KB)
Composite-4 (40KB)

Figure 2.5: Performance comparison of best composites of 2, 3 and 4 prefetchers for different
metadata storage state.

We perform a design space exploration for each hardware budget to build composite prefetchers

composed of two, three, and four subprefetchers. Our design space exploration combines N of the

8 possible prefetchers and then evaluates the resultant composite prefetcher. Each N-composite

prefetcher has a range of performance results, with the best-performing combination varying based

22

on the hardware budget. Figure 2.5 shows the performance of the best-performing composite of 2,

3, and 4 prefetchers at 20KB, 30KB, and 40KB.

Here, the hardware budget of the composites is divided evenly between each subprefetcher,

i.e. for Composite-2 at 20KB, each subprefetcher has roughly 10KB of state. In the figure, we

see that composites of 2 significantly outperform composites of 3 and composites of 4 prefetchers.

Even the smaller 20KB Composite-2 prefetcher approaches the performance of the Composite-3

and Composite-4 prefetchers within ∼2%. The allocated budget per prefetcher is reduced as the

number of prefetchers increases to keep the overall budget within limits. Thus, the effectiveness

of each prefetcher diminishes. We conclude that composing a high number of prefetchers with

a reasonable budget is not promising. As a result, we focus on Composite-2 prefetchers for the

remainder of this chapter.

Table 2.2 lists the subprefetchers from the best performing composite-2 prefetcher found in our

design space exploration at each storage size. Interestingly, the best performing composite changes

significantly at each hardware budget.

2.4.4 Full Results Comparison

Figure 2.3 shows the results of all prefetchers examined, scaled to different sizes, along with the

best performing Composite-2 prefetcher combination discussed in Section 2.4.3 and listed in Ta-

ble 2.2. In general, the Composite-2 prefetcher outperforms all single prefetchers at every metadata

storage size, often by significant margins. Composite-2’s performance increases as its subprefetch-

ers’ can capture more of the workloads’ behavior but see the highest performance benefits at low

hardware budgets.

Figure 2.4 shows the misses that Barça and FNL+MMA cover individually and the overlap in

their access coverage when combined at varying hardware budgets in a Composite-2 prefetcher. As

Composite-2 is scaled, the coverage overlap between the two prefetchers increases. Interestingly,

for small budgets, each subprefetcher covers a more significant fraction of misses than both cover

together. This result illustrates that at smaller budgets, each prefetcher tends to focus on misses it

is better able to cover, yielding greater metadata storage efficiency than can be achieved by a single

23

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 32 64 96 128

Pe
rc

en
t P

re
fe

tc
h

A
cc

ur
ac

y

Hardware Storage (KB)

Barça
DJOLT
FNL-MMA
EIP-IPC
EIP-ISCA
JIP
PIPS
Mana
Composite2

Figure 2.6: Accuracy vs. Hardware Storage (KB) at each metadata storage point for all prefetchers
and Composite-2.

prefetcher at even double the size.

2.4.5 Subprefetcher Behavior

2.4.5.1 Accuracy and Issued Prefetches

We evaluate the accuracy of a composite-2 prefetcher compared to the potential subprefetcher

components in Figure 2.6. Composite-2’s accuracy depends on its component subprefetchers’

behavior, with its accuracy increasing as the hardware budget increases. Each prefetcher, except

DJOLT, does not train off cache accesses that hit on a prefetched line, resulting in each prefetcher

training on misses not covered by other prefetchers. Maintaining a view of only cache misses

increases the orthogonality between prefetchers’ predictions, as discussed in section 2.4.5.2 while

decreasing overall accuracy.

The round-robin selection mechanism considers each subprefetcher’s prefetch stream. A more

24

55.57% 33.40% 50.61% 55.13% 39.54%

44.43% 66.60% 49.39% 44.87% 60.46%

0%

50%

100%

20 30 40 64 128

Pe
rc

en
t o

f P
re

fe
tc

he
s

Hardware Budget (KB)

Prefetcher-1 Issued Prefetcher-2 Issued
Figure 2.7: Percentage of prefetches issued from each component prefetcher in the best performing
Composite-2 prefetcher at each storage overhead. Generally, one subprefetcher does not tend to
dominate the prefetches Composite-2 produces.

complex selection mechanism can be implemented to prioritize prefetches from a particular sub-

prefetcher. However, the selection mechanism’s impact relies on multiple subprefetchers gen-

erating predictions simultaneously. Our evaluation finds that only one subprefetcher generates

prefetches for 80% of demand cache accesses at any hardware budget, indicating complex selec-

tion mechanisms are unlikely to identify prefetching opportunities that would benefit from priori-

tizing one subprefetcher over another. Figure 2.7 shows the prefetches issued by each subprefetcher

in Composite-2. Overall, no subprefetcher dominates the prefetch contributions, allowing each

subprefetcher to provide complementary prefetch candidates.

2.4.5.2 Measuring Subprefetchers’ Individual Contributions

Miss: A miss occurs for both prefetchers and in the baseline cache. This is generally a small

percentage of accesses (1-2%) for any size of composite-2, indicating that the prefetchers or the

baseline cache without prefetching cover most accesses.

PF1 Hit (PF1): This is the number of misses unique prefetches from subprefetcher-1 cover.

PF2 Hit (PF2): This represents the number of misses covered by subprefetcher-2.

Baseline Hit (Base): A hit occurs only for the baseline, without prefetching, indicating that the

subprefetchers’ behaviors cause a harmful eviction resulting in a cache miss. This scenario occurs

25

0%

5%

10%

15%

20%

25%

20 30 40 64 128

Pe
rc

en
t A

cc
es

s C
ov

er
ed

Hardware Budget (KB)

Miss PF1 PF2 Base PF1-PF2 PF1-Base PF2-Base

Figure 2.8: Coverage breakdown for Composite-2 prefetchers.

≤1% for all hardware budgets.

PF1 and PF2 Hit (PF1-PF2): A hit occurs for both subprefetchers, showing an overlap be-

tween the prefetches selected by the subprefetchers.

PF1 and Baseline Hit (PF1-Base): A hit occurs for both the baseline and subprefetcher-1,

meaning that subprefetcher-2 caused a harmful eviction otherwise covered in the baseline.

PF2 and Baseline Hit (PF2-Base): A hit occurs for subprefetcher-2 and the baseline, indicat-

ing subprefetcher-1 caused a harmful eviction.

PF1, PF2 and Baseline Hit: A hit occurs for all three indicating the prefetchers are retaining

useful cache lines that hit in the baseline system. This is the most common occurrence for more

than 70% of accesses. These are not included in Figure 2.8 to improve the visibility of the other

scenarios.

We find that the highest occurring scenario is a hit for the baseline and both subprefetchers. We

expect this behavior as the prefetchers try to cover misses with high accuracy to avoid thrashing

the L1-I cache. This observation is supported by the low number of misses between the sub-

prefetchers and baseline and the low number of unique baseline hits, indicating that the prefetchers

26

avoid harmful evictions. The number of unique hits for each subprefetcher varies at different sizes

because each size contains a different subset of prefetchers. Interestingly, subprefetchers that in-

dividually perform better than their partnered subprefetcher (i.e., FNL+MMA vs. D-JOLT) have

a higher number of unique hits than the other subprefetcher. As a subprefetcher’s size increases

to 64KB (128KB of total state), the number of unique hits is lower since each subprefetcher has

enough storage to capture an application’s behavior resulting in a higher number of overlapped hits

between subprefetchers.

2.5 Related Work

Instruction prefetching has been heavily studied in recent years. This section breaks down

prior work in instruction prefetching into hardware and software techniques. We then examine

prior works in composite prefetching.

2.5.1 Hardware Instruction Prefetching

ConïňĆuence [64] leverages a single stream-based prefetcher, i.e., SHIFT [65], to reduce

misses in the L1-I cache and BTB. Confluence mainly overcomes the challenge that block-grain

history presented in prior stream-based prefetchers [66, 65] is not suitable for filling the BTB. It

synchronizes insertions and evictions from AirBTB—a block-based BTB that reflects instruction-

grain information of individual branches with the L1-I. Confluence provides good speedup, but

it requires prohibitively large hardware storage of a 10.2KB AirBTB backed by a 240KB SHIFT

prefetcher, more than doubling the size of the L1-I and BTB. It also requires complex software

support to maintain metadata in the last-level cache tags.

Boomerang [67] identifies BTB misses using a branch-predictor-directed prefetcher that ex-

tracts the branch target from prefetched cache blocks. Boomerang can match the performance

of Confluence; however, by using the existing BTB and branch direction predictor, Boomerang

reduces the prefetcher overhead to nearly zero. Unfortunately, Boomerang is ineffective on work-

loads with frequent BTB misses. The critical limitation of Boomerang is that a limited-capacity

BTB cannot track a sufficiently large control flow working set to ensure efficient instruction

27

prefetching.

Shotgun [9] is a combined BTB-directed instruction cache and BTB prefetcher. It divides

the BTB into dedicated BTBs for capturing global and local control flow, U-BTB and C-BTB,

respectively. Shotgun leverages the BTB fill mechanism of Confluence to fill the BTB before the

entries are accessed resolves BTB misses using the reactive BTB fill method of Boomerang. This

method fetches the associated cache block from the memory hierarchy and extracts the necessary

branch metadata. Shotgun improves BTB misses over Boomerang by up to 14%.

2.5.2 Software Instruction Prefetching

Record-and-Replay (RnR) [68] is a software-assisted hardware pre-fetcher that stores sequences

of memory offsets based on information provided by programmer-inserted software hints. This

information includes which data structures have irregular memory accesses, when to start the

recording, and when to start replaying (prefetching) instruction streams. RnR can achieve over

95% prefetching accuracy and miss coverage. However, this scheme requires the programmer to

annotate when to start/stop recording instructions to be replayed later and may be difficult to apply

in applications with a large code base.

AsmDB [69] is a profile-guided software prefetching technique to identify high-impact misses

not covered by a next-two-line pre-fetcher. The analysis selects insertion candidates based on their

ranked impact on the system. A high-impact miss then has a instruction prefetch inserted before

an instruction based on the likelihood that the instruction is located on an execution path that

reaches the targeted miss. The insertion step avoids injecting instructions at areas where control

flow heavily varies.

I-SPY [70] also relies on profile-guided analysis and uses AsmDB at link-time to determine

frequently missing blocks. The authors propose conditional software prefetching and implement

prefetch coalescing. To perform conditional prefetching, I-SPY calculates the conditional proba-

bility of each execution path within a control-flow graph leading to a miss in a block. It relies on

the presence of blocks to identify the context instead of relying on the order of blocks. To perform

coalescing, I-SPY analyzes all prefetch instructions injected into a basic block, and groups them

28

by context that they are conditioned on. It then attempts to merge multiple prefetch instructions

into a single prefetch instruction. I-SPY injects an AsmDB instruction prefetch if it is unable to

provide a conditional or coalesced prefetch

2.5.3 Composite Prefetching

Few composite prefetchers exist in the prior work, mainly in the data prefetching domain.

Division of Labor, or DOL [17], attempts to exploit both simple and complex access patterns

using a collaboration of specialized subcomponents for each pattern. This composite prefetcher

is extendable with additional components as more access patterns are identified. Note that the

hardware designer must identify the access patterns missing or necessary, making Division of

Labor limited by the designer’s knowledge.

Bouquet of Instruction Pointers [56], also creates a composite L1 data prefetcher. Bouquet of

Instruction Pointers uses just that, a “bouquet" of pointers to classify instruction pointers and issue

data fetch requests based on the classification. This technique covers and identifies a handful of

memory access patterns that drive prefetches.

While instruction prefetching and data prefetching are similar in that they attempt to hide la-

tencies induced by the Memory Wall [71], their access patterns and relationships to data diverge.

The above works focus on data prefetching that relates certain instructions to data they access. In

instruction prefetching, we are prefetching more instructions themselves, causing control flow to

become a new important factor.

A final work, Divide and Conquer Frontend Bottleneck [55], warns against BTB-directed in-

struction prefetches. It presents the “harmful effects" of making instruction prefetchers dependent

on BTB content. Instead, it proposes dividing the front-end bottleneck as follows: a sequential

prefetcher to cover sequential misses, a discontinuity prefetcher, and pre-decoding prefetch blocks

to reduce BTB misses. This divide-and-conquer method has the same area overhead of a BTB-

directed prefetcher but outperforms it by 5% on average for their selected workloads.

As seen by the works described above, combining prefetchers, both in data and instruction

prefetching, is not novel. However, these component prefetchers are non-interchangeable and

29

tuned for hardware size and prefetch specialty by the programmer, requiring in-depth knowledge

of each component and how to make them work together. On the other hand, our proposition

requires no knowledge of the prefetcher components and allows for previously unexplored com-

ponent interchangeability.

2.6 Summary

Instruction prefetchers’ performances are limited by hardware overhead constraints but do not

gain increased performance with larger hardware budgets. Composite prefetching allows for higher

performance at lower hardware budgets by combining the coverage of different complex prefetch-

ers but is challenging to design effectively without making components targeting specific behav-

iors. We demonstrate a framework for selecting and integrating state-of-the-art complex prefetch-

ers to find the best performing combination at various hardware budgets in a “plug-and-play"

fashion that lightens the burden of tailor-making components for specific behaviors.

Our framework provides the basis for future work designing composite hardware prefetchers

using heterogeneously sized components. A potential optimization is to share metadata storage be-

tween prefetchers and dynamically allocate storage to prefetchers that excel in predicting specific

program phases. While not explored in this chapter, our framework provides the basis for future

work designing composite hardware prefetching mechanisms using heterogeneously sized compo-

nents. A potential optimization is to allow metadata storage to be shared between prefetchers and

dynamically allocated to prefetchers that excel in predicting specific program phases.

Future work in composite prefetching may also explore selecting subprefetchers on the fly

based on an application’s specific characteristics. Software analysis of an application can pro-

vide hints to the hardware on the most appropriate subprefetchers for specific hardware, such as

accelerators.

30

3. PERFORMANCE EFFECTS OF SOFTWARE INSTRUCTION PREFETCHING IN THE

PRESENCE OF AN AGGRESSIVE FRONT-END

This chapter analyzes an industry-standard implementation of a decoupled front-end to iden-

tify its potential state. Furthermore, we identify how introducing new instructions by a software

instruction prefetcher can degrade performance in these industry-standard decoupled environments

as opposed to a more conservative model with which previous software instruction prefetchers have

evaluated their techniques. We begin this chapter by introducing decoupled front-ends and modern

software instruction prefetching techniques designed to alleviate the front-end bottleneck. We then

characterize front-end behavior based on the state of the entries with the structures intended to

increase the front-end’s behavior and how these states affect performance. Following this charac-

terization, we evaluate a modern software instruction prefetching technique and identify how the

additional instructions inserted into the instruction stream adversely affect the front-end’s perfor-

mance.

3.1 Introduction

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

pu
bl

ic
_s

rv
_6

0
se

cr
et

_c
ry

pt
o5

2
se

cr
et

_c
ry

pt
o8

0
se

cr
et

_c
ry

pt
o9

0
se

cr
et

_i
nt

_1
24

se
cr

et
_i

nt
_1

55
se

cr
et

_i
nt

_2
90

se
cr

et
_i

nt
_3

27
se

cr
et

_i
nt

_4
4

se
cr

et
_i

nt
_6

24
se

cr
et

_i
nt

_6
78

se
cr

et
_i

nt
_7

06
se

cr
et

_i
nt

_8
3

se
cr

et
_i

nt
_8

6
se

cr
et

_i
nt

_9
48

se
cr

et
_i

nt
_9

65
se

cr
et

_s
rv

12
se

cr
et

_s
rv

12
8

se
cr

et
_s

rv
19

4
se

cr
et

_s
rv

20
7

se
cr

et
_s

rv
21

se
cr

et
_s

rv
22

2
se

cr
et

_s
rv

22
5

se
cr

et
_s

rv
25

5
se

cr
et

_s
rv

25
9

se
cr

et
_s

rv
32

se
cr

et
_s

rv
40

8
se

cr
et

_s
rv

41
se

cr
et

_s
rv

42
6

se
cr

et
_s

rv
44

2
se

cr
et

_s
rv

48
se

cr
et

_s
rv

49
5

se
cr

et
_s

rv
50

4
se

cr
et

_s
rv

53
7

se
cr

et
_s

rv
54

0
se

cr
et

_s
rv

58
2

se
cr

et
_s

rv
61

se
cr

et
_s

rv
61

7
se

cr
et

_s
rv

64
1

se
cr

et
_s

rv
66

9
se

cr
et

_s
rv

70
2

se
cr

et
_s

rv
72

7
se

cr
et

_s
rv

73
se

cr
et

_s
rv

74
2

se
cr

et
_s

rv
75

7
se

cr
et

_s
rv

76
4

se
cr

et
_s

rv
77

1
se

cr
et

_s
rv

85
A

ve
ra

ge

Performance over a Conservative Front-end with a 2-Entry FTQ

AsmDB AsmDB - No Insertion Overhead FDP (24-Entry FTQ) AsmDB+FDP AsmDB+FDP - No Insertion Overhead

Figure 3.1: Comparison of front-end performance of AsmDB, an industry-standard FDP imple-
mentation, and EIP with an industry-standard FDP implementation over a conservative front-end
2-entry FTQ.

31

Figure 3.1 shows the performance improvement of AsmDB’s Instructions-per-Cycle (IPC) in a

conservative fetch environment compared to the IPC of a conservative front-end with no prefetch-

ing. Here, we implement AsmDB to profile and insert prefetches into a trace for a trace-based

simulator and evaluate its performance over a conservative front-end implementing FDP with a 2-

entry FTQ. We do not include the additional instructions AsmDB inserts when calculating its IPC.

In the figure, we evaluate 48 workloads from the 1st Value Prediction Championship (CVP1) us-

ing ChampSim to explore the benefit of implementing AsmDB alongside an industry-standard[2]

front-end. In a conservative front-end, similar to that used in the original evaluation of AsmDB,

we find that AsmDB improves performance by roughly 20% geomean. The figure also shows the

impact of increasing the depth of the FTQ to 24 entries (192, 32-bit instructions) to represent mod-

ern front-end designs more accurately. We find that FDP improves ∼41% over the conservative

2-entry FTQ implementation and outperforms AsmDB on a conservative front-end by ∼20%. Im-

plementing AsmDB with a larger FTQ does not yield significant performance benefits on average

and degrades performance in some cases. This result is counterintuitive, as AsmDB should capture

performance benefits that FDP cannot cover ahead of its demand fetch. The figure also shows the

impact of removing the additional instructions AsmDB inserts into the simulator’s trace, allowing it

to prefetch instructions at no cost. In this case, we find that AsmDB and an industry-standard FDP

improve performance to ∼49% over the conservative baseline (∼9% over an aggressive FDP). The

conservative FDP combined with AsmDB also benefits from removing software prefetch instruc-

tions’ overhead, but the industry-standard FDP sees no benefit unless the overhead is removed.

This result raises the question: why does FDP have such a substantial impact on the benefit of

software instruction prefetching?

Here, we deeply examine the front-end’s behavior in conservative and industry-standard, ag-

gressive FDP scenarios to understand how to implement better software prefetching mechanisms

in future machines. Specifically, we identify three different scenarios the front-end may be expe-

riencing and how introducing software prefetches can negatively impact front-end performance by

increasing the occurrence of specific scenarios. We then discuss potential optimizations to soft-

32

Return
Address Stack

Branch Target
Buffer

Indirect
Predictor

Br Direction
Predictor

Branch Predictor Instr. Fetch

Instr. TLB

I-Cache

Fetch Target Queue (FTQ)
BTB-Miss
Predicted
Taken Br?

Instr.
Decode

Branch
Execution

Post-Fetch Correction

Resolved Branch Target

Prediction Info

Predicted
Branch
Target

Figure 3.2: Overview of FDP implementation and optimizations from Ishii et al. [1].

ware prefetching that can reduce the overhead of inserting software prefetches and direct future

design efforts.

3.1.1 Contributions

In this chapter, we characterize the side-effects of decoupled front-ends in software instruction

prefetching. We evaluate state-of-the-art software prefetching techniques in a simulation environ-

ment reflecting a realistic decoupled front-end and explore potential solutions.

• We provide an in-depth characterization of front-end stalling behavior in a conservative vs.

an industry-standard front-end.

• Evaluation of a state-of-the-art software instruction prefetcher in an industry-standard fron-

tend.

• Discussion of future areas of research to address the growing front-end bottleneck.

33

3.2 Background and Motivation

This chapter characterizes decoupled front-ends’ side effects in prefetching software instruc-

tion. We evaluate state-of-the-art software prefetching techniques in a simulation environment

reflecting a realistic decoupled front-end and explore potential solutions.

3.2.1 Decoupled Front-Ends

Reinmann et al. [27] originally proposed FDP to reduce the dependence of the front-end’s fetch

mechanism on the downstream execution core’s branch resolution mechanism. The large size of

modern branch target buffers (BTB) and high branch predictor accuracy allow FDP to decouple

these branch prediction structures from a core’s instruction fetch logic. The decoupling discussed

in this design refers to the front-end’s isolation from downstream execution elements. The fetch

unit is permitted to run independently of execution, though execution will correct the fetch unit

on a misprediction. By decoupling these structures, the fetch elements can aggressively run ahead

and populate the Fetch Target Queue (FTQ) with speculative instructions, as shown in Figure 3.2.

The FTQ is a dedicated buffer containing information about speculative fetches directed by the

branch prediction structures on a 32B granularity or eight instructions. Each entry in the FTQ

represents a basic block allowing one entry to represent eight instructions to capture varying sizes

of basic blocks. FDP fetches the cache line addresses in the FTQ representing the start of a basic

block and fills the L1-I before the demand request, regardless of their position in the FTQ. This

allows fetches to the L1-I to occur out-of-order, but instructions must move to the decoder in-order

to preserve the instructions’ ordering. Entries in the FTQ pointing to the same basic block only

require a single request to the L1-I, with larger FTQs allowing more aliasing and reducing requests

to the cache. As entries become available in the FTQ, the BTB and branch predictors generate new

fetch addresses to populate the FTQ.

Figure 3.2 illustrates the branch structures FDP relies on the Return Address Stack (RAS),

indirect branch predictor, BTB, and branch direction predictor collectively speculate on future in-

structions. The branch predictors must continuously feed the FTQ with new instruction addresses,

34

also called program counters (PCs), to leverage the benefits of a decoupled front-end fully. These

predictors rely on previously seen branch behavior to determine the future behavior of a particular

branch. In particular, these predictors maintain a Global History Register (GHR) to track the pre-

dicted outcomes of each branch. An imprecise GHR can heavily affect the predictors’ ability to

speculate on future instructions.

We focus our study on a recent FDP-based design that introduces two optimizations to FDP

to improve performance and address the challenges of an industry-standards FDP [1, 2]. The

first optimization minimizes the noise by running ahead by preventing the GHR from holding the

history regarding not-taken branches that miss in the BTB since they do not appear as branches but

rather as sequential instruction accesses. Limiting the history of taken branches, the GHR may be

updated when the BTB is updated with the new branch information. The GHR can then be flushed

and updated to accurately represent the branch history.

The second optimization extends previously proposed Post-Fetch Correction (PFC) [72] to

allow the information leading to incorrect fetches to be corrected once the branch has resolved.

All branch instructions and targets are identified once instructions are pre-decoded after fetch. The

branch results are compared to the information stored in the GHR, checking if unconditional and

conditional branch outcomes were correctly predicted. If not, the FTQ is flushed, the GHR is

corrected, and prefetching continues.

3.2.2 AsmDB: Modern Software Instruction Prefetching

Software prefetching has recently resurfaced as a potential technique to alleviate the front-end

bottleneck [32, 73]. In general, software instruction prefetching techniques follow the general

steps of (1) execute and gather information, (2) generate a profile, (3) modify the target binary, (4)

rerun binary with software instruction prefetching.

Collecting statistics about different basic blocks’ behaviors allows profiling techniques to gen-

erate a control flow graph (CFG) of an application’s execution. The software profile recreates

the CFG to identify instruction behavior that impacts performance. This chapter focuses on a

contemporary state-of-the-art software prefetching technique, Assembly-Database (AsmDB) [32].

35

AsmDB targets warehouse-scale applications, which prior work has shown to suffer from the

front-end bottleneck problem, with front-end stalls accounting for 15-30% of pipeline stalls [8].

AsmDB profiles the target application to examine the program’s control-flow behavior and the

program’s high-impact misses, traverses the CFG and selects insertion sites for the software in-

struction prefetches based on the likelihood of a particular path leading to the target miss, and

reassembles the program with software instruction prefetches at the selected insertion sites. Below

we discuss the details of AsmDB’s criteria for targeting particular instructions and selecting the

most appropriate insertion site for a software prefetch.

Window Distance

Miss

A

B
C

Figure 3.3: An example of the CFG generated by AsmDB’s software analysis to select locations
to insert software instruction prefetches.

3.2.2.1 Selecting High-Impact Instructions

AsmDB’s profiling stage gathers information about an application’s instruction stream behav-

ior using the Intel processors’ Last-Branch-Record (LBR) hardware. The collected data allows

AsmDB to track instructions with high L1-I miss rates and their location within the CFG, repre-

senting basic blocks as nodes and branches as edges.

Once AsmDB establishes the CFG, it generates an ordered list of potential prefetch targets

by ranking the instructions based on their misses. The highest-ranked instruction candidates are

36

selected for prefetch insertion. AsmDB prioritizes instructions with high miss rates, assuming

these instructions contribute the most to stalling the front-end.

3.2.2.2 Inserting Software Instruction Prefetches

Once the software analysis selects the highest-impact misses to target for software prefetches,

AsmDB traverses the CFG backward from the target miss, identifying paths leading to the target.

AsmDB requires that the insertion site is beyond a minimum distance away from the miss to

ensure that the prefetches are filled in advance of the demand. AsmDB approximates the distance

by multiplying an application’s Instructions Per Cycle (IPC) by the LLC’s access latency. The

distance is the worst-case fetch latency of each instruction, giving AsmDB a notion of the minimum

instructions ahead of a miss to insert the prefetch to cover its fetch latency successfully. The

maximum number of instructions away from a miss a prefetch can be inserted is called the window.

Figure 3.3 is an example of the CFG analysis. In this example, the node C is not the minimum

distance away and not a suitable insertion location. Nodes A and B are within the window and the

minimum distance, so AsmDB considers them for insertion sites to the miss.

As AsmDB considers an insertion site, it considers what fraction of the succeeding paths in-

clude the target instruction within the window, called the fanout. Fanout directs the aggressiveness

of the prefetch insertion since higher fanout insertion sites are less likely to lead to the target miss.

Increasing AsmDB’s fanout decreases its accuracy but results in higher miss coverage.

3.2.2.3 AsmDB and Industry-Standard Decoupled Front-Ends

Applying software instruction prefetching requires the application to execute at least once to

generate a profile of its instruction stream behavior. Gathering basic block information over mul-

tiple runs can improve an application’s profile. Regardless of the CFG model’s accuracy, software

instruction prefetching cannot receive feedback about its predictions during execution. Modern

machines, especially in the context of servers, use an out-of-order processor paradigm which re-

sults in nondeterministic behavior between different executions of the same application.

Software instruction prefetching and FDP have each been proposed to maximize front-end

37

bandwidth. FDP has seen widespread deployment in modern processors [2]. Figure 3.1 shows

that a deep FTQ gives a strong performance benefit. Critically, however, prior work in software

instruction prefetching did not evaluate their proposal in the context of decoupled front-ends due

to limitations in the evaluation infrastructure [74]. While AsmDB shows a significant perfor-

mance improvement when executed on a conservative, 2-entry FDP implementation, combining

AsmDB and an industry-standard FDP sees no benefit and causes performance degradation in

some workloads. By removing the overhead of inserting instructions into the front-end instruction

stream, we find that AsmDB provides further performance benefits over the industry-standard FDP.

This observation indicates that software instruction prefetching interacts poorly with an industry-

standard FDP and that the overhead of additional prefetch instructions removes any benefit that the

prefetches themselves would gain.

3.3 Characterizing Front-End Behavior

The front-end acts as the forward engine of modern processors attempting to fetch, decode, and

issue instructions at a high throughput to drive execution continuously. As described in Sec. 3.2.1, a

modern decoupled front-end generally has a form of FDP. We find that interacting with an industry-

standard FDP nullifies software instruction prefetching’s benefit.

This section investigates the interaction between the FDP state and the overhead of additional

prefetch instructions in an application. We provide a taxonomy of three possible front-end states,

the causes of each state, and its potential performance penalty. Specifically, we look at the po-

tential outcome if particular FTQ entries stall in a conservative FDP with a 2-entry FTQ and an

industry-standard FDP with a 24-entry FTQ. We discuss these scenarios in the context of software

instruction prefetching and its influence on the FTQ’s state and performance.

3.3.1 Scenario 1: Shoot Through

Scenario 1 is the ideal FTQ state, where every FTQ entry has completed its fetch, and all

instructions are available for decoding. The front-end bottleneck is nonexistent here, and the fetch

bandwidth depends only on the decode stage’s available bandwidth. In the conservative FDP,

38

Fetch Target Queue (FTQ)

Instr.
Fetch

Decode

(a) Scenario 1 in a conservative pipeline.

Fetch Target Queue (FTQ)

Instr.
Fetch

Decode

(b) Scenario 1 in an industry-standard pipeline.

Figure 3.4: Scenario 1 for conservative and industry-standard FDP implementations.

shown in Figure 3.4a, both FTQ entries are ready for decoding. The low number of FTQ entries

limits this scenario’s benefit. Figure 3.4b illustrates Scenario 1 for the industry-standard FDP

implementation in which each FTQ entry has completed its fetch and is available for decoding,

limited only by the decode stage’s bandwidth.

In this scenario, the instruction prefetcher ideally fills the FTQ, prefetching all entries in the

FTQ before they can incur stalls. If this scenario is common, it may motivate prefetch designs to

have higher coverage without consideration for the cost of redundant prefetches as they attempt to

cover as many upcoming instructions as possible.

3.3.2 Scenario 2: Stalling Head Instruction

In the next state, the head FTQ entry is waiting for its cache line to be fetched while the

succeeding entries have completed fetch. FDP can issue FTQ entries to the L1-I in any order, but

the instructions in the FTQ must be sent to the decoder in program order. For a conservative FDP

implementation, shown in Figure 3.5a, a single fetched FTQ entry must stall until the head has

39

Fetch Target Queue (FTQ)

Instr.
Fetch

Decode

(a) Scenario 2 in a conservative pipeline. A single FTQ entry stalls the head (orange) of the FTQ while the
following instruction (green) is ready to be sent to decode.

Instr.
Fetch

Fetch Target Queue (FTQ)

Decode

(b) Scenario 2 in an industry-standrard pipeline, where the head instruction is still waiting for fetch to
complete, resulting in potentially 23 FTQ entries to stall as a result.

Figure 3.5: Scenario 2 for conservative and industry-standard FDP implementations.

received its cache line. In the industry-standard FDP implementation shown in Figure 3.5b, the

head instruction causes up to 23 other FTQ entries to stall after completing their fetch, limiting the

achievable fetch throughput. This scenario is the most commonly thought-of manifestation of the

front-end bottleneck. The performance penalty depends directly on how long it takes for the head

instruction to complete its fetch: a low-latency stall has a lower penalty than a request that misses

the last-level cache. Despite this bottleneck, FTQ allows entries with a fetch latency lower than the

head entry to be fetched before moving to the head of the FTQ.

As discussed in Sec. 3.2.1, an entry in an FTQ design represents a basic block of up to eight

instructions. The decoder’s bandwidth may outpace fetch if multiple small basic blocks occupy

the queue. Furthermore, FDP may stall to wait for a branch misprediction or BTB miss to resolve,

allowing FTQ to issue its contents to the decoder before fetch resumes. As a result, a fetch entry

can occupy the head entry for the entirety of its fetch latency, potentially causing a significant loss

40

Fetch Target Queue (FTQ)

Instr.
Fetch

Decode

Fetch Target Queue (FTQ)

Instr.
Fetch

Decode

Fetch Target Queue (FTQ)

Instr.
Fetch

Decode

(a) Scenario 3 in a conservative pipeline.

Fetch Target Queue (FTQ)

Instr.
Fetch

Decode

Fetch Target Queue (FTQ)

Instr.
Fetch

Decode

Fetch Target Queue (FTQ)

Instr.
Fetch

Decode

(b) Scenario 3 in an industry-standard pipeline.

Figure 3.6: Scenario 3 for conservative and industry-standard FDP implementations.

in potential performance due to halted throughput.

An ideal prefetcher would identify the head entry as the source of the performance bottleneck

and prefetch it as early as possible, converting Scenario 2 into Scenario 1. Since previously pro-

posed software instruction prefetchers operate by targeting instructions with high miss rates, they

do not target these bottleneck-critical instructions unless they have a high miss rate. Software

instruction prefetching introduces new instructions into the instruction stream, possibly incurring

additional misses, leading to this scenario more frequently.

3.3.3 Scenario 3: Shadow Stalls

A more complex version of the previous scenario occurs when multiple stalling entries follow

a stalling head entry, and the head’s fetch latency does not entirely cover the latency of subsequent

entries. In the conservative, 2-entry FDP in Figure 3.6a, both entries wait for fetch to complete.

The head entry has a shorter fetch latency than the following entry. When it completes its fetch, it

promotes to decode. The following entry moves to the head, and the FTQ continues stalling. The

performance penalty in the conservative FDP depends on the difference in instruction latencies,

possibly stalling the following instruction cache line inserted into the FTQ.

This scenario is more complex in the context of a deeper FTQ, with an example shown in

41

Figure 3.6b. The head entry hides only part of the subsequent entries’ latency. When it completes,

multiple completed entries in the FTQ can promote to decode, up to an uncompleted entry whose

latency was not covered by the head entry. This scenario’s performance penalty varies based on the

amount of throughput recovered by entries with fetch latencies covered by the head entry’s latency.

A prefetcher can mitigate this scenario by prefetching all instructions in the FTQ ahead of

their transition to the head of the FTQ. The impact of the two stalling entries varies based on

their fetch latency and can change during execution, making it difficult for a prefetcher to identify

this behavior in a steady state. A software instruction prefetcher may identify both instructions

due to their high miss rates. However, the inserted instructions may themselves stall, which is

not a solution to this scenario, and they may also change the spacing between stalling entries,

complicating how the latencies are hidden.

3.3.4 FTQ State and Software Instruction Prefetches

Ideally, the FTQ would always be in Scenario 1, where entries are always available to move to

the decode stage. Prefetching attempts to reduce the incidence of Scenarios 2 and 3 by prefetching

entries that would stall at the FTQ’s head.

In conservative front-ends, the number of entries structurally limits the FTQ’s throughput. Mit-

igating any stall cycles at the head of the FTQ results in increased performance. Introducing new

instructions into the instruction stream can, at most, stall both FTQ entries and has a low perfor-

mance penalty as it covers stalls that will occur later in the program.

In contrast, a deep, industry-standard FDP is much more affected by inserting additional in-

structions, increasing the chances for Scenarios 2 and 3. Due to the larger number of entries, it is

unlikely that a software instruction prefetching scheme can amortize the overhead of the inserted

instructions by covering other stalls. Furthermore, by introducing new instructions, the applica-

tion’s miss profile and the impact of particular misses can change drastically.

42

3.4 Methodology

We evaluate prior hardware and instruction prefetchers using ChampSim [59]. ChampSim is

a trace-based simulator commonly used to evaluate prefetching techniques. We use a modified

version of ChampSim implementing the decoupled front-end described in [2], modeling FDP. Our

system configuration, shown in Table 3.1, is similar to a modern Sunny Cove core. We evaluate the

front-end’s behavior using a subset of the traces used in the First Value Prediction Championship

(CVP1), converted into the ChampSim trace format. We evaluate 47 traces that reflect large in-

struction working sets and provide high instruction pressure. The selected traces see an average of

25.5 L1-I misses per thousand instructions (MPKI). The traces reviewed here represent a range of

instruction footprint sizes resulting in MPKI’s ranging from ∼2 to ∼28 MPKI. We simulate 100

million instructions for each workload for profiling, analysis, and evaluation.

A real-world system would perform profiling and analysis to insert software instruction prefetches

into a target binary. However, we require specific hardware and software instruction prefetch for-

matting to allow the hardware to train and prefetch instructions. We implement previously pro-

posed software instruction prefetchers following the general workflow of prior work. First, we

generate instruction traces from ChampSim containing the behavioral information of basic blocks,

including how long they stall the front-end and when a miss occurs at the L1-I. We then use the

instruction trace to recreate the application’s control flow graph. AsmDB traverses the control

flow graph and inserts prefetches at the end of basic blocks that lead to the high-impact instruc-

tions. AsmDB generates a new ChampSim trace, shifting each instruction’s address appropriately

to simulate the front-end and L1-I pressure induced by inserting prefetch instructions into an ap-

plication’s binary.

Additionally, we modify ChampSim to recognize software instruction prefetches. The prefetch

instructions are treated as any other instruction request, inserted into the decoupled frontend’s

FTQ, and then fetched from the L1-I cache. Once fetched, we assume a predecoder identifies the

prefetch instruction and triggers a prefetch for the target instruction.

We also evaluate AsmDB’s idealized performance benefit by ignoring any overhead from the

43

software instruction prefetches. Each prefetch is issued on a triggering PC, but the prefetch in-

struction is not inserted into the front-end. The performance of AsmDB with no insertion overhead

provides the benefits of prefetching without the cost of interacting with FDP in the front-end.

Block Configuration

Out-of-Order
Core

4 GHz
352-entry ROB

128-entry Unified Reservation Station
Fetch Width 6-wide Fetch, 24-entry/2-entry Fetch Target Queue
Decode Width 6-wide Decode, 60-entry Decode Queue
L1 BTB 128-entry, 2-way, 1-cycle latency
L2 BTB 8192-entry, 4-way, 2-cycle latency
Branch
Direction
Predictor

TAGE-SC, 8-table, 1024-entry/table

Indirect
Predictor

ITTAGE, 8-table, 512-entry/table

Return Address
Stack

32-entry

Branch
Predictor
Bandwidth

Up to 12-instructions or 1-taken per cycle

Private L1
DCache

48 KB, 12-way, 5 cycles
16 MSHRs, LRU, Next-Line prefetcher

Private L1
ICache

32 KB, 8-way, 4 cycles
16 MSHRs, LRU

Private L2
Cache

512 KB, 8-way, 10 cycles
32 MSHRs, LRU, Non-inclusive, SPP [75]

Shared
LLC

2MB/core, 16-way, 20 cycles
32 MSHRs, LRU, Non-inclusive

DRAM
4 GB 1-Channel (single-core)
8 GB 2-Channels (multi-core)

64-bit channel, 1600MT/s

Table 3.1: Simulation parameters based on previous work [1, 2] evaluating the efficacy of hardware
prefetchers in a decoupled front-end environment.

3.5 Front-End Analysis

The performance of any front-end system is proportional to the number of instructions fetched

per cycle and inversely proportional to the number of stall cycles. In this section, we evaluate

the performance of our design by distilling this figure into the percentage increase in number of

instructions, called code bloat, and the average number of stall cycles per instruction. Each of

these figures should be as low as possible, since they both represent the overhead introduced into

44

the system by inserting additional instructions into the front-end. We compare AsmDB’s software

prefetch instructions effect on a conservative (2-Entry FTQ) implementation and a more industry-

standard FDP (24-Entry FTQ).

0%
1%
2%
3%
4%
5%
6%
7%
8%

pu
bl

ic
_s

rv
_6

0
se

cr
et

_c
ry

pt
o5

2
se

cr
et

_c
ry

pt
o8

0
se

cr
et

_c
ry

pt
o9

0
se

cr
et

_i
nt

_1
24

se
cr

et
_i

nt
_1

55
se

cr
et

_i
nt

_2
90

se
cr

et
_i

nt
_3

27
se

cr
et

_i
nt

_4
4

se
cr

et
_i

nt
_6

24
se

cr
et

_i
nt

_6
78

se
cr

et
_i

nt
_7

06
se

cr
et

_i
nt

_8
3

se
cr

et
_i

nt
_8

6
se

cr
et

_i
nt

_9
48

se
cr

et
_i

nt
_9

65
se

cr
et

_s
rv

12
se

cr
et

_s
rv

12
8

se
cr

et
_s

rv
19

4
se

cr
et

_s
rv

20
7

se
cr

et
_s

rv
21

se
cr

et
_s

rv
22

2
se

cr
et

_s
rv

22
5

se
cr

et
_s

rv
25

5
se

cr
et

_s
rv

25
9

se
cr

et
_s

rv
32

se
cr

et
_s

rv
40

8
se

cr
et

_s
rv

41
se

cr
et

_s
rv

42
6

se
cr

et
_s

rv
44

2
se

cr
et

_s
rv

48
se

cr
et

_s
rv

49
5

se
cr

et
_s

rv
50

4
se

cr
et

_s
rv

53
7

se
cr

et
_s

rv
54

0
se

cr
et

_s
rv

58
2

se
cr

et
_s

rv
61

se
cr

et
_s

rv
61

7
se

cr
et

_s
rv

64
1

se
cr

et
_s

rv
66

9
se

cr
et

_s
rv

70
2

se
cr

et
_s

rv
72

7
se

cr
et

_s
rv

73
se

cr
et

_s
rv

74
2

se
cr

et
_s

rv
75

7
se

cr
et

_s
rv

76
4

se
cr

et
_s

rv
77

1
se

cr
et

_s
rv

85
A

ve
ra

ge

AsmDB Static Code Bloat at 90% Fanout

(a) The static code bloat for AsmDB represents the percent increase in the overall size of the binary due to
inserting software prefetches.

0%

5%

10%

15%

20%

25%

pu
bl

ic
_s

rv
_6

0
se

cr
et

_c
ry

pt
o5

2
se

cr
et

_c
ry

pt
o8

0
se

cr
et

_c
ry

pt
o9

0
se

cr
et

_i
nt

_1
24

se
cr

et
_i

nt
_1

55
se

cr
et

_i
nt

_2
90

se
cr

et
_i

nt
_3

27
se

cr
et

_i
nt

_4
4

se
cr

et
_i

nt
_6

24
se

cr
et

_i
nt

_6
78

se
cr

et
_i

nt
_7

06
se

cr
et

_i
nt

_8
3

se
cr

et
_i

nt
_8

6
se

cr
et

_i
nt

_9
48

se
cr

et
_i

nt
_9

65
se

cr
et

_s
rv

12
se

cr
et

_s
rv

12
8

se
cr

et
_s

rv
19

4
se

cr
et

_s
rv

20
7

se
cr

et
_s

rv
21

se
cr

et
_s

rv
22

2
se

cr
et

_s
rv

22
5

se
cr

et
_s

rv
25

5
se

cr
et

_s
rv

25
9

se
cr

et
_s

rv
32

se
cr

et
_s

rv
40

8
se

cr
et

_s
rv

41
se

cr
et

_s
rv

42
6

se
cr

et
_s

rv
44

2
se

cr
et

_s
rv

48
se

cr
et

_s
rv

49
5

se
cr

et
_s

rv
50

4
se

cr
et

_s
rv

53
7

se
cr

et
_s

rv
54

0
se

cr
et

_s
rv

58
2

se
cr

et
_s

rv
61

se
cr

et
_s

rv
61

7
se

cr
et

_s
rv

64
1

se
cr

et
_s

rv
66

9
se

cr
et

_s
rv

70
2

se
cr

et
_s

rv
72

7
se

cr
et

_s
rv

73
se

cr
et

_s
rv

74
2

se
cr

et
_s

rv
75

7
se

cr
et

_s
rv

76
4

se
cr

et
_s

rv
77

1
se

cr
et

_s
rv

85
A

ve
ra

ge

AsmDB Dynamic Code Bloat at 90% Fanout

(b) The dynamic code bloat for AsmDB represents the percent increase in the number of fetched instructions
as a result of inserting software prefetches into the application’s binary.

Figure 3.7: Static and dynamic code bloat

3.5.1 Code Bloat

To be performant, AsmDB needs to target a large number of misses and allow for insertion

points with high fanout insertion points [73, 32]. Each miss targeted for prefetching requires a

software prefetching instruction to be inserted into the binary, increasing its static size. Inserting

additional instructions shifts the instruction addresses within the binary, shifting the cache lines’

45

contents. AsmDB accounts for this shift during prefetch generation, but changing cache lines’

contents can potentially change which cache lines may stall the FTQ. Figure 3.7a shows the in-

crease in the program’s size, called the static code bloat. Figure 3.7b shows the increase in the

number of instructions executed due to the inserted prefetches, referred to as dynamic code bloat.

Each software instruction prefetch can be executed multiple times throughout execution result-

ing in higher dynamic code bloat than static code bloat. Generally, static and dynamic code bloat

should be minimized to reduce prefetch overhead, but applications with large instruction footprints

and many high-impact misses require more prefetches to improve performance.

3.5.2 Changes in Stalling Head FTQ Entries

0
5

10
15
20
25
30
35

C
yc

le
s

(a) Average cycles to fetch the head of a 24-entry
FTQ.

0
5

10
15
20
25
30
35

C
yc

le
s

(b) Average cycles to fetch the head of a 2-entry
FTQ.

0
5

10
15
20
25
30
35

C
yc

le
s

FDP
AsmDB+FDP
AsmDB+FDP - No Insertion Overhead

(c) Average cycles to fetch an entry not at the head
of a 24-entry FTQ.

0
5

10
15
20
25
30
35

C
yc

le
s

(d) Average cycles to fetch an entry not at the head
of a 2-entry FTQ.

Figure 3.8: The number of cycles to cover a head instruction tends to be larger versus an FTQ entry
not at the head, indicating that the head of the FTQ tends to be a miss in the L1-I.

46

100

200

300

pu
bl

ic
_s

rv
_6

0
se

cr
et

_c
ry

pt
o5

2
se

cr
et

_c
ry

pt
o8

0
se

cr
et

_c
ry

pt
o9

0
se

cr
et

_i
nt

_1
24

se
cr

et
_i

nt
_1

55
se

cr
et

_i
nt

_2
90

se
cr

et
_i

nt
_3

27
se

cr
et

_i
nt

_4
4

se
cr

et
_i

nt
_6

24
se

cr
et

_i
nt

_6
78

se
cr

et
_i

nt
_7

06
se

cr
et

_i
nt

_8
3

se
cr

et
_i

nt
_8

6
se

cr
et

_i
nt

_9
48

se
cr

et
_i

nt
_9

65
se

cr
et

_s
rv

12
se

cr
et

_s
rv

12
8

se
cr

et
_s

rv
19

4
se

cr
et

_s
rv

20
7

se
cr

et
_s

rv
21

se
cr

et
_s

rv
22

2
se

cr
et

_s
rv

22
5

se
cr

et
_s

rv
25

5
se

cr
et

_s
rv

25
9

se
cr

et
_s

rv
32

se
cr

et
_s

rv
40

8
se

cr
et

_s
rv

41
se

cr
et

_s
rv

42
6

se
cr

et
_s

rv
44

2
se

cr
et

_s
rv

48
se

cr
et

_s
rv

49
5

se
cr

et
_s

rv
50

4
se

cr
et

_s
rv

53
7

se
cr

et
_s

rv
54

0
se

cr
et

_s
rv

58
2

se
cr

et
_s

rv
61

se
cr

et
_s

rv
61

7
se

cr
et

_s
rv

64
1

se
cr

et
_s

rv
66

9
se

cr
et

_s
rv

70
2

se
cr

et
_s

rv
72

7
se

cr
et

_s
rv

73
se

cr
et

_s
rv

74
2

se
cr

et
_s

rv
75

7
se

cr
et

_s
rv

76
4

se
cr

et
_s

rv
77

1
se

cr
et

_s
rv

85
A

ve
ra

ge

St
al

l C
yc

le
s

(M
ill

io
ns

)

FDP (FTQ=2) AsmDB+FDP AsmDB+FDP - No Insertion Overhead

(a) Stalls Caused by Head Entries in 2-Entry FTQ

100

200

300

pu
bl

ic
_s

rv
_6

0
se

cr
et

_c
ry

pt
o5

2
se

cr
et

_c
ry

pt
o8

0
se

cr
et

_c
ry

pt
o9

0
se

cr
et

_i
nt

_1
24

se
cr

et
_i

nt
_1

55
se

cr
et

_i
nt

_2
90

se
cr

et
_i

nt
_3

27
se

cr
et

_i
nt

_4
4

se
cr

et
_i

nt
_6

24
se

cr
et

_i
nt

_6
78

se
cr

et
_i

nt
_7

06
se

cr
et

_i
nt

_8
3

se
cr

et
_i

nt
_8

6
se

cr
et

_i
nt

_9
48

se
cr

et
_i

nt
_9

65
se

cr
et

_s
rv

12
se

cr
et

_s
rv

12
8

se
cr

et
_s

rv
19

4
se

cr
et

_s
rv

20
7

se
cr

et
_s

rv
21

se
cr

et
_s

rv
22

2
se

cr
et

_s
rv

22
5

se
cr

et
_s

rv
25

5
se

cr
et

_s
rv

25
9

se
cr

et
_s

rv
32

se
cr

et
_s

rv
40

8
se

cr
et

_s
rv

41
se

cr
et

_s
rv

42
6

se
cr

et
_s

rv
44

2
se

cr
et

_s
rv

48
se

cr
et

_s
rv

49
5

se
cr

et
_s

rv
50

4
se

cr
et

_s
rv

53
7

se
cr

et
_s

rv
54

0
se

cr
et

_s
rv

58
2

se
cr

et
_s

rv
61

se
cr

et
_s

rv
61

7
se

cr
et

_s
rv

64
1

se
cr

et
_s

rv
66

9
se

cr
et

_s
rv

70
2

se
cr

et
_s

rv
72

7
se

cr
et

_s
rv

73
se

cr
et

_s
rv

74
2

se
cr

et
_s

rv
75

7
se

cr
et

_s
rv

76
4

se
cr

et
_s

rv
77

1
se

cr
et

_s
rv

85
A

ve
ra

ge

St
al

l C
yc

le
s

(M
ill

io
ns

)

FDP (FTQ=24) AsmDB+FDP AsmDB+FDP - No Insertion Overhead

(b) Stalls Caused by Head Entries in 24-Entry FTQ

Figure 3.9: Number of stalls incurred by the head entries fro the 24-entry and 2-entry implemen-
tations of FDP.

Comparing the average number of cycles to fetch the head FTQ entry to the number of cycles

to cover an entry not at the head of the FTQ in Figure 3.8, we find that stalling head entries tend to

have higher latencies. Comparing the average fetch times between the 24-entry and 2-entry FDPs

in Figures 3.8a and 3.8b, we observe that a deeper FTQ has longer fetch times.

Since the FTQ merges requests to the same cache line (e.g. due to loops), a deeper FTQ has

more opportunities for positive aliasing between entries. We find that the 24-entry FDP experiences

∼14 % less L1-I accesses than the 2-entry FDP on average. The remaining FTQ entries are more

likely to be sent to the cache and have longer fetch latencies. The following FTQ entries that hit

in the L1-I are filled before moving to the head of the queue, and the remaining entries that can

potentially stall the head must take longer than the current head instruction to fill.

3.5.3 AsmDB’s Impact on the Occurrence of Scenario 2

We measure the number of stalls incurred by the FTQ’s head instruction in Figure 3.9. The

24-entry FDP generally experiences fewer stalls at the head instruction. This is a side-effect of the

47

deeper FTQ allowing for instructions to have more opportunities to alias, resulting in the remaining

instructions having long fetch latencies or completing fetch before reaching the head of the FTQ.

This effect is supported further by Figure 3.10, which shows that the number of entries that have

completed their fetch and are waiting for the head instruction is lower. The figure illustrates that,

on average, the 24-entry FDP decreases the number of waiting instructions compared to the 2-entry

FDP due to its deeper FTQ and experiencing head entries with large fetch latencies.

10
12
14
16
18
20

pu
bl

ic
_s

rv
_6

0
se

cr
et

_c
ry

pt
o5

2
se

cr
et

_c
ry

pt
o8

0
se

cr
et

_c
ry

pt
o9

0
se

cr
et

_i
nt

_1
24

se
cr

et
_i

nt
_1

55
se

cr
et

_i
nt

_2
90

se
cr

et
_i

nt
_3

27
se

cr
et

_i
nt

_4
4

se
cr

et
_i

nt
_6

24
se

cr
et

_i
nt

_6
78

se
cr

et
_i

nt
_7

06
se

cr
et

_i
nt

_8
3

se
cr

et
_i

nt
_8

6
se

cr
et

_i
nt

_9
48

se
cr

et
_i

nt
_9

65
se

cr
et

_s
rv

12
se

cr
et

_s
rv

12
8

se
cr

et
_s

rv
19

4
se

cr
et

_s
rv

20
7

se
cr

et
_s

rv
21

se
cr

et
_s

rv
22

2
se

cr
et

_s
rv

22
5

se
cr

et
_s

rv
25

5
se

cr
et

_s
rv

25
9

se
cr

et
_s

rv
32

se
cr

et
_s

rv
40

8
se

cr
et

_s
rv

41
se

cr
et

_s
rv

42
6

se
cr

et
_s

rv
44

2
se

cr
et

_s
rv

48
se

cr
et

_s
rv

49
5

se
cr

et
_s

rv
50

4
se

cr
et

_s
rv

53
7

se
cr

et
_s

rv
54

0
se

cr
et

_s
rv

58
2

se
cr

et
_s

rv
61

se
cr

et
_s

rv
61

7
se

cr
et

_s
rv

64
1

se
cr

et
_s

rv
66

9
se

cr
et

_s
rv

70
2

se
cr

et
_s

rv
72

7
se

cr
et

_s
rv

73
se

cr
et

_s
rv

74
2

se
cr

et
_s

rv
75

7
se

cr
et

_s
rv

76
4

se
cr

et
_s

rv
77

1
se

cr
et

_s
rv

85
A

ve
ra

ge

N
um

be
r o

f
FT

Q
 E

nt
rie

s
(M

ill
io

ns
)

FDP (FTQ=2) AsmDB+FDP AsmDB+FDP - No Insertion Overhead

(a) Number of FTQ Entries waiting on a Stalling Head Entry in a 2-Entry FTQ

10
12
14
16
18
20

pu
bl

ic
_s

rv
_6

0
se

cr
et

_c
ry

pt
o5

2
se

cr
et

_c
ry

pt
o8

0
se

cr
et

_c
ry

pt
o9

0
se

cr
et

_i
nt

_1
24

se
cr

et
_i

nt
_1

55
se

cr
et

_i
nt

_2
90

se
cr

et
_i

nt
_3

27
se

cr
et

_i
nt

_4
4

se
cr

et
_i

nt
_6

24
se

cr
et

_i
nt

_6
78

se
cr

et
_i

nt
_7

06
se

cr
et

_i
nt

_8
3

se
cr

et
_i

nt
_8

6
se

cr
et

_i
nt

_9
48

se
cr

et
_i

nt
_9

65
se

cr
et

_s
rv

12
se

cr
et

_s
rv

12
8

se
cr

et
_s

rv
19

4
se

cr
et

_s
rv

20
7

se
cr

et
_s

rv
21

se
cr

et
_s

rv
22

2
se

cr
et

_s
rv

22
5

se
cr

et
_s

rv
25

5
se

cr
et

_s
rv

25
9

se
cr

et
_s

rv
32

se
cr

et
_s

rv
40

8
se

cr
et

_s
rv

41
se

cr
et

_s
rv

42
6

se
cr

et
_s

rv
44

2
se

cr
et

_s
rv

48
se

cr
et

_s
rv

49
5

se
cr

et
_s

rv
50

4
se

cr
et

_s
rv

53
7

se
cr

et
_s

rv
54

0
se

cr
et

_s
rv

58
2

se
cr

et
_s

rv
61

se
cr

et
_s

rv
61

7
se

cr
et

_s
rv

64
1

se
cr

et
_s

rv
66

9
se

cr
et

_s
rv

70
2

se
cr

et
_s

rv
72

7
se

cr
et

_s
rv

73
se

cr
et

_s
rv

74
2

se
cr

et
_s

rv
75

7
se

cr
et

_s
rv

76
4

se
cr

et
_s

rv
77

1
se

cr
et

_s
rv

85
A

ve
ra

ge

N
um

be
r o

f
FT

Q
 E

nt
rie

s
(M

ill
io

ns
)

FDP (FTQ=24) AsmDB+FDP AsmDB+FDP - No Insertion Overhead

(b) Number of FTQ Entries waiting on a Stalling Head Entry in a 24-Entry FTQ

Figure 3.10: This figure illustrates the number of FTQ entries that are forced to wait on a stalling
head instruction before progressing through the FTQ. While the conservative FDP has more wait-
ing instructions overall, the increase in waiting instructions in the 24-entry FDP represents a loss
of potential performance.

We measure the number of instructions forced to stall due to waiting on the head instruction

to complete its fetch in Figure 3.10. Comparing the results of Figures 3.9 and 3.10 relative to

AsmDB, we find that it increases the number of stalling instructions for conservative and industry-

standard FDP implementations compared to their respective baselines, indicating an increase in

the occurrence of Scenario 2 (Sec. 3.3.2. The average number of cycles to fill a head instruction

48

2
4
6
8

10

pu
bl

ic
_s

rv
_6

0
se

cr
et

_c
ry

pt
o5

2
se

cr
et

_c
ry

pt
o8

0
se

cr
et

_c
ry

pt
o9

0
se

cr
et

_i
nt

_1
24

se
cr

et
_i

nt
_1

55
se

cr
et

_i
nt

_2
90

se
cr

et
_i

nt
_3

27
se

cr
et

_i
nt

_4
4

se
cr

et
_i

nt
_6

24
se

cr
et

_i
nt

_6
78

se
cr

et
_i

nt
_7

06
se

cr
et

_i
nt

_8
3

se
cr

et
_i

nt
_8

6
se

cr
et

_i
nt

_9
48

se
cr

et
_i

nt
_9

65
se

cr
et

_s
rv

12
se

cr
et

_s
rv

12
8

se
cr

et
_s

rv
19

4
se

cr
et

_s
rv

20
7

se
cr

et
_s

rv
21

se
cr

et
_s

rv
22

2
se

cr
et

_s
rv

22
5

se
cr

et
_s

rv
25

5
se

cr
et

_s
rv

25
9

se
cr

et
_s

rv
32

se
cr

et
_s

rv
40

8
se

cr
et

_s
rv

41
se

cr
et

_s
rv

42
6

se
cr

et
_s

rv
44

2
se

cr
et

_s
rv

48
se

cr
et

_s
rv

49
5

se
cr

et
_s

rv
50

4
se

cr
et

_s
rv

53
7

se
cr

et
_s

rv
54

0
se

cr
et

_s
rv

58
2

se
cr

et
_s

rv
61

se
cr

et
_s

rv
61

7
se

cr
et

_s
rv

64
1

se
cr

et
_s

rv
66

9
se

cr
et

_s
rv

70
2

se
cr

et
_s

rv
72

7
se

cr
et

_s
rv

73
se

cr
et

_s
rv

74
2

se
cr

et
_s

rv
75

7
se

cr
et

_s
rv

76
4

se
cr

et
_s

rv
77

1
se

cr
et

_s
rv

85
A

ve
ra

ge

N
um

be
r o

f
FT

Q
 E

nt
rie

s
(M

ill
io

ns
)

FDP (FTQ=2) AsmDB+FDP AsmDB+FDP - No Insertion Overhead

(a) Number of FTQ Entries Partially Covered by a Stalling Head Instruction in a 2-Entry FTQ

1

2

3

pu
bl

ic
_s

rv
_6

0
se

cr
et

_c
ry

pt
o5

2
se

cr
et

_c
ry

pt
o8

0
se

cr
et

_c
ry

pt
o9

0
se

cr
et

_i
nt

_1
24

se
cr

et
_i

nt
_1

55
se

cr
et

_i
nt

_2
90

se
cr

et
_i

nt
_3

27
se

cr
et

_i
nt

_4
4

se
cr

et
_i

nt
_6

24
se

cr
et

_i
nt

_6
78

se
cr

et
_i

nt
_7

06
se

cr
et

_i
nt

_8
3

se
cr

et
_i

nt
_8

6
se

cr
et

_i
nt

_9
48

se
cr

et
_i

nt
_9

65
se

cr
et

_s
rv

12
se

cr
et

_s
rv

12
8

se
cr

et
_s

rv
19

4
se

cr
et

_s
rv

20
7

se
cr

et
_s

rv
21

se
cr

et
_s

rv
22

2
se

cr
et

_s
rv

22
5

se
cr

et
_s

rv
25

5
se

cr
et

_s
rv

25
9

se
cr

et
_s

rv
32

se
cr

et
_s

rv
40

8
se

cr
et

_s
rv

41
se

cr
et

_s
rv

42
6

se
cr

et
_s

rv
44

2
se

cr
et

_s
rv

48
se

cr
et

_s
rv

49
5

se
cr

et
_s

rv
50

4
se

cr
et

_s
rv

53
7

se
cr

et
_s

rv
54

0
se

cr
et

_s
rv

58
2

se
cr

et
_s

rv
61

se
cr

et
_s

rv
61

7
se

cr
et

_s
rv

64
1

se
cr

et
_s

rv
66

9
se

cr
et

_s
rv

70
2

se
cr

et
_s

rv
72

7
se

cr
et

_s
rv

73
se

cr
et

_s
rv

74
2

se
cr

et
_s

rv
75

7
se

cr
et

_s
rv

76
4

se
cr

et
_s

rv
77

1
se

cr
et

_s
rv

85
A

ve
ra

ge

N
um

be
r o

f
FT

Q
 E

nt
rie

s
(M

ill
io

ns
)

FDP (FTQ=24) AsmDB+FDP AsmDB+FDP - No Insertion Overhead

(b) Number of FTQ Entries Partially Covered by a Stalling Head Instruction in a 24-Entry FTQ

Figure 3.11

is much higher in the industry-standard. The number of overall waiting entries is lower in the

industry-standard FDP than the conservative FDP, meaning any delay in the industry-standard

FDP will have a higher impact on the throughput of the FTQ. Although AsmDB tends to remove

the number of stalls caused by the head entry, any stall at the head of the deeper FTQ that delays

sending instructions to decode will result in a loss of potential performance gain.

Increasing the number of stalls caused by an entry at the head of the FTQ has less impact in

a conservative front-end since it will delay a single FTQ entry at most, or roughly 16 instructions

assuming each instruction is 32 bits. In contrast, additional stalling entries in the FTQ heavily

affect an industry-standard FDP since, in the worse case, it can delay up to 23 FTQ entries or

184 instructions. Although any stall causes delayed execution overall, the high throughput of the

industry-standard FDP and longer fetch times make the performance impact of stalling instructions

much higher than the conservative FDP. The significant number of stalling entries introduced by

AsmDB, regardless of their fetch latency, results in more waiting entries that consume its potential

performance benefit.

49

3.5.4 Software Instruction Prefetching Impact on Scenario 3

We measure the number of stalling entries in the FTQ that move into the head entry position

before completing their fetch or are partially covered by the previous stalling head entry in Fig-

ure 3.11. We find that overall the 24-entry FTQ experiences fewer partial stalls than the 2-entry

FTQ, as the stalling head entries have more significant latencies capable of covering the following

outstanding requests.

AsmDB with instruction overhead demonstrates a decrease in partially covered instructions,

reducing the occurrence of Scenario 3 (3.3.3). A reduction in Scenario 3 indicates that when

Scenario 2 occurs, the head entry covers the fetch latency of the following entries. This conversion

contributes to the increased number of waiting entries in Figure 3.10b as previous partially covered

entries are complete and waiting for decoding.

3.6 Related Works

3.6.1 Hardware Prefetching

Prior work in hardware instruction prefetching has examined using, modifying [29, 31], or

replicating [76] branch prediction structures to direct the L1-I prefetch engine’s prefetches by

building a context and history leading to the current execution behavior [30, 77, 78]. Previously

proposed designs also leverage the decoupled nature of modern processors’ front-ends to prefetch

future instructions, with optimizations to handle mispredicted branches and branch targets [27, 79].

An alternative to predicting an application’s control-flow is leveraging the repetitive nature of

instruction streams to record recurring instruction behavior. A triggering point is selected to allow

the prefetcher to replay misses in the context of recently executed instructions [80, 81, 82, 83, 84,

21]. These prefetchers often attempt to predict control-flow outcomes or disregard them as noise

to provide a more concise view of the current execution context.

3.6.2 Software Prefetching

Callahan [35] proposed one of the first software prefetching designs for data and inserts non-

blocking software prefetches into a binary at compile time. They assume that the accesses to

50

elements within an array in nested loops cause many misses and place prefetches before these

accesses.

Luk and Mowry propose cooperative prefetching [34], which implements a software prefetcher

in tandem with a prefetch filter. Their software analysis recreates the control flow graph of an

application and then targets discontinuities (branches) between basic blocks for prefetching. They

include additional analysis to combine, remove, compress, and hoist software prefetches to reduce

the overhead of inserting prefetches into a binary. Similarly, Mowry et al. propose targeting

instructions that frequently cause misses within a loop, inserting prefetches outside of an unrolled

loop and scheduling based on an estimated access latency [33].

I-SPY [73] extends AsmDB to build a context of the paths leading to a miss by tracking the

branch information leading to the miss. The context is embedded in prefetches with recurring

contexts, and prefetching hardware compares it to the execution context to conditionally issue a

particular prefetch. They also propose coalescing prefetches with addresses that are within a set

distance from one another. If I-SPY cannot issue a conditional or coalesced prefetch, it defaults to

AsmDB’s base software prefetches.

3.7 Summary

Software instruction prefetching is a promising solution to the front-end bottleneck; however,

prior work uses a conservative front-end model, which inflates the performance benefit of software

instruction prefetching. Implementing AsmDB with a contemporary FDP model does not pro-

vide further performance benefits due to the overhead of the additional instructions the software

prefetcher inserts. We identify the possible scenarios the front-end encounters when fetching in-

structions and how changing the likelihood of these scenarios occurring can impact performance.

An industry-standard front-end model is sensitive to changes in the instruction stream as they ex-

hibit high throughput heavily impacted by additional fetch latency.

Future work in software instruction prefetching may alleviate the overhead of inserting instruc-

tions by reducing the number of inserted instructions or directing the software prefetcher to adapt

to an application’s front-end behavior. We hope to excite future research in creating software in-

51

struction prefetchers aware of the effects of additional instructions and may leverage front-end

characteristics to improve performance.

52

4. HARDWARE TROJANS CAPABLE OF EXPLOITING CACHE COHERENCE IN 2.5D

CHIPLET SYSTEMS 1

This chapter explores the basic threats an attacker can mount against the coherence proto-

col with a hardware Trojan in a chiplet-based 2.5D environment. Understanding possible threats

against chiplet-based designs is vital to developing defenses capable of hardening the coherence

system. These basic threats are ineffective as standalone attacks. However, we demonstrate that

these attacks can form the fundamental stages within a more complex attack capable of violat-

ing the integrity of memory operations in an entirely separate memory space and chiplet than the

compromised chiplet containing a hardware Trojan. First, we provide a background in hardware

Trojans, 2.5D integrated chiplet environments, and coherence protocols. We then detail the basic

attacks a hardware Trojan can mount against a 2.5D system’s coherence protocol. Following these

basic attacks, we design and demonstrate a complex hardware Trojan attack against a 2.5D system.

4.1 Introduction

In this chapter, we propose Trojan attacks that leverage the coherence system protocol to ma-

liciously manipulate the victim process’ memory. We first describe fundamental attacks that a

Trojan can mount on coherence systems, based on passive reading, masquerading, modifying, and

diverting attacks [85]. We examine how to implement these attacks, exploiting the coherence sys-

tem at a hardware level, thus increasing the scope of their attack surface. While each of these

attacks may violate the security of a system individually, we further show that adversaries can

orchestrate them to perform complex attacks that modify any process’ memory. These are purely

hardware-centric attacks that contemporary software defense mechanisms cannot thwart since all

exploited coherence interactions are transparent to software and legal within the coherence proto-

col. No prior work considers such attacks on coherence systems, neither in the context of 2.5D

1Reprinted with permission from G. A. Chacon, C. Williams, J. Knechtel, O. Sinanoglu and P. V. Gratz, "Hardware
Trojan Threats to Cache Coherence in Modern 2.5D Chiplet Systems," in IEEE Computer Architecture Letters, vol.
21, no. 2, pp. 133-136, 1 July-Dec. 2022, doi: 10.1109/LCA.2022.3216820.

53

systems with chiplets nor for traditional 2D systems.

Contributions. This chapter provides new insights into how Trojans can manipulate coherence

systems to violate the security of a chiplet system. We present a simulated example of a substantial

attack that can directly manipulate memory in an address space other than that of the compromised

chiplet. This chapter makes the following contributions:

• We present a classification of potential attack surfaces for Trojans that a malicious actor

could exploit.

• We demonstrate how a fundamental hardware Trojan attack can create a significant side-

channel attack when conspiring with a spy process.

• We demonstrate how to use these different and fundamental attacks to orchestrate a complex

Trojan attack in a chiplet-based system.

• We provide a basis for future work exploring possible threat vectors and hardening modern

chiplet designs.

4.2 Design of Hardware Trojans Targeting Coherence Systems

Coherence protocols ensure updates to cached copies of data are visible to all cores and other IP

blocks in modern multi-core designs [45, 37, 40]. Coherence schemes can be broadly categorized

as broadcast (or snooping) protocols [46, 47, 48] and directory protocols [49, 50, 51]. While

simple to implement, broadcast protocols suffer from high traffic due to the amount of messages

multi-core systems require to maintain coherence. Directory protocols allow for fine-grained state

tracking and unicast messages, making them highly scalable but difficult to implement and have

higher access latencies. Coherence protocols are integral to maintaining shared memory and a

critical subsystem within modern multicore systems.

4.2.1 Coherence Protocols

Multi-processor systems incorporate cache coherence protocols to ensure the coherency of

data stored in the processor’s private caches. All communication between cores and main memory

54

conforms to the coherence protocol, making it an ideal attack target for a Trojan co-located with

a processor’s private caches. In this location, a Trojan can undetectably snoop on the request

or response messages made by other processors, manipulate those messages, or even generate

messages without incurring exceptions and, thus, remaining invisible to software running in the

system.

Prior work demonstrates how software-based attacks can exploit coherence protocols to leak

sensitive information [86, 87, 88]. While such attacks represent a significant threat, a Trojan can

enable more powerful attack vectors as it is not dependent on software execution and can remain

stealthy or undetectable by software.

Here we target the MOESI Hammer [89] coherence protocol, a hybrid broadcast-directory sys-

tem. MOESI Hammer provides a coarse-grained directory at each memory controller that selec-

tively broadcasts or unicasts messages depending on the requested memory’s state. This design

allows MOESI Hammer to have a directory protocol’s scalability without the complexity of tradi-

tional directory protocols. Unlike conventional directory protocols, MOESI Hammer also captures

the low-latency response time of broadcast protocols without incurring their typical network traffic

overhead. Though our focus is MOESI Hammer, our attack scenarios can easily be ported to other

coherence schemes.

4.2.2 Basic Trojan Attacks on Coherence Systems

First, we discuss a set of basic Trojan attacks, wherein we attempt to map prior work’s Tro-

jan threat classification of passive reading, masquerading, modifying, and diverting attacks [85] to

cache coherence. We demonstrate the feasibility of these basic attacks by introducing the GETXspy

attack, which uses a snooping Trojan to observe messages from a conspiring spy process. These

basic attacks can adversely affect the system but are incapable of complex interactions resulting in

an attacker gaining full control over the memory system. We then propose a novel, more sophis-

ticated, and powerful attack which integrates several of these basic attacks to maliciously modify

data belonging to another core, even on a different chiplet from the Trojan.

Figures 4.4-4.3 illustrates the basic coherence attacks. We assume Trojans are placed at a

55

ChipletB

Rtr

core

core

Trojan

Rtr

ChipletA

Rtr

core

core

MC/
Dir

Interposer

Rtr

Rtr

Rtr

1

2

3

4

Figure 4.1: Masquerading: Trojan acts as another core. (1) Miss causes GETX to directory; (2)
broadcast invalidations to each chiplet; (3) Trojan blocks local observation, replies with different
core ID; (4) requesting core proceeds, leaving local caches incoherent.

core’s cache controller and can intercept coherence messages from the network interface ahead of

the state directory.

Masquerading(Fig. 4.1): Masquerading, or spoofing, occurs when a Trojan modifies the

packet’s sender field such that the packet appears as if it originates from a different core. If

the target packet is a request, such an attack can result in a deadlock since all responses from the

directory or other cores are sent to the incorrect core. If the target packet is a response, the Tro-

jan may block it and respond with an acknowledgment that appears to be from a different core,

resulting in an incoherent memory state.

Modification(Fig. 4.2): Such attacks occur when the Trojan directly modifies the message

type of a coherence message. This attack may result in a deadlock since the Trojan may cause the

memory controller’s directory to assume the data is in one state, due to a modified packet, while

the local directory holds the data in a different—incorrect—state.

Diverting(Fig. 4.3): Trojans can launch diverting attacks by blocking the local state directory

from observing a request and then resending the request with a different destination field.

This results in the compromised core and the original requestor becoming incoherent with respect

to the rest of the memory system.

56

ChipletB

Rtr

core

core

Trojan

Rtr

ChipletA

Rtr

core

core

MC/
Dir

Interposer

Rtr

Rtr

Rtr

1

23

4

Figure 4.2: Modifying: Trojan modifies a message to achieve incoherent state. (1) Chiplet A
sends GETS to directory; (2) directory forwards request to Trojan’s core which has line in ‘E’
state. Trojan blocks GETS and (3) replies with GETX to requestor, (4) invalidating Chiplet A’s
cache entry, leaving attacker in control of another cache’s contents.

Passive Reading (Fig. 4.4): Trojans passively reading, or snooping, observe incoming coher-

ence messages from the chiplet’s network-on-chip (NoC) sub-system as they reach the L2’s state

directory. The Trojan may buffer messages, identify specific request patterns, and facilitate a covert

communication channel. The Trojan does not affect the system’s state but may activate/trigger a

more complex Trojan.

Each of these attacks may cause coherence or allow an attack to exfiltrate information related to

the system’s operation. We demonstrate the feasibility of these fundamental attacks, in particular

passive reading, in a coherent chiplet system.

4.2.3 The GETXspy Attack

Here we introduce and demonstrate a new, fundamental, attack exploiting the coherence mech-

anism through hardware Trojans in untrusted chiplets. Specifically, our attack a) can transmit

any data from one chiplet, via a regular user process acting as spy that generates tailored write-

ownership coherence messages (GETX), and b) employs a hardware Trojan in a compromised

chiplet that passively reads those GETX requests.

We call the attack GETXspy as it relies on GETX requests generated by the spy. No prior

security scheme we are aware of can prevent this kind of attack. That is because GETXspy observes

57

ChipletB

Rtr

core

core

Trojan

Rtr

ChipletA

Rtr

core

core

MC/
Dir

Interposer

Rtr

Rtr

Rtr

1

2

3

4

5

Figure 4.3: Diverting: Trojan diverts invalidation requests. (1) Chiplet A sends GETX to the
directory; (2) directory broadcasts invalidations. (3) Trojan blocks message and diverts a request
to another core, (4) which responds with a negative-acknowledge or acknowledgment resulting in
(5) the directory allowing original requestor to continue.

the addresses of legal invalidation messages; it does not violate the system’s coherence protocol,

evading the defense mechanisms of prior work.

While the demonstration is specific to MOESI Hammer, the working principle can be applied

to various broadcast or directory protocols in interposer-based systems.

4.2.3.1 Working Principle

MOESI Hammer (Sec. 4.2.1) uses a coarse-grained directory distributed between multiple

memory controllers (MCs). Each core has its own local directory to maintain coherence. When an

MC directory receives a GETX request without an existing entry, a broadcast message is sent to

all cores. This expected interaction can be used to create a simple covert-channel between a spy

process and a hardware Trojan placed at the cache controller directory in one of a chiplet’s cores

to receive information via broadcasted GETX messages.

While our attack exploits the coherence state of specific addresses, similar to Yao et al. [90], it

differs in some important aspects. First and foremost, GETXspy does not require the spy and Tro-

jan to operate within the same virtual address space. Second, our covert-channel does not rely on

a Trojan process to query the targeted addresses. Third, our attack is not reliant on timing memory

58

ChipletB

Rtr

core

core

Trojan

Rtr

ChipletA

Rtr

core

core

MC/
Dir

Interposer

Rtr

Rtr

Rtr

1

2

3

Figure 4.4: Passive Reading: Trojan passively observes write traffic for other chiplets. (1) Misses
from Chiplet A cause (2) broadcast invalidations to all chiplets; (3) Trojan snoops invalidation
addresses.

accesses. Finally, our Trojan is simply a malicious observer of memory requests, representing a

realistic and concerning scenario that is hard to mitigate.

Figure 4.5 shows the attack orchestration. (1) The spy process allocates a large memory region

to continually cause remote requests without pausing to flush the L2. (2) The spy writes to targeted

sets, causing misses in the L2. (3) Each miss generates a new GETX request. (4) The GETX is

sent to the MC to check for a directory entry or “hit” in the probe filter. (5) The GETX misses

in the MC, resulting in a broadcast GETX to invalidate any shared copies of the data present in

other cores. (6) The chiplet containing the hardware Trojan receives the broadcasted GETX, which

buffers the request. Using the L2 set index bits, the Trojan checks if a synchronization message

has been received. (7) After synchronization, the Trojan observes GETX requests from the spy

process to receive covert messages.

Critically, the chiplet holding the Trojan (Chiplet 8 here) does not need shared access to the spy

process’s virtual address range, as the coherence protocol mandates GETX requests be broadcast

to all cores, regardless of physical page ownership. This attack does not require priming memory

region or flushing the caches before a new transmission.

GETXspy can be reworked into a side-channel attack: the GETXspy Trojan would passively

59

Memory
Controller

Directory

Probe Filter

Router

Spy Process

Chiplet 0

GETX

Core 0

L1I L1D

L2

Unified
Cache

Controller

State
Directory

STORE

2

Broadcast
GETX

1

3

4

GETX

5

Network Interface

Chiplet 8

Hardware
Trojan

Broadcast
GETX

Core 0

L1I L1D

L2

Unified
Cache

Controller

State
Directory

6
Network Interface

7

Allocated Memory Region

Figure 4.5: The GETXspy attack, executed as spy process in Chiplet 0’s core 0, sending covert-
channel messages to the hardware Trojan located in Chiplet 8’s core 0.

watch for GETX-induced, invalidation broadcasts, to spy on the write address patterns of processes

in other chiplets. Here again, the chiplet containing the Trojan need not have any access to the

virtual address space or physical pages of the processes being spied upon.

4.2.3.2 Target System

We demonstrate the effects of the GETXspy on a 64-core processor with eight chiplets (eight

cores per chiplet), based on the Rocket-64 architecture proposed by Kim et al. [91]. Each core

has a private L1 instruction and data cache, and a unified L2 cache per chiplet. An NoC connects

each chiplet and four memory controllers that each maintain a portion of the global state directory.

The cache controllers generate coherence messages that the network interface in each chiplet then

60

Figure 4.6: Addresses the hardware Trojan sees, as GETX requested from the spy process. The
attack occurs later in execution when the spy targets specific addresses to trigger misses in the L2
and the MC’s directory.

Figure 4.7: As the Trojan observes addresses requested, it awaits a synchronization message pat-
tern, labelled as “Attack Region.” This message pattern means the spy begins a transmission.

converts to network packets.

4.2.3.3 GETXspy Case Study

We implement GETXspy on the system described in Sec. 4.2.3.2. The system has an 8-way

associative L2 cache and 4-way associative MC directory. Thus, targeting 32 addresses, 16 for

each set representing ‘1’ or ‘0’ to transmit, allows for continuous flushing of the L2 target sets.

The evaluation setting is described in Sec. 5.6.1. As discussed in Section 5.1.1, this case study

is done in simulation, since it requires a known hardware Trojan embedded within a chiplet.

Figure 4.6 shows the addresses requested by the spy process via GETX, as seen by the Trojan

within a different core and chiplet. The sets referenced by the addresses are shown in Fig. 4.7.

61

Figure 4.8: The attack region is zoomed-in here, showing the sets the Trojan considers as part of a
synchronization message. The higher set represents ‘1’ bits and the lower set represents ‘0’ bits.

Message Size 128 bits
Cycles Taken to Transmit 28924

Clock Frequency 1GHz
Total Time Taken to Transmit 28.92µs

Megabits per Second 4.22
Percentage of NoC Bandwidth 0.013%

Table 4.1: GETXspy Covert-Channel Characteristics

At first, the spy process performs various memory-allocation requests, which are viewed by the

Trojan as irrelevant. The attack region considered by the Trojan, Fig. 4.8, shows the spy later

sending requests between two distinct sets to represent a ‘1’ or ‘0,’ respectively.

Table 4.1 shows the characteristics of the GETXspy attack’s covert-channel for the unsecured

baseline system. With a 4.22 Mbps bandwidth, GETXspy has similar capabilities as recent work

that targets the coherence system [92] and is substantially higher than other prior cache-based [93,

94, 95, 96] and coherence-oriented [90, 97] side-channel attacks.

4.2.4 Limitations of Basic Attacks

Any of the above attacks can individually result in covert side-channels, side-channels, inco-

herence, or deadlocks but cannot directly manipulate another core’s data. Combining these attacks

allows for a more complex set of attack vectors that would enable a Trojan to pose a significant

security threat. In the next section, we use the GETXspy attack as a stage within a more complex

62

hardware Trojan to demonstrate the threat these attacks pose when orchestrated.

4.3 Multistage Complex Hardware Trojans

This section describes a novel attack using the basic coherence attack vectors above to mali-

ciously manipulate data in memory that the Trojan does not have permission to access. We refer

to this attack as the Forging Attack.

4.3.1 Target System

This attack targets the same hardware system described in 4.2.3.2. Again, we assume that the

victim process runs in an uncompromised chiplet, separate from the Trojan. The victim allocates

an array of 64-bit unsigned integers and then performs intermittent accesses to the array, setting

each value to ‘0’ or ‘1’. The Trojan aims to modify the contents of this array despite the page not

being mapped into the memory space of any process on any core in the Trojan’s chiplet.

4.3.2 Working Principle

The Forging Attack manipulates legal coherence transactions to allow the Trojan to write to

a target address in a different process operating in a different chiplet. The compromised chiplet

containing the Trojan does not have access to the victim process’ address space, but can observe

coherence interactions broadcasted by the MOESI Hammer protocol. As the Trojan resides be-

tween the network interface and a target core’s state directory, the Trojan has a complete view of

incoming or outgoing coherence messages, thereby enabling the Trojan to block the core from ob-

serving specific interactions. The Trojan contains three registers to track the target data’s current

state relative to the Trojan. These registers imitate the core’s state directory to ensure the Trojan

correctly responds to the global directory.

• Target Address Register: 64-bit register containing the address the Trojan targets.

• Response Counter: A 6-bit register that counts the number of responses received once the

Trojan issues its request.

63

• State Register: The target address’ state, 2-bits to track when the data moves between

expected states.

Chiplet 7

Router

Memory
Controller Probe

Filter

Directory

Network Interface

Hardware Trojan

State
Directory

Unified
Cache

Controller

L2
L1I

L1DCore
0

6 1
2

3

4

5

A
C

K
D

A
TA

G
ET

X

INVAL
ACK

Broadcast
GETX

Figure 4.9: Phase 1 of the Forging attack in which the Trojan gains control of the target address.

4.3.3 Operation

Here we assume the Trojan has a predefined target address. In a real-world scenario, the Trojan

can observe coherence messages broadcasted to the compromised chiplet of the network to select

its target. The coherence protocol requires that the global directory sends invalidation messages

each time a core sends a write request, or GETX, to a line that it does not own. The invalidation

broadcast removes all copies in other cores before updating the line with new data.

The Trojan operates in two phases. During the first phase, the Trojan deceives the global

directory into giving the Trojan access to the data. During the second phase, the Trojan follows

the protocol’s required transactions to write to the target address, which the victim will later read.

64

Chiplet 7

Router

Memory
Controller Probe

Filter

Directory

Network Interface

Hardware Trojan

State
Directory

Unified
Cache

Controller

L2
L1I

L1DCore
0

1 2 3

5

W
B

 D
at

a

U
nb

lo
ck

PU
TX

W
B

_A
C

K

4

Write to
Memory

Figure 4.10: Phase 2 of the Forging attack that enables the Trojan to mimic the steps required to
write back maliciously formed data to main memory.

The interactions caused by the Trojan in both phases are legal from the perspective of the global

directory. Furthermore, they are transparent to the software executing in the victim process and all

other security software in the system.

Phase 1: Acquiring Access Permissions to the Target Data: Figure 4.9 illustrates the initial

steps the Trojan takes. These steps are required as the Trojan must first gain access permissions

to the target address before it can maliciously write to it. The steps to gain access permissions are

as follows: (1) The Trojan observes coherence requests, waiting for a specific address to trigger

the attack (similar to GETXspy). (2) The Trojan generates a malicious GETX packet to the target

address. (3) The directory receives the GETX request, broadcasts an invalidation to all cores, and

waits for all cores to acknowledge. (4) The directory forwards the data and all acknowledgments

to the compromised core. (5) The Trojan blocks the local directory from seeing any response from

the directory or cores, waiting to receive all acknowledgments. (6) Once all acknowledgments are

65

received, the Trojan has access to the data, and the directory views the compromised core as the

owner of the data.

Phase 2: Writing the Malicious Data: Once the access permissions are acquired, the global

directory assumes that the Trojan’s core is the exclusive owner of the data. Figure 4.10 illustrates

Phase 2 of the attack. This phase allows the Trojan to mimic the legal operations that enable

writing to main memory as if the core was evicting the data after modifying it. The steps of the

attack are as follows: (1) Once the Trojan receives the final ACK, the requests to the target address

are unblocked. (2) The Trojan immediately sends a PUTX to the directory to indicate that it is

“evicting” modified data. (3) The directory responds with a WRITEBACK_ACKNOWLEDGEMENT,

allowing the Trojan to proceed with “evicting” the maliciously changed dirty data. (4) The Trojan

responds to the WRITEBACK_ACKNOWLEDGEMENT with a WRITEBACK_EXCLUSIVE_DIRTY

response containing the malicious data. (5) The data is written to memory.

0

1

2

0 5 10 15 20

D
at

a
Va

lu
e

Array Index

Figure 4.11: Data received by the victim when the Trojan is not activated. The application reads
an alternating sequence of ‘1’ and ‘0.’

4.3.4 Results

We evaluate the Trojans in gem5, targeting a victim which iterates over an array to set each

value to ’1’ or ’0’ and then reads the array to compute a sum. Figure 4.11 shows the data the victim

process observes without the Trojan enabled. The victim writes ‘0’ or ‘1’ to various locations in

its data array and then re-reads these locations, seeing the expected data values. Figure 4.12 shows

the data the victim receives when it attempts to read the data array after writing to all indexes.

66

0

1

2

0 5 10 15 20

D
at

a
Va

lu
e

Array Index

Figure 4.12: Data received after the Trojan has completed its attack. The first entry in the array is
now set to ‘5,’ instead of the expected ‘1.’

The Forging Attack successfully modifies the data array’s first value, which the victim then reads

unknowingly of the manipulation. This demonstrates our Trojan can manipulate the coherence

system to modify data that another application is operating on, even without requiring shared

memory access. Critically, unlike prior work which focuses on Trojans modifying packets [98, 99,

100] we leverage the coherence mechanism itself to modify data in memory that was never touched

and technically not owned by the chiplet containing the Trojan.

4.4 Summary

As industry moves toward chiplet-based designs, hardware Trojans pose a significant threat to

security. These systems will rely heavily on coherence to ensure that data remains up-to-date in

all components, making the coherence protocol an attractive target. Critically, unlike prior work

which focuses only on packet modifications, we show that a coherence-centric Trojan attack can

modify memory that is not even owned by the chiplet. We provide an example of a complex Trojan

implementation capable of modifying memory without relying on any malicious software compo-

nents. This chapter highlights the need for mechanisms that can protect the coherence scheme

from such attacks.

67

5. COHERENCE COUNTERMEASURES IN INTERPOSER-BASED SYSTEMS 1

In this chapter, we propose a security monitor system to thwart potential Trojans targeting the

coherence subsystem and operating in untrusted chiplets. Future 2.5D devices follow a design flow

in which various IPs are sourced from multiple vendors and delivered as chiplets to be connected

via an active interposer. We propose constructing the active interposer and integrating the chiplets

at a trusted facility, making the active interposer a secure-by-construction root of trust to build

Coherence Message Checkers (CMC) which monitor and prevent malicious coherence-oriented

behaviors from connected chiplets. We first provide a background of active interposers and hard-

ware Trojans. Then we discuss the threat model of the system. Following this, we provide the

characteristics of the active interposer, which make it a suitable basis for creating a root of trust.

Once we establish the active interposer as the root-of-trust (RoT), we present our secure active

interposer design and the security features that enable the detection and prevention of coherence-

based Trojan attacks.

5.1 Introduction

Interposer-based systems are vulnerable to not only traditional attacks, but also a range of

dedicated, new attacks. For example, vulnerabilities may be introduced through various third-

party chiplets,2 e.g., via untrusted fabrication [102] or design of chiplets, malicious or simply

buggy third-party IPs [103] within the chiplets, or collusion of multiple malicious actors across

chiplets. If not addressed properly, the vulnerability of a single chiplet may undermine the entire

system’s security.

Coherence is an essential mechanism which ensures all components maintain a consistent view

1Reprinted with permission from “Coherence Attacks and Countermeasures in Interposer-Based Systems” by G.
Chacon, T. Mandal, J. Knechtel, O. Sinanoglu, P. Gratz, V. Soteriou 2021. arXiv.

2As of today, both the chiplets and interposer are typically manufactured by the same company in the same fab.
That said, we expect that in the near future there will be a strong market of varied chiplet vendors selling mix-and-
match components manufactured in various fabs for third-party 2.5D integration, similar to the existing motherboard
manufacturing industry today. This is also the key paradigm for the DARPA CHIPS program[101], among others, on
future chip design and manufacturing.

68

of the system’s memory, not only for interposer-based systems but interconnected SoCs in general.

The predictability and prevalence of coherence systems makes them an attractive target, yet only

few attacks have been proposed [90, 104, 54, 97].

Importantly, a Trojan can obviate existing memory protection hardware and software by di-

rectly manipulating the coherence scheme [54] (Ch. 4). Integrating defenses into the coherence

system is a difficult task requiring extensive verification and design effort. Defenses that (naively)

interact with the coherence system may cause functional bugs and deadlocks. Whereas defenses

that ignore coherence and operate only on lower-level packet protocols may miss potential attacks.

While prior work in secure network-on-chip (NoC) fabrics consider untrusted IP modules, they

do not address the full scope of a coherence-oriented attack. These defenses are generally limited to

the detection of attacks, limited to a single class of attack [105, 106], fail to prevent attacks against

coherence-system interactions [107, 108, 109], require additional complex hardware [108, 110,

111], or require packet authentication through error-correction codes [112] or key exchanges [113,

114, 115] which increases network bandwidth pressure.

Critically, in an interposer-based system where the interposer’s design may be trusted and man-

ufactured in a trusted fab, prior schemes for secure NoCs are tackling the wrong part of the prob-

lem. Instead of trying to secure each part of the NoC at a low, link level, we propose a defensive

strategy that targets the coherence-level communication from the untrusted chiplets directly at their

interface with the trusted system.

Establishing some root of trust is critical to ensure the security and integrity of data in modern

systems containing various third-party IP components and software applications interacting on the

same platform. Commercial solutions such as ARM’s TrustZone [116] and Intel’s SGX [117], as

well as academic proposals [114, 118, 119, 120], typically rely on dedicated microarchitectural

support and other measures, e.g., memory encryption. These approaches often incur high perfor-

mance and storage overheads and are prone to dedicated attacks [121, 122], while being susceptible

to hardware Trojans throughout the outsourced supply chains [123, 124], a fact often overlooked

in prior art. Further, these schemes do little to address Trojans that interface with the coherence

69

system directly like the basic attacks, the GETXspy attack, and Forging attack demonstrated in

Chapter 4.

5.1.1 Security Promise, Our Contributions

We leverage the notion of interposer-based system design to establish a secure-by-construction

root of trust in modern multi-core, multi-chiplet systems. Importantly, unlike prior art for secure

system design, we do not assume/require trusted manufacturing of the whole system, only of the

interposer, to provide system-level security promises.

The contributions of our work are as follows:

1. We propose an active interposer as the physical backbone for a secure-by-construction root

of trust, including a security-centric interconnect fabric, for multi-chiplet systems to protect

against coherence-oriented threats targeting system-level communication.

2. We introduce a novel microarchitecture to secure communication passing from untrusted

chiplets onto the interposer, and thus into the system, based upon per-packet validation at

the interposer ingress links. Our design does not interfere with the system’s underlying

coherence protocol, but rather prevents sensitive information from being divulged to, or

manipulated by, untrusted chiplets. The key objective of our proposal is to realize a secure

large-scale system out of untrusted chiplets.

3. As existing hardware does not contain known Trojans for experimentation, we implement

and evaluate our proposed technique in gem5 and examine the implications of our security

features. We characterize the performance impact as a low, ∼4% overhead. Further, we

show the overhead decreases as workloads scale.

5.2 Background and Contributions

Here, we review key concepts of interposer technology, hardware security, and cache coherence

protocols.

70

We also motivate the contributions of our work considering the security challenges and promises

for the respective state-of-the-art.

5.2.1 Interposer Technology

Interposer technology, also known as 2.5D integration, is the process of manufacturing two or

more chips, or chiplets, separately and subsequently integrating and interconnecting them using

a carrier made of silicon or other materials [37, 38, 39, 40, 41, 42]. Compared to traditional,

monolithic SoC designs, 2.5D integration drastically reduces time to market. A system designer

can procure IP as commodity chiplets and integrate them at the physical system level, with effort

only required for designing the interposer. 2.5D integration is highly desirable as it allows for

design and manufacturing process optimization, increasing yield for chiplets.

While future 2.5D designs may be more heterogeneous, current state-of-the-art systems are

largely homogeneous, cache-coherent, multi-core chiplet designs [37, 45, 38, 39, 40].

Active interposers contain active devices (e.g., NoC routers, voltage regulators, sensors, etc.),

while passive interposers act solely as an integration carrier and wiring medium. Although passive

interposers are cheap to manufacture, their physical design can be quite challenging [125, 38]. In

contrast to active interposers with buffered interconnects, passive interposer wires incur significant

power and delay overheads.

An active interposer with an embedded NoC fabric serves well for large-scale chiplet integra-

tion and system communication. The chiplet interconnect fabric is encapsulated away from the

interposer NoC beyond the edge router on the interposer to which it is attached. Such heteroge-

neous fabric allows for cross-optimization of topologies across chiplets and interposer, opening up

considerable opportunities for system design [125, 37, 45, 126, 127, 128]. Further, active inter-

posers improve testability [42, 129, 37] and thereby help to manage the yield of the final system.

Active interposers are typically manufactured in relatively older nodes [37, 130]. Therefore, it

is realistic that a trusted facility is available for manufacturing of such active interposers. Here we

propose an active interposer-based root of trust with security features embedded within its NoC

routers.

71

5.2.2 Hardware Security

5.2.2.1 IC Manufacturing

Industry has widely adopted a work mode where IC design and verification is carried out by a

design house and partners, but fabrication and testing is outsourced to off-shore facilities typically

providing access to advanced technologies.

While this practice reduces the cost of production and streamlines the time to market [131], it

raises concerns regarding the trustworthiness of the outsourced fabrication facilities, which may

seek to insert security vulnerabilities in general or hardware Trojans in particular [102].

In other words, the threat vector posed by untrusted fabrication facilities implies the ICs they

manufacture are untrustworthy. This causes a security challenge for modern systems in multiple

ways. First, any hardware security feature embedded in such outsourced IC may no longer offer the

desired protection, presenting a profound challenge. Second, a modern system may be composed

of chiplets with various levels of trustworthiness. Any malicious chiplet behavior may compromise

the whole system due to its interconnected nature.

The interposer technology can help to avoid such complications. This is because an interposer

can be fabricated separately in a trusted facility and may also embed security features. As we show

in this chapter, an interposer designed to constitute a hardware-enforced root of trust can be built

upon to ensure the overall system’s trustworthiness.

5.2.2.2 Hardware Trojans

Hardware-centric attacks such as the malicious insertion or modifications of circuitry, also

known as hardware Trojans, can lead to catastrophic security failures within a system. For ex-

ample, Bidmeshki et al. [53] provide an attack scenario wherein a hardware Trojan renders the

cryptography subsystem vulnerable, Khan et al. [52] demonstrate Trojans that can leak data from

cache memory of processors, and Kim et al. [54] introduce Trojans which inject malicious coher-

ence messages to create a denial-of-service attack.

Our work is orthogonal to and compatible with prior art on Trojan detection and mitigation,

72

e.g., [132, 133, 134]. Here we do not seek to prevent Trojans, but their attacks from affecting

the system-level security. Specifically, we seek to prevent hardware-centric attacks from execut-

ing through the memory and coherence system. This notion of system-level security is enforced

by a clear physical separation of untrusted commodity chiplets and security features residing in

the trusted interposer. Prior art on Trojan detection and mitigation cannot offer such secure-by-

construction organization as ours.

5.2.2.3 Secure Interconnect Fabrics

Prior art for secure NoCs assumes that malicious activities arise from connected components

or the network fabric itself. Fiorin et al. [135] propose security features for policy-based message

checking against untrusted components. Selected works focus on securing the system through

encryption/decryption of packets exchanged through NoC fabrics [115, 136]. Kinsy et al. [114]

propose organizing secure and non-secure software/hardware entities as tenants and configure the

NoC routers to securely exchange messages. The amount of key exchanges required to isolate

nodes/tenants incurs high latencies and is not easily scaled.

Nabeel et al. [130] propose an interposer-based architecture where security modules monitor

the interconnect fabric at the level of bus addressing, to block transactions that violate memory

access policies. While their design represents a relevant first work toward secure 2.5D integration,

it has several limitations. First, the authors consider an overly simplistic architecture, ignoring

the fact that state-of-the-art 2.5D designs are fully memory-mapped and cache-coherent. We find

addressing the coherence model is critical to providing system-level security. Second, the authors

overlook new security challenges arising for interposer designs. Critically, their design would fail

to hinder the GETXspy covert/side-channel attack studied in the previous chapter, as GETXspy

does not violate memory access policies/permissions.

For most prior art, networks are not secure-by-construction, hence high-overhead solutions are

required such as key-based security [113, 107, 106], model checking [108, 137], or additional

structures to verify traffic patterns [108, 110, 111]. While packet-checking schemes similar to

our design have been proposed in the past, e.g., [109], the underlying defense mechanisms of-

73

ten address only a single attack vector [105, 106] and/or fail to address the coherence system’s

exploitable nature [107, 108, 109].

While these works check the message’s memory operation, they do not differentiate between

specific coherence message types and how coherence messages can be exploited beyond simple

read or write traffic. Even more concerning, most prior art assumes, often implicitly, trusted man-

ufacturing of the whole system. Outsourced supply chains challenge such an assumption. These

concerns are only exacerbated for 2.5 integration using chiplets from various vendors.

In contrast, our work does not make such overarching assumptions. We enforce system-level

security for untrusted commodity chiplets by integrating them on an interposer-based root of trust,

the only component requiring trusted fabrication, thereby providing a secure-by-construction NoC.

Without the need to secure the integrity of the NoC, a more simplified approach can be taken to

ensure the overall system’s security, resulting in lower overheads.

5.2.2.4 Hardware Support for Root of Trust

Intel’s SGX provides trusted execution environments (TEEs), called enclaves [117, 138]. En-

claves prevent unprivileged access to secure data during security-sensitive execution. Specifically,

SGX maps protected memory pages to reserved memory regions in which the pages are encrypted

by a hardware encryption module.

ARM’s hardware-enforced TEE isolates secure execution from untrusted software [116]. AMD’s

TEE leverages a normal OS running in tandem with a secure OS. The latter has access to the full

range of a device’s peripherals and memory, whereas the normal OS only has access to a subset

of peripherals and memory regions, to prevent unauthorized access of sensitive resources. Both

schemes have considerable impact on system performance.

Recent works have shown vulnerabilities in SGX, due to programming errors and untrusted

software [139, 140], as well as due to speculative execution [141, 142, 143, 144]. Similarly, TEEs

are prone to vulnerabilities due to architectural, implementation, and hardware issues [145].

In contrast, our approach has little impact on system performance and its key components are

secure-by-construction.

74

5.2.3 Cache Coherence

Coherence protocols ensure updates to cached copies of data are visible to all cores and other IP

blocks in modern multi-core designs [45, 37, 40]. Coherence schemes can be broadly categorized

as broadcast (or snooping) protocols [46, 47, 48] and directory protocols [49, 50, 51]. While

simple to implement, broadcast protocols suffer from high traffic due to the amount of messages

multi-core systems require to maintain coherence. Directory protocols allow for fine-grained state

tracking and unicast messages, making them highly scalable but difficult to implement and have

higher access latencies.

A coherence protocol is generally oblivious to the software and may permit malicious accesses

that leak sensitive information [90, 104]. Existing countermeasures address conflict-based and

transient-execution side-channel attacks, but do not consider threats from maliciously manipu-

lated/malformed coherence message packets [146, 147, 148, 149].

Given that coherence protocols act only based on rules for how memory is updated across

multiple parties, attackers may exploit the protocol’s low-level behavior. We demonstrate one

such attack in Sec. 4.2.3. It is important to note that coherence is a hardware-managed, micro-

architectural feature which is neither influenced by, nor exposed to, the software executing on the

system, rendering software-based defenses ineffective.

Our solution does not require modifying the coherence protocol. Rather than risking complex,

adversarial system behavior side-effects, we the ensure coherence messages’ integrity and prevent

untrustworthy chiplets from exploiting the coherence protocol and system-level memory manage-

ment.

5.3 System Architecture Overview

Figure 5.1 outlines the secure, interposer-based, multi-chiplet and multi-core system proposed

in this work. The baseline system is loosely based on the architecture of the Rocket-64 design

proposed by Kim et al. [38]. In addition to the overview in this section, more details are provided

in Sec. 5.5.

75

5.3.1 Chiplet and Interconnects Architecture

In this system, we employ eight chiplets, each containing eight CPU cores, for 64 cores in total,

similar to recent AMD processors [39, 40]. Each core has an L1 instruction and data cache and a

unified L2 cache; all cache levels are private to each core. An NoC of 2D mesh topology residing

in the active interposer interconnects the chiplets to each other and four memory controllers (MC).

The cache controllers generate coherence messages that the network interface (NI) in each chiplet

converts to network packets before injection into the interposer NoC (via interface routers). The

interface routers, depicted along the east and west edges of the system, serve as ingress links for

the chiplets into the interposer NoC.

Our proposed system can be ported to many other architectures [125, 37, 45, 126, 127, 128],

given it is interposer-based and has a cache-coherent shared memory system. Notably, the security

principles leveraged in our work are extendable to various physical fabrics and communication

protocols in homogeneous and heterogeneous systems. For example, interfaces such as PCIe are

typically memory-mapped; checking memory-system messages can prevent unauthorized access

by any malicious chiplets. Although some heterogeneous systems may not fully enforce coher-

ence, communication between processing elements, I/O, etc., is still done using memory-system

messaging.

5.3.2 Principles for System-Level Security

We propose the interposer as the root of trust for integrating untrustworthy chiplets into a secure

system by enforcing policy checking of all system-level communication. The key attributes to

enable such a security system are: (1) the interposer is manufactured separately from the untrusted

chiplets in a trusted facility, and (2) the interposer serves as the integration and communication

backbone between chiplets.

Any system-level communication across chiplets must pass through the interposer. For exam-

ple, if a CPU core wants to read/write data from/to memory, a corresponding coherence message

(embedded in a packet) must traverse the interposer NoC. Similarly, if a core wants to communi-

76

Active Interposer Layer

Router 72 Router 73 Router 74

CMC-1 CMC-2 CMC-1

MC
0

Router 75 Router 76 Router 77

CMC-1 CMC-2

MC
1

CMC-1

Secure
Processor

Router 83Router 82Router 81

CMC-1

MC
3

CMC-2 CMC-1

Router 78

CMC-1 CMC-2

Router 79 Router 80

MC
2

CMC-1

Chiplet 4 Router 68

Chiplet 5 Router 69

Chiplet 6 Router 70 Chiplet 2 Router 66

 Chiplet 1 Router 65

 Chiplet 0 Router 64

 Chiplet 3 Router 67 Chiplet 7 Router 71

Core 7

Core 0 Router 0

R
ou

te
r

64

NI

NI Router 7

CMC-1

Figure 5.1: Secure system. Routers 64–71 lie within chiplets, connecting them to the interposer
NoC. Routers 0–63 connect the CPU cores within their respective chiplet’s NoC (see zoom-in).
The proposed Coherence Message Checkers (CMCs), marked in yellow, are embedded in the
interposer and placed along the ports connected to chiplets (CMC-1, red arrows) and memory
controllers (CMC-2, blue arrows). Also note the secure co-processor embedded in the interposer.

cate with another core in another chiplet, such direct messages must traverse the interposer NoC.

Significantly, all direct communication messages are limited to legal coherence messages, as is

typical in most multi-processor systems.

Accordingly, we embed our proposed security features within the interposer NoC such that all

messages must inevitably traverse through, and be checked by, the trusted active interposer. For

example, we add Coherence Message Checkers (CMCs) to the physical ingress links to validate all

coherence messages coming from the chiplets into the active interposer. For another example, we

add a secure co-processor for critical tasks including system-level memory allocation. Since CMCs

and all other security features are implemented exclusively within the trusted active interposer,

77

their hardware is trustworthy and free from Trojans by construction.

5.3.3 Cache Coherence Protocol

We focus on the MOESI Hammer cache coherence protocol [89] as basis for our implemen-

tation, which is used in many AMD systems as scalable protocol for multi-core systems. Our

approach is extendable to other schemes as well.

MOESI Hammer is a hybrid protocol; it encapsulates the scalability of directory-protocols

without high implementation complexity while achieving the low-latency of broadcast protocols

without overly increasing broadcasted coherence message traffic. To that end, MOESI Hammer

maintains a sparse directory between multiple home nodes to track cache lines’ states and owners.

Coherence requests access a cache line’s home-node directory and DRAM in parallel to reduce the

cost of a directory miss, cancelling the DRAM response if a directory entry is found. Traffic is

reduced by only broadcasting to all cores for specific state transitions.

5.4 Threat Model

5.4.1 Scope and Assumptions

The focus of this chapter is a system wherein multiple chiplets have been fabricated by various

untrusted third parties and are then connected using an active, trusted interposer.

Our work is orthogonal to prior art on Trojan detection and mitigation for regular, non-interposer-

based systems, e.g., [132, 133, 134]. That is, we do not seek to prevent Trojans but to prevent their

attacks from affecting the system-level security.

The critical assumption is that the fabrication and operational behavior of chiplets, either de-

signed in-house or composed of third-party IPs, cannot be trusted. In other words, we assume that

some Trojan(s) may exist in some chiplet(s). We also assume that attacks target memory-system

traffic, the only type of traffic physically passing through the interposer.

Another key assumption is that all proposed security features are designed, manufactured, and

operated in a fully trustworthy manner. Furthermore, we assume a secure boot-up and OS environ-

ment for memory management tasks. Both assumptions are physically enforced, by implementing

78

the related hardware exclusively within the trusted interposer.

Our scheme protects on a chiplet granularity. Thus, attacks across cores but within the same

chiplet [150, 151], are out of scope. Similarly, out of scope are attacks wherein code running on

one core attempts to violate the security of other processes running on that same core or another

core in the same chiplet. Further, attacks wherein one chiplet leverages transactions to its assigned

memory region to modify DRAM rows that are not assigned to it, e.g., Rowhammer [152], are

out of scope. Importantly, prior art against all these threats is orthogonal to our work and can be

applied as needed.

Regarding denial-of-service attacks via memory allocation (which is securely handled by the

trusted OS in the interposer), we assume that detecting maliciously excessive memory requests is

dealt with otherwise. Furthermore, denial-of-service attacks resulting from some chiplet dropping

coherence messages are out of scope.

5.4.2 Threat Vectors

Attacks on interconnected systems can be categorized as outlined by Basak et al. [153]. Ac-

cordingly, our model considers the related four threat vectors.

1. Passive reading, aka snooping: This threat occurs when a malicious chiplet can read data it

does not have permission for. The GETXspy attack demonstrated in Sec. 4.2.3 is an example

of such a threat in that the Trojan monitors broadcasted GETX requests to snoop a tailored

message.

2. Masquerading, aka spoofing: This threat occurs when a malicious chiplet disguises itself as

another chiplet to gain access to sensitive data or control of resources. Malicious chiplets can

modify the requester IDs and memory addresses embedded in cache coherence messages,

tricking directories or other unsuspecting cores into divulging sensitive data.

3. Modifying: This generic threats concerns any malicious modifications of coherence mes-

sages.

79

4. Diverting: In shared-memory applications, a malicious chiplet may divert data meant for

one chiplet to another untrusted chiplet, bypassing memory permissions. It may also divert

cache coherence messages, undermining the protocol.

The above threats apply to any form of coherence protocol with invalidations. While this chap-

ter examines the security challenges of a hybrid broadcast/directory protocol, the system’s exact

attack surface depends on the protocol used. Directory protocols, while more resilient to passive-

reading attacks (due to a lack of broadcasted messaging), may still be deceived by maliciously

modified coherence messages. For example, to replicate our proposed GETXspy attack (Ch. 4.2.3)

in a directory protocol, the Trojan must only be slightly modified, namely to issue regular GETS

requests for the cache lines used by the spy process in communicating with the Trojan. When the

spy process modifies those lines, the Trojan would be able to observe invalidation requests to the

associated lines, replicating the covert channel. While such changes in settings might reduce the

channel’s bandwidth, they would otherwise not prevent its general working principle. For another

example, both local and global directories may be targeted to interfere with the system’s coher-

ence, through masquerading and modified messages. Diverting legitimate packets from a directory

to other cores allows an attacker to divulge information about a target core through probing the

directory [90, 104]. Furthermore, we assume that any combination of the above basic attacks can

be orchestrated into a complex attack such as our proposed Forging attack (Ch. 4.3).

5.5 System Design

Our proposed design prevents attacks running on any given chiplet from violating the overall

system’s security, in the sense that we physically enforce protection against any unauthorized ac-

cess to shared-memory regions and conduct continuous checking of the integrity and validity of

cache coherence messages. Next, we discuss the system design.

80

CMC

Figure 5.2: A CMC, embedded within an interface router of the interposer NoC, monitoring the
incoming packets.

5.5.1 Microarchitecture

5.5.1.1 CMC Overview

With the proposed CMCs, we monitor and validate all incoming packets to the interposer.

Figure 5.2 depicts the CMC embedded in a router of the interposer NoC. The CMC monitors

messages traversing the physical links before entering the virtual channel buffers within the routers.

Each CMC has two components described as follows.

Packet Checker/Modifier (PCM): The PCM monitors and modifies cache coherence messages

as needed. Because the proposed system follows standard shared-memory semantics, all legal

communication between cores, other IPs, I/O buses, and memory occurs through memory accesses,

creating cache coherence messages. Thus, the PCM operates on coherence messages to check

addresses and permissions, modifying messages as needed.

Address Protection Unit (APU) Table: This is a direct-mapped, SRAM-based look-up table

with entries for each memory region and their associated per-chiplet permissions. As outlined in

81

Sec. 5.5.2, the main physical memory is partitioned into multiple fixed-size regions; each memory

region has a corresponding entry in the APU.

5.5.1.2 CMC Types and Placement

Recall Fig. 5.1, depicting CMCs embedded in the secure interposer-based system. The CMCs

connected to the physical links coming from chiplets are denoted as “CMC-1” and those con-

nected to the physical links for MCs are denoted “CMC-2.” CMC-1 only monitors and verifies

coherence messages entering the interposer, whereas CMC-2 modifies certain coherence messages

at the MC directories (to counter passive-reading threats on broadcast messages). Router-to-router

connections running exclusively within the trusted interposer do not require CMC monitoring.

CMC-1: Prevents the attached chiplet from injecting malicious coherence messages into the

system that violate the provisions of the shared-memory organization, as outlined in Sec. 5.5.2. The

PCM within CMC-1 monitors all traffic from the attached chiplet based on the physical address

the packet refers to. This physical address is compared against the per-region permissions stored in

the APU table (described further below). If a message is of an allowed type to an allowed memory

region for the given chiplet (e.g., a GETX to a read-only memory region it owns), the message may

proceed into the interposer NoC. Otherwise, if the packet is rejected, a dedicated security signal

realized as a machine-check exception is thrown, and system execution stops.3

CMC-2: Prevents the broadcast of coherence messages to chiplets that are not permitted to

access the related memory region. As described in Sec. 5.3.3, MOESI Hammer does not maintain

per-core sharing information, hence certain message requests cause an MC directory to broadcast

the request to all cores. The cores then respond based on whether that core shares the cache block.

This raises a concern of passive reading/snooping; recall the GETXspy attack in Sec. 4.2.3.

To prevent snooping, the PCM uses the APU table to determine whether a given broadcast

message is directed towards a chiplet allowed to access the referred memory region. If the chiplet

does not have access, the broadcast message is converted into an appropriate direct broadcast

3This is a secure and protocol-conform approach. For the sake of system-level throughput, one may want to
only isolate the chiplet(s) triggering a security violation. Doing so safely, however, is not trivial, as it would require
significant modifications of the coherence protocol itself to prevent deadlocks.

82

Figure 5.3: Exemplary entry of the APU table, covering some region of the physical memory.
The entry describes access permissions for each chiplet individually; here, the related region is
read-write shared between Chiplets 0 and 1.

message directed only to the original requester. (For example, an invalidation request for data

owned by Chiplet 0 does not need to be observed by any other chiplet.) Note that this approach

is legal within the coherence scheme: if a chiplet is not granted access to a memory region, then

its caches cannot contain lines associated with that region. This allows the CMC-2 to safely divert

broadcast messages from the directory and prevent snooping.

5.5.1.3 APU Table

The APU table is a lookup table containing entries describing the access permissions for appli-

cations running within a respective chiplet.

The access permissions are determined by a secure OS that is running exclusively within the

active interposer, independently of the regular OS running on the chiplets. The permissions are

programmed into the APU tables during runtime, as outlined in Sec. 5.5.2.

Figure 5.3 show one entry in the APU table. Each entry represents one memory region, with

two bits allocated to represent the access permissions of applications running in some chiplet: a

chiplet may have no access permissions (‘00’), read-only permissions (‘01’), or read/write permis-

sions (‘11’). The encoding ‘10’ is unused.

When the PCM intercepts a packet, the upper bits of its physical address are extracted and used

to index into the APU table. The related entry is read and handed back to the PCM to compare the

request type, requester ID, and destination ID against the permission levels in the APU table entry.

83

5.5.2 OS Support and Memory Organization

Here we extend and build upon prior work in security-enabled OS environments [154, 155,

156, 157], TEEs (Sec. 5.2.2.4), and secure boot-up and execution environments [116, 158, 159].

In our scheme, critical tasks, including updating the APU table, must be delegated to such a secure

environment.

Such environment must ensure that malicious OS threads running on an untrusted chiplet are

physically incapable of purposefully assigning memory regions that would result in violating the

security policies. Toward this end, we use a trustworthy OS located in a co-processor embedded in

the interposer, where the active interposer’s construction physically prevents attacks on the APU

and other security components.

5.5.2.1 Representing Memory Regions

In shared-memory systems, permissions are typically defined per physical page by the OS

during memory allocation. For our system, enforcing per-page permissions in a CMC poses sev-

eral challenges. Specifically, page-level tracking requires a TLB-like structure to cache transla-

tions [160]. The support required to maintain the structure in coherence with the full system’s

page table significantly increases hardware complexity and performance overhead. Thus, we argue

that such page-level implementation at the interposer is excessive in a system of relatively few and

coarse-grained chiplets, and we partition physical memory into coarse-grained memory regions,4

similar to prior art [161, 154, 158, 157].

Each memory region is designated as read- or write-able independently to any given chiplet,

with permissions updated as needed. Data private to a single chiplet is placed in a region (or set

of regions) only accessible by that chiplet. A page shared across multiple chiplets is assigned to a

memory region the given chiplets are allowed to access.

4We aim for a “sweet spot” between too coarse-grained, where only few memory regions are available and capacity
is wasted to fragmentation, versus too fine-grained, where the APU table could not hold the excessive number of
regions without incurring high access latency or placing entries in a backstore. We find that a total number of memory
regions between 4x–8x the number of chiplets is sufficient, allowing for diverse private and shared memory regions
without too much fragmentation. Thus, for our design with eight chiplets and 4GB of physical memory, we implement
the APU with 64 entries, representing 64MB each or 16,384 pages each.

84

5.5.2.2 Memory Allocation and OS Modifications

The interposer includes a trusted co-processor, to host a secure and trustworthy OS for system-

level memory allocation. Thus, the OS threads running on the chiplets must delegate their page

allocation to the OS running on the interposer. The code in the chiplet’s OS threads must be

extended accordingly, i.e., to call the interposer’s secure OS for all page allocation.

The interface API between the OS threads running on the chiplets and the secure OS is com-

posed of two functions, APU_ALLOCATE and APU_DELETE. The APU_ALLOCATE interface

function is called by the chiplet’s OS when access to a new physical page is required. In that, the

secure OS provides the chiplet’s OS threads with a physical page based on the chiplet’s current

memory regions and its access permissions, as described below. Similarly, when the chiplet’s OS

threads are ready to free a physical page they call the APU_DELETE function to return that page

to the secure OS.

Initial memory partitioning and permission setting occurs during the initial soft page fault on

a virtual page. Region allocations and permissions are updated via an API call from the OS, e.g.,

similar to Intel’s SGX page allocation model [117]. After a page fault, the following occurs:

1. The chiplet’s OS requests a physical page for the process from the secure OS operating on

the interposer’s co-processor via the APU_ALLOCATE interface function.

2. The secure OS running in the interposer then searches for an available page with the correct

permissions for the given chiplet, differentiating three scenarios:

(a) If the chiplet already has a region allocated and assigned in the APUs, and this region

has unassigned physical pages, a page from this region is selected.

(b) If the chiplet does not have an entry in the APU or its current region is fully allocated,

the interposer updates the APU tables to allocate a new region with appropriate per-

missions for the chiplet that requested the page. The secure OS then selects a free page

from the newly allocated region.

85

(c) If no space is available in the assigned regions and there are no more unassigned regions

the memory allocation fails.5

3. The secure OS then provides the allocated physical page to the unsecure OS.

Since the APU table update occurs on the trusted interposer, chiplets not involved in the allo-

cation process are unaware of the memory allocation request. Critically, a malicious chiplet that

somehow gains knowledge of the request cannot access the region due to the newly set permissions

in the APU tables before any malicious operation may target the memory region.

5.5.3 Implementation Details

5.5.3.1 NoC Configuration

Regardless of the interposer’s NoC topology, CMCs are emplaced at the interface between

chiplets or MCs and the active interposer. However, the width of the physical link does impact the

CMC design and its logic. In our implementation and evaluation, the link width is 128 bits within

chiplets and 64/128 bits within the interposer.

In MOESI Hammer (Sec. 5.3.3), every control message fits within a single 128-bit flit. When a

flit enters the interposer, it is broken down into two/one flits which are analyzed in the CMC logic

over two/one clock cycles, depending on the 64/128 width of the interposer link. In the case of

64-bit links, depicted in Fig. 5.4, we dedicate the first cycle to extract the control parameters from

the head and the second cycle to extract the address for the cache block being accessed. The CMC

logic is similar for request and response messages, as both cases require the first two flits to be

analyzed.

5.5.3.2 Cache Coherence Protocol

The system’s cache coherence protocol affects the CMC design and logic as the CMC must

analyze the coherence message fields. MOESI Hammer’s response messages are either a control

or data message; a control response follows the same flit structure as a request, whereas a data

5In future work, we may consider swapping in this scenario. However, this would increase complexity of the
process and require careful investigation.

86

Figure 5.4: Structure of messages. Request messages do not include the ‘CurOwner’ or ‘Dirty’
fields. Flits 3-10 are only sent for response messages in response to a request message. Fields
highlighted are to be checked by CMCs.

response carries additional flits containing a total of 64 bytes of data.

Based on the message type and identified threats (Sec. 5.4.2), the CMC must analyze certain

key parameters; these are highlighted in Fig. 5.4. The parameters are extracted by the PCM and

compared with the permissions set in the APU table. Since an attacker may exploit either request

or reponse messages, both message types must be analyzed.

5.5.3.3 Protocol Compliance

First, coherence messages are converted into network packets by the chiplets’ NIs. However,

these packets are not guaranteed to adhere to the rules of the network and coherence protocols. For

example, a Trojan may fabricate an invalid message type, yielding undefined, possibly vulnerable

behavior. Second, messages corresponding to particular virtual networks (VNs) must follow a

specific, limited set of requester/destination IDs and message types.

To address both aspects, the PCM checks the possible field values to verify the legality of

messages. Since these checks are orthogonal to memory-region permission checking, they are

performed in parallel and incur no extra delay.

5.5.3.4 Design Cost

We design the PCM module with three pipeline stages for lookup, packet checking, and packet

modification. The third stage is bypassed in CMC-1 instances as they only monitor packets on

87

Component Variable
Chiplet Architecture

Core 8 RISC-V cores
Private L1 I-Cache 32KB
Private L1 D-Cache 64KB

L2 Cache 2MB
NoC Eight-port,

128-bit Crossbar
vc_per_vnet 4, 6, 8, or 10

Chiplet Frequency 1GHz
System Architecture

Chiplets 8
MCs 4

Main Memory 4GB
Memory Regions 64, 64MB each

NoC 3x4 2D-Mesh,
64 or 128 bit

vc_per_vnet 4, 6, 8, or 10
Interposer Frequency 250MHz

Cache Coherence
Model AMD MOESI Hammer

Simulation Configuration
Processor Model TimingSimpleCPU

Simulation Model System emulation

Table 5.1: System Architecture Configuration

ingress to the interposer. An APU table requires two bits for identifying each chiplet’s permissions,

and there are 64 table entries; 1024 bits are required for an APU table. An APU table is in each

of the twelve routers (8 for the chiplets, 4 for the MCs) in the interposer, imposing a total memory

footprint of only 1.5KB.

5.6 Evaluation

We first discuss our evaluation methodology. Then, we examine the security coverage our

design provides. Finally, we examine the performance overheads caused by our scheme.

5.6.1 Methodology

We implement and evaluate our proposed system for system emulation using gem5 [162]. Ta-

ble 5.1 depicts the configuration details. As indicated, while flexible in general, the particular

proof-of-concept system studied here is inspired by the Rocket-64 design [38]. Thus, we simulate

88

an 8-chiplet, 64-core system as described in Sec. 5.3. The interposer is assumed to be fabricated

using an older process node; it operates at 250MHz, a quarter of the chiplets’ frequency.

Performance impact is measured as IPC speedup/slowdown for the secure, CMC-enabled con-

figuration over the unsecure baseline configuration. The CMCs latencies are discussed in Sec. 5.5.3

and disabled for the unsecured baseline. Due to long simulation times induced for this large system,

we evaluate the IPC using a subset of the SPEC 2006 benchmarks. We perform single-threaded

and multi-programmed benchmark simulations to better understand the impact of the CMCs.

5.6.2 Security Analysis

5.6.2.1 Threat Model Coverage

Our scheme addresses the threat model (Sec. 5.4.2) as follows:

Passive reading: This threat is prevented by rerouting broadcast messages as they enter the

CMC-2 located at the interposer/MC boundary. Broadcast messages from the directories are con-

verted into negative acknowledgments back to the requester for chiplets that do not have permis-

sions to the message’s memory region.

Masquerading: Every CMC-1 is programmed with the range of ID’s expected in each coher-

ence message’s requester ID field. For example, in Fig. 5.1, the CMC-1 in router 72 can expect

requestor IDs to be in the range of 0–7 and will reject any message with an ID outside of this range,

as discussed in Sec. 5.5.3.3. In this event, the CMC will throw a security check exception and halt

execution.

Modification: This is detected by comparing a message type, such as GETX/GETS, with the

access permissions in the APU table. A security check exception is thrown if a message seeks to

access memory outside of its allowed address space.

Diversion: This threat is detected by checking the destination ID and the message type. Only

specific message types can have other cores as the destination ID. This, along with the memory

region permissions in the APU table, allows us to detect any malicious diversion of messages. A

security check exception is thrown if a threat is detected.

89

Figure 5.5: Slowdown for the CMC-enabled system for vc_per_vnet of 4 compared to the non-
secure baseline.

Complex Attacks: This threat is countered by disrupting the fundamental attack stages, pre-

venting complex attacks from triggering or effecting the system.

Our design prevents unauthorized accesses to memory regions due to privilege escalation or

exploitation using mechanics described above for hardware threats, including when orchestrated

as a complex attack. Importantly, since coherence messages are generated by hardware, a solely

software-driven attack cannot engage in masquerading, modification, or diversion threats through

packet manipulation without malicious hardware intervention.

5.6.2.2 Security Testing

To test the system’s ability to counter the discussed threats, we inject tailored, malicious coher-

ence messages at the network interface of cores. We verify that, for masquerading, modification,

and diversion, a respective check exception is thrown and no malicious packets enter the interposer

NoC before the system halts. For passive reading, we are successfully able to prevent GETXspy

from viewing requests from other cores. Similarly, the Forging Attack does not trigger as it does

not have the ability to passively read other cores requests and is unable to send requests to memory

regions that its chiplet does not have permission to access (Sec. 5.5.2.2).

90

Figure 5.6: L2 cache miss rate [%].

5.6.3 Single-Threaded Performance Impact

Figure 5.5 shows the speedup/slowdown of the system with CMCs enabled compared to the

baseline configuration. As expected, all workloads experience a speedup of less than 1 as the

CMCs introduce higher latencies to the network. As the figure shows, the CMCs impose an average

performance loss of ∼4%, with several benchmarks (povray, hmmer, libquantum) showing little to

no impact. sphinx3, however, is an outlier, showing a significant ∼27% performance loss.

To analyze further, we examine the L2 miss rates of each benchmark in Fig. 5.6. The figure

demonstrates that the variation between each benchmark’s result in Fig. 5.5 is highly correlated

to a benchmark’s cache hit rate. For instance, sphinx3 shows a much higher L2 cache miss rate

than other benchmarks at ∼68%. The CMCs must process each packet resulting in increased

memory access latencies. Thus, the CMC-enabled system’s performance depends on the number

of coherence messages that L2 cache misses inject into the NoC.

The performance degradation in some benchmarks is analyzed in Fig. 5.7, showing the percent-

age change for pre-injection queuing latency versus in-network latency and the total latency expe-

rienced by packets in the network. Interestingly, while the queuing latency increases by ∼80%, the

in-network latencies drop by 5–10%. The increase in queuing latency is expected, due to the extra

pipeline delays on network insertion that the CMCs cause. The decrease in in-network latency is

91

Figure 5.7: Change in packet latency induced by CMCs [%].

due to CMC-2 instances rerouting acknowledgment messages back to only the original requester

(as a negative acknowledgment). Thus, the CMC-2 reduces total network load by removing one

packet in the transaction.

The total packet latency increases by 39% on average. Interestingly, although sphinx3 incurs

a higher performance impact than the other benchmarks, it does not see a significantly different

packet latency. That is, sphinx3’s performance loss is due to a higher L2 miss rate and hence higher

packet injection, as discussed above, not a higher per-packet latency. Its higher miss rate exposes

sphinx3 more to the increase of network latency than other applications, which have lower miss

rates.

Figure 5.8 depicts the speedup of the benchmarks with three different virtual channel config-

urations (vc_per_vnet). We observe that the geometric mean speedup approaches 0.98 with more

virtual channels. We see a significant improvement in speedup for sphinx3 due to the improvement

in queuing latencies at the network interfaces. These significant gains imply that increasing VC

count is a good way to improve performance if the application has a high cache miss rate.

In Fig. 5.9, we analyze the impact of increasing the interposer link widths to 128 bits versus the

baseline of 64 bits.6 This larger bandwidth provides slightly better speedup compared to the base-

6Due to runtime constraints for such large-scale simulations running on our shared high-performance computing

92

Figure 5.8: Slowdown for different VC configurations.

Figure 5.9: Slowdown for 64- versus 128-bit interposer links.

line. These modest gains imply that increasing the bit-width for the physical links in the interposer

is likely not worthwhile, although this depends on the designer’s trade-off for costs/overheads and

scalability of the system.

5.6.4 Multi-Programmed Performance Impact

We evaluate the impact of the CMCs for multi-programmed workloads using random mixes

of two benchmarks each, executed in two cores in separate chiplets. Here we simulate until all

cluster, we focused on a representative subset of benchmark runs for that particular experimentation.

93

Figure 5.10: Speedup/slowdown for multi-program workloads.

applications complete at least five billion instructions and we report the weighted speedup of the

combination using a methodology from Kadjo et al. [163].

Figure 5.10 shows the speedup for these multi-programmed workloads. In general, speedups

range between 0.95 and 1.06. In some cases, namely bzip2-namd and bwaves-gcc, the speedup

with the CMCs enabled was better than the baseline. Further, the mixes which included sphinx3

showed reduced performance loss versus the stand-alone sphinx3. As before, the improvement

is a result of CMC-2 filtering out packets otherwise sent to unauthorized chiplets. This reduces

the bandwidth pressure that multiple applications induce on the NoC and appears to reduce the

performance overhead as the number of workloads increase.

5.7 Summary

In this chapter, we propose the use of an active interposer as root of trust for modern chiplets-

based systems, by implementing hardware security features directly within the interposer. More

specifically, we devise a coherence message checker (CMC), which we propose to include at the

boundary between the interposer and chiplets, memory controllers. We show how such a scheme

addresses various attacks arising from malicious chiplets, with relatively low performance impact,

∼4% on average, compared to a non-secure baseline system.

94

6. CONCLUSION

While the direct benefits of Moore’s Law are waning, modern architectures are moving to-

wards more creative and innovative solutions to improve machine performance to meet consumer

demand. These new designs present new challenges for both memory performance and security.

In the realm of performance, the Memory Wall [3] has been a challenge due to the disparity

between processor and memory speeds. This dissertation explores the Memory Wall effect on the

L1-I, presented as the front-end bottleneck. The large instruction footprints of modern workloads

apply higher pressure on the L1-I. It is difficult for instruction prefetchers to train and predict due

to their long-term temporal locality and lower spatial locality. We propose a new methodology for

creating coordinated prefetchers to address this challenge. This methodology performs a directed

design space search to combine multiple instruction prefetchers with complementary behaviors.

We then explore recently proposed software instruction prefetchers in the context of modern front-

end designs. From our evaluation, we characterize the three scenarios representing the front-end’s

behavior and state and how software instruction interacts with it to cause performance degradation.

Industry is moving towards chiplet-based designs to improve manufacturing efficiency and

yield. However, these systems rely on a complex supply chain of various vendors and manufac-

turing facilities of varying levels of trustworthiness. This poses a security challenge for memory

systems. A bad actor could insert a hardware Trojan capable of exploiting the coherence system to

gain control of a system’s entire memory space. In this dissertation, we highlight the vulnerabil-

ity of coherence systems, which act as the communication protocol for transferring and updating

memory between devices in a system. We demonstrate fundamental attack vectors a hardware

Trojan may target and show how these fundamental stages can be orchestrated to enable complex

attacks fully deceive the coherence subsystem into giving the Trojan access to any memory ad-

dress. Following this, we propose using the active interposer in chiplet-based systems as the root

of trust to embed security features on. Due to its low-performance demands, the active interposer

can be manufactured in a controlled and trusted facility, allowing us to trust our proposed security

95

features. These security features act as Coherence Message Checkers (CMC), which use a packet

checker/modifier (PCM) to verify the origin of messages and ensure they meet the requirements

of a standard, non-malicious message. Further, the address protection unit (APU) in the CMC al-

lows the CMCs to verify that a message is to a region allowed by the originating chiplet and filters

messages to chiplets without accessing the target region.

Performance and security are ongoing areas of study, and the designs presented in this disserta-

tion address challenges that must be addressed. As server and database computing needs increase

and industry moves to more creative designs, the Memory Wall and the defense of the memory

system will be further explored to provide realistic solutions. This dissertation seeks to enable

these future solutions through the quick design and implementation of instruction prefetchers, pro-

vide a basis for the design of software instruction prefetchers, and make future designers aware of

the vulnerability of coherence protocols and how to harden them in environments with connected

components with varying trustworthiness.

96

REFERENCES

[1] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Rebasing instruction prefetching: An industry

perspective,” IEEE Computer Architecture Letters, vol. 19, pp. 147–150, July 2020.

[2] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Re-establishing fetch-directed instruction

prefetching: An industry perspective,” in 2021 IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), pp. 172–182, 2021.

[3] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvious,”

SIGARCH Comput. Archit. News, vol. 23, pp. 20–24, Mar. 1995.

[4] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker, “Performance char-

acterization of a quad pentium pro smp using oltp workloads,” in Proceedings of the 25th

Annual International Symposium on Computer Architecture, ISCA ’98, (USA), p. 15âĂŞ26,

IEEE Computer Society, 1998.

[5] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “Dbmss on a modern processor:

Where does time go?,” in Proceedings of the 25th International Conference on Very Large

Data Bases, VLDB ’99, (San Francisco, CA, USA), p. 266âĂŞ277, Morgan Kaufmann

Publishers Inc., 1999.

[6] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel, A. Adileh,

D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-out processors,” SIGARCH Comput.

Archit. News, vol. 40, p. 500âĂŞ511, June 2012.

[7] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D.

Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: A study of emerging scale-out

workloads on modern hardware,” SIGPLAN Not., vol. 47, p. 37âĂŞ48, Mar. 2012.

[8] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and

D. Brooks, “Profiling a warehouse-scale computer,” in Proceedings of the 42nd Annual

97

International Symposium on Computer Architecture, ISCA ’15, (New York, NY, USA),

p. 158âĂŞ169, Association for Computing Machinery, 2015.

[9] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the front-end bottleneck with shot-

gun,” in Proceedings of the Twenty-Third International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’18, (New York, NY, USA),

pp. 30–42, ACM, 2018.

[10] S. Kanev, J. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and D. Brooks,

“Profiling a Warehouse-scale Computer,” in ISCA ’15 Proceedings of the 42nd Annual In-

ternational Symposium on Computer Architecture, pp. 158–169, 2014.

[11] S. Mirbagher-Ajorpaz, E. Garza, S. Jindal, and D. A. Jiménez, “Exploring predictive re-

placement policies for instruction cache and branch target buffer,” in 45th ACM/IEEE An-

nual International Symposium on Computer Architecture, ISCA 2018, Los Angeles, CA,

USA, June 1-6, 2018, pp. 519–532, 2018.

[12] A. J. Smith, “Sequential program prefetching in memory hierarchies,” Computer, vol. 11,

p. 7âĂŞ21, December 1978.

[13] B. Falsafi and T. F. Wenisch, A Primer on Hardware Prefetching. 2014.

[14] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM System/360 Model 91: Ma-

chine Philosophy and Instruction-Handling,” IBM Journal of Research and Development,

vol. 11, no. 1, pp. 8–24, 1967.

[15] J. Pierce and T. Mudge, “Wrong-path instruction prefetching,” in Proceedings of the 29th

Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 29, (USA),

p. 165âĂŞ175, IEEE Computer Society, 1996.

[16] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed prefetching: Improving

the performance and bandwidth-efficiency of hardware prefetchers,” in 2007 IEEE 13th

International Symposium on High Performance Computer Architecture, pp. 63–74, 2007.

98

[17] S. Kondguli and M. Huang, “Division of labor: A more effective approach to prefetching,” in

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),

pp. 83–95, 2018.

[18] A. J. Smith, “Sequential program prefetching in memory hierarchies,” Computer, vol. 11,

pp. 7–21, Dec. 1978.

[19] A. Ros and A. Jimborean, “The entangling instruction prefetcher.” https://research.

ece.ncsu.edu/ipc/wp-content/uploads/2020/05/eip_final.pdf.

[20] T. Nakamura, T. Koizumi, Y. Degawa, H. Irie, S. Sakai, and R. Shioya, “D-Jolt: Dis-

tant Jolt Prefetcher.” https://research.ece.ncsu.edu/ipc/wp-content/

uploads/2020/05/D-JOLT.pdf.

[21] D. A. JimÃl’nez, G. Chacon, N. Gober, and P. V. Gratz, “Branch agnostic region

searching algorithm.” https://research.ece.ncsu.edu/ipc/wp-content/

uploads/2020/05/bar%C3%A7a.pdf.

[22] A. Seznec, “The fnl+mma instruction cache prefetcher.” https://research.ece.

ncsu.edu/ipc/wp-content/uploads/2020/05/FNLMMA-final.pdf.

[23] N. Gober, G. Chacon, D. A. JimÃl’nez, and P. Gratz, “The temporal ancestry prefetcher.”

https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/

05/tap_final.pdf.

[24] A. Ansari, F. Golshan, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Mana: Microarchitecting an

instruction prefetcher.” https://research.ece.ncsu.edu/ipc/wp-content/

uploads/2020/05/mana.pdf.

[25] V. Gupta, N. S. Kalani, and B. Panda, “Run-jump-run: Bouquet of instruction pointer

jumpers for high performance instruction prefetching.” https://research.ece.

ncsu.edu/ipc/wp-content/uploads/2020/05/JIP.pdf.

99

https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/eip_final.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/eip_final.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/D-JOLT.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/D-JOLT.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/bar%C3%A7a.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/bar%C3%A7a.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/FNLMMA-final.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/FNLMMA-final.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/tap_final.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/tap_final.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/mana.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/mana.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/JIP.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/JIP.pdf

[26] P. Michaud, “Pips: Prefetching instructions with probabilistic scouts.” https:

//research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/pips_

final.pdf.

[27] G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction prefetching,” in MICRO-

32. Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchi-

tecture, pp. 16–27, Nov 1999.

[28] G. Reinman, T. Austin, and B. Calder, “A scalable front-end architecture for fast instruction

delivery,” SIGARCH Comput. Archit. News, vol. 27, p. 234âĂŞ245, may 1999.

[29] C. Kaynak, B. Grot, and B. Falsafi, “Confluence: Unified instruction supply for scale-out

servers,” in 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pp. 166–177, Dec 2015.

[30] R. Kumar, C. Huang, B. Grot, and V. Nagarajan, “Boomerang: A metadata-free architecture

for control flow delivery,” in 2017 IEEE International Symposium on High Performance

Computer Architecture (HPCA), pp. 493–504, 2017.

[31] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the front-end bottleneck with shot-

gun,” in Proceedings of the Twenty-Third International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’18, (New York, NY, USA),

p. 30âĂŞ42, Association for Computing Machinery, 2018.

[32] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev, C. Kozyrakis, T. Krishna-

murthy, H. Litz, T. Moseley, and P. Ranganathan, “Asmdb: Understanding and mitigating

front-end stalls in warehouse-scale computers,” in Proceedings of the 46th International

Symposium on Computer Architecture, ISCA ’19, (New York, NY, USA), p. 462âĂŞ473,

Association for Computing Machinery, 2019.

[33] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluation of a compiler algorithm for

prefetching,” SIGPLAN Not., vol. 27, p. 62âĂŞ73, Sept. 1992.

100

https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/pips_final.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/pips_final.pdf
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/pips_final.pdf

[34] Chi-Keung Luk and T. C. Mowry, “Cooperative prefetching: compiler and hardware support

for effective instruction prefetching in modern processors,” in Proceedings. 31st Annual

ACM/IEEE International Symposium on Microarchitecture, pp. 182–193, Dec 1998.

[35] D. Callahan, K. Kennedy, and A. Porterfield, “Software prefetching,” SIGOPS Oper. Syst.

Rev., vol. 25, p. 40âĂŞ52, Apr. 1991.

[36] D. Chen, D. X. Li, and T. Moseley, “Autofdo: Automatic feedback-directed optimization for

warehouse-scale applications,” in CGO 2016 Proceedings of the 2016 International Sympo-

sium on Code Generation and Optimization, (New York, NY, USA), pp. 12–23, 2016.

[37] P. Vivet, E. Guthmuller, Y. Thonnart, G. Pillonnet, G. Moritz, I. Miro-PanadÃĺs, C. Fuguet,

J. Durupt, C. Bernard, D. Varreau, J. Pontes, S. Thuries, D. Coriat, M. Harrand, D. Dutoit,

D. Lattard, L. Arnaud, J. Charbonnier, P. Coudrain, A. Garnier, F. Berger, A. Gueugnot,

A. Greiner, Q. Meunier, A. Farcy, A. Arriordaz, S. Cheramy, and F. Clermidy, “A 220GOPS

96-core processor with 6 chiplets 3D-stacked on an active interposer offering 0.6ns/mm

latency, 3Tb/s/mm2 inter-chiplet interconnects and 156mW/mm2@ 82%-peak-efficiency

DC-DC converters,” in Proc. Int. Sol.-St. Circ. Conf., pp. 46–48, 2020.

[38] J. Kim, G. Murali, H. Park, E. Qin, H. Kwon, V. Chaitanya, K. Chekuri, N. Dasari, A. Singh,

M. Lee, H. M. Torun, K. Roy, M. Swaminathan, S. Mukhopadhyay, T. Krishna, and S. K.

Lim, “Architecture, chip, and package co-design flow for 2.5D IC design enabling hetero-

geneous IP reuse,” in Proc. Des. Autom. Conf., 2019.

[39] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony, “AMD chiplet architecture for

high-performance server and desktop products,” in 2020 IEEE International Solid- State

Circuits Conference - (ISSCC), pp. 44–45, 2020.

[40] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Subramony, and S. White, “Pi-

oneering chiplet technology and design for the amd epyc and ryzen processor families :

Industrial product,” in Proc. Int. Symp. Comp. Archit., pp. 57–70, 2021.

101

[41] M. Matsuo, N. Hayasaka, K. Okumura, E. Hosomi, and C. Takubo, “Silicon interposer

technology for high-density package,” in 2000 Proceedings. 50th Electronic Components

and Technology Conference (Cat. No.00CH37070), pp. 1455–1459, 2000.

[42] S. Takaya, M. Nagata, A. Sakai, T. Kariya, S. Uchiyama, H. Kobayashi, and H. Ikeda,

“A 100GB/s wide I/O with 4096b TSVs through an active silicon interposer with in-place

waveform capturing,” in Proc. Int. Sol.-St. Circ. Conf., pp. 434–435, 2013.

[43] R. Mahajan, R. Sankman, N. Patel, D. Kim, K. Aygun, Z. Qian, Y. Mekonnen, I. Salama,

S. Sharan, D. Iyengar, and D. Mallik, “Embedded multi-die interconnect bridge (emib)

– a high density, high bandwidth packaging interconnect,” in 2016 IEEE 66th Electronic

Components and Technology Conference (ECTC), pp. 557–565, 2016.

[44] D. Cutress, “Bringing geek back: Q&a with intel ceo pat gelsinger,” 2021.

https://www.anandtech.com/show/17042/bringing-geek-back-qa-with-intel-ceo-pat-

gelsinger.

[45] P. Coudrain, J. Charbonnier, A. Garnier, P. Vivet, R. VÃl’lard, A. Vinci, F. Ponthenier,

A. Farcy, R. Segaud, P. Chausse, L. Arnaud, D. Lattard, E. Guthmuller, G. Romano,

A. Gueugnot, F. Berger, J. Beltritti, T. Mourier, M. Gottardi, S. Minoret, C. RibiÃĺre,

G. Romero, P. . Philip, Y. Exbrayat, D. Scevola, D. Campos, M. Argoud, N. Allouti,

R. Eleouet, C. Fuguet Tortolero, C. Aumont, D. Dutoit, C. Legalland, J. Michailos,

S. ChÃl’ramy, and G. Simon, “Active interposer technology for chiplet-based advanced

3D system architectures,” in Proc. Elec. Compon. Tech. Conf., pp. 569–578, 2019.

[46] E. E. Bilir, R. M. Dickson, Ying Hu, M. Plakal, D. J. Sorin, M. D. Hill, and D. A.

Wood, “Multicast snooping: a new coherence method using a multicast address net-

work,” in Proceedings of the 26th International Symposium on Computer Architecture (Cat.

No.99CB36367), pp. 294–304, 1999.

[47] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner, “Power5 system

microarchitecture,” IBM Journal of Research and Development, vol. 49, no. 4.5, pp. 505–

102

521, 2005.

[48] N. Agarwal, L. Peh, and N. K. Jha, “In-network snoop ordering (inso): Snoopy coherence

on unordered interconnects,” in 2009 IEEE 15th International Symposium on High Perfor-

mance Computer Architecture, pp. 67–78, 2009.

[49] J. Archibald and J. L. Baer, “An economical solution to the cache coherence problem,” in

Proceedings of the 11th Annual International Symposium on Computer Architecture, ISCA

’84, (New York, NY, USA), p. 355âĂŞ362, Association for Computing Machinery, 1984.

[50] J. Zebchuk, M. K. Qureshi, V. Srinivasan, and A. Moshovos, “A tagless coherence direc-

tory,” in 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), pp. 423–434, 2009.

[51] J. Laudon and D. Lenoski, “The sgi origin: A ccnuma highly scalable server,” in Proceed-

ings of the 24th Annual International Symposium on Computer Architecture, ISCA ’97,

(New York, NY, USA), p. 241âĂŞ251, Association for Computing Machinery, 1997.

[52] M. N. I. Khan, A. De, and S. Ghosh, “Cache-out: Leaking cache memory using hardware

trojan,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 6,

pp. 1461–1470, 2020.

[53] M. Bidmeshki, G. R. Reddy, L. Zhou, J. Rajendran, and Y. Makris, “Hardware-based at-

tacks to compromise the cryptographic security of an election system,” in 2016 IEEE 34th

International Conference on Computer Design (ICCD), pp. 153–156, 2016.

[54] M. Kim, S. Kong, B. Hong, L. Xu, W. Shi, and T. Suh, “Evaluating coherence-exploiting

hardware trojan,” in Design, Automation Test in Europe Conference Exhibition (DATE),

2017, pp. 157–162, 2017.

[55] A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and conquer frontend bottle-

neck,” in 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture

(ISCA), pp. 65–78, 2020.

103

[56] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: Instruction pointer classifier-

based spatial hardware prefetching,” in 2020 ACM/IEEE 47th Annual International Sympo-

sium on Computer Architecture (ISCA), pp. 118–131, 2020.

[57] M. Bakhshalipour, M. Shakerinava, F. Golshan, A. Ansari, P. Lotfi-Karman, and H. Sarbazi-

Azad, “A survey on recent hardware data prefetching approaches with an emphasis on

servers,” 2020.

[58] A. Ros and A. Jimborean, “A cost-effective entangling prefetcher for instructions,” in

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA),

pp. 99–111, 2021.

[59] N. Gober, G. Chacon, L. Wang, P. V. Gratz, D. A. Jimenez, E. Teran, S. Pugsley, and J. Kim,

“The championship simulator: Architectural simulation for education and competition,”

arXiv preprint arXiv:2210.14324, 2022.

[60] G. Reinman, B. Calder, and T. Austin, “Fetch Directed Instruction Prefetching,” in MICRO-

32. Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchi-

tecture, pp. 16–27, 1999.

[61] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Re-establishing fetch-directed instruction

prefetching: An industry perspective,” in 2021 IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), pp. 172–182, 2021.

[62] International Symposium on Computer Architecture, The 1st Championship Value Predic-

tion Competition (CVP-1), http://www.microarch.org/cvp1, June 2018.

[63] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and Z. Chishti, “Path

Confidence-based Lookahead Prefetching,” in 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 1–12, 2016.

[64] C. Kaynak, B. Grot, and B. Falsafi, “Confluence: unified instruction supply for scale-

out servers,” in Proceedings of the 48th International Symposium on Microarchitecture,

pp. 166–177, ACM, 2015.

104

[65] C. Kaynak, B. Grot, and B. Falsafi, “Shift: Shared history instruction fetch for lean-core

server processors,” in Proceedings of the 46th Annual IEEE/ACM International Symposium

on Microarchitecture, pp. 272–283, ACM, 2013.

[66] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive Instruction Fetch,” in Proceedings of

the 44th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 152–162,

2011.

[67] R. Kumar, C.-C. Huang, B. Grot, and V. Nagarajan, “Boomerang: A metadata-free architec-

ture for control flow delivery,” in High Performance Computer Architecture (HPCA), 2017

IEEE International Symposium on, pp. 493–504, IEEE, 2017.

[68] C. Zhang, Y. Zeng, J. Shalf, and X. Guo, “Rnr: A software-assisted record-and-replay hard-

ware prefetcher,” in 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), pp. 609–621, 2020.

[69] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev, C. Kozyrakis, T. Krishna-

murthy, H. Litz, T. Moseley, and P. Ranganathan, “AsmDB: Understanding and Mitigating

Front-end Stalls in Warehouse-scale Computers,” in Proceedings of the 46th International

Symposium on Computer Architecture, ISCA ’19, (New York, NY, USA), pp. 462–473,

ACM, 2019.

[70] T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci, “I-spy: Context-

driven conditional instruction prefetching with coalescing,” in 2020 53rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pp. 146–159, 2020.

[71] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvious,”

SIGARCH Comput. Archit. News, vol. 23, p. 20âĂŞ24, March 1995.

[72] N. Adiga, J. Bonanno, A. Collura, M. Heizmann, B. R. Prasky, and A. Saporito, “The ibm

z15 high frequency mainframe branch predictor industrial product,” in 2020 ACM/IEEE

47th Annual International Symposium on Computer Architecture (ISCA), pp. 27–39, 2020.

105

[73] T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci, “I-spy: Context-

driven conditional instruction prefetching with coalescing,” in 2020 53rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pp. 146–159, 2020.

[74] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitectural simulation of

thousand-core systems,” SIGARCH Comput. Archit. News, vol. 41, p. 475âĂŞ486, jun 2013.

[75] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and Z. Chishti, “Path confi-

dence based lookahead prefetching,” in 2016 49th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), pp. 1–12, 2016.

[76] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme to reduce data access

penalty,” in Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Super-

computing ’91, (New York, NY, USA), pp. 176–186, ACM, 1991.

[77] V. Srinivasan, E. S. Davidson, G. S. Tyson, M. J. Charney, and T. R. Puzak, “Branch history

guided instruction prefetching,” in Proceedings HPCA Seventh International Symposium on

High-Performance Computer Architecture, pp. 291–300, Jan 2001.

[78] A. Kolli, A. Saidi, and T. F. Wenisch, “Rdip: Return-address-stack directed instruction

prefetching,” in 2013 46th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO), pp. 260–271, Dec 2013.

[79] A. Perais, R. Sheikh, L. Yen, M. McIlvaine, and R. D. Clancy, “Elastic instruction fetch-

ing,” in 2019 IEEE International Symposium on High Performance Computer Architecture

(HPCA), pp. 478–490, Feb 2019.

[80] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in 2011 44th An-

nual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 152–162,

Dec 2011.

[81] L. Spracklen, Yuan Chou, and S. G. Abraham, “Effective instruction prefetching in chip

multiprocessors for modern commercial applications,” in 11th International Symposium on

High-Performance Computer Architecture, pp. 225–236, 2005.

106

[82] C. Kaynak, B. Grot, and B. Falsafi, “Shift: Shared history instruction fetch for lean-core

server processors,” in 2013 46th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), pp. 272–283, Dec 2013.

[83] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and B. Falsafi, “Temporal

streaming of shared memory,” in Proceedings of the 32Nd Annual International Symposium

on Computer Architecture, ISCA ’05, (Washington, DC, USA), pp. 222–233, IEEE Com-

puter Society, 2005.

[84] A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and conquer frontend bottle-

neck,” in 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture

(ISCA), pp. 65–78, May 2020.

[85] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance for system-on-chip designs

with untrusted IPs,” IEEE TIFS, vol. 12, no. 7, pp. 1515–1528, 2017.

[86] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence protocol states vulnerable

to information leakage?,” in IEEE HPCA, pp. 168–179, 2018.

[87] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J. Torrellas, “Attack di-

rectories, not caches: Side channel attacks in a non-inclusive world,” in IEEE S&P, pp. 888–

904, 2019.

[88] C. Trippel, D. Lustig, and M. Martonosi, “MeltdownPrime and SpectrePrime:

Automatically-synthesized attacks exploiting invalidation-based coherence protocols,”

CoRR, vol. abs/1802.03802, 2018.

[89] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes, “Cache hierarchy

and memory subsystem of the amd opteron processor,” IEEE Micro, vol. 30, no. 2, pp. 16–

29, 2010.

[90] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence protocol states vulnerable

to information leakage?,” in 2018 IEEE International Symposium on High Performance

Computer Architecture (HPCA), pp. 168–179, 2018.

107

[91] J. Kim et al., “Architecture, chip, and package co-design flow for 2.5D IC design enabling

heterogeneous IP reuse,” in ACM/IEEE DAC, pp. 1–6, 2019.

[92] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s): Side channel attacks on

the CPU On-Chip ring interconnect are practical,” in 30th USENIX Security Symposium

(USENIX Security 21), pp. 645–662, USENIX Association, Aug. 2021.

[93] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel attacks

are practical,” in 2015 IEEE Symposium on Security and Privacy, pp. 605–622, 2015.

[94] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise, l3 cache side-channel

attack,” in 23rd USENIX Security Symposium (USENIX Security 14), (San Diego, CA),

pp. 719–732, USENIX Association, Aug. 2014.

[95] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-speed covert channel

attacks in the cloud,” in 21st USENIX Security Symposium (USENIX Security 12), (Bellevue,

WA), pp. 159–173, USENIX Association, Aug. 2012.

[96] C. Percival, “Cache missing for fun and profit,” in In Proc. of BSDCan 2005, 2005.

[97] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J. Torrellas, “Attack direc-

tories, not caches: Side channel attacks in a non-inclusive world,” in 2019 IEEE Symposium

on Security and Privacy (SP), pp. 888–904, 2019.

[98] D. M. Ancajas, K. Chakraborty, and S. Roy, “Fort-NoCs: Mitigating the threat of a compro-

mised NoC,” in ACM/EDAC/IEEE DAC, pp. 1–6, 2014.

[99] M. H. Khan, R. Gupta, J. Jose, and S. Nandi, “Dead flit attack on NoC by hardware Trojan

and its impact analysis,” in ACM NoCArc, pp. 10–15, 2021.

[100] N. Prasad, R. Karmakar, S. Chattopadhyay, and I. Chakrabarti, “Runtime mitigation of ille-

gal packet request attacks in networks-on-chip,” in IEEE ISCAS, pp. 1–4, 2017.

108

[101] P. Garrou, “DARPA envisions CHIPS as new approach to chip design and manufac-

turing,” 2018. https://www.3dincites.com/2018/10/iftle-396-darpa-envisions-chips-as-new-

approach-to-chip-design-and-manufacturing/.

[102] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware: Identi-

fying and classifying hardware trojans,” Computer, vol. 43, no. 10, pp. 39–46, 2010.

[103] J. J. Rajendran, O. Sinanoglu, and R. Karri, “Building trustworthy systems using untrusted

components: A high-level synthesis approach,” Trans. VLSI Syst., vol. 24, no. 9, pp. 2946–

2959, 2016.

[104] C. Trippel, D. Lustig, and M. Martonosi, “Meltdownprime and spectreprime:

Automatically-synthesized attacks exploiting invalidation-based coherence protocols,”

2018. arXiv.

[105] T. Boraten, D. DiTomaso, and A. K. Kodi, “Secure model checkers for network-on-chip

(noc) architectures,” in 2016 International Great Lakes Symposium on VLSI (GLSVLSI),

pp. 45–50, 2016.

[106] V. Y. Raparti and S. Pasricha, “Lightweight mitigation of hardware trojan attacks in noc-

based manycore computing,” in 2019 56th ACM/IEEE Design Automation Conference

(DAC), pp. 1–6, 2019.

[107] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano, “Secure memory accesses

on networks-on-chip,” IEEE Transactions on Computers, vol. 57, no. 9, pp. 1216–1229,

2008.

[108] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “Nocalert: An on-line and real-

time fault detection mechanism for network-on-chip architectures,” in 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture, pp. 60–71, 2012.

[109] A. Saeed, A. Ahmadinia, M. Just, and C. Bobda, “An id and address protection unit for noc

based communication architectures,” in Proceedings of the 7th International Conference

109

on Security of Information and Networks, SIN ’14, (New York, NY, USA), p. 288âĂŞ294,

Association for Computing Machinery, 2014.

[110] A. P. D. Nath, S. Boddupalli, S. Bhunia, and S. Ray, “Ark: Architecture for security re-

siliency in soc designs with network-on-chip (noc) fabrics,” 2019.

[111] M. LeMay and C. A. Gunter, “Network-on-chip firewall: Countering defective and mali-

cious system-on-chip hardware,” CoRR, vol. abs/1404.3465, 2014.

[112] T. Boraten and A. K. Kodi, “Packet security with path sensitization for nocs,” in 2016 De-

sign, Automation Test in Europe Conference Exhibition (DATE), pp. 1136–1139, 2016.

[113] S. Charles and P. Mishra, “Securing network-on-chip using incremental cryptography,” in

2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 168–175, 2020.

[114] M. A. Kinsy, S. Khadka, M. Isakov, and A. Farrukh, “Hermes: Secure heterogeneous mul-

ticore architecture design,” in 2017 IEEE International Symposium on Hardware Oriented

Security and Trust (HOST), pp. 14–20, 2017.

[115] C. H. Gebotys and R. J. Gebotys, “A framework for security on noc technologies,” in IEEE

Computer Society Annual Symposium on VLSI, 2003. Proceedings., pp. 113–117, 2003.

[116] A. Limited, “âĂIJsecurity technology building a secure system using trustzone technology,”

tech. rep., 2009.

[117] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-Hurd, and C. Rozas,

“IntelÂő software guard extensions (intelÂő sgx) support for dynamic memory management

inside an enclave,” in Proceedings of the Hardware and Architectural Support for Security

and Privacy 2016, HASP 2016, (New York, NY, USA), Association for Computing Ma-

chinery, 2016.

[118] P. Maene, J. GÃűtzfried, R. de Clercq, T. MÃijller, F. Freiling, and I. Verbauwhede,

“Hardware-based trusted computing architectures for isolation and attestation,” TC, vol. 67,

no. 3, pp. 361–374, 2018.

110

[119] H. Zhang, S. Ghosh, J. Fix, S. Apostolakis, S. R. Beard, N. P. Nagendra, T. Oh, and D. I.

August, “Architectural support for containment-based security,” in Proc. Arch. Supp. Pro-

gramm. Lang. Op. Sys., pp. 361–377, 2019.

[120] I. Lebedev, K. Hogan, J. Drean, D. Kohlbrenner, D. Lee, K. AsanoviÄĞ, D. Song, and

S. Devadas, “Sanctorum: A lightweight security monitor for secure enclaves,” in Proc. Des.

Autom. Test Europe, 2019.

[121] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado, and B. B. Kang,

“Hacking in darkness: Return-oriented programming against secure enclaves,” in Proc.

USENIX Sec. Symp., pp. 523–539, 2017.

[122] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey: Breaching TrustZone by software-

controlled voltage manipulation over multi-core frequencies,” in Proc. Comp. Comm. Sec.,

pp. 195–209, 2019.

[123] S. Bhunia and M. M. Tehranipoor, eds., The Hardware Trojan War: Attacks, Myths, and

Defenses. Springer, 2018.

[124] D. Mehta, H. Lu, O. P. Paradis, M. A. M. S., M. T. Rahman, Y. Iskander, P. Chawla, D. L.

Woodard, M. Tehranipoor, and N. Asadizanjani, “The big hack explained: Detection and

prevention of pcb supply chain implants,” J. Emerg. Tech. Comp. Sys., vol. 16, no. 4, 2020.

[125] N. E. Jerger, A. Kannan, Z. Li, and G. H. Loh, “NoC architectures for silicon interposer

systems: Why pay for more wires when you can get them (from your interposer) for free?,”

in Proc. Int. Symp. Microarch., pp. 458–470, 2014.

[126] J. Yin, Z. Lin, O. Kayiran, M. Poremba, M. Shoaib Bin Altaf, N. Enright Jerger, and G. H.

Loh, “Modular Routing Design for Chiplet-Based Systems,” in ACM/IEEE ISCA, pp. 726–

738, 2018.

[127] A. Coskun, F. Eris, A. Joshi, A. B. Kahng, Y. Ma, A. Narayan, and V. Srinivas, “Cross-

layer co-optimization of network design and chiplet placement in 2.5D systems,” Trans.

Comp.-Aided Des. Integ. Circ. Sys., 2020.

111

[128] S. Bharadwaj, J. Yin, B. Beckmann, and T. Krishna, “Kite: A family of heterogeneous

interposer topologies enabled via accurate interconnect modeling,” in Proc. Des. Autom.

Conf., 2020.

[129] G. Hellings, M. Scholz, M. Detalle, D. Velenis, M. de Potter de ten Broeck, C. Roda Neve,

Y. Li, S. Van Huylenbroek, S.-H. Chen, E.-J. Marinissen, A. La Manna, G. Van der Plas,

D. Linten, E. Beyne, and A. Thean, “Active-lite interposer for 2.5 & 3d integration,” in

Symposium on VLSI Technology (VLSI Technology), pp. T222–T223, 2015.

[130] M. Nabeel, M. Ashraf, S. Patnaik, V. Soteriou, O. Sinanoglu, and J. Knechtel, “2.5d root

of trust: Secure system-level integration of untrusted chiplets,” IEEE Transactions on Com-

puters, vol. 69, p. 1611âĂŞ1625, Nov 2020.

[131] P. Yang and M. Marek-Sadowska, “Making split-fabrication more secure,” in 2016

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–8, 2016.

[132] W. Hu, C. H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li, “An overview of

hardware security and trust: Threats, countermeasures and design tools,” Trans. Comp.-

Aided Des. Integ. Circ. Sys., 2020.

[133] T. Trippel, K. G. Shin, K. B. Bush, and M. Hicks, “ICAS: an extensible framework for

estimating the susceptibility of IC layouts to additive trojans,” in Proc. Symp. Sec. Priv.,

pp. 1742–1759, 2020.

[134] X. Guo, R. G. Dutta, J. He, M. M. Tehranipoor, and Y. Jin, “QIF-Verilog: Quantitative

information-flow based hardware description languages for pre-silicon security assessment,”

in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, pp. 91–100, 2019.

[135] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano, “Secure memory accesses

on networks-on-chip,” IEEE Transactions on Computers, vol. 57, no. 9, pp. 1216–1229,

2008.

[136] S. Evain and J. Diguet, “From noc security analysis to design solutions,” in IEEE Workshop

on Signal Processing Systems Design and Implementation, 2005., pp. 166–171, 2005.

112

[137] T. Boraten and A. K. Kodi, “Mitigation of denial of service attack with hardware Trojans in

NoC architectures,” in IEEE IPDPS, pp. 1091–1100, 2016.

[138] D. Costan, V., “S. intel sgx explained.,” tech. rep., 2016.

[139] M. R. Khandaker, Y. Cheng, Z. Wang, and T. Wei, “Coin attacks: On insecurity of enclave

untrusted interfaces in sgx,” in Proceedings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS ’20,

(New York, NY, USA), p. 971âĂŞ985, Association for Computing Machinery, 2020.

[140] J. Park, N. Kang, T. Kim, Y. Kwon, and J. Huh, “Nested enclave: Supporting fine-grained

hierarchical isolation with sgx,” in 2020 ACM/IEEE 47th Annual International Symposium

on Computer Architecture (ISCA), pp. 776–789, 2020.

[141] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,

T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys to the intel

SGX kingdom with transient out-of-order execution,” in 27th USENIX Security Symposium

(USENIX Security 18), (Baltimore, MD), p. 991–1008, USENIX Association, Aug. 2018.

[142] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware with intel SGX,” CoRR,

vol. abs/1902.03256, 2019.

[143] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre: Stealing intel

secrets from sgx enclaves via speculative execution,” in 2019 IEEE European Symposium

on Security and Privacy (EuroS P), pp. 142–157, 2019.

[144] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh, “Spectre returns! spec-

ulation attacks using the return stack buffer,” in 12th USENIX Workshop on Offensive Tech-

nologies (WOOT 18), (Baltimore, MD), USENIX Association, Aug. 2018.

[145] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding the prevailing secu-

rity vulnerabilities in trustzone-assisted tee systems,” in 2020 IEEE Symposium on Security

and Privacy (SP), pp. 1416–1432, 2020.

113

[146] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-aware cache re-

placement policy (sharp): Defending against cache-based side channel attacks,” in 2017

ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA),

pp. 347–360, 2017.

[147] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer, “Dawg: A defense

against cache timing attacks in speculative execution processors,” in 2018 51st Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 974–987, 2018.

[148] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Torrellas, “Invisispec:

Making speculative execution invisible in the cache hierarchy,” MICRO-51, p. 428âĂŞ441,

IEEE Press, 2018.

[149] M. Yan, J. Wen, C. W. Fletcher, and J. Torrellas, “Secdir: A secure directory to defeat

directory side-channel attacks,” in 2019 ACM/IEEE 46th Annual International Symposium

on Computer Architecture (ISCA), pp. 332–345, 2019.

[150] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: The case of

aes,” in Topics in Cryptology – CT-RSA 2006 (D. Pointcheval, ed.), (Berlin, Heidelberg),

pp. 1–20, Springer Berlin Heidelberg, 2006.

[151] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S. Capkun, “Thermal covert

channels on multi-core platforms,” in 24th USENIX Security Symposium (USENIX Security

15), (Washington, D.C.), pp. 865–880, USENIX Association, Aug. 2015.

[152] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,

“Flipping bits in memory without accessing them: An experimental study of dram distur-

bance errors,” ACM SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 361–372,

2014.

[153] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance for system-on-chip designs

with untrusted ips,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 7,

pp. 1515–1528, 2017.

114

[154] E. Witchel, J. Rhee, and K. Asanović, “Mondrix: Memory isolation for linux using mondri-

aan memory protection,” SIGOPS Oper. Syst. Rev., vol. 39, p. 31âĂŞ44, Oct. 2005.

[155] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D. Boneh,

J. Dwoskin, and D. R. Ports, “Overshadow: A virtualization-based approach to retrofitting

protection in commodity operating systems,” in Proceedings of the 13th International Con-

ference on Architectural Support for Programming Languages and Operating Systems, AS-

PLOS XIII, (New York, NY, USA), p. 2âĂŞ13, Association for Computing Machinery,

2008.

[156] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware extensions for strong

software isolation,” in 25th USENIX Security Symposium (USENIX Security 16), (Austin,

TX), pp. 857–874, USENIX Association, Aug. 2016.

[157] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos, “No need to hide: Pro-

tecting safe regions on commodity hardware,” in Proceedings of the Twelfth European Con-

ference on Computer Systems, EuroSys ’17, (New York, NY, USA), p. 437âĂŞ452, Associ-

ation for Computing Machinery, 2017.

[158] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis, B. Laurie,

P. G. Neumann, R. Norton, and M. Roe, “The cheri capability model: Revisiting risc in an

age of risk,” SIGARCH Comput. Archit. News, vol. 42, p. 457âĂŞ468, June 2014.

[159] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vtz: Virtualizing ARM trustzone,”

in 26th USENIX Security Symposium (USENIX Security 17), (Vancouver, BC), pp. 541–556,

USENIX Association, Aug. 2017.

[160] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory protection,” in Proceedings of

the 10th International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS X, (New York, NY, USA), p. 304âĂŞ316, Association

for Computing Machinery, 2002.

[161] B. W. Lampson, “Protection,” SIGOPS Oper. Syst. Rev., vol. 8, p. 18âĂŞ24, Jan. 1974.

115

[162] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. Andreozzi, A. Arme-

jach, N. Asmussen, B. Beckmann, S. Bharadwaj, G. Black, G. Bloom, B. R. Bruce, D. R.

Carvalho, J. Castrillon, L. Chen, N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin,

M. Fariborz, A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass,

A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera,

M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T. M. Jones, M. Jung, S. Kan-

noth, H. Khaleghzadeh, Y. Kodama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli,

M. Moreto, T. MÃijck, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L. E. Olson, M. Orr,

B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani, A. Sandberg, J. Setoain, B. Shin-

garov, M. D. Sinclair, T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas,

W. Wang, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and ÃL’der F. Zulian, “The

gem5 simulator: Version 20.0+,” 2020.

[163] D. Kadjo, J. Kim, P. Sharma, R. Panda, P. Gratz, and D. Jimenez, “B-fetch: Branch predic-

tion directed prefetching for chip-multiprocessors,” in 2014 47th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pp. 623–634, 2014.

116

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Memory System Performance Challenges
	Front-End Bottleneck
	Hardware Instruction Prefetching
	Decoupled Front-Ends
	Software Instruction Prefetching

	Security Challenges in Cache Coherent 2.5D Chiplet Environments
	Cache Coherence as a Vulnerable Subsystem
	Hardware Trojans

	Dissertation Statement
	Dissertation Organization

	Selecting and Evaluating Instruction Prefetchers with Complementary Behavior for the Design of a Composite Instruction Prefetcher
	Introduction
	Background and Motivation
	Modern Instruction Prefetchers
	Control-Flow-Graph Recreation
	Temporal Prefetchers
	Branch-Oriented Prefetchers

	Complementary Prefetchers
	Composite Prefetching

	Design and Implementation
	Composite Prefetcher Organization
	L1-I Cache Metadata and Subprefetcher Training
	Composite Prefetcher Operation

	Evaluation
	Methodology
	Hardware Constraints and Instruction Prefetcher Performance
	Budget Sensitive Prefetchers
	Low-Budget Friendly Prefetchers
	Budget Indifferent Prefetchers

	Selecting Composite Prefetcher Subprefetchers
	Full Results Comparison
	Subprefetcher Behavior
	Accuracy and Issued Prefetches
	Measuring Subprefetchers' Individual Contributions

	Related Work
	Hardware Instruction Prefetching
	Software Instruction Prefetching
	Composite Prefetching

	Summary

	Performance Effects of Software Instruction Prefetching in the Presence of an Aggressive Front-end
	Introduction
	Contributions

	Background and Motivation
	Decoupled Front-Ends
	AsmDB: Modern Software Instruction Prefetching
	Selecting High-Impact Instructions
	Inserting Software Instruction Prefetches
	AsmDB and Industry-Standard Decoupled Front-Ends

	Characterizing Front-End Behavior
	Scenario 1: Shoot Through
	Scenario 2: Stalling Head Instruction
	Scenario 3: Shadow Stalls
	FTQ State and Software Instruction Prefetches

	Methodology
	Front-End Analysis
	Code Bloat
	Changes in Stalling Head FTQ Entries
	AsmDB's Impact on the Occurrence of Scenario 2
	Software Instruction Prefetching Impact on Scenario 3

	Related Works
	Hardware Prefetching
	Software Prefetching

	Summary

	Hardware Trojans Capable of Exploiting Cache Coherence in 2.5D Chiplet Systems
	Introduction
	Design of Hardware Trojans Targeting Coherence Systems
	Coherence Protocols
	Basic Trojan Attacks on Coherence Systems
	The GETXspy Attack
	Working Principle
	Target System
	GETXspy Case Study

	Limitations of Basic Attacks

	Multistage Complex Hardware Trojans
	Target System
	Working Principle
	Operation
	Results

	Summary

	Coherence Countermeasures in Interposer-Based Systems
	Introduction
	Security Promise, Our Contributions

	Background and Contributions
	Interposer Technology
	Hardware Security
	IC Manufacturing
	Hardware Trojans
	Secure Interconnect Fabrics
	Hardware Support for Root of Trust

	Cache Coherence

	System Architecture Overview
	Chiplet and Interconnects Architecture
	Principles for System-Level Security
	Cache Coherence Protocol

	Threat Model
	Scope and Assumptions
	Threat Vectors

	System Design
	Microarchitecture
	CMC Overview
	CMC Types and Placement
	APU Table

	OS Support and Memory Organization
	Representing Memory Regions
	Memory Allocation and OS Modifications

	Implementation Details
	NoC Configuration
	Cache Coherence Protocol
	Protocol Compliance
	Design Cost

	Evaluation
	Methodology
	Security Analysis
	Threat Model Coverage
	Security Testing

	Single-Threaded Performance Impact
	Multi-Programmed Performance Impact

	Summary

	Conclusion
	REFERENCES

