
ENERGY-BASED AND MICROMECHANICS MODELS ON THE PREDICTION OF 

DISTRESSES IN FLEXIBLE PAVEMENTS 

A Dissertation 

by 

YADONG GUO 

Submitted to the Graduate and Professional School of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Chair of Committee, Bjorn Birgisson 
Co-Chair of Committee,  Dallas Little 
Committee Members, Goong Chen 

Marcelo-Javier Sanchez Castilla 
Head of Department, Zachary Grasley 

May 2023 

Major Subject: Civil Engineering 

Copyright 2023 Yadong Guo



ii 

ABSTRACT 

 

Flexible pavements consist of the asphalt concrete layer, base layer and subbase 

layer, and these three layers are made of asphalt concrete, unbound granular aggregates 

and compacted soils, respectively. In flexible pavements, there are two main distresses, 

fatigue cracking and rutting. Fatigue cracking only happens in the asphalt concrete layer, 

while rutting can occur in every layer. The distress development is related to the material 

properties in each layer. 

In Chapters 2-4, three energy-based models are proposed to predict the fatigue 

cracking in asphalt concrete and plastic deformation in asphalt concrete and unbound 

granular aggregates. In the fatigue cracking model, the damage evolution is connected 

with the mass specific volume of asphalt concrete, so the model is independent of the 

reference configuration. In the rutting model for asphalt concrete, the proposed model is 

incorporated into a framework. In this framework, the mechanical properties of asphalt 

concrete can be obtained from its microstructure and properties of its components. The 

effects of temperature, aging and seasonal changing of rutting resistance are considered. 

In the rutting model for unbound granular aggregates, the effects of moisture and 

microstructure of the material are considered. By doing numerical simulation and 

comparing model predictions with test data, the proposed models can capture the distress 

development accurately.   

In the fifth chapter, a micromechanics model for soils is proposed to predict the 

soil-water characteristic curve (SWCC), and this curve plays an important role on the 
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prediction of soils’ performance. The proposed model can account for the adsorption and 

capillary contributions on the accumulation of water in soils. The contact angle hysteresis 

is considered to capture the SWCC hysteresis, and the concept of equivalent grain radius 

is proposed to consider the effect of grain-size distribution. Every parameter in the model 

has a clear physical meaning and is measurable easily. The proposed model can capture 

the SWCC well, and model predictions show that positive and negative matric suction 

contribute to the shrinkage and swelling of expansive soils respectively. 

The last chapter summarizes the main findings. 
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1. INTRODUCTION  

 

The structure of a flexible pavement usually consists of three layers, the asphalt 

concrete layer, base layer and subgrade layer, as shown in Figure 1.1. These three layers 

are made of asphalt concrete, unbound granular materials and compacted soil, 

respectively. Fatigue damage and rutting are two main distresses in flexible pavements, 

and the distress development is related to the material properties in each layer. Fatigue 

cracking only happens in the asphalt concrete layer, while rutting can occur in each layer 

of the pavement. The development of these distresses is seasonal dependent, because 

asphalt concrete is temperature dependent. During summer, due to high temperature, 

asphalt concrete is soft, so it can bear less stress and transfer more stress into sublayers, 

and high stress in each layer can cause rutting. During winter, due to low temperature, 

asphalt concrete is stiff, so it can sustain more stress and transfer less stress to sublayers, 

and large stress in the asphalt concrete layer can cause fatigue cracking. Accurate 

prediction of these distresses plays an important role in the decision making about 

pavement design, maintenance and rehabilitation [1-5].  
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Figure 1.1 Typical cross section of flexible pavements. 

 

To predict the rutting and fatigue cracking in pavements, many stress or strain 

based models are proposed. However, the main drawback of these models is that they are 

not independent of loading modes, and the parameter values determined from controlled-

stress tests may not be applied to the prediction of material behavior under controlled-

strain loading. For example, if there are two asphalt concrete mixtures, and one has a high 

stiffness while the other has a low stiffness. Under the same controlled-stress loading, the 

mixture with a high stiffness suffers higher strain, so it fails ealier than the mixture with a 

low stiffness. Similarly, under the same controlled-strain loading, the mixture with a low 

stiffness suffers higher stress, so it fails ealier than the mixture with a high stiffness. Stress-

based models may not be able to capture the performance difference of these two mixtures 

under controlled-stress loading, and strain-based models may not be able to capture the 
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performance difference of these two mixtures under controlled-strain loading. Therefore, 

the distress development is related to both the stress level and the strain level. Compared 

with stress or strain based models, the energy based model can consider the effect of 

loading modes. 

The soil-water characteristic curve (SWCC) plays an important role on the 

prediction of soil performance. However, most existing SWCC models contains empirical 

parameters and these parameters do not have clear physical meanings. This may cause that 

soils with different components or gradation may correspond to different parameter 

values. Therefore, these model may performs well on the fitting of SWCC, they cannot be 

used to do accurate prediction. 

 

1.1. Research objectives 

The objectives of this research are as follows: 

(1) To predict fatigue cracking in asphalt concrete, a new mass specific 

volume-based viscoelastic damage model will be proposed. This model can be 

independent of the choice of reference configuration and consider the change of 

material resistance to damage under destructive loading.  

(2) To predict the plastic deformation in asphalt concrete, a new energy-based 

plasticity model is proposed and incorporated in a predictive framework. The mechanical 

properties of asphalt concrete can be obtained based on its microstructure and properties 

of its components. The effects of temperature, loading frequencies and aging can be 

considered. 
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(3) To predict the plastic deformation in unbound granular aggregates, a new 

energy-based plasticity model is proposed. This model can consider the effect of the 

material structure on the material performance. The coordination number of the primary 

load-carrying structure will be included to predict the evolution of the plasticity resistance. 

 (4) To predict the soil-water characteristic curve (SWCC), a new micromechanics 

model is proposed. In the model, the adsorptive and capillary contributions on the 

accumulation of water in soils will be considered. Every parameter will have a clear 

physical meaning and can be measured easily, so the model will perform well on the 

accurate prediction of SWCC. The model can consider the effect of microstructure and 

gradation of soils. It can also capture the SWCC hysteresis arising from the contact angle 

hysteresis. 
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2. A MASS SPECIFIC VOLUME-BASED VISCOELASTIC DAMAGE MODEL 

TO CHARACTERIZE FATIGUE DAMAGE IN ASPHALT MIXTURES* 

 

2.1. Introduction 

Fatigue cracking is one of the most common distresses in asphalt pavements 

and it only occurs in the asphalt concrete layer, if the base layer is not cement or 

asphalt stabilized. These cracks usually initiate from air voids and then propagate 

under traffic loading or a combination of traffic and environmentally induced loading. 

There are two types of fatigue cracking, bottom-up cracking and top-down cracking. 

Bottom-up cracking grows from the bottom of the asphalt concrete layer making its 

way upwards to the surface and lead to the pavement failure, while top-down cracking 

initiates at the surface and propagates downwards to the bottom. The majority of 

cracking reported in asphalt pavements has been found to be in the form of top-down 

fatigue cracking in many parts of the world [1-3]. To model damage evolution in 

asphalt mixtures, two approaches, fracture mechanics and continuum damage 

mechanics (CDM), are adopted widely. 

In fracture mechanics, it is generally assumed that materials already have a 

flaw or a crack before the load is applied. Thus, it focuses on the study of material 

response arising from crack initiation and propagation, which are governed by some 

                                              

* Guo, Yadong, Ibrahim Onifade, and Bjorn Birgisson. "A mass specific volume-based viscoelastic 

damage model to characterize fatigue damage in asphalt mixtures."  Construction and Building 
Materials 325 (2022): 126729. 
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fracture criteria. In order to consider the composition of mixtures and account for 

some measurable physical damage phenomena like micro- and macrocracks, some 

researchers [4-6] proposed a finite element simulation method incorporated with 

cohesive zone models based on fracture mechanics to predict the cracking behavior 

of asphalt mixtures. In these methods, cohesive zone elements are embedded between 

solid elements to model crack propagation. The linear viscoelastic constitut ive 

relationship is usually adopted for the solid elements, and the corresponding 

relaxation modulus is obtained by performing the creep test or frequency sweep test. 

For the cohesive zone element, its constitutive law, namely the relationship between 

the cohesive zone traction and the separation distance, is represented using an intrins ic 

or extrinsic cohesive zone model [7], and the corresponding fracture parameters are 

usually determined by performing some tests, like single-edge notched beam testing 

[8], tensile fracture testing [9] and semicircular bend testing [10]. However, there are 

some limitations with these methods. Firstly, the effect of the amount and distribut ion 

of microcracks in the asphalt concrete (HMA) layer on the cracking behavior need to 

be considered. There may be multiple microcracks distributed randomly in one cross 

section of the HMA layer. Their distribution may affect the layer behavior 

considerably and it is also time-consuming to build a finite element model containing 

such an amount of microcracks.  In addition, it is hard to predict the crack propagat ion 

direction a priori. Current research mainly focuses on Mode I cracking, and assumes 

its propagation direction will not change, but in reality, its direction can be affected 

by adjacent cracks or air voids. For example, it has been shown that wing cracks exist 
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in asphalt mixtures under compression [11].   Thirdly, cohesive zone models are not 

time- and temperature-dependent. The performance of asphalt mixtures will be very 

different under different temperature and loading rates, so as part of the asphalt 

mixture, the cohesive zone should also be time- and temperature-dependent. Also, the 

fracture tests used to determine fracture properties are performed at low temperatures 

to reduce viscoelastic effects, and this may make the fracture parameters less 

representative of intermediate temperature fracture. Lastly, the cohesive fracture zone 

is microscopic, while the parameter determination test is performed in the macro level, 

so the parameters determined may not fully represent the fracture properties in the 

cohesive fracture zone.  

Continuum damage mechanics (CDM) have been the most successful approaches 

in modelling the behavior of materials [12-17]. In CDM, the material is assumed to be an 

undamaged homogeneous continuum before the application of load, and some 

preexisting defects and air voids are not considered. The damage variable is defined 

as an internal state variable and it can cause stiffness reduction of the material, so even 

if the material is damaged, it is still a continuum but the stiffness is reduced. To 

characterize damage in asphalt mixtures, the extended elastic-viscoelast ic 

correspondence principle [18] is also adopted widely and the pseudo-strain is 

introduced to eliminate the viscoelastic effect, so the viscoelastic damage problem can 

be reduced to a brittle damage problem. With the help of this corresponde nce 

principle, some researchers [19, 20] considered the existence of cracks in their CDM 

models, and the damage variable is defined as a function of surface energy, number 



 

9 

of cracks and other material properties. However, if new surfaces or boundaries form 

inside the body, then the body will not be a continuum, so these models do not comply 

with basic assumptions of CDM. Some stress or strain based CDM models [21-25] 

were also proposed to predict damage in asphalt mixtures. For example, Kachanov 

[26] expressed damage in terms of the applied stress. Cozzarelli and Bernasconi [27] 

and Lee et al [28] expressed the damage in terms of the creep strain. Darabi et al [29] 

defined damage as a function of total strain and effective driving force. However, this 

can lead to contradictions between different modes of loading, when the damage is 

expressed in terms of strain or stress. For instance, compared with a stiff mixture, a 

soft mixture will fail first under a controlled-stress test, because it experiences a larger 

deformation, but under controlled-strain test, the stiffer mixture will suffer higher 

stresses and fail first. Therefore, a material property that is independent of the loading 

mode, amplitude or rate should be used to characterize fatigue damage resistance of 

asphalt mixtures [30]. Krajcinovic and Lemaitre [31-33] proposed an energy-based 

damage law to describe the damage initiation and failure under monotonic and cyclic 

loading modes. The energy-based damage law unifies many particular damage modes 

such as ductile, creep, fatigue, quasi-brittle damage with the critical damage densities 

related to meso-crack initiation. This damage model was adapted and further extended 

for the damage characterization in viscoelastic asphalt concrete materials by Onifade 

et al [34, 35], where the damage evolution was obtained through an energy density-

based damage surface and damage potential, so the damage variable could be 

expressed as a function of damage driving energy density and the corresponding 
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parameters could be obtained from a variety of fracture test geometries. In this 

formulation, the damage was assumed to be a function of strain, which is related to 

the choice the reference configuration. The ambiguity and subjectivity associated with 

the choice of the reference configuration may lead to a somewhat subjective 

evaluation of damage. In order to overcome this limitation, Murru et al [36, 37] 

defined damage directly as a function of density to predict damage, which is 

independent of the reference configuration. 

The main objective of this paper is to present a new mass specific volume -

based viscoelastic damage model which can be independent of the choice of reference 

configuration and consider the change of material resistance to damage under 

destructive loading, to predict the fatigue cracking in asphalt concrete or flexible 

pavements. In this work, it is assumed the deformation and rotation of asphalt concrete 

under loading are small, so small strain is used to represent the strain in the material. 

The organization of this paper is as follows. In the next section, kinematics and 

balance laws are introduced briefly, and then the constitutive formulation proposed is 

presented. Next, tests and methods used to determine the model parameters are 

presented. Importantly, all the parameters, including the resistance to damage at the 

reference configuration, can be determined from the creep test data. In the follow ing 

section, the validity of the proposed model is verified through modeling the material 

behavior observed from controlled-strain repeated direct tension (RDT) laboratory 

tests. This is followed by the modeling of a typical pavement under traffic loading to 
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illustrate the capacity of the model to simulate fatigue cracking in asphalt concrete 

pavements. Finally, some conclusions are summarized.      

 

2.2. Preliminaries 

2.2.1. Kinematics considerations 

Let x and X denote the position of a typical point at the current configuration and 

reference configuration, respectively. Thus, the displacement of this particle can be 

expressed as  

 = −u x X  (2.1) 

and the corresponding displacement gradient is  

 
( )  − 

= = − = −
  

u x X x
I F I

X X X
 (2.2) 

where F is named the deformation gradient and I is the identity tensor.  

The left Cauchy-Green tensor and right Cauchy-Green tensor are expressed as: 

 = T
B FF  (2.3) 

 = T
C F F  (2.4) 

The Almansi-Hamel strain and Green-St. Venant strain are defined respectively 

as: 

 
11 1

( ) [ ( ) ( ) ]
2 2

T T−    
= − = + −

   

u u u u
e I B

x x x x
 (2.5) 

 
1 1

( ) [ ( ) ( ) ]
2 2

T T   
= − = + −

   

u u u u
E C I

X X X X
 (2.6) 
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When the deformation and rotation are small, both strains can be approximated by 

small strain defined as follows:  

 
1

[ ( ) ]
2

T=  + ε u u  (2.7) 

 

2.2.2. Balance laws 

The movement of a body must follow some basic physical laws, such as the 

balance of mass, linear momentum and angular momentum. 

The balance law for mass can be expressed as 

 ( ) 0div
t





+ =


v  (2.8) 

where  is the mass density at current time, v is the velocity tensor, and div( ) is the 

divergence operator. 

The balance law for linear momentum can be expressed as 

 ( )
d

div
dt

 = +
v

T b  (2.9) 

where T is the Cauchy stress tensor and b is the body force tensor. 

For the balance of angular momentum, if there are no body or surface couples, the 

balance law can be expressed as: 

 T=TT (2.10) 

This means that the stress tensor should be symmetric. 

However, the balance laws can be applied to any material and are insufficient to 

describe the mechanical behavior of any material. To complete the specification of the 

mechanical properties of a material, the constitutive equation is needed. Different 
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materials have different constitutive relationships, so constitutive equations serve to 

distinguish one material from another. 

 
 

2.3. Viscoelastic damage constitutive model 

The generalized Maxwell model is used to represent the mechanical behavior 

of most viscoelastic materials and it includes a time-independent part with long term 

equilibrium stiffness E∞ and a series of time-dependent parts with different stiffness 

Ei and viscosities ηi. The total strain (ε) is the sum of an elastic strain ( e

i
ε ) and viscous 

strain ( v

i
ε ). For the viscoelastic damage material, the Helmholtz free energy can be 

defined as [34]: 

 
1

1
(1 )[ ( ) ( )]

2

n

i

d 

=

= − + − − v v

i i iε :E : ε ε ε :E : ε ε  (2.11) 

where d is the damage variable. 

The stress can thus be expressed as 

 

 
1

(1 )[ ( )]
n

i

d




=


= = − + −


 v

i iσ E : ε E : ε ε
ε

 (2.12) 

For the generalized Maxwell model, it has such properties as bellow: 

 

e

e

 = +


=

v

i i

v

i i i i

ε ε ε

E : ε η : ε
 (2.13) 

Therefore, the relationship between the total strain and the viscous strain can 

be obtained as 
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 ( )− =v v

i i i i
E : ε ε η : ε  (2.14) 

When the material is under constant strain, the stress can be expressed as 

 
/
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t

i
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where τi (=ηi/ Ei) is the retardation time. 

According to the thermodynamics, damage is work conjugate to its driving 

energy, and since damage can cause the dilatancy of materials, the driving energy of 

damage at a loading period [t1, t2] is defined as below: 

 
2

1

t

v
t

Y vdt=   (2.16) 

with  

 
2 2 2

1 2 3v   = + +  (2.17) 

where v is the mass specific volume and σi (i=1,2,3) are principal stresses.  

Therefore, damage can be defined as a power function of the driving energy as 

follows: 

 2

1( )
kY

d k
S

=  (2.18) 

where 1k  and 2k  are material constants and S is the resistance to damage and has the 

same unite as that of the driving energy.  

Under loading the resistance to damage of materials decreases with the 

increase of damage, and damage can cause the dilatancy of the material, so damage 

can be expressed as a function of mass specific volume and at every mass specific 
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volume, the resistance to damage is unique. Here we express S as an exponent ia l 

function of mass specific volume as below. 

 0

avS S e−=   (2.19) 

with 

 det [1 ( )]R Rv v tr v=   + F ε  (2.20) 

where S0 corresponds to the resistance to damage when the mass specific volume 

approaches to 0, a is a material constant, v and vR are the mass specific volumes at 

current and reference configurations respectively, det(F) is the determinant of 

deformation gradient and tr(·) means trace of a matrix. 

Therefore, the damage evolution function can be expressed as 

 2 11 1 2

1 2 ( ) ( )
kd k k YS YS YS S−− − −= −  (2.21) 

 

2.4. Materials and testing 

Two types of asphalt mixtures were tested, designated as Nustar and Valero 

mixtures, respectively. Each type of mixture was laboratory prepared and compacted. 

These two mixtures use different types of asphalt binders, Nustar binder and Valero 

binder respectively, but use the same aggregate. The aggregate consists of Hanson 

limestone shipped from New Braunfels, Texas and it satisfies the specificat ion 

requirements of Texas Department of Transportation (TxDOT). The gradation of the 

aggregate was determined based on a Type C (coarse surface) dense gradation 

specifies by TxDOT. The mixtures were mixed following the same mixture design 

procedure specified by TxDOT. Cylindrical specimens with 152 mm in diameter and 

178 mm in height were cast, from which cylindrical cores of 102 mm diameter were 
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extracted to ensure that the specimen is homogeneous. The cores were then cut to 

lengths of 150 mm to remove irregularity. The target air void contents are 4.0% and 

7.0%. 

Two types tests, the creep test and controlled-strain repeated direct tension 

(RDT) test, were performed on these specimens, and the creep test is a part of the 

creep and step-loading recovery (CSR) test. For the creep test, a nondestructive test 

with a constant low load level was performed first to obtain the material properties, 

like the creep compliance, and then a destructive test with a high load level was 

performed on the same specimen to study the mechanical behavior of the damaged 

material. For the RDT test, a destructive RDT test was performed on these undamaged 

specimens, and the loading frequency is 1 Hz.    

These tests were performed using the Material Test System (MTS) on unaged 

specimens at different temperature, including 10 ºC, 20ºC and 30 ºC. The specimen is 

glued to a pair of end-caps through which the tensile load is applied. To apply a pure 

direct load while avoiding possible bending moment to the specimen, the loading 

frame of the MTS should be aligned. Three axial linear variable differentia l 

transformers (LVDTs) are mounted 120 degrees apart around the specimen surface to 

measure the axial deformation of the specimen. The gage length of the axial LVDT is 

90 mm. The average measurement of the three axial LVDTs is used as the axial 

deformation of the test specimen. 

It should be noted that all the test data used in this work are from a 

previous study [38]. 
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2.5. Model calibration 

All the material parameters in the model can be determined from the creep test 

data. Firstly, we determined the creep compliance or relaxation modulus from the 

nondestructive creep test data. Then, by determining the initial resistance to damage 

of specimens with different air void contents, the relationship between resistance to 

damage and mass specific volume can be obtained. Finally, we fitted model 

predictions to the destructive test data, the rest parameters, k1 and k2 in Equation 2.18, 

were obtained.   

 

(1) Determination of mixture viscoelastic properties 

For asphalt concrete, it is easy to carry out a constant-stress creep test while a 

constant-strain relaxation test is difficult to run. However, the relaxation modulus is 

used more widely in the performance prediction of asphalt concrete, such as in the 

finite-element simulations and other computational programs. The relaxation modulus 

for linear viscoelastic materials can be determined based on the creep test results using 

the interconversion law as follow. 

 0 0
2

1
( ) ( )E s J s

s
=   (2.22) 

where  𝐸0(𝑠) and 𝐽0̅(𝑠) are the Laplace transform of the relaxation modulus and the 

creep compliance respectively, and s is the transform parameter. The Laplace 

transform or inverse Laplace transform of a function can be easily solved with the 

help of some programming software, like MATLAB. The corresponding relaxation 

modulus parameters are summarized in Table 2.1. 
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Table 2.1 Coefficients of Relaxation Modulus Obtained from Test Data 

Binder 

type 

Aging 

periods 

Air 

void 

content 

Temperature 
E∞ 

(GPa) 
E1(GPa) 

E2 

(GPa) 1  (s) 
2 (s) 

Nustar 
0 

months 

4% 

10 ºC 2.131 12.47 3.673 0.95 25.46 

20 ºC 0.59 6.55 1.39 0.82 15.32 

30 ºC 0.1961 3.721 0.6528 0.5112 8.477 

7% 

10 ºC 2.636 6.653 4.814 1.504 22.37 

20 ºC 0.9828 10.13 2.191 0.5191 13.96 

30 ºC 0.3717 3.842 0.606 0.769 11.95 

Valero 
0 

months 

4% 
10 ºC 3.821 13.01 4.759 0.6209 15.05 

20 ºC 0.7765 7.693 1.909 0.7515 15.36 

7% 
10 ºC 2.271 19.37 4.303 0.3702 15.58 
20 ºC 0.4305 14.08 1.339 0.3344 13.87 

 

(2) Determination of resistance to damage 

In Equation 2.19, there are two parameters, S0 and a, so their values can be 

determined using two groups of test data, namely the initial resistance to damage, 

which is the resistance to damage at the reference configuration, of specimens with 

two air void contents, 4% and 7%. Here we assume that the density of asphalt concrete 

without air voids is 2700 kg/m3, so the corresponding mass specific volume is 3.7×10 -

4m3/kg. Therefore, for specimens whose air void content is 4%, their mass specific 

volume at the reference configuration is 3.848×10-4m3/kg, while for the specimen 

whose air void content is 7%, the value is 3.959×10-4m3/kg. Then, to obtain the value 

of the initial resistance to damage, we simulated its viscoelastic behavior under the 

same age, temperature and load level as that in the corresponding destructive test, and 

the simulation result is compared with the test data. As shown in Figure 2.1, the 

behavior of unaged asphalt concrete under a load level of 109.8 kPa at 20ºC is 

simulated without considering damage, and the simulation result is compared with the 

test data. Since damage is the only contribution to the difference between the red curve 
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and the blue curve, the damage initiation position is defined as the position where the 

two lines begin to diverge. Once the damage initiation position is be determined and 

the corresponding damage initial resistance to damage can be obtained using stress 

and strain test data. The values of S(vR) under different conditions are represented in 

Table. 3. It can be seen that Valero mixtures have a higher resistance to damage than 

that of Nustar mixtures under the same condition, and when the change of mass 

specific volume is the same, a stiffer mixture typically sees a larger decrease of S(vR). 

Then, by fitting the test data of the specimens with the same binder but different air 

void contents, the relationship between the resistance to damage and the mass specific 

volume at the specific condition can thus be determined. Figure 2.2 shows the 

evolution of resistance to damage of unaged asphalt concrete with Nustar binder at 

200C and the coefficients for the evolution of resistance to damage are summarized in 

Table 2.2. 
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Figure 2.1 Determination of Damage Initiation Position. The creep tension test 

performed on the unaged asphalt mixture with 4.0% air void and a load level of 

109.8kPa at 20ºC. 
 

 

Figure 2.2 Evolution of resistance to damage of unaged asphalt concrete with Nustar 

binder at 20ºC. 



 

21 

Table 2.2 Coefficients for the Evolution of Resistance to Damage  
Binder 

type 

Aging 

periods 
Temperature 

S0 

(Pa·m3/kg) 
a 

Nustar 
0 

months 

10 ºC 0.0139 -5462 

20 ºC 0.1289 -15670 

30 ºC 0.0245 -12260 

Valero 
0 

months 

10 ºC 0.4977 -13370 

20 ºC 0.3563 -17630 

 

(3) Determination of damage parameters  

After determining the relaxation modulus and the relationship between the 

resistance to damage and mass specific volume, we can obtain the parameters, k1 and 

k2, by fitting the test data. The fits obtained for asphalt concrete under different 

conditions are presents in Figures 3-6. They show that the model fits the experime nta l 

results very well at different conditions and the corresponding values of k1 and k2 are 

summarized in Table 2.3. It can be seen that the value of k2 increases with the increase 

of stiffness, and this shows the damage develops faster in a stiffer mixture, because  

compared with that in the mixture at low temperature, more energy in the mixture at 

high temperature is dissipated due to viscoelasticity, so less energy is used to cause 

damage.   

In this work, the nominal configuration is adopted to build the damage model. 

However, many researchers prefer to build CDMs in the effective configuration and 

use the concept of effective stress, and define the damage variable as the ratio of the 

lost cross section area to the initial area [39, 40], so under uniaxial loading, the stress 

on the lost area is zero, while the effective stress is uniformly distributed on the intact 

area. In this case, the values of state variables will not be continuous in the material 
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and the material is not a continuum anymore, so this kind of definition of damage is 

problematic. Therefore, CDMs should be built in the nominal configuration.  

 

Table 2.3 Damage Evolution Parameters Obtained from Test Data 

Binder 
type 

Aging 
periods 

Air void 
content 

Temperature 
Load 
Level 

(kPa) 

S(vR) 
(Pa·m3/kg) 

k1 k2 

Nustar 
0 
months 

4% 

10 ºC 384.2 0.0017 0.17 0.47 

20 ºC 109.8 3.10×10-4 0.11 0.40 
30 ºC 27.4 2.18×10-4 0.19 0.37 

7% 

10 ºC 653.2 0.0016 0.06 0.43 

20 ºC 103.4 2.61×10-4 0.11 0.35 
30 ºC 81.6 1.91×10-4 0.06 0.32 

Valero 
0 

months 

4% 
10 ºC 544.3 0.0029 0.11 0.63 

20 ºC 130.6 4.04×10-4 0.12 0.48 

7% 
10 ºC 435.5 0.0025 0.17 0.51 

20 ºC 76.2 3.32×10-4 0.21 0.39 

 

 

Figure 2.3 Comparison between model predictions with creep tension test data on 

unaged Nustar asphalt mixtures (4% air void content) at different temperatures. 
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Figure 2.4 Comparison between model predictions with creep tension test data on 

unaged Nustar asphalt mixtures (7% air void content) at different temperatures. 
 

 

Figure 2.5 Comparison between model predictions with creep tension test data on 

unaged Valero asphalt mixtures (4% air void content) at different temperatures. 
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Figure 2.6 Comparison between model predictions with creep tension test data on 

unaged Valero asphalt mixtures (7% air void) at different temperatures. 
 

2.6. Model verification 

(1) Cyclic loading 

After obtaining the values of all the model parameters, we simulated the behavior 

of asphalt concrete under controlled-strain RDT to validate the accuracy of the proposed 

viscoelastic damage model. All the simulations in this work are performed using 

COMSOL Multiphysics. The weak form partial differential equation (PDE) method can 

be used to implement the viscoelastic constitutive model and details about this method can 

be found in a previous study [41]. In addition, the previous solution operator is used and 

two additional features are included in the model tree to implement the damage model. 

The first feature is the Domain ODEs and DAEs interface, and it is added to the model to 

keep track of the maximum value of damage, because in this work the healing effect of 
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asphalt concrete is not considered and the damage in the material under loading does not 

decrease. The second feature is the Previous Solution feature and it is added to the Time-

Dependent Solver.  

Figures 2.7(a) and 2.8(a) show the test data of strain measured and the damage 

predicted using the proposed model, and it can be seen that damage increases 

monotonically under cyclic loading, and compared with stress, the strain contributes more 

to the development of damage, because once the volumetric energy reaches the resistance 

to damage, damage will increase with increasing strain, even though the corresponding 

stress has shown decrease. It is because the driving energy we defined is related to strain 

energy density. Figures 2.7(b) and 2.8(b) show the comparisons between the model 

predictions and measured stress data for the asphalt mixtures with two air void content 

and two binders. It can be seen that the predicted stress matches the test result well, and 

the reason why the match is not perfect may be that plastic deformation occurs in the 

material, which is not represented in the proposed model. Figures 2.7(c) and 2.8(c) show 

the damage evolution in the material, and it can be seen that the rate of damage increases 

first and then decrease in each cyclic loading period and the damage increment in the first 

loading cycle is largest. These findings show that the proposed model can predict the 

mechanical behavior of asphalt concrete reliably.   
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                          (a)                                                               (b)  

 

                                                          (c) 

Figure 2.7 Behavior of unaged Nustar asphalt mixture (7% air void content) at 20ºC 

in the RDT test. (a) Measured strain data, (b) comparison between measured stress 

data and model predictions, (c) Damage evolution predicted. 
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(a)                                                                 (b) 

 

(c )  

Figure 2.8 Behavior of unaged Valero asphalt mixtures (4% air void content) at 20ºC 

in the RDT test. (a) Measured strain data, (b) comparison between measured stress 

data and model predictions, (c) Damage evolution predicted. 
 

(2) Modeling of an actual pavement with repeated loads  

Top-down fatigue cracking is a major form of premature degradation and 

failure in flexible pavements, especially thick flexible pavements [42]. In order to 

demonstrate that the model proposed is able to capture the fatigue cracking of asphalt 

concrete pavements under traffic loading, a three-layer 2-D axial symmetric model is 
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adopted to idealize the pavement. The dimensions of the pavement are shown in 

Figure 2.9, and it can be seen that the thickness of the asphalt concrete layer, base 

layer and subgrade layer are 200mm, 750mm and 350mm respectively. The radius of 

the representative pavement structure is 1400mm, and the radius of the contact area 

between the tire and pavement is 140mm. For boundary conditions, we assume the 

bottom edge of the pavement is fixed, and the right edge is constrained in the r 

direction but free in the vertical direction. The structure is axial symmetry about the 

left edge (r=0), and on the surface of the pavement, a traffic loading applied is in the 

form of sinusoidal wave with the amplitude of 600 kPa, as shown in Figure 2.10. In 

addition, the HMA layer is modelled using the constitutive relationship proposed in 

this work and the material properties are the same as that of unaged Nustar asphalt 

mixtures with 4% air void contents at 200C as shown in Tables. 1, 2 and 3. The 

unbounded base and subgrade layers are assumed to be elastic. The corresponding 

resilient moduli are 275 MPa and 100 MPa respectively and the Poisson’s ratio are 

275MPa and 0.24 respectively.  
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Figure 2.9 Finite-element model of asphalt pavement with associated boundary 

conditions. 

 

 

Figure 2.10 Pressure applied on the surface of the pavement. 
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The simulation is performed using COMSOL Multiphysics and the axial 

symmetry of the structure is considered to save memory and computation time. The 

pavement behavior after 500 cycles of loading is simulated and the simulation results 

are shown in Figures. 2.11-2.13. Figure 2.11 represents the damage distribution in the 

pavement, and it can be seen that cracks could happen at the bottom of HMA under 

the wheel and then propagate upwards leading to bottom-up cracking, and top-down 

cracking as a major form of failure in thick flexible pavements happens on the surface 

near the wheel. Figure 2.12 shows the driving energy of damage distribution in the 

pavement during the 500th cycle of loading, and it shows that the driving energy is 

high in the bottom-up and top-down cracking areas, and the highest driving energy 

happens in the top-down cracking area. Figure 2.13 represents the vertical stress 

distribution in the pavement during the 500th loading cycle and the result shows that 

the largest compressive stress happens on the contact surface between the pavement 

and tire, and with depth the stress decays. All these findings show that the proposed 

model can characterize fatigue cracking reasonably.   
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Figure 2.11 Damage distribution in the pavement when time=1000s. 
 

 

Figure 2.12 Distribution of the driving energy of damage in the pavement when 

time=999s (Unit: Pa). 
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Figure 2.13 Vertical stress distribution in the pavement when time=999s (Unit: Pa).  

 

2.7. Summary and conclusions       

This paper presents a new viscoelastic damage model to accurately simula te 

damage of asphalt mixtures under destructive loading. The damage evolution function 

is expressed as a power function of the mass specific volume, which is independe nt 

of reference configuration. The resistance to damage is defined as an exponent ia l 

function of mass specific volume to represent decrease of resistance to damage with 

increase of damage, because damage can cause the dilatancy of the material and 

increase the mass specific volume. 

All the parameters in the model can be determined from creep tests. 

Nondestructive creep test data are used to obtain the relaxation modulus, while 

destructive creep test data are used to determine the change of resistance to damage 



 

33 

with mass specific volume, and other parameters. In addition, the destructive RDT 

test were performed and the corresponding test data are used to verify the validity of 

the model. It shows that the rate of damage increases first and then decreases in each 

cyclic loading period and the first loading cycle sees the largest damage increment. 

The simulation of pavement behavior under traffic loading shows that the proposed 

model can capture fatigue cracking in the pavement well and in thick flexible 

pavements, both top-down cracking and bottom-up cracking occurs, but top-down 

cracking is dominant. 
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3. AN ENERGY-BASED PLASTICITY MODEL TO PREDICT THE RUTTING 

PERFORMANCE OF FLEXIBLE PAVEMENTS  

 

3.1. Introduction 

Rutting is one of the main distresses in flexible pavements and accurate prediction 

of rutting plays an important role in the decision making about pavement design, 

maintenance and rehabilitation [1-5]. Rutting arises from the accumulation of plastic 

deformation under traffic loading, and plastic deformation can occur in each layer of the 

pavement, including the asphalt concrete layer, base layer and subgrade layer.  Apart from 

traffic loading, the pavement structure and the microstructure of pavement materials, the 

rutting performance of flexible pavements is also affected by temperature [6-8]. It is 

because asphalt concrete is temperature-dependent. During summer, due to high 

temperature, asphalt concrete is soft, so it can bear less stress and transfer more stress into 

sublayers. However, during winter, due to low temperature, asphalt concrete is stiff, so it 

can sustain more stress and transfer less stress to sublayers. This explains why rutting 

mainly happens in summer. 

To predict the rutting development in flexible pavements, many empirical models 

are proposed. For example, many researchers [9-14] built rutting models based on the 

experimental data and correlate rut depth with the number of loading cycles. However, 

these models did not consider the effect of material properties. Once one component 

property is changed, existing relationship in these models will not work, so prediction on 

materials’ behavior should be based on fundamental material properties, instead of 
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performance indicators [15]. Some studies tried to correlate rutting in the asphalt concrete 

layer with the property of asphalt binder based on experimental data. For example, Zhang 

et al. [16] tried to use * /G   (where *G is the complex modulus and   is the phase angle 

of asphalt binder) and Jnr (nonrecoverable creep compliance of asphalt binder) 

respectively to predict the rut depth in the asphalt concrete layer, and it was found that Jnr 

has a higher correlation with the Hamburg wheel-tracking test data and the repeated load 

permanent deformation test data. However, the deterioration mechanism of in-service 

pavements, like aging, may not be represented well by laboratory tests.  In this case, some 

studies tried to build rutting models based on field data. For example, Chen and Tsai [17] 

correlated * /G   with the rutting in the asphalt concrete layer of in-service pavement 

sections. Walubita et al. [18] tried to correlate the binder properties determined based on 

the multiple stress creep and recovery test, with the rutting performance in the laboratory 

and field. However, the permanent deformation of asphalt concrete is affected by many 

factors, like the gradation, and stiffness of aggregates [19-22]. For example, it is found 

that fine aggregates and small maximum aggregate size is good for the rutting resistance 

in concrete [23, 24]. Another drawback of the models mentioned above is that they can 

hardly reflect the mechanism of plastic development in the material. 

Apart from empirical models, mechanical models based on plasticity theory are 

wildly used to predict rutting in flexible pavements. Some researchers [25-29] built stress-

based yield models, and the yield surface function was expressed as a function of stress 

invariants. Once the stress surpasses the initial yield surface, plastic deformation occurs. 

The evolution of the yield surface is governed by the hardening parameter, and the 
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hardening parameter was usually expressed as a function of temperature and strain rate to 

capture the temperature- and frequency- dependent properties of asphalt concrete. Apart 

from stress-based models, energy-based plasticity models have been used to predict the 

distress development in asphalt concrete [30-35]. In the energy-based models, the energy 

resistance for asphalt concrete under different loading frequencies is the same, so one 

energy-based plasticity criterion can be used to predict plastic deformation of the material 

under various loading frequencies. Compared with the stress-based plasticity model, one 

advantage of the energy-based plasticity model is that it can simplify the modelling 

process and can be applied easily, because in the stress-based plasticity models, the 

coupling of loading rate and temperature sometimes have to be considered and this can 

make the determination of material parameters complicated. However, the models 

mentioned above were verified based on experimental data instead of the field data, and 

most of these models did not consider the effect of aging. Huang et al. [36] proposed an 

energy-based plasticity model and incorporated it to a predictive framework to predict the 

rutting performance of flexible pavement. In this framework, the effect of aging, 

temperature and loading rate were considered. To verify the validity of the predictive 

framework, field test data obtained from WesTrack project [37] was adopted. In the 

WesTrack project, the corresponding full-scale test was performed near Reno, Nevada. 

The precipitation in the site is less than 100 mm per year and there is no frost penetration, 

so the effect of precipitation on the rutting performance is negligible. Furthermore, the 

pavement structure was well designed to guarantee that plastic deformation mainly 

occurred in the asphalt concrete layer. Therefore, the project is well suited for evaluating 
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the effect of the composition and property of asphalt concrete on the pavement 

performance. However, in the energy-based plasticity model [36], the plasticity resistance 

was expressed as a function of time. Although it can reflect the effect of aging, it cannot 

reflect seasonal variation of the resistance, and the plasticity resistance in winter is usually 

higher than that in summer. 

In this work, a new plasticity model is proposed and incorporated in a framework 

to predict the rutting in the asphalt concrete layer of pavements. The effects of loading 

frequencies, temperature and aging are considered, and the plasticity resistance is 

expressed as a function of the scalar modulus to capture the seasonal variation of the 

resistance. This work is organized as follows.  In next section, a new energy-based 

plasticity model is proposed. Then, the plasticity model is incorporated into a predictive 

framework, and the mechanical properties of asphalt concrete can be determined based on 

its microstructure and properties of each component. Next, the WesTrack project is briefly 

introduced and the field data from this project are used to verify the plasticity model and 

the predictive framework. The last section summarizes the main findings. 

 

3.2. Model formulation 

Asphalt concrete is a temperature- and frequency- dependent material, in this 

section, an energy-based plasticity model is proposed to predict the behavior of asphalt 

concrete under different frequencies. Then, the plasticity model is incorporated into a 

predictive framework, and the framework can account for the effect of temperature, 

frequencies and aging on the behavior of the asphalt concrete layer in flexible pavements. 
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3.2.1. Energy-based plasticity model 

For asphalt concrete, under different loading frequencies, its behavior and yield 

stress are different. To capture the plastic behavior under different loading frequencies, an 

energy-based plasticity model is proposed. When the driving energy for plasticity exceeds 

a critical energy threshold, plastic deformation happens. Before the introduction of the 

driving energy, an energy tensor is first defined as 

 
eq=W σ  (3.1) 

with 

 2 2 2

1 2 2 3 1 2

2

( ) ( ) ( )

2(1 )
eq

     




− + − + −
=

+
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where σ  is the stress tensor, eq  the equivalent strain, 1 , 2  and 3 principal strain, and 

v the Poisson’s ratio.  

Similar to the stress decomposition, the energy tensor can also be decomposed into 

volumetric part and deviatoric part as below. 

 1

3

D V D

ij ij ij ij ij ijW W W W W = + = +  (3.3) 

where D

ijW  and V

ijW  are the deviatoric and volumetric energy tensor components 

respectively, and 
ij  is the Kronecker delta. 

Since for pressure-dependent materials, their plasticity is mainly driven by the 

deviatoric driving energy and is related to the volumetric driving energy, the driving 

energy for plasticity is expressed as the sum of these two types of driving energy as below.  
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where d

pY  and v

pY  are the deviatoric and volumetric driving energy respectively, and a is 

called the pressure sensitivity parameter and it is used to consider tension and compression 

stress states. It is defined as below. 
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where  ( )tr   means the trace of a matrix. 

Since the initial resistance to plasticity can change with temperature and aging of 

the asphalt binder, the initial resistance to plasticity is defined as a function of scalar 

modulus as below. 

 
0 MY Ap S=   (3.6) 

where Ap is a material parameter, and SM is the scalar modulus of materials. The scalar 

modulus is expressed as the ratio of linear viscoelastic stress and the pseudo-strain given 

as: 
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where Ei and 𝐸∞ correspond to the moduli in the generalized Maxwell model, and 𝜌𝑖  is 

the corresponding relaxation time. 
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To consider the load-dependency, a load-dependency parameter is introduced in 

the energy-based yield criterion, which is defined as: 

 

0 0

1 0

pL

p i

s

Y W
f P

Y W

 
=  − −  

 
 (3.9) 

where Wi the axle load of ith axle in kN, Ws0 equals 80 kN and is the standard axle load, Lp 

the load-dependency parameter, and P is the plasticity variable and it is defined in 

Equation 3.10.  

To facilitate the implementation of the plasticity model, some simplification is 

needed. When f is larger than 0, the vertical plasticity flow rule is defined as below. 
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where Kp and Np are material parameters. 

The rate form of the plastic strain is defined as 

 
p eq eqP P  = +  (3.11) 

Therefore, the total vertical strain is as below. 

 

0

t

p pds =   (3.12) 

   

3.2.2. Temperature- and frequency- dependent predictive framework 

To consider the effect of temperature and aging on the rutting of pavements, a 

short-term aging model [38] and a long-term aging model [39] is first adopted to predict 

the viscosity of asphalt binder. Then, a complex modulus model for asphalt binder [2] is 
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used to obtained the dynamic modulus and phase angle based on the viscosity obtained in 

the first step. Next, a micromechanics model [40] is used and the complex modulus of 

asphalt concrete can be obtained based on the volume fraction and properties of each 

component in the mixture. Finally, the rutting of pavement can be predicted using the 

plasticity model proposed based on the property of asphalt concrete. The flowchart of 

rutting prediction is shown in Figure 3.1, and all the material properties needed as model 

inputs are summarized in Table 3.1. In this work, we assume that plastic deformation 

mainly happens in the asphalt concrete layer. 

 

Table 3.1 Material properties needed as model inputs of asphalt concrete  

Maximum specific gravity Specific gravity of bitumen 

Absorbed bitumen content Percentage of air voids 

Voids in mineral aggregates Binder type 

Bulk specific gravity of aggregates Bitumen content 

Voids filled with asphalt Aggregate gradation 

Viscosity temperature susceptibility parameters Temperature 
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Figure 3.1 Flowchart for the rutting prediction of pavements. 
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3.3. Results and discussion 

In this section, data from the WesTrack project [37] are adopted to verify the 

validity of the predictive framework, so we first do a brief introduction about the project, 

and then the predictive framework is verified based on the collected data. 

 

3.3.1. Brief introduction about the WesTrack project  

The main objective of WesTrack project was to evaluate the direct effects of 

deviation of materials and construction properties on hot mixed asphalt (HMA) pavement 

performance in a full-scale, accelerated field test. The test track was designed and 

constructed between October 1994 and October 1995. Traffic was initiated in March 1996 

and was completed in February 1999.  Two types of distress of the HMA, rutting and 

fatigue cracking, were well monitored and documented.  

The structure of the test pavement was composed of four layers, an HMA layer of 

150 mm, a base layer of 300 mm, a subbase layer of 460 mm and a subgrade layer of 150 

mm. The reason why such layer thicknesses were selected was to reduce or prevent the 

permanent deformation in the base, subbase and subgrade layers. Thus, rutting mainly 

occurred in the HMA layer. To apply load on the pavement, four triple-trailer trailers 

pulled by 4 driverless tandem axle class 8 tractors were used.  The cold inflation pressure 

of the tires was 690 kPa. Each axle of the vehicle train was loaded to 89 kN, except for the 

front axle which was 53 kN. The test speed around the track was 64 km/h, and the vehicle 

combinations were operated an average of 15 hours per day over the 2.5-year period.  
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In the test pavement, there were totally 26 test sections and the main difference 

was the composition of the asphalt concrete used in the HMA layer. One type of asphalt 

binder (PG 64-22) and one type of aggregates (partially crushed water-deposited gravel) 

were used to prepare the asphalt concrete, but there were 3 different aggregate gradations, 

3 different asphalt binder content and 3 different air void contents in the asphalt concrete 

as shown in Table 3.2. The resilient modulus of subgrade layer was determined by doing 

falling weight deflectometer (FWD) tests and FWD measurements were taken at three 

different times prior to the initiation of track construction. The last two rounds of FWD 

data collection were in response to the slight alignment shifts of the track. The 

corresponding resilient modulus is as shown in Table 3.3. The corresponding resilient 

modulus tests for the base layer material and subbase layer material were performed in the 

laboratory and the corresponding values were documented [37].   

 

Table 3.2 Experimental design for original 26 WesTrack sections 

Design 
air void 

content 

 

Aggregate gradation designation 

Fine Fine plus Coarse 

Design asphalt content 

Low Opt. High Low Opt. High Low Opt. High 

Low - 04 18 - 12 09/12 - 23 25 

Medium 02 01/15 14 22 11/19 13 08 05/24 07 

High 03/16 17 - 10 20 - 26 06 - 

*Numbers shown in each cell represent WesTrack section numbers. 

*Sections whose section numbers are in blue are used for model calibration in this work. 
 

Table 3.3 Summary of the backcalculated resilient modulus for subgrade materials  

Test date 
Resilient modulus (kPa) 

North tangent South tangent Combined 

October 1994 113,492 102,985 108,239 

February 1995 40,182 32,858 36,520 

April 1995 68,618 25,335 46,977 
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To collect data in the pavement, strain gages were installed in the HMA layer of 

each test section to measure the deformation in the HMA layer, and thermocouple 

temperature gages were installed in section 19 after construction at depths of 12.7 mm, 

38.1 mm, 88.9 mm, 114.5 mm and 139.7 mm in the HMA layer. A device was also 

installed to measure permanent deformation at the interface of the subbase layer and base 

layer and at the interface of the base layer and HMA.  

    

3.3.2. Model calibration and verification 

To determine the parameters in the plasticity model, test sections are divided into 

two parts. 13 sections are used for model calibration and these sections include all the 

three different aggregate gradations, as shown in Table 3.2. The remaining sections are 

used for model verification. The time frame of material property predictions starts from 

October 1995 when the original construction was finished to March 1999 when all traffic 

stopped, while the time frame of rutting prediction starts from January 1996 when all 

traffic started to March 1999. Figure 3.2 shows the change of temperature of the pavement 

at the depth of 12.7 mm and Figure 3.3 shows the change of scalar modulus of section 4 

at the depth of 12.7 mm. It can be seen that with the increase of temperature, the value of 

scalar modulus decreases. This is why we define the resistance to plasticity as a function 

of scalar modulus. During winter, low temperature can lead to a high scalar modulus, and 

a high scalar modulus corresponds to high resistance to rutting, so this captures that rutting 

rarely happens in winter.  
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Figure 3.2 Temperature of the WesTrack pavement at the depth of 12.7 mm from 

October 1995 to March 1999. 

 

 
Figure 3.3 Scalar modulus of WesTrack section 4 at the depth of 12.7 mm from 

October 1995 to March 1999. 
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Figure 3.4 shows the relationship between the material parameters and scalar 

modulus. The scalar modulus corresponds to that of the 3635th hour after the construction 

of the pavement and the corresponding temperature at the depth of 12.7 mm is 49.5 °C. It 

can be seen from Figure 3.4(a) that Ap increases with the increase of the scalar modulus. 

This is because the resistance to rutting is a product of Ap and scalar modulus and it 

increases with the increase of scalar modulus or decrease with temperature. From Figures 

4(a) and 4(b), it can be seen that Kp and Np have a negative relationship with the scalar 

modulus. It is because Kp and Np are related to the rate of rutting, and the rate of rutting 

decreases with the increase of scalar modulus or the decrease of temperature.   
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                                 (a)                                                                   (b) 

 

(c) 

Figure 3.4 Relationships between material parameters and scalar modulus at 18.3ºC. 

 

Then, the relationships between material parameters and scalar modulus obtained 

during model calibration are used to do model verification. Figure 3.5 shows the 

comparison between test data and model predictions. It can be seen that the proposed 

model can capture the rutting of pavement well and it applies to pavements with different 

aggregate gradations. 
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(a) Sections with fine aggregate gradation 

 

Section1 Section 3 

Section 4 Section 14 

Section 15 Section 18 
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(b) Sections with fine plus aggregate gradation 

 

  

Section 9 Section 13 

Section 21 

Section 5 Section 6  
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(c) Sections with coarse aggregate gradation 

Figure 3.5 Comparison between WesTrack test data from January 1996 to March 

1999 and model predictions for different test sections. 

   

3.4. Conclusions 

A new energy-based plasticity model is proposed and incorporated into a 

predictive framework to predict the rutting performance in the asphalt concrete layer of 

flexible pavements. The effect of loading rate, temperature and aging on the rutting 

performance can be considered and field test data is adopted to verify the validity of the 

plasticity model and predictive framework. The main findings are as below: 

(1) The plasticity model and framework predict the rutting performance well, and 

they can be used to predict the rutting performance of asphalt concrete with different 

asphalt binder content, different aggregate gradation and different air void contents.  

(2) The scalar modulus has a negative relation with temperature, and expressing 

plasticity resistance as a function of scalar modulus can capture the seasonal variation of 

the resistance to plasticity. 

Section 23 Section26
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(3) The model parameters related to the rutting rate decrease with the increase of 

the scalar modulus, and this shows that the model can capture the phenomenon that rutting 

mainly happens in summer. 
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4. AN ENERGY-BASED PLASTICITY MODEL TO PREDICT THE PLASTIC 

DEFORMATION OF UNBOUND GRANUALAR MATERIALS 

 

4.1. Introduction 

The unbound granular material (UGM) consists of air voids, aggregate particles 

and water. It is widely used in the base layer of pavements, and the characteristics of 

UGMs can affect the performance of pavements considerably. For example, rutting of 

pavements is closely related to the plastic deformation in the base layer. UGMs exhibit an 

elastoplastic behavior and the total strain is composed of resilient strain and plastic strain. 

The resilient response is described using the resilient modulus, and it is defined as the ratio 

of the deviatoric stress to the resilient strain [1-3]. The plastic deformation arises from 

consolidation, distortion and attrition of granular materials [4, 5]. Therefore, the response 

of UGMs is related to its stress history, the current stress and strain level, microstructure 

and the degree of saturation [6]. According to the shakedown theory [7], under a low stress 

level, the plastic deformation develops quickly in the first few loading cycles, but the 

plastic deformation rate decreases with the load repetition and the permanent deformation 

approaches to a stable value. Therefore, the resilient modulus is obtained under a low 

stress level after a large number of loading cycles. However, if the load applied exceeds a 

limiting value called the shakedown load, the permanent deformation accumulates 

continuously with increasing load cycles and the material is prone to collapse [8].  
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To predict the plastic deformation of UGMs, many models have been proposed 

and these models can be divided into three categories, numerical models [9, 10], 

mechanistic-empirical models [11-15] and mechanics-based models [16, 17]. Due to the 

rapid development of microscale measuring devices, numerical methods have been 

adopted by many researchers. For example, Li et al. [18] did Monte Carlo simulations to 

analyze the effect of the morphology of randomly distributed aggregates on the 

deformation of UGMs. The shape and size of aggregates were determined using the X-ray 

CT technique [19, 20]. Although the numerical method considers the microstructure of 

aggregates well, it is time-consuming and expensive to acquire the digital images of 

aggregates and do simulations [21]. To save the calculation time, many mechanistic-

empirical models [22-28] have been proposed. For example, in the MEPDG model [29], 

the plastic strain was expressed as a function of resilient strain imposed in the laboratory, 

average vertical strain in the base layer, and number of load cycles. To characterize the 

stress-dependent permanent deformation of UGMs, Gu et al. [30] introduced invariants of 

stress tensor to the MEPDG model. To further facilitate the determination of parameters 

in the MEPDG model, Gu et al. [31] analyzed test data and expressed the model 

parameters as functions of some easy-to-measure variables, like the dry density, aggregate 

gradation, moisture content, and morphological properties. Alnedawi et al. [32] proposed 

an artificial neural model to predict the plastic deformation of UGMs, and the model inputs 

included the number of load cycles, deviatoric stress, moisture content, coefficient of 

curvature, and coefficient of uniformity. Although mechanistic-empirical models can be 

implemented easily and are time-saving in rutting prediction, they can only be used to 
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predict the vertical plastic strain of the material and cannot reflect the mechanism of 

rutting. Compared with the other two methods mentioned above, mechanics-based models 

are developed based on traditional plasticity mechanics and can show the mechanism of 

rutting well. In the traditional plasticity theory, the yield surface or yield potential are 

usually expressed as a function of stress invariants, and associated or non-associated flow 

rules are adopted to show the evolution of plasticity in the material. However, UGMs are 

different from other elastoplastic materials, like steels. Traditional plasticity models, such 

as Drucker-Prager model [33], are not able to fully capture the behavior of UGMs. For 

example, under repeated loading tests, if the peak of stress in each load cycle is equal, the 

plastic deformation in a steel bar only happens in the first load cycle because of the strain-

hardening effect [34]. This phenomenon can be captured by traditional plasticity models. 

For UGMs, under repeated load triaxial tests, the plastic deformation increases with load 

repetitions, as mentioned above. Therefore, traditional plasticity models are not able to 

predict the elastoplastic behavior of UGMs. To overcome this drawback, many researchers 

improved traditional plasticity models. For example, Chen et al. [35] proposed a cyclic 

plasticity model based on fuzzy plasticity theory to model the behavior of UGMs, and a 

memory function expressed as a function of the number of load cycles was included in the 

model. Chazallon et al. [36] proposed an elastoplastic model. The yield surface, plastic 

potential and isotropic hardening parameter were built based on a model for sands, where 

the shape function was expressed as a function of the number of load cycles. However, 

the main drawback of existing mechanics-based models is that they focus on the prediction 

of the macro-behavior of the material, and did not consider the effect of the material’s 
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microstructure, like the gradation of the material. Experiments [37-40] have shown that 

the characteristics of UGMs influence the plastic deformation considerably. For example, 

the existence of some fine aggregates is good for the stability of UGMs, and a low content 

of fine aggregates can cause a low plasticity resistance of the material. However, if the 

content is very high, some fine aggregates will work as the lubricant, and the material 

resistance to plasticity will decrease [41, 42]. In addition, the number of load cycles is 

usually incorporated in existing models so that the plastic strain predicted could increase 

with the load cycles. However, according to the viewpoint in a study [43], the number of 

load cycles is a performance indicator instead of a material property, and it is not good at 

predicting the material performance. In the study [43], the material property was defined 

as a property that is not affected by the geometry or other extraneous conditions used to 

measure the property and it belongs to the material. The difference between the 

performance indicator and the material property can be illustrated using an example 

below. The maximum load of a steel bar can sustain is a performance indicator, while the 

maximum stress that the steel bar can sustain is a material property. Once the diameter of 

the steel bar is changed, the performance indicator will change, but the material property 

does not change. Therefore, the performance indicator can be used for material quality 

control, but it cannot be used for material behavior prediction [43]. Another drawback of 

existing models is that these models are usually stress-based or strain-based, and stress- 

or strain- based models cannot consider the effect of loading mode [44]. Therefore, a 

model whose parameters are determined based on controlled-stress loading test data, may 

not predict the material behavior under controlled-strain loading accurately.  
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In this work, an energy-based plasticity model for UGMs is proposed to predict 

the material behavior under the stress level lower than the shakedown load. This model 

can consider the effect of the moisture and microstructure of UGMs. Performance 

indicators, like the number of load cycles, are not included in the model, so the proposed 

model is independent of extraneous conditions used to measure the material properties. 

This work is organized as below. In the next section, a resilient modulus model from a 

previous study is introduced and used to predict the resilient behavior of the material. In 

the model, the effect of moisture is considered. Then, an energy-based plasticity model is 

proposed. To reflect the effect of the microstructure of UGMs, the yield criterion is 

expressed as a function of the coordination number of the primary load-carrying structure 

in the material. Next, some test data is adopted for model calibration and verification. The 

last section summarizes the main findings.  

 

4.2. Model formulation 

In this section, a resilient modulus model is adopted to predict the resilient 

response of UGMs. Then, an energy-based plasticity model is proposed to predict the 

plastic strain of the material under monotonic and cyclic loading. 

(1) Resilient modulus prediction model 

The stress state and moisture content have a great influence on the resilient 

response of UGMs. To predict the resilient behavior of UGMs, Lytton resilient modulus 

prediction model [45] is adopted in this work. It can predict the resilient modulus of the 
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materials under any specific stress state and moisture content, and its expression is as 

below: 
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where I1 is the first stress invariant, Pa is the atmospheric pressure, θ the volumetric water 

content, hm is the matric suction, and f is the saturation factor, 
1

1 f


  , and S is the 

degree of saturation (%). 

 

(2) Energy-based plasticity model 

A new second-order energy tensor is introduced and is defined as an integral of 

stress tensor with respect to mass specific volume. The corresponding tensor component 

is expressed as: 

 2

1

v

ij ij
v

W dv=   
(4.3) 

where v  is the mass specific volume, and its formulation is shown in Equation 4.4.  

 det Rv v= F  (4.4) 

where det(F) is the determinant of deformation gradient, and vR is the reference mass 

specific volume. 
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For pressure-dependent materials like UGMs, the plastic deformation is primarily 

driven by the energy of distortion in the material and the energy related to the volumetric 

changes. Similar to the decomposition of stress tensor, an energy tensor can also be 

decomposed into deviatoric part and volumetric part as below: 

 1

3

D V

ij ij kk ijW W W = +  (4.5) 

where D

ijW  and V

kkW  are the deviatoric and volumetric tensor components of the driving 

energy respectively, and 
ij is the Kronecker delta. 

The corresponding deviatoric and volumetric driving energy of plasticity are 

expressed as: 

 3

2

D D

d ij ijW W W=  (4.6) 

 V V

v kk kkW W W=  
(4.7) 

where Wd is the deviatoric driving energy and Wv is the volumetric driving energy. 

Then, the yield criterion for the material is expressed as below: 

 0p

d s vf W W W K = + − − =  (4.8) 

with 

 sgn( )s kk  =   (4.9) 

where Wβ is the initial resistance to plasticity and Kβ is the hardening parameter. It is 

unnecessary to use a function to show the evolution of Kβ, because its value equals the 

maximum value of (Wd +αsWv -Wβ) in the history. During the simulation, the maximum 



 

72 

 

value can be captured using numerical computing or finite element software, like 

MATLAB and COMSOL Multiphysics. Therefore, the yield function is always less than 

or equal to 0. αs is the moisture and stress-state sensitivity parameter and sgn(·) is the 

signum function. The expression for α is as below: 
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where the function of  and the resilient modulus function have the same parameters, k2 

and k3, and cnPS and nPS are the coordination number and porosity of the primary structure 

(PS) respectively [46-48].  

The PS of UGMs is the primary load carrying structure in the material, and it is 

composed of coarse aggregates within a range of grain size. The coordination number 

means the average number of contact points per aggregate particle in the PS, and its 

porosity is the ratio of the void volume in the PS to the volume of aggregate particles 

within the PS.  The PS is identified based on the packing theory and consideration of the 

densest and loosest possible packing arrangements by assuming the particles are spherical. 

The interaction between two consecutive sieve sizes occurs if the following condition can 

be satisfied [46-48]: 
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where D1 and D2 are the consecutive sieve sizes, and dw,avg is the weighted-average particle 

diameter between particles in the PS. 

In the traditional plasticity theory, plastic strain is work-conjugate with stress and 

it is determined based on a stress-based plastic potential. In this work, a plasticity tensor 

is defined and it is work-conjugate with energy. The plasticity tensor can be obtained based 

on the associated flow rule as below: 

 pf
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where λ is the Lagrange multiplier and   is the Macaulay bracket. 

Finally, the plastic strain tensor is expressed as:   

 eq=pε P  (4.15) 

where 
eq  is the equivalent strain. 

 

4.3. Results and discussion 

All the test data used in this work are from a previous study [49], where the 

characteristics of three different types of UGMs, including unbound sandstone aggregates, 

unbound limestone aggregates and unbound granite aggregates, were studied. In the firs t 

part, the materials and testing are introduced. Then, resilient modulus test data and 

monotonic triaxial compression test data are used for model calibration. Finally, repeated 

load tri-axial test data is used to verify the model validity. The reference mass specific 
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volumes of the unbound limestone, unbound sandstone and unbound granite aggregates 

are 7×10-3 m3/kg, 7.3×10-3 m3/kg and 7.6×10-3 m3/kg, respectively. The simulation is 

realized using COMSOL Multiphysics. 

 

(1) Materials and testing 

To study physical properties of these UGMs, different laboratory tests were 

conducted. They included standard proctor (ASTM D 792), sieve analysis (ASTM C136-

06), specific gravity and absorption, coarse aggregate angularity (ASTM D 5821), and 

Micro-Deval test (ASTM D 6928). Part of the physical properties and gradation of these 

materials are shown in Table 4.1 and Figure 4.1 respectively. To achieve the desired water 

contents, the materials were first oven dried at a prespecified temperature and then mixed 

with water at the specified moisture content. Based on AASHTO-T307, a split mold with 

an inner diameter of 150 mm and a height of 350 mm, was used to prepare samples. To 

achieve a uniform compaction throughout the thickness, samples were compacted in six-

50 mm layers. These samples were enclosed in two latex membranes with a thickness of 

0.3 mm for the convenience of testing. The diameter and height of these samples were 6 

inches and 12 inches respectively. 

Three types of tri-axial tests were performed to study the behavior of UGMs under 

loading, and they included the resilient modulus test, the monotonic triaxial compression 

test and repeated load tri-axial test. The material testing system (MTS) 810 machine was 

used for the tests, and two Linearly Variable Differential Transducers (LVDT) were 

placed between the top platen and base of the cell to measure the axial displacement. Air 
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was used as the confining fluid to samples. For the resilient modulus test, it was performed 

based on AASHTO-T307 [50]. 10000 load cycles with a confining stress of 15 psi and a 

deviator stress of 14 psi were first applied on the samples. Then, the resilient modulus was 

calculated at specific deviator stress cycles and constant confining pressure, and it equals 

the ratio of the maximum deviator stress to the recoverable elastic strain. The triaxial 

compression test was performed at three different confining pressures, 2, 7 and 10 psi, and 

the axial strain rate was less than ten percent strain per hour. For the repeated load triaxial 

test, a haversine load with a peak stress of 30 psi and a duration of 0.1 secs, was applied. 

After each load cycle, there was a rest period of 0.9 seconds, as shown in Figure 4.2. Total 

10000 load cycles were applied on the samples at a constant confining pressure of 3 psi.  

The confining pressure matches the field measurement of lateral confining pressure within 

the base course layer [51].  

  

Table 4.1 Physical characteristics of the unbound granular materials  

Property Limestone Sandstone Granite 

Specific gravity 2.708 2.642 2.671 

Absorption (%) 1.7 2.1 0.9 

Micro-Deval, Loss (%) 13 11.5 5.5 

Maximum dry density (lb/ft3) 142.0 136.2 132.0 
Optimum moisture content (%) 6.5 7.1 6 

Degree of saturation (%) 80.7 88 76.3 
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Figure 4.1 Gradation of the unbound granular materials. 

 

 

Figure 4.2 Applied axial stress on the sample under repeated load tri-axial testing. 
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 (2) Model calibration 

To determine material parameters in the proposed model, the resilient modulus test 

data are used first to obtain the values of k1, k2 and k3, based on Equation 4.1 by doing 

fitting. Next, the coordination numbers of UGMs are determined based on the 

microstructure and gradation of the materials, and then the remaining parameters, k4 and 

Wβ, in the initial yield criterion are determined by fitting the test data using Equation 4.8. 

Finally, by fitting the stress-strain test data, parameters, K and N, are determined. 

Therefore, values of all the parameters can be obtained using the resilient modulus test 

data and the monotonic load triaxial test data.  

Figure 4.3 shows the determination of the resilient modulus. It can be seen that the 

resilient modulus increases with the increase of bulk stress. Compared with the other two 

materials, unbound sandstone aggregates have the lowest resilient modulus, and this 

means under the same loading condition, unbound sandstone aggregates have the largest 

resilient strain. It can also be seen that the Lytton resilient modulus prediction model [45] 

captures the material property well.  The corresponding parameters in the resilient 

modulus model are summarized in Table 4.2.  
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Figure 4.3 Determination of the resilient modulus determined by fitting test data [49] 

using the Lytton resilient modulus prediction model [45]. 

 

Figure 4.4 shows the determination of the initial yield criterion, and the values of 

all the parameters are summarized in Table 4.1.  The value of cnPS is from a former study 

[46], where the same test date was adopted. It can be seen from Table 4.2 that the value of 

Wβ for the unbound sandstone aggregates is the smallest, and this means that plastic 

deformation happens easily in the unbound sandstone aggregates. Unbound granite 

aggregates have the largest value of Wβ, and it is because it has the lowest porosity and the 

highest coordination number, so the friction force in the material is large. It can also be 

seen that compared with unbound limestone aggregates, unbound sandstone aggregates 

have a less Wβ, but a larger cnPS. That is because the plastic deformation in UGMs is also 

affected by the texture of materials and the proposed model does not consider the effect 

of materials’ texture.   
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(a)                                                                    (b) 

 

(c) 

Figure 4.4 Determination of the initial yield criterion for (a) unbound limestone 

aggregates, (b) unbound sandstone aggregates and (c) unbound granite aggregates. 

(Test data is from a previous study [49]). 
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Table 4.2 Material parameters obtained from test data [49] in the plasticity model 
Unbound 

materials 
Wβ (Pa·m3/kg) nPS (%)  cnPS  k1 k2 k3 k4 K N 

Limestone 0.062 66.68 [46] 4.4 [46] 795.2 0.905 -0.092 0.030 0.08 0.19 

Sandstone 0.058 46.31 [46] 6.4 [46] 689.9 0.683 -0.036 0.034 0.12 0.25 

Granite 0.083 38.22 [46] 7.9 [46] 1176.1 0.719 -0.109 0.014 0.04 0.10 

 

Figure 4.5 shows the comparison between model predictions and test data for 

unbound limestone aggregates. One group of test data is used to obtain the values of K 

and N, and the other two groups of test data are used to verify the validity. It can be seen 

that there is a good match between test data and model predictions, so the proposed model 

performs well on the prediction of the material behavior under different stress level. 

Values of K and N for these three different materials are summarized in Table 4.2 and it 

can be seen that the values of K and N are largest for unbound sandstone aggregates. Since 

K and N are related to the rate of plastic deformation, this means that under loading, the 

plastic deformation develops very quickly in unbound sandstone aggregates, compared 

with other two materials. 
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Figure 4.5 Comparison between test data for unbound limestone materials [49] and 

model predictions. 

 

 (3) Model verification 

To verify the validity of the proposed model, the proposed plasticity model is used 

to predict the material behavior under repeated load triaxial testing, and the model 

predictions are compared with the test data. The simulation results for unbound granite 

aggregates in the first 12 load cycles are shown in Figures 4.6 and 4.7. It can be seen that 

plastic deformation develops in each loading cycle and it increases monotonically with 

load cycles. Figure 4.8 shows the comparison between model predictions and test data, 

and it can be seen that the plastic strain of unbound sandstone aggregates is largest and 

model predictions match the test data well. 
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Figure 4.6 Stress-strain relationship predicted for granite materials in the first 12 

loading cycles. 

 

 

Figure 4.7 Development of strains predicted for granite materials in the first 12 

loading cycles. 
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Figure 4.8 Comparison between model predictions and test data [49] under repeated 

loading. 

 

4.4. Conclusions 

To predict the plastic deformation of UGMs, an energy-based plasticity model is 

proposed. The effects of stress and strain state, moisture and microstructure of the 

materials are considered. The main findings are summarized as follows: 

(1) The proposed model can predict the behavior of UGMs under different stress 

state accurately, and it can capture the increase of plastic strain under controlled-stress 

repeated load triaxial testing.   

(2) No performance indicator is included in the proposed model, so the model is 

independent of the geometry and other extraneous conditions used to measure the material 

properties. 
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(3) The effect of the microstructure of the material on the rutting performance is 

considered by the porosity and coordination number of the primary loading carrying 

structure. The initial plasticity resistance of UGMs can be evaluated using the coordination 

number of PS, and a large coordination number corresponds to a high initial resistance.  

(4) Compared with unbound granite aggregates and unbound limestone 

aggregates, unbound sandstone aggregates have the least resistance to plasticity and the 

largest rate of plastic deformation.  
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5. MICROMECHANICS MODELING ON THE PREDICTION OF SOIL-WATER 

CHARACTERISTIC CURVES 

 

5.1. Introduction 

The soil-water characteristic curve (SWCC) is used to describe the relationship 

between the water content and matric suction in unsaturated soils, which is composed of 

soil solids, water, air and air-water interfaces [1]. The SWCC affects soil performance 

considerably, like the shear strength [2], aqueous diffusion [3], hydraulic conductivity [4] 

and deformation [5]. At a given water content, the matric suction during drying process is 

higher than that during wetting process. Thus, SWCCs are hysteretic and include drying 

SWCCs and wetting SWCCs. The difference between these two types of curves mainly 

arise from the contact angle hysteresis (the advancing contact angle of liquid on solid 

surfaces is larger the receding contact angle) [6-8]. Direct measurement of SWCCs is 

expensive and time-consuming, so researchers prefer to propose models to predict SWCCs 

and use the measured data to verify their models. 

There are three different approaches on the prediction of SWCC, namely empirical 

methods, domain methods, and theoretical methods. The first approach is the most popular 

and many empirical models have been proposed. In some empirical models [9-13], SWCC 

equations containing empirical parameters were proposed and using these equations, the 

matric suction can be obtained directly once the water content is known. Other empirical 

models were proposed based on machine learning [14-16] and pedo-transfer functions [17, 

18], so SWCC could be predicted from some easy-to-measure soil properties, like the 
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grain-size distribution [19], pore-size distribution [20] and density of soils [21]. However, 

the main drawback of the empirical approach is that it does not have a sound theoretical 

basis, and has substantial uncertainty and variability. The accuracy of these models will 

decrease if they are used to predict SWCCs of soils having different properties from those 

in the dataset used in model calibration. The second approach is called the domain method 

[22-24], and it is assumed that water in soils is stored in spherical pores with different 

radii. Each pore only has two states, namely water-filled or empty, and a large pore 

corresponds to a low suction. At a given matric suction, there is one equivalent pore radius, 

and the corresponding water content in soils is the volume sum of pores whose radius is 

less than the equivalent pore radius. Due to the ‘ink-bottle’ effect, during the wetting 

process, large pores obstruct the water soaking process, and only part of pores with radius 

less than the equivalent pore radius are filled with water [24-26]. Therefore, at a given 

suction, the water content for the drying process is larger than that for the wetting process, 

and the hysteresis of SWCC can thus be captured. However, the domain method cannot 

show the water distribution in unsaturated soils well. Apart from liquid moisture transfer, 

vapor transfer also contributes to the moisture migration in soils [27]. Because of thermal 

gradients, water vapor migrates from the high-temperature area to the low-temperature 

area to equalize the thermal energy of the two area. Once vapor reaches the cool area, 

condensation happens. Therefore, the existence of water is independent of the pore size, 

and it has been observed experimentally that due to adsorption and capillary contributions, 

water accumulates on the grain surface and around the contact points of grains [28]. The 

theoretical approach is the most promising to predict the SWCC of soils, and it has gained 
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increasing attention [29-31]. For example, Beckett & Augarde [32] used a unit cell with 

hexagonal close-packed structure to describe the microstructure of soils, and the pores in 

the unit cell were assumed to be spherical. An equation was first used to determine the 

equivalent pore radius based on a given matric suction, and then the corresponding water 

content is the volume sum of pores with radius less than the equivalent pore radius, the 

water bridges and water films in unit cells with pore radius larger than the equivalent pore 

radius. The thickness of water films was obtained by considering the effect of van der 

Waals forces. Since drying processes and wetting processes follow different relationships 

between equivalent pore radius and suction, the SWCC hysteresis could be reflected. 

Alves et al. [33] used a unit cell with simple cubic structure to describe the soil 

microstructure. Similar to the last model mentioned, each unit cell was composed of 

spherical grains with the same radius, and water accumulates around contact points among 

grains, but water films on grain surfaces were not considered. To consider the grain size 

distribution, the soil was divided into many fractions based on the grain size. For each 

fraction, the corresponding SWCC can be obtained based on its unit cell. The SWCC of 

the soil is the sum of SWCCs corresponding to these grain size fractions. Fu et al. [34] 

proposed an equivalent liquid bridge model to predict SWCCs of soils. The volume of the 

liquid bridge between two spheres could be derived from the water content in soils using 

a proposed expression. Then, based on the Young-Laplace equation, the suction could be 

obtained. To consider the grain size distribution, the diameter of these two spheres equals 

the mean size of the soil, which is defined as the sum of the product of percentage content 
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and minimum size limit of clay, silt, sand and gravel in the soil. By considering the contact 

angle hysteresis, the SWCC hysteresis was capture. 

However, there are still some problems needed to be solved about existing 

theoretical models on the prediction of SWCC.  Firstly, the proposed model should be 

comprehensive and good for practical application. Most existing models contain empirical 

parameters, so they are good at fitting, instead of predicting the SWCC. For a good 

predictive model, every parameter should have clearing physical meaning and their values 

can be determined based on some easy-to-measure soil properties. For example, Tokunaga 

[35] considered the effect of van der Waals forces and electric double-layer forces on the 

water film thickness in soils, so the model is comprehensive. However, in the model, the 

water film thickness is expressed as a function of matric potential, which is not easy to 

measure, and this is not good for the practical application. Secondly, the existing equations 

used to calculate the volume of liquid bridge between two spheres are questionable. In the 

three theoretical models mentioned above, three different equations are used to calculate 

the volume of liquid bridge. This means that there is still no volume calculation equation 

that can be accepted by most researchers. Thirdly, the mean grain size and the sum of 

SWCCs corresponding to every grain-size fraction do not perform good on the 

consideration of the effect of grain-size distribution. The size of gravel is over 1000 times 

larger than that of clays. If the concept of mean grain size is used, the effect of fine grains 

may be neglected. Similarly, experiments [36] show that suction corresponding to fine 

grains is over 1000 times larger than that corresponding to coarse grains. Thus, if the 

SWCC of soils is the sum of SWCCs corresponding to every grain-size fraction, the effect 
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of coarse grains will be neglected. Last but not least, the existing models cannot show 

some new findings. Studies have shown that engineering behavior of soils can be better 

interpreted if the influence of matric suction is considered [37-39], so a good SWCC model 

should be able to explain some phenomena in soils. For example, it is believed that the 

swelling of expansive soils is due to the presence of some clay minerals, like Kaolinite, 

Illite and Montmorillonite [40, 41]. The swelling of these clay minerals in water arises 

from the repulsive pressure caused by electric double-layer forces [42]. However, it is still 

uncertain about the shrinkage mechanism of expansive soils at a low water content [27]. 

If the volumetric change of expansive soils were really controlled by clay minerals, 

shrinkage should not happen. 

In this work, to solve the problems mentioned above, a micromechanics model is 

proposed to predict the SWCC of unsaturated soils. In the model, every parameter has 

clear physical meaning and can be determined experimentally. This study is organized as 

follows. In the next section, a chemical model is proposed to determine the water film 

thickness in soils and the effects of van der Waals forces and electric double-layer forces 

are considered. Then, expressions for the volume calculation of the water bridge between 

two contacted spherical grains are derived, and the SWCC can be obtained by 

incorporating the liquid bridge model to the representative volume element (RVE) of soils. 

The contact angle hysteresis is considered to capture the SWCC hysteresis, and the 

concept of equivalent grain radius is proposed to consider the effect of grain-size 

distribution. The change of SWCC with the RVE structure is analyzed to illustrate the 

behavior of soils under wetting-drying cycles. In the result part, several groups of test data 
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are adopted to verify the validity of the proposed models. By analyzing the model 

predictions, new mechanisms about the swelling and shrinkage of expansive soils are 

found. The last section summarizes the main findings.    

 

5.2. Model formulation 

5.2.1. Water film thickness on the surface of solids  

 

 

Figure 5.1 Diagram of the stable water film on the flat surface of solids. 

 

The stability of water film on a solid surface is affected by van der Waals forces 

and electric double-layer forces [43]. In this section, by analyzing the effect of these two 

types of forces, a new chemical model is proposed to predict the thickness of water film. 
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For practical applications, the film thickness is expressed as a function of some easy-to-

measure parameters, like the temperature, relative humidity, and solid geometry in soils.  

 

5.2.1.1. Effect of van der Waals forces  

The van der Waals force between two materials can be attractive or repulsive, and 

it depends on the dielectric properties of materials. Materials having similar properties in 

a medium always suffers attractive van der Waals forces, while dissimilar materials in a 

medium could be attractive or repulsive. For example, if the dielectric constant of the 

medium is intermediate between those of the two materials, these two materials will be 

repelled from each other. The van der Waals force per unit area on the air-water interface, 

as shown in Figure 5.1, can be expressed as: 

 3

132 / 6VDWP A d= −  (5.1) 
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 2 2 2 2

1 3 2 3 1 3 2 3
132

2 2 2 2 2 2 2 2
1 3 2 3 1 3 2 3 1 3 2 3

3 ( )( )3
( )( )

4 8 2 ( )( )[ ( ) ( )]

e
B

hv n n n n
A k T

n n n n n n n n

   

   

− − − −
= +

+ + + + + + +
 (5.2) 

where A132 is the nonretarded Hamaker constant for media 1 (solid) and 2 (air) interacting 

across medium 3 (water), d the thickness of the water film, ve the main electronic 

absorption frequency in the UV, kB the Boltzmann constant, T the temperature in Kelvin, 

ni and εi (i = 1, 2, 3) are the refractive index in the visible and the dielectric constant 

respectively of phase i. Equation 5.2 works only when the absorption frequencies for the 

three phases are the same. Here, it is defined that the sign of pressure is positive.  
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In some cases, combining relations are often used to approximate the Hamaker 

constant as below. 

 
132 11 33 22 33( )( )A A A A A − −  (5.3) 

where Aii is the Hamaker constant for two media i interacting across a vacuum. However, 

combining relations works only when the van der Waal forces dominate the interaction, 

and they break down when media with high dielectric constants, such as water, are 

involved. Therefore, Equation 5.3 cannot be used to determine the thickness of the water 

film as shown in Figure 5.1. 

From Equation 5.1, it can be seen that the Hamaker constant is the key to the 

determination of van der Waals forces. Table 5.1 summarized the values of Hamaker 

constants for some materials interacting with air across water, and all the materials have 

negative values for A132. This means the force between the materials and air is repulsive, 

and this is good for the stability of water film. From Table 5.1, it can be concluded the 

Hamaker constant in soils may be in the order of 10-20 J.   

 

Table 5.1 Hamaker constant determined for media 1 and 2 interacting across 

medium 3 at room temperature 

Medium 1 Medium 3 Medium 2 Hamaker constant A132 (10-20 J) 

Fused silica [44] Water Air -1.03 

Calcite [44] Water Air -2.26 

Calcium fluoride [44] Water Air -1.23 

Soils [45] Water Air -6 

Note: A132 for soils was determined by fitting adsorption data and the effect of the electric double-

layer force was not considered. 
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5.2.1.2. Effect of electric double-layer forces 

Different from van der Waals forces, electric double-layer forces in a medium are 

always repulsive. The surface of some solids in water is charged, because of the 

dissociation of some surface groups. For example, the surface of some clay minerals in 

water can dissociate and give off Na+, K+, and Ca2+ ions. These cations are called 

counterions and the anions on the surface are called co-ions (here, we do not consider the 

effect of the H3O+ and OH‒ from dissociated water). Electric double-layer forces arise 

from the osmotic pressure between the counterions, and they force the counterions away 

from the solid-water interface and from each other. 

Based on the Langmuir equation [46], the disjoining pressure arising from electric 

double-layer forces in the water film can be expressed as 

 2 2

0 ( / ) / 2el BP k T ze d  =  (5.4) 

where e is the electron charge, z the ion valence, ε0 (= 8.854×10-12 C2 J-1 m-1) the 

permittivity of free space, and ε (=78.2 at 25ºC) the dielectric constant of water.     

Therefore, based on the additivity assumption, relative to the atmospheric pressure 

(1 bar), the pressure imposed on the air-water interface from the solid surface is 

 
1 el VDWP P P= +  (5.5) 

If the surface is flat, the relative pressure can be expressed as a function of relative 

vapor pressure as below [47]. 

 
2 ( / ) ln( / )v satP RT v p p= −  (5.6) 

where R (= 8.314 J·(mol·K)-1) is the Avogadro constant, v the molar volume of water, and 

pv and psat are the vapor pressure in the air and the saturated water vapor pressure. 
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Therefore, it can be seen that the water film thickness increases with the relative vapor 

pressure. 

However, for grains in soils, they are assumed to be spherical instead of flat in this 

work. To account for the effect of grain curvature, the relative pressure is expressed as.  

 2 ( / ) ln( / )v eqP RT v p p= −  (5.7) 

where peq is the equilibrium vapor pressure. 

Since according to the Kelvin equation [47], the relationship between the 

equilibrium vapor pressure of a liquid and its saturated vapor pressure can be expressed 

as: 

 
exp( )eq sat

v
p p

RT

 
=   (5.8) 

where γ is the surface energy density or surface tension of water in air, and κ is the mean 

curvature of water film and it may be approximated using the curvature of the solid 

surface.  

By substituting Equation 5.8 into Equation 5.7 and based on the force balance, we 

can obtain 

 
1 2 ( / ) ln( / ) ( / ) ln( )v satP P RT v p p RT v RH = = − + = − +  (5.9) 

where RH (=pv/psat) is the relative humidity. Combing Equations 5.5 and 5.9, the water 

film thickness can be determined, once the Hamaker constant (A132), the ion valence of 

counterions (z), temperature (T), surface tension of water in air (γ), relative humidity in 

soils (RH), dielectric constant (ε) and molar volume (v) of water, and the solid surface 
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curvature (κ) are known. Here, it is defined that the curvature for convex surfaces is 

positive, while that for concave surfaces is negative.  

However, for soils, they contain different minerals, and different minerals have 

different chemical compositions and different Hamaker constants. This makes the 

determination of A132 and z complicated. To solve this problem, here it is assumed that z 

equals 1. To determine the value of A132, adsorption data from several groups of soils are 

used and the constant can be obtained by fitting the test data, as shown in the result part.  

 

5.2.2. Liquid bridge model for two contacted spheres 

With the increase of relative humidity from 0, the water film forms on the surface 

of solids. Then, since the water meniscus around the contact point of two grains is concave 

(κ < 0), as shown in Figure 5.2(a), based on Equation 5.8, peq < psat. Thus, in the vicinity 

of the concave water meniscus, water vapors in air can reach an over-saturated state 

easily, and this is good for condensation. Water droplets may form on the surface of grains 

under dynamic environmental conditions. However, when the system approaches to 

equilibrium, these water droplets will disappear. That is because these droplets have large 

curvatures, and this can result in a very high peq, so they can evaporate easily. Therefore, 

at equilibrium conditions, with the increase of water content in soils, water accumulates 

around the contact points of grains.    
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                         (a)                                                                                          (b)  

Figure 5.2 The water distribution around two contacted spherical grains when (a) 

θ+β < 90º, and (b) θ+β > 90º. 

 

When the water meniscus is concave, as shown in Figure 5.2(a), based on the 

Young-Laplace equation [48], the capillary pressure or matric suction between these two 

particles is as below. 

 1 1
( )a wu u
k l

 = − = −  (5.10) 

where ua and uw are the atmospheric and water pressures respectively, γ the air-water 

surface energy density, k  ( 0) and l ( 0) the meniscus radii of curvature. 
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Based on the shell method, the water volume between two contacted grains can be 

calculated as below: 

 sin sin
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with  
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cos( )
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 

−
=

+
 (5.12) 

 sin sin( )l r k k  = − + +  (5.13) 

 r=r0+d (5.14) 

where vw is the volume of water around the contact point, θ the contact angle, r0 the radius 

of the spherical grains, d the thickness of the water film and β the angle related to the 

volumetric water content. Since from the result part it can be seen that the water film 

thickness is very small compared to the radius of grains even at high relative humidity, it 

is rational to approximate r using the sum of the grain radius and water film thickness.  

From Equations 5.10-5.14, it can be seen that once vw, θ and r are known, the 

suction can be determined and the value of β can be obtained based on Equation 5.11.  

From Equation 5.12, it can be found that the formula only applies to the condition when 

(θ+β) is less than 90º. Otherwise, k  is negative and it is conflict with Equation 5.10. For 

hydrophilic materials, even though θ is less than 90º, with the increase of volumetric water 
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content, β increases. Thus, the condition when (θ+β) > 90º exists and it has been observed 

experimentally [28].  

When the water meniscus is convex, as shown in Figure 5.2(b), (θ+β) > 90º and 

the capillary pressure or matric suction between these two particles is as below. 

 1 1
( )a wu u
k l

 = − = − +  (5.15) 

The volume of water around the contact point can be calculated as below: 
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 sin sin( )l r k k  = + − +  (5.18) 

Similarly, when the water meniscus is convex, based on Equations 5.15-5.18, once 

vw, θ and r are known, the suction can be determined and its value is negative. The value 

of β can be determined using Equation 5.16. Arising from the chemistry and topography 

of solid surfaces, the advancing contact angle (θa) and receding contact angle (θr) of liquid 

on solid surfaces are different, and θa is usually larger than θr. Therefore, to consider the 

contact angle hysteresis, when it is wetting, θa is used to replace θ in the formula above. 

When it is drying, θr is used to replace θ in the formula.   
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5.2.3. Microstructure of soils  

If the soil is composed of grains with only one size, the soil microstructure can be 

represented using one type of representative volume element (RVE).  The RVE structure 

can be described using the body-centered cubic (BCC) structure, face-centered cubic 

(FCC) structure, hexagonal close-packed (HCP) structure or simple cubic (SC) structure, 

as shown in Figure 5.3. 
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      (a) BCC structure                                                     (b) FCC structure 

  

                   (c) SC structure                                                         (d) HCP structure 

Figure 5.3 Representative volume element structure of soils. 
        

For the BCC structure, as shown in Figure 5.3(a), grains are located at corner and 

center position. The volume of the RVE is: 
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 3

064

3 3

r
V =  (5.19) 

where r0 is the radius of the grain. 

The total number of grains in the RVE is: 

 2N =  (5.20) 

Porosity n is defined as the ratio of the volume of voids to the total volume in the 

RVE, so the porosity of BCC is as below: 

 0.32n =  (5.21) 

The total number of complete contact points is: 

 8M =  (5.22) 

Therefore, once the volumetric water content (VWC) in soils is known, the water 

volume around each contact point (vw) can be obtained as below. In this work, we assume 

vw in each complete contact point is equal. 

 0w
w

VWC V V
v

M

 −
=  (5.23) 

with 

 3 3

0 0 0

4
[( ) ]

3
w

N
V r d r= + −  (5.24) 

where Vw0 is the volume of water films on the grain surface in the RVE, and it corresponds 

to the residual volumetric water content. 

Thus, once the microstructure of the soil and the contact angles (including 

advancing angle and receding angle) are known, based on Equations 5.10-5.18, the 

relationship between vw and ψ can be determined.  
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The properties for different RVE structures are summarized in Table 5.2. It can be 

seen that SC structure has the largest porosity, while FCC and HCP structures have the 

lowest porosity. It needs to be noted that the above mentioned four types of RVE structure 

are approximations to the real structure of soils and the most accurate way to determine 

the RVE of soils is by doing experiments. The microstructure of soils can be described 

based on the volume, porosity, grain size and number of complete contact points in the 

RVE.  

 

Table 5.2 Properties of representative volume elements of soils  

Microstructure BCC FCC SC HCP 

Volume (V) 64𝑟0
3 3√3⁄  16√2𝑟0

3  8𝑟0
3  24√2𝑟0

3  

Number of grains (N) 2 4 1 6 

Porosity (n) 0.32 0.26 0.48 0.26 

Number of complete contact points (M) 8 24 3 27 

Note: BCC: Body-centered cubic; FCC: Face-centered cubic; SC: Simple cubic; HCP: Hexagonal 

close-packed; r0: Radius of the grain. 

 

5.2.3.1. Effect of grain-size distribution 

A naturally occurring soil sample usually has grains of various size, and based on 

the size of grains, soils can be divided into gravel, sand, silt and clay. According to the 

classification of the U.S. department of agriculture, the size of gravels is larger than 2 

mm; the size of sands is from 0.05 mm to 2 mm; the size of silt is from 0.002 mm to 0.05 

mm; the size of clay is less than 0.002 mm. The grain-size distribution of coarse-grained 

soils is determined by sieve analysis, and these grains are larger than 0.075 mm. For fine-

grained soils, hydrometer analysis is used for determination of the grain-size distribution, 

and it is based on the principle of sedimentation of soil grains. 
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To consider the grain-size distribution, a concept of equivalent grain radius is 

proposed as below: 

 10 / 2eqx

eqr =  (5.25) 

with 

 

10log ( )eq i i

i

x c L=   (5.26) 

where req is the equivalent grain radius in soils, Li is the size of the ith sieve, and ci is the 

percentage of soils retained on the ith sieve. Standardization can be realized by taking the 

logarithm to the grain or sieve sizes, and by taking the average of standardized sizes, the 

effect of very small grains can be considered.  

If a soil contains several types of RVE, the matric suction of the soil can be 

expressed as: 

 4

1

( )j j eq

j

p r
=

 =  (5.27) 

where j represents the type of RVE structure, and 1, 2, 3, 4 represent BCC, FCC, SC, HCP 

respectively; pj represents the percentage of RVE structure type j in the soil and 

∑ 𝑝𝑗 = 14
𝑗=1 ; ψj represents the matric suction in a RVE with structure type j. 
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5.2.3.2. Evolution of the RVE structure  

 

 

Figure 5.4 Separation of two contacted grains because of the negative matric suction. 

 

As will be seen in the result, for fine-grained soils, when they approach to be 

saturated, the matric suction is negative and the pressure difference can force contacted 

particles separated. Figure 5.4 shows the separation of two contacted particles. Water 

pressure pushes two particles outwards, while surface energy pulls these two particles 

inwards. Therefore, the net force between two contacted grains is as below: 

 
2( ) ( sin ) 2 sin cos( )

2

    = sin [( ) sin 2 sin( )]

w a

w a

F u u r r

r u u r


      

     

= −  −  + −

 − −  +

 (5.28) 

Therefore, if we do not consider forces from the surrounding, when F >0, these 

two grains start to separate. Separation may also happen between two contacted grains 

with a concave water meniscus. As shown in Equation 5.10, when k  > l, the matric suction 

is negative, so the separation criterion can be obtained based on the procedure above. 
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Although during drying, high positive matric suction will bound particles together, 

the chaos increases with the increase of the wetting-drying cycle number, based on the 

second law of thermodynamics. It has been observed experimentally that wetting-drying 

cycles can increase the porosity of soils [49, 50]. Therefore, every wetting-drying cycle 

can be regarded as a process of rearrangement of grains, and the RVE structure of soils 

may be different in different wetting-drying cycles. This can explain the change of the soil 

water characteristic curve after wetting-drying cycles.  

 

5.3. Results 

5.3.1. Water film thickness 

To determine the value of Hamaker constant (A132) of soils and verify the validity 

of the water film thickness model proposed, some test data [51, 52] are adopted. These 

data were collected by Or and Tuller [45], and they obtained the value of A132 by fitting 

the data using a film adsorption equation they proposed. They found the water film 

thickness in soils with mixed clay minerals could be described by a single A132. However, 

in their model, the effect of electric double-layer forces on the water film thickness is not 

considered. In this part, we follow the same procedure as that of Or and Tuller to determine 

the value of A132 in the proposed model by fitting test data. As shown in Table 5.3, the data set 

is composed of six groups of soils, so the data set is representative in terms of grain-size 

distribution and soil textures. 
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Table 5.3 Measured soil composition and properties [45] 
Soil series Sand Silt Clay Clay minerals Porosity 

L-Soil [52] 0.888 0.061 0.051 Mixed 0.45 
Royal [52] 0.536 0.319 0.145 Mixed 0.48 

Walla Walla [52] 0.228 0.633 0.139 Mixed 0.52 

Millville [51] 0.330 0.490 0.180 Mixed 0.47 

Palouse [52] 0.113 0.682 0.205 Mixed 0.55 

Palouse B [52] 0.093 0.439 0.468 Mixed 0.59 

 

Table 5.4 Values of parameters used in the  model prediction 
Property Value Property Value 

Saturated vapor pressure (psat) 3169 Pa Water surface tension (γ) 72 mN/m 

Hamaker constant (A132) -3.5×10-20 J dielectric constant (ε) 78.2 

Ion valence (z) 1 water molar volume (v) 18.07 cm3/mol 
Temperature (T) 25ºC Radius of spherical solids (r0) 1 mm 

 

Figure 5.5 shows the comparison between test data and model predictions on the 

water film thickness, and values of parameters used during model prediction are 

summarized in Table 5.4. It can be seen that when A132 equals -3.5×10-20 J, the model 

prediction matches the test data well, and a single A132 is able to describe the change of 

the water film thickness with vapor pressure in soils. The value of A132 obtained is less 

than the value (A132=-6×10-20 J) obtained by Or and Tuller [45]. That is because we 

considered the effect of both van der Waals forces and electric double-layer forces. In the 

model prediction, it is assumed that soils are composed of spherical grains with radii equal 

1mm. To verify the effect of grain size on the water film thickness, parameter analysis is 

done, as shown in Figure 5.6. It can be seen that when the relative humidity (RH) is less 

than 0.99, the effect of grain size on the water film thickness is negligible. This may 

explain why a single A132 applies to soils with different gradations. From Figure 5.6(b), it 

can be seen that when RH is higher than 0.99, the effect of grain size on the film thickness 
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increases and cannot be neglected. The water film thickness also increases with the 

increase of the grain size. 

 

 

Figure 5.5 Comparison between test data [45] and model prediction on the change of 

water film thickness with water vapor pressure in soils. 

 

 

                                 (a)                                                                    (b) 

Figure 5.6 Effect of grain size on the water film thickness. 
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5.3.2. SWCC 

To verify the validity of the proposed model on the prediction of SWCC, test data 

from a literature [53] is adopted. In the literature, the relationships between gravimetric 

water content and matric suction of five types of soils were measured, and the gradations 

for the soils are shown in Figure 5.7. These soils were classified as CL (lean clay with 

sand), ML (sandy silt), SC (clayey sand with gravel), SM (silt sand with gravel), and GW-

GM (well-graded gravel with silt and sand) based on ASTM D2487 [54]. In this work, the 

measured relationship between gravimetric water content and matric suction is converted 

to that between volumetric water content and matric suction using the equation below.    

 
w

d

VWC
w






=  (5.29) 

where VWC is the volumetric water content, w the gravimetric water content, ρw the 

density of water and ρd the dry density of soil. The test data about ρd of these five types of 

soils are summarized in Table 5.5.    

It is assumed the relative humidity of these soils is 99%, and the temperature is 

25ºC. The equivalent grain radius can be obtained based on their gradation using Equation 

5.25. Since the RVE structures and contact angles of these soils were not analyzed, it is 

assumed that these five types of soils have the same microstructure, but have different 

contact angles. The soil properties are summarized in Table 5.5, and comparison between 

model predictions and test data is shown in Figure 5.8. Although the good match between 

model predictions and test data is achieved by adjusting the contact angle and accuracy of 

model prediction is not verified due to the lack of information about the microstructure 
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and contact angle of soils, it shows that the proposed model has the ability to capture the 

SWCC of soils.  

 

 

Figure 5.7 Gradation of five types of soils [53]. 

 

Table 5.5 Soil properties. 
Soil 

name 

Dry density 

[53] 

(kg/m3) 

Equivalent 

grain radius 

req (mm) 

Contact 

angle(º) 

RVE 

volume V 

(cm3) 

RVE 

porosity 

Complete 

contact points 

number in RVE 

CL 1550 0.0108 10 0.0101 0.6 13 

ML 1710 0.0365 26 0.389 0.6 13 

SC 1900 0.1204 28 14.0 0.6 13 

SM 1970 0.3939 28 488.9 0.6 13 

GW-GM 1950 1.3185 41 18337.1 0.6 13 

Note: 𝑉 = 8𝑟𝑒𝑞
3 . 
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        (a) CL                                                                   (b) ML 

      

                                  (c) SC                                                                     (d) SM 

 

(e) GW-GM      

Figure 5.8 Comparison between test data [53] and model predictions. 
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The effect of equivalent grain radius, contact angle and microstructure of soils on 

the SWCC are studied by doing parametric analysis. Figure 5.9 shows SWCCs of soils 

with different grain sizes and contact angles. By comparing curves (req=2μm, θ = 10º) and 

(req =2μm, θ = 30º), or curves (req =500μm, θ = 10º) and (req =500μm, θ = 30º), it can be 

seen that a large contact angle can lead to a low suction. The curve with a low θ can 

represent the drying curve, while the curve with a large θ can represent the wetting curve. 

At a given water content, the suction corresponding to the drying curve is larger than the 

wetting curves. It shows that the proposed model can capture the SWCC hysteresis. It can 

also be seen that with the increase of the grain size, the matric suction decreases. This 

coincides with experimental observations. For example, suction can pull water up a larger 

distance in a small-radius tube than that in a large-radius tube.      

 

Figure 5.9 Soil-water characteristic curves for soils with BCC structure and γ equal 

72mN/m. 

 



 

119 

 

 

                                  (a)                                                                  (b)     

Figure 5.10 Soil-water characteristic curves for soils with BCC structure and γ equal 

72mN/m when the soils approach to be saturated. (a) req=2μm; (b) req=500μm. 

 

Since in Figure 5.9, the scale of the abscissa is in logarithm, only predictions with 

positive suction values can be plotted. Figure 5.10 shows the change of matric suction 

when the soil approaches to be saturated. A negative matric suction means the pressure 

within the water meniscus (uw) is larger than the atmospheric pressure (ua), and if the 

pressure difference is large enough, two contacted grains can be separated. By comparing 

Figures 5.10(a) and 5.10(b), it can be found that when the soil approaches to be saturated, 

(uw - ua) decreases with the increase of the grain size or with the decrease of the contact 

angle. This can explain the swelling and shrinking mechanisms of expansive soils. 

Expansive soils contain incredibly fine particles. When they approach to be saturated, 

extremely large pressure difference (uw - ua) forces contacted grains separated, which can 

lead to swelling. When they are drying out, the matric suction is extremely large, as shown 

in Figure 5.9, so it causes the shrinkage. Such large suction also explains why it is difficult 

to drain expansive soils.  
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Figure 5.11 Soil-water characteristic curves for soils with different RVE structure 

and contact angles (req = 1mm and γ =72mN/m). 

 

Figure 5.11 shows SWCCs for soils with different RVE and contact angles. By 

comparing the results for FCC, BBC and SC, it can be found that with the increase of the 

porosity, the predicted SWCC moves downwards. This has been verified by many 

phenomena that a high porosity can cause a low suction. For example, because of the 

suction, the water from underground can move to the ground surface, and to prevent the 

loss of water, farmers usually loose soils to prevent the evaporation by increasing the soil 

porosity. Since wetting-drying cycles can increase the porosity of soils, this means the 

proposed model is capable of capturing the suction decrease after wetting-drying cycles 

by considering the change of soil RVE structure. In addition, experiments [55] show that 

at the same suction, the volumetric water content corresponding to a high normal stress is 

higher than that corresponding to a low net normal stress. A high net normal stress can 
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cause a low porosity, and from Figure 5.11, it can be concluded that the proposed model 

can capture the experimental observation well. By comparing SWCCs for FCC and HCP, 

it can be seen that although the HCP structure has more complete contact points, the slope 

for HCP is lower that for FCC. That is because the RVE volume of HCP is larger than that 

of FCC. When the volumetric water content is the same for both structures, the water 

volume around every contact point in HCP is larger than that in FCC, and the matric 

suction between contacted grains decreases with the increases of water volume around the 

contact point.   

 

5.4. Summary 

A chemical model is first proposed to determine the adsorbed water film thickness 

on the grain surface by considering the effect of van der Waals forces and electric double -

layer forces. The film thickness can be determined through some easy-to-measure 

variables, like the relative humidity, water surface tension in air and solid surface 

curvature. Then, a micromechanics model is proposed to predict the SWCC of soils. The 

expression for water volume and suction between two contacted spherical grains are 

derived, and by studying the microstructure of soils, the SWCC can be obtained. Main 

findings are summarized as below: 

(1) The proposed water film thickness model and SWCC model are practical. 

Every parameter in the models has clear physical meaning and is measurable easily. 

(2) The effect of grain size on the water film thickness is negligible when the 

relative humidity is less than 99%, and the film thickness is in the order of nanometer.  
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(3) The proposed SWCC model can capture the performance of soils well. It is 

shown that the huge positive and negative matric suction is responsible for the shrinkage 

and expansion of expansive soils, which contains very small particles. 

(4) Matric suction increases with the decrease of grain size and contact angle of 

water in soils. 

(5) The decrease of matric suction after wetting-drying cycles arises from the 

change of soil microstructure, and matric suction decreases with the increase of porosity.  

In the future, the microstructure of soils and contact angle of water in soils will be 

further studied.     
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6. CONCLUSIONS 

 

In this work, three energy-based models and one micromechanics model are proposed.  

The energy-based models are used to predict the fatigue cracking happened in the asphalt 

concrete layer and rutting occurred in the asphalt concrete layer and base layer. Compared 

with stress or strain based models, the energy-based models are independent of the loading 

mode. Therefore, the parameter values determined using strain-controlled test data apply 

to the stress-controlled loading condition. The micromechanics model is used to predict 

the soil-water characteristic curve. Compared with existing SWCC models, the 

micromechanics model proposed has the potential to predict the SWCC, rather than fit the 

SWCC. That is because every parameter in the proposed model has a clear physical 

meaning and is measurable easily. 


