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ABSTRACT

This dissertation comprises three chapters on behavioral economics and decision theory. Each

chapter is independent.

In the first chapter, I present the first experimental evidence that information receivers exhibit a

preference for a larger signal space, even when it does not affect signal accuracy. This preference

for a larger signal space suggests that users are more attracted to a five-star rating system than a

binary recommendation system.

The second chapter is about the timing of the resolution of uncertainty. We provide the first

experimental examination of uncertainty resolution in the domain of ambiguity. Results show that

individuals prefer early resolution of both risk and ambiguity, and these preferences are positively

correlated.

In the last chapter, we examined a novel explanation for vaccine hesitancy: ambiguity aversion.

Using a modified version of the Interactive Vaccination (I-Vax) Game from Bohm et al. (2016), we

found that ambiguity-averse subjects were more likely to take the vaccination in general but were

differentially less likely to take it in a treatment where there is ambiguity in the vaccination option.
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I. DOES THE SIZE OF THE SIGNAL SPACE MATTER?

I.1 Introduction

Signal transmission is an essential part of the literature on game theory, where a vast amount

of theoretical and empirical research has been conducted. However, the desirable size of the signal

space in the literature has often been overlooked. In the context of information acquisition, the size

of the signal space denotes the number of possible signals. When discussing the size of the signal

space, in many cases, theorists assume that the signal space equals the action space. They have

shown that assuming an equivalence between the signal space and the action space is sufficient

to find the equilibrium; therefore, a larger signal space is unnecessary. This assumption has been

taken for granted, but its validity could be limited if the receiver prefers a larger signal space. This

paper investigates whether a preference exists for the size of the signal space, independent of the

signal accuracy.

Consider the example of an investor contemplating whether or not to invest in a company. State

θ ∈ {G,B} represents the type of the company, where G and B stand for a good company and a

bad company respectively. The investor does not know whether the company is good or bad, but

she thinks the probability that the company is good is 0.5. She wants to invest only if the company

is good. Without loss of generality, suppose she gets utility 1 for investing in the good company or

for not investing bad company, and utility 0 for investing in the bad company or for not investing

in the good company.1

To reduce uncertainty about the investment decision, she is considering hiring a financial ad-

visor with more knowledge of the company. There are two advisors she is considering: Advisor

A and Advisor B. They both provide informative signals to the investor. Advisor A will send the

investor one of the two signals with equal probability: “invest” or “not invest.” If his signal is

“invest,” the probability that the company is good is 70% (Pr(G|“invest”) = 0.7). If his signal is

“not invest,” the probability that the company is good is 30% (Pr(G|“not invest”) = 0.3). Since

the number of possible signals sent from Advisor A is 2, the size of his signal space is 2. Note that

Advisor A is the kind of sender commonly assumed by theorists: the action space (invest or not) is

1Note that she will be as happy not to invest in a bad company as to invest in a good company, considering the
opportunity cost.
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equal to the signal space.

On the other hand, Advisor B has a larger signal space. Advisor B will send the investor one

of these five signals with equal probability: “must invest,” “invest,” “no opinion,” “not invest,” or

“never invest.” The respective probabilities that the company is good when each signal is sent are

0.8, 0.7, 0.5, 0.3, and 0.2. The size of his signal space is 5.

The advisor’s signal accuracy is defined by “winning” probability when receiving the signal

from the advisor, which is consistent with the expected utility conditional on the signal. For ex-

ample, if the investor receives and follows the signal from Advisor A, her winning probability is

0.7 whether she receives “invest” or “not invest.” Hence, Advisor A’s signal accuracy is 0.7. In

the same way, Advisor B’s signal accuracy is also 0.7. Therefore, if the investor is rational and

maximizes expected utility, she will be indifferent between Advisors A and B. The question is,

does the size of the signal space affect the preference between advisors? This paper’s experimental

results say yes: the investor prefers Advisor B to A because Advisor B has a larger signal space.

This paper provides the first empirical evidence that the size of the signal space matters in

information acquisition. In Study 1, subjects in a lab experiment bet on the binary outcomes

of four lotteries. Before betting, they can purchase a signal for each lottery. For each lottery,

while the signal accuracy is identical, the size of the signal space varies from 2 to 5. I find that

subjects’ willingness to pay for the signal increases as the size of the signal space increases, even

though the signal accuracy is fixed. It is well-known that, in many cases, individuals prefer simpler

situations when making decisions. In that sense, the preference for a larger signal space could be

counterintuitive because a larger signal space generates a complicated environment.

A possible explanation for the preference for larger signal space would be that subjects mistak-

enly believe that larger signal space implies higher signal accuracy. I falsify this explanation in a

second study. Study 2 measures the willingness to pay to play each of the four lotteries in Study 1.

In Study 2, subjects always receive the signal in each lottery because the signal is free. Note that

the environments in both studies are isomorphic. Therefore, if decision-makers think larger signal

space implies higher signal accuracy, they should value more lotteries with larger signal space in

Study 2. However, the result reveals that subjects no longer prefer the larger signal space; they are

indifferent to the size of the signal space.

Curiosity provides the most plausible interpretation of the experimental findings. Curiosity
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indicates an intrinsic motivation for seeking knowledge that might not have instrumental value.

When subjects purchase a signal, curiosity makes their view myopic: they tend to focus on the

signal itself instead of the outcome. When the size of the signal space is larger, the probabil-

ity of choosing the “correct” signal becomes smaller. Hence, subjects pay more to uncover the

uncertainty regarding the signal. A detailed explanation will be provided later in Section III.4.

Receiving a signal and playing a simple lottery based on the signal’s information can be per-

ceived as a two-stage lottery. In this environment, the preference for a larger signal space could be

interpreted as a violation of the reduction of compound lottery axiom (ROCL). When a decision-

maker can reduce compound lottery, there is no reason to pay more to a signal with a larger space

under the same signal accuracy. (1) revealed that ambiguity neutrality and reduction of compound

lotteries are tightly associated. If his findings can be applied to this environment, the preference

for a larger signal space should be correlated with ambiguity neutrality. However, the results of

this paper did not find the correlation.

Does a smaller or larger signal space enable better decision-making? In some environments,

limiting the size of the signal space might restrict the optimal outcome. For example, in most

standard sender-receiver literature, a small size of signal space might lead to inefficient outcomes

(2; 3). Hence, in these cases, a larger signal space allows better decision-making. In the experi-

mental design of this paper, however, the size of the signal space is independent of the efficiency

of the outcomes: the signal accuracy of each signal is the same. Therefore, there is no behavioral

or theoretical reason to prefer a larger signal space.

On the other hand, a decision-maker might prefer a simpler environment—a smaller signal

space—if the signals are too complicated to understand. For example, a worker might want to

receive direct instructions on what to do rather than receive abstract signals from the boss and

interpret her intent. This preference could be related to complexity aversion, which illustrates a

preference for simpler lotteries over complex ones, even though the expected values are the same

(4; 5; 1; 6). However, the experimental results of this paper did not find evidence for complexity

aversion.

This paper has two main contributions. First, the empirical findings of this paper suggest how

to deliver information from the view of information providers. Information providers, such as fi-

nancial advisors, medical test providers, or film critics, can make their services look more attractive
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by simply increasing the size of the signal space. For example, the result of this paper suggests

that users are more attracted to a five-star rating system than a binary suggestion, even if the two

systems are equally accurate. Hence, if a service provider switches its recommendation system

from a binary suggestion to a five-star rating, demand for the service will increase, even without

improving the system’s accuracy. This implication is aligned with the experimental findings of (7),

called complex disclosure, suggesting senders get more benefits from using complex reports than

from using easier ones.

Another contribution involves the theoretical aspect of the context of information design (8).

Without loss of generality, most theoretical studies of information design have restricted the sender’s

signal to be “straightforward,” which is a signal of recommended action such as Advisor A in the

investor example. A straightforward signal, where the signal space is equal to the action space,

allows for simplifying the design of the signal structure. However, the experimental findings of

this paper suggest that the receiver might prefer the environment where the signal space is larger

than the action space.

Section I.3 provides theoretical predictions from various models, but none of them can explain

the preference for larger signal space. The expected utility model predicts the same value for each

signal. The recursive smooth ambiguity model of (9), the rank-dependent utility model (10), and

prospect theory (11; 12) suggest different values for different signals, but they do not predict the

systemic preference for the signal space size and the behavioral difference between Study 1 and

Study 2.

This paper proceeds as follows. Section III.2 describes the experimental design and procedure.

Section I.3 provides theoretical predictions of the results from various models. Section III.3 reveals

experimental results, and Section III.4 concludes.

I.2 Experimental Design

Participants were assigned to one of two studies: Study 1 or Study 2. Each study consists of

two parts: part 1 measured the value of signals (Study 1) or lotteries (Study 2) under isomorphic

environments, and part 2 measured ambiguity attitudes by (13) questions.
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I.2.1 Part 1: The Value of Signals/Lotteries

There are four lotteries in Part 1. Each lottery contains several boxes, with each box containing

ten balls, either red or blue. In each lottery, the computer draws a ball in two stages. In the first

stage, the computer randomly selects one of the boxes with an equal probability. In the second

stage, the computer randomly draws a ball from the selected box. Between the first and the second

stages, subjects predict the color of the ball which will be drawn. If their prediction is correct, they

receive 100 points, where each point is equal to 0.01 USD. Figure I.1 illustrates the four lotteries.2

Figure I.1: Four lotteries

Each box is denoted by Box Xn, where X ∈ {R,B,G} and n ∈ {5, 6, 7, 8, 9}.3 X and n

represent the majority color of the balls in the box and the number of balls in the box, respectively.

For example, Box R7 has more red balls than blue balls, and the number of red balls is 7.4

2To avoid the possibility of cognitive load, the maximum size of the signal space is 5.
3(14) elicited the demand for informative signals and found that people significantly prefer information that might

yield certainty. Therefore, to avoid the certainty effect, I exclude the box of n = 10.
4In the actual experiment, boxes are represented as Box R, Box B, Box G, Box RR (if there is more than one Box

R in the same lottery), and Box BB (if there is more than one Box B in the same lottery). Numerical labels are not
used to provide an environment where subjects rely more on intuition.
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In Study 1, subjects do not know which box was selected. However, before the prediction,

subjects have a chance to “buy” a costly signal with their 100 endowment points. If they purchase

a signal, the computer will tell them which box is selected. That signal increases their probability

of winning but requires some cost, whether they win or lose.

For example, in lottery 2, there are three boxes: Box R8, Box G5, and Box B8. Suppose Box

R8 is randomly selected. Without the signal, subjects do not know which box was chosen. Their

winning probability is 50% whether they bet on a red or blue ball because there is a total of 15 red

balls and 15 blue balls in lottery 2. If they buy the signal, they learn that Box R8 was selected and

the ball will be drawn from Box R8. The signal “Box R8” increases the odds of winning to 80%

because Box R8 contains 8 red and 2 blue balls.

One of the key features of this experiment is that each lottery always has 50% red balls and

50% blue balls. This implies that the prior, the winning probability without the signal, is 50% for

all lotteries. Another essential feature is that the signal accuracy for each lottery is the same. If

subjects purchase the signal, the winning probability increases to 70% for all four lotteries. The

only difference between them is the number of boxes, representing the possible number of signals.

Study 2 measures the values of the four lotteries when the signals are free: before predicting

the ball’s color, subjects can observe which box is selected without the signal purchasing process.

Note that the information structures of both studies are isomorphic. Hence, if a subject has a

preference over the size of the signal space in Study 1, she will also have the same preference in

Study 2. To quantify the values of the lotteries, I measured the subjects’ willingness to pay to play

each lottery. Figure I.2 shows the timeline of both studies.

Figure I.2: Timeline of both studies
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To measure the willingness to pay, the Becker-DeGroot-Marschak (BDM) mechanism (15) was

used. In Study 1, subjects submit the values of the signals, which are the maximum points they

can pay for each lottery. After submitting values for signals for all four lotteries, one of them is

randomly selected. Then, a random number is generated between 1 and 100. The random number

represents the price for the signal for the selected question in the selected lottery. If a subject’s

submitted value in the selected lottery is greater than the price, she can see the signal and pays the

price. However, if the submitted value in the selected lottery is equal to or lower than the price, she

does not receive the signal and pays nothing. After the signal is revealed or not revealed, subjects

predict the color of the ball. Figure I.3 shows the questions in the BDM.

Figure I.3: The BDM mechanism in Study 1

The procedure of the BDM in Study 2 is similar to that in Study 1 (See figure I.4). Before

playing the lotteries, subjects are asked the maximum number of points they are willing to pay for

playing each lottery. After submitting four values for four lotteries, one of the lotteries is randomly

selected. Then, a random number between 1 and 100, representing a substitute prize, is generated.

If the submitted value in the selected lottery is greater than the prize, a subject plays the lottery.

Otherwise, she receives the prize without playing the lottery. If subjects play the lottery, they see

which box is selected and predict the color of the ball from the selected box.
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Figure I.4: The BDM mechanism in Study 2

The major issue with the BDM mechanism is its difficulty and the biased results in some envi-

ronments.5 To minimize the confusion, subjects were asked to submit their maximum willingness

to pay for the signal instead of deciding between Option A and B 100 times. Also, before subjects

submit their actual values, an example was illustrated of how the mechanism works when a specific

value is submitted. Furthermore, even if the result is upward or downward biased, the biased result

does not impair the primary purpose of the BDM mechanism, which is to compare preferences

between signals and between lotteries, not to elicit their exact values.

There are two hypotheses to test. Study 1 measures subjects’ willingness to pay for the signal.

If only the signal accuracy matters, the demand for signals for all four lotteries should be the same.

If ci indicates the cost subjects are willing to pay for the signal of lottery i,

c1 = c2 = c3 = c4. (I.1)

Hypothesis 1. The size of the signal space does not affect the demand for the signal.

If Li denotes lottery i, let V signal
i (c) represent a value of Li with the signal with the cost c. Then,

Study 2 measures V signal
i (0) for four lotteries. Suppose a subject values the signal for lottery i is

5See (16) and (17) for discussions about the biased results of the BDM.
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more than the signal for lottery j. Then, she will also value lottery i more than lottery j even when

the signal is free: ci > cj =⇒ V signal
i (0) > V signal

j (0). Then, the following hypothesis holds.

Hypothesis 2. The rank among ci is identical to the rank among Vi(0).

To avoid subjects focusing only on the size of the signal space, lotteries were presented in the

order of L1 − L3 − L2 − L4 in both studies.

I.2.2 Part 2: Ellsberg Questions

After the elicitation of the value of signals, subjects’ ambiguity attitudes were measured by two

questions from (13). Ambiguity attitude is closely related to two-stage lotteries, especially to the

ability to reduce compound lotteries (1; 18). (1) showed the strong association between ambiguity

neutrality and reduction of compound lotteries. Since preference for a larger/smaller signal space

can be interpreted as a failure to reduce compound lotteries, this task helps to understand how

ambiguity attitude is related to a preference for the size of the signal space.

The following statement describes the task.

Consider there is a bag containing 90 ping-pong balls. 30 balls are blue, and the
remaining 60 balls are either red or yellow in unknown proportions. The computer
will draw a ball from the bag. The balls are well mixed so that each ball is as likely to
be drawn as any other. You will bet on the color that will be drawn from the bag.

Subjects are asked to choose their preferred options between A & B and between C & D. Table

III.1 illustrates the four options.

Options

Option A receiving 100 points if a blue ball is drawn.

Option B receiving 100 points if a red ball is drawn.

Option C receiving 100 points if a blue or yellow ball is drawn.

Option D receiving 100 points if a red or yellow ball is drawn.

Table I.1: Ellsberg questions
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If a subject prefers A to B and D to C, there is no formulation of subjective probability that

can rationalize the preference. This preference is interpreted to be a consequence of ambiguity

aversion. After the rewards from Part 1 and Part 2 are determined, one of the parts is randomly

selected. Subjects will get the points in the selected part. Each point is converted to 0.01 USD.

I.2.3 Procedural Details

467 subjects participated in experiments through Prolific, an online platform for recruiting

research participants.6 179 and 158 subjects participated in studies 1 and 2, respectively. Also,

another 130 subjects participated in a robustness study, which is discussed below. On average,

subjects spent 10 minutes and earned $3.32, including a $2.20 base payment.

I.2.4 Robustness Study

In addition to the main studies, an additional study was implemented to investigate the robust-

ness of the results. The robustness study provides evidence on whether subjects understood the

procedure correctly.

6(19) showed Prolific can be a reliable source of high-quality data. For details on the Prolific’s subject pool, see
(20). In both studies, only US subjects participated.
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Figure I.5: Lotteries in the robustness study

The procedure of this study is identical to Part 1 in Study 1: subjects were asked to value

signals in uncertain lotteries. To investigate subjects’ understanding, the values of signals for eight

lotteries were measured. The signal of each lottery provides a different winning probability. If

subjects understood this information acquisition framework correctly, they would be more willing

to pay for a signal with a higher winning probability. Figure I.5 illustrates the lotteries in this study.
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Table I.2: Summary of lotteries in the robustness study

Questions Signal Space Size Signal Accuracy Predictions

1 2 0.80 30

2 2 1.00 50

3 2 0.60 10

4 2 0.90 40

5 3 0.70 20

6 3 0.83 33.3

7 3 0.57 6.7

8 3 0.77 26.7

Table I.2 summarizes the details of the lotteries. Lotteries 1-4 have two boxes, Box Rn and Box

Bn, where n ∈ {5, 6, 7, 8, 9, 10}. Hence, the size of the signal space is 2. Also, since Lotteries 5-8

have three boxes, Box Rn, Box Gn, and Box Bn, the size of the signal space is 3 for these lotteries.

The signal accuracy, which is the winning probability with the signal of each lottery, is described in

the third column. The fourth column shows the theoretical prediction when the decision-maker is

a risk-neutral utility maximizer. If subjects understand the information framework of the signaling

process, their demands for the signals will be in line with theoretical predictions.

I.3 Theoretical Predictions

Let Lprior
i denote lottery i without the signal. Also, Lsignal

i (p) is lottery i with a signal with the

cost c. Suppose an individual’s willingness to pay for the signal for lottery i is greater than or equal

to her willingness to pay for the signal for lottery j: ci ≥ cj , where ci denotes the elicited price for

the signal for lottery i. The values of ci and cj are determined by

V signal
i (ci) = V prior

i , (I.2)

V signal
j (cj) = V prior

j , (I.3)

where Vi denotes the value of lottery i.
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Since V prior
i = V prior

j ,

V signal
i (ci) = V signal

j (cj). (I.4)

For simplicity of notation, I denote Vi(c) instead of V signal
i (c) from now on. Note that Li(x) is

a decreasing function of x. Hence, under the equation I.4,

ci ≥ cj =⇒ Vi(c) ≥ Vj(c), (I.5)

where 0 ≤ c ≤ max(ci, cj). For example, suppose a subject’s willingness to pay for signal 1 (the

signal in lottery 1) is 20, and that for signal 2 (the signal in lottery 2) is 30. She will be happier to

purchase signal 2 for a price of 15 than to purchase signal 1 for a price of 15. Hence, for calculation

simplicity, I will compare Vi(c) and Vj(c) when a comparison between ci and cj is needed.

Study 1 measured ci for i ∈ {1, 2, 3, 4}. Also, Study 2 elicited Li(0) for i ∈ {1, 2, 3, 4} because

the signal is free (c = 0). The remaining part of this section describes how different theories under

uncertainty predict the two values in different lotteries.

I.3.1 Expected Utility

The expected utility of lottery i is given by

UEU(Li) =
∑
s∈S

p(s)u(s). (I.6)

The expected utility indicates that decision-makers are only interested in the expected values of

lotteries but indifferent to the uncertainty resolution process. They do not care whether one lottery

is a simple, compound, or a mean-preserving spread of the other lottery. Therefore, according to

the expected utility model, subjects are indifferent between signals for lotteries, as well as between

values of lotteries after receiving those signals.

c1 = c2 = c3 = c4, (I.7)

V1(0) = V2(0) = V3(0) = V4(0).
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I.3.2 Recursive Smooth Ambiguity Utility

The recursive smooth ambiguity model by (9) (KMM, hereafter) suggests a theoretical utility

model involving a second-order belief. KMM assumes that the decision-makers have a subjective

expected utility on the space of second-order compound lotteries. For each f , there exists a second-

order belief µ such that

UKMM(f) =
∑
∆(S)

ϕ
(∑

s∈S

p(s)u(f(s))
)
µ(p), (I.8)

where µ is a second-order subject belief, ∆ is the set of possible first-order objective lotteries, and

ϕ is a monotone function evaluating the expected utility associated with first-order beliefs.

For example, when purchasing a signal for L1, there are two possible outcomes in the first stage

(second-order): R7 or B7. In the second stage (first-order), the expected utility is 0.7u(100− c) +

0.3u(−c) for both cases. Therefore, the evaluation of L1 is given by

UKMM(L1(c)) =
1

2
ϕ(0.7u(100− c) + 0.3u(−c)) +

1

2
ϕ(0.7u(100− c) + 0.3u(−c))

= ϕ(0.7u(100− c) + 0.3u(−c))

Similarly, the values of lotteries are evaluated as

UKMM(L2(c)) =
2

3
ϕ(0.8u(100− c) + 0.2u(−c)) +

1

3
ϕ(0.5u(100− c) + 0.5u(−c)),

UKMM(L3(c)) =
1

2
ϕ(0.8u(100− c) + 0.2u(−c)) +

1

2
ϕ(0.6u(100− c) + 0.4u(−c)),

UKMM(L4(c)) =
2

5
ϕ(0.8u(100− c) + 0.2u(−c)) +

2

5
ϕ(0.7u(100− c) + 0.3u(−c))

+
1

5
ϕ(0.5u(100− c) + 0.5u(−c)).

When µ is subjective, KMM explained ambiguity aversion by the concavity of ϕ: if Lottery Y

is a mean-preserving spread of Lottery X, then individuals prefer X to Y because of their second-

order subjective probability (µ). Since L3(c) is a mean-preserving spread of L1(c), decision-

makers prefer L1(c) to L3(c):
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For easier computation, let’s define U(α) as,

U(α) ≡ αu(100− c) + (1− α)u(−c).

Then,

UKMM(L1(c)) = ϕ(0.7u(100− c) + 0.3u(−c))

= ϕ(U(0.7))

≥ 1

2
ϕ(U(0.8)) +

1

2
ϕ(U(0.6))

= UKMM(L3(c)).

A few more steps of calculations for details) show the following preferences hold.

c1 ≥c3 ≥ c2, (I.9)

c1 ≥c4 ≥ c2.

Since Li(0) is a specific form of Li(c), the preference among Li(0) does not change. Hence,

regardless of the ambiguity attitude, KMM predicts consistent preferences between Study 1 and

Study 2.

V1(0) ≥V3(0) ≥ V2(0), (I.10)

V1(0) ≥V4(0) ≥ V2(0).

When ϕ is convex, implying ambiguity seeking, the opposite inequality holds.

c2 ≥c3 ≥ c1, (I.11)

c2 ≥c4 ≥ c1,

V2(0) ≥V3(0) ≥ V1(0), (I.12)

V2(0) ≥V4(0) ≥ V1(0).
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I.3.3 Simulational Predictions from Other Models

I.3.3.1 Rank-Dependent Utility

The rank-dependent utility (RDU) model suggested a probability weighting approach based on

the order of rank for the outcomes (10; 21; 22). According to the RDU model, the utility of a

lottery paying xi with probability pi is described as

URDU(x1, p1;x2, p2; · · · ;xn, pn) = u(x1) +
n∑

i=2

[u(xi)− u(xi−1)]f(
n∑

j=i

pj), (I.13)

where x1 ≤ x2 ≤ x3 · · · ≤ xn, f : [0, 1] → [0, 1], f(0) = 0 and f(1) = 1. For the simple lottery

that gives 100 with probability p and 0 with probability 1− p,

U(100, p; 0, 1− p) = u(100)f(p). (I.14)

Suppose its certainty equivalent is CE(p), then

CE(p) = CE(100, p; 0, 1− p) = u−1(u(100)f(p)). (I.15)

Hence,

URDU(L1(0)) = u(CE(0.7)) = u(100)f(0.7).

Similarly, values of four lotteries with signals are calculated as

URDU(L1(0)) = u(100)f(0.7),

URDU(L2(0)) = u(100)f(0.5) + [u(100)(f(0.8)− f(0.5))]f(
2

3
),

URDU(L3(0)) = u(100)f(0.6) + [u(100)(f(0.8)− f(0.6))]f(
1

2
),

URDU(L4(0)) = u(100)f(0.5) + [u(100)(f(0.7)− f(0.5))]f(
4

5
)

+ [u(100)(f(0.8)− f(0.7))]f(
2

5
).
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Preferences between lotteries vary depending on the functional form of f(p). Table I.3 illus-

trates simulational predictions of the RDU model based on different concave functions.

Table I.3: Theoretical predictions by RDU

f(p) Preferences between ci Preferences between Vi(0)

p0.1 c2 ≥ c4 ≥ c3 ≥ c1 V2(0) ≥ V4(0) ≥ V3(0) ≥ V1(0)

p0.5 c2 ≥ c4 ≥ c3 ≥ c1 V2(0) ≥ V4(0) ≥ V3(0) ≥ V1(0)

p0.8 c2 ≥ c4 ≥ c3 ≥ c1 V2(0) ≥ V4(0) ≥ V3(0) ≥ V1(0)

p c1 = c2 = c3 = c4 V1(0) = V2(0) = V3(0) = V4(0)

log(p) c1 ≥ c3 ≥ c2 ≥ c4 V1(0) ≥ V3(0) ≥ V2(0) ≥ V4(0)

ln(p) c1 ≥ c3 ≥ c2 ≥ c4 V1(0) ≥ V3(0) ≥ V2(0) ≥ V4(0)

Simulation results show that the RDU models with various functional forms of f(p) do not

predict the preference for larger signal space.

I.3.3.2 Prospect Theory

The first version of prospect theory was formulated by (11), providing evidence of a systemic

violation of the expected utility theory. The authors presented an alternative theoretical model to

explain the violation. Later, (12) (KT, henceforth) presented an extension of the original model,

cumulative prospect theory, which adopted rank-dependence in probability weighting.

According to the cumulative prospect theory (CPT), the utility of a lottery paying xi with

probability pi is described as

UCPT (xm, pm;xm+1, pm+1; · · · ;x0, p0; · · · ;xn, pn) =
n∑

i=−m

πiv(xi), (I.16)

where v(·) is a value function, which is an increasing function with v(0) = 0, and π is the decision
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weight. KT defined the value function as follows.

v(x) =

xα if x ≥ 0,

−λ(−x)β if x < 0,

(I.17)

where λ is a loss aversion parameter.

Decision weights π are defined by:

π+
n = w+(pn), (I.18)

π−
−m = w+(p−m),

π+
i = w+(pi + ...+ pn)− w+(pi+1 + ...+ pn), 0 ≤ i ≤ n− 1,

π−
i = w−(p−m + ...+ pi)− w−(pm + ...+ pi−1), 1−m ≤ i ≤ 0,

where w+ and w− are the following functions.

w+(p) =
pγ

(pγ + (1− p)γ)1/γ
, w−(p) =

pδ

(pδ + (1− p)δ)1/δ
. (I.19)

To predict the preferences for ci and Vi(0) by CPT, I used the parameter values from KT. They

estimated the values from experimental data.

Table I.4: Values of parameters from KT

Parameter Meaning Value

α power for gains 0.88

β power for losses 0.88

λ loss aversion 2.257

γ probability weighting parameter for gains 0.61

δ probability weighting parameter for losses 0.69

7According to a meta-analysis by (23), the mean of the loss aversion coefficient λ from numerous empirical esti-
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Also, I assume the cost of the signal is 20, which is the theoretically expected value when the

decision-maker is a risk-neutral expected utility maximizer. Hence, the preference between ci is

from simulational results from Li(20). With these parameter values, CPT predicts the following

preferences:

c1 ≥ c3 ≥ c4 ≥ c2, (I.20)

V1(0) ≥ V3(0) ≥ V4(0) ≥ V2(0).

Summarizing the theoretical predictions for the value of the signals in Study 1, no model pre-

dicts the preference for a larger signal space (c1 ≥ c2 ≥ c3 ≥ c4).

Prediction 1. Preference for a larger signal space does not exist.

This prediction is consistent with Hypothesis 1. Also, no model predicts different preferences

between ci and Vi(0), which is consistent with Hypothesis 2.

Prediction 2. Preferences in both studies are identical.

To summarize, theoretical predictions are aligned with the hypotheses: no theoretical models

predict the preference for a larger signal space or inconsistent preferences.

mates is 1.97. I found that simulational results with λ = 1.97 do not change the preference between lotteries.
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I.4 Results

I.4.1 Preference for a Larger Signal Space

Table I.5: Elicited values for ci and Vi(0) with different size of signal space.

Study 1 Study 2

Lottery |S| ci Number Vi(0) Number

1 2 23.6 179 52.9 158

2 3 24.9 179 48.9 158

3 4 25.8 179 51.0 158

4 5 29.8 179 52.7 158

Cuzick’s test p-value 0.005 0.574

Table I.5 shows the submitted value for each signal (ci) and each lottery given the signal (Vi(0))

in points. |S| represents the size of the signal space. Regarding ci, the theoretical predictions from

the risk-neutral expected utility maximizer are 20 points for each lottery. Therefore, overall, the

demand for signals exceeds the theoretical predictions. The most notable feature of the willingness

to pay for the signal is the preference for a larger signal space: the demand for the signal increases

as the size of the signal space increases. However, in Study 2, the size of the signal space does not

affect the value of equivalent lotteries.

I did not find evidence for complexity aversion in lottery choice. According to (5), a lottery’s

complexity is measured as the product of the number of rows and columns. Hence, in this environ-

ment, the number of boxes in the lottery indicates the complexity of the lottery. The results show

that when the signal is free, the number of boxes — the size of the signal space — did not affect

the values of playing the lotteries.
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Table I.6: Individual preferences among ci and among Vi(0).

Study 1 Study 2

Preference Number Percentage Number Percentage

Larger Signal Space 39 21.8% 17 10.8%

Indifferent 33 18.4% 28 17.7%

Smaller Signal Space 6 3.4% 15 9.5%

Others 101 56.4% 98 62.0%

Total 179 100.0% 158 100.0%

Table I.6 illustrates the individual preferences between signals and lotteries. A larger pro-

portion of subjects preferred the larger signal space in Study 1 (c4 ≥ c3 ≥ c2 ≥ c1, but not

c1 = c2 = c3 = c4) than in Study 2 (V4(0) ≥ V3(0) ≥ V2(0) ≥ V1(0), but not V1(0) = V2(0) =

V3(0) = V4(0)). Also, a smaller proportion of subjects preferred the smaller signal space in Study

1 (c1 ≥ c2 ≥ c3 ≥ c4, but not c1 = c2 = c3 = c4) than in Study 2 (V1(0) ≥ V20) ≥ V3(0) ≥ V4(0),

but not V1(0) = V2(0) = V3(0) = V4(0)). There is no proportional difference between the groups

who showed indifference to signal space size (c1 = c2 = c3 = c4 or V1(0) = V2(0) = V3(0) =

V4(0))

To examine these relationships formally, I consider OLS regressions of the form:

yin = β0 + β1|S|i + β2AmbNeutraln + β3|S|i ∗ AmbNeutraln + ϵin. (I.21)

yi.n is the value of ci or Vi(0) by individual n, |S|i is a dummy variable indicating whether individ-

ual n is ambiguity neutral or not.
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Table I.7: Determinants of the demand for signals and lotteries

Dependent variable: Dependent variable:

ci Vi(0)

(1) (2) (3) (4) (5) (6)

Signal Space Size 1.93*** 2.03*** 1.93*** 0.16 0.08 0.16

(0.40) (0.55) (0.40) (0.50) (0.73) (0.50)

Ambiguity Neutrality 1.06 −2.85

(3.77) (4.37)

Signal Space Size × −0.20 0.16

Ambiguity Neutrality (0.79) (1.01)

Constant 19.28*** 18.78*** 19.28*** 50.82*** 52.34*** 50.82***

(1.87) (2.50) (1.38) (2.18) (3.20) (1.76)

Subject fixed effect No No Yes No No Yes

Observations 716 716 716 632 632 632

R-squared 0.010 0.010 0.046 0.000 0.003 0.000

F-test p-value 0.0000 0.0001 0.0000 0.7502 0.8211 0.7502

Notes: Robust standard errors clustered by subject in parentheses. Columns (2) and (5) cannot include subject fixed

effect because the ambiguity attitude is measured at the subject level. ***p < 0.01, ** p < 0.05, *p < 0.1.

The first three columns in Table I.7 show that the signal space size significantly affects the

value of signals. (F-test p-values < 0.0001 for these columns.) When the size of the signal space

increases, the willingness to pay for the signal also increases.

Result 1. Preference for Larger Signal Space: When purchasing signals, the willingness to pay

for the signal increases as the signal space size increases.

Result 5 rejects Hypothesis 1. Also, columns (4)-(6) show that the signal space size no longer

affects the value of lotteries when the signal is free. (F-test p-values are 0.7502, 0.7504, and 0.7502
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for each column.) This result rejects Hypothesis 2.

Result 2. Inconsistent Preferences When the signal is free, subjects no longer prefer a larger

signal space.

Since no theoretical model predicts the preference for larger signal space, the result falsifies

Prediction 1. Also, no model predicts inconsistent preferences. Therefore, Predictions 1 and 2 are

both falsified by the experimental results.

I.4.2 Ambiguity Attitudes

Table I.8: Ambiguity attitudes

Ambiguity Study 1 Study 2

Attitude Number Percentage Number Percentage

Averse 72 40.2% 55 34.8%

Neutral 85 47.5% 84 53.2%

Seeking 22 12.3% 19 12.0%

Total 179 100.0% 158 100.0%

Table I.9: The submitted values of ci and Vi(0) with different ambiguity attitudes

Attitude c1 c2 c3 c4 V1(0) V2(0) V3(0) V4(0)

Averse 22.8 23.8 24.4 29.9 55.7 49.5 47.7 55.8

Neutral 23.8 26.9 24.9 29.2 50.7 50.8 48.7 50.8

Seeking 25.5 28.7 26.5 31.4 54.2 55.8 52.9 52.2

Total 23.6 25.9 24.9 29.8 52.9 51.0 48.9 52.7

F-test p-value 0.8142 0.5988
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Table I.8 and I.9 respectively describe the ambiguity attitudes of subjects, and values of ci and

Vi(0) conditional on different ambiguity attitudes. It can be easily seen that the overall patterns be-

tween the WTP for signals and lotteries are consistent even though the attitude towards ambiguity

changes. The p-values of F-tests provide evidence that there is no effect of ambiguity attitude on

ci or Vi(0).

The third row of Table I.7 verifies that ambiguity neutrality is independent of the preference

for the size of the signal space. In (1), ambiguity neutrality is tightly related to the ability to reduce

the compound lottery. However, the findings of this paper contradict these results.

Result 3. Ambiguity neutrality is not related to the preference for the signal space size.

I.4.3 Predictions with Signals

Table I.10 illustrates subjects’ prediction decisions after the signal stage. The majority of

subjects followed the signal when their signal was informative (Box R or Box B). This implies

that the subjects understood the information structure of the experiments. In both studies, the

chi-square test and Fisher’s exact test reject the null hypothesis that subjects randomly predicted.

(p-values < 0.001 for both studies.)

Table I.10: Predictions with signals

Predictions Box R Box B Box G No Signal

Study 1
Red 16 (94.1%) 3 (15.8%) 12 (85.7%) 85 (65.9%)

Blue 1 (5.9%) 16 (84.2%) 2 (14.3%) 44 (34.1%)

Study 2
Red 37 (94.9%) 4 (11.1%) 8 (72.7%) N/A

Blue 2 (5.1%) 32 (88.9%) 3 (27.3%) N/A

Chi-square test p-value = 0.000

Did subjects make better decisions when receiving signals from smaller or larger signal spaces?

Table I.11 shows the correct decision rate with different signals. The correct decision is defined

as whether the subject’s prediction is consistent with the signal suggested after receiving Box R

24



or Box B as a signal. Results show that the correct decision rate and the signal space size are not

correlated. (Chi-square test p-value and Fisher’s exact test p-value are approximately 0.513 and

0.672, respectively).

Table I.11: Correct decision rate with each signal

Signal Received s1 s2 s3 s4 Total

Correct 9 (81.8%) 3 (100.0%) 11 (84.6%) 9 (100.0%) 32 (88.9%)

Incorrect 2 (18.2%) 0 (0.0%) 2 (15.4%) 0 (0.0%) 4 (11.1%)

Total 11 3 13 9 36

Chi-square test p-value = 0.513

I.4.4 Payoffs and the Size of the Signal Space

This section investigates whether the preference for a larger signal space hurts information

buyers. Table I.12 shows subjects’ payoffs in points from Part 1 in both studies. Overall, profits

were larger in Study 1 than in Study 2 because of the 100-point endowment in Study 1. In Study

1, subjects earned the highest profit on average when they played Lottery 1, the simplest lottery. In

other words, they earned less profit when they played lotteries with larger signal space. However,

this pattern disappeared when signals were free.
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Table I.12: Payoffs from part 1

Lottery Signal Space Study 1 Study 2

Selected Size Payoff Std. Error Number Payoff Std. Error Number

1 2 160.9 7.1 48 71.6 6.2 32

2 3 141.6 7.5 50 80.0 4.5 43

3 4 140.9 7.0 46 67.0 6.2 40

4 5 142.0 8.2 35 72.8 5.4 43

Total 146.7 3.7 179 73.1 2.8 158

Table I.13 reports the regression results to clarify whether and when signal space size affects the

payoffs. Columns (1) and (3) reveal the effect of the signal space size on the payoffs. Results show

that only Study 1 has a significant effect: purchasing signals from larger signal spaces negatively

affected payoffs.

Columns (2) and (4) show the effect of playing the simplest lottery (Lottery 1). If a subject

played more complex lotteries (Lotteries 2-4), her expected payoff was 19.4 points less than when

playing Lottery 1 (F-test p-value is 0.0202). The result of Column (4) reveals that this pattern

vanishes when the signal is free.
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Table I.13: Determinants of the payoffs

Dependent variable: Dependent variable:

Payoffs in Study 1 Payoffs in Study 2

(1) (2) (3) (4)

Signal Space Size −6.12* −1.17

(3.38) (2.54)

Simplest Lottery 19.44** −1.79

(8.29) (6.86)

Constant 161.23*** 141.46*** 76.11*** 73.44***

(9.00) (4.33) (6.95) (3.14)

Observations 716 716 632 632

R-squared 0.017 0.030 0.001 0.000

F-test p-value 0.0720 0.0202 0.6466 0.7946

Notes: Robust standard errors clustered by subject in parentheses.

***p < 0.01, ** p < 0.05, *p < 0.1.

Result 4. Subjects earned less profit when purchasing signals from a larger signal space.

The implication of Result 4 is that people overvalue signals when the signal space is large.

Therefore, they submitted overpriced values for these signals, resulting in lower earnings.

I.4.5 Robustness Study

Results from the robustness study show that subjects understood the entire information struc-

ture, especially the accuracy of each signal. Subjects’ submitted values for each lottery are consis-

tent with the expected utility model.
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Table I.14: Summary of results in the robustness study

Questions Signal Space Size
Winning Prob

Predictions WTP
With Signals

1 2 0.80 30 24.1

2 2 1.00 50 38.0

3 2 0.60 10 24.8

4 2 0.90 40 37.8

5 3 0.70 20 28.4

6 3 0.83 33.3 34.7

7 3 0.57 6.7 23.7

8 3 0.77 26.7 30.8

Table I.14 reveals the submitted values of the willingness to pay for the signal in each lottery.

What stands out in this table is that subjects valued the signals consistent with the theoretical

prediction. Also, compared to the WTP for signals in Lotteries 1-4, subjects overpaid for signals

in Lotteries 5-8 because of the effect of the signal space size. The chi-square test result rejects the

null thesis that the willingness to pay for signals was randomly submitted (p-value< 0.001).
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Table I.15: Determinants of the demand for signals

Dependent variable:

ci

(1) (2) (3) (4)

Predictions 0.25*** 0.27*** 0.25*** 0.27***

(0.07) (0.07) (0.07) (0.07)

Signal Space Size 1.51 1.51

(1.06) (1.06)

Constant 22.32*** 17.97*** 22.32*** 17.97***

(1.98) (3.72) (1.75) (3.61)

Subject fixed effect No No Yes Yes

Observations 1040 1040 1040 1040

R-squared 0.020 0.020 0.045 0.047

Notes: Robust standard errors clustered by subject in parentheses.

***p < 0.01, ** p < 0.05, *p < 0.1.

The results presented in Table I.15 support the claim that subjects had a thorough understand-

ing of the entire information structure, including the meaning of signal accuracy. Theoretical

predictions based on the risk-neutral expected utility model are significantly related to the actual

submitted values.

The second row of the table suggests that the signal space size has a positive effect on the

demand for signals, but the effect is not statistically significant.

I.5 Conclusion

Economists have examined various environments where individuals purchase costly stochastic

information. This article contributes to the literature by experimentally investigating the demand

for signals with different signal space sizes. It provides the first empirical evidence of a preference

for a larger signal space in the information acquisition process. Specifically, subjects preferred to

receive a signal from a larger signal space, even when signal accuracy was fixed. Furthermore,
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an inconsistent preference pattern was observed, where the preference for the larger signal space

disappeared when the value of equivalent lotteries was measured.

What is the behavioral reason for the preference for a larger signal space? One possible expla-

nation is that subjects were confused and had a poor understanding of signal accuracy. However,

this explanation is not plausible because the experimental design allowed subjects to easily calcu-

late the signal accuracy. Additionally, the results of the robustness study (see Section I.4.5) reject

the argument that subjects were confused about understanding the signal accuracy.

Another explanation for the preference for a larger signal space is that subjects mistakenly be-

lieved that a larger signal space implies higher signal accuracy. In many cases, a larger number

of signals implies more information. Numerous theoretical and experimental studies have shown

a preference for frequent signals in various contexts. For instance, in (24)’s model of information

and political regime change, the number of informative signals helps to overthrow the regime. Ad-

ditionally, (25) demonstrated that more signals (virtual roses) increase the success rate of dates in

the internet dating market. However, this explanation cannot account for the inconsistent prefer-

ences observed in Study 2. If subjects believed that signals from larger signal spaces were more

accurate, they should have also valued the equivalent lotteries.

The third and most plausible explanation is based on curiosity or a myopic view. A contem-

porary definition of curiosity characterizes it as an intrinsic motivation to seek information, even

when it has no instrumental value (26; 27; 28). In Study 1, suppose that subjects were focused

on guessing the selected box rather than the color of the drawn ball. Without the signal, a lottery

containing more boxes reduces the chance of choosing the “correct” box. Therefore, when a lottery

has more boxes, subjects may be willing to pay more to reveal uncertainty about the boxes. How-

ever, when they consider the value of the entire lottery, they realize that each lottery is identical,

which means that they have the ability to reduce the complexity of compound lotteries.

Imagine someone deciding whether or not to go to a restaurant. She makes her decision based

on a five-star rating suggestion: she goes to the restaurant only when the rating is greater than 3.

Since her choice is binary, this five-star system could be simplified to a binary suggestion. For

example, the suggestion is “Go” if the rating is greater than 3, and “Don’t Go” otherwise. In that

case, the information about whether the restaurant’s rating is 4 or 5 has no instrumental value for

her decision because she will go in either case. However, the perspective of curiosity suggests that
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she still wants to know this information, even if it has no practical value for her decision.

Several questions remain unanswered at present. This paper presents a preference for a larger

signal space when the signal space size is between 2 and 5. However, the results do not confirm

the optimal size of the signal space. It is possible that decision-makers would prefer a larger space

even when the signal space is extremely large, or there may be a most preferred signal space size.

Another question is whether these results can be generalized to a non-binary action space or

even a continuous one. The experimental design of this paper restricts the action space to binary.

In reality, however, actions are not necessarily binary. Therefore, investigating whether the results

of this paper still hold in a more generalized action space is also an interesting question. I hope

future studies will answer these questions.
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II. PREFERENCES FOR THE RESOLUTION OF RISK AND AMBIGUITY

II.1 Introduction

Unlike discounted expected utility theory, many models of generalized recursive utility relax

the assumption of a direct linkage between preferences of objective uncertainty and intertemporal

substitutability (e.g., 29; 30; 31). Applications of these models explain a wide variety of anomalies

regarding asset prices, trade, and inflation (see below). An added implication of these models is

that many of them require agents to have a preference over when uncertainty is to be resolved,

independent of instrumental concerns. Initial debates concerned whether such preferences were

plausible, and, if plausible, whether people prefer early or late resolution of uncertainty. Experi-

mental work is generally divided and elicitation of these preferences may be complicated by other

factors (see 32; 33, for surveys).

As conventionally defined, “uncertainty” includes both elements of “risk” and “ambiguity”

(34). The objective domain of uncertainty, risk, describes a situation where the result is not known,

but the underlying probability could be theoretically, or empirically determined; the subjective

domain of uncertainty, ambiguity, describes a situation where people do not know any basis for

objective probability. Interestingly, all aforementioned experimental studies that elicit preferences

for uncertainty resolution have focused entirely on the domain of risk. That is, a determination

of preferences for early resolution of uncertainty is only finding preferences for early resolution

of risk, without establishing individuals’ preferences over the removal of ambiguity. By consider-

ing environments with subjective uncertainty exclusively, the theoretical studies of (35) and (36)

examine uncertainty resolution where ambiguity is considered. Since these papers focus on the

subjective domain of uncertainty, the models examined by them may explain strict preferences for

ambiguity resolution, but not risk.

This current paper provides the first experimental elicitation of preferences of uncertainty res-

olution in the subjective domain as well as in the objective domain. We elicit separate preferences

over ambiguity and risk resolution and examine their interrelation with ambiguity attitude. In par-

ticular, we find that a plurality of the subjects (47.4%) prefer early resolution of risk and a majority

(63.7%) prefer early resolution of ambiguity, and the two preferences are positively correlated.

32



Controlling for risk resolution preference, being ambiguity seeking decreases the likelihood of

preferring early resolution of ambiguity by 25.6 percentage points.

The examination this paper provides is important for two separate reasons, one theoretical and

one methodological. The main (theoretical) reason is that there are a variety of models of general-

ized recursive utility, many with different implications about preferences towards the timing of risk

resolution and ambiguity resolution. Scholars began using these models, because the best-fitting

discounted expected utility models required unrealistic parameter values.1 While this specific de-

termination of what is “unrealistic” can be done through introspection, anecdotal observation, or

study of actual data, as models become more complex, it becomes more difficult to determine

what is “realistic” through the former two methods. Since these generalized recursive utility mod-

els have different implications on an individual’s preference on risk and ambiguity resolution, this

paper investigates the full reasonableness of these theoretical implications. At a basic level, certain

models of generalized recursive utility can only account for uncertainty resolution in the form of

risk resolution and some can only account for uncertainty resolution in the form of ambiguity res-

olution. More complex relations exist as well. While the mean subject holds a preference for the

early resolution of ambiguity, variation in this preference is positively correlated with variation in

the preference for risk resolution. Further, the attitude toward ambiguity affects this relationship.

Conclusions drawn about the validity of such models must necessarily include an investigation of

both preferences over risk resolution and ambiguity resolution.

To understand what features are important for a model to have strict and differential preferences

for risk and ambiguity resolution, we review six representative recursive utility models that have

been axiomatized by decision theorists and are commonly applied to field data: the discounted

expected utility model, the generalized recursive utility model of (29), the recursive smooth ambi-

guity model of (author?) (9, 38) and (18), the generalized recursive maxmin expected utility model

of (39), and the generalized recursive smooth ambiguity model of (40).2 A deductive examination

1For instance, to explain the equity premium puzzle, the risk-aversion parameter would need to be implausibly
large (37).

2In the paper, the term “recursive utility model” refers to both the canonical discounted expected utility model
and the other five generalized recursive utility models. Models of generalized recursive utility have consequential
implications in many applications in empirical macroeconomic and finance literature. For example, (41), (42), and (43)
assume that a representative agent has (30) preference; (44) adopt the recursive smooth ambiguity model; (author?)
(45, 46) follow a continuous-time version of the recursive maxmin expected utility model; (47) and (48) essentially
adopt the model axiomatized by (39); (49) follow the generalized recursive smooth ambiguity model axiomatized
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reveals that only the generalized recursive smooth ambiguity model of (40)—which allows for a

three-way separation between the parameter of risk attitude, the parameter of ambiguity attitude,

and the elasticity of intertemporal substitution—is consistent with our results. This observation

highlights the importance of separating the three parameters in empirical applications.

A secondary (methodological) reason concerns measurement and identification. Until this

study, there has been no experimental elicitation of individuals’ preferences over the resolution of

ambiguity. All previous experimental studies have used preferences of risk resolution as a proxy

for the more general, uncertainty resolution. Depending on the correlations between preferences of

risk resolution and ambiguity resolution, the conclusions of these studies may vary in their validity.

For instance, if preferences of risk and ambiguity resolution are not perfectly correlated, the use of

risk-resolution preferences as a proxy for the entirety of one’s uncertainty-resolution preferences

is problematic.

There have been several previous experimental studies on uncertainty resolution. (33) provides

a thorough review, categorizing and summarizing findings in four distinct areas. Early studies

surveyed participants on their preferences and did not incentivize choice (53; 54; 55; 56). Later

studies incentivized choice but were potentially confounded by the fact that the information re-

vealed is instrumental (57; 32; 58; 59; 60). That is, learning the information early may pose an

additional benefit to an individual outside of these preferences. In both categories, the literature

often, but not always, finds a preference for the early resolution of uncertainty. Along a related line

of experimental literature, there have also been papers studying the association between a subject’s

attitudes towards ambiguity and compound lotteries (e.g., 1; 61).

Among the studies that do not provide instrumental information, studies that rely on multi-

stage lotteries—where uncertainty has yet to be determined—generally find preferences for late

or gradual resolution of uncertainty (i.e., 62). Studies that rely on information structures—where

the uncertainty is determined but yet to be resolved for the subject—generally find preferences

for early resolution of uncertainty (i.e., 63; 64; 65). (33) is the first to note this relationship and

demonstrates this general result in a unified, non-instrumental framework. That is, she finds a

by (40). In spite of differences in modeling details, these calibrated models are able to better explain the equity
premium, the risk-free rate, and/or the volatility puzzles among others, to different degrees. See also (50), (51), and
(52) for further applications of generalized recursive utility models in explaining puzzles in international economics
and inflation.
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preference for early resolution with information structures and late resolution with isomorphic

multi-stage lotteries.

There are several additional key features of our experimental design. Our experiment follows

the general structure of (author?)’s in the risk domain, eliciting subjects’ preference over un-

certainty with non-instrumental information in information structure frames. We build upon the

design in that we separately elicit risk and ambiguity resolution preferences. To the best of our

knowledge, the latter has not previously been elicited. Secondly, we examine more than binary

choices, which have been the focus of the literature to date. We also include gradual resolution of

information options (non-skewed, positively-skewed, and negatively skewed) as well as early and

late options. Positively skewness eliminates more uncertainty about the good state and negatively

skewness is the opposite.3 Hence, participants express preferences over larger choice sets.

This paper proceeds as follows. Section II.2 details the experimental design and procedures on

the elicitation of risk resolution preference, ambiguity resolution preference, and ambiguity atti-

tude. Section II.3 provides hypotheses to test the six theoretical models, and Section II.4 provides

experimental results. Section II.5 reviews six representative recursive utility models and examines

their implications on the preferences of risk resolution and ambiguity resolution. Lastly, Section

II.6 concludes.

II.2 Experimental Design and Procedures

The experiment consists of two parts: the risk-resolution-preference elicitation part and the

ambiguity-resolution-preference elicitation part. Each part utilizes four questions to elicit subject

preferences on the timing of risk/ambiguity resolution, yielding eight questions in total. The order

of the two parts and the questions within are randomly ordered for subjects in four ways comprising

four separate, within-subjects treatments. Full details of the random ordering are explained in

Section II.2.3.

II.2.1 Risk-Resolution-Preference Elicitation

In the risk-resolution-preference elicitation experiment, subjects participate in a two-period

consumption process. In t = 1, subjects receive $10 advance payment. In t = 2, a lottery is drawn

and the additional payoff is realized. The lottery has 50% chance leading to a “high prize ($22)”

3(66) focus on an environment with (1) objective uncertainty and (2) gradual resolution options only.
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and 50% chance leading to a “low prize ($4)” ex-ante, and thus subjects have the same prior belief

at the beginning of t = 1: the overall probability of winning the high prize is 0.5.

An additional piece of information on the underlying probability of the lottery is realized at the

end of t = 1. The additional information is either a piece of “good news” or “bad news.” Upon

receiving the news, subjects update their beliefs on the chance of receiving the “low prize” and the

“high prize” in t = 2.

An information structure is a vector (p, q, r) satisfying the constraint that pq + (1− p)r = 0.5,

where the value p is the probability of receiving good news, q is the probability of winning the

high prize conditional on receiving good news, and r is the probability of winning the high prize

conditional on receiving bad news. Following (33), we impose the restriction that pq+ (1− p)r =

0.5 to ensure that the prior belief of winning a high prize is equal to 0.5. A general consumption

process is shown in Figure 1.

+$10

bad +$4
1− r

+$22
r

1− p

good +$4
1− q

+$22
q

p

Figure II.1: A general consumption process in risk resolution experiment

In three separate questions, subjects are asked to select their most preferred information struc-

ture from a subset of options listed in Table II.1. The options are described as follows.

Under One-Shot Early option, all the risk is resolved in the first stage solely. To see this, if

a subject receives good news, she will receive the high prize ($22) for sure (q = 1). Otherwise,

she will receive the low prize ($4) for sure (r = 0). Hence, under One-Shot Early option, the

consumption process shown in Figure II.1 can be simplified into Figure II.2(a).

Under the three Gradual options, risk is resolved gradually throughout two periods. Under

the Gradual (non-skewed) information structure, good news and bad news are equally likely to

arrive. Under the Gradual (positively skewed) information structure, the subject is more likely
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Options Information Structure
One-Shot Early p=0.5, q=1, r=0
Gradual (non-skewed) p=0.5, q=0.75, r=0.25
Gradual (positively skewed) p=0.2, q=0.9, r=0.4
Gradual (negatively skewed) p=0.8, q=0.6, r=0.1
One-Shot Late p=0.5, q=0.5, r=0.5

Table II.1: Options in risk resolution experiment

to receive bad news (p = 0.2). However, the good news is informative in the sense that the

conditional probability of winning the high prize is very high upon receiving good news (q = 0.9).

Gradual (negatively skewed) implies the opposite: the probability of receiving good news is high

(p = 0.8), but the good news is not that informative (q = 0.6) compared to the good news under

Gradual (positively skewed). However, if a subject receives bad news, she has 90% chance to get

the low prize.

+$10

bad
+$40.5

good
+$220.5

(a) One-Short Early option (E)

+$10 good / bad +$40.5

+$220.5

(b) One-Short Late option (L)

Figure II.2: Information structures for early and late risk resolution options

The One-Shot Late option means risk is resolved all at once in the second stage. In this

case, the news is useless, because regardless of the news she receives, her conditional winning

probability remains the same (q = r = 0.5). Hence, one can simplify the consumption process as

is illustrated in Figure II.2(b).
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It is important to note that the choice of information structure does not affect the ex-ante proba-

bility of winning the high prize, which is equal to 0.5. Also, the choice of the information structure

does not change the timing of the payment of the lottery, which takes place in t = 2.

There is a 30-minute lag after subjects receive a piece of news at the end of t = 1 and before

they observe the realization of the lottery in t = 2. An inappropriate choice of time lag might

cause an instrumental information issue. That means, subjects may use this information to adjust

their future consumption, which implies that subjects’ preference for early resolution might not

be intrinsic. To prevent this potential issue, we implement a 30-minute lag between two stages

where subjects will be occupied with another activity. To identify preferences for non-instrumental

information, 30-minute is considered as a minimum, but substantial, time delay in existing studies

(66; 33).

During the 30-minute lag, subjects participate in Raven’s Progressive Matrices. The Raven test

is one of the most widely used methods to measure abstract reasoning and analytic intelligence,

by non-verbal multiple choice questions. Each question consists of a visual pattern with a missing

piece, and the subjects are asked to pick the right element to fill in. Previous studies have found

that people with high Raven test scores more accurately predict others’ behavior (67), and update

their beliefs with fewer errors (68). In our study, the main purpose of this test is to make subjects

stay focused during the time delay. Our experiment consists of two parts and each part has the

same 30-minute lag.

II.2.2 Ambiguity-Resolution-Preference Elicitation

The ambiguity-resolution-preference elicitation experiment is similar to the aforementioned

risk-resolution experiment. Subjects are involved in a two-period consumption process. In t = 1,

subjects receive the advance payment of $10. In t = 2, a lottery is drawn and the payoff is realized.

Subjects could earn a “high prize ($22)” or a “low prize ($4)” from this lottery. However, subjects

do not know the winning probability of the lottery at the beginning of t = 1. Instead, subjects are

given the following description:

You will draw a ping pong ball out of a bag. The bag contains 60 ping pong balls,
and each ball is either red or yellow. If you draw a red ping pong ball, then you will
receive a high prize ($22). If you draw a yellow ball, then you will receive a low prize
($4). However, the precise composition of red ping pong balls versus yellow ones in
the bag is unknown, although already determined. The only information now is that
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the proportion of red ping pong balls in the bag, denoted by p, can only be one of the
following numbers: 10%, 40%, 60%, and 90%. So the probability for you to win the
high prize is one of the following four numbers: 0.1, 0.4, 0.6, or 0.9.

As the proportion of each ball is unknown, at the beginning of t = 1, the probability of drawing

each ball is unknown. Notice that it is not necessary that the case that 0.1, 0.4, 0.6, and 0.9 are

drawn uniformly at random. At the end of t = 1, subjects receive a piece of news about the

value of p from the ball they draw. Depending on the information structure, this news provides no

information, partial information, or complete information about the winning probability.

An information structure is a partition of the set {0.1, 0.4, 0.6, 0.9}. In three questions, subjects

are asked to choose their most preferred option from a subset of the five alternatives listed in Table

II.2.

Options Information Structure
One-Shot Early {0.1} {0.4} {0.6} {0.9}
Gradual (non-skewed) {0.1, 0.4} {0.6, 0.9}
Gradual (positively skewed) {0.1, 0.4, 0.6} {0.9}
Gradual (negatively skewed) {0.1} {0.4, 0.6, 0.9}
One-Shot Late {0.1, 0.4, 0.6, 0.9}

Table II.2: Options in ambiguity resolution experiment

One-Shot Early is the fully revealing information structure. If a subject chooses One-Shot

Early, she will be informed of the exact winning chance p at the end of t = 1. Hence, ambiguity is

resolved in t = 1. The consumption process has been summarized in Figure II.3(a). The red edges

starting from the t = 1 node are realized with unknown probability. Conditional on a message

that has been received, the black edges starting from the corresponding t = 2 node is realized with

known probability.

The three information structures implied by the three Gradual options are partially revealing.

If choosing Gradual (non-skewed), the subject will either receive the message {0.1, 0.4} or {0.6,

0.9} at the end of t = 1 with unknown probability. If the winning chance is 0.1 or 0.4, she will

receive the message {0.1, 0.4}. Otherwise, she will receive {0.6, 0.9}. A subject is not disclosed
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{0.6} +$40.4
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{0.1}
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(a) One-Shot Early option (E)

+$10 {0.1,0.4,0.6,0.9} +$4

+$22

(b) One-Shot Late option (L)

Figure II.3: Information structures for early and late ambiguity resolution options

the exact probability of the lottery upon receiving either message. Hence, ambiguity exists in both

periods but is resolved gradually. The consumption process is illustrated in Figure II.4(a).

A subject choosing Gradual (positively skewed) option will either receive the message {0.9}

or {0.1, 0.4, 0.6} at the end of t = 1. Hence, a subject will know if the true winning probability

is 0.9 or not. Upon receiving {0.1, 0.4, 0.6}, the subject knows the winning probability in t = 2

is 0.1, 0.4, or 0.6, but she is not informed of the likelihood of each realization, and thus ambiguity

still exists in t = 2. If {0.9} is received, then ambiguity is dissolved immediately and only risk

exists in t = 2. The consumption process is summarized in Figure II.4(b).

Similarly, under Gradual (negatively skewed), one of the two messages will be realized at the

end of t = 1: {0.1} and {0.4, 0.6, 0.9}. It tells the individual whether the winning chance is 0.1 or

not. We illustrate the process in Figure II.4(c).

One-Shot Late leads to a non-revealing information structure. The only possible message

received at the end of t = 1 conveys no new information and the subject knows that the value of

p is 0.1, 0.4, 0.6, or 0.9. All uncertainty, including the value of p and the outcome, is resolved in

t = 2. We illustrate this consumption process in Figure II.3(b).
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(c) Gradual (negatively skewed) option (Gn)

Figure II.4: Information structures for three gradual ambiguity resolution options

The remaining steps are the same as in risk-resolution-preference elicitation experiment. Sub-

jects encounter another set of questions from the Raven test during the 30-minute delay. After 30

minutes have elapsed, all risk and ambiguity are resolved.

II.2.3 Choice Set

The risk-resolution-preference/ambiguity-resolution-preference elicitation experiment utilizes

four questions to determine subjects’ preferences. The first three involve subjects picking their

most preferred option from subsets of the five-option sets shown in Table II.1/Table II.2. The first

question, denoted by RR1/AR1, is an unrestricted choice from the risk-resolution-preference/ambiguity-

resolution choice set. The second question, denoted by RR2/AR2 removes the option “One-Shot

Early” to eliminate the possibility that the subject’s choice in the first question was due to a prefer-

ence for simply one-shot resolution. The third question, denoted by RR3/AR3 removes the option

“One-Shot Late.” The last question, denoted by RRMPL/ARMPL, aims to measure the strength
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of preference for early resolution or late resolution by using the multiple price list. Each row

presents a mini question that asks the subject to choose from two options “One-Shot Early + $x”

and “One-Shot Late + $y.” The values of x and y vary among different rows (see Figure II.5). For

example, if a subject is indifferent to the timing of resolution, she will always choose the option

with additional payment. However, if she strictly prefers early resolution, then she might give up

some additional payment to choose one-shot early. These multiple price list questions rule out the

potential problem that subjects are indifferent between One-Shot Early and One-Shot Late. Table

II.3 provides a summary of these procedures.

Figure II.5: Multiple price list questions

After finishing all four sections on risk resolution/ambiguity resolution, subjects receive news/messages

based on their choices of information structures, conduct Raven’s Progressive Matrices test for the
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Choices Available Options Description

RR

RR1 E, G, Gp, Gn, L Unrestricted
RR2 G, Gp, Gn, L One-Shot Early is removed
RR3 E, G, Gp, Gn One-Shot Late is removed

RRMPL Multiple Price List Questions

AR

AR1 E, G, Gp, Gn, L Unrestricted
AR2 G, Gp, Gn, L One-Shot Early is removed
AR3 E, G, Gp, Gn One-Shot Late is removed

ARMPL Multiple Price List Questions

Table II.3: Choice sets used in the experiment

next 30 minutes, and then the outcome is revealed. The ordering of the questions in the two elicita-

tion tasks was partially randomized to reduce ordering effects. We randomize the order of decisions

in four different ways.

Order 1. RR1, RR2, RR3, RRMPL; AR1, AR2, AR3, ARMPL

Order 2. RR1, RR3, RR2, RRMPL; AR1, AR3, AR2, ARMPL

Order 3. AR1, AR2, AR3, ARMPL; RR1, RR2, RR3, RRMPL

Order 4. AR1, AR3, AR2, ARMPL; RR1, RR3, RR2, RRMPL

II.2.4 Ellsberg Questions

Subjects also answered two (13) questions in the ambiguity-resolution-preference elicitation

task section. Each subject has a small chance to receive an additional $10, depending on their

answers to the questions. There are two reasons why these questions are necessary.

First, we need to elicit each subject’s attitude toward ambiguity. Theoretically, ambiguity aver-

sion may or may not affect the preference for early resolution depending on the theoretical model

(see Section II.5). Hence, to know which model best explains the experimental results, it is essen-

tial to elicit the ambiguity attitude.

Another reason is to confirm that subjects are not using subjective expected utility (i.e., 69) in

the ambiguity-resolution-preference elicitation task. If they use subjective belief in this task, the

preference for resolution of ambiguity is no longer different from the preference for risk resolu-

tion. To make sure that ambiguity resolution questions and Ellsberg questions do not affect each
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other, Ellsberg questions are given to subjects after they have completed all ambiguity resolution

questions, but before the revelation of the winning probability.

Subjects are given the following statement.

Consider a bag containing 90 ping pong balls. 30 balls are blue, and the remaining 60
balls are either red or yellow in unknown proportions. The balls are well mixed so that
each individual ball is as likely to be drawn as any other. You will bet on the color that
will be drawn from the bag.

Subjects are asked to choose their preferred options between A & B and between C & D. The four

options are listed in Table II.4.

Options
Option A receiving a payment of $10, if a blue ball is drawn.
Option B receiving a payment of $10, if a red ball is drawn.
Option C receiving a payment of $10, if a blue ball or a yellow ball is drawn.
Option D receiving a payment of $10, if a red ball or a yellow ball is drawn.

Table II.4: Subjective belief formation questions

A subject that prefers A to B and D to C demonstrates a traditional representation of ambiguity

aversion. That is, there is no formulation of subjective probabilities that can rationalize this deci-

sion. We would thus infer the subject does not use subjective probabilities to make decisions under

ambiguity.

II.2.5 Experimental Procedures

Subjects were 135 undergraduate students at Texas A&M University, recruited using the econdollars.

tamu.edu website, a server based on ORSEE (70). Subjects sat at computer terminals and made

decisions using zTree software (71). Sessions took place at the Experimental Research Laboratory

at Texas A&M University from February to May 2021.

Subjects were fully informed about the procedure and the total time of the session at the begin-

ning of the experiment. After the experiment concluded subjects were paid based on one randomly

selected decision out of the eight that they made (see Table II.3). In addition, subjects have another
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chance to receive an additional $10 from the “bonus” question. The average payment for each

participant was $23.33 including a $10 participation payment.

II.3 Hypotheses and Predictions

Table II.16 provides theoretical predictions of the six models studied in this paper. Each makes

a distinct set of predictions about our experiment highlighted by the following hypotheses.

Hypothesis 3. Subjects exhibit no preference for the resolution of risk. The answers provided

in RR1–RR3 appear to be random. There is no preference for early or late resolution of risk

demonstrated in RRMPL.

A falsification of Hypothesis 3 would falsify the DEU, MEU and KMM models and provide

differential support for the EZ, H, and HM models. Previous literature suggests Hypothesis 1

would be falsified.

Hypothesis 4. Subjects will not exhibit ambiguity aversion in the Ellsberg task. Their responses

will be in line with the use of subjective probabilities.

A falsification of Hypothesis 4 would falsify the DEU and EZ model and provide differential

support for the MEU, H, KMM, and HM models. Previous literature suggests Hypothesis 2 would

be falsified.

Hypothesis 5. Subjects will exhibit no preference for the resolution of ambiguity. The answers

provided in AR1–AR3 will appear to be random. There is no preference for early or late resolution

of ambiguity demonstrated in ARMPL.

A falsification of Hypothesis 5 would falsify the DEU, MEU and H models and provide differ-

ential support for the EZ, KMM, and HM models. There is no precedent in previous literature to

evaluate Hypothesis 3.

A rejection of all three hypotheses is only consistent with the HM model. That model allows

subjects to exhibit preferences for early resolution of risk, preferences for early resolution of am-

biguity, and ambiguity aversion.

45



II.4 Results

II.4.1 Risk Resolution and Ambiguity Resolution

Table II.5 shows the summary of the choices of risk resolution and ambiguity resolution. Con-

sistent with previous literature, the modal response of subjects is the preference for early resolution

of risk (64 of 135, 47.4%). A majority of subjects prefer the early resolution of ambiguity (86 of

135, 63.7%). The most commonly occurring combination of the two preferences is a preference

for the early resolution of both risk and ambiguity (57 of 135, 42.2%).

Ambiguity Resolution
Early Gradual Late Total

Risk Resolution

Early 57 6 1 64
Gradual 22 32 3 57

Late 7 4 3 14
Total 86 42 7 135

Chi-square test p-value ≈ 0.000

Table II.5: Choices of risk resolution and ambiguity resolution

The statistical analysis supports that the preferences for risk resolution and ambiguity resolu-

tion are not randomly distributed. Both the chi-square test and Fisher’s exact test reject the null

hypothesis that these classifications are randomly distributed (both p-values < 0.001). Further, the

preference for early resolution of ambiguity and early resolution of risk are positively correlated

(ρ ≈ 0.5, p-value < 0.001). The combined result suggests both the existence of and a relationship

between these two preferences.

Result 5. The preferences most expressed by subjects in our data are preferences for the early

resolution of both risk and ambiguity.

Result 6. Preferences for risk resolution and ambiguity resolution are positively correlated.

The preceding results reject Hypothesis 3, that the preference for risk resolution does not exist.

They also reject Hypothesis 5, that preference for ambiguity resolution does not exist.
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II.4.2 Ambiguity Attitudes

Among 135 subjects, 63 (46.7%) were ambiguity averse, 60 (44.4%) were ambiguity neutral,

and 12 (8.9%) were ambiguity seeking. A chi-square test rejects the null hypothesis of these results

being randomly distributed at standard levels of significance (p < 0.001).

Result 7. The ambiguity attitudes most expressed by subjects in our data are ambiguity aversion

and ambiguity neutral.

The existence of ambiguity aversion rejects Hypothesis 4. The combination of Results 5–7,

falsifies all 3 hypotheses. Hence, among the six models, the HM model is the only model which is

consistent with our experimental findings.

II.4.3 Relationship between Preference for Resolution and Ambiguity Attitude

In the remainder of this section, we further explore the observed relationship between the

preference for risk resolution, the preference for ambiguity resolution, and ambiguity attitudes.

Ambiguity Resolution
Early Gradual Late Total

Ambiguity
Averse

Risk
Resolution

Early 28 2 0 30
Gradual 12 11 1 24

Late 4 2 3 9
Total 44 15 4 63

Ambiguity
Neutral

Early 24 4 0 28
Gradual 10 16 2 28

Late 3 1 0 4
Total 37 21 2 60

Ambiguity
Seeking

Early 5 0 1 6
Gradual 0 5 0 5

Late 0 1 0 1
Total 5 6 1 12

Table II.6: Preferences for resolution of risk and ambiguity conditional on ambiguity attitudes

Table II.6 illustrates the choices of risk resolution and ambiguity resolution conditional on

different ambiguity attitudes. As an implication of the HM model, Corollary 1, is composed of

three parts:
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1. If an ambiguity-averse subject prefers early resolution of risk, then she also prefers early

resolution of ambiguity;

2. An ambiguity-neutral subject prefers early resolution of risk if and only if she prefers early

resolution of ambiguity;

3. If an ambiguity-seeking subject prefers late resolution of risk, then she also prefers late

resolution of ambiguity.

Concerning the first prediction, among 30 subjects who are ambiguity averse and prefer early

resolution of risk, 28 (93.3%) also prefer early resolution of ambiguity vs. 58 out of 105 (55.2%)

for the remaining subjects (p < 0.001, Fisher Exact Test). For the second prediction, among 28

subjects who are ambiguity neutral and prefer early resolution of risk, 24 (85.7%) also prefer early

resolution of ambiguity vs. 62 of 107 (57.9%) for the remaining subjects (p ≈ 0.007, Fisher Exact

Test). Among 37 subjects who prefer early resolution of ambiguity and are ambiguity neutral, 24

(64.8%) also prefer early resolution of risk compared with 40 of 98 (40.1%) without that classi-

fication (p ≈ 0.02, Fisher Exact Test). For the third prediction, only 1 subject is both ambiguity

seeking and prefers the late resolution of risk – that subject prefers the gradual resolution of am-

biguity. This last result is admittedly inconsistent with the model, but is based on a single subject

decision. Taken together, we can conclude that our results are generally consistent with the HM

model.

Result 8. Conditional on different ambiguity attitudes, preferences for risk resolution and ambi-

guity resolution are correlated in a way consistent with Corollary 1 overall.

We also investigate the marginal effect of ambiguity attitude on ambiguity resolution.

Table II.7 shows the preference for ambiguity resolution with different ambiguity attitudes.

Among subjects with ambiguity averse and ambiguity neutral, 69.8% and 61.7% of them choose

the early option in the ambiguity resolution task. This rate decreases among the group of ambiguity

seekers: only 41.7% prefer early resolution of ambiguity.

To validate these observations, we utilize the logistic regression below:

P (y = 1) = F (b1x1 + b2x2), (II.1)
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Ambiguity Resolution
Early Gradual Late Total Early %

Ambiguity
Attitude

Averse 44 15 4 63 69.8%
Neutral 37 21 2 60 61.7%
Seeking 5 6 1 12 41.7%

Total 86 42 7 135 63.7%

Table II.7: Preferences for resolution of ambiguity depending on ambiguity attitudes

where y is the binary dependent variable that equals 1 when a subject chooses the early option in

the ambiguity resolution task, x1 is a binary variable that equals 1 when a subject chooses the early

option in the risk resolution task, and x2 is a binary variable that equals 1 when a subject exhibits

ambiguity seeking behavior on the Ellsberg task.

Marginal Effects on Choosing Early in AR

Marginal Effect Standard Error p-value

Early in RR 0.436 0.045 0.000

Ambiguity Seeking −0.256 0.123 0.037

Table II.8: The average marginal effects in percentage points

Table II.8 shows marginal effects of the logistic regression model. Preferring early resolution of

risk increases the likelihood of preferring early resolution of ambiguity by 43.6 percentage points

(p-value < 0.001). Being ambiguity seeking decreases the likelihood of preferring early resolution

of ambiguity by 25.6 percentage points (p-value ≈ 0.037).

Result 9. A smaller proportion of ambiguity seeking subjects favor early resolution of ambiguity

compared with those who are ambiguity neutral or ambiguity averse.

II.4.4 Willingness to Pay

If someone is indifferent between early and late resolution, the switching point of the multiple

price list questions will be 10 or 11. That means she only chooses the option with the additional
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payment and she does not want to give up any amount of money for any option. If someone prefers

the early (late) resolution and is willing to pay some amount of money for her preferred option, the

switching point will be greater (smaller) than 11 (10). Table II.9 provides the average switching

points of each group.4

Risk Resolution Ambiguity Resolution
Group Number Average Switching Point Number Average Switching Point
Early 54 11.7 81 12.6

Gradual 47 10.9 32 10.9
Late 13 8.3 5 9.4
Total 114 10.9 118 12.0

Table II.9: The average switching points of the multiple price list questions

The values of the switching points are correlated to the preference for the resolution of ambigu-

ity. In both risk resolution and ambiguity resolution tasks, the average switching point of subjects

who chose the gradual option is 10.9. It implies that on average, they were indifferent between

early or late resolution of ambiguity.

The average switching point of the subjects who prefer early resolution of risk and ambigu-

ity are 11.7 and 12.6, respectively. That means a large portion of them gave up some amount of

payment to resolve the ambiguity earlier. Similarly, subjects who chose late resolution gave up

the additional payment for the late resolution, considering the average switching points 8.3 and

9.4. The Cuzick non-parametric trend test across ordered groups reveals these differences are sig-

nificant for both risk-resolution-preference and ambiguity-resolution-preference categorizations.

(p-values < 0.001 in both cases.)

Result 10. In both risk resolution and ambiguity resolution, subjects who prefer early or late res-

olution have a significantly greater willingness to pay for that respective resolution than subjects

who choose gradual options.
4Among 135 subjects, 21 (15.6%) and 17 (12.6%) exhibited multiple switching behavior in risk-resolution-

preference elicitation questions and ambiguity-resolution-preference elicitation questions. We only use subjects who
has a single switching point (114 (84.4%) and 118 (87.4%)) for our analysis.
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II.4.5 Consistency

For each elicitation task, subjects answered three times with different sets of possible options

(RR1-RR3 and AR1-AR3). We categorize subjects according to whether their choices are consis-

tent with the weak axiom of revealed preference (WARP). Tables II.10 summarizes the classifica-

tion.

Ambiguity Resolution
Preference Monotone One-Shot Inconsistent Total

Risk
Resoultion

Monotone 104 9 2 115
One-Shot 8 9 0 17

Inconsistent 3 0 0 3
Total 115 18 2 135

Table II.10: Consistency of choices

When a subject’s choices do not violate the weak axiom of revealed preference, we consider

her preference is monotone. 104 of 135 subjects (77.0%) show monotone preferences for both the

risk resolution and the ambiguity resolution tasks.

There are two other cases where choices violate the WARP. First, consider that a subject

chooses One-Shot options across three choices, e.g., One-Shot Early in RR1, One-Shot Late in

RR2, and One-Shot Early in RR3. She chooses One-Shot Early in RR1 not because she wants an

earlier resolution as possible but because she prefers One-Shot resolution, whether early or late.

We categorize these choices as the preference for one-shot resolution. 17 (12.6%) and 18 (13.3%)

subjects preferred one-shot resolution in the risk resolution task and the ambiguity resolution task

each.

When a subject chooses One-Shot Early in RR1, One-Shot Late in RR2, and Gradual in RR3,

we consider her preference inconsistent because she neither prefers early, late or one-shot resolu-

tion. Only 3 (2.2%) and 2 (1.5%) subjects’ choices are inconsistent.

We run the same logistic regression model in equation (II.1), but only with subjects whose

preferences are monotone.
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Coefficients Standard Error p-value
Early in RR 2.67 0.59 0.000

Ambiguity Seeking −1.53 0.80 0.057
LR chi-square test p-value = 0.000

Table II.11: The result of logistic regression model with monotone subjects

Marginal Effects on Choosing Early in AR
Marginal Effect Standard Error p-value

Early in RR 0.471 0.060 0.000
Ambiguity Seeking −0.269 0.134 0.045

Table II.12: The average marginal effects in percentage points with monotone subjects

Tables II.11 and II.12 show that the results are the same when using the whole population or

the subjects whose preferences are monotone.

II.5 Theoretical Predictions

This section reviews six representative recursive utility models under uncertainty, including the

discounted expected utility model (henceforth the DEU model) which is predominant in applied

works, the generalized recursive utility model of (29), (30), and (31) (henceforth the EZ model),

the recursive maxmin expected utility model of (72) and (73) (henceforth the MEU model), the

recursive smooth ambiguity model of (author?) (9, 38) and (18) (henceforth the KMM model),

the generalized recursive maxmin expected utility model of (39) (henceforth the H model), and the

generalized recursive smooth ambiguity model of (40) (henceforth the HM model). When constant

relative risk aversion ex-post utility functions are adopted, the models reviewed here can be easily

described with three parameters: risk aversion parameter, ambiguity aversion parameter, and elas-

ticity of intertemporal substitution, which make them particularly tractable in the macroeconomics

and finance literature.5

5(35) has provided a more complete review of recursive utility models with linear time aggregators and ambiguity
aversion. A wide class of models reviewed there have been shown to capture preferences for early resolution of
uncertainty in the subjective domain, e.g., the recursive smooth ambiguity model, the dynamic variational preference
of (74), and the multiplier preference of (75). However, due to the linear time aggregators, these models cannot capture
strict preferences for risk resolution. We hence only review the smooth ambiguity model as a representative one among
this class.
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These models differ from each other in two dimensions. First, they take two approaches to de-

scribe intertemporal substitution: to derive the ex-ante utility of a consumption process, the DEU,

MEU, and KMM models use a linear aggregator to sum up the flow of utilities across different

periods; the other three models adopt a non-linear aggregator. In addition, the models are based on

three intratemporal decision-making criteria under uncertainty: the DEU model and the EZ model

follow the subjective expected utility and do not support ambiguity aversion behaviors; the MEU

model and the H model use the worst-case criterion to capture ambiguity aversion behaviors; the

KMM model and the HM model permit a separation between ambiguity and ambiguity aversion

and accommodate a richer class of ambiguity attitudes. We summarize the key differences of these

models in Table II.13.

Intratemporal Criterion
Expected Utility Worst-case Scenario Smooth Ambiguity

Intertemporal
Aggregator

Linear DEU MEU KMM
Non-linear EZ H HM

Table II.13: A summary of recursive utility models under uncertainty

For simplicity, we focus on two-period problems and finite state spaces in each period. Let S1

and S2 denote the state space in period 1 and period 2 respectively. Let p ∈ ∆(S1 × S2) be a joint

distribution over the state space and P be a set of such joint distributions representing ambiguity.

Consistent with our experiment design, we assume for simplicity that the set of possible distribu-

tions P is finite. To define risk and ambiguity resolution, we focus on consumption processes that

are constant in period 1 and s2-dependent in period 2. Let H denote the set of all h = (h1, h2),

where h1 ∈ R+ and h2 : S2 → R+. The restriction allows us to focus on the informational value

of s1 without making it payoff-relevant.

For tractability, this paper assumes that utility functions are of the constant relative risk aversion

form. In particular, define u(x) ≡ xα

α
, where 1−α is the risk aversion parameter; define v(x) ≡ xη

η
,

where 1− η is the ambiguity aversion parameter in the KMM and HM models; define W (x, y) =

(xρ+βyρ)
1
ρ , where 1

1−ρ
is the elasticity of intertemporal substitution in the EZ, H, and HM models,
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and β is the discount factor. Throughout the paper, we assume that α, η, ρ ̸= 0 for the functions to

be well-defined.

The DEU, MEU, and KMM models adopt linear time aggregators. The period-1 utility of a

consumption process h after s1 is realized is given by

V1(h|s1) = u(h1) + βV2(h|s1) =
hα
1

α
+ βV2(h|s1),

where V2(h|s1) is the continuation utility when s1 is realized in period 1.

In the DEU model, the subject forms a unique subjective probability p over uncertainty and

follows the expected utility to derive the continuation utility:

V2(h|s1) =
∑
s2∈S2

u(h2(s2))p(s2|s1) =
∑
s2∈S2

hα
2 (s2)

α
p(s2|s1).

In the MEU model, the decision maker believes that multiple distributions are relevant and

evaluates a consumption process by considering the worst-case distribution. By adopting the prior-

by-prior updating rule, the continuation utility is given by

V2(h|s1) = min
p∈P

∑
s2∈S2

u(h2(s2))p(s2|s1) = min
p∈P

∑
s2∈S2

hα
2 (s2)

α
p(s2|s1).

In the KMM model, a subject has a subjective second-order belief over potential probabilities

and does not reduce compound lotteries. The continuation utility conditional on s1 being observed

in period 1 is given by

V2(h|s1) = u ◦ v−1
(∑

p∈P

v ◦ u−1
( ∑
s2∈S2

u(h2(s2))p(s2|s1)
)
µ(p|s1)

)
=

(∑
p∈P

( ∑
s2∈S2

hα
2 (s2)p(s2|s1)

) η
αµ(p|s1)

)α
η
.

When η > α, i.e., when v is strictly less concave than u, the subject is ambiguity seeking. When

η < α, the subject exhibits ambiguity aversion, and in the limiting case that η goes to −∞, the

KMM model converges to the MEU model. When η = α, the subject is ambiguity neutral and the

model reduces to the DEU model.
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The EZ, H, and HM models use a non-linear aggregator of the consumption today and the

certainty equivalent of the continuation consumption. In particular, a subject’s certainty equivalent

in period 1, denoted by I1, is given by

I1(h|s1) = W
(
h1, I2(h|s1)

)
=

(
hρ
1 + βIρ2 (h|s1)

) 1
ρ ,

where I2(h|s1) is the certainty equivalent of continuation consumption conditional on s1 being

observed in period 1.

In the EZ model,

I2(h|s1) = u−1
( ∑

s2∈S2

u
(
h2(s2)

)
p(s2|s1)

)
=

( ∑
s2∈S2

hα
2 (s2)p(s2|s1)

) 1
α . (II.2)

In the H model,

I2(h|s1) = min
p∈P

u−1
( ∑

s2∈S2

u
(
h2(s2)

)
p(s2|s1)

)
= min

p∈P

( ∑
s2∈S2

hα
2 (s2)p(s2|s1)

) 1
α .

In the HM model,

I2(h|s1) =v−1
(∑

p∈P

v ◦ u−1
( ∑
s2∈S2

u(h2(s2))p(s2|s1)
)
µ(p|s1)

)
=
(∑

p∈P

( ∑
s2∈S2

hα
2 (s2)p(s2|s1)

) η
αµ(p|s1)

) 1
η
.

We remark that the HM model is general. When α = η, the HM model degenerates to the EZ

model. When η approaches −∞, the HM model converges to the H model. When α = ρ, the

HM model yields the KMM model as a special case, and the latter nests the DEU model and can

approximate the MEU model in the limit.

In later sections, we mostly rely on the certainty equivalent expressions I1(h|s1) and I2(h|s1)

rather than the continuation utility expressions V1(h|s1) and V2(h|s1). We denote I1(h|s1) by

I1[p](h|s1) or I1[P ](h|s1) when necessary to highlight the ex-ante joint distribution p or the set of

joint distributions P . Let I1[p](h) or I1[P ](h) denote the ex-ante certainty equivalent of consump-

tion process h before period-1 state is realized.
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II.5.1 Risk Resolution

The literature has extensively studied preferences on the timing of risk resolution. In this

section, we follow these papers and assume that the only uncertainty that arises in the environment

is risk.

For each distribution q over S2 with |S1| ≥ |S2|, define a set P (q) ≡ {p ∈ ∆(S1×S2)|p(s2) =

q(s2),∀s2 ∈ S2}, which is the set of all joint distributions over S1×S2 with marginal distributions

over S2 identical to q. Let PE(q) ⊆ P (q) be the set of all joint distributions p ∈ P (q) that resolve

risk early, i.e., p satisfies that p(s2|s1) ∈ {0, 1} for all s1 ∈ S1 and s2 ∈ S2. Let PL(q) ⊆ P (q) be

the set of all joint distributions p ∈ P (q) that resolve risk late, i.e., p satisfies p(s2|s1) = q(s2) for

all s1 ∈ S1 and s2 ∈ S2. Let PG(q) = P (q) \ (PE(q) ∪ PL(q)) denote all joint distributions that

resolve risk gradually.

We consider the following example as an illustration.

Example 1. Let S1 be given by {s11, s21} and S2 be {s12, s22}. Consider a distribution over S2,

q = (0.5, 0.5). In Table II.14, under each of the three joint distributions over S1×S2, the marginal

distribution over S2 is equal to q. Thus, from an ex-ante perspective, all three joint distributions

are equally risky about the period-2 state.

s12 s22
s11 0.5 0
s21 0 0.5

(a) p ∈ PE(q)

s12 s22
s11 0.3 0.2
s21 0.2 0.3

(b) p ∈ PG(q)

s12 s22
s11 0.25 0.25
s21 0.25 0.25

(c) p ∈ PL(q)

Table II.14: Three joint distributions with different timings of risk resolution

In Table II.14(a), upon receiving s1, the subject knows the s2 that will be realized. Thus, the

period-2 risk is resolved early. In Table II.14(c), receiving each s1 leads to the same posterior

belief about which s2 will be realized, and thus period-2 risk is resolved late. In Table II.14(b),

the period-1 state s1 is neither fully uninformative nor fully informative about which s2 will be

realized, and thus partially, or gradually, resolves period-2 risk.

56



Definition 1. 1. A subject is indifferent towards the timing of risk resolution if I1[p](h) =

I1[p
′](h) for all h ∈ H , q ∈ ∆(S2), and p, p′ ∈ P (q).

2. A subject prefers early resolution of risk if she is not indifferent towards the timing of risk

resolution, and I1[p](h) ≥ I1[p
′](h) for all h ∈ H , q ∈ ∆(S2), p ∈ PE(q), and p′ ∈ P (q).

3. A subject prefers late resolution of risk if she is not indifferent towards the timing of risk

resolution, and I1[p](h) ≥ I1[p
′](h) for all h ∈ H , q ∈ ∆(S2), p ∈ PL(q), and p′ ∈ P (q).

According to the well-known result of (30), a subject with the EZ preference prefers early

resolution of risk if α < ρ, prefers late resolution of risk if α > ρ, and is indifferent towards the

timing of risk resolution if α = ρ.

When the only uncertainty that arises in the environment is risk, since the H model and the HM

model reduce to the EZ model, preferences towards the timing of risk resolution in the H model

and the HM model can be characterized in the same way as in the EZ model. Also, when there is

no ambiguity, the MEU model and the KMM model reduce to the DEU model which is essentially

the EZ model with α = ρ. Hence, a subject is indifferent toward the timing of risk resolution in

the MEU/KMM/DEU model.

II.5.2 Ambiguity Resolution

We consider a notion of ambiguity resolution with a partition structure. Let Q be a finite set

of possible period-2 distributions over S2, which captures period-2 ambiguity from an ex-ante

view, such that |Q| = |S1|.6 Let Q be a partition of Q: a period-1 state informs the subject of an

element of Q, i.e., a subset of possible period-2 distributions. Hence, when the partition is the finest

one QE , any period-1 state resolves period-2 ambiguity early by identifying the unique period-2

distribution. Similarly, the coarsest partition QL corresponds to late resolution of ambiguity, and

any other partition QG corresponds to gradual resolution.

To compare ex-ante payoffs a subject receives under different timings of ambiguity resolution,

i.e., from different partitions of Q, we construct a set of joint distributions over S1 × S2 for each

partition Q, denoted by P [Q](Q). This set can be understood as possible beliefs over S1×S2 from

an ex-ante perspective. As an illustration, we look at the following example.
6We restrict Q to be finite and to satisfy |Q| = |S1| so that it is feasible to fully resolve ambiguity in period 1 by

having a one-to-one relationship between states in S1 and distributions in Q.
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Example 2. Let S1 be given by {s11, s21, s31, s41} and S2 be {s12, s22}. Let Q = {q1 = (0.1, 0.9), q2 =

(0.4, 0.6), q3 = (0.6, 0.4), q4 = (0.9, 0.1)} represent possible period-2 distributions over S2 from

an ex-ante perspective. Table II.15 shows three sets of joint distributions over S1×S2. The second

set of joint distributions, P [QG](Q), is generated by Let QG = {{q1, q2}, {q3, q4}}. Again, QE

and QL are the finest and coarsest partitions of Q respectively.

s12 s22
s11 0.1 0.9
s21 0 0
s31 0 0
s41 0 0

s12 s22
s11 0 0
s21 0.4 0.6
s31 0 0
s41 0 0

s12 s22
s11 0 0
s21 0 0
s31 0.6 0.4
s41 0 0

s12 s22
s11 0 0
s21 0 0
s31 0 0
s41 0.9 0.1

(a) P [QE](Q)

s12 s22
s11 0.05 0.45
s21 0.05 0.45
s31 0 0
s41 0 0

s12 s22
s11 0.2 0.3
s21 0.2 0.3
s31 0 0
s41 0 0

s12 s22
s11 0 0
s21 0 0
s31 0.3 0.2
s41 0.3 0.2

s12 s22
s11 0 0
s21 0 0
s31 0.45 0.05
s41 0.45 0.05

(b) P [QG](Q)

s12 s22
s11 0.025 0.225
s21 0.025 0.225
s31 0.025 0.225
s41 0.025 0.225

s12 s22
s11 0.1 0.15
s21 0.1 0.15
s31 0.1 0.15
s41 0.1 0.15

s12 s22
s11 0.15 0.1
s21 0.15 0.1
s31 0.15 0.1
s41 0.15 0.1

s12 s22
s11 0.225 0.025
s21 0.225 0.025
s31 0.225 0.025
s41 0.225 0.025

(c) P [QL](Q)

Table II.15: Three sets of joint distributions with different timings of ambiguity resolution

For each partition Q above, we can label the elements of P [Q](Q), from left to right, by p1 to

p4 respectively. Elements of P [Q](Q) have a one-to-one correspondence with those in Q: upon

receiving any s1 ∈ S1 that occurs with positive probability under pk ∈ P [Q](Q), the updated

belief of pk over S2 coincides with qk, i.e., pk(·|s1) = qk(·) ∈ ∆(S2) for all k ∈ {1, 2, 3, 4} and

s1 ∈ S1 such that pk(s1) > 0.

Suppose a subject’s ex-ante ambiguous beliefs over S1 × S2 are given by Table II.15(a). When
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sk1 ∈ S1 is realized, the only joint distribution in P [QE](Q) generating sk1 with positive probability

is pk, and the subject knows that the true distribution over S2 is qk immediately. In this sense,

receiving a period-1 state resolves ambiguity about period-2 distribution early.

Suppose a subject’s ex-ante ambiguous beliefs over S1 × S2 are given by Table II.15(c). Since

all other five models are either special cases of the HM model or can be approximated by the

HM model, we assume there is a second-order belief µ over Q. Given µ, let µ̃ be a second-order

belief over P [QL](Q) whose marginal distribution over Q is consistent with µ, i.e., µ̃(qk) = µ(qk)

for k ∈ {1, 2, 3, 4}. Due to the one-to-one correspondence between P [Q](Q) and Q, the only

consistent µ̃ must satisfy µ̃(pk) = µ(qk) for k ∈ {1, 2, 3, 4}. Now, we verify that knowing period-1

state s1 does not provide any information on period-2 distribution. Given s1 ∈ S1, the posterior

belief for qk ∈ Q to be the true period-2 distribution is equal to∑
p∈P [QL](Q) s.t. p(·|s1)=qk µ̃(p) · p(s1)∑

p∈P [QL](Q) µ̃(p) · p(s1)
=

µ̃(pk) · pk(s1)∑
p∈P [QL](Q) µ̃(p) · p(s1)

=
µ(qk) · 0.25

0.25
= µ(qk),

which is independent of s1 ∈ S1 and coincides with the prior. Hence, we say P [QL](Q) resolves

ambiguity late (i.e., does not resolve ambiguity in period 1).

In Table II.15(b), for any µ ∈ ∆(Q), the only µ̃ ∈ ∆(P [QG](Q)) whose marginal distribution

over Q is consistent with µ must satisfy that µ̃(pk) = µ(qk) for k ∈ {1, 2, 3, 4}. Upon receiving any

s1 ∈ {s11, s21}, one can immediately see that the true period-2 distribution q must be in {q1, q2}.

Moreover, one can derive from µ̃ that the posterior belief that q1 or q2 is the correct period-

2 distribution is equal to µ(q1|{q1, q2}) or µ(q2|{q1, q2}) respectively, which is independent of

s1 ∈ {s11, s21}. We can hence claim that elements of {s11, s21} are equivalent – the information

of both states is that the set of possible period-2 distributions is {q1, q2}. If s1 ∈ {s31, s41} is

received, the information is that the set of possible period-2 distributions is {q3, q4}. The set of

joint distributions P [QG](Q) hence gradually resolves ambiguity (i.e., partially resolves ambiguity

in period 1).

We remark on two features of P [Q](Q). First, its elements have a one-to-one correspondence

with elements of Q in the following sense: (1) each joint distribution in P [Q](Q) can only lead to

one posterior belief in Q, regardless of the period-1 state observed, and (2) different joint distribu-

tions in P [Q](Q) have different posterior beliefs in Q. Second, for a general partition Q, there may
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be multiple period-1 states leading to the same set of possible period-2 distributions: these states

are equivalent informationally. The number of these equivalent classes is equal to the cardinality

of Q. Different equivalent classes of states in S1 inform the subject of different elements of Q.

We define the preferences towards the timing of ambiguity resolution as follows.

Definition 2. 1. A subject is indifferent towards the timing of ambiguity resolution if I1
[
P [Q](Q)

]
(h) =

I1
[
P [Q′](Q)

]
(h) for any finite set Q ⊆ ∆(S2), h ∈ H , partitions Q and Q′ of Q, and

µ ∈ ∆(Q).

2. A subject prefers early resolution of ambiguity if she is not indifferent towards the timing

of ambiguity resolution, and I1
[
P [QE](Q)

]
(h) ≥ I1

[
P [Q](Q)

]
(h) for any finite set Q ⊆

∆(S2), h ∈ H , partition Q, and µ ∈ ∆(Q).

3. A subject prefers late resolution of ambiguity if she is not indifferent towards the timing

of ambiguity resolution, and I1
[
P [QL](Q)

]
(h) ≥ I1

[
P [Q](Q)

]
(h) for any finite set Q ⊆

∆(S2), h ∈ H , partition Q, and µ ∈ ∆(Q).

Below we characterize preferences for ambiguity resolution in the six representative recursive

utility models. We begin with the HM model first.

Proposition 1. In the HM model, a subject prefers early resolution of ambiguity (resp. prefers late

resolution of ambiguity or is indifferent towards the timing of ambiguity resolution) if η < ρ (resp.

η > ρ or η = ρ).

Proposition 1 shows that the preference for timing of ambiguity resolution is determined by two

key factors: ρ and η. Recall the conclusion on risk resolution: α and ρ determine the preference

for timing of risk resolution in the HM model.

In view of the two results, we can find the following connections between preferences towards

the timing of risk resolution and ambiguity resolution.

Corollary 1. In the HM model,

1. if an ambiguity-averse subject prefers early resolution of risk, then she also prefers early

resolution of ambiguity;
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2. an ambiguity-neutral subject prefers early resolution of risk (resp. prefers late resolution of

risk, or is indifferent towards the timing of risk resolution) if and only if she prefers early

resolution of ambiguity (resp. prefers late resolution of ambiguity, or is indifferent towards

the timing of ambiguity resolution);

3. if an ambiguity-seeking subject prefers late resolution of risk, then she also prefers late

resolution of ambiguity.

Although the H model can be viewed as a limiting case of the HM model with η → −∞,

the following result shows that the H model does not accommodate strict preferences towards the

timing of ambiguity resolution.

Proposition 2. In the H model, a subject is indifferent towards the timing of ambiguity resolution.

As the DEU model is equivalent to the HM model with α = ρ = η, the KMM model is

equivalent to the HM model with α = ρ, the EZ model is equivalent to the HM model with

α = η, and the MEU model is equivalent to the H model with α = ρ, we have the following four

corollaries.

Corollary 2. In the DEU model, a subject is indifferent towards the timing of ambiguity resolution.

Corollary 3. In the KMM model, a subject prefers early resolution of ambiguity (resp. prefers late

resolution of ambiguity, or is indifferent towards the timing of ambiguity resolution) if η < α (resp.

η > α, or η = α).

Corollary 4. In the EZ model, a subject prefers early resolution of ambiguity (resp. prefers late

resolution of ambiguity, or is indifferent towards the timing of ambiguity resolution) if α < ρ (resp.

α > ρ, or α = ρ).

Corollary 5. In the MEU model, a subject is indifferent towards the timing of ambiguity resolution.

II.5.3 Summary of Predictions

Table II.16 shows the summary of theoretical implications from each model. The first col-

umn means that the EZ, H, and HM models accommodate non-indifference in the timing of risk
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Risk Resolution Ambiguity Resolution Ambiguity Attitude
DEU
MEU ✓
KMM ✓ ✓

EZ ✓ ✓
H ✓ ✓

HM ✓ ✓ ✓

Table II.16: Theoretical predictions from six models

resolution under some parameter values. The second column implies the KMM, EZ (with sub-

jective beliefs), and HM models support non-indifference in the timing of ambiguity resolution

under some parameter values. The last column shows that the MEU, KMM, H, and HM models

can be used to explain non-neutral ambiguity attitudes. Hence, among these models, only the HM

model can simultaneously accommodate strict preferences towards the timing of risk resolution

and ambiguity resolution, as well as non-neutral ambiguity attitudes. Moreover, among the six

models, the HM model is the only one that allows differential strict preferences in the timing of

risk resolution and in the timing of ambiguity resolution.

II.6 Conclusion

Models of generalized recursive utility provide alternatives to the standard discounted expected

utility model. They are quite useful in explaining various financial and macroeconomic anomalies

that cannot be explained by the discounted expected utility model without highly dubious param-

eter choices. An implication of models of generalized recursive utility is a preference towards

the timing of uncertainty resolution. Since these empirical estimations do not directly elicit pref-

erences for the resolution of uncertainty, a natural question is whether it is reasonable to believe

individuals have such preferences. A large number of experimental studies have found such prefer-

ences. However, all have looked at preferences over risk resolution, neglecting whether individuals

have preferences over ambiguity resolution. Since different models make different assumptions

about the two preferences, it is not clear to what extent models of generalized recursive utility are

supported by solely findings based on risk-resolution preferences.

Our study provides the first experimental elicitation of preferences over ambiguity resolution,
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in addition to eliciting these preferences along with risk-resolution preferences. We also find that

these two preferences are positively correlated, and the attitude toward ambiguity affects this rela-

tionship. If an individual prefers early resolution of risk, she is 43.6 probability points more likely

to prefer early resolution of ambiguity. If she is ambiguity seeking, she is 25.6 probability points

less likely to prefer early resolution of ambiguity.

We review six representative models of recursive utility that are widely used in the macroeco-

nomics and finance literature. Most of these theoretical models of recursive utility, including the

EZ model and the KMM model, are not consistent with these results. The totality of our findings

is consistent with only one model, the generalized recursive smooth ambiguity models of (40).
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III. VACCINATION DECISIONS AND AMBIGUITY AVERSION

III.1 Introduction

Vaccination is considered to be one of the greatest public health achievements. A high vac-

cination uptake rate is necessary to reduce the prevalence of vaccine-preventable diseases (VPD),

including cholera, Ebola, diphtheria, or COVID-19. However, many people still have refused or

hesitated to take the vaccine (76; 77; 78; 79; 80; 81). Surveys assess that the estimates of Ameri-

cans’ vaccine hesitancy about COVID-19 are between 25-34%. (81).

The World Health Organization (WHO) defined vaccine hesitancy as “the delay in acceptance

or refusal of vaccination despite the availability of vaccination services.” We focus on the former

(delay) not the latter (refusal). This study provides experimental evidence that the “wait and see”

attitude toward vaccines could be related to one of the psychological barriers: ambiguity aversion.

Due to its construction, vaccine development inevitably lags behind the emergence of new

infectious diseases. Even in the most successful cases, such as with COVID-19, there is typically

a one-year lag. Therefore, it is often the case that the risk of the virus becomes known while the

potential side effects of the vaccine are not yet disclosed. Therefore, according to (13), the virus

represents a known risk, while the vaccine may appear ambiguous. In this case, a “Wait and see”

strategy may be simply waiting for the uncertainty associated with the side effect of the vaccine to

become fully known. Concerns over the Janssen (Johnson & Johnson) COVID-19 vaccine could

be examples (FDA, April 2021).

There is plenty of literature on how ambiguity affects medical decisions. (82) reveal individuals

are more pessimistic in medical decisions under ambiguity than under risk. (83) theoretically show

that the probability of side effects and the efficacy of the vaccine reduces the take-up rate of am-

biguity averse individuals. (84) finds ambiguity about the outcomes of childhood immunization is

an important factor in parental vaccine hesitancy. (85) reveal communicating scientific uncertainty

about VPD risk and vaccine effectiveness leads to ambiguity aversion.

Our study employs the Interactive Vaccination (I-Vax) Game framework from (86) to observe

interactive vaccination decisions. In addition to the standard I-Vax game (No Ambiguity treat-

ment), we have added a new treatment where there is ambiguity in the side effects of the vaccine
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(Ambiguity treatment).

We found that vaccination decisions are tightly associated with ambiguity. First, participants in

the Ambiguity treatment are less likely to get vaccinated than those in the No Ambiguity treatment.

The presence of ambiguity makes the vaccination option less appealing to them. Further, our

results indicate that participants’ attitudes towards ambiguity impact their vaccination decisions.

Specifically, participants who are averse (seeking) to ambiguity are less (more) likely to choose to

get vaccinated. Moreover, our study found that participants who are averse to (seeking) ambiguity

are also less (more) likely to opt for vaccination in the Ambiguity treatment compared to the No

Ambiguity treatment.

The rest of the paper is structured as follows: Section III.2 presents the experimental design

and procedure. Section III.3 reports experimental results, and Section III.4 provides the concluding

remarks.

III.2 Experimental Design

III.2.1 I-VAX Game

We used Interactive Vaccination (I-Vax) Game from (86) as the basic framework. They found

individuals react to the interactive incentive structure and make strategic vaccination decisions.

We used two versions of the I-Vax Game as two treatments: No Ambiguity treatment, which is

identical to the standard I-Vax Game of (86), and Ambiguity treatment. 120 subjects participated

in No Ambiguity treatment, and another 120 subjects participated in Ambiguity treatment.

III.2.1.1 No Ambiguity Treatment

In the standard I-Vax Game, participants play in groups of 12 over 20 rounds. In each round,

they are endowed with 100 points and decide whether to get vaccinated or not. Their payoff of

each round depends on their own decision and other group members’ decisions.

Each vaccinated participant pays a fixed cost cfixed = 5. Also, vaccinated participants might

occur a side effect, with a probability of p1 = 0.3. In the case of the side effect, the point loss

would be 21, 36, 51 with probabilities of 0.5, 0.4, 0.1. Figure III.1 shows each consequence and its

probability.
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Figure III.1: Consequences and probabilities of vaccination

On the other hand, each unvaccinated participant could get a disease for each round. The

probability of having the disease (p0) depends on the number of other participants in her group

who get vaccinated: The greater the number of vaccinated people, the lower the probability of

point loss for unvaccinated participants. (See Figure III.2.) In the case of the disease, the point loss

would be 35, 60, 85 with probabilities of 0.5, 0.4, and 0.1 each.

Figure III.2: How p0 is determined based on other participants’ decisions
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Figure III.3: Consequences and probabilities without vaccination

III.2.1.2 Ambiguity Treatment

In addition to the standard I-Vax setting, we added additional treatment, where ambiguity ex-

ists in the vaccination option. The possible consequences and probabilities of the side effect are

different from the standard I-Vax Game, while other features are identical.
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SE

−55
p

−30
q

−20
r

0.3

0
0.7

Figure III.4: Consequences and probabilities of vaccination

In this treatment, the values of p, q, r are unknown. The only restriction about these parameters

is p < 0.5. This restriction leads to the important feature of the design, which is that the side effect

under vaccination first-order stochastically dominates the disease without vaccine.1

III.2.2 Social Value Orientation (SVO)

To measure preference for allocation between herself and others, we use social value orienta-

tion (SVO) slider measure (87). Participants make 6 allocation decisions of decomposed games,
1Consider SE′, a lottery that yields −35 with a probability of 0.5 and −55 with a probability of 0.5. The worst

distribution of SE is better than (p, q, r) = (0.5, 0.5, 0) since p < 0.5. Hence, SE first-order stochastically dominates
SE′. Also, we can consider D′ = (−35, 0.5;−60, 0.5), which first-order stochastically dominates D. If there is no
time discount, D′ = SE′. Hence, SE first-order stochastically dominates D.
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allocating points between themselves and an unknown participant. Responses for 6 decisions yield

a single angle index, classifying the participant as prosocial, individualistic, or competitive.

III.2.3 Ambiguity Attitude

We elicited ambiguity attitudes by using two questions from (13).

Consider there is a bag containing 90 ping-pong balls. 30 balls are blue, and the
remaining 60 balls are either red or yellow in unknown proportions. The computer
will draw a ball from the bag. The balls are well mixed so that each ball is as likely to
be drawn as any other. You will bet on the color that will be drawn from the bag.

Participants chose their preferred options between A & B and between C & D. Table III.1

shows the options.

Options

Option A receiving 100 points if a blue ball is drawn.

Option B receiving 100 points if a red ball is drawn.

Option C receiving 100 points if a blue or yellow ball is drawn.

Option D receiving 100 points if a red or yellow ball is drawn.

Table III.1: Ellsberg questions

If the submitted choices are A and D, the preference is considered to be a consequence of

ambiguity aversion. Also, B and C represent ambiguity seeking preference, and the others choices

show ambiguity neutral.

III.2.4 Vaccination Attitude

After finishing SVO slider tasks, I-Vax Game, and Ellsberg questions, participants were asked

about their attitude towards vaccination. First, we measured participants’ general attitudes toward

vaccination. They submit a value of a 100-point bipolar slider item from 1 = completely against
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vaccination to 100 = completely for vaccination. Also, we measure their attitudes toward COVID-

19 vaccine. The possible answer to the question “What is your attitude towards the COVID-19

vaccination?” varies from 1 = very negative to 5 = very positive.

Finally, we conducted a demographic survey (age, gender, and subject).

III.2.5 Procedure

240 subjects completed 20 sessions (10 Ambiguity Treatment and 10 No Ambiguity Treat-

ment) from May to September 2022 in Texas A&M Economic Research Laboratory, recruited on

a database using ORSEE (70). All experiments were implemented with z-Tree (71). Each ses-

sion takes 30 minutes on average, and the average earnings were $18.87, including $10 show-up

payment.

III.2.6 Hypotheses

First, we hypothesize the treatment effect: the vaccine take-up rate is lower in Ambiguity

treatment because there is ambiguity in the vaccination option.

Hypothesis 6. Participants are more likely to take the vaccine in No Ambiguity Treatment than in

Ambiguity treatment

Furthermore, we hypothesize that ambiguity affects vaccination decisions, and its effect is

heterogeneous in treatment.

Hypothesis 7. Ambiguity averse (seeking) participants are more (less) likely to take the vaccine.

Hypothesis 8. Ambiguity averse (seeking) participants are less (more) likely to take the vaccine in

Ambiguity treatment than in No Ambiguity treatment.

III.3 Results

III.3.1 Vaccination Decisions

Figure III.5 shows the overall vaccination rate in both treatments. The average vaccination rate

is 0.527 for No Ambiguity treatment and 0.497 for Ambiguity treatment. The difference of 0.030

is statistically significant (the p-value is 0.059).
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Figure III.5: Vaccination rates by treatment

Result 11. Participants are less likely to choose the vaccination in Ambiguity treatment than in No

Ambiguity treatment.
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Figure III.6: Overall Vaccination Rates
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Figure III.6 illustrates each treatment’s vaccination rates over rounds. For periods 1-10, the

average vaccination rate of No Ambiguity treatment and Ambiguity treatment is 0.540 and 0.499

each, and the difference is 0.041 (p-value is less than 0.05). On the other hand, for periods 11-20,

where the average rate is 0.513 and 0.494 each, the difference shrinks to 0.019 (p-value is around

0.4).

III.3.2 Ambiguity and Vaccination

Results from the Ellsberg question show 125 participants (52.1%) show ambiguity aversion, 87

participants (36.2%) show ambiguity neutral, and 28 participants (11.7%) show ambiguity seeking

preference. Table III.2 presents vaccination decisions depending on ambiguity attitude. We found

that participants’ vaccination rate is related to ambiguity attitude. (The p-values of both the Chi-

square test and Fisher’s exact test are 0.000.)

Ambiguity Attitude Vaccination No Vaccination

Averse 41.8% 58.2%

Neutral 49.6% 50.4%

Seeking 54.4% 45.6%

chi-square p = 0.000

Table III.2: Ambiguity attitudes and vaccination decisions

Result 12. Ambiguity averse (seeking) participants are less (more) likely to take the vaccine.

Figure III.7 displays how ambiguity attitude is related to vaccination decisions in each treat-

ment. In No Ambiguity treatment, preference for ambiguity is negatively correlated to vaccination

decision: ambiguity-averse (ambiguity-seeking) participants were less (more) likely to take the

vaccine.

On the other hand, in Ambiguity treatment, the preference/dislike for ambiguity offsets the

relation. For example, ambiguity-seeking participants are basically less likely to want to take
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the vaccine. However, since there is an ambiguity in the vaccine in Ambiguity treatment, the

vaccination option becomes more attractive to them. On the contrary, ambiguity-averse participants

are more likely to take the vaccine. However, because of ambiguity in the vaccine, they find the

vaccination option less attractive in Ambiguity treatment compared to No Ambiguity treatment.
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Figure III.7: Vaccination rates by ambiguity attitude in different treatments

Result 13. Ambiguity averse (seeking) participants are less (more) likely to take the vaccine in

Ambiguity treatment than in No Ambiguity treatment.

III.3.3 Social Value Orientation (SVO)

We use SVO slider measure (87) to elicit the magnitude of concern for others. Given the

angles of idealized SVO types, altruists would have angles greater than 57.15◦; prosocials would

have angles between 22.45◦ and 57.15◦; individualists would have angles between −12.04◦ and

22.45◦; and competitive types would have an angle less than −12.04◦.

III.3.4 Vaccination Attitude

Most of the participants have shown a positive attitude towards both COVID vaccination, with

an average score of 78.1 out of 100, and general vaccination, with an average score of 3.97 out
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Table III.3: The percentage of individuals that were assigned to the SVO Slider Measure.

(87) (86) Our Results

Prosocial 58 64 69 70
Individualistic 39 34 31 27
Competitive 3 2 0 3

Total 100 100 100 100

of 5. Moreover, the results of the chi-square test indicate a strong correlation between these two

preferences (chi-square p-value is 0.000).

Additionally, 86.7% of participants received the COVID-19 vaccine, and the vaccine uptake

rate was found to be significantly associated with both general vaccine attitude and COVID-19

vaccine attitude (with p-values of 0.000 for both chi-square tests). Table III.4 indicates that there

is no significant relationship between ambiguity attitudes and the COVID-19 vaccination decision.

Ambiguity Attitude Vaccinated Not Vaccinated Overall

Averse 108 (86.4%) 17 (13.6%) 125 (52.1%)

Neutral 77 (88.5%) 10 (11.5%) 87 (36.3%)

Seeking 23 (82.1%) 5 (17.9%) 28 (11.7%)

chi-square p ≈ 0.684.

Table III.4: Ambiguity attitudes and COVID-19 vaccination

III.3.5 Vaccination Decisions as a Strategic Interaction

To explain the rationale behind vaccination decisions formally, we used the following mixed

effects model.

Pr(a = 1) ∼ fixed effects + (1|subject) + (1|round) + (1|group) + ε
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Participants might change their vaccination decision strategically in response to the number of

others’ decisions. To test this hypothesis, we put a dummy variable RelVacc. This variable is 1

if the relative fraction of participants who got vaccinated were above the Nash equilibrium in the

previous round and 0 otherwise. Model 1 in Table III.5 includes treatment (0 = No Ambiguity,

1 = Ambiguity), ambigutiy attitude (0 = ambiguity averse or ambiguity neutral, 1 = ambiguity

seeking), and RelVacc as the predictors of the vaccination decisions (0 = non-vaccination, 1 =

vaccination).

The results indicate that participants in the Ambiguity treatment were significantly less likely

to get vaccinated than those in the No Ambiguity treatment (Result 11). Additionally, participants’

attitude towards ambiguity significantly predicted their vaccination decisions. Ambiguity-seeking

participants were less likely to get vaccinated (Result 12). Furthermore, the results indicate that

RelVacc also predicted vaccination decisions, but not significantly. Specifically, when the frac-

tion of participants who chose vaccination was above the Nash equilibrium, the vaccination rate

decreased in the following round.

In Model 2, we include participants’ social value orientation classification as an additional

predictor (0 = prosocial, 1 = proself). The results show that although the effect of ambiguity

attitude decreases slightly, it remains significant. However, the previously significant treatment

effect disappears. Instead, this model indicates a significant interaction effect between ambiguity

attitude and SVO classification, such as the attitude having a significant positive effect on proself.
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Table III.5: Mixed effect models predicting vaccination decisions by the relative fraction of players
who got vaccination in the previous round (reference: fraction vaccinated below Nash equilibrium),
experimental treatment (reference: No Ambiguity Treatment), social value orientation (reference:
prosocial), and general attitude towards vaccination.

Predictor Model 1 Model 2

B SE B SE

(Intercept) 0.556*** 0.131 0.548*** 0.029

Treatment: Ambiguity (A) −0.056** 0.020 −0.009 0.0317

Ambiguity Seeking (B) −0.232*** 0.072 −0.224** 0.0750

RelVacc: above NE (C) −0.028 0.023 −0.139 0.028

SVO: proself (D) 0.023 0.082

A * B 0.217* 0.099 0.078 0.114

A * C 0.019 0.283 0.020 0.039

A * D −0.161† 0.089

B * C 0.058 0.051 0.044 0.055

B * D 0.433** 0.140

C * D −0.042 0.035

A * B * C −0.084 0.688 −0.050 0.0827

A * B * D 0.046 0.000

A * C * D N/A N/A

B * C * D −0.039 0.087

A * B * C * D N/A N/A

Observations (subjects/rounds/groups) 4560(240/19/20)

Note that there are only 19 rounds considered in the analyses (rounds 2–20) because

the first feedback was given after round 1. ***p < 0.001, ** p < 0.01, *p < 0.05.
†p < 0.1
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III.4 Conclusion

In this study, we investigated the relationship between ambiguity and vaccination decisions.

Our results demonstrate that the presence of ambiguity reduces the likelihood of vaccination, with

participants in the Ambiguity treatment being less likely to get vaccinated than those in the No

Ambiguity treatment. We also found that participants who are averse to ambiguity are less likely

to opt for vaccination, indicating that attitudes towards ambiguity play a crucial role in vaccination

decisions. Furthermore, we found that ambiguity averse participants are less likely to choose

to get vaccinated in the Ambiguity treatment than in the No Ambiguity treatment. These findings

highlight that information about the side effect could impact people’s willingness to get vaccinated.
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