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ABSTRACT

In this dissertation, we study the asymptotic expansion conjecture of the relative Reshetikhin-
Turaev invariants proposed by T. Yang and the author in [65] for all pairs (M, L) satisfying the
property that M~ L is homeomorphic to some fundamental shadow link complement. The hyper-
bolic cone structure of such (M, L) can be described by using the logarithmic holonomies of the
meridians of the fundamental shadow link. We show that when the logarithmic holonomies are suf-
ficiently small and all cone angles are less than 7, the asymptotic expansion conjecture of (M, L) is
true. Especially, we verify the asymptotic expansion conjecture of the relative Reshetikhin-Turaev
invariants for all pairs (M, L) satisfying the property that M~ L is homeomorphic to some fun-
damental shadow link complement, with cone angles sufficiently small. Furthermore, we show
that if M is obtained by doing rational surgery on a fundamental shadow link complement with

sufficiently large surgery coefficients, then the cone angles can be pushed to any value less than 7.
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1. INTRODUCTION

Quantum topology and hyperbolic geometry provide two promising approaches to understand
3-dimensional topology. In quantum topology, by using the representation theory of quantum
groups [47, 48, 53], one can define quantum invariants of links and 3-manifolds, including the
famous Jones polynomial and its generalizations. In hyperbolic geometry, by putting a hyperbolic
structure on a manifold [52, 45], one can define geometric invariants, including the hyperbolic
volume, the Chern-Simons invariant and the adjoint twisted Reidemeister torsion among many
others. These two very different approaches of studying 3-dimensional topology turn out to be re-
lated by Volume Conjectures, which are a set of conjectures that relate the asymptotics of quantum

invariants to hyperbolic geometry.
1.1 Overview of volume conjectures
1.1.1 Kashaev-Murakami-Murakami volume conjecture

For a hyperbolic link L in S? (i.e. the link complement S*~\. I admits a complete hyperbolic
structure), the Kashaev-Murakami-Murakami volume conjecture [25, 26, 34] and its generaliza-
tion [35] of the colored Jones polynomials suggests that the exponential growth rate of the /N-th
(normalized) colored Jones polynomials of L evaluated at the root of unity ¢ = R captures the

hyperbolic volume of S*~\ L.
Conjecture 1.1. (/25, 26, 34, 35]) Let L be a hyperbolic link in S3. For N € N, let Jy(L,t) be
the N-th (normalized) colored Jones polynomial of L. Then

2 2w
lim %log In(Lt=en)

N—oo

= Vol(S’\L),

where Vol(M) is the hyperbolic volume of S*\ L.

The conjecture is proved for several knots and links [1, 20, 27, 40, 42, 41, 57, 68] and it is

also generalized to the fundamental shadow links in connected sum of copies of S? x S! [10] and
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knotted graphs in S? [12, 58], providing surprising connection between quantum invariants and the

geometry of hyperbolic polyhedra.
1.1.2 Chen-Yang volume conjecture

Besides, for a closed, oriented hyperbolic 3-manifold M with finite volume, the Chen-Yang
volume conjecture [8] of the Reshetikhin-Turaev invariant of at ¢ = ey, where r > 3 odd,
suggests that the exponential growth rate of the invariant also captures the hyperbolic volume and

the Chern-Simons invariants of M.

Conjecture 1.2. ([8]) Let M be a closed oriented hyperbolic 3-manifold. For an odd integer

r > 3, let RT,.(M) be the r-th relative Reshetikhin-Turaev invariant of M evaluated at the root of

27

. —1 . ., . .
unity q = e+ . Then as r varies over all positive odd integers,

4
lim — log RT, (M) = Vol(M) + v—1 CS(M),

r—oo T

where Vol(M) and CS(M) are the hyperbolic volume and the Chern-Simons invariant of M re-

spectively.

Conjecture 1.2 is proved for every closed, oriented hyperbolic 3-manifold obtained by doing an
integral Dehn surgery on the figure eight knot complement [43]. More recently, in [61], Conjecture
1.2 is proved for every closed, oriented hyperbolic 3-manifold obtained by doing a rational Dehn

surgery on the figure eight knot complement.
1.1.3 Volume conjecture of the relative Reshetikhin-Turaev invariants

In [62], joint with T. Yang, we proposed the volume conjecture for the relative Reshetikhin-
Turaev invariants of a pair (M, L), where M is a closed oriented 3-manifold and L is a framed link
inside M. The conjecture suggests that the asymptotics of the invariants capture the hyperbolic
volume and the Chern-Simons invariant of the cone manifold M with the singular locus L and

cone angles 6 determined by the sequence of colorings of the framed link.



Conjecture 1.3. ([62, Conjecture 1.1]) Let M be a closed oriented 3-manifold and let L be a
framed hyperbolic link in M with n components. For an odd integer, v > 3, let m = (my, ..., m,)

and let RT.(M, L, m) be the r-th relative Reshetikhin-Turaev invariant of M with L colored by m

and evaluated at the root of unity q = = Fora sequence m'") = ( Y), ce mg)), let
4 (r)
0, = |27 — lim Ty,
=00 T

and let 0 = (04, ..,0,). If My, is a hyperbolic cone manifold consisting of M and a hyperbolic
cone metric on M with singular locus L and cone angles 0, then

4
lim — log RT,(M, L,m™) = Vol(My,) + v—1 CS(M,,)

r—oo T

where r varies over all positive odd integers.

Conjecture 1.3 is related to Conjectures 1.1 and 1.2 as follows. For » = 2N 4 1, when M =
S%, L is a framed link inside M and m(") = N = (N,..., N), the relative Reshetikhin-Turaev
invariant of the pair (S3, L) is, up to some factor, equal to the N-th colored Jones polynomial
of L evaluated at the root of unity ¢ = eV Moreover, the cone angles 6;’s are all equal to
zero and this corresponds to the complete hyperbolic structure of M~ L. Besides, when m(") =
(0,...,0), the relative Reshetikhin-Turaev invariant recovers the Reshetikhin-Turaev invariant of
the ambient closed oriented 3-manifold and the cones angles 6’s are all equal to 2. In particular,
L 1s no longer a singularity and the manifold M admits a complete hyperbolic structure. Thus,
the relative Reshetikhin-Turaev invariant can be regarded as a generalization of the colored Jones
polynomials of links at roots of unity and the Reshetikhin-Turaev invariants of 3-manifolds. In
this sense, Conjecture 1.3 can be understood as an interpolation between the Kashaev-Murakami-
Murakami volume conjecture and the Chen-Yang volume conjecture. In particular, this provides a
new approach of studying the Chen-Yang volume conjecture by deforming the cone angles from 0
to 2.

In [62], joint with T. Yang, we study Conjecture 1.3 for all pairs (M, L) obtained by doing a
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change-of-pair operation from the pair (M., Lgsy ), where M, = #°T1(S? x S') for some ¢ € N
and Lggp is a fundamental shadow link inside M.. Here we recall from [62, Proposition 1.3 and
1.4] that the change-of-pair operation is a topological move that changes a pair (M, L) to another
pair (M*, L*) without changing the complement, i.e. M~L ~ M*\L*. In particular, M* can
be obtained by doing integral Dehn fillings on the boundary components of M~ L. Moreover, if
two pairs (M, L) and (M*, L*) share the same complement, i.e. M~ L ~ M*~\ L*, then they are
related by a sequence of change-of-pair operations. In this case, M* can be obtained by doing
rational Dehn fillings on the boundary components of M~ L. In [62], Conjecture 1.3 has been
proved for all pairs (M, L) obtained by doing a change-of-pair operation from the pair (M., Lgsy ),
where M, = #°t1(S? x S!) for some ¢ € N and Lgg is a fundamental shadow link inside
M., with sufficiently small cone angles. Especially, since every closed, oriented 3-manifolds can
be obtained by doing integral Dehn-fillings on the boundary of some fundamental shadow link
complement [13], if the cone angle can be pushed from sufficiently close to O all the way to 2,
then one can prove the Chen-Yang volume conjecture. Besides, to show that it is possible to push
the cone angle, in [63], joint with T. Yang, we proved Conjecture 1.3 for all pairs (M, L) with
M~ L homeomorphic to the figure eight knot complement in S?, for all cone angle from 0 to 2,

except finitely many cases corresponding to the exceptional surgery of the figure eight knot.
1.1.4 Asymptotic expansion conjecture of the relative Reshetikhin-Turaev invariants

Furthermore, in [65], joint with T. Yang, we refined Conjectue 1.3 by studying the asymp-
totic expansion formula of the relative Reshetikhin-Turaev invariants. Let M be a closed ori-
ented 3-manifold and let L be a framed hyperbolic link in M with n components. Let {m()} =
{(mY), ..., mY")} be a sequence of colorings of the components of L by the elements of {0, .. ., r—
2} such that for each k € {1,...,n}, either m{” > I for all r sufficiently large or m\"”’ < £ for all

r sufficiently large. In the former case we let i, = 1 and in the latter case we let y, = —1, and we

. 4 (r)
el(c) :uk( 7Tl'Ilk —27T).

let

r



Let 80 = (GY), cees 9,(1”). Suppose for all r sufficiently large, a hyperbolic cone metric on M with
singular locus L and cone angles 8") exists. We denote A/ with such a hyperbolic cone metric by
M let Vol(M (™) and CS(M ™)) respectively be the volume and the Chern-Simons invariant of
M) and let H™)(v,),...,H"(7,) be the logarithmic holonomies in M (") of the parallel copies
(71, - -+, 7n) of the core curves of L given by the framing. Let p,;¢) : m (M~ L) — PSL(2;C) be
the holonomy representation of the restriction of M) to M\ L, and let T (a1 x)([p1sn]) be the
Reidemeister torsion of M\ L twisted by the adjoint action of p,,) with respect to the system of
meridians Y of a tubular neighborhood of the core curves of L (see Section 2.5 for more details).

Conjecture 1.4. ([65, Conjecture 1.1]) Suppose {0} converges as r tends to infinity. Then as r

2w

. .o, . . -1 . . . . .
varies over all positive odd integers and at ¢ = e+, the relative Reshetikhin-Turaev invariants

e% S e HO ()

RT,(M,L,m™") =C
\/iT(M\L,Y)([PMm])

eﬁ(Vol(M(T)).H/?lCS(M(T))) (1 N O<1>)
/r. b

where C' is a quantity of norm 1 independent of the geometric structure on M.

In [65], Conjecture 1.4 has been proved for all pairs (M, L) obtained by doing a change-of-pair
operation from the pair (M., Lgs;.) with sufficiently small cone angles. Similar to the relationship
between Conjecture 1.3 and the Chen-Yang volume conjecture, Conjecture 1.4 also provides a new
approach to understand the asymptotic expansion of the Reshetikhin-Turaev invariants for closed,

oriented 3-manifolds discussed in [18] and [44].
1.2 Methodology

In this dissertation, we combine the ideas in [61], [62], [63] and [65] to study the asymptotic
expansion conjecture for the relative Reshetikhin-Turaev invariants of any pair (M, L) with M\ L
homeomorphic to some fundamental shadow link complement M.\ Lgs;.. Roughly speaking, our

method involves the following 5 steps.
1. Write the invariants as a (multi-)sum of a holomorphic function evaluated at integral points.

2. Apply the Poisson Summation Formula to write the invariants as a sum of the Fourier coef-
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ficients together with some error terms, where each Fourier coefficient is of the form

// g(z1, ..., zn)erf(zl"“"z")dzl codzy,
D

for some n € N, D C C" and holomorphic functions f,g : C* — C. The function f is

called the potential function of the Fourier coefficient.

3. Obtain the asymptotics of the leading Fourier coefficient by applying the saddle point ap-
proximation, which says that under certain technical assumptions, the asymptotics of the

integral is determined by certain critical value of the function f(z1, ..., z,) as follows.

J[ sz i e = () N detgézels(ﬂz))erf<z> (1+0(})).

where z is certain critical point and Hess(f(z)) is the Hessian matrix of f evaluated at z.

4. Relate the critical value and the determinant of the Hessian matrix of f with geometric quan-
tities, including the hyperbolic volume, the Chern-Simons invariant and the adjoint twisted

Reidemeister torsion of the related manifold.
5. Show that the other Fourier coefficients and error terms are negligible.

The idea of combining the Poisson Summation formula and the saddle point approximation to
prove volume conjectures was used by T. Ohtsuki and his collaborators in [40, 41, 42, 43] and they
have obtained promising results for relatively simple knots and manifolds. However, for general
cases, the technical arguments in analysis and the highly non-trivial connection with hyperbolic
geometry remain the main obstacles of applying the above strategy to study the asymptotics of
quantum invariants.

The main goal of this dissertation is to study the asymptotic expansion conjecture for the
relative Reshetikhin-Turaev invariants of any pair (M, L) with M~ L homeomorphic to some

M.~ Lgsp. The main contribution is to overcome the problems mentioned above by revealing



the geometry of the potential function and connecting the technical argument in analysis with the

hyperbolic geometry of the related 3-manifolds.
1.3 Main results

Let H(uy), ..., H(u,) be the logarithmic holonomies of the meridians of Lgs; C M.. For any
pair (M, L) with M~ L homeomorphic to M.\ Lgs., near the complete structure, the hyperbolic

cone structure of (M, L) can be described by using the parameters H(u,), ..., H(u,).

Theorem 1.5. Given a fundamental shadow link Lps, C M. with n components. There exists
d > 0 (depending on Lgg) such that if (M, L) is a pair with M~ L homeomorphic to M.~ Lrs;,
and with a hyperbolic cone structure satisfying |H(uy)| < 6 and 0y, € [0,7) forall k = 1,...,n,

then Conjecture 1.4 is true for (M, L).
As a special case of Theorem 1.5,

Theorem 1.6. Given a fundamental shadow link Lrs; C M., if (M, L) is a pair with M~ L
homeomorphic to M.\ Lgs;, then there exists ¢ > 0 (depending on Lgs;) such that Conjecture 1.4

is true for (M, L) for any cone angles 0 € |0, ).

Note that M in Theorem 1.6 covers all 3-manifolds M obtained by doing surgery on some
fundamental shadow link complement. It is expected that in Theorem 1.6. when M is a closed,
oriented hyperbolic 3-manifold, the cone angles can be pushed to 27 so that the Chen-Yang volume
conjecture for the Reshetikhin-Turaev invariants of M is true. In this paper, we restrict our attention
to the case where M 1is a hyperbolic 3-manifolds obtained by doing rational surgery on some
fundamental shadow link complement with sufficiently large surgery coefficients and all the cone

angles are less than 7.

Theorem 1.7. Given a fundamental shadow link Lrsy C M. with n components, there exists a

constant C' > 0 (depending on Lgs; ) such that if

* M~ L is homeomorphic to M.\ Lgs;; and



* M is obtained by doing a {(px, qx) }7—, surgery on the boundaries of M.~ Lrs;, with

Ipe| + |qx| > C

forallk =1,...,n,
then Conjecture 1.4 is true for (M, L) for any cone angles 0 € [0, 7).
The following result follows immediately from Theorem 1.6 and 1.7.

Theorem 1.8. Conjecture 1.3 is true for all the pair (M, L) with M~ L homeomorphic to some

fundamental shadow link complement, with small cone angles.

Theorem 1.9. Conjecture 1.3 is true for all the pair (M, L) described in Theorem 1.7, with all

cone angles less than .

Plan of this paper

In Section 2, we give a brief review for the preliminary knowledge required for the proof of
Theorem 1.6. The materials in this section can be found in [61, 62, 64, 65]. In Section 3, we com-
pute the relative Reshetikhin-Turaev invariants of (M, L) and express it as a sum of the evaluation
of certain holomorphic function at some integral points (Proposition 3.4). An important step is
to use a Gauss sum formula (Lemma 3.3) to simplify the relative Reshetikhin-Turaev invariants.
In Section 4, we apply the Poisson summation formula to write the invariants as the sum of the
Fourier coefficients together with some error terms (Proposition 4.1 and 4.2). We also gives a sim-
plified expression for the leading Fourier coefficients (Proposition 4.3). In Section 5, we apply the
saddle point approximation (Proposition 5.1) to study the asymptotic expansions of those Fourier
coefficients. To do that, in Proposition 5.11, we show that certain critical values of the function
in this Fourier coefficients give the complex volume of the cone manifold. The key observation
is that the critical point equations of the function involved coincide with the cone angle equations
of the cone manifold M with singular locus L. Moreover, in Proposition 5.12, we verify that un-

der certain technical assumptions, all the conditions required for applying the saddle point method
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are satisfied. In Proposition 5.13, we show that the twisted Reideimester torsion appears in the
asymptotics of the leading Fourier coefficient. The main idea is to apply the relationship between
the torsion and the Gram matrix function studied in [64] and [65]. In Proposition 5.18, we obtain
the asymptotic expansions for the leading Fourier coefficients, which capture the complex volume
and the twisted Reidemeister torsion of the manifold with the cone structure determined by the
sequence of colorings. Finally, in Proposition 5.19, 5.22, 5.23 and 5.24, we show under certain
technical assumption, the sum of all the other Fourier coefficients and the error term in Proposition
4.2 are negligible. In Lemma 5.25, 5.26 and 5.27, we show respectively that in the contexts of The-
orem 1.5, 1.6 and 1.7, all the technical assumptions mentioned above are satisfied. This completes

the proof of the main theorems.



2. PRELIMINARIES*

The materials in this section are from [61, 62, 64, 65]. We include the materials here for the

reader’s convenience.
2.1 Relative Reshetikhin-Turaev invariants

In this article we will follow the skein theoretical approach of the relative Reshetikhin-Turaev

—1

invariants [6, 30] and focus on the SO(3)-theory and the values at the root of unity g = e~ + for
odd integers r > 3.

A framed link in an oriented 3-manifold M is a smooth embedding L of a disjoint union of
finitely many thickened circles S! x [0, €], for some € > 0, into M. The Kauffman bracket skein
module K, (M) of M is the C-module generated by the isotopic classes of framed links in M

modulo the follow two relations:

(1) Kauffman Bracket Skein Relation: \/\ =e r > ( + e

(2) Framing Relation: L U Q = (—e@ — e*'”fﬁ) L.

There is a canonical isomorphism
():K.(S*) = C

defined by sending the empty link to 1. The image (L) of the framed link L is called the Kauffman
bracket of L.

Let K, (A x [0, 1]) be the Kauffman bracket skein module of the product of an annulus A with
a closed interval. For any link diagram D in R? with & ordered components and by, ...,b; €
K, (A x [0,1]), let

(b1,...,bk)p

“Subsections 2.1, 2.2, 2.3, 2.4 and 2.6 are reproduced from the published paper “Relative Reshetikhin—Turaev
Invariants, Hyperbolic Cone Metrics and Discrete Fourier Transforms I’ by Ka Ho Wong and Tian Yang in Commu-
nications in Mathematical Physics (2022) with permission from Springer Nature.
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be the complex number obtained by cabling by, . . ., by along the components of D considered as a
element of K,.(S?) then taking the Kauffman bracket ( ).

On K, (A x [0, 1]) there is a commutative multiplication induced by the juxtaposition of annuli,
making it a C-algebra; and as a C-algebra K, (A x [0, 1]) = C|z], where z is the core curve of A.
For an integer n > 0, let e,,(z) be the n-th Chebyshev polynomial defined recursively by ey(z) = 1,
e1(z) = zand e,(z) = ze,_1(2) — en—a(z). Let I, = {0,2,...,7 — 3} be the set of even integers

in between 0 and r — 2. Then the Kirby coloring 2, € K,.(A x [0,1]) is defined by

Qr = My Z[n + l]em

'I’LGIT‘

where

and [n] is the quantum integer defined by

2nmy/—1 _ 2nmy/—1
€ r — € r
[n} = 2my/—1 2my/—1
(A T — e T

Let M be a closed oriented 3-manifold and let L be a framed link in M with n components.
Suppose M is obtained from S® by doing a surgery along a framed link L', D(L’) is a standard
diagram of L’ (ie, the blackboard framing of D(L’) coincides with the framing of ). Then L adds
extra components to D (L) forming a linking diagram D(L U L") with D(L) and D(L’) linking
in possibly a complicated way. Let U, be the diagram of the unknot with framing 1, o(L’) be the
signature of the linking matrix of L/ and m = (m,...,m,) be a multi-elements of /... Then the

r-th relative Reshetikhin-Turaev invariant of M with L colored by m is defined as
RT, (M, L,m) = ft(emy,- -, €mns Qs o, U poorn ()7 2.1)

Note that if L = ) or my = --- = m, = 0, then RT,(M, L,m) = RT,(M), the r-th

Reshetikhin-Turaev invariant of M; and if M = S3, then RT,(M, L, m) = p,.J m, 1(¢?), the value

11



of the m-th unnormalized colored Jones polynomial of L at t = ¢°.
2.2 Hyperbolic cone manifolds

According to [9], a 3-dimensional hyperbolic cone-manifold is a 3-manifold M, which can be
triangulated so that the link of each simplex is piecewise linear homeomorphic to a standard sphere
and M is equipped with a complete path metric such that the restriction of the metric to each
simplex is isometric to a hyperbolic geodesic simplex. The singular locus L of a cone-manifold
M consists of the points with no neighborhood isometric to a ball in a Riemannian manifold. It

follows that
(1) Lisalink in M such that each component is a closed geodesic.

(2) At each point of L there is a cone angle 6 which is the sum of dihedral angles of 3-simplices

containing the point.

(3) The restriction of the metric on M\ L is a smooth hyperbolic metric, but is incomplete if

L#0.

Hodgson-Kerckhoff [23] proved that hyperbolic cone metrics on M with singular locus L are
locally parametrized by the cone angles provided all the cone angles are less than or equal to 2,
and Kojima [28] proved that hyperbolic cone manifolds (M, L) are globally rigid provided all the
cone angles are less than or equal to 7. It is expected to be globally rigid if all the cone angles are

less than or equal to 27.

Given a 3-manifold N with boundary a union of tori 71, . .., T}, a choice of generators (u;, v;)
for each 71 (7;) and pairs of relatively prime integers (p;, ;), one can do the (2, ..., £2)-Dehn

filling on N by attaching a solid torus to each 7 so that p;u; + ¢;v; bounds a disk. If H(u;) and

H(v;) are respectively the logarithmic holonomy for u; and v;, then a solution to

piH(u) + ¢H(v;) = vV—16; (2.2)

near the complete structure gives a cone-manifold structure on the resulting manifold M with the

12



cone angle 6; along the core curve L; of the solid torus attached to 7;; it is a smooth structure if
0p=---=0, =27.

In this setting, the Chern-Simons invariant for a hyperbolic cone manifold (M, L) can be de-
fined by using the Neumann-Zagier potential function [39]. To do this, we need a framing on each
component, namely, a choice of a curve 7; on 7; that is isotopic to the core curve L; of the solid
torus attached to 7;. We choose the orientation of 7; so that (p;u; + q;v;) - v; = 1. Then we consider

the following function

O(H(wy), ..., H(uy,)) “~ H(u;)H(v;) “~ 0;H(;)
/=1 _; 1 +; T

where @ is the Neumann-Zagier potential function (see [39]) defined on the deformation space of
hyperbolic structures on M~ L parametrized by the holonomy of the meridians {H(u;)}, charac-

terized by

(2.3)
®(0,...,0) = \/—_1<V01(M\L) + J—_lCS(M\L)) mod 7?7,

where M~ L 1s with the complete hyperbolic metric. Another important feature of ® is that it is
even in each of its variables H(u;).
Following the argument in [39, Sections 4 & 5], one can prove that if the cone angles of

components of L are 64, ... ,6,, then

_ O(H(uw), ., H(un)) = Hu)H(v) | GH()
VOI(MLB) = Re( \/__1 — Zzl 4—\/__1 + ZZI 1 ) 2.4)

Indeed, in this case, one can replace the 27 in Equations (33) (34) and (35) of [39] by 6;, and as a

consequence can replace the 7 in Equations (45), (46) and (48) by %, proving the result.

13



In [66], Yoshida proved that when 0; = - - - = 6,, = 2,

Vol(M)++v/—1CS(M) = q)(H(“lb_‘_'l’H(“”»— Y H(le_(l“’ﬁﬁ: HiHLf%) mod v/—1r*Z.

Therefore, we can make the following

Definition 2.1. The Chern-Simons invariant of a hyperbolic cone manifold M, with a choice of

the framing (1, ..., 7V,) is defined as

B O(H(uy), ..., H(un)) = Hu)H(v;) <= 0:H(y) )
CS(MLQ) = Im( \/__1 — - W + ; 1 ) mod 7*Z.

Then together with (2.4), we have

3

®(H(uy), ..., H(un)) H(u)H(v;) = 0:H(v) )
Vol(M —1CS(M;,) = — d v—17°Z.
(2.5
2.3 Quantum 6;j-symbols
A triple (mq, mo, m3) of even integers in {0, 2, ..., r — 3} is r-admissible if

(1) m; +m; —my, > 0for {i,j, k} = {1,2,3},
(2) mi1 + me + mg < 2(7“ — 2)

Recall that for n € Z>¢, the quantum factorial [n]! is defined by [0]! = 1 and

)t =T

k=1

for n > 0. For an r-admissible triple (mq, mq, m3), define

[m1+m2—m3]|[m2+m3—m1]l[m3+m1—m2]|
_ 2 ) 2 ) 2 )
A(ml; ma, m3) - [m1+m2+m3 n 1]'

2

with the convention that \/z = /|z|v/—1 when the real number z is negative.

14



A 6-tuple (my, . .., mg) is r-admissible if the triples (my, ms, m3), (my, ms, mg), (ma, My, Mg)

and (ms, my, ms) are r-admissible

Definition 2.2. The quantum 6;j-symbol of an r-admissible 6-tuple (m,, . .., mg) is

my Mo -8 my
‘ =+—-1 VA (M, ma, mg) A(my, ms, mg) A(ma, my, meg) A(ms, my, ms)

mg M5 Mg

min{Q1,Q2,Q3} (—1)k[k‘ -+ 1]'

2 o T~ T Tl — TaQr — s — s — Al

k=max{T1,T>,T3,T4}

mi+mao+ms: __ mit+ms+me _ mat+matme _ m3+matm __ mit+mot+matm
! 57T2_ ! 25 7T3_ B "andT4— 2 57@1— s 2

where T} = 5 3 )

Q2 — m1+m3—5m4+m6 and Q3 — m2+m3—5m5+m6_

Definition 2.3. An r-admissible 6-tuple (my, ..., mg) is of the hyperideal type if for {i,j, k} =
{1,2,3}, {1,5,6}, {2,4,6} and {3,4,5},

(1) 0 <m; +m; —my, <r—2,and
(2) r—2<ml+mj+mk<2(r—2)

Here we recall a classical result of Costantino [10] which was originally stated at the root of

unity g = e~ == At the root of unity ¢ = e ﬁrF see [5, Appendix] for a detailed proof.

Theorem 2.4 ([10]). Let {(m1 e ,mér))} be a sequence of r-admissible 6-tuples, and let
2m,"”
0, = |m — lim T
r—00 r
If 0y, ..., 0q are the dihedral angles of a truncated hyperideal tetrahedron A, then as r varies over

all the odd integers

o mgr) mgr) mgr)
lim — log -
r—oco T mz([) mér) m((s’/‘) g=e ¥
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Closely related, a triple (o, g, a3) € [0, 27]? is admissible if
(1) a; +a; — oy, = 0for {i,j,k} = {1,2,3},
(2) Oéi‘{'CYj + ap < 4.

A 6-tuple (v, ...,a6) € [0,2n]° is admissible if the triples {1,2,3}, {1,5,6}, {2,4,6} and
{3,4, 5} are admissible.

Definition 2.5. A G-tuple (ay,...,a5) € [0,27|% is of the hyperideal type if for {i,j, k} =
{1,2,3}, {1,5,6}, {2,4,6} and {3,4,5},

(1) 0 < o +a; —ay < 27, and
(2) 27 < oy + o + o < 4T

2.4 Fundamental shadow links

In this section we recall the construction and basic properties of the fundamental shadow links.
The building blocks for the fundamental shadow links are truncated tetrahedra as in the left of
Figure 2.1. If we take ¢ building blocks Ay, ..., A. and glue them together along the triangles
of truncation, we obtain a (possibly non-orientable) handlebody of genus ¢ + 1 with a link in its
boundary consisting of the edges of the building blocks, such as in the right of Figure 2.1. By
taking the orientable double (the orientable double covering with the boundary quotient out by
the deck involution) of this handlebody, we obtain a link Ly inside M, = #°t1(S? x S1). We
call a link obtained this way a fundamental shadow link, and its complement in M, a fundamental
shadow link complement.

The fundamental importance of the family of the fundamental shadow links is the following.

Theorem 2.6 ([13]). Any compact oriented 3-manifold with toroidal or empty boundary can be
obtained from a suitable fundamental shadow link complement by doing an integral Dehn-filling

to some of the boundary components.
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N\

Figure 2.1: The handlebody on the right is obtained from the truncated tetrahedron on the left by
identifying the triangles on the top and the bottom by a horizontal reflection and the triangles on
the left and the right by a vertical reflection.

A hyperbolic cone metric on M, with singular locus Lgg and with sufficiently small cone an-
gles 04, ..., 0, can be constructed as follows. Foreach s € {1,...,c},letes,,...,es, be the edges

of the building block A, and 6, be the cone angle of the component of L containing e, . If 6;’s

05, 0o
PERE

are sufficiently small, then { } form the set of dihedral angles of a truncated hyperideal
tetrahedron, by abuse of notation still denoted by A,. Then the hyperbolic cone manifold M, with
singular locus Lgs; and cone angles 64, ..., 6, is obtained by glueing A,’s together along isome-

tries of the triangles of truncation, and taking the double. In this metric, the logarithmic holonomy

of the meridian u; of the tubular neighborhood N (L;) of L; satisfies

H(u;) = v/~16;. (2.6)

A preferred longitude v; on the boundary of N(L;) can be chosen as follows. Recall that a funda-
mental shadow link is obtained from the double of a set of truncated tetrahedra (along the hexago-
nal faces) glued together by orientation preserving homeomorphisms between the trice-punctured
spheres coming from the double of the triangles of truncation, and recall also that the mapping
class group of trice-punctured sphere is generated by mutations, which could be represented by the
four 3-braids in Figure 2.2. For each mutation, we assign an integer +1 to each component of the
braid as in Figure 2.2; and for a composition of a sequence of mutations, we assign the sum of the

+1 assigned by the mutations to each component of the 3-braid.
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Figure 2.2: Assigning integers to 3-braids

In this way, each orientation preserving homeomorphisms between the trice-punctured spheres
assigns three integers to three of the components of Lgg; , one for each. For each i € {1,...,n},
let +; be the sum of all the integers on L; assigned by the homeomorphisms between the trice-
punctured spheres. Then we can choose a preferred longitude v; such that u; - v; = 1 and the
logarithmic holonomy satisfies

L \/—_wi

H(v;) = —l; + 5 2.7)

where /; is the length of the closed geodesic L;. In this way, a framing on L; gives an integer p; in

the way that the parallel copy of L; on N(L;) is isotopic to the curve representing p;u; + v;.

Proposition 2.7 ([10, 11]). If Lgsy = L1 U ---U L,, C M. is a framed fundamental shadow link
with framing p; on L;, and m = (my, ..., my,) is a coloring of its components with even integers

in{0,2,...,r — 3}, then

Mg, Mgy, Mgy

Y

28111 oo Z i L m(m +2)
RTr(McaLFSLam):< ) H (pl ) H

=1 s=1

Mg, Mgy Mgy

where my, , ..., mg, are the colors of the edges of the building block A, inherited from the color

m on LFSL‘

Next, we talk about the volume and the Chern-Simons invariant of M.\ Lggp. at the complete
hyperbolic structure. In the complete hyperbolic metric, since M.\ Lggy is the union of 2c regular
ideal octahedra, we have

VOI(MC\LFSL) = 20U8. (28)

For the Chern-Simons invariant, in the case that the truncated tetrahedra A1, ..., A, are glued

18



together along the triangles of truncation via orientation reversing maps, M.\ Lggy, 1s the ordinary
double of the orientable handlebody, which admits an orientation reversing self-homeomorphism.

Hence by [37, Corollary 2.5],
CS(M,~Lgs) =0  mod 727

at the complete hyperbolic structure. In the general case, a fundamental shadow link complement
M\ Lggy. can be obtained from one from the previous case by doing a sequence of mutations along
the thrice-punctured spheres coming from the double of the triangles of truncation. Therefore, by
[36, Theorem 2.4] that a mutation along an incompressible trice-punctured sphere in a hyperbolic

three manifold changes the Chern-Simons invariant by %2, we have

CS(M.~Lpst) = (i %)7# mod 7Z. 2.9)

=1

Together with Theorem 2.4 and the construction of the hyperbolic cone structure, we see that

Conjecture 1.3 is true for (M., Lgs ). This was first proved by Costantino in [10] at the root of
V=1

™
T

unity ¢ = e
2.5 Twisted Reidemeister torsion

Let C, be a finite chain complex
05CiSCii S 50,350 -0

of C-vector spaces, and for each C;, choose a basis c;. Let H, be the homology of C,, and for each
H;, choose a basis hy, and a lift Ek C Cy, of hy.. We also choose a basis by, for each image 0(Cy1)
and a lift Bk C Cpyq of by. Then by, L Ek,l L }~1k form a basis of Cy. Let [by, L Bk,l L Hk; cr| be
the determinant of the transition matrix from the standard basis c;, to the new basis by, LI Ek_l L ﬁk

Then the Reidemeister torsion of the chain complex C, with the chosen bases c, and h, is defined
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d
Tor(C,, {ci},{hy}) =+ H[bk Uby_q U hy: Ck](—l)kJrl.

k=0
It is easy to check that Tor(C,, {ci}, {hs}) depends only on the choice of {c;} and {h;}, and
does not depend on the choices of {by} and the lifts {b,} and {hy}.

We recall the twisted Reidemeister torsion of a CW-complex following the conventions in
[46]. Let K be a finite CW-complex and let p : (M) — SL(N;C) be a representation of its

fundamental group. Consider the twisted chain complex
C.(K;p) =CV ®, C.(K;Z)

where C*(I? ; Z) is the simplicial complex of the universal covering of K and ®, means the tensor

product over Z modulo the relation

ve (r-c) = (p()"-v) @

where T is the transpose, v € CV, v € m(K) and ¢ € C.(K: Z). The boundary operator on
C.(K; p) is defined by

Iv®c)=v®i(c)

forv € CNand ¢ € C.(K;Z). Let {ey, ..., e} be the standard basis of C, and let {c}, ..., %, }

denote the set of k-cells of K. Then we call
co={e@d|ie{l,....N},je{l,... d}

the standard basis of Ci(K; p). Let H.(K; p) be the homology of the chain complex C,(K; p) and

let hy, be a basis of Hy(K; p). Then the Reidemeister torsion of K twisted by p with basis {hy} is
Tor(K, {hy}; p) = Tor(C. (K p), {ex}, {he}).
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By [45], Tor(K, {hy};p) depends only on the conjugacy class of p. By for e.g. [53], the
Reidemeister torsion is invariant under elementary expansions and elementary collapses of CW-
complexes, and by [33] it is invariant under subdivisions, hence defines an invariant of PL-manifolds
and of topological manifolds of dimension less than or equal to 3.

We list some results by Porti [45] for the Reidemeister torsions of hyperbolic 3-manifolds
twisted by the adjoint representation Ad, = Ad o p of the holonomy p of the hyperbolic struc-
ture. Here Ad is the adjoint acton of PSL(2; C) on its Lie algebra s1(2; C) = C3.

For a closed oriented hyperbolic 3-manifold M with the holonomy representation p, by the
Weil local rigidity theorem and the Mostow rigidity theorem, Hy(A/; Ad,) = O for all k. Then the
twisted Reidemeister torsion

Tor(M;Ad,) € C*/{£1}

is defined without making any additional choice.

For a compact, orientable 3-manifold M with boundary consisting of n disjoint tori 75 ..., 7,
whose interior admits a complete hyperbolic structure with finite volume, let X (/) be the SL(2; C)-
character variety of M, let Xo(M) C X(M) be the distinguished component containing the char-
acter of a chosen lifting of the holonomy representation of the complete hyperbolic structure of M,

and let X' (M) C X(M) be consisting of the irreducible characters.
Theorem 2.8. ([45, Section 3.3.3]) For a generic character [p| € Xo(M) N X" (M) we have:
(1) Fork # 1,2, H,(M; Adp) = 0.

(2) Fori € {1,...,n}, let I, € C* be up to scalar the unique invariant vector of Ad,(m(T;)).
Then

H, (M; Adp) = @B Hy(T;; Adp) = C™,

i=1

and for each o = ([a1), ..., (o)) € Hi(OM;Z) = @, Hi(T;; Z) has a basis
h%]%,a) = {Il ® [041]7 HE aIn ® [an}}
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(3) Let ([T, ...,[T]) € @D}, Ho(T}; Z) be the fundamental classes of T, . .., T,,. Then

Hy(M; Adp) = (D Hy (T3 Adp) = €,

=1

and has a basis

hi, ={L,®[T],...,I, ®[T,]}.

Remark 2.9 ([45]). Important examples of the generic characters in Theorem 2.8 include the char-
acters of the lifting in SL(2; C) of the holonomy of the complete hyperbolic structure on the interior
of M, the restriction of the holonomy of the closed 3-manifold ), obtained from M by doing the
hyperbolic Dehn surgery along the system of simple closed curves ;. on M, and by [23] the holon-
omy of a hyperbolic structure on the interior of M whose completion is a conical manifold with

cone angles less than 27.

For a € H,(M;Z), define T4y on Xo(M) by

T(M,a)([p]) = TOI"(M, {h(lM,a)v h?\/l}a Adp)

for the generic [p] € Xo(M) N X™(M) in Theorem 2.8, and equals 0 otherwise.

Theorem 2.10. ([45, Theorem 4.1]) Let M be a compact, orientable 3-manifold with boundary
consisting of n disjoint tori 11 . . ., T}, whose interior admits a complete hyperbolic structure with
finite volume. Let C(Xo(M)) be the ring of rational functions over Xo(M). Then there is up to

sign a unique function

H,(0M;Z) — C(Xo(M))

« —> T(M,a)

which is a Z-multilinear homomorphism with respect to the direct sum H, (0M;Z) = @._, H1(T}; Z)

satisfying the following properties:
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(i) Forall o € H\(OM;Z), the domain of definition of T (1) contains an open subset Xo(M) N
Xirr(M).

(ii) (Change of curves formula). Let p = {p1,...,un} and v = {m,..., v} be two systems
of simple closed curves on OM. If H(p1), ..., H(u,) and H(v1), ..., H(~,) are respectively
the logarithmic holonomies of the curves in |1 and vy, then we have the equality of rational

functions

(M,y)-
]

’]T(M#) = tdet (aH(MZ))

OH(v;)
(iii) (Surgery formula). Let [p,| € Xo(M) be the character induced by the holonomy of the closed
3-manifold M,, obtained from M by doing the hyperbolic Dehn surgery along the system of
simple closed curves ;. on OM. If H(v1), ..., H(y,) are the logarithmic holonomies of the

core curves 7y, . . .,V of the solid tori added. Then

1

Tor(M,; Ad,, ) = +T 2 Hm)
( 1% Pu) (Muu')([pu]) H 4Sinh2 %

1

n

(2

Next, we list some results for the computation of twisted Reidemeister torsions from [64]. We

first recall that if My, 4(C) is the space of 4 x 4 matrices with complex entries, then the Gram

matrix function
G: C6 — M4><4((C)
is defined by
1 —coshz; —coshzy —coshzg
— cosh z; 1 —cosh z3 — cosh 25
G(z) = (2.10)
—cosh zg — cosh z3 1 — cosh z4
—coshzg —coshzs —coshzy 1

for z = (21, 29, 23, 24, 25, 26) € C°. The value of G at different u recover the Gram matrices of

deeply truncated tetrahedra of all the types. See [4, Section 2.1] for more details.
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Theorem 2.11. ([64, Theorem 1.1]) Let M = #°t1(S? x SV)\ Lpsy be the complement of a

fundamental shadow link Lgs; with n components Ly, ..., L,, which is the orientable double of

the union of truncated tetrahedra A, ..., A, along pairs of the triangles of truncation, and let

Xo(M) be the distinguished component of the SL(2; C) character variety of M containing a lifting

of the holonomy representation of the complete hyperbolic structure.

(1)

(2)

(3)

Let u = (uq,...,u,) be the system of the meridians of a tubular neighborhood of the com-
ponents of Lgs;. For a generic irreducible character [p] in Xo(M), let H(uy),. .., H(uy,)
be the logarithmic holonomies of u. For each s € {1,...,c}, let Ly, ..., Ly, be the com-

ponents of Lgg; intersecting Ay, and let G4 be the value of the Gram matrix function at

H(us, ) H(usg)
( R ).Then

T (lp]) = £2% [ Vdet G,
s=1

In addition to the assumptions and notations of (1), let Y = (Y1,...,T,) be a system of
simple closed curves on OM, and let (H(Y1),...,H(Y,,)) be their logarithmic holonomies
which are functions of (H(uy), ..., H(uy,)). Then

OH(T;)
H(u,)

Torr)l(p)] = £2% det (

) IIvase.
()7 ij s=1

Suppose M~ is the closed 3-manifold obtained from M by doing the hyperbolic Dehn surgery
along a system of simple closed curves X = (Y1,...,Y,) on OM and pv is the restric-
tion of the holonomy representation of My to M. Let (H(Y4), ..., H(Y},)) be the logarithmic
holonomies of X which are functions of the logarithmic holonomies of the meridians u. Let
(71, ---,7) be a system of simple closed curves on OM that are isotopic to the core curves
of the solid tori filled in and let H(~,), ..., H(vy,) be their logarithmic holonomies in [p,,).
Let H(wy), ..., H(uy) be the logarithmic holonomies of the meridians u in [p,] and for each

s€{l,...,c}, let Ly, ..., Ly, be the components of Lrs, intersection A, and let G be the
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. . H(us H(us
value of the Gram matrix function at ( (1; 1), ceey (7; 6)>. Then

SH(T
OH (u;

Tor(My; Ad,,) = £2%7 " de t(

[m) H \/MH ——

i =1 i1 sinh 2

2.6 Dilogarithm and quantum dilogarithm functions

Let log : C\.(—00, 0] — C be the standard logarithm function defined by
logz =log|z| + V—1largz

with —7 < argz < 7.
The dilogarithm function Li; : C\ (1, 00) — C is defined by

Liy(z) = — /0 Tlogl—w)

u

where the integral is along any path in C\ (1, 00) connecting 0 and z, which is holomorphic in
C\[1, 00) and continuous in C\ (1, 00).

The dilogarithm function satisfies the follow properties (see eg. Zagier [67]).

()
! ) w1 2
Li, <;> = —Lis(2) — o §(log(—z)) . (2.11)
(2) In the unit disk {z € C||z| < 1},
: — 2"
Lis(z) = Y . (2.12)
n=1
(3) On the unit circle {z = e2V-10 |0< 6 <7},
2
Lis (eQﬁ‘g) = T 00— m) +2V=TA(0). (2.13)
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Here A : R — R is the Lobachevsky function defined by
9
A(9) = —/ log |2 sin t|dt, (2.14)
0

which is an odd function of period 7. See eg. Thurston’s notes [52, Chapter 7].
The following variant of Faddeev’s quantum dilogarithm functions [16, 17] will play a key role

in the proof of the main result. Let » > 3 be an odd integer. Then the following contour integral

or(2) =

22 ™)
ATy / dz (2.15)

4x sinh 7T:L‘) sinh(212)

defines a holomorphic function on the domain
{ZGC‘ —E<Rez<7r+z},
r r
where the contour is
Q= (—oo,—e] U{z eC Hz| =¢,Imz > 0} U [e,oo),

for some € € (0, 1). Note that the integrand has poles at n\/—1, n € Z, and the choice of €2 is to

avoid the pole at 0.

The function ¢, (z) satisfies the following fundamental properties, whose proof can be found

n [61, Section 2.3].

Lemma 2.12. (/) For z € Cwith0 < Rez <,

| VT T (o) (Z%)). (2.16)
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(2) For z € Cwith - < Rez < T,
1+ er\/jh' — v (‘Pr(z)*@r (ZJFW)) ' (2.17)

Using (2.16) and (2.17), for z € C with 7 + 2(n VT « Rez < 7+ 2”” , we can define ¢, (2)

inductively by the relation

[1(1—evl=2)) _ o (ee) o) 2.18)

k=1

extending ¢, (z) to a meromorphic function on C. The poles of ¢, (z) have the form (a + 1) + =
or —am — b—” for all nonnegative integer a and positive odd integer b.

Letg=e ﬂrF and let
=14
k=1

Lemma 2.13. (/) ForO < n <r — 2,

(q)o = ™7 (S""(%)_%'(%Tn%)). (2.19)
(2) Forrg—léngr—Q,
(q)n — 2€ﬁ (Sor(g)_wr(%ri'n—‘r%_ﬂ)) . (220)

We consider (2.20) because there are poles in (7, 27), and to avoid the poles we move the
variables to (0, 7) by subtracting 7.

Forn € Zso,let {0} =1, {n} =¢" — ¢ ™, {0} =1and

{n}t =TTt

Since

{n}!=(=1)"q



as a consequence of Lemma 2.13, we have

Lemma 2.14. (/) ForO < n <r — 2,

(n}! = ¢ (orez2) (o) s () (35247) ) 2.21)

(2) For 3+ <n<r—2,

" ™ jus 2 2 ™ ™n ™
{n} = g (2 () () e () (3725 ) ) (2.22)

The function ¢, (z) and the dilogarithm function are closely related as follows.

Lemma 2.15. (1) For every z with 0 < Rez <,

2r2e?vV-1z ] 1
T3 2v/—1z
prl) = Lin(e™ ) o ot 0(=)- (2.23)
(2) Forevery z with) < Rez <,
1. 1
P (2) = —2v/Tlog(1 — e2V"T) 4 O(r—2>. (2.24)

(3) [43, Formula (8)(9)]

g (5)- 7 o)

o (2) -1+

2.7 Continued fractions

We recall some notations related to the continued fraction of rational numbers, which will

be used in the computation of the Reshetikhin-Turaev invariants (Proposition 3.4). For a pair of
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relatively prime integers (p, q), let

1
Arp—1 — T T
be a continued fraction. For each [ € {1, ..., k}, consider the matrix
Al Bl
=T%S... TS, (2.25)
C, D
where
0 -1 1 1
S = and T = ,
1 0 01
and as a convention let
Ay 1
= ) (2.26)
Cy 0

Lemma 2.16. [24, Proposition 2.5]
(1) Forl € {1, ey k}, A =aqAi_1 — Ci_yand C; = A;_4.
(2) Forl € {1, ey k}, B, =aqB,_1 — Dy_1and D, = B;_4.

(3) We have
Ay,

C -

'Q.I'E

(4) Forl e {1,...,k},

B ( 1 n 1 n n 1 >
A, Ay AA AA L
We observe that Ay, and C}, are relatively prime because Ay, Dy, — B.Cy, = det(T%S - .- T S) =
Ay,

p .
1. By Lemma2.16 (3), =+ . Since a (p, ¢) Dehn-surgery and a (—p, —q) Dehn-surgery
Cy q
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provide the same 3-manifold M, we may without loss of generality assume that

A p
=T (2.27)
Ch q
As a consequence, by Lemma 2.16 (1), we have
Aj_
S T (2.28)
Ck —p + arq
We also let
Y D
= (2.29)
q — By,
so that pp’ + ¢¢’ = 1. In particular, by Lemma 2.16 (1), (2) and (4) we have
1 1 1 B,._ D /
— 4y e S N (2.30)
A A/ Ap-1Ay—2 Ap1 Ck q
Forl € {1,...,k}, we also consider the quantity
—DHISY 4O
K = ST L. (2.31)

Ci

The following Lemma 2.17 and 2.18 from [61] are crucial in the computation of the relative

Reshetikhin-Turaev invariants and the study of their asymptotics.
Lemma 2.17. [61, Lemma 3.2] Cy,_1Ky_1 + Cy_1q is an even integer.
Lemma 2.18. [61, Lemma 3.3]

(1) Let
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(2)

be the map defined by

I(s) = —Ck_1(2s + 1+ Ki—1) (mod 2|q|).

Then 1 is injective with image the set of integers in {0, ..., 2|q| — 1} with parity that of 1 — q.

In particular, there exist a unique s* € {0, ..., |q| — 1} and a unique integer m™ such that

I(s%) = 1— q+2m*q,

and a unique s— € {0, ..., |q| — 1} and a unique integer m~ such that

I(s7T)=—1—q+2mq.

Moreover,

st —s =9 (modq).
Let

J:{0,...,lq -1} - Q
be the map defined by

k—1

J(s) = 2s+1 . (—1)k2 (_1)z‘+1Ki'

q ° Cit1

=1

Then for the s™ and s~ in (1),
J(st) = b (mod Z.)

and

(mod 7).
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Moverover,

J(st)=—J(s7) (mod2Z).
(3) Let
K:{0,...,]¢ql -1} - Q

be the map defined by

. Ck_1(28 + 1 + Kk_1)2 n b2 OZKE

K .
(8) q Ci+1

i=1

Then for the st and s~ in (1),
(mod Z)

and

K(s7) = b (mod 7).

2.8 Rational Dehn surgery

Given a link K = K; U---U K, C S* with n component, let I C {1,2,...,n}, J =

{1,2,...,n}~I and

Pi _ . 1
— — W )
g t Qg1 — T
aj 1
where a; 1, . . ., a; ¢, are integers for all <. For each ¢ € I, we choose a pair of meridian and longitude

{(u;, v;) }ier of the fundamental group of the boundary of the tubular neighborhood of K. Recall
from [50, p.273] that doing (p;, ¢;) surgery on the K is the same as doing (a; ¢, @ici—1,- - -, @i1)
surgery on the framed link K obtained by adding a chain of framed simple loops around K as

shown in Figure 2.3. Let L; be a simple loop with framing a; ¢ as shown in Figure 2.4.
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7
S __-7 pi/%’ \\___/’a

Figure 2.3: doing (p;, ¢;) surgery on K is equivalent to doing (a;¢,, Gi¢, ,,---,a;1) on K;

e S S -
N
\ K[
L;
a. -
iGi-l \/ a; -3 a;
dig-2 a;9
7
~o _-
- a

Figure 2.4: Changing each K; to K

Consider the continued fraction

Note that by (2.25), (2.29) and Lemma 2.16 (3), since

Pi —q
| =T%aS .. TS,

qi p;
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we have

pi —d| |ain —1 aiopi — 4 —Pi
TG . T G0 G — 0 I . (2.33)

4% D 1 0 aioq +0; G

This implies that the parallel copy ~; of L; given by the framing a; ( is isotopic to curve —qju; +
Piv; +a; 0(pu; + g;v;) on the boundary of the tubular neighborhood of K;. Consider the hyperbolic
cone structure on the closed oriented 3-manifold obtained by doing (p;, ¢;) surgery on { K, };c; and
(1,0) surgery on {K};c; with singular locus {L;};e; U {K,};ecs and cone angles (6y,...,6,).
Since

piH(u) + H(v;) = 6;v/—1

for all © € I, we have

H(vi) = —q;H(wi) + piH(vi) + a;o(piH(wi) + ¢:H(vi))

= —q;H(w;) + piH(vi) + a; o0V —1. (2.34)

34



3. COMPUTATION OF THE RELATIVE RESHETIKHIN-TURAEV INVARIANTS

Let Lgsp, = Lgsp1 U - -+ U Lgsy, be a fundamental shadow link in M, = #°t1(S? x S') for
some ¢ € N, and let L’ C S® be the disjoint union of ¢ + 1 unknots with the 0-framings by doing
surgery along which we get M. Let M be a closed oriented 3-manifoldand L = L, U---U L,, be
a framed link inside M with n components. Suppose M\ L is homeomorphic to M.\ Lgsy.. Then,
up to reordering if necessary, there exist a partition {/, J} of {1,2,..,n} together with p; € Z and

¢; € Z~{0} for each i € I such that
1. M is obtained by doing (p;/q;) surgery along Lgs; ; and (1,0) surgery along Lggy ; in M.,

2. the i-th component of L in M.\ Lggy is isotopic to a curve on the boundary of the tubular
neighborhood of Lgg; ; that intersects the (p;, ¢;)-curve of the boundary at exactly one point,

and
3. L; and Lgg ; are isotopic in M, for all j € J.

For each ¢ € I, consider a continued fraction expansion

where (; € N. We replace Lggy ; by another framed link EFSLJ of (; many components with
framings a; 1, ..., a;, according to Figure 3.1. Let fJFSLJ = UZ.E] EFSLJ. By eg [50, p.273], M
can also be obtained by doing surgery along the framed link EFSL, UL C S

We let n; = (n;)ier € 11 and m; = (m;)jes € 1171 be colors on the T and .J components of
L respectively. Denote the framings of the I and J components by a; o and a; o respectively, where
i € Iand j € J. First of all, we compute the (n;, m)-th relative Reshetikhin-Turaev invariants

of the pair (M, L).
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Figure 3.1: Changing each Lgg; ; to EFSL,i

Proposition 3.1.

RTT(M, L, (Il], mJ))

Zie[ Gi—c
= r a; ong(n;+2 Limg Li S (m;+2)
_ Hr . €*U(LFSL,IUL’)(7§7 H)V/=1r H q .0 2< ) H(—l) i q(aj’ﬁ?]) i B R
iel CZ
{1} icl jeJ

X Y [(H{(”i + 1) (miq + D H(mig + D (maz + 1} {(mig—1 + 1) (mie + 1)}

mpy,mep el

—1 a; my 1 (my 1+2)

where the sum is over multi-even integers m; = (m;)ic; € {0,2,... 7 — 3}2wet S~ with each

(m;) = (mig,...,mic-1) € {0,2,...,7 — 3}%~! and multi-even integers m;, =

{0,2,...,r— 3}‘”, and my,, . .., mg, are the colors of the edges of the building block A inherited

from the colors on Lgg;.

Proof. The terms

C.
aj ong(n;+2) 2L aqgmg  (my 1 +2)

”‘j,Omj<mj+2)
|} U | Ul

jeJ iel

36

—_— ) Ly (my e c
<H<_1) Z QMZ quC;l 2+(ai’4i+§)w> H M My

s=1 Mg, Mg,

)

3.1)

(mi,g )ier €



come from changing the framings of all the link components to zero. Besides, the term

(H{(ni + D (mia + DH(mia + 1 (maz + 1)} A(mig-1 + 1) (mig, + 1)})

i€l

comes from the skein computation

() mgrenfe)

where
1 1 1 1
Himon) — (_1yin (DD} {mt D+ 1)
{1} {1}
for even integers m, n. Together with Proposition 2.7, the result follows. [

Recall from [62] that

27

Proposition 3.2. ([62, Proposition 3.1]) The quantum 6j-symbol at the root of unity ¢ = e~ »

can be computed as

B g min{Ql,szst,TQ} BM\T/jUT(QW;nl 77777 2w:n6’@)
2

k=max{T1,T>,T53,T1}

)

‘m1 mo Mg

my s Mg

where U, is defined as follows. If (m1, ..., mg) is of hyperideal type, then

Udlay,... a6, &) =1 — <277T)2 + %ii(m — 1) - %i (Ti + 2% —7r>2
i=1 j=1 i=1
R o e
L = \ (3.2)
(D)5 Sl ) e+ )
i=1 j=1 i=1

—sor(f—w+37ﬂ)+i§4;%(§—n+§)+j§3;eor(nj—§+§),
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where T, = a1+o§+a3’ Ty = 011+0425+0467 Ty = a2+a24+a6 and T, = a3+a4+a5’ n = a1+a2;a4+a5’
Ny = Qateatearas gpg g — Qetesrastas Jf (my ... mg) is not of the hyperideal type, then U,

will be changed according to Lemma 2. 14.

We are going to apply the Gauss sum formula (Lemma 3.3 below) to write the relative Reshetikhin-
Turaev invariants as a sum of the evaluation of certain holomorphic function (Proposition 3.4).

Recall that for each 7 € I, we have

Di 1
— = Gig
ql aiaCz_l - 1
a; 1
With respect to the continued fraction [a; 1, ..., a; ], for each i € I, let

* A1, B, Ciy, D, be the integers defined in (2.25) foreachl = 1,..., ¢,
* P, q; and K;; be the quantities defined in (2.29) and (2.31) foreach [ =1,...,(,

* I;(si), Ji(s;) and K;(s;) be the functions defined in Lemma 2.18, where s; € {0,1,...,|¢|—
1}.

For any n;, m; ¢, € N, consider the sum

Si(mi g, ni)

r—1
— Z ( 1)21 1 aL zmungl_l bt Zl (qm‘mi,l _ q*nimm)quglmz‘,zmi,z+17 (3_3)

M, 150, ¢, —1=0

where g = e = This sum will appear later in Proposition 3.4.

Lemma3.3. Arg=c¢ WrF we have

B ( )Cz+1( /— ><271 ‘(hl 1 4th+ (shQ’"";i,Ci 727\':7;) 471_\7}?1Z; (81,27"7?’% ,@)
Si(mig;,ni) = NG > — e ’
s;=0
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where

Cgrg, po2B-ma=m) 2D
T T P CEE

+ K;i(s)m* — %52 F 2687 Ji(s).

Proof. First of all, we consider a closely related sum

r—1
Stmgem) = Y (~)TE g g g
mi,l,...,miyciflzo
Gi—1
% H <qmi,lmi,l+1 _ q_mi,lmi,l+1>'
=1

By considering the transformation m;; — r — m,, a direct computation shows that

Si (mivci, n,) = QCi_lSi(miVQ, TLZ)

As aresult, by Lemma 3.6 in [61] (note that our variable g is the variable t7 in [61)]),

1 =
Si( Gi» ) 2@,151( z,sznz)
2lgi| -1 mv/=1 Y3, -1 14_1 _ (=DSin
— 151 i) i)
—rt e 7 a; My, ¢;FSi o =
e
s;=0

K; ;¢ —1

2
i /=1 %1 (-1)%in,
_ 7_‘— 2 e r a; <m1 4] +81T+4 + Ci,Ci—l ) ’

where

L (VI

T:

N
7
2
F n2 —Tr (-2 1Ky ) ¢i—2 1+1 Kig
- <Zz 1 CHCHH>*7r 1 =1 T, Frv/—Ini | 3L, ()" &

C’L>l+1 i,l+1

X e
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Moreover, since all of C; ¢,, m;¢,, si, ¢i, n; and 7 are integers, a direct computation shows that

2
—C, . _ ¢
— I 171’;? ! <mi,gl (Sz+‘]1)7‘+7 Gt 12 Z_nl’)
€ ' _ — 6_7r\/_17"(Ki,CZ-—1Ci,Ci—1+Ci,Ci—1Qi) =1,
v=1€ 1, (—=1)Sin,
. _ V-1 q@ ('n’L1 ¢ —‘,—Sﬂ‘-ﬁ-*iﬁ)

where the last equality comes from Lemma 2.17 that K; ¢,_1Cj ¢,—1 + Cj¢,—1¢; is an even integer.

Thus, for each s; € {0,...,|q| — 1},

T ,51—1

2 2
K ¢ [e i C— [e
mﬁ i Cl (mi,(i+(5i+Qi)7ﬁ+4 l:t(c 1) lnl> 7r\/7 i c, (ml s H_ 1i( 1) m,)
fry e

In particular, we can write

2
qi|—1 —C; . _
I l‘ 7%*1%(7”1 (Z+S 7’+¢>
Si(mig,ni) =7 Y _ € ’

s;=0

e DLy

771'\/7177‘7;(( 1) (2my ¢, +2s: r)+ZCZ W) m/—1n; (
— €

_ nitlk,
< (2ms (28 lig E Kit ”’)
X € z,l+1

)

where

TR Y e Y (o /ey 2 CiaKZ)
_( _1T) 2T =1 Ci 1% 141 Zl 1 Cil+1

By a direct computation,

2 2

rK; .1 _o C; | K?
71'\/ 1(1 <mi,§i dsirt 1751 > ﬂ'\/ 1Ir ZQ z,.ll zl,l
e 7‘1 +

2
(e () o ()
Besides, by Lemma 2.16 and (2.30),

2
_ﬁ\/—lng ¢—1 1 T _ﬂ;‘ 2mn;
e T i =1 C;;C; 111 — 6477\/?1 a; r
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Moreover,

i,0+1

) . 27.”17: 27r7n,i7 f
+(—1)% —2— (l (27"%' ,W) (M,W> 427 (2””1"41' 77r> +2ﬂ.<27"”i ) J,(S.))
= € Amy/=T \ % T r 4 L T AT

INGEYe
HFTF\/ ”z( rq L& (2ma,c, +25im)+ 15, 1(>7l>

The result follows from the above computation. 0

Proposition 3.4.
RTT(MuLa (nlumJ>):Zr Z 9F1(317m4pk>7

spyme Kk E;

where
1. Z, is given by

(— 1)21€I(CZ+1+21 v (/= 1r) Ze,iT ZZEICZ c

Z, =
2e{1}2er = Ty as
eﬁ\éjl Pier Zf’;l a1 — MF(Ziej(ai,o-f—ai,gi)+EjeJ ‘1,170)+U(EFSL,IUL/)(%+%)V —17F7
2. s; = (8;)ier where each s; runs over all integer in {0, ..., |q¢| — 1},
3. m¢, = (myy,)ier runs over all multi-even integers in {0,2,...,r — 3} so that for each s €
{1,...,c}, the triples (mg,, ms,, My,), (Mg, Mgy, M), (Msy, My, Mg, ) and (Mg, Mg, M)

are r-admissible,

4. k = (ky,..., k) runs over all multi-integers with each ks lying in between max{Ty,} and

min{Q,,,r — 2},

5. E; = (E)ier € {—1, 1} runs over all multi-sign,
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6. the function g¥' (s;, m¢,, k) is defined by

E 27rm< 27'rm< onk

V=1P 1 L)t —2 W, (s;,——L, 27k

E; ”E ( r)mﬁrf’r’r
gr (SIJIHCU ( )

el

2rk _ (2mks 2mke\ 2mm¢ ([ 2mmig _
where <= = (TR =) L — — ieI’SI_<Si)iEI’

PPr(spoq) =) (g(ﬁi )+ P — ) Ei(aic, + Bi — 27r))

icl q; qi qi
i(s:) + E; Pi
+WZ< 2 B )>
el q
L
+Zazoﬁz+z<§>azg+2(a30+ )
el el jeJ

and

W, (s1, o, &) = Z <az0 + )(ﬂ —7)? — Z <aj,0 + %)(aj —7)?

il
pi L 2m(Ii(s;) — E;)
—Z( )% m? = 3 TR B oy — )
iel 4
2E;(a ¢, — i
BRI e
el ‘ el 4
pz - Li 2
D SIS +z< q,)*@a)”
4 2
+ 5l

Sy Q. 2mn; : _ 2mmy ; — Cig142Bi—p}
wzthﬂz——r foriel, a; == fOFJEJa”th—ZiGI % :
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Proof. By Proposition 3.1, we have

RTT(M, L, (Il[, mJ))

Z'E[ Ci—c
B ~ ” a; ong(n;+2 Lim vi\ ms(m;+2)
T ot U2V T M T (1) 5 g (o 3)
S G q q
s | |
i€l jeJ
T Cl—l RUEA (azg _;’_Lz) i,Ci(mi,Ci+2>
PHHD IIs: (migssmic) | | [T(=D7= gl T
€1 g, i€l el
M Mg, Mg,
<1 >
s=1 Mg, Mgy Mgg
where
* m; = (m);e; withm,; = (m; 1, ..., m; 1) runs over all multi-even integers in {0, 2, ..., r—
3},
* m;, = (M, )ier runs over all multi-even integers in {0,2,...,r — 3} so that for each s €
{1,...,c}, thetriples (mg,, Mgy, My,), (Mg, My, Mgy ), (Mg, M, My, ) and (Mg, , Mg, , M)

are r-admissible,

* € = (€ )ier witheach €; = (€;1,...,€i¢,-1) € {0,1}%  and

(€i,155€i,¢,—1) . .
o ST (1L Mg, 1) is given by

(€i,1505€4,¢;—1)
S; T mis mig-1)

= (gt Dlmaa+l) _ o=t )mia+)y (_ 1)Zl 1 m( 1)Efiilai,zmi,z

,1 a; m;, (ml +2) =1
W ot I S () ma g+ D) (g1 +).

. (Eiv“'vei - ) G . .
Note that in the formula of S; '~ ™", the term (—1)2=1 %™ is equal to 1 when m;; is even.

Nevertheless, we need this term for the next computation.
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A direct computation shows that for each ¢ € I, we have

(0,€4,2,--5€1,¢; 1)

(1,€i,2,-€5,¢,—1)
S, ‘ (mm,mm,...,mi@_l) = Sz (7"—2 —mi71,mi72,...,mz‘7gi_1).

Note that since r is odd, » — 2 —m, ; runs through all odd integers from 0 to » — 2. More generally,

we have

S(Dz"'vovlvei,l+17"'761',41-71)
i (mm, ey MM 1, T 1, T 1y e - ,mz‘,g—l)

(07"'707076i,l+17"'7€i,§'71)
:Sz t (7“—2—mijl,...,r—2—mi’l_l,r—2—m,;’l,ml-,lﬂ,...,mijgi_l).

3.4)

Originally, m; = (m;1,...,m;,—1) run through all multi-even integers in {0,2,...,7 — RIS

By (3.4), we can change the sum m; to be over all integers in {0, 1,...,7 — 2} %=1 and write

R’TV(Mu LJ (nla mJ))
dierGi—ec ~ N a; ony(ni+2) P 4\ my(m;+2)
:—MT = e~ 0 (Lrs, 1UL) (=2 === )v/—=1r H qi’ 3 H(_l) I q(aj,0+7)72
{1} ier Gi iy o
LMy ¢, , o ™5 (mi,Ci +2)
Z H(_l) 2 q<a17(i+21) 2 Si(070, 0 (mi,lami,% s 7mi,Ci—1)
mci el
c

where
(0,0,...,0)
Si (mi,17 m;2,... 7mi7Ci_1)
1 1 a; gmy g (m; +2) i—1
= 37 (gDt _ gt Dmeren) (—1)Sin anmi oty SRR S a4 1) i1 +1),
mjy
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Note that

G—1 a4,

S.([)’O""’O) (le’ mm, e ,mz"Ci_l) ( 1)21 1 al lq =1 2 Sl(ml7<l + 17 n; + 1)7

)

where S;(n¢,, m; ) is the sum introduced in (3.3). By Lemma 3.3, we have

) Gi—1
S(O,O,.. .,0) G—1 aq, (—1)<1+1(\/—17“) 2

i (Mi1, Mi2, ..., Mic—1) = (_1)2’651 g == =
Vi

lgs|—1 gt x 27N | om - 2mm; x 27N | 2
Z ( 34 \‘T 17 Si’ TZ = 2T o - 2 47-rxr/*1 AN TZ - 2r o - 2 )
§ € 3

Si:()

where

Cigr o 2B-ma-m) 2(I(s)+£1)
ZF(s,a,8) = 0 S(a—m)’F " 0 ( ) (3.5)

/

+K(s)m? = Pig - m2 27rﬁ< _ B

%

By a direct computation,

Zi<s a+— B+ 2:)

47Cie 1 4m°Ci ey 4 872
—ZF TG (g — ) L —2
9 (S7 Oé,ﬁ) + rq; (Oé ﬂ-) + QiTQ TQz‘( + ﬁ 7T> :F TQQi
Ar?(I;(s) £ 1 L4 Ar? 472 !
O] )_&<—7T(ﬁ—7r)+—ﬂ2>—l-—7r (=25 a0).
rq; q \ T r r di

which implies that

2mm;
r + ) .G | 27 27n; | 2r¢
647r./_1Zi (S“ T +5 ror +5 )

c. ) f— ) (27”77‘1'7(1' +m_27r) I 41 /
,/_1<_7“C4<+<i_ﬂ.)+;;z ( 2mn; 7r):|: T : T +7T< 7,<Sz) +%:‘:J1(Sl)>>

q; 4 4

/
—r | ZzF(s; 2mmig; 2mn, )+—4’T2 ¢ —1F27P;
An/—1 i \70 T o r2 a;

=€

(3.6)

X e
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Next, by a direct computation, for any even integer n € N, we have

-r — -r n T (2 __ 2
qn<n2+2> = (eﬂ-\iljl> q%(nig)QJFn — <@ﬂ\{171> e\/jl(%; )e4ﬂ\/jl( (2r ﬂ) ) (37)

qw _ (6_Tﬂ\‘{jaj’0> (eaj,oﬁ(%:nj)) (ezmrﬁ(—aj,o(zw;nj —W)2>) , (3,8)

qaiyoni;nﬁ” = (efm\ijai,o> (eai,ox/—il(%fi)) (€4ﬁh (_ai,o(%:i —7r)2)> (3.9)

and

. - ™y ¢, 2
= (s () (eai’giﬁ(Qﬂ?gi_W)) (=) G

In particular, by Lemma 2.16, the first term in (3.5) and the last term of (3.10) can be grouped

together to give

Cicim1 (2T, 2 2mmig, 2 pi (2T ¢, 2
gi r r AN
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Besides, for each 7 € I, (3.6) and the third term in (3.10) can be grouped together to give

2wmy 2mmy
+ ¢ 2m 27mny | 2 /—T 4G4
47T\T/7IZ’L' (5“%4_7‘”7 7"1+T?r> aini _1< T Z_Tr>
(& (&
! 2rmy 9 . <M+M—2ﬂ) I.(s:)+1 !
Ve bl g R A e = z — + ’<é/“) +2475(s)
—e 4 T 4 r 4 4 4
b 2™Mig 2mngy  an? [ Cig1F2P
e (e T g (G

oy s (e () (e‘f(”ﬁ"j)) )} Gy

and
ymie, Lmy (m; C‘+2) r (1,1-71—2) 1,i\/jl (271'77%-79) r <,1 (271’7”2"{7: 7ﬂ-) 2)
(s et 2m (5) ) (o () [
(3.13)
By Proposition 3.2, we have
C
msl m52 m53 {]‘}C g 2071 Ur (27"""51 7"'727Tm‘86 727\'163 )
11 = g e TR G
s=1 Mg, Mg, Mg, k
where k = (ky,. .., k.) runs over all multi-integers with each k, lying in between max{Ty,} and
min{Q,,,r — 2}. The result then follows from above computations.
[l
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4. POISSON SUMMATION FORMULA

To apply the Poisson Summation Formula to the summation in Proposition 3.4, we consider
the following regions and a bump function over them.

For a fixed () ey € [0, 271, we let ae, = (g, )ier € 0,271, € = (&,..., &) € RS,
Dy = {(ag,, &) € R | (ay, ..., a,,) is admissible, max{7,,} < & < min{n,,, 27}},

and

Dy ={(a,,§) € Da| (as,, ..., as,) is of hyperideal type}.

For sufficiently small 6 > 0, we let

Dy = {(e;,€) € Dy | d((axg;,€),0Dy) > 6},

where d is the Euclidean distance on R//I+¢. Moreover, we let ¢ : R/I*¢ — [0, 1] be a C*°-smooth

bump function satisfying

w(QCI’ €) =1 for (aC17£) S D_(Is{’

w(aCI’ 5) =0 for (a<l7£) g Dy

and ¢ € (0, 1) elsewhere.

Moreover, we let

2rme, 27k
fPl<SI7mC17k) = (TCI’ T) gPI(S],mC“k).
To apply the Poisson summation formula, for each i € I, we let m;, = 2m; ¢, and m;, =
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m, ¢, )icr. Then from Proposition 3.4, we have
i P

RT,.(M, L, (n;,my)) = Z, Z (Z fEr (s7,2my,, )) -+ error term. 4.1)

(¢, k)ezlll+e \Ers;

Let
2m<l, Z f S],2m<1, )

E[ Sy
Since f, is in the Schwartz space on R!/I*¢, by the Poisson summation formula (see e.g. [51,

Theorem 3.1]),

Z fr(Qﬁ\lan) = Z J/C\T(ACNB)?

(¢, k)eZlI+e (A, B)ezlll+e

where A, = (Ai¢)ier € ZU, B = (By,...,B,) € Z° and ﬁ,(ACI, B) is the (A,, B)-th Fourier

coefficient of f, defined by

ﬁ(AC“ B) _ / fy-(QfI\l(:[, k)eZief QWﬁAi,gimi,Q‘f‘Zg:l 27r\/lelkldI/fl<Idk

Rl |+e

where dm¢, dk = [[,.; dmic [ , dki.
By change of variables m, ¢, = Qi and k; = 5-&,, the Fourier coefficients can be computed

as follows.

Proposition 4.1.
ACI? fo‘ SI?ACI’ )

Ejr,ss

with

. e (1e; Ei)
E _r icr Li
fr (s, A B) = 22| |+eq|I|+e

r E . RN e
X / (_1)Ziel A, ng (SI, o, 5) edrv/—1 <WT I(sl,ag 75)722'61 ZTFAZ,CiQZ,Ci 2=t 4ﬂ3555)da§1d£,
Dy
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where dou, d€ = T, doic, [To_; dés

— EI S7.&x
br(s1, 0, &) = (e, &)V Brae),

Ei(ajc + Bi — 27r)>

o N q qi
Iz Si + Ez i
+73 ( (5) + 54 Bidi(s)
icl qi qi
Li
+ Zﬁloﬂl + Z (5)0&@@ + Z <CL]0 + 5)0@
el el jeJ

and

_ZZE Oézgz—'ﬂ _|_227rﬁl< EiJi(si) — ]q):>

el i€l
S a6 +ZW< qi>+(25)ﬁz
s=1 i€l =1
472
+ —5hi
r

; . Cie._1—2E;—p!,
with ; = 2% fori € I, oy = ™ for j € Jand hy = Y, —25= =" —~ iy

Together with Equation (4.1), we have

Proposition 4.2.

RT,(M,L,(n;,my)) = Z, Z ﬁ(ACn B) + error term.
(A, B)ezlll+e
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The error term in Proposition 4.2 will be estimated in Proposition 5.24 of Section 5.

For each ¢ € I, with respect to the continued fraction

P e aic)] = 1
qi R Qi1 — —>7

let s and ;" be the integers s* and m* defined in Lemma 2.18 (1). For each multi-sign E; =

(Ei)ier € {—1,1}11 define s® = (siE’)ie[ e Z1l and m®r = (miE’)ieI e 71 by

- sj ifE,=—1
s; ! =
s; ifE, =1
and
. m;r if B, =—1
m; T = .

m;  if B =1

In particular, by Lemma 2.18 (1), (2) and definitions of sf’ and miEf , we have

L(sP) = B —q+2mPq and EJi(sP) = -2 (mod 2). (4.2)
4q;

Let 1 — 2mP® = (1 —2m”),c; € ZIl. In Section 5, we will show that £ (s®,1 — 2mFr, 0)
are the leading Fourier coefficients. The following proposition gives a simplified expression for

the Fourier coefficients that will be used later.

Proposition 4.3. We have

— Y (Ep)rifi+e G (e,
f"EI (SEI’ 1 - 21’I1E17 O) - 2|I‘+C7T‘I|+C /D ¢7" (SEI7 aC[? E) 64‘"\/?1 (0‘51 C)daé-jdéy
H
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where

el

y(Eﬂz—(—DZﬂ(qi+ v H(HEi)e“”Z’e’ PR @s)

¢T(SI7 (8763 E) = ?/J(O‘Cu 5)
Ei(ai7ci+ﬁi72ﬂ)

A ) . L
X e 71<Zi€f (Z*E(f”f”)*%(ai@f”)*qii)*Zief‘”*“ﬁﬁzl'e’ (Lfl)a“ﬁzf'@’ (“"’ﬁ%)%)

and

e I B O L e

il i i
L; Li
=3 (@0 + 2oy =1 =Y Slase, — )
jeJ i€l
+iU(o¢ a §)+<iﬁ>w2+ﬁh (4.4)
- r s19 9 Wsg9Ss - 2 7"2 I- .

Proof. By definition of the Fourier coefficient and the bump function ¢, we can write

— T\I|+c

E;Er 1 _ E; —
fr (S ;1 —2m ’0) o |+eql]+e

i C WTEI sBI ¢, £)— ieg 2T 172mf1 a; )
X / (_1)21-6[(1727117? )¢r (SEI, acl’g) 6477\/—71< ( ¢r ) Z er ( ) VC'L dagldf
Dy
By (4.2),

e 1m Z'LEI 4 + % +E1J7,(57,) . ( 1)2161 4 +E1J1(51)
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Besides, by (4.2), we can write

WP (s, g, €) = > 2m(1 = 2m o,

el
=GP (o, §) — 20 Y (1= 2m) + Y 2B (- Bii(s) - )
i€l iel di
/ 472
O R R
el ¢

Furthermore, since 3; = @ and n; is even for all 7 € I, by (4.2),

i T 2 2Trﬁi<7EiJi sf[ 7&>
r (27T6i<—E¢Ji(SfI)_Ii>> € 21v/—17 and e%ﬁz eI (s:1) 51

471'\/ -1 qi
The result follows from a direct computation. 0
Define
Y= (1) (4-s) w2 (smt s ) 4.5)

The following lemma ensures that the leading Fourier coefficients in Proposition 4.3 do not cancel

out with each other.
Lemma 4.4. For any E; € {1, =1}, we have Y (E;) =Y.

Proof. Note that Y is equal to Y (E;) with E; = —1 for all ¢ € I. We claim that

/

S (aen) g (or-eemenl) i (een) i (an-aeennd)

for any ¢ € [. This shows that Y (E;) is invariant when we change E; to —F; for any i € I. By

changing all E; to —1, we get the desired result.
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To prove the claim, first, from Lemma 2.18 (2), since

we have

Moreover, from the definition of K in Lemma 2.18 (3), we get

Ki(s{) — Ki(s7) + 4(m]” —my)

(2

AC; -
= TG (6 sy 1 Kg) (s — s7) +A(mf —my).

4
(4.6)

Besides, from the definition of / and Lemma 2.18 (1),
L(sT) + Li(s;) = =2Cic,1(si +s; + 1+ Ki¢,-1) = 2¢;(m +m; —1). 4.7)
From (4.6) and (4.7), we have
Ki(s) = Ki(s;) +4(m —my) = 4((L=m —m;)(s] —s,) +mi +m;).

7

In particular,

/
64751 <4mj’—2+Kl~(s+)+%)

rx - P;
e <4mi —2+Ki(s*)+q—i)

— _6771'\/71((lfmj'fmi_)(sj'+si_)+mj'+mi—)

— el —Ki(s))+4(mT —m )

= (= 1) mm) s D) ),

We claim that the integer (m; —m; )(s] +s; +1)+ (s +s; ) is always odd. Note that by Lemma

i J—
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2.18 (1) and the definition of I, we have
—2Cic1(sf —s;) =1(s") = I(s7) =2(m" —m”)g; +2,
which implies that
(m™ —m7)g; + Cigalsf —s;) = -1

In particular, at least one of (m™* —m™) and (s;” — s; ) must be odd. Note that if (s;” — s; ) is even,
then (m™—m™) is odd. In particular, (m; —m; )(s; +s; +1)+(s] +s; ) isodd. If (s} —s;) is odd,

then (s; +s; ) is odd and (s; +s; +1) is even. In particular, (m;" —m; ) (s} +s; +1)+(sf +s;)

is odd.
Altogether,
Ve <4m2'72+K¢(s+)+%>
e _ _(_1)(mjfm;)(sj+s;+1)+(S;L+s;) -1
4F <4m_ 24K (s™)+1k )
This completes the proof. [
Forz = (z,...,2,) € C", we write Re(z) = (Re(z1),...,Re(z,)), where Re z; is the real

partof z; fort: =1,...,n. Let

Dpe = {(ag,, &) € C'* | (Re(ay, ), Re(€)) € Dy}

To end this section, we consider a closely related function GF1(a,, €) : Dy c — C given by

; i\Qq,¢; — 2F:(B; — m) (e, —
GEI(O‘CUE): [— (g—i-ai, ) (ﬁi—ﬂ'>2—p(a < 7T) + ]
’EZI ' : 4i
_ZajVO(aj_W)2_Z%(ai_ﬂ-)2+ZU(as1a-. O-/saafs (Z%> )
< = s=1 =1
(4.8)
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where U i1s defined by

4 3 4
U(Ozl,...,O[G, _72+;22 _Tz Z;(Ti_ﬂ-)Q
1 7 1=
4 3
+ (£ —m)? - Z(S —7)° — Z(m —¢)
i=14 ) i=1 (4.9)
— 2 Liy(1 ;ZZLl em=m) ZLl (e
=1 j=1
4

3
— Liy 21(5 + Z ng 2i(¢§—7:) Z Lis (621‘(77.7—5))‘
=1
Note that when both G®7(ax,, €) and GF! (a,, €) are defined, they are related by

lim GEI(aQ,E) = GEI(aCI,f).

r—00

More preciesly, by Lemma 2.15, the differenece between GZ7(a,, €) and GFI (e, , €) is given by

the following lemma.

Lemma 4.5. On any compact subset of Dy ¢, we have

demy/—1 log (f) N 4/ —1k(o,, €) n v (ag,, €)
r

GrEI (aCH f) = GEI (aCN £) - 2 r r2 ! (4'10)
where
’%<O‘CI’€>
4
1 v =1
il 17, — /—1& — /=17 —
2(25 2
1 A3
32D log (1 ——Zlogl—e Vol
i=1 j=1
3
- s 7r s Ts {s
-I—Elog(l—ez\/il(E Zlog 1 — 2V 16 ——Zlog 1— eVt ))>
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and v, (o, , €)| is bounded from above by a constant independent of .

Proof. Note that

GPl(ag,, &) — GF(ag,, &) = Z(Ur(%n cey Oy &) — Uy, oy s, €5)) + O (%) .

s=1

Thus, it suffices to study the difference between U,.(«, . .., a5, &) and Uy, . . ., ag, §).

By Lemma 2.15(3),

o (2) =10+ 2T 7) - 2 o).

Besides, by using Lemma 2.15(1), we have

. 22V —1(n—7i+7) 1 1
r (773‘ -7+ f) = Li, (eQ‘/jl(”j_”*?)) " ° - +0 (—4> .
r 3 (1 _ BQﬁ(ﬁj—TiJr%)) T r

In particular, on a given compact subset of Dy ¢, by continuity, we have
x 1
Pr (77j -7+ g) = Li, (eQﬁ(’“_”J“?)) +0 (r_Q) :

Next, by considering the Talyor series expansion of Lis (eQﬁ(”f‘”J”w)) at w = 0, we have

1
©r <77]. — T+ Z) = Li, (62\/*1(771'*71‘)) —2v/—1log(1 — 62\/*1(773‘*7'1')) (Z) +0 <_) _
r r

72
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Similar computations show that

2v/ 1 log(1 — e2V~1r=m) <37r) +O(1>,

T 72

) -
2V w)) 2V T log(1 — 2V=TE) (3”) L0 ( 1)

(%)

[\3
j
o)
o
—~
—
|
(‘b
@
S—
ﬂﬁ*ﬁ

Equation (4.10) then follows from a direct computation.
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5. ASYMPTOTICS OF THE INVARIANTS

In this section, we will find the asymptotics of the leading Fourier coefficients and estimate the

other.
5.1 Preliminary
5.1.1 Saddle point approximation

First, to obtain the asymptotic of the invariants, we recall the following proposition from [62].
Proposition 5.1. [62] Let D, be a region in C" and let Dy be a region in R*. Let f(z,a) and
g(z,a) be complex valued functions on D, x D, which are holomorphic in z and smooth in a. For
each positive integer r, let f,.(z,a) be a complex valued function on D, x D, holomorphic in z and
smooth in a. For a fixed a € D,, let f?, g* and f2 be the holomorphic functions on D, defined by
f2(z) = f(z,a), g*(z) = g(z,a) and f2(z) = f.(z,a). Suppose {a,} is a convergent sequence in

D, with lim, a, = ag, f2" is of the form

v (2, a,)
7«2

fir(z) = [*(2) +

9

{S,} is a sequence of embedded real n-dimensional closed disks in D, sharing the same boundary
and converging to an embedded n-dimensional disk Sy, and c, is a point on S, such that {c,.} is

convergent in D, with lim, ¢, = cq. If for each r

(1) c, is a critical point of f2 in D,,

(2) Ref?(c,) > Ref? (z) for all z € S,~{c,},

(3) the domain {z € D, | Ref? (z) < Ref? (c,)} deformation retracts to S,~{c,},
(4) |g? (c,)| is bounded from below by a positive constant independent of r,

(5) |v.(z,a,)| is bounded from above by a constant independent of v on D,, and
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(6) the Hessian matrix Hess(f20) of f2° at ¢, is non-singular,

then

[ oo @n = () e e (15.0(1) ).

In Section 6.4, We will apply Proposition 5.1 to obtain the asymptotic expansion formula for

the leading Fourier coefficient (see Proposition 5.12 for more details).
5.1.2 Convexity and preliminary estimate

Next, to show that conditions in Proposition 5.1 are satisfied, we need the following result

about the function U defined in (4.9). Recall that the function U (v, . . ., ag, &) in (4.9) is given by

4 3 4

Ulan, ., 06,8) =n + 5 3° 3 =) — 3 (72— )
i=1 j=1 i1
4
HE=m)? =Y (€= =) (n—¢)
i=1 j=1
1 4 3 1 4
-2 Liz(l) — 5 Z Z Li, (62"(”3'*72')) + 5 Z Li (621'(7'1'*#))

Let a = (o, ...,a5) and Re(a) = (Re(ay), . .., Re(ag)), where Re(«;) is the real part of «;

fort =1,...,6. Let

Re(ax) is of the hyperideal type,
BH,(C = (aa 5) € (C7
max{Re(7;)} < Re(§) < min{Re(n;), 27}

and

By = BpcNR".
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By (2.14), on By, we have
U, &) = 2% + 2V 1V (, €), (5.1)
where V' : By — R is defined by

Ve, &) = 6(on, ag, a3) + 0(aq, as, ag) + d( g, au, ag) + 0(as, ag, o)
3

MO+ AE—T)+ D A =€) (5.2)

j=1

with

1 — 1 — 1 — 1
Sy o) = LA (YT Ly (utEoe Ly feteoy) Ly fedy itz
2 2 2 2 2 2 2 2
The function V' has been studied by Costantino in [10]. In particular, in the proof of [10,
Theorem 3.9], he proved that for each « of the hyperideal type,
1. V(e €) is strictly concave down in &,

2. there exists a unique &() so that

V(. §)

(a,¢(ax)) € By and o€

=0, and
£=¢(c)

3. V(e &) attains its maximum at () with the critical value V' («, £(ax)) given by
V(e {(e)) = Vol(Aja—m),

where Vol(A|,_5) is the volume of the ideal or the truncated hyperideal tetrahedron with

dihedral angles |oy — 7|, ..., |ag — 7.
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As a special case, when a; = - -+ = ag = 7, by direct computation we have

E(my...,m) = —. (5.3)

82V 82V 82V 82V
Ba? ' By S RT: ant e

From this, we have the following lemma, which will be used later to prove the convexity result

in Proposition 5.8.

Lemma 5.2. The Hessian matrix of V (e, ) is negative definite at (m, ..., m,F).

We also need to following estimation of V' from [5].

Lemma 5.3. For each (o, ..., a4,&) € By, we have V(ay, . .., ap, &) < vs, where vg is the vol-
ume of the regular ideal octahedron. Moreover, the equality holds if and only if (o, ..., a6,&) =
(my... m, ),

Proof. This result is proved in [5, Lemma 3.5]. To be precise, the authors of [5] studied the
maximum of V' on boundary points of By, the non-smooth points and the critical points of the
interior smooth points. From this, they proved that 1 attains its maximum at the unique maximum

point (v, ..., a4,&) = (7?, T, %r) with value vg. See [5] for more details. O

For (x1,...,2,), (Y1, ..,yn) € C", let dy be the real maximum norm on C" defined by

doo((@1, - )y (Y1, ¥n)) = max {|Re(w;) — Re(ys)], | Im() — Tm(ys)[}-

,,,,, n}
Lemma 5.4. There exists 6; > 0 such that ifdoo((ozl, ey 06, 8), (T %r)) < 01, then
OlmU
0Im¢ ‘ <27
Proof. The result follows from the facts that Im U is smooth and %—g(ﬂ' T, ) =0 O
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5.1.3 Geometry of 6j-symbol

For a = (ay,...,a5) € C° such that (Re(a),...,Re(ag)) is of the hyperideal type, let
Ua(§) = U, €) and let £(ax) be such that

Wal&)|  _ 0U(e)

=0. 5.4
d§  le=¢(a) 06 le=¢(a) 54)

It is proved in [4] that such £(a) exists. In particular, for a € C° so that (o, £(x)) € By, we
define
W(a) = Ule, §(ar)). (5.5)

Theorem 5.5. ([4, Theorem 3.5]) For a partition (I,J) of {1,...,6} and a deeply truncated
tetrahedron A of type (I, J), we let {l;}icr and {0;}:c; respectively be the lengths of and dihedral
angles at the edges of deep truncation, and let {0;};c; and {l;};c; respectively be the dihedral

angles at and the lengths of the regular edges. Then
W((?T + V _1li)i617 <7T + Qj)jej) = 271'2 + 2\/ —]_COV((li)Z‘e[, <0j)jeJ)
where Cov is the co-volume function defined by

COV((li)ie[, (ej)jej) = VOI(A) + %Z ezlw

el

which for i € I satisfies

dCov %
o, 2
and for j € J satisfies
dCov _lj
20; 2
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5.1.4 Neumann-Zagier potential functions of fundamental shadow link complements

Finally, to understand the geometry of the critical points of the function G¥'(a,, £) defined
in (5.7), we need the following result from [62].

Fors e {1,...,c}, letas = (ag,,. .., as). Consider the following function

n n

L{(acl,aj):—zg( ,— ) +ZUa5,§a5)) (Z%)Wz

i=1 1=1
for all (., , o) such that (o, () € B forall s € {1,...,c}. Then we have

Proposition 5.6. (/62, Proposition 4.1]) For each component T; of the boundary of M.\ L,
choose the basis (u;, v;) of m1(T;) as in (2.6) and (2.7), and let  be the Neumann-Zagier potential

function characterized by

OP(H(uy),...H(un)) __ H(vi)
OH (u;) 2
(5.6)
®(0,...,0) =v—1 (VOI(MC\LFSL) + V—lCS(Mc\LFSL)) mod 727,

where M.\ Ly, is with the complete hyperbolic metric. If H(u;) = £2v/—1(a; ¢, — ) for each
i € I and H(u;) = £2+/—1(a; — ) for each j € J, then

U(a,, ay) = 2er® + (H(uy), . .., H(uy,)).

5.2 Convexity

In this section we study the convexity of the function G¥7. Recall from (5.7) that

GEI - — [_ <&_|_ ; ) . — 2_p(a7CL 7T) + G :|
(ag,€) ; o o (8; — ) "
—ZaLo(aj—ﬂ)Q— E %(&i—W)Q—l—ZU(asl,.. , sgy Es) + (Z%)
jed i=1 s=1 =1
(5.7)
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For § > 0, we denote by D; ¢ the J-neighborhood of (=, ..., %r, ce %’r) in C/I*¢ with respect

to the maximum norm, that is

Dsc = {(aC1>€> e cllre

doo(<%,g), <ﬂw%%)) <5},

where d is the real maximum norm on C" defined by

doo((z1, ), (Y1, ¥n)) = max {|Re(w;) — Re(y)], | Im(w;) — Tm(ys)[}-

.....

We will also consider the region

Let

n C n

Let 6; > 0 be the constant in Lemma 5.4.

Proposition 5.7. There exists a 6 € (0,01) such that if all {c;}jes are in (1 — 6o, ™ + &), then
Im U(a,, &) is strictly concave down in {Re(a ) Yier and {Re(£,)Ye_, and is strictly concave

up in {Im(e; ¢,) }ier and {Im(&) }$_y on Dy, c.

Proof. Note that when all {«; ¢, }ier and {£;}$_, are real, by (5.1) we have

ImU(a,, & ZQV Qgps oo oy Qg Es).

Therefore, when «; ¢, = wforall 7 € [ and &, = %’T fors =1,...,c, by Lemma 5.2, the Hessian
matrix of Tm U (e, , €) is negative definite in {Re(a ) }icr and {Re(&,) ;.

By continuity, we can find a sufficiently small §y € (0, ;) such that for all {a;};es in (7 —
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S0, + &) and (e, €) € Ds,c, the Hessian matrix of Im U(a,, €) is negative definite in
{Re(ig,) bier and {Re(&,)Ye_,. Asaresult, Im U(a,, €) is strictly concave down in {Re(cvi ;) bier
and {Re(&,)}¢_,. Finally, by the holomorphicity of the function U (cx,, €), Im U (ax, , €) is strictly

concave up in {Im(a; ,) }ier and {Im(&;) }5_;. O
Proposition 5.8 and 5.9 are analogue of Proposition 5.3 and 5.4 in [62].

Proposition 5.8. Forany E; € {1, —1}1|, Im GF1 (a,, €) is strictly concave down in {Re(a; ;) }ier

and {Re(&;) }e_, and is strictly concave up in {Im(c; ¢,) }ier and {Im(&;)}_; on Dy, c.

Proof. Note that

GEI(aCﬂg)
_ p; ‘_Wz_Pi(Oéi,ci—W) +2Ei(Bi —m) (@i =) | | 5o

In particular, the Tm (G (a,, €)—U(ay,, €)) is a linear function in {Re(av ¢,) Yies and {Im(ay ¢, ) }ier.
Since the convexity of a function does not change under addition of linear functions, the result fol-

lows from Proposition 5.7. [

Proposition 5.9. If all {«;};c; are in (m — &y, 7 + o), then the Hessian matrix Hess(G®") with

respect to {; ¢, Yier and {&;}$_, is non singular on Ds, .

Proof. From Proposition 5.8, we see that the real part of Hess(G®7) is negative definite. By [[31],

Lemma], the matrix Hess(G®) is non-singular. O

Remark 5.10. The constant 6, > 0 in Proposition 5.8 and 5.9 depends only on the fundamental

shadow link but not on (p;, ¢;), E; and ;.
5.3 Critical Points and critical values

In Proposition 5.11 we will prove that certain critical value of the function G¥I (e, , £) gives

the hyperbolic volume and the Chern-Simons invariant of the cone manifold M.
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Fori € I,letd; = 2|5; — m| and let u; = 1if B; — 7 > 0, u; = —1if 5; — 7w < 0. By definition,

we have 0; = 2;(5; — 7). Consider the (p;, ¢;) Dehn-filling equation with cone angle 6;
piH(u;) + ¢H(v;) = vV —10;, (5.9)

where H(u;) and H(v;) are the logarithmic holonomies of the meridian and the longitude respec-
tively.

Then we have the following analogue of Proposition 5.2 in [62].

Proposition 5.11. For each i € I, let H(u;) be the logarithmic holonomy of w; of the hyperbolic
cone manifold My, and let

af =71+ =X H(u). (5.10)

Forsec {1,2,...,c}, let{ =¢(as,, ..., a},) be as defined in (5.4). Assume that

% = ((af)ier, (&5)s=1) € Dsy c

for 8y defined in Proposition 5.8. Then G (a,, &) has a critical point

A (o )ier, (§3)5=1)

in Ds, c with critical value

2em? + \/—_1(\/01(ML9) + \/ICS(MLe))

*

Proof. For s € {1,...,c}, welet o, = (a,,...,04) and o = (af ...,

). Foreach s €

{1,...,c}, by Equation (5.4),

OGEr _ OU(a, &)
€ | 08 |

=0 (5.11)
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Besides, by the chain rule, for each s € {1,...,c} andi € I,

la€la))| _ oUen&)| | U(anb) Ot(a)| _ V(e &)
aaZ,Cz o* aa’b,cz (a:,ﬁ;) 658 (a:7£:) aala(z s aala(z (a:,ﬁ*)
Hence, by (5.6),
2o OUles Ela))| - OU — B/~ TH(v,). (5.12)
davig, P 090G (e,
As aresult,
0GP _ —2p(0f —m) ~2E(fi—m) | U
aai:(i ZET i aai’Ci (@} )ier
—2pi(af —m) — 2E;(B; —
_ 2o W)q' (Bzm) _ EipiivV/—TH(v;)
Eipin/—1
= —'uq—(sz(Uz) + ¢:H(v;) — vV —16;)
=0, (5.13)

where the last equality comes from the (p;, ¢;) Dehn-filling equation with cone angle 6;. Thus,
from Equations (5.11) and (5.13), we see that z®’ is a critical point of G,

To compute the critical value, by Proposition 5.6, we have

Ua,, ay) = 2er® + (H(uy), . .., H(uy,)). (5.14)

Foreach i € I, letv; = (—qju; + piv;) + a;o(piw; + g;v;) so that it is the curve on the boundary
of a tubular neighborhood of L; that is isotopic to L; given by the framing a; of L; and with the
orientation so that (p;u; + ¢;v;).7; = 1. By definition, we have 6; = 2u,;(5; — 7) and H(u;) =

—2v/—1FE;u;(af — 7). Besides, by the (p;, ¢;) Dehn-filling equation p;H(u;) + ¢;H(v;) = v/ —16;,
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we have

H(v;) — Vv—16; ;sz(uz) _ 2/%;/—_1[(& )+ (el — ). 5.15)

As aresult,

_H(uz)H(Uz) _ _Ei(af —7)(B — ) _ pila) — 7")2. (5.16)
4 qi qi

Besides, by (2.34), we have

H(v;) = —q;H(u;) + piH(v;) + a;,00;v/ —1
= - (q§ + %) H(u;) + (pl +a,0> ;v —1

(2 K3

H
_ _Hlw) + (pZ + ai,()) 0iv/—1. (5.17)
q; qi
This implies that
/—16. : E(a* — _ /
16£H(%) _ Z(az Z)(ﬁz 7T> . (& +ai,0) (5Z _ 71_)2‘ (5.18)

By Equations (5.16) and (5.18), we have

v—16;H(v:)
o Z Z 4 :
el ze[
:—Z2E O./ —7'(' sz Oé —7'('2 Z(pz"i_azO) (ﬁ 71_)2‘ (519)
icl 1 L icl ¢

For each j € J, lety; = a;ou;+v; so that the curve on the boundary of a tubular neighborhood
of L; that is isotopic to L; given by the framing a;, of L; and with the orientation such that
Uj.7Y; = 1.

Then we have §; = 2|a; — 7| = 2p;(a; — ) for some pi; € {—1,1}, H(u;) = 2v/—1]o; — 7| and
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H(v;) = a;oH(u;) + H(v;). As a consequence, we have

160,;H(~y; H(u;)H(v; H(u;)(a;oH(u;) + H(v;
_Z Z\/_ (’V):_Z()()+Z()( (uy) + H(v;))

4 ‘ 4 : 4
jed jeJ jeJ jeJ
== ao(a; —7)*. (5.20)
jeJ

From (5.14), (5.19), (5.20) and (2.5), we have

ma = [ (24 ) =yt AL 2B ) )

icT qi
_ZGJO +U(QCI,OLJ)
= 2cr® + O(H(uy), ... JH(uy,)) — i w + - \/__MZ;H(%)

—_

=1 1=

= 2071'2 + \/—_1(V01(ML9) + \/__1CS(ML9))

5.4 Asymptotics of the leading Fourier coefficients

Proposition 5.12. Let E; € {1, —1}'1 | and let 2" be the critical point described in Proposition

5.11. Assume that
1. zFr ¢ Ds, c and

2. Vol(Mp,) > max )e DDy 10 Ulay,, &), where U(a,, €) is defined in (5.8) and Dy~ Ds,

a€17£

is the closure of Dy~ Dj,.

Then the asymptotics of the integral on the right hand side of Proposition 4.3

- E
/ QST (SEI, 12767 s) emGrl(a& 7C)daC1d€
Dy

[I|+e

2\" (2m mre  (=1)7TCP(EP) v )y TTOs(ML) 1
= = — 4/ —1) 2 ein \VOlMLg L(14+0(-)),
(7"> < r ) (4 ) \/— det Hess(GEr) (zFr) ( <r>>
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where each C®1(z®1) depends continuously on {3;}icr and {c;}jc; and is given by

CEr (ZEI )

/ ) E;(a¥+8;,—-2 L L
V-1 < 2ier (%Wﬁﬂﬂ%@?*ﬂ”%) T2 ier @i0Bitier (%) aitjes (%AOJF%J) %‘) +r(z7T)
=€ s

(5.21)
where k is defined in Lemma 4.5.
Proof. Let §y > 0 be as in Proposition 5.8. We write
” E
/ (br (SEI7 o, E) emGrl(agl,C)dacIdf
Dy
T E r E
_ / b (s, g, €) emv 19 O ga de + / b (s, gy, €) e 19 e Qg de.
D DH\D50

)

Step 1: Estimation of the integral over Dy~ Ds,.

From (5.7), on Dy~ D;, we have
Im GP (e, &) = ImU(ay,, €),
where U (o, &) is defined in (5.8). By assumption (2), we can find € > 0 such that

E
r

/ br (8%, gy, €) e 1O Oy dg| = O (e VolMig)~c)
D]-[\l)(g0

Step 2: Deforming the integral over D, .

. E E
Consider the surface S® = S,;7 U S,of

defined by

Sed = (aCng) € D50,(C ‘ Im<aC17€) = Im(ZEI)}

top
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and

Sde = {(ag,, &) +tv/~11Im(z™) | (a,, &) € ODs, t € [0, 1])}.

By the definition of the bump function v, on Ds, we have

” E
/ gb?‘ (SEI7 278 E) eva- I(QSI’C)dadeg
D

%0
/ ) E;(a; ¢.+B;—2m) ) L
. / 6V*l <Zie[ <%(Bi*7")+%(ai,@7”)+%)+Zielai,061+2iel (%)ai,ciJFZjeJ (aj,0+7]>aj>
D

50

r Ep
% er\/ﬁGT (O‘ff’odagdﬁ

/. . Bi(aj ¢ +B;—2m) Py s
_/ €V_1<Ziel <%(5i—ﬁ)+%(ai,g—”)+<27i>+Zie1ai,oﬁi+zie1 (é)ai,gi+zjez (aj,O“l‘?J)aj)
SEI

, E
x e 10T @S oy, de, (5.22)

where the last equality follows from the analyticity of the integrand and 9Dj;, = 0S®r.

By Lemma 4.5, we have

/ , Ej(a ¢, +B;—2m) y L
/ e\/_l(Zie[ (%(/3i_7r)+%(ai,ci_7r)+cq7i)+Z¢el a’i,OBi"‘ZieI (7)0¢i,c7¢+2j61 (QJ,O""?])O‘J)
SEI

x iAo @O e, g

; ; BEi(oy ¢ +B;—2m) y e
<7">c/ V—1<Zz‘ef (%(5i—ﬂ)+%(%cf”)+’€27i)+Zief ai,0Bi+ e (é)ai,cﬁzja (a.j,0+%>aj>
== e
2 SEI

vr (e ,€)
5 H(aC17£)+ 47\.\7/‘_71 <GEI (O‘&]vC)JF Tgl
e

>da§1d§. (5.23)

Step 3: Verification of the conditions in Proposition 5.1.

Now, we apply Proposition 5.1 to the integral in (5.23). We check the conditions (1)-(6) below:

1. By the definition of SS; and Proposition 5.11, we have z®7 € S;E;.

2. On Sgt, by Proposition 5.8, since Im G®1 (e, , £) is strictly concave down in {Re(«i,) }ies
and {Re(&,)}6 1, Im G®1 (o, €) attains its unique maximum at z®7.
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On SEr

ke by Proposition 5.8, since Im G®' is strictly concave up in {Im(a;,)}ics and

{Im(&;)}_,, for each (a,, &) € 0Ds, and t € [0, 1] we have

Im G®r (g, €)+tvV/—11m(z")) < max{Im G® (o, €),Im GEr (g, £)+v/—1Im(z"7))}.

For (a,, &) € 0Ds,, by assumption (2) we have
Im G® (e, €) < Im G®1(z"7).

For (e, &) + v—11Im(z"") € Sgé , since on Sgé the function Im G®! attains its maximum

at z®7, we have
Im G ((a,, €) + V—1Im(z")) < Im G (z"1).

Altogether, on S®7, Im G®’ has a unique maximum at z¥.

. For any k € N and any k-tuple of complex number (21, ..., z;,) € CF, we let
Re(z1,...,2:) = (Rez,...,Rez,) € R¥,

where Re z; is the real part of z; fori = 1,..., k. For any (ay,,§) € Dj,, we consider the

set

~ g Re<dfl7€> - Re(a§[7€)7
Plag, &) = 4 (. &) € Ds, ¢ i
Im G® (&, €) < Tm G®1(2"1)

Note that for (a,,&) = z"!, since it is a critical point of G®I(ay,, &), by the Cauchy-

Riemann equation we know that

Im G* (a,, &) = Im G* (g, €) = 0

0 0
Olmay ¢ 0Imé¢,
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fori € Iand k = 1,...,c. By Proposition 5.8, since Im G®’(«,, £) is strictly concave up

in {Im(a;¢,) }ier and {Im(&;) }S_; on Dy, ¢, we know that e, is an empty set.

Next, for any (o, &) € Sf;, by Proposition 5.8, we know that (a,, &) € Ha,, ¢)- More-
over, by Proposition 5.8, since Im G®'(ax,, &) is strictly concave up in {Im(c; ;) }ier and
{Im(&s) Ys—1 on Dy, ¢, Pla, ) is a convex set. This implies that each Pa, ¢) With (e, §) €
Sgé is a topological (|/|+c)-dimensional disk which admits a deformation retract to the point

(o, , €). This verifies condition (3).

. By continuity and compactness of S¥7,

Ly Ls ! Ei(oy ¢.+B;—2m)
e\/ -1 (ZieI ‘li»Oﬁi""ZieI(aiﬁéi""?z)ai,Ci"'ZjeJ(aj,O""EJ)aj Dier ((%) (5i_”)+<27i)>+“(a<1’£)

is non-zero and bounded below by a positive constant independent of 7.

. By Lemma 4.5, |v,.(c,, §)| is bounded from above by a constant independent of 7 on any

compact subset of Dy c.

. Note that

lim Hess G¥'(z®") = Hess G*'(z"1).

7—00

By Proposition 5.9, the Hessian matrix Hess G®7(z®7) is non-singular. By continuity, the

Hessian matrix Hess G®7(zP7) is non-singular

The result then follows from Proposition 5.1. [

5.5 Reidemeister torsion

The goal of this section is to prove Proposition 5.13 and 5.18, which relates the asymptotics of

the leading Fourier coefficients obtained in Proposition 5.12 with the adjoint twisted Reideimester

torsion of the cone manifold M~ L.

Proposition 5.13. Consider the system of meridians ¥ = (Y1,...,Y,,) with T; = p;u; + q;v; and

T; = uj. Let Ty ) ([,OMLB]) be the Reideimester torsion of M~ L twisted by the adjoint action
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of pyr with respect to the system of meridians Y. Then we have

<Ziel <“¢,0+%> +2 e <aj,0+%j> ) V=Ir+3 30 meH(w)
e

CEi1(zFr)
\/— (ITic; ¢:) det Hess(G®r)(zFr) g liLte \/iT(M\L,T)([PMLQD

Foreach s € {1,...,¢c}, welet Iy = {s1,...,8¢} NI and J; = {s1,...,86} N J. We also let

O‘Z = (a:i)SiEISa aj, = (asj‘)jeJ’ f: = éu(azv aJs) and Z;k = (O‘Z’ 0%»@)-

To prove Proposition 5.13, we need Lemmas 5.14, 5.15, 5.16 and 5.17.

Lemma 5.14. For each i € I, consider the system of meridian Y; = p;u; + q;v;. Then

_ (H qi> det Hess G/ (2"/) = —(—2)"! det (%) i a_g

e i1,io€l g1 YSs

*
Zs

Proof. The proof is similar to the proof of Lemma 3.3 in [65]. For s € {1,...,c} andi € I, we
denote by s ~ i if the tetrahedron A, intersects the component Lggy ; of Lgsy,, and for {iy, i} C [
we denote by s ~ iy,iy if Ay intersects both Lgsy;, and Ly ;,. For s € {1,...,¢c}, let a5 =
(s, .., ) and let of = (aj_, az,). The following claims (1)-(3) are from [65, Lemma 3.3] and
we include the proof below for reader’s convenience. Claims (4)-(5) can be proved by suitably

modifying the proof of (4)-(5) in [65, Lemma 3.3].

(1) Fors € {1,...,c},

pem| o
853 zEI B ag? z;‘
(2) For {s1,s2} C {1,...,c},
62GE1
66818582 zET1 h 0
(3) Fori € Tand s € {1,...,c},
0?GEr _ _(92_U &)
00@055 ZET N @Sg 2 8(1/2' o
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(4) Fori € I,

PCE| 20U O] (G(a))
804? ZET B q; 8H(u2) ot 853 2 8041' ar .
(5) For {il, 7/2} C [,
0*GEr B _iEhlﬁm OH(Y;,) i Z 9°U Esag) | Eolaw)
aailaai2 zEI Giy Eizﬂiz aH(um) s~viy, i 3 2 aah at aaiz ar
Assuming these claims, then
HessG®/(z%1) = A- D - AT, (5.24)

with D and A defined as follows. The matrix D is a block matrix with the left-top block the |7|x ||

matrix

qil E’iQ/“LiQ 8H<u22) il,iQGI’

the right-top and the left-bottom blocks consisting of 0’s, and the right-bottom block the ¢ x ¢

89U
T 082

%1

diagonal matrix with the diagonal entries %QT({ . Then
1

*
Zc

_ (_2>|I‘ Eil:uil aH(TH) . ’U
det D = HZ,GI m det EiQ,uiz aH(uZQ) i1,d0€] SHI 52
(=) OH(Y,,) G O
ML a det OH (us, ) [l 5

11,0261 g—1 s

*
Zs

(5.25)

*
Zs

The matrix A is a block matrix with the left-top and the right-bottom blocks respectively the |I]x |/

and ¢ X ¢ identity matrices, the left-bottom block consisting of 0’s and the right-top block the || x ¢

matrix with entries a;5, 7 € I and s € {1,...,c}, given by
£s(as)
Qis = —
8041- o

if s ~ i and a;5 = 0 if otherwise. Since A is upper triangular with all diagonal entries equal to 1,

det A =1. (5.26)
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The result then follows from (5.24), (5.25) and (5.26), and we are left to prove the claims (1) — (5).

Claims (1) and (2) are straightforward from the definition of G¥7. For (3), we have

OGE! _ou
O |((@yereie)  %sliae
Let
. oU
f(as7 68) = aé-
S (a57€s)
and
Q(QS) = f(asvSS(CVS))'
Then
oU dU,,
g(ag) = = 2 =0,
O |(@p sty B lesan)
and hence
dg
=0.
das, | .
On the other hand, we have
o9 | _of Lot 96.(a)
00sfa, 0%l e0)  Pslntao) 9 la,
_oU U 0%, (o)
005,06 (0, e, 000) O l(antatae) DUsi a,
Putting (5.28) and (5.29) together, we have
0*U o _a2U ags(QS)
005,085 | (0, 0000 O3 l(aataton)) O%si a,

and (3) follows from (5.27) and (5.30).
For (4) and (5), we have

82 GE[
da?

(2

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)



and

aQGE]
il 5.32
8ai13ai2 ZET SNZ“:Q (9042180412 2 ( )
Let W be the function defined in (5.5). By the Chain Rule and (5.4), we have
oU _dU,, _0
Oslaneuta) B lean
and hence for j € {1,...,6},
ow |  oU N oU (o) OU
dag, |, Oag, |, 0& (0o s (00)) dag, |, Oag |,
Then using the Chain Rule again, for j, k € {1,...,6} we have
oPW U 0*U 0&s(as)
da; Oas, o N da,; 0as, (ove s 8ask8§s (cvos60 () da, o
Together with (5.30), for j,k € {1,...,6} we have
02U W B 0*U 0&s(as)
004,000, |0, 00 00,0000, 008,08 |0 00) 99 o, (5.33)
W *U 08(0s) | 0s(0) '
_(%vsjﬁask o0& (a6 (06)) Oas; |,. Oas, |,
By (5.31), (5.32) and (5.33) and we have
PG 2p; PU| [Elas)] \°
oa? | e w — U +;§ a?, o ; g2 Z( Do a*) ; (5.34)

where the second sum in the third term of the right hand side is over s, such that the edge e;, in

A, intersects the component Ly ;; and

D?GE1
804“ Oay, | &

()
ooy,

€s(as)

8041-2

0*U
* 2 e

s

Z Z 8048 (90sz

zF 5~vi1,12 85,5k ag §~i1,12

) (5.35)

* *
zk o ok
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where the second sum in the first term of the right hand side is over s;, s;, such that the edge ¢, in
A, intersects the component Lgg; ;, and the edge e, in A, intersects the component Lgg; ;, .
At a hyperbolic cone metric on M, with singular locus Lgg, by Theorem 5.5, for 7,7 €
{1,...,6} we have
oPW
da, Oa,

Es',us als
=—V-1l—""— 5.36
ES].'LLS]. aesj7 ( )

where [, is the length of e;, of A, and if e, intersects Lgsy; then E,, = E;, ps,, = 1 and
0, = % is the half of the cone angle at Lgg;, ;. We also observe that that

Sk 2

L= >l (5.37)

S~ Sk

where the second sum is over s, such that the edge e;, in A, intersects the component Lgsg;_ ;.

Then by (5.36), (5.37) (2.6) and (2.7) we have

2p; O*W
— _Li+223(x2

:_Q_E_Li—mzzgéﬁ

@ s~ Sk Sk lag £ s~i Sk Sk
S R
qi d0;

v (5.38)
2 0(piv/—160; — qili + %52 /—16;)

4 O(v/=16;)
_ za(sz(Uz) + ¢:H(v;)) _ 2 OH(T;)
4 O(v/—16;) i OH(u;)

From (5.34) and (5.38), (4) holds at hyperbolic cone metrics on M, with singular locus Lgg. By
the analyticity of the involved functions (see for e.g. [63, Lemma 4.2]), (5.38) still holds in a

neighborhood of the complete hyperbolic structure on M.\ Lgsy., from which (4) follows.
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By (5.36), (5.37), (2.6) and (2.7) we have

ES] 'uSJ als]

o T 2\/_2 Z Ei, pi, 005,

s~i1  Sj

Z Z 0043 8048

5~vi1,12 85,5k

n:un alu
= —2\V/—
Ei, i, 6012

NaNG O(GrV=10; — by + 3v=10s,)

iy
Ei, pui (\/—_91'2)
2 By O(pi H(ui,) + gi, H(viy))
Qiy Eiy i, o(v/—10y,)
2 By, OH(Y;,)

%1 Eiy s, aH(um)

(5.39)

where the second sum on the left hand side is over s;, s; such that the edge e, in A, intersects the
component L;, and the edge e, in A, intersects the component L;,, the second sum on the right
hand side of the first equation is over s; such that the edge e;, in A, intersects the component L;,,

and the third equality comes from the fact that

O(v—16;)  OH(u;,)

a(v/—10;,) OH(uy) 0

From (5.35) and (5.39), (5) holds at hyperbolic cone metrics on M.\ Lgs; . By the analyticity of
the involved functions, (5.39) still holds in a neighborhood of the complete hyperbolic structure on

M.~ Lgsy, from which (5) follows. ]
The following lemma is from [65].

Lemma 5.15. ([65, Lemma 3.4])




x _ O5to5 g « _ Osgtos, g
Te = 5 and 7, = 5 .

The following lemma is an analogue of Lemma 3.5 in [65].

Lemma 5.16. For i € I recall that v; = (—qiu; + pivi) + a;o(piwi + qiv;) is the parallel of copy
of L; given by the framing a; o, and for each j € J recall that y; = a;ou; + v; is the parallel copy

of L; given by the framing a;. Then

V=1 [Z 0B+ (%) o+ (aj,o + %) a

el el j€J

+3 ((3) (81— m) + %(a: — ) LA 27”)]

:(; <QZO+ >+Z<GJ0+ ))\/_1W+%iﬂkH(%)-

Proof. We first prove the result for the case that M. is with a hyperbolic cone metric with singular

locus Lgg,

z (z —

DR > GRS IC0 B WA

iel jeJ

In this case, the hyperbolic cone manifold M.\ Lgg is obtained by gluing hyperideal tetrahedra
Ay, ..., A, together along the hexagonal faces then taking the orientable double. For each s €
{1,...,c}letes,, ..., e, betheedges of Ayand foreach k € {1,...,6}letl; and 0, respectively
be the length of and the dihedral angle at e, . If e;, intersects the component Ly ; of Ly, for some
i € I, then H(u;) = /—16; = 2y/—16,, and let vy, = o} = m + 2o w) — o gy g
where F,, = E; and p,, = p;; and if e, intersects the component Lgsy. j of Lgsy. for some j € J,
then 0; = 20,, and let o, = o = 7 + %ej = T + 15,05, where p;, = ;. We claim that for

s, € I

=V _1E8k:usklsk>

aask 2%
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and for s, € J,.
oUu

OJas,

= —V—=1psls, .

*
Zs

Indeed, let W again be the function defined in (5.5). Then by Theorem 5.5, we have for s, € I,

ow
5 =V —1FE;, s, s, (5.41)
ask (a?s,ajs)
and for s, € J,
ow
5 = —V—1pgls, . (5.42)
ask (a;s ,OCJS)

On the other hand, by the Chain Rule and (5.4), we have for k € {1,...,6},

ow _ oU U | 0&(a) _ ou s 13
Do, (“75 ’QJS) Do, o &, 2 O, (ajs,ous) Oa, " (5.43)
Putting (5.41), (5.42) and (5.43) together, we have
c 6 8U
N PIFCINEED 3 SLENIES 3) SN
s=1 Nk=1  Sklz i€l sp~i JeJ sp~j
VY B 1) VI m ()
iel Sprvi jedJ sk~ (5.44)
:\/__12 Eipili — \/—_12 145l
iel jeJ
== V=TY By (Hw) = SHw) ) = V=1 il
el JjeJ

where s;, ~ 1 if e, intersects Lgsy; for ¢ € I and s, ~ j if e,, intersects Lggy ; for j € J, and the
last equality come from that H(w;) = /—16; and H(v;) = —1; + 5/ —16;.

Next, recall that foreach ¢ € I, of =7+ w and 5; = 7 + “iTei, and for each j € J,
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0, .
o; =7+ 2. Fori € I, we have

ﬁ((%)a + %(6 —m)+ %(a? - )) - EQM COREE)
() (o PR R o (BT )

_ E2“ (H(w) - §H(w)) 64
(3] s 5= e + 258 = Bt )+ i)
~(3) v

where the last equality comes from p;H(u;) + ¢;H(v;) = v/—16;. For i € I, we also have

Vo (az o+ 2oy — )+ B - 7T>>

q; q;

i0; E; ( Eijpiv/—1H(u; ; i0;
) P ()
i @i (5.46)
o VD Hi Y (ul) pt’ Iy
—aw —]_7T+ B zO 0 — P + 0
—a;0V/—1r + %H(%—),
where the last equality comes from Equation (5.17).
For each j € J, we have
: , . 0. :
<CLJ(]+ >\/ 7r+'uj<ajm/ 6’+LJ\/ 10; —l>
(5.47)

<@Jo+ >\/_ + = <aj,0H(uj)+H(Uj))
(ajo+ >\/_ +“JH( i)

Then the result follows from (5.45), (5.46), (5.47) and Lemma 5.40. For the general case, the result

follows the analyticity of the involved functions. 0

Finally, we need the following lemma from [65].
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Lemma 5.17. ([65, Lemma 3.6]) For s € {1,...,c}, let ug,, ..., us, be the meridians of a tubular

neighborhood of the components of Lrs; intersecting the six edges of A,. Then

2v/=I(g5—72
eV -1 Zsiels ag,—v-1 ZSjeJS as;+4v _15;(_2;‘1:1 log (1_e (& 7—Sl))

92U

963 |
’ 1 (5.48)
16\/th oty 1)
Proof of Proposition 5.13. From (5.21), Lemmas 5.14, 5.15, 5.40, 5.16 and 5.17, we have
CEi1(zFr)
\/— det Hess(GEr)(zFr)
(Zie] (ai,0+%) +Zj€] (%’,O‘i‘%) ) \/jlﬂ""% 22:1 #kH(’Yk)
€
—(=16)e(—2)l et (glggg) T15_, (/det G(H(ZSI), . H“;e)>
27/ iyisel
(Zie[ (%04—%) + e (aj,o+%> ) V=I5 30y e H ()
(&
- Ilte ;
27 /£ o) (oo, )
where the last equality follows from Theorem 2.11 (2). [

Proposition 5.18. Under the assumptions in Proposition 5.12, we have

o5 L1 1k HT (3)

VET ez ([P ])

S R(sP1 - 2m®r0) = €y i (VIO TS0 (1 " 0(1)> ,
E;

r

— S+ er <ai,0+%) +> e (aj,o+7j>

where Cy = Y 2°r2ic1 %—%(—1) and Y is defined in (4.5).
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Proof. By Proposition 4.3, Lemma 4.4, Proposition 5.12 and 5.13,

frE’ (SEI, 1 —2m®, 0)

I]+e

Yrllte  72N¢ /27 2 /7 e
—rc ~E E
(—1)"2 CEi(zFr) eﬁ(VOI(MLe)Jr\/leS(MLe))(l +O(1>>
r

\/_ (Hie[ qi) det Hess(GF®r)(zFr)

1y ™
oy (v ev=Tesu) (1+O(1)>
VET o) ([pare]) )

—teplilte s ) <ai,0+%) +X5e (aj,o+%>

]—c

(1)

where Cy = Y2 1l+ep . Thus, we have

Z ﬁ(SE17 1- 2mEI7 0)
E;

6% STy e H ()

:Cl
\/iT(M\L,T)([PMm])

eﬁ(Vol(M(’“))Jr\/leS(M(”)) (1 n O(l))
T )

. L
e —reqlllbe s (ai,0+%) + s (aj,0+‘77>

7 (1)

where O = Y2¢rXier

5.6 Estimate of other Fourier coefficients

Proposition 5.19. Assume that

Vol(Mp,) > max { max Im U(a,, &), 2cvs — 47750},

(oee;£)€DH D,

where U(acl, €) is defined in (5.8) and Dy~ Dy, is the closure of Dy~ Ds,. Then for any E! and

sy, there exists € > 0 such that if By, # 0 for some ky € {1,2,...,c}, then

‘EE(SI’ ACI? B)’ <0 (eﬁ(VOI(MLg)—e’)> '
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Proof. Let

C

(1,0, 8) = WPl (sr, e, €) = 2m Y Aiaig, —4m ) Bk,

el s=1

E;A¢, B
T

G

Recall from Proposition 4.1 that

— [1|+c ,
E _r ( [Lics EZ)
[ (s1, Ay, B) = o[ +eqlIl+e

E[,A;. ,B

r ¢
/ (—1)Zier b, (spaq,, &) eV oS day de.
Dy

When «; ;, € Rforalli € I, by Lemma 4.10, on any compact subset of Dy ¢, Im Gy (s1,0¢,,€)
converges uniformly to
Im GErAcB(s; ap,, &) = ImU(ay,, £).
We first estimate the integral on Dy~ D;,. By assumption, we have
Vol(Mz,) > max Im (GEvach(s[, e, s)> vy (5.49)

Dp~Ds,

for some ¢’ > (. Thus, we have

A G &)

. : —F—Gy Sr,Q¢¢,,

/ (1)t Aicig, (sg, o, €) eV T Pt do, dg
DH\D50

— (ﬁ(Vol(MLe)—e')) . (5.50)

Next, we estimate the integral on Ds,. For simplicity, we assume that B. # 0. The following
arguments also work for other possibilities.

First, we consider the case where B,. > 0. Consider the surface ST = S:= U ST, _in the closure

top sides
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of Ds, c, where

St—gp = {(aCI’ E) + (O’ s 0, \/__160) | (QCI’ 5) € D50,C}

and
SsJirdes = {(aCné) + (07 oo 0,y _]-60> ’ (Oég,,ﬁ) S 8D50,t S [0, 1]}
On Sﬁgw by the Mean Value Theorem,

Im G* ((ae;, &) + (0,...,0,v/=18)) — ImG*"(a,, €)

O TIm G®r ,
:W<(agl, S) + (O, . ,0, V —150)) : (So (551)
for some ¢, € (0,dy). Note that

0Im G®r
J0lm¢,

(e, &) +(0,...,0,V/=18p)) = olmU —47B, < 21 — 47 = =2,

Olm¢
(es,Es+V—18))

where the last inequality follows from Lemma 5.4 and B, > 1. This implies that

Im G® (e, &) + (0, ..., 0,vV/=15)))

<Im GEI(aQ, &) — 2wy < 2cvg — 2wy < Vol(My,),

where the second last inequality follows from Lemma 5.3 and the last inequality follows from the

assumption (1). By making ¢ > 0 smaller if necessary, we have

Im G* ((ac,, €) + (0,...,0,v/=18)) < Vol(M,) — €. (5.52)
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Next, on S

sides®

by Proposition 5.8, for ¢ € [0, 1] we have

Im G® (g, €) + (0, ...,0,v/=18))

<max{Im G™ (a,, €),Im G*" (e, €) + (0,...,0,v/—18))} < Vol(My,) — €,  (5.53)
where the last inequality follows from (5.52) and the assumption. From (5.52) and (5.53), we have

E;,Ac, B
/ (_1)Zi€1 Aits ¢r (S], Qo €) €4W\/TG : (sr.exey ’E)daCldE
D

)

/+<_1)Ziel Aig, ¢r (Sfa o, £) e4ﬂﬁ
S

EIA B

(sr.0¢y ’g)dag dﬁ‘

— <€ﬁ(Vol(MLe)—e')> ‘

If B. < 0, then we consider the surface S™ = S U S

wop U Sgides 1 the closure of Ds, ¢, where

St;p = {(a§17€) ( 0, \/_50) | (aClv ) S D507C}

and

Ss?des = {<aC17€> ( ;0 t\/_50) | (aCU ) S aDz?mt S [07 1]}

Using the same arguments as in the previous case, on S~ we have

Im G Aor A B0 (o €) < Vol(M,) — ¢ (5.54)
This completes the proof. [
From Proposition 5.19, it remains to consider the Fourier coefficients with B = 0 = (0,...,0).

To do this, for i € I, consider the functions &7 : {0, 1,...,|¢| — 1} x Z — R defined by

Ii(s;) F1

]C:t SZ',AZ. =
i (si, Ag,) "

+ A
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Lemma 5.20. When |¢;| is odd,
o kit (si, A¢)) = 0ifand only if (s;, Ae,) = (si7,1 —2m]);

* k; (si, A¢,) = 0 ifand only if (s;, A¢,) = (s;

) 7

1—2m;).

Moreover,

> 1 .
= lail’

* l'f(S@',Agi) # (Sjv 1 - Qm;r)’ then |k+(3i7‘4<¢)

> 1
= lail”

* if(‘givACi) # (5;7 1 - 2m;>’ then |k_(5i7‘4€¢)

Proof. Suppose k;=(s;, A¢,) = 0 for some (s;, Ag,) € {0,1,...,|q| — 1} x Z. Then we have

[i(siaA(ji) =41 - inCi ==+1- q; — qi(ACi — 1)

Suppose A, is even. Then I;(s;, A¢,) = £1 (mod 2|g;|) is an odd number. However, by Lemma
2.18, the image of I;" has the same parity of 1 — ¢;, which is even when |g;| is odd. This leads to

a contradiction. Thus, A, is odd. Then we have [;(s;, A¢,) = £1 —¢; — ¢i(A¢, — 1) = £1 — ¢,

(mod 2|g;]). Since I; : {0,1,...,|g;| — 1} = {0,1,...,2|g;| — 1} is injective, we have s; = s7.
This proves the first claim.

For the second claim, if (s;, A¢,) # (s;7,1 — 2m;"), then

@ik (si, Ac,)| = [Li(si) — 1 — qAc|

is a non-zero integer. The other part can be proved similarly. 0
Lemma 5.21. When |q;| is even, there exist 5,3, € {0,1,...,|q;| — 1} and m; ,m; € Z such
that

o k(s A¢) = 0ifand only if (s;, A¢,) = (sf,1—2m}) or (57, —2m]); and

7

* k; (si, A¢;) = 0ifand only if (s;, A¢,) = (s; .1 —2m; ) or (5,7, —2m,; ).

(2
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Furthermore, 5 = s + £ (mod |g;|). Moreover,

o if (si, Ae) € {(sf.1=2m]), (5], —2m])}, then |k™(s;, Ac)| = s

4 g

 if (s, Aq) & {(si,1—2m7), (57, —2m;) }, then |k~ (55, Ag)| >

lgil*

Proof. Note that when k*(s;, A¢,) = 0, we have % € Z. By Lemma 2.18, we have I(s;) =

+1 or +1+4|¢;|. Recall that I;(sF) = 1 —¢;+2m: ¢;. In particular, we have k* (s, 1 —2mi) = 0.

Besides, let 5 € {0,1,..., |g| — 1} such that

gi: i+’q_z|

i Si 5 (mod |gi]).

By the definition of /;, we have
L(57) = I(sf) — Cralail  (mod 2|g]).

Since ¢; = A; 1 is even and (Ai,cz-—la Ci¢,—1) is a pair of coprime integers, C; ¢,_; must be odd.
Thus,

I(57) = I(sf) + ¢ (mod 2g;[) =+1 (mod 2gi).

Define /" € 7Z such that
I(3F) = £1 + 2miq;. (5.55)

Then k(57, —2m;) = 2mf — 2m; = 0. Since I is injective, si° is the unique integer in
{0,...,]q;| — 1} such that I(5%) = 1 (mod 2|q,).
Finally’ if (Si7 ACz) € {(Sjv 1— 2mz+)7 (§z+7 _Qmj>}’

‘Qik;r(sia AQ)

= |Li(si) — 1 — qi A,

is a non-zero integer. The other part can be proved similarly. [
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Fori € I, let

{51 =2mf), (s;7,1—2m; )} if |q;| is odd,

S; = (5.56)
{(sf,1=2m]),(s;, 1 —2m;), (57, —2m}), (57, —2m; )} if |g]is even.

Proposition 5.22. Assume that 0; = 2|3; — w| < 7 foralli € I and

Vol(Myp,) > max Im U(a,, €).
(aCI ,€)EDH\D50

Then there exists € > 0 such that if (s, Ac, ) & Si, for some ig € I, then
ﬁE\I(SIaAQ»O)‘ < O(eﬁ(VOI(MLg)—E/)>'

Proof. Recall that

E;Ac,; 0
T

G (51,0, €) = WP (s, &) — 20 Y A,

el

By Proposition 4.1,

— [1]+c ,
E _ r (Hiel EZ)
fr'(s1, Agp, 0) = ol +eqI+c

E;,Aq .0

r S
/ (~1)Zierdicig, (g, 0, €) e Do de.
Dy

Let Iy = {io € I | (iy; A¢,) & Sio }- By a direct computation, we have

E; A, B
T

G (SIa O‘szé) :G?I(QCU E) — 27 Z kfl(slv ACi)(ai7Ci - 7T) + CEI(SI)

el
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where

ki (si Ag) =
k’-_(Si,ACi) lez =1

7

and C®1(s;) is a real numbers independent of ¢, and €. By Lemma 5.20 and 5.21,

E; A, B
T

G (Sla 8748 5) :GFI (aCU E) — 27 Z szl (Si7 ACi)<ai7C¢ - 7T> + CEI (S]).

i€lp
Letig € Iy, E; € {—1,1}/1 and let B}, € {1, 1}/ be obtained by changing E;, in E; into

—L;,. Since

_2Ei0 (O‘io,@'o - 7T) (Bio - 7T> _2(_Ei0>(ai07@0 - 7T) (ﬂio - 7T) _ 4Eio (Oéi07CiO - ﬂ')(ﬁio - 7T>

- )

i Qi Qio

by a direct computation, we have

G

E;,Ac B ’ ,
r T (SI’ 27T E) :GPI (aCn 5) —2m Z kfl(si’ ACi)(ai,Ci - 7T)

1€lo~{io}

: 2B, (Bi, —
— 27 (kzb;o (840 Acio) + %) (ai07<i0 — 1)+ C®i(sy),
10

For all i € I, under the assumption that §; = 2|3; — 7| < 7, we have

1
qi

Tdq;

By Lemma 5.20 and 5.21, since |ki’0 (si; A, )| = = kziio (8i) Ag;,) and k:iio(sio,Agio) +

Qi ’
2E;, (Big—)

- are either both positive or both negative. Besides, by Proposition 5.11, we know that
%0

the o; component of zF’ and that of z®! have opposite sign. Altogether, for each E; € {—1, 1}/,
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by changing some E; in E; into — E; if necessary, we can always find E/ € {—1, 1}/l such that

EI7AC17B E”
T

(s1.a,, &) =G (e, &) —2m > ki(auie, — m) + C™(sy), (5.57)

1€l

G

where k; € R~{0} is some nonzero constant such that the product of k; and the imaginary part of

the o; component of z®7 is less than or equal to 0 for all i € I,.

E;Ac,,B :
By Lemma 4.10, on any compact subset of D¢, Gr' 1" (s, e, , €) converges uniformly to

1

GEI,ACFB (Sla 18768 5) :GEI (O‘CI’ 5) — 27 Z ki(ai7<i - 7T) + CEI (Sl)a

i€lp
where G¥7 (o, , €) is defined in (5.7).
In particular,
I (GErAB (s, ;. €)) = Im (G¥ (0, €) = 27 kil — ). (5.58)
i€lp
on Dy ¢ and
Im (BB (sp, ag,,€)) = Tm O (ag,, €). (5.59)

on Dy.

We first estimate the integral on Dy~ Ds,. By assumption, we can find ¢ > 0 such that

Vol(Mz,) > max Im <GEI’A<I’B(s1,a<,,£)) +é. (5.60)
Dy ~Ds,

Thus, we have

0

r ErAcy
/ <_1)Zi61 A, (br (Sla o, 5) e4m/f1Gr (SI,aclvﬁ)dacldé
Dp~Ds,

=0 <€ﬁ(V01(MLe)_€/)> . (561)
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Next, we estimate the integral on Dj,. Let i € Iy such that (s, A¢, ) & Si,- Consider the

surface ST = Smp US®  defined by

bottom

E//

Sk = {(a,,€) € Dsyc | Im(a,, &) = Im(z™)}

and

EII

Sae = {(a,, &) +tvV—1Im(2") | (g, &) € 9Ds, t € [0,1])}.

On Sgg , in the proof of Proposition 5.12, we showed that Im G®7 (a,, £) attains its unique

maximum at 257 = ((a})ics, (€7)°_,). By (5.58), for (a,, €) € Sht,

m(GELAQ’B(sI,aQ,S)) =1Im (G (o, € QWZk o, — T >

i€lp

=ImG™ (ag,, &) — 27 Y kilm(a

i€lp

< ImG®(2%) — 20 ) " kIm(a}). (5.62)

i€lp
From Proposition 5.11, we know that Im G®7 (z¥7) = Vol(M,). Thus,
m <GE17A<rB (51, 0, 5)) < Vol(My,) — 2 kIm(aj). (5.63)
i€l

We have the following two cases:
Case 1: Im(c;)) # 0 for some i, € I

By Lemma 5.20 and 5.21, since |k (s;, A¢,)

> %foralli € I, we have

|k.‘>l_w

q; Tq;

> 0. (5.64)

Besides, recall that we choose E7 in such a way that k;, Im(cj ) < 0. As a result, from (5.63), by
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making € > 0 smaller if necessary,

Im (GE“ACI’B(SI, agl,£)>

(l _ M)Im(a%)

<Vol(Mp,) — 27 min ;
qi g

' i€ I,Im(a}) # 0}
<Vol(My,) — €. (5.65)

1
E;
sides?®

Next, on S, by Proposition 5.8, Im G®7 is strictly concave up in {ITm(«v; ¢, ) }icr and {Im(&,)}5_,.

Besides,

Im (GE”ACI’B(SI, o, €) — GEII/(aCI,f)) =Im ( — 2#2 ki(oue, — 7r)>

i€lp

is a linear function in {Im(c;,)}icr. As a result, Im (GE”ACPB(SI, o, £)> is also strictly con-
cave up in {Im(a; ;) }ier and {Im(&;) }$_;. By convexity, for each (a,, &) € 0Ds, and t € [0, 1]

we have

Im (GEI’A@*B (s,, (g, &) +tv/—1 Im(zE’))>
< max { Im (GE”ACI’B(SI, o, E)) , Im (GE“A<I’B (s;, (o, &) + \/—_Hm(zEf))) }

For (a,, &) € 0Ds,, by (5.60) we have
Im G® (e, &) < Vol(Mp,) — €.
For (o, &) + v —1 Im(z¥7) € Stfg, by (5.65), we have

Im G® ((a,, &) + V—1Im(2F7)) < Vol(My,) — €.
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Thus, we have

)

—0 <€4’—7'T(V01(ML9)—5’)) '

The result follows from (5.60) and (5.66).
Case 2: Im(a}) = O for all i € I, From (5.62) and (5.63), on S®I we have

Im (GE”ACI’B(SI, o, 5)) < Im G®7 (2%7) — 27?2 k:Im(of) = Vol(Mp,)

i€lp
and equality holds if and only if (o, , €) = z®7. Since z®

exists § € (0, dp) depending of E/ such that for any i € I,

OTIm G® (e, , €)

0Im oy

1 218, —
< ﬁmin{— — —|Bz 7T|}
el Lg; mq;

whenever do, ((a,, €),z%7) < 6. Let
" E” "
SEI75 = {(aﬁjas) € Stoé | doo((aQ?s)aZEl) S 5}
By the compactness of the closure of S/~ S¥7, we can find ¢ > 0 such that

Im <GEI’ACI7B (Sh g, E)) < VO1<ML9) —¢

96

r E . )
/ (—1)Zier Ao, (s1, 0, €) et (W (s €)-Ties 2”A“<ia“<i)da<,d€
D

. P —— W::I 5 5 - ; 7'('A,L' Qg
/SE'I' (—1)Zierticig, (sr, ey, €) et (W (o1 €) Ties 2niie ’Cl)dagdf‘

(5.66)

(5.67)

7 is a critical point of G®7 (ax,, €), there

(5.68)

(5.69)



for any (a,,€) € S®71~\.S¥7°. Thus, we have

. . —r WFI Sr,0¢ 4, 2. 2TI'A7;’ SO ¢
/SE?/ SET 8 (_1)2161 i r (s1, Q¢ §) 647“/?1( (sr:0,:6)~Fes i <Z>dO£C1d€
=o (e (=) (5.70)

Assume that k; > 0 for some ¢ € ;. For simplicity we assume that « = 1. Consider the surface

EY,0,+ E7,0,+
SEOF = G0y ST defined by

top bottom
s, .
Sed ™ = {(01, €) +V=10,0,...,0) | (g, ) € SEH)

and

S = {(ac,,ﬁ) +tv/=1(6,0,...,0) | (e, &) € asE'M} _

EI/
Note that on Smé ’5’+, by the Mean Value Theorem,

I G, (51, (g, €) + V=1(6,0,...,0)) = Im Gy " P (51, g, €)
E; A B
OlmG, ™ , ,
~—mma. (s1, (o, , &) + V—=1(¢',0,...,0)) - 0 (5.71)

for some ¢’ € (0, d). Note that from (5.57),

EI,A< B
Olm G !
- V—1(8,0....0
O Tm o (S], (aCI7€) + ( ) ) ))
OIm Gy 1 20—
:é?Im— —27Tk‘1<—7rmiln{——M},
S (P~ 3 o i
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where the last inequality follows from (5.64) and (5.68). This implies that

Im sz,Ang (SI; (o, &) +v—1(6,0,... ,O))
E;Ac, B (1 28—
<ImG7‘I o (SbaCI:g)_ﬂ-er‘lel}l{;_W—Qi}
1 28—
< Vol(My,) — 7 min {— . M} (5.72)
i€l Lq; T

where the last equality follows from (5.67).

EY.0+

Next, on S .. ", since Im (GEI’ACI’B(S[, g, €)) is strictly concave up in {Im(«; ) }ser and

{Im(&,)}e_,, for each (ax¢,, &) € OST9 and t € [0, 1] we have

FI,ACI,B<

ImG s1, (o, &) + tV=1(6,0,...,0))
< max { Im (GEI’ACI’B(SI, acl,ﬁ)),lm (GE”ACI’B (sl, (o, &) + V—=1(5,0,... ,O))) }

For (a,, &) € OSEI?, by (5.69) we have
Im G® (e, &) < Vol(Mp,) — €.
EY .6+

For (o, &) + v —1(0,0,...,0) € Siop ", by (5.72), by making ¢ smaller if necessary, we have

Im G® ((ag,, &) + vV —1Im (")) < Vol(M,) — €.
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Thus, we have

T E — T . .
/ (_1>Ziel A Or (SI7 Qs €) edrv-1 <WT ! (SI’O‘Q ,.£) 2ier? Az,Ciaz,ci) daCI dg
D

)

. . —r— WFI 5 5 - ; TI'Ai N7 e
B /SEf,f<—1>2wAu<i¢r (51,01, €) v (W7 (sre €)X *@av@)dagd&’

IN

i 3 — W:EI 3 S ) ; Ai N7
/SE” E”ﬁ(_l)ZzGIAl,CiQST (SI’aCI’é) 647r\/fl( (S[ Q¢ E) Ezej 2w oxet ’Cl)dacldg‘

I~S"TI

_|_

i ) T WFI 3 S )T 25 2 Az QG
/9E?76,+(_1>Zz61 Aits ¢7‘ (SI7 874D €) 647“/?1( (SI e é) 2ier 2o ’Cl)daﬁldgl

=0 (eﬁ(VOI(MLe)*GI)> )

This finishes the proof under the assumption that £; > 0. For k; < 0, we consider the surface

Brs— _ oBYS— | oBYi-
SEfO= — GEIOT g

bottom

defined by
//76,_ .
St = { (g, 8) = V=1(8,0,..,0) | (e, €) € 5%}
and

S = {(@ ) — tV=1(5,0,..,0) | (g, €) € 0570}

The result follows from a similar argument as the previous case.

]

According to Proposition 5.19 and 5.22, it remains to study the asymptotics of the ﬁ.(s, A, 0)
with (s;, A¢,) € S; for all i € I. where S; is defined in (5.56). If |g;

’s are odd for all 7 € I,
the asymptotics of fr(sEI ,1 —2mP1 0) are given in Proposition 5.18. When some |¢;| is even,
the following proposition shows that the leading terms in the asymptotics of the other Fourier

coefficients cancel out with each other.

Proposition 5.23. Suppose the assumptions in Proposition 5.12 hold. Further suppose there exists
io € I such that |q;,| is even. Then for every pair (Ey,s', Ay ,0) and (Ey,s", A¢,,0) with E} =
—L B} =1, B} = E foralli € IN{io}, (si,, A, ) = (35, —2my)), (siy, AL, ) = (5, —21m,,)

io? i0? 207 *Gig
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and (s}, A,) = (si, AL) for all i € I\{io}, we have

Ly )
PP, AL 0) = o e T (v Tes o) (1+O<1)>
"VET ) ([Parn]) r

and

1s~n (r)

2Er oan ’ ez k= i ) L (Vol(M("))+/=1CS(M (™) 1

f ( A.CI, ) C 64" 1 + O -
"VET L) ([pare]) r

for some sequence of complex number C! with norm 1.

~E
Proof. We first study the asymptotics of f, ! (s, A/ﬁ’ 0). Note that by Proposition 4.1,

E / I _ r (HEI Z)
r I(SDACI? B) - 2\I|+cﬂ-z|l|+c

12 T EI ’ _ ) ’ -
% / (_1)21’61 A O (SI, o, 5) eimv/—1 (Wr (sl,agaﬁ) Dier QWAZ’Ciozz,gz)dan&
Dy
By Lemma 5.20, 5.21 and a direct computation, we can write

WE (s ag,, & 2277141404141

i€l
4
6P &)~ 2 Y+ Y 2w~ B - B) Y ( pz) i,
iel iel iel 4

Moreover, by Lemma 5.21 and Lemma 2.18 (2), since §;” = s + £ (mod ¢;), we have
Ji(55) — Ji(3) = = (mod Z).
Thus, similar to the proof of Proposition 4.3, we can write

“E; Y/ (E )ritte —r__GFl(a
1 (s1, A, 0) = W/B o (5B, a,, &) eV Y g de, (5.73)
H
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where

Y’(Ez)=—<—1>zg<q’+ " +|<HE1')€WZEI wre), (5.74)

el

¢r(sfa (8 742) 5) - ¢(aC17 S)
Ei(ai’gi+ﬁi727r)

] . . L
« 6\/*1(2@ (%(5i*“)+%(ai,¢f”)+q7i>+Zie1 ai0BitYer (%)%cﬁzja (aj,oJr?J)aj)
)

and

(2

CEr (o €) = 3 {— (fi . ) (5 myp — Bletig = + 25— )i w)}

iel iy

_ Z <aj,o + %) (aj —m)? = Z %(O‘z’,@ —7)?

jeJ el
c = Li
+ Z Ur<asu ce 70456,53) + (Z §>7T2.
s=1 =

By (5.73), Proposition 5.12 and 5.13,

—_

E
r I(S,I7 A/Qv O)

|I|+c
Y/(Ep)rtite /2\° /2r\ 2 — Llte
- 2|I|+C7T|IH‘C ; 7 (47T _1> ’
E/(,E
CPr(z™) eL(VOl(MLO)-i-\/leS(MLg))(l+O<1>>
r

\/— (ITic; ¢;) det Hess(G®r)(z®r)

BT = (C))
_c e3 L1 HHT (1) o (Vol(M®)4+/=TCs (M) ) (1 N O<1>>,
VETarzx (o)) .
where C! = Y/(EI)Q—IIHCT\I\Q—C (_1)_%+IIL%+Z¢€I (ai,o+%>+2jg <ajyo+%f>
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By the same argument, we have

—

E " "
r I(SI’ACp 0)
I e% SR e HO ()

T VET ) (o))

o (vol(M<*>)+MCS(M<T>)) (1 + O<1>)
T b

I 1 j
Y <ai,0+%> t2jes (%'70"‘%])

where C) = Y”(EI)Q*'”*CTW%(—U with
i i ElJ,L S;/> I I i <—2A//_ Kz S;:/ i)
oy = (= (e +|(H&)e‘*”z€f ) sas)
iel

To prove the proposition, it suffices to study the ratio of C/ and C!. Note that from (5.74) and

(5.75),

C; Y'(Ep) —(Jin G+ Tin (5)) 2 (K (85 )= Ky (81 )+A(m!_ —m!! )
Gr =y, = ~ (DR en TR, (5.76)

From Lemma 2.18 (2), we know that

Jio(s3) = —Jip(s;;)  (mod 2),

10

From Lemma 5.21, we know that §; = s;- + %2 (mod ¢;,). Thus, we have J;, (55) — J;,(sf-) = 1

(mod 2), J;,(5;,) — Jiy(s;) =1 (mod 2) and
Jio(gz—';)+<]io(§i_o) = (Jio(gz—'z)_Jio(Sz-';))+(*]io(§i—0)_‘]io(SZ)))+(‘Ji0(Sz—"(—J)+Jio(Si—0)) =0 (mOd 2)'

This implies that

(_1)Ei(JiO(§%)+Jio(§i_())) -1 (5.77)
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From the definition of K in Lemma 2.18 (3), we get

Ky (53) — Kio(5,) + 4(mg, — 1)

20

4G, 1

” (55 +5,+1+ Km,gio—l)(éi — §;) +4(mf —my). (5.78)
20

Besides, from the definition of / and (5.55),
Lig(33) + 1 (53,) = =20 6,1 (85, + 55 + 1+ Kig g, 1) = 243, (1, 4175, ). (5.79)
From (5.78) and (5.79), we have
Kio(35) — Ky (8;,) + 4(myf —my ) = 4((—mi —my ) (55 — 5;) + il +m;,).

In particular,

P (Ko ()~ K (s ) +4(it, —il) )

(_1)(m%+m%)(§%—gi—o—1).
From Lemma 5.21, we know that §;. = s;- + %2 (mod g;,). Since g;, is even, we have
St—5. = (55 —st) = (8, —si) + (s —si) =5t — s, (mod 2).

From Lemma 2.18 (1), we know that s} —s;. = p} (mod g;,). Moreover, since p;,p}, + i, ¢}, = 1

and ¢;, is even, p’. must be odd. Altogether, we have
q 0 pzo g

522—5%—153;2—5;0—150 (mod 2)
and
o1 (Kig (i) = Kig (7 ) +A (g —mif)) (_1)(m%+m%)(§%—§;}—l) —1 (5.80)
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From (5.76), (5.77) and (5.80), we get C!/ = —C".. This completes the proof. O

5.7 Estimate of error term and the proof of the main theorems

The following proposition shows that the error term in Proposition 4.2 is negligible compared

to the leading Fourier coefficient.

Proposition 5.24. There exists g > 0 such that if

Vol(Myp,) > max ImU(a,, ),
(a¢;€)€Du~Dsg

where U(agl , &) is defined in (5.8) and Dy~ Ds, is the closure of Dy~ Ds,, then there exists € > (

such that the error term in Proposition 4.2 is less than O(e= V01(Mrg)=€)),

Proof. For a fixed ooy = (o) ey, let
My, = max { zc: 2V (s, .-y 0, Es) | (g, &) € 0Dy U (DA\DH)}
s=1
where V' is as defined in (5.2). Then by [5, Sections 3 & 4],
M, < 2cus.

Besides, we know that Im U (ax,, £) < 2cus and equality holds if and only if

7w 7_7r

(011 €) = (T oo, Ty )

As aresult, we can choose dy > 0 sufficiently small so that

My, < max Im U(a,, £).
(OL(I ,ﬁ)GDH \1)50

The result follows from the fact that the error terms in Proposition 4.2 contains those gF’ (s;, m¢,, k)

with (m¢,, k) € Dy U (DA~Dpg). O
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Lemma 5.25. There exists 0 > 0 such that if |H(ux)| < 0 forall k = 1,...,n, then we have
zFr ¢ Dﬁo,(C and
(aCI7£)€DH\D50

Vol(Mp,) > max { max Im U(ag,f), 2cvg — 47r(50},

where U(a,, €) is defined in (5.8) and Dy~ Ds, is the closure of Dy~ Ds,.

Proof. Note that by Proposition 5.11, we have

oo M) o
laf — 7| = 5 <73

Moreover, {£;}¢_, depends continuously on {ay }7_; with & (7, ..., m) = T foralls =1,...,c.
Altogether, by choosing § > 0 sufficiently small, we have zF7 € Ds, c. Besides, Vol(Mp,)
depends continuously on {H(u)}}_; and is equal to 2cvs when H(u,) = 0 for k = 1,...,n.
Moreover,

(oe¢;,€)€DH~Ds,

2cvg > max { max Im U(O‘CU &), 2cvg — 4%50}.

By choosing 6 > 0 sufficiently small, we have

Vol(M,) > max { max Im U(a,, ), 2cvs — 47r50}.

(oee;£)€DHNDs
[

Lemma 5.26. There exists ¢ > 0 such that whenever 0;,6; € [0,¢€) foralli € I and j € J, we

have z¥1 € Ds, ¢ and

Vol(M,) > max { max Im U(a,, &), 2cvs — 47r50},

(oee;£)€DH Dy,

where U, €) is defined in (5.8) and Dy~ Ds, is the closure of Dy~ Ds,.

Proof. First, when ; = o; = wforalli € I,5 € J, we have (¢4,...,6,) = 0 = (0,...,0),
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E; s T
2" = (m,...,m, 4, ..., F) € Ds,c and

Vol(Mp,) = 2cvg > max{ max Im U(a,, &), 2cvs — 47?50}.

(o £)€DH D,

By continuity, there exists € > 0 such that if {3, };c; and {«; };c are all in (7 — €, ™ + €), then
the critical point z®7 of G®! in Proposition 5.11 lies in D, ¢, and Vol(Mp,) is sufficiently close

to Vol(Mp,) = 2cvg so that

Vol(Mp,) > max { max Im U (e, , &), 2cvs — 47750}.

(oee;£)€D D
[

Lemma 5.27. There exists ¢ > 0 and C > 0 such that whenever §; € [0,¢) for all j € J,

Ipi| + |g;| > C and 0; € [0, 7) for all i € I, we have z"1 € D;, ¢ and

Vol(Mp,) > max { max Im U(a,, ), 2cvs — 47r50},

(aC[7£)eDH\D50
where U(c,, €) is defined in (5.8) and Dy~ Ds, is the closure of Dy~ Ds,.

Proof. Let 6 > 0 be the constant in Lemma 5.25. For each & € {1,2,...,n}, recall that the
generalized Dehn filling invariant of the logarithmic holonomy H(uy) around 0 € C is defined
by sending 0 to oo € R? U {oo} = S? and sending H(u;) # 0 to the unique pair (pi, qx) € S?
satisifying

el (ur) + ¢nH(vg) = 20/ —1.

It is well-known that the generalized Dehn filling invariant gives a local homeomorphism from an
open neighborhood of (0,...,0) € C" to an open neighborhood around (oo, ..., 00) € (S%)" by
sending the logarithmic holonomies (H(u,), ..., H(u,)) to the generalized Dehn filling invariants
((p1,q1), -+ (Pnyqn)) (see e.g. Corollary 15.2.17 and Proposition 15.3.1 in [32]). In particular,

there exists C' > 0 such that whenever |py| + |gx| > C forall k = 1,...,n, we have |H(uy)| <
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forallk=1,....n.
Note that for ¢ € I with |p;|+|¢;| > C and 0; € (0, 7), the equation p;H(u;)+¢;H(v;) = 6/—1

implies that

(55 Yt (551 e =201

2np; 2mg;

In particular, the generalized Dehn invariant of H(w;) is given by (=52, =

), which satisfies

2T

0;

‘ 271']?1

2mq;
]

0

= (pil + i) (5-) > Ipil + lail > C.
Besides, for j € J, if the cone angle #; € (0,27/C), then the equation H(u;) = 6;1/—1 implies

that

(%)H(uj) — 27y/—1.

In particular, the generalized Dehn invariant of H(u;) is given by (3%, 0), which satisfies
J

2T

0.

J

> C.

As a result, whenever 6; € [0, %”) forall j € J,

pil + ;) > C and 0; € [0, 7) foralli € I, we

have |H(uy)| < ¢ forall k = 1,...,n. The results follow from Lemma 5.25. O

Proof of Theorem 1.5, 1.6 and 1.7. By Lemma 5.25, 5.26 and 5.27, the assumptions in Proposition
5.12,5.19, 5.22, 5.23 and 5.24 are satisfied. Thus, by Proposition 3.4, Proposition 4.2, Proposition

5.18, Proposition 5.19, Proposition 5.22, Proposition 5.23 and Proposition 5.24, we have

RT,.(M, L, (n;,m,))
(g -amto) (1e0 ()

3 2k ieH() L( Vol(M —1CS(M > 1
o © Re (Vol(Mpy)+v=1CS(Mg,)) (1+O<_)>7 (5.81)
VETOrzm (o1, ) "
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where

(—1)Sier G T aun) (/1) i S5 (1) 7 (s ) e (w04

C =
\/_—121-61 Gi—c
T — i_l TN — T
% ¢ P Cier T aia— T (e as0Hai,c )+ e s a5.0)+0 (Lrst 1UL) (24 252 =T
/
i e (2ot
X e !
is a quantity of norm 1 independent of the geometric structure on M. [

Proof of Theorem 1.8 and 1.9. From (5.81), we have

4
lim —ﬂ- log RTT(M7 L7 (nfu mJ))

r—oo T
:VOI(MLO) =+ v —1 CS(MLB) - 267T2 V —1 + 7T2 V —1 ( Z((lip + aivci) + Z am) + O-(EFSL,I U L/)>
iel jeJ
/
—7m2/—1 Z <4m;r — 2+ K;(sf) + &>
icl i
=Vol(Mp,) + vV—-1CS(M,) (mod n°v/—1Z),
where in the last equality we apply Lemma 2.18 (3). [

108



REFERENCES

[1] J. Andersen, S. Hansen, Asymptotics of the quantum invariants for surgeries on the figure 8

knot, J. Knot Theory Ramifications 15 (2006) 479-548.

[2] J. Barrett. Geometrical measurements in three-dimensional quantum gravity, International

Journal of Modern Physics A, 18(supp02):97-113, 2003.

[3] G. Belletti, A maximum volume conjecture for hyperbolic polyhedra, Preprint:

arXiv:2002.01904.

[4] G. Belletti and T. Yang, Discrete Fourier transform, quantum 6j-symbols and deeply trun-

cated tetrahedra, preprint, arXiv:2009.03684.

[5] G. Belletti, R. Detcherry, E. Kalfagianni, and T. Yang, Growth of quantum 6j-symbols and

applications to the Volume Conjecture, to appear in J. Differential Geom.

[6] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Three-manifold invariants derived from
the Kauffman bracket, Topology 31 (1992), no. 4, 685-699.

[7] Q. Chen and J. Murakami, Asymptotics of quantum 6j symbols, preprint, arXiv:1706.04887.

[8] Q. Chen and T. Yang, Volume Conjectures for the Reshetikhin-Turaev and the Turaev-Viro
Invariants, Quantum Topol. 9 (2018), no. 3, 419—-460.

[9] D. Cooper, C. Hodgson and S. Kerckhoff, Three-dimensional orbifolds and cone-manifolds.
With a postface by Sadayoshi Kojima, MS] Memoirs, 5. Mathematical Society of Japan,
Tokyo, 2000. x+170 pp. ISBN: 4-931469-05-1.

[10] F. Costantino, 6j-symbols, hyperbolic structures and the volume conjecture, Geom. Topol.

11 (2007), 1831-1854.

109



[11] F. Costantino, Colored Jones invariants of links in S#*S? x S and the volume conjecture,

J. London Math. Soc. 76 (2007), no. 2, 1-15.

[12] F. Costantino, F. Guéritaud, and R. van der Veen, On the volume conjecture for polyhedra,

Geom Dedicata 179, 385—409 (2015). https://doi.org/10.1007/s10711-015-0086-4

[13] F. Costantino and D. Thurston, 3-manifolds efficiently bound 4-manifolds, J. Topol. 1 (2008),
no. 3, 703-745.

[14] R. Detcherry and E. Kalfagianni, Gromov norm and Turaev-Viro invariants of 3-manifolds,

to appear in Ann. Sci. de I’Ecole Normale Sup..

[15] R. Detcherry, E. Kalfagianni and T. Yang, Turaev-Viro invariants, colored Jones polynomials

and volume, Quantum Topol. 9 (2018), no. 4, 775-813.

[16] L.Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995),
no. 3, 249-254.

[17] L. Faddeev, R. Kashaev and A. Volkov, Strongly coupled quantum discrete Liouville theory,
I. Algebraic approach and duality. Comm. Math. Phys. 219 (2001), no. 1, 199-219.

[18] D. Gang, M. Romo and M. Yamazaki, All-order volume conjecture for closed 3-manifolds

from complex Chern-Simons theory. Comm. Math. Phys. 359 (2018), no. 3, 915-936.

[19] S. Garoufalidis and T. Le, Asymptotics of the colored Jones function of a knot, Geom. Topol.
15 (2011), no. 4, 2135-2180.

[20] S. Garoufalidis and T. T. Q. Le, On the volume conjecture for small angles,
arXiv:math.GT/0502163.

[21] S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial,

Comm. Math. Phys. 255 (2005) 577-627.

110



[22] C. Hodgson, Degeneration and regeneration of geometric structures on three-manifolds (fo-

liations, Dehn surgery), Thesis (Ph.D.) Princeton University. 1986. 175 pp.

[23] C. Hodgson and S. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn
surgery, J. Differential Geom. 48 (1998), no. 1, 1-59.

[24] L. Jeffrey, Chern-Simons-Witten invariants for Lens spaces and torus bundles, and the semi-

classical approximation, Commun. Math. Phys. 147, 563-604 (1992).

[25] R. Kashaev, A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995), no.
19, 1409-1418.

[26] R. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys.
39 (1997), no. 3, 269-275.

[27] R. Kashaev, Y. Yokota, On the volume conjecture for the knot 5, preprint.

[28] S. Kojima, Deformations of hyperbolic 3-cone-manifolds, J. Differential Geom. 49 (1998),
no. 3, 469-516.

[29] S. Kumar, Fundamental shadow links realized as links in S°, Algebraic & Geometric Topol-

ogy 21 (2021) 3153-3198

[30] W. Lickorish, The skein method for three-manifold invariants, J. Knot Theory Ramifications

2 (1993), no. 2, 171-194.

[31] D. London, A note on matrices with positive definite real part, Proc. Amer. Math. Soc. 82

(1981), no. 3, 322-324.
[32] B. Martelli, An Introduction to Geometric Topology, arXiv:1610.02592
[33] J. Milnor, Whitehead Torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.

[34] H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of

a knot, Acta Math. 186 (2001), no. 1, 85-104.

111



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

H. Murakami, J. Murakami, M. Okamoto, T. Takata and Y. Yokota, Kashaev’s conjecture and

the Chern-Simons invariants of knots and links, Experiment. Math. 11 (2002) 427-435.

R. Meyerhoff and D. Ruberman, Mutation and the n-invariant, J. Differential Geom. 31(1):
101-130 (1990). DOI: 10.4310/;dg/1214444091

R. Meyerhoff and M. Ouyang, The n-Invariants of Cusped Hyperbolic 3-Manifolds, Cana-
dian Mathematical Bulletin, Volume 40, Issue 2, 01 June 1997, pp. 204 - 213 DOI:
https://doi.org/10.4153/CMB-1997-025-8.

H. Murakami and Y. Yokota, The colored Jones polynomial of the figure eight knot and its

Dehn surgery spaces, J. Reine Angew. Math. 607 (2007), 47-68.

W. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985), no.
3, 307-332.

T. Ohtsuki, On the asymptotic expansion of the Kashaev invariant of the 5, knot, Quantum

Topol. 7 (2016), no. 4, 669-735.

T. Ohtsuki and Y. Yokota, On the asymptotic expansions of the Kashaev invariant of the
knots with 6 crossings, Mathematical Proceedings of the Cambridge Philosophical Society ,

Volume 165 , Issue 2 , September 2018 , pp. 287-339.

T. Ohtuski, On the asymptotic expansion of the Kashaev invariant of the hyperbolic knots

with seven crossings , Internat. J. Math. 28 (2017), no. 13, 1750096.

T. Ohtsuki, On the asymptotic expansion of the quantum SU(2) invariant at q =
exp(4m/—1/N) for closed hyperbolic 3-manifolds obtained by integral surgery along the
figure-eight knot, Algebr. Geom. Topol. 18 (2018), no. 7, 4187-4274.

T. Ohtsuki, T. Takata, On the Quantum SU(2) Invariant at ¢ = exp(4m\/—1/N) and the
Twisted Reidemeister Torsion for Some Closed 3-Manifolds, Commun. Math. Phys. 370,

151-204 (2019)

112



[45] J. Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc.,

128 (612):x+139, 1997.

[46] J. Porti, Reidemeister torsion, hyperbolic three-manifolds, and character varieties, Handbook
of group actions. Vol. 1V, 447-507, Adv. Lect. Math. (ALM), 41, Int. Press, Somerville, MA,
2018.

[47] N. Reshetikhin and V. Turaev, Ribbon graphs and their invariants derived from quantum

groups, Comm. Math. Phys. 127 (1990), no. 1, 1-26.

[48] N. Reshetikhin and V. Turaev, Invariants of 3-manifolds via link polynomials and quantum

groups, Invent. Math. 103 (1991), no. 3, 547-597.

[49] J. Roberts, Skein theory and Turaev-Viro invariants, Topology 34 (1995), no. 4, 771-787.

[50] D. Rolfsen, Knots and links, 2nd printing with corrections, Mathematics Lecture Series 7,

Publish or Perish, Inc. (1990).

[51] E. Stein and R. Shakarchi, Fourier analysis, An introduction. Princeton Lectures in Analysis,

1. Princeton University Press, Princeton, NJ, 2003. xvi+311 pp. ISBN: 0-691-11384-X.

[52] W. Thurston, The geometry and topology of 3-manifolds, Princeton Univ. Math. Dept. (1978).

Available from http://msri.org/publications/books/gt3m/.

[53] V. Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Ziirich.

Birkhduser Verlag, Basel, 2001. Notes taken by Felix Schlenk.

[54] V. Turaev, Quantum invariants of knots and 3-manifolds, Second revised edition. de Gruyter

Studies in Mathematics, 18. Walter de Gruyter & Co., Berlin, 2010.

[55] V. Turaev and O. Viro, State sum invariants of 3-manifolds and quantum 6j-symbols, Topol-

ogy 31 (1992), no. 4, 865-902.

113



[56] A. Ushijima, A volume formula for generalised hyperbolic tetrahedra, Non-Euclidean ge-
ometries, 249-265, Math. Appl. (N. Y.), 581, Springer, New York, 2006.

[57] R. van der Veen, Proof of the volume conjecture for Whitehead chains, Acta Mathematica

Vietnamica, Volume 33, Number 3, 2008, pp. 421-431

[58] R. van der Veen, The volume conjecture for augmented knotted trivalent graph, Algebr.

Geom. Topol., Volume 9, Number 2 (2009), 691-722.
[59] K. Walker, On Wittens 3-manifold invariants, preprint.

[60] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (3):
351-399.

[61] K. H. Wong and T. Yang, On the Volume Conjecture for hyperbolic Dehn-filled 3-manifolds

along the figure-eight knot, Preprint, arXiv:2003.10053.

[62] K. H. Wong and T. Yang, Relative Reshetikhin-Turaev invariants, hyperbolic
cone metrics and discrete Fourier transforms I, Commun. Math. Phys. (2022).

https://doi.org/10.1007/s00220-022-04613-5

[63] K. H. Wong and T. Yang, Relative Reshetikhin-Turaev invariants, hyperbolic cone metrics

and discrete Fourier transforms 11, Preprint, arXiv:2009.07046

[64] K. H. Wong and T. Yang, Twisted Reidemeister torsions and Gram matrices,

arXiv:2103.04254.

[65] K. H. Wong and T. Yang, Asymptotic expansion of relative quantum invariants, Preprint,

arXiv:2103.15056

[66] T. Yoshida, The n-invariant of hyperbolic 3-manifolds, Invent. Math. 81 (1985), no. 3, 473—
514.

114



[67] D. Zagier, The dilogarithm function, Frontiers in number theory, physics, and geometry. II,

3-65, Springer, Berlin, 2007.

[68] H. Zheng, Proof of the Volume Conjecture for Whitehead Doubles of a Family of Torus Knots,
Chinese Annals of Mathematics, Series B, 2007, 375-388

115



	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	Introduction
	Overview of volume conjectures
	Kashaev-Murakami-Murakami volume conjecture
	Chen-Yang volume conjecture
	Volume conjecture of the relative Reshetikhin-Turaev invariants
	Asymptotic expansion conjecture of the relative Reshetikhin-Turaev invariants

	Methodology
	Main results

	Preliminaries
	Relative Reshetikhin-Turaev invariants
	Hyperbolic cone manifolds
	Quantum 6j-symbols
	Fundamental shadow links
	Twisted Reidemeister torsion
	Dilogarithm and quantum dilogarithm functions
	Continued fractions
	Rational Dehn surgery

	Computation of the relative Reshetikhin-Turaev invariants
	Poisson summation formula
	Asymptotics of the invariants
	Preliminary
	Saddle point approximation
	Convexity and preliminary estimate
	Geometry of 6j-symbol
	Neumann-Zagier potential functions of fundamental shadow link complements

	Convexity
	Critical Points and critical values
	Asymptotics of the leading Fourier coefficients 
	Reidemeister torsion
	Estimate of other Fourier coefficients
	Estimate of error term and the proof of the main theorems

	REFERENCES

