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ABSTRACT

The goal of combinatorial commutative algebra is to study the interplay between commutative

algebra and various subfields of combinatorics such as enumerative combinatorics and discrete

geometry. Among the central objects in combinatorial commutative algebra are square-free mono-

mial ideals and semigroup rings. This dissertation examines monomial ideals in affine semigroup

rings.

The two main results in this dissertation are as follows. First, we give a combinatorial char-

acterization for not only the Cohen–Macaulay Zd-graded module of affine semigroup rings but

also the quotients of polynomial rings by cellular binomial ideals. This criterion involves vanish-

ing homology of finitely many polyhedral cell complexes. These polyhedral cell complexes are

derived from degree spaces, a space of all multigradings with special finite topology. Our main

contribution is to construct degree spaces corresponding to Zd-graded modules.

Next, we elucidate a hidden duality between the local cohomologies of simplicial affine semi-

group rings by extending the Ishida complex as well as using a Hochster-type Hilbert series for-

mula. The extensions of the Ishida complex allow us to calculate local cohomology of the given

module with all possible radical monomial ideal supports. With our degree spaces, we calculate

the Hilbert series of both the local cohomology of the simplicial affine semigroup ring k[Q] with

a monomial ideal I support and that of the quotient k[Q]/I with the maximal monomial ideal

support. Finally, we showed that there is a 1-1 correspondence of grains between these two local

cohomologies such that whose cohomologies of the chaffs are dual.

ii



DEDICATION

To my mother, my father, and my friend Peter Lee Seunghun.

iii



ACKNOWLEDGMENTS

I am deeply grateful to my advisor, Laura, who has been an instrumental part of my academic

journey as a mathematical researcher. It was through her mentorship that I learned the essential

skills necessary for success in this field, including how to study a subject, how to read and write

papers, how to effectively communicate mathematical results, and even how to navigate life as

a person. Without her guidance, I would not have been able to achieve the level of success that

I have attained as a mathematician. Laura has been not only a mentor, but also a role model

whom I greatly admire and aspire to emulate. I am indebted to her for her unwavering support,

encouragement, and guidance, and I consider myself fortunate to have had her as my advisor.

I am grateful to my dissertation committee, consisting of Professor Sarah Witherspoon and Pro-

fessor Catherine Huafei Yan from the Department of Mathematics, and Professor Kenny Easwaran

from the Department of Philosophy, for their invaluable guidance and feedback throughout the

process of completing this thesis. Their constructive suggestions and efforts have played a crucial

role in shaping my work and in communicating my ideas clearly. I am especially appreciative of

their willingness to review my drafts, forms, and respond to my email reminders, despite their busy

schedules. I am fortunate to have had such a supportive and knowledgeable committee.

I am grateful for the unwavering support and resources provided by the Texas A&M University

Department of Mathematics, which has played an integral role in creating a conducive environ-

ment for my academic pursuits. Their encouragement and support have contributed immensely

to my growth as a mathematician. I extend my heartfelt gratitude to Professors Anne Shiu, Pa-

tricia Klein, Maurice Rojas, Frank Sottile, Sarah Witherspoon, Catherine Yan, Igor Zelenko, and

Irina Bobkova, for their invaluable time and effort in furthering my mathematical knowledge, ped-

agogical efforts, and professional goals. I would also like to express my appreciation to Monique

Stewart, Sherry Floyd, Briana Hage, and Gaby Alvarez, for their continuous patience and assis-

tance with administrative tasks. Their contributions have been critical in enabling me to focus on

iv



my research and academic goals.

I am grateful to my colleagues in the department, who have provided not only new mathe-

matical insights but also a welcoming and social environment that has played an important role

in my growth as a mathematician. In particular, I appreciate their camaraderie and support with

Fluid Dynamics of beers and sodas. I extend my sincere thanks to all my colleagues, with special

recognition to John Weeks, Pablo Ocal, Erika Ordog, Ola Sobieska, Tung Nguyen, Nida Obatake,

Haoshen Li, Zhaobidan Feng, Thomas Yahl, Arpan Pal, Konrad Wrobel, Taylor Brysiewicz, Elise

Walker, C.J. Bott, Chia-yu Chang, Inyoung Ryu, and Seongjun Han.

During my time in College Station, I was fortunate to make many great friends who enriched

my life beyond the realm of mathematics. I extend my deepest appreciation to John Weeks for shar-

ing his thoughts and feelings with me as a graduate student, and for organizing anime-watching

sessions at his house with our other friends. The time we spent making pizza together with Pablo

is one of my most cherished memories from my graduate years. I also thank Pablo Ocal for intro-

ducing me to his algebraic works through the Students Working Seminars on Algebraic Geometry,

and for providing invaluable advice on planning for job markets. His guidance was instrumental

in helping me to prepare for a career as a mathematician. Additionally, I am grateful to Ola So-

bieska and Nida Obatake for inviting me to numerous holiday and family events. Without their

invitations, I would not have been able to experience Thanksgiving in the same way as a typical

American, and would have instead spent those days alone in my office. I also extend my thanks to

Inyoung Ryu and Seongjun Han for taking the time to chat with me about life as a mathematician

in Korean. The day we constructed a bicycle together, Inyoung and I, was one of the happiest days

of my life. I still fondly recall the conversations I had with Seongjun on our trip to Austin to eat

Korean galbi. Lastly, I would like to thank Hyunwoong Chang and Jiyong Park from the statistics

department for taking the time to chat with me about statistics and our personal lives.

I would like to express my gratitude to my dear old friends, who have provided me with in-

valuable support throughout my Ph.D. studies. First and foremost, I extend my heartfelt thanks

to Kisung You for his unwavering encouragement and insightful conversations on a wide range of

v



topics, including mathematics, statistics, life in the United States, and more. Without his regular

chats, I would not have been able to complete my Ph.D. with a sound mind. I am also deeply

grateful to Nari Lee for her thoughtful updates from South Korea, which have allowed me to take a

break from mathematics and stay connected with the world outside academia. Her news about job

opportunities, exercise routines, and even everyday gossip has prevented me from losing myself

in an abstract world and reminded me of my Korean identity. Lastly, I wish to thank Seungjoon

Rho for organizing virtual drinking parties and providing continuous support for my future career

endeavors.

I am deeply grateful to my family, without whom my academic journey would not have been

possible. My mother, Geumok Jung, has always been there for me, welcoming me with open arms

and believing in me every step of the way. I also thank my father, Ungsig Yu, for his unwavering

support in my pursuit of my dreams, without ever comparing me to others. Lastly, my journey

would not have begun if it weren’t for my dearest friend Peter Seunghoon Lee, who is now in

heaven. My entire mental and emotional foundation as a pre-mathematician was shaped by my

friendship with Seunghoon during my 20s. Thank you, Seunghoon, for being a part of my life. I

hope you can see my work from heaven and feel proud.

vi



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Laura Felicia Ma-

tusevich, Professor Sarah Witherspoon, Professor Catherine Huafei Yan, and Dr. Erika Ordog of

the Department of Mathematics and Professor Kenny Easwaran of the Department of Philosophy.

The work in Chapters 2 and 3 was conducted jointly with Professor Laura Matusevich. The

work in Chapter 4 was conducted jointly with Professor Laura Matusevich and Dr. Erika Ordog.

Funding Sources

Graduate study was supported by a teaching assistantship from the department of Mathematics

of the Texas A&M University.

vii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF NOTATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. INTRODUCTION AND BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Polyhedral geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Basic algebraic topology and Alexander duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Hyperplane arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Affine semigroup rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.5 Local cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.6 Cohen–Macaulayness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.7 Lattice binomial ideals and cellular binomial ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2. DEGREE SPACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1 Multidegrees and localization for graded k[NA]-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Algebraic properties of finely graded Zd-graded modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Primary Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Irreducible Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Algorithms for finding and using degree pairs of quotients of affine semigroup
rings by monomial ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 StdPairs: Implementation of the algorithms in SageMath . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4.1 Classes in StdPairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.1.1 Class AffineMonoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.1.2 Class MonomialIdeal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



2.4.1.3 Class ProperPair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.1.4 Global functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4.2 Implementation of an algorithm finding standard pairs. . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4.2.1 Case 1: Principal Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4.2.2 Case 2: General ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4.3 Compatibility with Normaliz package in SageMath and Macaulay2 . . . 72
2.5 Degree space with degree pair topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.6 Hochster-type formula of Hilbert series using grains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3. GENERALIZED ISHIDA COMPLEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.1 Generalized Ishida complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2 Local cohomology with monomial support for cellular binomial ideals . . . . . . . . . . . . . . . 90

4. APPLICATIONS AND OPEN PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Alternative classification of Cohen–Macaulay affine semigroup rings . . . . . . . . . . . . . . . . . 95
4.2 Generalized Hochster’s theorem for (non-normal) simplicial affine semigroup rings . 100
4.3 Duality between local cohomologies on simplicial affine semigroup rings . . . . . . . . . . . . 104

4.3.1 Duality of graded local cohomologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4.1 Finding a combinatorial Gorenstein criterion for quotients of affine semi-
group rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4.2 Characterizing local cohomology modules with infinite dimensional socles . . 112
4.4.3 Class groups of non-normal toric varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.4 Irreducible resolution of quotients of non-normal affine semigroup rings. . . . . 112
4.4.5 Classifying acyclic chaffs using hyperplane arrangements . . . . . . . . . . . . . . . . . . . . . 113

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ix



LIST OF FIGURES

FIGURE Page

1.1 Hasse diagrams of F(P) and r(A) in Example 1.2.36 Number 2 . . . . . . . . . . . . . . . . . . . . . 14

1.2 Monomials and ideals in affine semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Examples of ideals in two-dimensional affine semigroup rings . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Examples of ideals in three-dimensional affine semigroup rings . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Degree pairs in two-dimensional affine semigroup rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 degree pairs in three-dimensional affine semigroup rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Degree pairs of k[Q]/I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 A primary decomposition of ⟨x2y2, x3y⟩ in k[x, xy, xy2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5 A primary decomposition of ⟨x, xyz, xyz2⟩ in k [x, xy, xz, xyz, y2, z2] . . . . . . . . . . . . . . . 83

2.6 An irredundant irreducible decomposition of I = J1 ∩ J2 ∩ J3 in k[xy, xy2, x2, x3]. 83

2.7 An irredundant irreducible decomposition of I = J1 ∩ J2 in k[x2, y, xy]. . . . . . . . . . . . . . 84

2.8
⋃

deg(Q/T ) with grains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Degrees of Q = N [ 0 1 0 10 0 1 11 1 1 1 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Hasse diagrams of CatQ and r(A) of the Segre embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

x



LIST OF TABLES

TABLE Page

1.1 Description of F(Q),CatQ,R(A), r(A), and 2A of a Monomial Curve in Exam-
ple 1.2.60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Decomposition of Holes(Q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Table of local cohomologies over a simplicial affine semigroup ring k[Q] when
whose dimension d is 1,2, or 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xi



LIST OF NOTATIONS

N The set of non-negative integers
d A natural number denoting the dimension of an object

n,m, · · · Some natural numbers
Z,Q,R The ring of integers, the field of rational numbers (resp. real numbers)

k A field of any characteristic
u, v, w, · · · Integer vectors which might denote Zd-degrees.
∥u∥ The Euclidean norm of a vector u
A A generating set (as d× n integer matrix) of an affine semigroup
Q An affine semigroup
H(Q) The set of holes of Q
k[Q] An affine semigroup ring
P A polyhedron
H A hyperplane
A A hyperplane arrangement

r (resp. R) A region (resp. cumulative region) of the given hyperplane arrangement
r(A) (resp. R(A)) The set of regions (resp. cumulative regions) of A

R≥0(Q) The polyhedral cone over Q
∆ A polyhedral complex

F,G,H, · · · Faces of a polyhedral complex
F(P) The face lattice of P

RelInt(P) The relative interior of P
m The (graded) maximal ideal
I∆ The monomial radical ideal corresponding to a polyhedral complex ∆
I An ideal of an affine semigroup ring
M A module over a ring
E An injective module of a ring

Ass(M) The set of associated primes of M
I A monomial ideal of a graded ring
C̃ (M) The (singular, cellular, or simplicial) chain complex of M
L(M) The (generalized) Ishida complex of M
Hn

T (M) The n-th local cohomology of M supported at I
Hilb(x,M) The Hilbert series of a module M in terms of the variable x

K A transverse section of a polyhedron
F̂ A face of a P which corresponding to the face F of its K

deg. p(M) The set of all degree pairs of a graded module M

deg. p(M) The set of all overlap classes of degree pairs of M⋃
deg(M) The set of all degrees of M and its graded localizations
G The set of grains
ζ The set of cellular variables

xii



1. INTRODUCTION AND BACKGROUND

1.1 Introduction

The goal of combinatorial commutative algebra is to study the interplay between commutative

algebra and various subfields of combinatorics such as enumerative combinatorics and discrete

geometry. Among the central objects in combinatorial commutative algebra are square-free mono-

mial ideals and semigroup rings. This dissertation examines monomial ideals in affine semigroup

rings.

The two main results in this dissertation are as follows. First, we give a combinatorial charac-

terization for the Cohen–Macaulay Zd-graded modules of affine semigroup rings by constructing

degree pairs (Chapter 2). This criterion involves vanishing homology of finitely many polyhedral

cell complexes. This result was achieved by generalizing the notion of standard pairs, which was

originally devised by [52] for monomial ideals of polynomial rings, to the semigroup context and

then applying these new standard pairs to study the Ishida complex which is used to compute lo-

cal cohomology. We produce a Hochster-type formula for the Hilbert series of local cohomology

of Zd-graded modules of affine semigroup rings, expressed as a finite sum of rational functions

arising from the Betti numbers of finitely many polyhedral objects.

Next, we provides a new way to provide a finite sum of rational functions as the Hilbert series

of local cohomologies of the quotients of polynomial rings by cellular binomial ideals with an

ideal support whose contraction is a monomial ideal in an affine semigroup rings (Chapter 3). This

work was done by generalizing Ishida complex so that it can work for the quotients of polynomial

rings by cellular binomial ideals.

From these main results, we have several applications of the main results (Chapter 4). First of

all, in Section 4.1, we provides an alternative proof of the classification of Cohen–Macaulay affine

semigroup rings, which was firstly proved by [54]. Next, in Section 4.2, we also generalized the

Hochster’s theorem [27], stating about the Hilbert series of local cohomologies of Stanley-Reisner
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rings with the graded maximal ideal supports. Our generalized Hochster’s theorem provides a

finite sum of rational functions as Hilbert series’ of local cohomologies of the quotients of (not

necessarily normal) affine simplicial rings by any monomial ideals with any radical monomial

ideal supports.

Lastly, in Section 4.3 we elucidate a hidden duality between the local cohomologies of Stanley-

Reisner rings by extending the Ishida complex as well as using a Hochster-type formula (Sec-

tion 4.3). To see this, fix a Stanley-Reisner ring k[t]/I∆ for a radical monomial ideal I∆ of the

polynomial ring k[t] corresponding to a simplicial complex ∆. Previously, [29] reported that

H i
m(k[t]/I∆) = 0 ⇐⇒ H

dim k[t]−i
I∆

(k[t]) = 0,

where H i
m(k[t]/I∆) is the i-th local cohomology of the Stanley-Reisner ring k[t]/I∆ supported on

the maximal monomial ideal m and H
dim k[t]−i
I∆

(k[t]) is the (dimk[t]− i)-th local cohomology of

the polynomial ring k[t] supported on the radical monomial ideal I∆. From the original formula of

Hochster, the Hilbert series of H•
m(k[t]/I∆) can be decomposed as a finite sum over components

GF , for each F ∈ ∆ from the decomposition of standard monomials of k[t]/I∆ and its localiza-

tions by all monomial prime ideals. On the other hand, there is a decomposition of the degree sets

of the extended Ishida complex of k[t] supported on I∆, where the components are equal to sets of

lattice points from orthants of k[t] arising from localizations by faces of d-simplex. Therefore, we

may label each component as rF for each F in the d-simplex. We find that for each face F of the

d-simplex,

H i
m(k[t]/I∆)α ∼= H

dim k[t]−i
I∆

(k[t])β

for any α ∈ GF and β ∈ rF c .

Every reader who are interested in doing research on further topics might like the last section,

Section 4.4, which contain some open problems related to these main results and applications. We

hope the readers enjoy this dissertation.
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1.2 Background

Throughout this dissertation, assume all rings are commutative rings with unity. We let k

denote a field and S = k[x1, x2, · · · , xd] be a polynomial ring over k with d variables. Also, N is

the set of natural numbers including 0, i.e., N = {0, 1, 2, · · · } and use [n] to denote {1, 2, · · · , n}.

To abbreviate our notation, for an integer vector u ∈ Nd, we use xu to denote the monomial

xu1
1 xu2

2 · · ·xud
n . Also, we assume that readers are familiar with basic homological algebras over

category theory. Please refer [42], [12], [46], and [56] if readers are interested in more foundational

work, .

1.2.1 Polyhedral geometry

Let R be the set of all real numbers. Given the d-dimensional real space Rd, pick a vector

u ∈ Rd. Then, a hyperplane Hu,c corresponding to u is an affine Rd−1 subspace consisting of

vectors whose dot product with u is a constant c. Likewise, we set H+
u,c (resp. H−

u,c) to be a set

consisting of vectors whose dot product with u is greater than (resp. less than) c. We call these

H+
u,c or H−

u,c as open halfspaces. Closure of open half spaces are called closed halfspaces. For

example, the closureH+
u,c of an open half spaceH+

u,c is equal toH+
u,c ∪Hu,c.

Definition 1.2.1. A polyhedron P is an intersection of finitely many closed half spaces. Espe-

cially, a (convex) polytope is a polyhedron which is bounded.

Among all possible polyhedrons, we are interested in specific types of polyhedrons, called

polyhedral cones.

Definition 1.2.2. A polyhedral cone is a polyhedron P which is a cone, such that λu ∈ P for

any λ ≥ 0 ∈ R and u ∈P .

Boundaries of a polyhedron also can be decomposed into several sub-polyhedrons, called faces.

Definition 1.2.3. A nonempty subset F of a polyhedral cone P is called a face if there exists

v ∈ Rd such that the dot product of elements in F with v achieves its maximum value. In other
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words,

F = facev(P) := {a ∈P | vȧ ≥ ⟨v, u⟩ for all u ∈P}.

Especially, a zero-dimensional face is called a vertex. A supporting hyperplane H of a face F is a

hyperplane such that H ∩P = F . In such case, a vector u which is normal to H and ⟨u, x⟩ ≤ 0

(resp.⟨u, x⟩ ≥ 0) for all x ∈P is called outer normal vector (resp. inner normal vector).

When u is an outer normal vector of a supporting hyperplane of a face F , then F = faceu(P).

Also, we regard ∅ as a face of every polyhedron. Now we define the concept of relative interior.

Definition 1.2.4. An affine hull of a set A ⊂ Rd of real vectors is the set of all real linear com-

binations
∑m

i=1 λiui for which
∑m

i=1 λi = 1 and ui ∈ A for any m ∈ N. The relative interior

RelInt(P) of P is the interior of P with respect to the affine hull of P .

For a face F of P , RelInt(F ) is equal to the set of all points in F that do not lie in any other

proper faces of P .

Definition 1.2.5. The dimension dimP of a nonempty polyhedron P is defined to be the dimen-

sion of its affine hull.

Conventionally, dim(∅) := −1.

Definition 1.2.6. A polyhedron is pointed if it has only one zero-dimensional face.

Also, we want to inform that the set F(P) of all faces of a polyhedral cone P has a special

structure.

Definition 1.2.7. A poset is a set with partial orders. A join of two elements of a poset is the least

upper bound of those two elements. A meet of two elements of a poset is the greatest lower bound

of those two elements. A lattice is a poset such that every pair of elements has its join and meet in

the poset.

Definition 1.2.8. A transverse section K of a polyhedron P is a polytope generated by a hyper-

planeH intersecting with P such that K = P ∩H andH meets all unbounded faces of P .
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Lemma 1.2.9 ( [59, Proposition 1.12, Exercise 2.19].). A transverse section of a polyhedral cone

always exists, and its face lattice is order-isomorphic to F(P)∖ {∅}

Theorem 1.2.10. Suppose F(P) is a set of all faces of a pointed polyhedral cone P ordered by

inclusion. Then, F(P) is a lattice.

Proof. [59, Theorem 2.7] shows F(P) is a lattice if P is a polytope. Now apply Lemma 1.2.9.

From this fact, we construct a set of polyhedra with special structures, called complex.

Definition 1.2.11. A polyhedral complex ∆ is a collection of polyhedra satisfying conditions be-

low;

• If F ∈ ∆ and G ∈ F(F ), then G ∈ ∆.

• For F,G ∈ ∆, then F ∩G is a common face of both F and G.

Two polyhedral complexes are combinatorially equivalent if they are order-ismorphic as posets.

The union of all polyhedra in a polyhedral complex ∆ is called realization of ∆.

Thus, for any polyhedron P , F(P) is also regarded as a polyhedral complex. Indeed, some

subsets of polyhedral complex also form a new polyhedral complex with some special construc-

tions.

Definition 1.2.12. Given a polyhedral complex ∆ with a vertex V , the set

∆/V := {F ∈ ∆ | F ⊂ V }

is called the vertex figure of P at V . Likewise, for any face F ∈ ∆, the set ∆/F := {G ∈ ∆ |

G ⊇ F} is called the link of ∆ at F .

Notes that the vertex figure is a special case of the link when the given face is zero-dimensional.

Theorem 1.2.13 ( [15] [59, p.54]). A link is order-isomorphic to a polyhedral complex.
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Proof. Given a realized polyhedral complex P embedded on Rd with its vertex V , choose a sphere

Sd−1 centered at V such that every nonempty face of P containing V is not inside of the sphere.

By identifying Sd−1 ∩P as a subset of Rd−1 via a standard chart of Sd−1, one can conclude that

this is a realization of the polyhedral complex mapped by F 7→ F ∩ Sd−1 for all F ∈ ∆/V . One

can easily show that the realization of a link can be obtained by taking vertex figure consecutively

for the vertices of the given face.

Definition 1.2.14. The dual (or polar) polyhedral complex ∆op of a polyhedral complex ∆ is a

poset whose elements are the same as ∆, whose order is given by reverse inclusion.

The dual polyhedral complex is also a polyhedral complex [59, Corollay 2.14]. Now, we adopt

a notion of combinatorial connectedness.

Definition 1.2.15. Let max(∆) be the set of maximal elements of ∆, and let
⋂
max(∆) be a set of

faces which are intersections of maximal faces of ∆ as a poset. ∆ is m-combinatorially connected

for m := minF∈
⋂

max(∆) dimF .

This is a much finer notion of connectedness than the usual topological n-connectedness (See

[23] for the notion of topological connectedness). For example, a simplicial complex consisting of

two triangles sharing an edge is 1-combinatorially connected but contractible (infinitely-connected)

in the sense of topological n-connectedness.

Lemma 1.2.16 ([38]). Every vertex figure of m-combinatorially connected polyhedral complex ∆

is at least (m− 1)-combinatorially connected. If m ≥ 1, for any vertex V ∈ ∆, the realization of

∆/V is contractible.

Proof. If m = 0, there is nothing to prove. Let m ≥ 1. Given a vertex V , let F be the intersection

of all maximal faces of ∆ containing V . Then, dimF ≥ m. All maximal faces of ∆/V are

inherited from those maximal faces of ∆ containing V , hence ∆/V is (dimF−1)-combinatorially

connected, and dimF − 1 ≥ m− 1.

For the second statement, let X = {G ∈ ∆ | G ⊇ V } as a set of faces of ∆. If we identify

X as union of its elements, then X is homotopic to F . Thus, collapse each maximal face in X
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containing V continuously to F . Moreover, we claim X ∖ V is homotopic to F ∖ V . To see this,

let SV be a sphere centered at V and generating the vertex figure of ∆ and F on its surface. The

homotopy from X to F restricted on SV gives the homotopy between vertex figures of X and F

over V if dimF ≥ 1.

Lemma 1.2.17 ([38]). Given a d-dimensional polyhedral complex ∆ homeomorphic to a disk Dd,

let V be its vertex in the interior of the realization of ∆. Then ∆/V is homeomorphic to Sd−1.

Otherwise, if V is in the boundary of the realization of ∆, then ∆/V is homeomorphic to Dd−1.

This lemma follows from investigating the intersection with Sd centered at V .

We change gears and rigorously introduce the notion of a specific operation on polytopes

known as “cutting." Given a polytope P embedded in Rd and a face F = faceu(P), where u

is a normal vector of F , we define the operation of cutting F from P as follows: we choose a

supporting hyperplaneHu, c of F , where c is the distance from the origin toHu,c, and then remove

the portion of P lying on one side ofHu,c.

Definition 1.2.18. The separated polytope P ∖F is the polytope defined as the intersection of P

and the outer half space of H ′
F .

For example, if F is a vertex, then the separated polytope P ∖F is combinatorially equivalent

to the vertex figure P/F . However, the link is generally not the same as a separated polytope

when F is positive-dimensional. We remark that F(P ∖F ) does not depend on the choice of H ′
F .

1.2.2 Basic algebraic topology and Alexander duality

In this subsection, we introduce various complexes such as simplicial complexes and CW com-

plexes, which are fundamental objects in algebraic topology. These complexes allow us to study

the properties of spaces by assigning algebraic structures to them. In addition, we introduce the

simplicial, polyhedral, CW, and singular homology and cohomology, which are important tools

for distinguishing topological spaces up to homotopy equivalence. Homology and cohomology

are algebraic invariants that capture the essential features of a space and provide a way to compare
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and classify spaces based on their structure. Finally, we introduce the combinatorial and topolog-

ical versions of Alexander duality and its related notions. Alexander duality is a powerful tool

for computing the cohomology of a space in terms of the homology of its complement, and it has

many applications in geometry, topology, and combinatorics. By understanding these concepts,

we can develop a deeper understanding of the topological structure of the polyhedral complexes

underlying Zd-graded modules.

First of all, we introduce a notion of simplicial complex.

Definition 1.2.19 ( [23, p.103]). The d-simplex [v0, · · · , vd] is the smallest convex set in Rd+1

containing d + 1 points v0, · · · , vd that do not lie in a proper hyperplane. A simplicial complex is

a polyhedral complex consisting of simplices.

Simplicial complexes and polyhedral complexes are special cases of cell complexes, defined as

below.

Definition 1.2.20 ( [35, Ch.5]). A space X with a finite set Γ (whose elements are called cells) of

subsets of X is (finite regular) cell complex if

• X is union of all elements of Γ,

• the subsets e ∈ Γ are pairwise disjoint,

• for each e ∈ Γ, e ̸= ∅, there exists a homeomorphism from a closed i-dimensional disk Di :=

{x ∈ Ri | ∥x∥ ≤ 1} to the closure e of e which maps the open disk of Di to e.

• ∅ ∈ Γ.

Let Γi be the subset of all elements of Γ whose closure is homeomorphic to the i-dimensional

disk Di. An element of Γi has dimension i. Conventionally, as we did in the polyhedral complex,

Γ−1 := {∅}. Also, the dimension of Γ is max{i | Γi ̸= ∅}. Then, we require the following property

to be held.

• If e ∈ Γi and e′ ∈ Γi−2 and e′ ⊂ e, then there exists exactly two cells e1, e2 ∈ Γi−1 such that

e ⊃ e1 ⊃ e′ and e ⊃ e2 ⊃ e′.
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Indeed, the last property was derived from the first four properties [23].

Definition 1.2.21. An incidence function ϵ : Γ×Γ→ {0,±1} is a function satisfying the following

properties;

• For (e, e′) ∈ Γi × Γi−1, ϵ(e, e′) ∈ {0,±1}

• ϵ(e, e′) ̸= 0 ⇐⇒ e′ is a face of e.

• ϵ(e, ∅) = 1 for all 0-cells e.

• For e ∈ Γi and e′ ∈ Γi−2 with (i− 1) cells e1, e2 such that

e ⊃ e1 ⊃ e′ and e ⊃ e2 ⊃ e′,

ϵ(e, e1)ϵ(e1, e
′) + ϵ(e, e2)ϵ(e2, e

′) = 0.

Lemma 1.2.22 ( [23, Lemma IV.7.1]). If Γ is a cell complex, then an incidence function on Γ

exists.

From this, we may define a chain complex as follow.

Definition 1.2.23. The augmented oriented chain complex of d-dimensional cell complex Γ is a

chain complex

C̃ (Γ) : 0→ Cd−1 → Cd−2 → · · ·C0 → C−1 → 0

where we set

Ci :=
⊕
e∈Γi

Ze and ∂(e) =
∑

ei∈Γi−1

ϵ(e, e′)e′ for e′ ∈ Γi.

Likewise, the augmented oriented cochain complex is the chain complex whose differential map

is reverted. The i-th cellular reduced homology Hi,CW(Γ) is defined as kerCi/ imCi+1. Likewise,

the i-th reduced cellular cohomology H i,CW(Γ) is defined as kerCi/ imCi−1 from the augmented

oriented cochain complex.
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One can easily show that the cochain complex is the same as Hom(C̃ (Γ) ,Z). Also, if Γ is

from simplicial complex, we specify the homology as a simplicial (co)homology using the notation

Hi,Simp(Γ) or Hi,Simp(Γ).

Now, we introduce the notion of singular homology.

Definition 1.2.24 ( [23]). A realized d-simplex ∆d is a set in Rd+1 such that

∆d := {u ∈ Rd+1 |
d+1∑
i=1

ui = 1}.

A singular d-simplices in a space X is a continuous map from a realized simplex ∆d to X . Let Γd

be a set of all singular d-simplices in a space X . Since ∆d has a natural cell complex structure,

there is an incidence function ϵ for ∆d. Fix it for all singular simplices. Then, the augmented

oriented (singular) chain complex of X is a chain complex

C̃ (X) : 0→ Cd−1 → Cd−2 → · · ·C0 → C−1 → 0

where we set

Ci :=
⊕
e∈Γi

Ze and ∂(e) =
∑

ei∈Γi−1

ϵ(e, e′)e′ for e′ ∈ Γi.

Likewise, the augmented oriented (singular) cochain complex is the chain complex whose differ-

ential map is reverted. The i-th singular reduced homology Hi(X) is defined as kerCi/ imCi+1.

Likewise, the i-th reduced singular cohomology H i(Γ) is defined as kerCi/ imCi−1 from the aug-

mented oriented (singular) cochain complex.

It is known that the singular (co)homology and cellular (co)homology coincides.

Theorem 1.2.25 ( [11, Theorem 6.2.3], [23, Lemma IV.4.2]). Suppose that Γ be a finite regular

cell complex of X . Then, Hi,CW (Γ) = Hi(X) and H i,CW (Γ) = H i(X) for all i.

Now, we are ready to state a duality which we want to apply for Chapter 3, called Alexander

duality.
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Theorem 1.2.26 (Alexander duality [7, 8, 23]). For any compact locally contractible nonempty

proper topological subspace K of a (d+ 1)-dimensional sphere Sd,

H̃i(S
d ∖K) ∼= H̃d−i−1(K).

For any polyhedral subcomplex ∆ of the boundary of a polytope P ,

H̃i(∆) ∼= H̃d−i−3(∆∗)

where ∆∗ := (F(P)∖∆)op is the Alexander dual of ∆, which is a subcomplex of the dual polytope

Pop.

Proof. To support the first statement, we refer the reader to [23, Theorem 3.44]. As for the second

statement, the relevant reference can be found in [7, 8].

Definition 1.2.27. Given a polytope P and its proper polyhedral subcomplex ∆, the abstract dual

polyhedral complex is the set ∆∗,op := (F(P) ∖∆)op with the partial order reversed. Let C̃ (P)

be the reduced chain cell complex of P. Indeed, this is exactly the same as the reduced cochain

cell complex of Pop. Let C̃ (∆∗,op)unmoved be a chain complex which deletes components (and

componentwise maps) corresponding to faces not in ∆∗,op from C̃ (P). We call C̃ (∆∗,op)unmoved

the unmoved Alexander dual chain complex of ∆∗,op.

In other words, as a poset, ∆∗,op is order isomorphic to (F(P)∖∆). However, we intention-

ally use this name to emphasize the fact that ∆∗ is either an abstract polyhedral complex. Also,

C̃ (∆∗,op)unmoved is a well-defined chain complex, since it coincides with a reduced chain complex

of the Alexander dual of ∆ (with reversed indices) for homology or cohomology. Moreover, for

any i ∈ Z,

Corollary 1.2.28. Hi(C̃ (∆)) ∼= Hi+1(C̃ (∆∗,op)unmoved) and H i(C̃ (∆)) ∼= H i+1(C̃ (∆∗,op)unmoved).

Proof. From Theorem 1.2.26, observe that Hd−i−3(C̃ (∆∗)) ∼= Hi+1(C̃ (∆∗,op)unmoved) by compar-

ing degrees of their chain complexes. The cohomology case is similar.
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1.2.3 Hyperplane arrangements

Definition 1.2.29. The hyperplane arrangement A := {Hu1,c1 , · · · ,Hum,cm} of a polyhedron P ,

or sometimes called H-representation of P , is the collection of supporting hyperplanes of the

facets of P in Rd. A hyperplane arrangement is linear if all hyperplanes in the arrangement

contain the origin.

We make the convention that
⋂m

i=1H+
ui

= P . Also, it is easily observed that a hyperplane

arrangement is linear if and only if ci = 0 for all i ∈ [m].

Definition 1.2.30. A region r of A is a connected component of Rd −
⋃

H∈AH. r(A) refers to the

collection of all regions of A.

Suppose A consists of a minimal number of hyperplanes which generate a rational polyhedral

cone P . Then A is linear and all regions in r(A) are unbounded rational polyhedral cones. Thus,

we may omit ci from the index of hyperplanes such that A := {Hu1 , · · · ,Hum}. Then, every

region r can be expressed as

rS :=

 ⋂
i∈[m]∖S

H+
i

 ∩(⋂
i∈S

H−
i

)
∖

m⋃
i=1

Hi

for a subset S ⊆ [m] where H−
i is the complement of H+

i . In other words, a region is labeled by

the collection of hyperplanes whose positive half space contains it.

Definition 1.2.31 ([4, 18]). The poset of regions r(A) of a hyperplane arrangmentA is a set con-

sisting of all regions with the partial order by reverse inclusion;

rS1 ≤ rS2 if S1 ⊇ S2.

This definition coincides with that of [4, 18] regarding P = r∅ as the base region.

Lemma 1.2.32 ( [18, Lemma 1.3]). There is a canonical embedding F(P)→ r(A) which send a

face F to the set of indices of hyperplanes containing F .
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Since we are interested in regions partitioning Rd along with the set of degrees of standard

monomials of localizations, we modify the definition of rS as follows, to include boundaries:

Definition 1.2.33 (Modified definition of 1.2.30). A region of a index set S rS is a closure of the

(original) region defined as follow;

rS :=

 ⋂
i∈[m]∖S

H+
i

 ∩(⋂
i∈S

H−
i

)
.

Likewise, we induce a notion of cumulative region, which is a union of all regions which are

less than the given region.

Definition 1.2.34. A cumulative region RS =
(⋂

i∈[m]∖SH
+
i

)
is the union of all regions less then

rS . The poset of cumulative regions R(A) is a set of all cumulative regions ordered by inclusion.

By definition, R(A) ∼= r(A) as posets.

Lemma 1.2.35. [51] If A is a linear hyperplane arrangement, then all regions in r(A) are un-

bounded.

Example 1.2.36.

1. Let P = R≥0A with A =
[
1 1 1 ··· 1
0 a1 a2 ··· an−1

]
. Then P is a 2-dimensional cone with facets

(rays) R≥0 [ 10 ] and R≥0

[
1

an−1

]
. Hence A = {H1 := R [ 10 ] ,H2 := R

[
1

an−1

]
}. Since P is a

homogenization of the 1-simplex, r(A),R(A) and F(Q) are all isomorphic as posets.

2. Let

u1 = (0, 1, 0)t, u2 = (−1, 0, 1)t, u3 = (0,−1, 1)t, u4 = (1, 0, 0)t

and a hyperplane arrangementA = {Hu1 ,Hu2 ,Hu3 ,Hu4}. Then, the intersection of its positive

half spaces forms a polyhedral cone P generated by rays

(v1, v2, v3, v4) =
[
0 1 1 0
0 0 1 1
1 1 1 1

]
.
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Index its faces as follow.

F1 := ⟨v2, v2⟩, F2 := ⟨v2, v3⟩, F3 := ⟨v3, v4⟩, F4 := ⟨v4, v1⟩

where ⟨u1, · · · , um⟩ is an abbreviation of the span of {u1, · · · , um} by non-negative real num-

bers. Then, for any face F , label F by the subset of {1, 2, 3, 4} whose corresponding facet

contains F . For example, the ray generated by v1 is indexed by {1, 4}. Then we have the

desired injection from F(P) to r(A) by sending a face F to its index. This relationship is

depicted in Figure 1.1. Note that this is not a bijection; which is explained in Example 1.2.60

Number 2.

P

F1 F2 F3 F4

R≥0v1 R≥0v2 R≥0v3 R≥0v4

0

r∅

r1 r2 r3 r4

r1,4 r1,2 r2,3 r3,4

r1,3,4 r1,2,4 r1,2,3 r2,3,4

r1,2,3,4

Figure 1.1: Hasse diagrams of F(P) and r(A) in Example 1.2.36 Number 2

1.2.4 Affine semigroup rings

Throughout this article, A = {v1, . . . , vn} ⊂ Zd ∖ {0} is a fixed finite set of nonzero lattice

points, called a configuration. We may abuse notation and use A to also denote the d × n integer

matrix whose columns are v1, . . . , vn.
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Definition 1.2.37. An affine semigroup Q generated by A is a finitely submonoid of Zd defined

as Q = NA, consisting of all nonnegative linear integral combinations of the elements of A. The

set R≥0Q = R≥0A of nonnegative real combinations of elements of Q (or A) is a polyhedral

cone, called the underlying cone of Q. The dimension of an affine semigroup Q is defined to be

dimension of its underlying cone.

We assume that Q is strongly convex, meaning that R≥0Q do not contain a line. Like a ring, it

has a natural ideal structure as follow.

Definition 1.2.38. A subset T of an affine semigroup Q is called an ideal if Q + T ⊆ T . For any

subset S of Q, the ideal ⟨S⟩ generated by S is the smallest ideal in Q that contains S. An ideal T

is prime if for any two elements u, v ∈ Q, u+ v ∈ T implies u ∈ T or v ∈ T .

Affine semigroups inherit some properties from its underlying cone.

Definition 1.2.39. A subset of Q is called a face of Q if its complement is a prime ideal; the

collection of faces of Q is denoted by F(Q).

Lemma 1.2.40 ( [42, Lemma 7.12]). There is a one to one correspondence between F(R≥0Q) ∖

{∅} and F(Q), given by intersecting the faces of R≥0Q with Q.

Also notes that if K is a transverse section of R≥0Q, then F(K) is bijective to F(Q) from

Lemma 1.2.9. This fact is used heavily on this dissertation.

Likewise,

Lemma 1.2.41. Let Q is a pointed affine semigroup. The set of radical ideals has a 1-1 correspon-

dence with the set of subcomplexes of F(Q).

This was already known when Q is normal; see [31, Exercise 20.44], [57, p.348-349], and [41,

p.117]. We introduce proof of Lemma 1.2.41 for future reference. The proof is very similar in the

case of the normal affine semigroup.
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Proof of Lemma 1.2.41. Given a subcomplex ∆ of F(Q), let I∆ := {u ∈ Q : u ̸∈ NF for all F ∈

∆}. We claim that I∆ is an ideal. Indeed, if there exist v ∈ I∆ and w ∈ Q such that v + w ∈ NF

for some F ∈ ∆, then v ∈ NF , a contradiction. Also, I∆ is radical; suppose that there exist v ∈ Q

and N ∈ N such that Nv ∈ I∆ but v ̸∈ I∆. This implies v ∈ NF for some F ∈ ∆. Therefore,

Nv = v + · · ·+ v ∈ NF , a contradiction.

Conversely, let T be a radical ideal. Define ∆ := {F ∈ F(Q) : RelInt(R≥0F ) ∩ T = ∅}. It

suffices to show that ∆ is a subcomplex of F(Q) and T = I∆. Suppose G be a face of F ∈ ∆.

If RelInt(R≥0G) ∩ T ̸= ∅, for any u ∈ RelInt(R≥0G) ∩ T and v ∈ RelInt(R≥0F ) ∩ NF ,

v + u ∈ RelInt(R≥0F ) ∩ T , a contradiction. Therefore G ∈ ∆. To see I∆ = T , observes that

I∆ ⊇ T first. Conversely, for any u ∈ I∆, u ∈ RelInt(R≥0F ) ∩ NF for some F ∈ F(Q) ∖ ∆.

Fix v ∈ RelInt(NF ) ∩ T . Since u, v ∈ Q≥0Q, there exists N such that Nu− v ∈ Q. This shows

u ∈ T .

Also, we adopt the notion of divisibility as below.

Definition 1.2.42. We emphasize that, throughout this article, divisibility refers to the ring k[NA],

and not to k[x±]. To be completely precise, xu′ | xu means that u− u′ ∈ NA. We abuse terminol-

ogy, and also state that u′ divides u in this case.

Definition 1.2.43. If F is a facet (a codimension one face) of Q, we define its primitive integral

support function φF : Rd → R by the following properties:

1. φF is linear,

2. φF (Zd) = Z,

3. φF (vi) ≥ 0 for i = 1, . . . , n,

4. φF (vi) = 0 if and only if vi ∈ H .

Primitive integral support functions give a measure of how far a point is from a facet of Q: if

u ∈ Zd, φF (u) is the number of hyperplanes parallel to RF that pass through integer points, and

lie between u and RF , with a sign to indicate whether u is on the side of RF that contains R≥0Q.
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Definition 1.2.44. The relative interior of a face of Q is defined to be the intersection of the relative

interior of the corresponding face of R≥0Q with Q.

If the context is clear, we may abuse notation and refer to a subset F ⊂ A as a face of NA, to

indicate that NF is a face of NA.

Definition 1.2.45. The set H(Q) := (ZQ ∩ R≥0Q) ∖ Q is called the set of holes of Q. If an

affine semigroup contains no holes, it is said to be normal or saturated. In case of saturated affine

semigroup Q,

R≥0Q ∩ ZQ = NA

Indeed, we are interested in not only affine semigroups but also affine semigroup rings defined

as below.

Definition 1.2.46. An affine semigroup ring k[Q] = k[xv1 , · · · , xvn ] is a subring of the Laurent

polynomial ring k[x±] := k[x±1
1 , · · · , x±1

d ].

Since we assume that A is of rank d, k[Q] is a d-dimensional k-algebra. Also, as a ring, k[Q]

is Noetherian.

Affine semigroup rings are Noetherian, as they are quotients of polynomial rings. This can be

restated as a version of Dickson’s Lemma.

Lemma 1.2.47. Let S be a nonempty subset of Q such that no two elements of S are comparable

with respect to divisibility. Then S is finite.

Proof. By contradiction, assume that S contains an infinite sequence {ui}∞i=1. Consider Ij =

⟨xu1 , . . . , xuj⟩ for j ≥ 1. Since xu ∈ Ij if and only if xui |xu for some 1 ≤ i ≤ j, we see that

I1 ⊊ I2 ⊊ I3 ⊊ · · · is an infinite ascending chain, which contradicts Noetherianity of k[Q].

Lemma 1.2.48. There is a natural bijection between the elements of an affine semigroup Q and

the monomials of the corresponding affine semigroup ring k[Q].

Proof. For an element u ∈ Q, send it to xu ∈ k[Q].
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This establishes a one to one correspondence between monomial ideals of k[Q] and ideals of

Q. If T is an ideal of Q, we denote the corresponding monomial ideal of k[Q] by I; more precisely,

I = ⟨xv | v ∈ T ⟩.

Thus,

Lemma 1.2.49. If F is a face of Q, the ideal

PF := ⟨xv | v /∈ F ⟩

is a corresponding to the complement of F is a prime monomial ideal of k[Q]; all prime monomial

ideals of k[Q] arise in this way.

Now we are ready to see that localizations of affine semigroup by an additively closed set

corresponds to those of affine semigroup rings by a multiplicatively closed monomial sets.

Definition 1.2.50. A set S ⊆ Q is called additively closed if it contains 0 and is closed under

addition. The localization Q − NS of Q by an additively closed set S is defined as Q − NS :=

Q+ ZS.

The localization of Q by S is equal to the localization of Q by the minimal additively closed

set containing S whose complement is a prime ideal

Lemma 1.2.51 ([14, Lemma 1.1]). Let S ⊆ k[Q] be a set of monomials that is multiplicatively

closed and let NF be the minimal face of Q containing {v ∈ Q | xv ∈ S}. Then,

S−1 k[Q] ∼= k[Q− NF ].

Definition 1.2.52. If T ⊂ Q is an ideal corresponding to the monomial ideal I in k[Q], and F is

a face of Q, the localization of I at the prime ideal PF , denoted IF is corresponding to the ideal

TF := T − NF of the semigroup Q− NF .
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Moreover, localization also induces a reversed injective map (i.e., contravariant functor) from

faces of underlying polyhedral cone.

Lemma 1.2.53. The maps

F(Q− NF )→ {G ∈ F(Q) | G ⊃ F} given by NG′ 7→ N (G′ ∩ A)

{G ∈ F(Q) | G ⊃ F} → F(Q− NF ) given by NG 7→ NG− NF

are bijective.

Proof. It suffices to show that F(Q − NF ) and {G ∈ F(Q) | G ⊇ F} are in bijection. Fix

G ∈ F(Q). Let w be an outer normal vector so that G = facew(Q). Recall that the absolute

maximum of the functional ⟨w,−⟩ on R≥0Q is zero since every face of Q contains the origin.

We claim

facew(Q− NF ) =


∅ if F ̸⊆ G

G ∪ (−F ) if F ⊆ G.

If F is not a face of G, there exists a nonzero element f ∈ F ∖G such that ⟨w, f⟩ < ⟨w, g⟩ = 0

for any g ∈ G. Since ⟨w,−mf⟩ diverges when m → ∞, facew(Q − NF ) = ∅. If F is a face of

G, G ∪ (−F ) ⊆ facew(Q− NF ). Pick v ∈ facew(Q− NF ) ∩ (Q− NF ). Then, v = u− f for

some u ∈ Q and f ∈ NF . Since 0 = ⟨w, v⟩ = ⟨w, u⟩, u ∈ NG. Thus, v ∈ G ∪ (−F ).

Indeed, by thinking Q as a grading, we can regard k[Q] as a graded ring.

Definition 1.2.54. Given a commutative monoid Q, if we can decompose a ring R into a direct

sums

R =
⊕
u∈Q

Ru satisfying RuRv ⊆ Ru+v for all u, v ∈ Q,

we say R is a graded, or Q-graded ring. Likewise, given a module M over Q-graded ring A, if we
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can decompose a module M into a direct sums

M =
⊕
u∈Q

Mu satisfying RuMv ⊆Mu+v for all u, v ∈ Q,

we say M is a graded, or Q-graded module over A.

Definition 1.2.55. A graded module M = ⊕u∈QMu is finely graded if dimk Mu ≤ 1 for all degrees

v ∈ Zd.

For any face F ∈ F(Q), k[Q− NF ] is finely Zd-graded as follows.

Lemma 1.2.56. dimk(k[Q− NF ])v = 1 if v ∈ Q− NF . Otherwise, dimk(k[Q− NF ])v = 0.

Proof. As k[Q − NF ] ⊆ k[ZQ], it suffices to show that dimk(k[ZQ])v ≤ 1. If v ̸∈ ZQ, then

k[ZQ]v = {0}, otherwise k[ZQ]v = spank{xv}.

Definition 1.2.57. An affine semigroup Q is pointed if its corresponding cone R≥0Q is a pointed

polyhedron.

Also, localization affects the structure of regions as below.

Proposition 1.2.58. Given a face F ∈ F(Q), let S be a set of indices of hyperplanes whose

half-space contains F . Then, R≥0(Q− NF ) = RS .

Proof. From ZF ∪Q ⊂ RS , R≥0(Q−NF ) ⊆ RS . Conversely, for any x ∈ RS , ⟨wi, x⟩ ≥ 0 when

i ∈ S. Pick f ∈ RelInt(NF ) and let x′ = x+
(∑

i ̸∈S ai

)
f where ai is a non-negative real number

such that ⟨wi, x + aif⟩ ≥ 0. Then, x = x′ + (x − x′) with x′ ∈ R≥0Q and (x − x′) ∈ span(F ).

Thus, R≥0(Q− NF ) = R≥0(ZF ∪Q) ⊇ RS .

Definition 1.2.59. A category of Q CatQ is a poset containing all localizations of Q ordered by

inclusion.

Below, we describe all posets that arise in this section using a commutative diagram.

F(Q) CatQ R(A) r(A) (2A)opQ−N(−)

∼=

R≥0(−) ∼= ϕ
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y

x, F1

F2

(a) Q = N [ 1 1 1 1
0 1 3 4 ] and I = ⟨[ 11 ]⟩

x

y

z

(b) Q = N
[
0 1 0 1
0 0 1 1
1 1 1 1

]
and I =

〈[
2 2 2 3
0 1 3 3
2 2 3 3

]〉
Figure 1.2: Monomials and ideals in affine semigroups

Note that the embedding F(Q) → r(A) in [18, Lemma 1.3] is split into the diagram above.

Moreover, all posets are indexed by a subposet of (2A)op, a poset of subsets of A by reverse

inclusion. The inclusion map ϕ returns the set of indices of positive half-spaces containing the

given element.

Example 1.2.60 (Continuation of Example 1.2.36).

1. (Monomial curves) Let Q = NA with A =
[
1 1 ··· 1
0 a1 ··· an−1

]
such that 0 < a1 < · · · < an−1

are relatively prime integers. If 0, a1, a2, . . . , an−1 are consecutive integers, then k[Q] is the

coordinate ring of a rational normal curve; otherwise, k[Q] is not normal.

Figure 1.2a illustrates the example where a1 = 1, a2 = 3, a3 = 4. Elements of the semigroup

Q are represented by filled dots. Since [ 12 ] is a hole of Q (in fact, it is the only hole of Q), it

is depicted as an empty circle. Let T = ⟨[ 11 ]⟩. The elements of T are colored black, while the

elements in Q but not in T are colored blue. This includes [ 22 ], which is not in T because [ 12 ] is

a hole of Q.

Lastly, notes that F(Q),CatQ,R(A), r(A), and 2A are all isomorphic as a poset, depicted in a

Table 1.1.
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F(Q) CatQ R(A) r(A) 2A

0 Q P P = H(+)
1 ∩H(+)

2 {H1,H2}
F1 Q− NF1 H(+)

1 = {y ≥ 0} H(+)
1 ∩H(−)

2 = {y ≥ 0, y > an−1x} {H1}
F2 Q− NF2 H(+)

2 = {y ≤ an−1x} H(−)
1 ∩H(+)

2 = {y < 0, y ≤ an−1x} {H2}
Q Z2 R2 H(−)

1 ∩H(−)
2 = {y < 0, y > an−1x} ∅

Table 1.1: Description of F(Q),CatQ,R(A), r(A), and 2A of a Monomial Curve in Exam-
ple 1.2.60

2. (Segre embedding of P1×P1) Let Q = NA with A =
[
0 1 1 0
0 0 1 1
1 1 1 1

]
. The affine semigroup ring k[Q]

is isomorphic to k[z, xz, yz, xyz] ∼= k[a, b, c, d]/⟨ac− bd⟩. The exponent vectors of monomials

in the ideal I = ⟨x2z2, x2yz2, x2y3z3, x3y3z3⟩ ⊂ k[Q] are depicted by black dots in Figure 1.2b.

Notes that the underlying polyhedron of Q is equal to the polyhedral cone in Example 1.2.36

Number 2.

Observe that R≥0(Q− Fi) = R{i} for any i ∈ [n] and

R≥0(Q− ⟨v1⟩) = R1,4, R≥0(Q− ⟨v2⟩) = R1,2,

R≥0(Q− ⟨v3⟩) = R2,3, R≥0(Q− ⟨v4⟩) = R3,4.

Thus, R(A) ⊋ R≥0(CatQ), for example, because localization cannot generate affine semi-

groups in R1,2,3. This illustrates the nontrivial injection r(A) ∼= R(A) ⊋ F(Q) ∼= CatQ,

described in Figure 1.1.

More examples are as below.

Example 1.2.61.

1. Let A be a d× d identity matrix. Then NA = Nd and consequently k[NA] ∼= k[x1, · · · , xd]. A

face of NA is a set of all nonnegative integral combinations of a subset of (the columns of) A.

In Figure 1.3a, the shaded region represents the monomial ideal I = ⟨x3y, xy2⟩ ⊂ k[x, y].

2. Let A =
[
1 1 1
0 1 2

]
. Then NA is a saturated semigroup, and k[NA] ∼= k[x, xy, xy2] is a normal

semigroup ring, a subring of k[x, y]. Figure 1.3b illustrates the ideal ⟨x2y2, x3y⟩ ⊆ k[NA].
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y

x

(a) ⟨x3y, xy2⟩ (shaded region) in k[x, y]

y

x

(b) ⟨x2y2, x3y⟩ (shaded region) in k[x, xy, xy2]

Figure 1.3: Examples of ideals in two-dimensional affine semigroup rings

x

y

z

(a) ⟨x2z2, x2yz2, x2yz2⟩ in k[z, xz, yz, xyz]

x

y

z

(b) ⟨x, xyz, xyz2⟩ in k[x, xy, xz, xyz, y2, z2]

Figure 1.4: Examples of ideals in three-dimensional affine semigroup rings

3. Let A =
[
0 1 0 1
0 0 1 1
1 1 1 1

]
. In this case, k[NA] ∼= k[z, xz, yz, xyz] is a saturated affine semigroup ring.

We depict the ideal ⟨x2z2, x2yz2, x2yz2⟩ ⊂ k[NA] in Figure 1.4a.

4. Let A =
[
0 0 1 1 1 1
2 0 0 1 0 1
0 2 0 0 1 1

]
. Then k[NA] ∼= k[x, xy, xz, xyz, y2, z2] is a subring of k[x, y, z]. In this

case, NA is not saturated, and the set of holesH(NA) is {(a, b, 0) | (a, b) ∈ N2∖(2N×2N)}. In

Figure 1.4b, the see the ideal ⟨x, xyz, xyz2⟩ ⊂ k[NA]. Holes are represented by white circles.
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1.2.5 Local cohomology

Local cohomology is defined as a derived functor of a special fuctor, called torsion functor.

For the readers who are not familiar with such concepts, please consult with [56].

Definition 1.2.62. Given a commutative ring R, its module M , and its ideal I , I-torsion submodule

ΓI(M) of M is a module consisting of all elements of M which are annihilated by some power of

I . In other words,

ΓI =
⋃
n∈N

(0 :M In).

Lemma 1.2.63 ([9, p.2]). ΓI is an endofunctor on the category of R-modules.

Definition 1.2.64. For i ∈ N, the i-th local cohomology with respect to I H i
I(−) is the i-th right

derived functor of ΓI . For an R-module M , the i-th local cohomology module of M with respect

to I is H i
I(M), the application of H i

I(−) on M .

Lemma 1.2.65 ([9, Remark 1.2.3]). H i
I(−) = H i√

I
(−), where

√
I is the radical of I .

When R is Noetherian, there is another way of calculating the local cohomology via so-called

Čech complex.

Definition 1.2.66 (Čech Complex). Given a Noetherian ring R, suppose I = ⟨r1, · · · , rn⟩ for some

elements ri ∈ R. The Čech complex is a chain complex

C• : 0→ C0 δ0−→ C1 δ1−→ · · · δn−1

−−→ Cn → 0

such that Ck is a direct sum of localizations R∏
i∈σ

fi of R by a multiplicative set generated by an

element
∏
i∈σ

fi where σ is a k-subset of [n], and its differential is defined summandwisely by direct

sum of

R∏
i∈σ

fi → R ∏
i∈σ∪{j}

fi := (−1)(position of j in ascending order)−1nat.

where nat is a canonical map given by localization.
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Theorem 1.2.67 ([22, 47]). Given R-module M , H i(M ⊗R C•) ∼= H i
I(M).

If R is an affine semigroup ring, then there is more combinatorially-friendly way of calculating

the local cohomology when the supporting ideal is graded maximal ideal [30]. Given a pointed

affine semigroup Q with transverse section K, there is a canonical isomorphism −̂ : F(K) →

F(Q) given as follows: F̂ is the minimal face of Q such that R≥0F̂ ⊇ R≥0F . Since Q is pointed, it

has a unique zero-dimensional face, namely the origin, which corresponds to the (-1)-dimensional

face ∅ of K. As a CW complex, K has an incidence function ϵ :
⊕d−1

i=−1F(K)i × F(K)i+1 →

{0,±1} that has a nonzero value when two faces are incident. Now we are ready to state the

definition of Ishida complex.

Definition 1.2.68 ( [30]). Let m be the maximal monomial ideal of k[Q]. The set of all k-

dimensional faces in F(K) is denoted by F(K)k. Let L• be the chain complex

L• : 0 L0 L1 · · · Ld 0, Lk :=
⊕

F∈F(K)k−1

k[Q− NF̂ ]∂ ∂ ∂ ∂

where the differential ∂ : Lk → Lk+1 is induced by the componentwise map ∂F,G with F ∈

F(K)k−1, G ∈ F(K)k such that

∂F,G : k[Q− NF̂ ]→ k[Q− NĜ] to be


0 if F ̸⊂ G

ϵ(F,G) · nat if F ⊂ G

with nat, the canonical injection k[Q−NF̂ ]→ k[Q−NĜ] when F ⊆ G. We say that L•⊗k[Q] M

is the Ishida complex of a k[Q]-module M supported at the maximal monomial ideal.

The cohomology of the Ishida complex of M supported at the maximal monomial ideal is

isomorphic to the local cohomology of M supported at the maximal monomial ideal.

Theorem 1.2.69 ([30, Theorem 6.2.5]). For any k[Q]-module M , and all k ≥ 0,

Hk
m(M) ∼= Hk(L• ⊗

k[Q]
M).
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Example 1.2.70 (Continuation of Example 1.2.60).

1. Given Q/T = N [ 1 1 1 1
0 1 3 4 ] / ⟨[ 11 ]⟩, let S = k[Q]/I , where I is a monomial ideal corresponding

to T . The transverse section of R≥0Q is a line segment with vertices F1 = [ 10 ] and F2 = [ 14 ]

respectively. Thus, the corresponding Ishida complex of S with the maximal ideal support is

L• : 0→ S → Sx ⊕ Sxy4 → 0→ 0

2. Given Q/T = N
[
0 1 1 0
0 0 1 1
1 1 1 1

]
/
〈[

2 2 2 3
0 1 3 3
2 2 3 3

]〉
, let S = k[Q]/I , where I is a monomial ideal corre-

sponding to T . R≥0Q’s transverse section is rectangular. Due to the fact that all other local-

izations of S are zero except for the localizations by monomial prime ideals corresponding to

û1 :=
[
0
0
1

]
, û4 :=

[
0
1
1

]
, and F4 :=

[
0 0
0 1
1 1

]
, the Ishida complex of S with the maximal ideal

support is as follows;

L• : 0→ S → Sz ⊕ Syz → Sz,yz → 0

1.2.6 Cohen–Macaulayness

One of the primary concerns of using local cohomology is to determine whether a given module

or ring is Cohen–Macaulay or not. To define what a Cohen-Macaulay ring is, we need to start from

the notion of regular sequences. Intuitively, a regular sequence is a generalization of the notion of

linear independence from vector spaces to modules over a ring. A Cohen-Macaulay ring is a

local ring in which all maximal sequences of elements are regular, and it is a fundamental concept

in commutative algebra with applications in algebraic geometry and algebraic topology. Local

cohomology provides a powerful tool for studying the Cohen-Macaulay property of a module or

ring and plays an essential role in many areas of mathematics.

Definition 1.2.71. Given a commutative ring R, an R-regular sequence (r1, r2, · · · , rm) is a se-

quence of elements of R such that ri is not a zero-divisor on R/(r1, r2, · · · , ri−1) ̸= 0 for i =

1, 2, · · · ,m. The depth, or depth of R with respect to an ideal I is the supremum of lengths of all

R-regular seq. from the ideal T . The dimension of R is the supremum of lengths of all chain of
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prime ideals. R is Cohen–Macaulay if for any maximal ideal m of R, the depth of Rm with respect

to the ideal mRm is equal to dimR.

Especially, we are interested in when the ring is graded.

Definition 1.2.72 ([11, Definition 1.5.13]). Given a graded commutative ring R, a graded ideal m

of R is ∗-maximal if every graded ideal that properly contains m equals R. The ring R is called

∗-local if it has a unique ∗-maximal ideal m.

Example 1.2.73. Every pointed affine semigroup rings are ∗-local.

Lemma 1.2.74 ([11, Exercise 2.1.27 (c)]). Given a ∗-local ring R, R is Cohen–Macaulay if and

only if depth (m∗Rm∗ , Rm∗) = dimR.

Thus, Cohen–Macaulayness can be judged by two informations, the depth and dimension of

the module. Indeed, local cohomology is a mathematical objects only let us know what is the depth

and dimension of the given module.

Theorem 1.2.75 ([11, Theorem 3.5.7]). Given a Noetherian local ring R with its maximal ideal

m, let M be a finite R-module of depth (m,M) = t and dimension d. Then,

• H i
m(M) = 0 for i < t and i > d.

• H t
m(M) ̸= 0 and Hd

m(M) ̸= 0.

Corollary 1.2.76 ([11, Remark 3.6.18, Theorem 3.5.6]). If R is ∗-local, then let H i
m(M) is the

injective limit of ExtiR(R/mk,M) on the category of graded modules. Then, H i
m(M) ∼= H i

Rm
(Mm).

Hence, in case of modules over ∗-local ring, the Čech complex and Ishida complex gives us

the desired local cohomology. One important corollary of this result is

Corollary 1.2.77. A module M over a ∗-local ring is Cohen–Macaulay if and only if H i
m(M) = 0

for all i except i = dimM .
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Proof. This is just came from the fact that depth is equal to the dimension when M is Cohen–

Macaulay.

Example 1.2.78. R := K[x, y] is Cohen–Macaulay since (x, y) forms a R-sequence which implies

that depth is at least 2. Since depth is always less than the dimension of R, which is 2, we can

assure that depth is equal to the dimension. If one calculate the local cohomology of R, then it has

only nonzero module on index 2.

However, R := K[x2, x3, xy]/(x4y, x4y2) is not Cohen–Macaulay since it has no nonzero

divisors, which implies that the depth is 0, while (x2, x3) ⊆ (x2, x3, xy) implies that dimR = 1.

1.2.7 Lattice binomial ideals and cellular binomial ideals

In algebraic combinatorics and algebraic geometry, binomial ideals are a class of ideals gener-

ated by binomials, which are polynomial equations with two terms. They have many applications

in various areas of mathematics, such as algebraic statistics, coding theory, and algebraic cryptog-

raphy. In this context, we introduce families of binomial ideals, which are sets of binomial ideals

that share certain properties or characteristics.

Definition 1.2.79. Given a d-dimensional polynomial ring k[x1, · · · , xd] over a field k, a binomial

is a polynomial having at most two terms. A binomial ideal is an ideal generated by binomials.

We are interested in three types of binomial ideals, lattice ideals, toric ideals, and cellular

binomial ideals.

Definition 1.2.80. Let Lρ be a subgroup of Zd. A partial character ρ : Lρ → k∗ on Zd is a group

homomorphism, where k∗ is the multiplicative group of k. The lattice ideal I(ρ) corresponding to

ρ is the ideal in k[x] defined as

I(ρ) := ⟨xu − ρ(u− v)xv | u− v ∈ Lρ⟩ ⊂ k[x1, . . . , xn]. (1.1)

We remark that in [19], these lattice ideals are denoted by I(ρ)+, while I(ρ) is used for lattice

ideals in Laurent polynomial rings. Since we do not need the more general context, we use (1.1)
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for economy in the notation.

Definition 1.2.81. The saturation (Lρ)sat of a lattice Lρ is (Lρ)sat := (Q⊗Z Lρ) ∩ Zd. A lattice is

saturated if Lρ = (Lρ)sat.

One important property of a lattice ideal is that it is prime if and only if it is saturated, when k

is algebraically closed.

Theorem 1.2.82 ( [19, Theorem 2.1.c.] [19, Corollary 2.5]). If k is algebraically closed, then I(ρ)

is prime if and only if Lρ is saturated. Furthermore, the associated primes of a lattice ideal are

lattice ideals corresponding to the saturation of the underlying lattice.

Indeed, there is a notion of generalized lattice ideal, which is called a cellular binomial ideal.

Definition 1.2.83. An ideal I ⊂ k[x] is cellular if all variables are either nonzero divisors modulo

I or nilpotent modulo I . The nonzero divisor variables are known as the cellular variables of I .

Let ζ ⊂ [n] be the set of all indices of cellular variables of a cellular binomial ideal I , then I is

ζ-cellular.

Lattice ideal are special cases of cellular binomial ideals, where all variables are cellular. Also,

Theorem 1.2.84 ( [20, Theorem 2.6]). I ∩ k[Nζ ] is a lattice binomial ideal.

The following result can be found in [19, Section 6] and also in [20, Corollary 3.5].

Theorem 1.2.85. Let I be a ζ-cellular binomial ideal in k[x]. The associated primes of I are the

ideals k[x] · P + ⟨xi | i ∈ ζc⟩, where P ⊂ k
[
Nζ
]

runs over the associated primes of lattice ideals

of the form (I : m) ∩ k
[
Nζ
]
, for monomials m ∈ k

[
Nζc
]
.

Lastly, the most specific example of lattice ideals are some prime lattice ideals called toric.

Definition 1.2.86. A toric ideal is the prime lattice ideal I(χ) corresponding to the trivial character

χ : Lχ → {1} ⊂ k∗.
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Toric ideals are important since all affine semigroup rings can be constructed via taking quotient

of polynomial rings by toric ideals.

Theorem 1.2.87 ( [42, Theorem 7.3]). An affine semigroup Q is the quotient of Nd by the equiv-

alence relation ∼Lχ given by u ∼Lχ v ⇐⇒ u − v ∈ Lχ. A quotient of polynomial ring by

corresponding prime lattice ideal k[x]/I(χ) is isomorphic to an affine semigroup ring k[Q].
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2. DEGREE SPACE

2.1 Multidegrees and localization for graded k[NA]-modules

Let Q = NA be an (not-necessarily pointed) affine semigroup defined in Definition 1.2.37.

Lemma 1.2.51 shows that the faces of Q govern the localizations of any Zd-graded k[Q]-module M

by monomials. In this section, we examine the effect of localization on the supporting multidegrees

of M , defined as follows.

Definition 2.1.1 ( [39, Definition 3.1 and 3.2], [40, Definition 3.1]). Let M be a Zd-graded k[Q]-

module.

1. The degree set of M is defined to be

deg(M) := {u ∈ Zd |Mu ̸= 0}.

2. Especially, let I be a monomial ideal in k[Q]. The standard monomials of I are the mono-

mials in k[Q] that do not belong to I. We denote

std(I) = {a ∈ Q | ta /∈ I}. (2.1)

In other words, std(I) = deg (k[Q]/I)

3. A proper pair of M is a pair (u, F ) where u ∈ Q and F ∈ F(Q) such that u + NF ⊆

deg(M).

4. If (u, F ) and (v,G) are proper pairs, we say (u, F ) < (v,G) if u+NF ⊆ v+NG. A proper

pair (u, F ) of M is called a degree pair of M if it is maximal among proper pairs in this

partial order.

5. We say that (u, F ) divides (v,G) if there is w ∈ NA such that u+w+NF ⊂ v +NG. (see

Notation 1.2.42) to the pairs of Q.)
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This is the natural extension of the original definition of standard pairs from [52], although

the partial order is reversed. Notes that the definition of standard pair, which was first introduced

by [52]. Also we note that overlapping is a special case of divisibility, which means that divisi-

bility is not an antisymmetric relation, and therefore not a partial order on pairs. This difficulty is

resolved if we extend the definition of divisibility to overlap classes of pairs.

Lemma 2.1.2. Suppose (u, F ) divides (v,G). If (u′, F ) overlaps (u, F ) and (v′, G) overlaps

(v,G), then (u′, F ) divides (v′, G). We conclude that divisibility is a well-defined relation on the

overlap classes of pairs of Q. Moreover, divisibility is a partial order on such overlap classes.

Proof. Since (u, F ) and (u′, F ) overlap, we may choose w1 ∈ NF such that u′ + w1 ∈ u + NF ,

which implies that u′ +w1 +NF ⊆ u+NF . As (u, F ) divides (v,G), there is w2 ∈ NA such that

u+ w2 + NF ⊆ v + NG. But then u′ + w1 + w2 + NF ⊂ v + NG. Finally, select w3 ∈ NG such

that v + w3 ∈ v′ + NG. Then u′ + w1 + w2 + w3 + NF ⊆ v′ + NG. It follows that divisibility

is well defined on overlap classes of pairs of Q. Showing that divisibility is a partial order, in this

case, is similarly straightforward.

Lemma 2.1.3 ([40, Lemma 3.2]). Any finitely generated Zd-graded k[Q]-module M has finitely

many degree pairs. Therefore, it has finitely many overlap classes.

Proof. Let 0 = M0 ⊂ M1 ⊂ · · ·Ml = M be a chain of submodules of M such that Mi−1/Mi
∼=

k[NA]/Pi where Pi is a graded prime ideal of k[NA].

Thus, deg (Mi/Mi−1) = ui + NFi for some ui ∈ Zd and a face Fi corresponding to Pi. To see

that

deg (M) = deg (M0 ⊕M1/M0 ⊕ · · · ⊕Ml/Ml−1) =
l⋃

i=1

ui + NFi,

note that for any homogeneous element m ∈M , there exists i such that m ∈Mi/Mi−1 is nonzero.

Hence, deg(m) ∈ ui + NFi. Conversely, we may lift any graded element in the direct sum to M .

This says we have a finite pair cover, from here to finitely many standard pairs as demonstrated

by [39, Theorem 3.16].
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In case of the overlap classes, the statement is clear since the cardinality of the set of all overlap

classes are bounded by that of the set of all degree pairs.

Indeed, to make a relation between degree pairs on localizations well-defined, we adopt a

notion of overlap class.

Definition 2.1.4. Two degree pairs (u, F ) and (v, F ) with the same face F overlap if the intersec-

tion (u+ NF ) ∩ (v + NF ) is nonempty.

Lemma 2.1.5. Overlapping is an equivalence relation.

Proof. Reflexivity and symmetry hold via those property of the intersection. To see transitivity, let

(u, F ) ∼ (v, F ) and (v, F ) ∼ (w,F ). By the definition, there exists v1+f1 ∈ (u+NF )∩(v+NF )

and v2+f2 ∈ (v+NF )∩ (w+NF ) for some f1, f2 ∈ NF . Since both vectors are in (v+NF ), we

may rewrite it as v1+f1 = v+f ′
1 and v2+f2 = v+f ′

2 for some f ′
1, f

′
2 ∈ NF . Now, one can see that

v+ f ′
1 + f ′

2 is in both (u+NF ) and (w+NF ) simultaneously. This shows (u+NF )∩ (w+NF )

is nonempty.

Definition 2.1.6. The overlap class [u, F ] is the equivalence class containing the degree pair

(u, F ). We define deg. p(M) (resp. deg. p(M)) as the set of all (resp. overlap classes of) de-

gree pairs of M .

Example 2.1.7 (Standard pairs and void pairs).

1. Let I be a monomial ideal of k[NA]. The degree pairs of M = k[NA]/I are the standard pairs

of I introduced in [52] and generalized in [39, Definition 3.1 and 3.2].

2. Given an affine semigroup Q := NA, the saturation of Q is Qsat = Zd ∩R≥0Q. It is known that

the affine semigroup ring corresponding to the saturation of of Q is the normalization of k[Q].

The set of holes of Q is defined to be the difference Qsat ∖Q.

The set of holes of Q is also the degree set deg(k[Qsat]/k[Q]). As the k[Q]-module M =

k[Qsat]/k[Q] is finitely generated [48][§3. Proposition16] by Noether’s normalization lemma,

33



applying Lemma 2.1.3 provides an alternative algebraic proof of the well-known combinatorial

result [25]. Namely, the set of holes of a semigroup Q is a finite union of translates of faces of

Q. Later on, we refer to degree pairs of M as void pairs.

Example 2.1.8 (Continuation of Example 1.2.61).

1. Consider ⟨x3y, xy2⟩ in k[x, y]. Denote F = {(1, 0)}, G = {(0, 1)}, and O = ∅. These

subsets of the (columns of) A respectively span the nonnegative x-axis, the nonnegative y-

axis, and the origin, which are the proper faces of R≥0A. Our ideal has four degree pairs,

((0, 0), F ), ((0, 0), G), ((1, 1), O), and ((2, 1), O), depicted in Figure 2.1a using thick lines. In

this case, ((1, 1), O) divides ((2, 1), O). Thus there are three maximal degree pairs with respect

to divisibility. There are no overlapping degree pairs.

2. Now, look ⟨x2y2, x3y⟩ in k[x, xy, xy2]. This ideal also has four degree pairs: ((0, 0), G),

((1, 1), G), ((0, 0), F ), and ((2, 1), O) depicted in Figure 2.1b. Here F = {(1, 0)}, G =

{(1, 2)}, and O = ∅ correspond to the proper faces of the cone R≥0A. The degree pair

((0, 0), G) divides ((1, 1), G), and we again have three maximal degree pairs with respect to

divisibility. There are no overlapping degree pairs.

3. This example illustrates that overlapping degree pairs can occur even if the semigroup ring is

normal. Consider ⟨x2z2, x2yz2, x2yz2⟩ in k[z, xz, yz, xyz]. Let F = {(0, 0, 1), (0, 1, 1)}, which

gives the face of R≥0A whose linear span is the yz-plane. In this case, we have three degree

pairs ((0, 0, 0), F ) (a blue region in Figure 2.2a), ((1, 0, 1), F ) (a yellow region in Figure 2.2a),

and ((1, 1, 1), F ) (a red region in Figure 2.2a). The degree pairs ((1, 0, 1), F ) and ((1, 1, 1), F )

overlap. In this case, there are two overlap classes of degree pairs. As the pair ((0, 0, 0), F )

divides (the overlap class of) ((1, 0, 1), F ), we have only one overlap class which is maximal

with respect to divisibility.

4. We now work with ⟨x, xyz, xyz2⟩ in k[x, xy, xz, xyz, y2, z2]. Note again that this semigroup

ring is not normal. Let F = {(0, 0, 2), (0, 2, 0)}, be the face of R≥0A whose linear span is the
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(a) degree pairs of I = ⟨x3y, xy2⟩ in k[x, y]

t

s

(b) degree pairs of ⟨x2y2, x3y⟩ in k[x, xy, xy2]

Figure 2.1: Degree pairs in two-dimensional affine semigroup rings

yz-plane, and let G = {(0, 2, 0)} the face whose linear span is the y-axis. In this case, our mono-

mial ideal has three degree pairs: ((0, 0, 0), F ) (yellow points in Figure 2.2b), ((1, 0, 1), F ) (red

points in Figure 2.2b), and ((1, 1, 0), G) (blue points in Figure 2.2b). We note that ((1, 1, 0), G)

cannot divide ((1, 0, 1), F ). It follows there are two degree pairs that are maximal with respect

to divisibility. A feature of this example is that the Zariski closure of the set (1, 0, 1) + NF

contains (1, 1, 0) + NG, a situation that does not occur for degree pairs of monomial ideals in

polynomial rings.

Example 2.1.9 (Continuation of Example 1.2.70).

1. Degree pairs of M := k[x, xy, xy3, xy4]/⟨xy⟩ are

(green) ([ 23 ] ,∅), (blue) ([ 00 ] , F1), (red) ([ 00 ] , F2) , ([ 13 ] , F2) , ([ 26 ] , F2) .

In Figure 2.3a, these are indicated by a green (dotted) circle, a blue (dashed) line, and red

(straight) lines. Each of the degree pairs forms an overlap class.

2. Let A :=
[
0 1 1 0
0 0 1 1
1 1 1 1

]
. Degree pairs of M := k [NA] /I where I = ⟨x2z2, x2yz2, x2y3z3, x3y3z3⟩
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(a) degree pairs of ⟨x2z2, x2yz2, x2yz2⟩
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y

z

(b) degree pairs of ⟨x, xyz, xyz2⟩

Figure 2.2: degree pairs in three-dimensional affine semigroup rings

is a monomial ideal of k[z, xz, xyz, yz] ∼= k [NA] are

(green)
([

2
2
2

]
,∅
)
, (blue)

([
0
0
0

]
, F4

)
, (yellow)

([
1
0
1

]
, F4

)
, (red)

([
1
1
1

]
, F4

)
.

In Figure 2.3b, these are indicated by a green circle, a blue triangle (in zy-plane), a yellow

triangle, and a red triangle (in x = 1 plane), respectively. As illustrated in Figure 2.3b, the

yellow and red triangles represented by
([

1
0
1

]
, F4

)
and

([
1
1
1

]
, F4

)
overlap. Hence, the overlap

classes of I are

{([
2
2
2

]
,∅
)}

,
{([

0
0
0

]
, F4

)}
,
{([

1
0
1

]
, F4

)
,
([

1
1
1

]
, F4

)}
.

Notably, the union
([

1
0
1

]
+ NF4

)
∪
([

1
1
1

]
+ NF4

)
is a subset of translates of faces represented

by standard pairs of IF4 , the localization of I by a face F4.

We assert that localization by a monomial prime ideal PF (defined in Lemma 1.2.49) generates

an injective map between sets of overlap classes of degree pairs, deg. p(M) and deg. p(MPF
). For

economy of notation,
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x, F1

F2

(a) Q = N [ 1 1 1 1
0 1 3 4 ] and deg(I) = ⟨[ 11 ]⟩

x

y

z

(b) Q = N
[
0 1 0 1
0 0 1 1
1 1 1 1

]
and deg(I) =

〈[
2 2 2 3
0 1 3 3
2 2 3 3

]〉
Figure 2.3: Degree pairs of k[Q]/I

Definition 2.1.10. Let MF be the localization of M by a monomial prime ideal PF corresponding

to a face F ∈ F(Q).

To begin, we see that the face lattice F(Q−NF ) of the affine semigroup Q−NF arising from

localization by the face F can be identified as a subset of the face lattice F(Q) as follows.

As a consequence of Lemma 1.2.53, we can express any face of Q − NF as NG − NF for

some face G ∈ F(Q) such that G ⊃ F . Likewise, (u,G ∪ (−F )) denotes a degree pair of a

k[Q− NF ]-module MF .

Our next step is to show that each degree pair of a localization of M can be lifted to a degree

pair of M .

Lemma 2.1.11. Suppose G ⊇ F ∈ F(Q). Given a degree pair (u,G ∪ (−F )) of MF , there exists

u′ ∈ deg(M) such that (u′, G ∪ (−F )) = (u,G ∪ (−F )) and (u′, G) is a degree pair of M .

By abuse of notation, let x−∞ = 0 ∈ k[Q].

Proof. Assume that {m1,m2, · · · ,ml} is a minimal generating set of M with deg(mi) = ui.

Select an appropriate f ∈ NF so that u + f ∈ Q. Let wi = u + f − ui if wi ∈ deg(Q) and
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xwimi ̸= 0 or wi = −∞ otherwise. Set m :=
(∑l

i=1 x
wimi

)
∈ M . Then, m/xf ∈ MF is a

nonzero homogeneous element of degree u; otherwise no element of MF with degree u can be

generated. Hence, m is a nonzero homogeneous element of degree u + f . Also, (deg(m), G) is a

proper pair of M , otherwise, if u+f +g ̸∈ deg(M), then no element of MF with degree u+f +g

exists. Thus, a degree pair (u′, G′) exists that contains (deg(m), G) with G′ ⊇ G. We may assume

that m′ =
∑l

i=1 x
w′

imi is of order u′ with wi = u′− ui ∈ Q or wi = −∞. Since deg(m) = u′ + g′

for some g′ ∈ NG′ and w′
i ̸= −∞ if wi ̸= −∞, xgm′ = m.

Furthermore, we claim G′ = G. Suppose not, then we can have w ∈ NG′ ∖ NG such that

u + w ̸∈ deg(MF ) by the maximality of (u,G ∪ (−F )). Thus, xw · m/xf = 0, which implies

xw+g′ ·m′ = 0, contradicting the fact that w + g′ + u′ ∈ deg(M). Hence, g′ ∈ NG.

Finally, we assert (u′, G ∪ (−F )) = (u,G ∪ (−F )). Indeed u = u′ + g′ − f indicates that

u ∈ u′ + N (G ∪ (−F )), implying (u′, G ∪ (−F )) > (u,G ∪ (−F )). Also, (u′, G ∪ (−F )) is

a proper pair; otherwise, we would not have an element whose degree is in u + N (G ∪ (−F )),

contradiction. These two degree pairs are same due to the maximality of (u,G ∪ (−F )).

The choice of u′ is not unique; see Example 2.1.16(2). Fortunately, their overlap class is

uniquely determined.

Lemma 2.1.12. Suppose G ⊇ F ∈ F(Q). Given two overlapping degree pairs (u,G∪ (−F )) and

(v,G ∪ (−F )) of MF , let u′ and v′ be degrees of deg(M) chosen by Lemma 2.1.11. Then, (u′, G)

and (v′, G) overlap.

Proof. From (u,G ∪ (−F )) = (u′, G ∪ (−F )) and (v,G ∪ (−F )) = (v′, G ∪ (−F )), there exists

gu, gv ∈ NG, fu, fv ∈ NF such that

u′ + gu − fu = u+ gv − fv.

Hence, u′ + gu + fv = u + gv + fu ∈ deg(MF ). Again, u′ + gu + fv ∈ deg(M) when a set of

minimal generators is fixed and a similar construction in the proof of Lemma 2.1.11 is used.
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As a consequence of the lemma above, we obtain the desired injective map between sets of

overlap classes under localization. We provide a new notation to describe this map.

Definition 2.1.13. Given an overlap class [u, F ] ∈ deg. p(M), let
⋃
[u, F ] :=

⋃
(v,F )∈[u,F ] v+NF .

In other words,
⋃
[u, F ] is the union of all translates of faces represented by degree pairs in

[u, F ].

Theorem 2.1.14. Suppose F ⊆ G ⊆ H are faces of Q. Given an overlap class [u,H ∪ (−G)] ∈

deg. p(MG), there exists a unique overlap class [u′, H ∪ (−F )] ∈ deg. p(MF ) such that

⋃
[u′, H ∪ (−F )] =

(⋃
[u,H ∪ (−G)]

)
∩ deg(MF ).

We denote this injection [u′, H ∪ (−F )] = resG,F ([u,H ∪ (−G)]), and call it restriction. These

restriction maps satisfy that for any F ⊆ G,G′ ⊆ H , resH,G ◦ resG,F = resH,F = resH,G′ ◦ resG′,F .

Proof of Theorem 2.1.14. It is sufficient to show that the map is defined in the case F = 0. For

a given overlap class [u,H] ∈ deg. p(MG), let resG,0([u,H]) := [u′, H] where u′ is determined

by Lemma 2.1.11. As demonstrated in Lemma 2.1.12, resG,0 is well-defined and injective. More-

over, by analogy to the construction of elements of MF with degrees in
⋃
[u,H] in the proof

of Lemma 2.1.11,
⋃
[u,H] = (

⋃
[u′, H])∩ deg(M). Associativity is clear from the definition.

Finally, we provide a statement about void pairs.

Corollary 2.1.15. Let {Fi}mi=1 be the set of all facets of a (not-necessarily pointed) affine semi-

group Q. Let M := k[Qsat]/ k[Q]. If Q ̸=
⋂m

i=1Q− NFi, then there exists a void pair (u, F ) such

that F is not a facet.

Proof. By the previous results, if the only void pairs Q arise from facets, then Q =
⋂m

i=1Q−NFi.

In other words, from Q ̸=
⋂m

i=1 Q − NFi, M is nonzero. Moreover, if all void pairs arise from

facets, then all degrees from holes are outside of
⋂m

i=1 Q − NFi, hence Q =
⋂m

i=1 Q − NFi, a

contradiction.
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Example 2.1.16 (Continuation of Example 2.1.9).

1. Given M = k [N [ 1 1 1 1
0 1 3 4 ]] /

〈
x[

1
1 ]
〉

, all overlap classes of deg(M) are singletons. Indeed,

deg. p(M) = {(green) ([ 23 ] ,∅), (blue) ([ 00 ] , F1), (red) ([ 00 ] , F2) , ([ 13 ] , F2) , ([ 26 ] , F2)}

deg. p(MF1) = {(blue) ([ 00 ] , F1 ∪ (−F1))}

deg. p(MF2) = {(red) ([ 00 ] , F2 ∪ (−F2)) , ([ 13 ] , F2 ∪ (−F2)) , ([ 26 ] , F2 ∪ (−F2))} .

This shows two injections deg. p(IF1) ↪→ deg. p(I)←↩ deg. p(IF2).

2. Given M = k
[
N
[
0 1 1 0
0 0 1 1
1 1 1 1

]]
/

〈
x

[
2 2 2 3
0 1 3 3
2 2 3 3

]〉
, the set of degree pairs of ideals in each localiza-

tions are as follows.

deg. p(M) =
{

(green)
([

2
2
2

]
,∅
)
, (blue)

([
0
0
0

]
, F4

)
, (yellow)

([
1
0
1

]
, F4

)
, (red)

([
1
1
1

]
, F4

)}
deg. p(MG) =

{
(blue)

([
0
0
0

]
, F4 ∪ (−G)

)
, (orange)

([
1
0
0

]
, F4 ∪ (−G)

)}

for any G ∈ {u1, u4, F4}. Indeed,

([
1
0
0

]
, F4 ∪ (−F4)

)
=
([

1
0
1

]
, F4 ∪ (−F4)

)
=
([

1
1
1

]
, F4 ∪ (−F4)

)
.

This is an example of how the selection of u′ in Lemma 2.1.11 is not unique. Nonetheless, we

have an injection deg. p(IG) → deg. p(I) by sending the orange overlap class to the overlap

class consisting of yellow and red standard pairs.

2.2 Algebraic properties of finely graded Zd-graded modules*

In this section we develop the theory of degree pairs in the context of monomial ideals in affine

semigroup rings. We then use degree pairs to describe primary and irreducible decompositions of

a (finitely generated) finely graded Zd-graded module, and to compute multiplicities of associated

primes.

*Reprinted with permission from “Standard pairs for monomial ideals in semigroup rings" by Byeongsu Yu and
Laura Matusevich, 2022. Journal of Pure and Applied Algebra, Volume 226, 107036, Copyright 2022 by Elsevier.
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2.2.1 Primary Decomposition

Our goal now is to use degree pairs to give a primary decomposition of a (finitely generated)

finely graded Zd-graded module M in k[Q] with graded primary components. This is achieved in

Theorem 2.2.3, whose proof we break into several steps.

First, we give a necessary condition for a (finitely generated) finely graded Zd-graded module

to be primary.

Proposition 2.2.1. Let M be a (finitely generated) finely graded Zd-graded k[Q]-module. If all the

degree pairs of M belong to the same face F of Q, then I is PF -primary.

Proof. This proof has two parts. We first show that PF is an associated prime of M , and then show

that no other prime is associated.

Since M is Zd-homogeneous, so are all of its associated primes, which means that the only

possible associated primes are of the form PG for some face G of R≥0Q. Moreover, a prime PG is

associated to M if and only if (M : xu) = PG for some monomial xu ∈ k[Q], u ∈ Q.

Note that the assumption on the degree pairs means that, for any v ∈ deg(M), we have v +

NF ⊂ deg(M). In ideal-theoretic terms, this means that Annk[Q](m) ⊆ PF for any graded element

m ∈M whose degree is v.

Let (u, F ) be degree pair of M whose overlap class [u, F ] is maximal with respect to divis-

ibility. We claim that if v ∈ u + NF , then Annk[Q](m) = PF . To see this, let m ∈ M be a

graded element whose degree is v and w ∈ Q ∖ NF . If xw · m ∈ M , then v + w belongs to

u′ + NF for some degree pair (u′, F ) of M (all degree pairs of M belong to F ). As w /∈ NF , this

contradicts the maximality of [u, F ]. We conclude that if w ∈ Q ∖ NF , then xw ·m = 0, so that

xw ∈ Annk[Q](m) ⊃ PF . We already knew the reverse inclusion, therefore Annk[Q](m) = PF ,

which shows that PF is associated to M .

To complete the proof, we show that, if the overlap class of (u, F ) is not maximal with respect

to divisibility and v ∈ u + NF , then Annk[Q](m) with deg(m) = v is not prime. Since [u, F ] is

not maximal, there is a degree pair (u′, F ) of I, whose overlap class is maximal with respect to
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divisibility, and such that (u, F ) divides (u′, F ). In particular, there is w ∈ Q such that v + w ∈

u′ + NF . Note that w /∈ NF as (u, F ) and (u′, F ) are not in the same overlap class. Since

(u′, F ) is a degree pair of M , follows that xw /∈ Annk[Q](m). By the previous argument, however,

since w ∈ Q ∖ NF and v + w ∈ u′ + NF , we have xw ∈ Annk[Q](x
w · m), which implies

x2w ∈ Annk[Q](m). We conclude that Annk[Q](m) is not prime.

The converse of Proposition 2.2.1 holds and is proved by exhibiting a primary decomposition

(Theorem 2.2.3). Our next step is to construct a PF -primary ideal, which is later shown to be a

valid choice for a PF -primary component of M .

Proposition 2.2.2. Let M be a (finitely generated) finely graded Zd-graded k[Q]−module, and let

F be a face of Q such that M has a degree pair belonging to F . Set

CF =

m ∈M

∣∣∣∣ deg(m) ∈ Q divides some element of u+ NF for some degree pair

(u, F ) of M whose overlap class is maximal with respect to divisibility

 .

Then CF is a submodule of M , which is PF -primary.

Proof. The first assertion is equivalent to the following statement, whose proof is straightforward:

if deg(m) := v does not divide any degree arising from the maximal overlap classes, and w ∈ Q,

then v + w cannot divide any such degree either.

It remains to be shown that CF is PF -primary. By Proposition 2.2.1, it is enough to show that

all degree pairs of CF belong to the face F . To see this, we first observe that if m ∈ S with

deg(m) = v, then xw · m ∈ S for all w ∈ NF . This implies that (v, F ) is a proper pair for all

v ∈ deg(S).

To finish the proof, we check that CF has no proper pairs of the form (v,G), where G strictly

contains F . This is a consequence of the following claim:

If m ∈ CF with deg(m) = v and w ∈ Q∖ NF , there is a positive integer k such that

xkw ·m = 0.
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To prove the claim note that, as w ∈ Q∖ NF , there is a facet H of Q such that H contains F

and φH(w) > 0 (see Definition 1.2.43).

Since H contains F , φH is constant on each set u + NF . Moreover, if (u, F ) and (u′, F ) are

overlapping degree pairs of M , then the value of φH on u+NF equals the value of φH on u′+NF .

Now, by Lemma 2.1.3 there are finitely many maximal overlap classes of degree pairs. This implies

that there is a positive integer N which is an upper bound for the values that φH attains on these

classes. It follows that for any graded elements in CF , the value of φH on its exponent is at most

N . In particular, φH(v) ≤ N . Since φH(w) > 0, we may choose a sufficiently large k so that

φH(v + kw) = φH(v) + kφH(w) > N . It follows that xkw ·m = 0, as was claimed.

Theorem 2.2.3. Let M be a (finitely generated) finely graded Zd-graded k[Q]-module. Let

S = {F face of Q |M has a degree pair belonging to F}.

For F ∈ S , let CF be as in Proposition 2.2.2. Then 0 = ∩F∈SCF is an irredundant primary

decomposition of M .

Consequently,

1. PF is associated to M if and only if M has a degree pair that belongs to F .

2. M is PF -primary if and only if all degree pairs of M belong to F .

Proof. By Proposition 2.2.2 it is enough to show that 0 = ∩F∈SCF . We claim that if a graded

element m has nonzero degree, then m /∈ ∩F∈SCF , or equivalently, m /∈ CF for some F ∈ S .

To see this, since deg(m) = v ̸= 0, there is a degree pair (u, F ) of M such that v ∈ u + NF . But

then m /∈ CF by the construction of CF .

Example 2.2.4 (Continuation of Examples 1.2.61 and 2.1.8).

1. Recall that M := k[x, y]/⟨x3y, xy2⟩ has three maximal overlap classes of degree pairs as fol-

low; ((0, 0), F ), ((0, 0), G), and ((2, 1), O). In the notation of Proposition 2.2.2 and Theo-

rem 2.2.3, CF = k[x, y]/⟨y⟩, CG = k[x, y]/⟨x⟩ and CO = k[x, y]/⟨x3, y2⟩, yielding the primary

43



decomposition (in terms of ideals)

⟨x3y, xy2⟩ = ⟨y⟩ ∩ ⟨x⟩ ∩ ⟨x3, y2⟩.

Or, in terms of modules, 0 = CF ∩ CG ∩ CO.

2. Figure 2.4 depicts the primary decomposition of ⟨x2y2, x3y⟩ ⊂ k[x, xy, xy2]. Ideals are indi-

cated using shaded regions, degree pairs are illustrated using thick lines and circles.

3. In this case, the ideal ⟨x2z2, x2yz2, x2yz2⟩ ⊂ k[z, xz, yz, xyz] under consideration is PF -

primary.

4. A primary decomposition of ⟨x, xyz, xyz2⟩ ⊂ k[x, xy, xz, xyz, y2, z2] is depicted in Figure 2.5.

Exponents of monomials in the ideal are colored black. Other colors are used to indicate mono-

mials from the same degree pair.

2.2.2 Irreducible Decomposition

We now address the irreducible decomposition of (finitely generated) finely graded Zd-graded

modules over semigroup rings using degree pairs. While the existence of monomial irreducible

decomposition of monomial ideals in semigroup rings is known [42, Corollary 11.5, Proposi-

tion 11.41], an effective combinatorial description of such a decomposition was missing from the

literature before this work. As a side note, we recall that monomial ideals in semigroup rings

can be viewed as binomial ideals in polynomial rings, and mention that binomial ideals do not in

general have irreducible decompositions into binomial ideals [32].

In order to decide whether a (finitely generated) finely graded Zd-graded module is irreducible,

one must examine socles. That is the gist of the following result.

Theorem 2.2.5 ([55, Proposition 3.14]). Let (R,m) be a local noetherian ring and let M be a

(finitely generated) finely graded R-module. Let p be an associated prime of M , and denote its

residue field by K. Let N be the submodule of M whose elements are annihilated by p. The number
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of p-primary components in an irredundant irreducible decomposition of the null submodule of M

is the dimension of the localization Np as a K-vector space.

We are now able to determine whether a monomial ideal in k[A] is irreducible.

Corollary 2.2.6. Suppose that a finely graded Zd-graded k[Q]-module M is a PF -primary. The

number of overlap classes of degree pairs of M that are maximal with respect to divisibility equals

the number of components in an irredundant irreducible decomposition of M . In particular, M is

irreducible if and only if it has a single overlap class of degree pairs that is maximal with respect

to divisibility.

Proof. Recall that by Theorem 2.2.3, all degree pairs of M belong to F . The proof of Proposi-

tion 2.2.1 shows that, in this situation, the submodule of M whose elements are annihilated by PF

is spanned as a k-vector space by the monomials m such that deg(m) = v ∈ u + NF for some

degree pair (u, F ) whose overlap class is maximal with respect to divisibility. After localization at

PF , this module becomes a vector space over the residue field whose dimension equals the number

of overlap classes of degree pairs that are maximal with respect to divisibility. This assertion fol-

lows from the following observations: v ∈ a+NF and v′ ∈ u′ +NF where (u, F ) and (u′, F ) are

overlapping degree pairs, then v−v′ ∈ ZF , so that m−m′ where deg(m) = v and deg(m′) = v′ is

a unit after localization at PF . Note also that a linear combination of monomials with coefficients

in the residue field can only be zero if the pairwise differences of the exponents of the monomials

belong to ZF . Now the desired result follows from Theorem 2.2.5.

By Theorem 2.2.3, in order to perform irreducible decompositions of monomial ideals, it is

enough to do it for primary monomial ideals.

Proposition 2.2.7. Let M be a (finitely generated) finely graded Zd-graded PF -primary k[Q]-

module, and let [v1, F ], . . . , [vℓ, F ] be the maximal overlap classes of degree pairs of I with respect

to divisibility. For each 1 ≤ i ≤ ℓ, let

Ti = {w ∈ v + NF | (v, F ) is a degree pair of M whose overlap class divides [vi, F ]}.

45



Then Ti is the set of degrees of a submodule Ji. Moreover Ji is irreducible, and 0 = J1 ∩ · · · ∩ Jℓ

is an irredundant irreducible decomposition of M .

Proof. The arguments that proved Proposition 2.2.2 show that Ji is a module all of whose degree

pairs belong to F . By construction, [vi, F ] is the unique overlap class of degree pairs of Ji that

is maximal with respect to divisibility. It follows that Ji is irreducible by Corollary 2.2.6. The

decomposition 0 = ∩ℓi=1Ji is verified in the same way as the primary decomposition in Theo-

rem 2.2.3.

We emphasize that Theorem 2.2.3 and Proposition 2.2.7 can be combined to produce an irre-

dundant irreducible decomposition of a (finitely generated) finely graded Zd-graded k[Q]-module

in terms of its degree pairs.

Example 2.2.8. The primary decompositions in Example 2.2.4 are also irredundant irreducible

decompositions. We now give two more examples for non-normal two-dimensional semigroup

rings. In the first one, the primary decomposition of Theorem 2.2.3 is already irreducible, in the

second one, the primary decomposition is not irreducible.

(i) Let Q = N
[
1 1 2 3
1 2 0 0

]
, and consider I = ⟨x3y2, x5y⟩ ⊂ k[xy, xy2, x2, x3] ∼= k[Q]. The irre-

ducible decomposition arising from Proposition 2.2.7 is depicted in Figure 2.6. We point out

that the set of holes H(Q) of Q is {(2, 0), (3, 1)} so that the shaded region in Figure 2.6a con-

tains some elements of k[Q]/I.

(ii) Let Q = N
[
2 1 1
0 0 1

]
, and consider I = ⟨y2, xy2⟩ ⊂ k[x2, xy, y] ∼= k[Q]. The irreducible de-

composition of I arising from Proposition 2.2.7 is depicted in Figure 2.7. In this case, if

F = {(2, 0)}, the color yellow is used for the degree pair ((0, 0), F ), the color red for ((1, 1), F )

and blue for ((0, 1), F ). Note that ((0, 0), F ) and ((1, 1), F ) are maximal with respect to divis-

ibility and do not overlap because (1, 0) /∈ Q.
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2.3 Algorithms for finding and using degree pairs of quotients of affine semigroup rings by

monomial ideals*

We now turn to concrete methods to compute degree pairs and use degree pairs to produce

primary and irreducible decompositions for quotients by monomial ideals in an affine semigroup

ring. The algorithms outlined in this dissertation are based on three important facts.

1. The complete face lattice of the cone R≥0Q can be computed if Q is given. This includes finding

the primitive integral support functions (Definition 1.2.43) for all the facets of R≥0A.

2. A (homogeneous or inhomogeneous) system of linear equations and inequalities with integer

coefficients can be solved, in the sense that there exist algorithms to find the coordinatewise

minimal solutions and free variables.

3. There are algorithms to compute degree pairs for monomial ideals in polynomial rings.

We emphasize that solving linear systems over the integers is a fundamental problem in many

areas and continues to be the focus of much research, especially in convex and discrete optimiza-

tion; finding the faces of a cone is an important basic question in discrete geometry. There are

many approaches to carry out the computational tasks mentioned above.

Relevant questions that can be easily stated as systems of linear equations and inequalities

include the following. Given u ∈ Zd, and F a finite subset of Zd. Does u belong to ZF ? Does u

belong to NF ? With these in hand and knowledge of the faces of R≥0Q, we can determine, given

two pairs (u, F ) and (v,G) of Q, whether (u, F ) < (v,G), whether (u, F ) divides (v,G), and

whether (u, F ) and (v, F ) overlap.

In what follows, for F a face of Q, we use NF to denote N|F | with coordinates indexed by

the elements of F . If G is another face of Q, and F ⊂ G, then we consider the natural inclusion

NF ⊂ NG where elements of NF are considered as elements of NG whose coordinates indexed by

G∖ F are zero.
*Reprinted with permission from “Standard pairs for monomial ideals in semigroup rings" by Byeongsu Yu and

Laura Matusevich, 2022. Journal of Pure and Applied Algebra, Volume 226, 107036, Copyright 2022 by Elsevier.
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The following result is the main building block for computing degree pairs in Theorem 2.3.5.

Its proof is inspired by ideas from [25].

Theorem 2.3.1. Let v, v′ ∈ Q and let G,G′ be faces of Q such that G ∩ G′ = G. There exists an

algorithm to compute a finite collection C of pairs over faces of G such that

(v + NG)∖ (v′ + NG′) = ∪(u,F )∈C(u+ NF ).

Proof. Consider the set

{u ∈ NG | b+G · u ∈ (b′ + NG′)}. (2.2)

Since G ⊆ G′, this is the set of the exponents of the monomials in a monomial ideal J in k[NG] =

k[yj | ai ∈ G]. Observe that

(b+ NG)∖ (b′ + NG′) = {b+G · v | v ∈ NG does not belong to the set (2.2)}

= {b+G · v | yv /∈ J} (2.3)

Our goal is thus to find the standard monomials of J . First we determine minimal generators for

J , which are the coordinatewise minimal elements of (2.2).

Now consider

{(u,w) ∈ NG × NG′ | b+G · u = b′ +G′ · w}. (2.4)

Note that the set (2.2) is the projection onto the first component of the set (2.4).

Let ū be a coordinatewise minimal element of (2.2). Then there is w̄ ∈ NG′ such that (ū, w̄)

belongs to (2.4). Let (u,w) be a coordinatewise minimal element of (2.4) that is coordinatewise

less than or equal to (ū, w̄). It follows that u belongs to (2.2) and is coordinatewise less than

or equal to ū so that u = ū. This shows that the coordinatewise minimal elements of (2.2) are

the projections of the coordinatewise minimal elements of (2.4). Since the set (2.4) is the set of

integer solutions of a system of linear equations and inequalities defined over Z, its coordinatewise

minimal elements can be computed. That there are finitely many such elements follows from
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Dickson’s Lemma.

Since we now know the generators of the monomial ideal J , we can compute its standard pairs

and write

(b+ NG)∖ (b′ + NG′) = ∪(u,σ)∈deg.p(J)(b+G · u+ N{ai | i ∈ σ})

We use the convention that the degree pairs of J ⊂ k[NG] are of the form (u, σ) where u ∈ NG

and σ ⊂ {i | ai ∈ G}. By definition, the fact that (u, σ) is a degree pair of J implies that

yu
∏

i∈σ y
λi
i /∈ J for all λi ∈ N, i ∈ σ.

It only remains to be proved is that if (u, σ) is a degree pair of J then {ai | i ∈ σ} is a face of

G.

Let (u, σ) be a degree pair of J , and let F be the smallest face of G such that N{ai | i ∈ σ}

meets the relative interior of R≥0F . Let
∑

i∈σ λiai be an element of the relative interior of F with

λi ∈ N for i ∈ σ, and set λ ∈ NG whose ith coordinate is λi if i ∈ σ and 0 otherwise. Then

yu+Nλ /∈ J for all N ∈ N. Now let a =
∑

ai∈F µiai ∈ NF , with the µi ∈ N, and let µ ∈ NG

whose ith coordinate is µi if ai ∈ F and 0 otherwise, so that a = G · µ. Since
∑

i∈σ λiai is in

the relative interior of R≥0F , we may choose N large enough that NG · λ − a ∈ NF , and we

may write G · (Nλ − µ) = G · ν with ν ∈ NF ⊂ NG. But then G · (ν + µ) = G · (Nλ), and as

b+G · (u+Nλ) /∈ b′+NG′ (because yu+Nλ /∈ J), we have b+G · (u+ ν+µ) /∈ b′+NG′, which

in turn implies that yu+µ /∈ J . It follows that (u, {i | ai ∈ F}) is a proper pair of J . Since (u, σ) is

a degree pair of J , we conclude that σ = {i | ai ∈ F}.

We need two more auxiliary results for the computation of standard pairs in Theorem 2.3.5.

Here is the first one.

Lemma 2.3.2. Let F be a face of Q and let a ∈ Q. There exists an algorithm to compute the

minimal elements (with respect to divisibility) of the set (a+ RF ) ∩Q.

Proof. Recall that the primitive integral support functions of the facets of Q (Definition 1.2.43)

are linear forms with integer coefficients, and which can be computed. Then b ∈ (a + RF ) if and

only if φH(b) = φH(a) for all facets H of Q containing F . The elements of (a+RF )∩Q that are
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minimal with respect to divisibility are the elements of the form A · u, where u is a coordinatewise

minimal element of:

{u ∈ Nn | φH(A · u) = 0 for all H facet of A,H ⊇ F}. (2.5)

This set is given by integer linear equations and inequalities, and its coordinatewise minimal ele-

ments can be computed.

Definition 2.3.3. Let I be a monomial ideal in k[Q]. Recall the notation std(I) introduced

in (2.1.1). A cover of the standard monomials of I is a finite collection C of pairs of Q such

that

std(I) = ∪(a,F )∈C(a+ NF ).

Proposition 2.3.4. Let I be a monomial ideal in k[Q]. There is an algorithm whose input is a

cover of the standard monomials of I, and whose output is the set of degree pairs of I.

Proof. Let C0 be a cover of the standard monomials of I. Then all the elements of C0 are proper

pairs of I. Note that for (a, F ) ∈ C, if b ∈ Q divides Q, then (b, F ) is also a proper pair of I.

For each (a, F ) ∈ C0, use Lemma 2.3.2 to compute the minimal elements with respect to

divisibility of (a + RF ) ∩ Q, and replace (a, F ) by the collection of pairs (b, F ), where b is a

minimal element of (a+RF )∩Q that divides a. In this way we obtain another collection of pairs

C1, which is also a cover of the standard monomials of I.

Next, given (a, F ) in C1, and G a face of Q that is not strictly contained in F , we can determine

algorithmically whether (a,G) is a proper pair of I, as follows. First, if C1 contains no pairs of the

form (b,G′) ∈ C1 with G′ ⊇ G, then (a,G) is not proper. Otherwise, find whether there is a pair

(b,G′) ∈ C1 with G′ ⊇ G such that (a+NG)∖ (b+NG′) ⊊ a+NG. If no such pair exists, (a,G)

is not proper. (To see this, note that if (a,G) is proper, the elements of a + NG are exponents

of standard monomials. Since C1 is a cover of standard monomials, a + NG = (a + NG) ∩

(∪(b,F )∈C1(b+NF )) = ∪(b,F )∈C1

(
(a+NG)∩ (b+NF )). Each intersection (a+NG)∩ (b+NF )

is a finite union of sets c+ NF ′ where F ′ ⊂ G ∩ F ⊂ G. If all the intersections involve faces that
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are strictly contained in G, then we have written a+ NG as a finite union of sets c+ NF ′ with F ′

strictly contained in G, which is impossible for dimension reasons.)

If such a pair exists, (a+ NG)∖ (b+ NG′) is a union of sets of the form a′ + NG′′ where G′′

is a proper face of G, so we reduce to verifying whether the pairs (a′, G′′) in the union are proper

pairs of I. This yields an iterative procedure to determine whether (a,G) is proper.

If (a, F ) ∈ C1, replace (a, F ) by all pairs of the form (a,G), where G is not strictly contained

in F , (a,G) is proper for I, and G is maximal with this property. We obtain a finite collection

of pairs C2, which is still a cover for the standard monomials of I. Now apply to C2 the same

procedure we used to go from C0 to C1 to construct a new cover C3, and apply to C3 the same

procedure we applied to C1, to get a new cover C4.

We claim that repeating this process yields, after finitely many iterations, a cover C which is

stable under the given operations. To see this, first note that our procedure replaces a proper pair by

a collection of proper pairs, all of which are greater than or equal to the original pair with respect

to the partial order <. Next, we recall that the set of proper pairs of I has finitely many elements

that are maximal with respect to <, namely the degree pairs (Lemma 2.1.3). Finally, <-chains that

are bounded above are finite, because of the strong convexity assumption on R≥0A. From these

observations it follows that our procedure arrives at a stable cover C after finitely many steps.

The stable cover C has the following properties

• If (a, F ) ∈ C and F ′ is a face of Q that strictly contains F , then (a, F ′) is not a proper pair of I.

• If (a, F ) ∈ C and (a,G) is a proper pair of I, then C contains a pair (a,G′) such that G′ ⊇ G.

We claim that C contains the degree pairs of I.

Let (b,G) be a degree pair of I, and let (a, F ) ∈ C such that b ∈ a + NF . Note that every

element of a + NG divides some element of b + NG. This implies that (a,G) is a proper pair

of I since (b,G) is proper. By construction of C, C contains a pair (a, F ′) such that F ′ contains

G. Then b + NG ⊂ a + NF ′. Since (a, F ′) is proper, and (b,G) is standard, we must have

(a, F ′) = (b,G), which means that (b,G) ∈ C.
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Thus, in order to obtain the degree pairs of I, we select the elements of C that are maximal

with respect to <.

We are now ready to compute degree pairs.

Theorem 2.3.5. There exists an algorithm whose input is the set of (monomial) generators of a

monomial ideal I in k[Q], and whose output is the set of degree pairs of I. Moreover, the overlap

classes of standard pairs can be computed, and those that are maximal with respect to divisibility

can be given.

Proof. Suppose that I = ⟨tb⟩. Then the set of standard monomials of I is Q ∖ (b + Q), and we

can compute the standard pairs of I using Theorem 2.3.1 and Proposition 2.3.4.

If I = ⟨tb1 , tb2⟩, first compute the degree pairs of ⟨tb1⟩ and for each such degree pair (a, F ),

compute (a+ NF )∖ (b2 +Q). This yields a cover of the standard monomials of I, which can be

massaged using Proposition 2.3.4 to obtain the degree pairs of I.

In general, if the degree pairs of ⟨tb1 , . . . , tbℓ⟩ are known, then we may use the same idea to

compute the standard pairs of ⟨tb1 , . . . , tbℓ , tbℓ+1⟩.

Finally, finding the overlap classes and determining the maximal ones with respect to divisibil-

ity can be done by finding whether certain linear systems of equations and inequalities have integer

solutions.

Remark 2.3.6. Having computed the (overlap classes of) degree pairs of I, the associated primes

of I and their corresponding multiplicities can be computed by inspection.

Example 2.3.7 (Continuation of Example 1.2.61(2)). Recall I = ⟨x2y2, x3y⟩ ⊂ k[x, xy, xy2] ∼=

k[Q] for A =
[
1 1 1
0 1 2

]
. In this case, we illustrate how to compute the degree pairs of I using the

method described in Theorem 2.3.5.

First we apply Theorem 2.3.1 to Q∖ ((2, 2)+Q), to obtain a cover of standard monomials for

I0 = ⟨x2y2⟩. In this case, the set (2.4) turns out to be

{(u,w) ∈ NA × NA | b+ A · u = (2, 2)t + A · w} = {(u,w) ∈ NA × NA | A(u− w) = (2, 2)t}.
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A straightforward calculation shows that this set is the same as

{(u,w) : u− w = (0, 2, 0) or (1, 0, 1)} = {(u+ w,w) : u = (0, 2, 0) or (1, 0, 1), w ∈ NA}.

It follows that the minimal solutions we are looking for are (0, 2, 0) and (1, 0, 1). We see that the

ideal J ⊂ k[NA] = k[z1, z2, z3] in the proof of Theorem 2.3.1 equals ⟨z22 , z1z3⟩ and its degree pairs

are

(
(0, 0, 0), {(0, 0, 1)}

)
,
(
(0, 1, 0), {(0, 0, 1)}

)
,
(
(0, 0, 0), {(1, 0, 0)}

)
, and

(
(0, 1, 0), {(1, 0, 0)}

)
.

Thus,

Q∖
(
(2, 2)t +Q

)
= N{(1, 2)} ∪

(
(1, 1) + N{(1, 2)}

)
∪ N{(1, 0)} ∪

(
(1, 1) + N{(1, 0)}

)
.

These form a cover of the standard monomials of ⟨x2y2⟩, and it is easily checked that this is the

cover by degree pairs of the standard monomials of ⟨x2y2⟩.

Now, to find the degree pairs of I, we compute b + NF ∖
(
(3, 1) + Q

)
for each b + NF

where (b, F ) ∈ deg. p(⟨x2y2⟩). Note that the sets N{(1, 2)}, (1, 1)+N{(1, 2)}, and N{(1, 0} have

an empty intersection with (3, 1) + Q. Hence we only need to compute
(
(1, 1) + N{(1, 0)})

)
∖(

(3, 1) +Q
)
.

We apply Theorem 2.3.1 to do this, yielding J = ⟨z21⟩ in k[z1]. This ideal has two degree pairs

(0,∅) and (1,∅). It follows that

(
(1, 1) + N{(1, 0)}

)
∖
(
(3, 1) +Q

)
= {(0, 0), (1, 1)}

Thus, we have a cover of standard monomials of I is given by

{
(
(0, 0), {(1, 2)}

)
,
(
(1, 1), {(1, 2)}

)
,
(
(0, 0), {(1, 0)}

)
,
(
(0, 0),∅

)
,
(
(1, 1),∅

)
}
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We next use Proposition 2.3.4 to remove ((0, 0),∅). Finally, the set of degree pairs of I is

(
(0, 0), {(1, 2)}

)
,
(
(1, 1), {(1, 2)}

)
,
(
(0, 0), {(1, 0)}

)
, and

(
(1, 1),∅

)
,

as depicted in Figure 2.1b.

We now know how to compute the degree pairs of a monomial ideal I in k[Q]. It is natural to

try to reverse the process and find generators of a monomial ideal whose degree pairs are given.

Theorem 2.3.8. There exists an algorithm whose input is the set of degree pairs of a monomial

ideal in k[Q] and whose output is a set of generators for this ideal.

Proof. If the degree pairs of a monomial ideal I are known, we can determine which overlap

classes are maximal with respect to divisibility (among all pairs belonging to the same face). For

each degree pair (a, F ) in such an overlap class, we can compute a + NF ∖
(
∪(b,G)∈deg.p(I)|G ̸=F

b+NG
)

as a union over pairs (α, F ′) of sets a+NF ′. For each such pair (α, F ′) and each ai mid

ai ∈ A ∖ F , taitα ∈ I by construction (use maximality of the overlap class). Let J1 be the ideal

generated by all monomials taitα obtained in this way. Then J1 ⊂ I.

Compute the degree pairs of J1. If they coincide with the degree pairs of I, then J1 = I and

we are done.

Otherwise, pick maximal overlap classes of degree pairs of J1 that are not degree pairs of I,

remove all degree pairs of I, and use this to find elements of I that do not belong to J1. Obtain an

ideal J2 ⊋ J1.

Repeat this procedure. Since k[Q] is Noetherian, this process must arrive at I in a finite number

of steps.

Remark 2.3.9. We observe that degree pairs can be used to compute intersections of monomial

ideals. If I and J are monomial ideals in k[Q], then the union of the collections of degree pairs

of I and J is a cover for the standard monomials of I ∩ J . Applying Proposition 2.3.4 yields the

degree pairs of I ∩ J , and we can compute generators using Theorem 2.3.8.
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Example 2.3.10. Recall Example 2.2.8 (ii). In this case, the degree pairs are
(
(0, 0), {(2, 0)}

)
,(

(0, 1), {(2, 0)}
)
, and

(
(1, 1), {(2, 0)}

)
; we wish to recover the generators of the ideal from this in-

formation, using the method from Theorem 2.3.8. If we start with the degree pair
(
(0, 1), {(2, 0)}

)
,

we obtain the ideal J1 = ⟨xy2, x2y2⟩. Using
(
(0, 0), {(2, 0)}

)
next, we find the monomials y2, xy2,

which generate I.

We can now compute irreducible decompositions of monomial ideals in k[Q].

Theorem 2.3.11. There exists an algorithm whose input is the set of degree pairs of a monomial

ideal I in k[Q], and whose output is an irreducible decomposition for I.

Proof. Given the degree pairs of I, we can determine the associated primes of I. If PF is as-

sociated to I, let [ā, F ] be an overlap class of degree pairs of I that is maximal with respect to

divisibility (among overlap classes belonging to F ).

Let (a, F ) be a degree pair of I whose overlap class is [ā, F ]. Define

⋃
(a,F )∈[ā,F ]

{(u, v, w) ∈ NA × NA × NF | A · u+ A · v = a+ F · w}. (2.6)

Note that u belongs to the projection of (2.6) onto the first factor if and only if A · u divides an

element of a+NF where (a, F ) ∈ [ā, F ]. Using Theorem 2.2.3 and Proposition 2.2.7, we see that

these are (exponents of) the standard monomials in a valid irreducible component of I.

Adapting the method from Theorem 2.3.1, we can find a cover of the standard monomials of

this irreducible component. Proposition 2.3.4 yields the corresponding standard pairs, and Theo-

rem 2.3.8 provides generators.

Remark 2.3.12. We can adapt the proof of Theorem 2.3.11 to compute primary components. Al-

ternatively, we can compute the irreducible components first, and then use Remark 2.3.9 to inter-

sect all irreducible components associated to the same prime, yielding the corresponding primary

component.
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2.4 StdPairs: Implementation of the algorithms in SageMath *

We present StdPairs, a SageMath library to compute standard pairs of a monomial ideal

over a pointed (non-normal) affine semigroup ring. Moreover, StdPairs provides the associated

prime ideals, the corresponding multiplicities, and an irredundant irreducible primary decomposi-

tion of a monomial ideal. The library expands on the standardPairs function on Macaulay2

over polynomial rings, and is based on algorithms from [39]. We also provide methods that allow

the outputs from this library to be compatible with the Normaliz package of Macaulay2 and

SageMath.

We remark that our notation here differs from existing notation for standard pairs computation

over polynomial rings in Macaulay2. Over the polynomial ring k[x1, x2, · · · , xn], a pair is a

tuple (xu, V ) where xu is a monomial xa1
1 xa2

2 · · ·xan
n for some integer vector u = (a1, a2, · · · , an)

and V is a set of variables [28, 52]. From the viewpoint of affine semigroup rings, the polynomial

ring is a special case when the underlying affine semigroup is generated by an n × n identity

matrix I. Since the cone R≥0I is a simplicial cone, i.e., every subset of rays form a face, we may

interpret V as a face. The following example shows the different notations for the standard pairs

of a monomial ideal I = ⟨x
[
1
3
1

]
, x

[
1
2
2

]
, x

[
0
3
2

]
, x

[
0
2
3

]
⟩ in the polynomial ring k[x1, x2, x3].

In Macaulay2,

i1 : R = QQ[x,y,z];

i2 : I = monomialIdeal(x*y^3*z, x*y^2*z^2, y^3*z^2, y^2*z^3)

3 2 2 3 2 2 3

o2 = monomialIdeal (x*y z, x*y z , y z , y z )

o2 : MonomialIdeal of R

*First published in Journal of Software for Algebra and Geometry in Vol. 11 (2021), published by Mathematical
Sciences Publishers, reprinted with permission from “Standard pairs of monomial ideals over nonnormal affine semi-
groups in SageMath" by Byeongsu Yu 2021. Journal of Software for Algebra and Geometry, Volume. 11, Copyright
2021 by Mathematical Science Publishers.
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i3 : standardPairs I

o3 = {{1, {x, z}}, {y, {x, z}}, {1, {x, y}}, {z, {y}},

2 2 2

{y z, {x}}, {y z , {}}}

o3 : List

whereas in the given library StdPairs in SageMath,

sage: from stdpairs import *

sage: A = matrix(ZZ,[[1,0,0],[0,1,0],[0,0,1]])

sage: Q = AffineMonoid(A)

sage: M = matrix(ZZ,[[1,1,0,0],[3,2,3,2],[1,2,2,3]])

sage: I = MonomialIdeal(M,Q)

sage: I.standard_cover()

{(1,): [([[0], [0], [1]]^T,[[0], [1], [0]])],

(0, 2): [([[0], [1], [0]]^T,[[1, 0], [0, 0], [0, 1]]),

([[0], [0], [0]]^T,[[1, 0], [0, 0], [0, 1]])],

(0, 1): [([[0], [0], [0]]^T,[[1, 0], [0, 1], [0, 0]])],

(): [([[0], [2], [2]]^T,[[], [], []])],

(0,): [([[0], [2], [1]]^T,[[1], [0], [0]])]}

(), (0,), (0, 2), (0, 1), and (1,) in StdPairs of SageMath are indices of

columns of the matrix A. These denote {}, {x}, {x, y}, {x, z}, and {y} respectively in

Macaulay2. Thus, for example, a pair ([[0], [0], [1]]^T,[[0], [1], [0]]) rep-

resents {z, {y}}, ([[0], [0], [0]]^T,[[1, 0], [0, 0], [0, 1]]) represents

{1, {x, z }}, and so on. Therefore, this example shows that StdPairs is consistent with

Macaulay2.
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2.4.1 Classes in StdPairs

We implement three classes related to affine semigroups, semigroup ideals, and proper pairs

respectively. This implementation is based on SageMath 9.1 with Python 3.7.3. and 4ti2

package. Detailed usage and examples of each method or object can be found by the command

<method_name>? in SageMath or https://byeongsuyu.github.io/StdPairs/,

the documentation of StdPairs made by the Sphinx package.

2.4.1.1 Class AffineMonoid

This class is constructed by using an integer matrix A. The name follows the convention of

SageMath which distinguishes monoid from semigroup. In SageMath, A can be expressed as

a 2-dimensional NumPy.ndarray type or an integer matrix of SageMath. For example,

sage: from stdpairs import *

sage: A = matrix(ZZ,[[1,2],[0,2]])

sage: Q = AffineMonoid(A)

generates Q as a type of AffineMonoid. This class has several methods as explained below.

• Q.gens() returns a matrix generating an affine monoid Q as NumPy.ndarray type. This

may not be a minimal generating set of Q.

• Q.mingens() returns a minimal generating matrix of an affine monoid of Q.

• Q.poly() returns a real cone R≥0Q represented as a type of Polyhedron in SageMath. If

one generates Q with True parameter, i.e.,

sage: from stdpairs import *

sage: A = matrix(ZZ,[[1,2],[0,2]])

sage: Q = AffineMonoid(A,is_normaliz=True)

then Q.poly() is of a class of Normaliz integral polyhedron. This requires PyNormaliz

package. See [34] for more details.
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• Q.face_lattice() returns a finite lattice containing all faces of the affine semigroup. A

face in the lattice is saved as a tuple storing column numbers of generators A. This lattice is of

type of Finite Lattice Poset in SageMath. For example,

sage: Q.face_lattice()

Finite lattice containing 5 elements

sage: Q.face_lattice().list()

[(-1,), (), (0,), (1,), (0, 1)]

• Q.index_to_face() returns a dictionary type object whose keys are tuples denot-

ing indices of column vectors consisting of faces, and whose items are corresponding faces

of Q.poly(). For example,

sage: Q.index_to_face()

{(-1,): A -1-dimensional face of a Polyhedron in ZZ^2,

(): A 0-dimensional face of a Polyhedron in ZZ^2

defined as the convex hull of 1 vertex,

(0,): A 1-dimensional face of a Polyhedron in ZZ^2

defined as the convex hull of 1 vertex and 1 ray,

(1,): A 1-dimensional face of a Polyhedron in ZZ^2

defined as the convex hull of 1 vertex and 1 ray,

(0,1): A 2-dimensional face of a Polyhedron in ZZ^2

defined as the convex hull of 1 vertex and 2 rays}

• Q.index_of_face(matrix face) returns a face as a tuple of indices of column vectors

of a generator A corresponding to a given submatrix face of A. For example,

sage: M = matrix(ZZ,[[2],[2]])

sage: Q.index_of_face(M)

(1,)
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face should be a submatrix of Q.gens() which form a face.

• Q.face(tuple index) returns a face as a submatrix of a generator A corresponding to a

given tuple index. For example,

sage: Q.face((1,))

array([[2],

[2]])

• Q.integral_support_vectors() return a dictionary type object whose keys are

tuples denoting faces and whose items are integral support functions of facets containing F as

a vector form. An integral support function ϕH of a facet H is a linear function ϕH : Rd → R

such that ϕH(Zd) = Z, ϕH(u) ≥ 0 for all column vectors u of generators A, and ϕH(u) = 0

if and only if u ∈ H. By linearity, ϕH(u) = v · u for some rational vector v. We call v as an

integral support vector. Each item of Q.integral_support_vectors() is a matrix as

NumPy.ndarray type whose rows are integral support vectors of facets containing the given

face. For example,

sage: Q.integral_support_vectors()

{(): array([[ 0, 1],

[ 1, -1]]),

(0,): array([[0, 1]]),

(1,): array([[ 1, -1]]),

(0, 1): array([], dtype=int64)}

In this code, () denoting 0 has two integral support vectors, since it is an intersection of two

facets (0,) and (1,), while (0,1) has no such integral support vectors since it is not a

proper face but the affine semigroup itself. See [39, Definition 2.1] for the precise definition of a

(primitive) integral support function.
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• Q.is_empty() returns a boolean value indicating whether Q is a trivial affine semigroup or

not. A trivial affine semigroup is an empty set as an affine semigroup.

• Q.is_pointed() returns a boolean value indicating whether Q is a pointed affine semigroup

or not.

• Q.is_element(vector v) returns nonnegative integral inhomogeneous solutions (mini-

mal integer solutions) of Ax = v using zsolve in [1]. If v is not an element of an affine semi-

group Q, then it returns an empty matrix. v should be a NumPy.ndarray type 2-Dimensional

object with one column, or a matrix of SageMath with only one column.

• Q.save_txt() returns a string containing information of Q. This can be loaded again using

txt_to_affinemonoid(string info), which will be explained in Subsection 2.4.1.4.

• Q.save(string path) saves the given object Q as binary file on the given path. This can

be loaded again using load(path), pre-existing global function of SageMath.

Moreover, one can directly compare affine semigroups using the equality operator == in

SageMath.

2.4.1.2 Class MonomialIdeal

This class is constructed by an affine semigroup Q and generators of an ideal as a matrix form,

say M, which is a 2-dimensional NumPy.ndarray object or an integer matrix of SageMath.

For example,

sage: M = matrix(ZZ,[[4,6],[4,6]])

sage: I = MonomialIdeal(M,Q)

sage: I

An ideal whose generating set is

[[4]

[4]]
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As shown in the example above, this class stores only minimal generators of the ideal. The

attributes and methods are explained below.

• I.gens() returns the minimal generators of I as a NumPy.ndarray type object.

• I.ambient_monoid() returns the ambient affine semigroup of I .

• I.standard_cover(verbose = True) returns the standard cover of I . This is a

dictionary object whose keys are faces and whose items are list consisting of ProperPair

type objects whose face is equal to the corresponding key. ProperPair object will be ex-

plained in Subsection 2.4.1.3. The definition of the standard cover will be given in Subsec-

tion 2.4.2.1. Users can check progress of computation if verbose=False.

• I.overlap_classes() returns a dictionary object whose keys are tuples denoting

faces and whose items are list of lists representing overlap classes of I . An overlap class of

an ideal I is a set of standard pairs such that their representing submonoids intersect nontrivially.

• I.maximal_overlap_classes() returns all maximal overlap classes of I with divisibil-

ity. An overlap class is maximal with divisibility if every pair in the overlap class can divides

only pairs in itself. See [39, Section 3] for the detail.

• I.irreducible_decomposition() returns a list of components of the irredundant irre-

ducible primary decomposition of I .

• I.associated_primes() returns all associated prime ideals of I as a dictionary type.

In other words, the function returns a dictionary whose keys are faces of the affine semigroup as

tuple and whose values are associated prime ideals corresponding to the face in its key.

• I.multiplicity(ideal P or face F) returns a multiplicity of I over the given asso-

ciated prime P . Since there is a one-to-one correspondence between monomial prime ideals and

faces of an affine semigroup, this method takes the face F (as a tuple) corresponding to a prime

ideal P as a valid input instead.
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• I.is_element(vector v) returns nonnegative integral inhomogeneous solutions (mini-

mal integer solutions) of Ax = v − u for each generator u of I using zsolve in [1]. If v is

an element of ideal, then it returns a list [x, u] for some generator u such that u + AxT = v.

Otherwise, it returns an empty matrix. v should be a NumPy.ndarray type 2-Dimensional

object with one column, or a matrix of SageMath with only one column.

• I.is_standard_monomial(vector v) returns a boolean value indicating whether the

given vector v is a standard monomial or not.

• I.is_principal() returns a boolean value indicating whether I is principal or not. Like-

wise, I.is_empty(), I.is_irreducible(), I.is_primary(), I.is_prime(),

and I.is_radical() return a boolean value indicating whether I has the properties implied

by their name or not.

• I.radical() returns the radical of I as an MonomialIdeal object.

• I.intersect(J) returns an intersection of two ideals I and J as a MonomialIdeal object.

Likewise, addition +, multiplication ∗, and comparison == are defined between two objects. The

following example shows an addition of two monomial ideals in SageMath.

sage: I = MonomialIdeal(matrix(ZZ,[[4,6],[4,6]]),Q)

sage: J = MonomialIdeal(matrix(ZZ,[[5],[0]]),Q)

sage: I.intersect(J)

An ideal whose generating set is

[[9]

[4]]

sage: I+J

An ideal whose generating set is

[[5 4]

[0 4]]
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sage: I*J

An ideal whose generating set is

[[9]

[4]]

• I.save_txt() returns a string which can be used to recover the object I and their pre-

calculated properties without calculation. In other words, it contains the generators of I as well

as its standard cover, overlap classes, associated primes, and irreducible primary decompositions

if they were calculated. This can be loaded again using txt_to_monomialideal(string

info), which will be explained in Subsection 2.4.1.4.

• I.save(string path) saves the given object I as binary file on the given path. This can

be loaded again using load(path), pre-existing global function of SageMath.

2.4.1.3 Class ProperPair

A proper pair (u,F) of an ideal I can be declared in SageMath by specifying an ideal I , a

standard monomial u as a matrix form (or NumPy 2D array), and a face F as a tuple. If (u,F) is

not proper, then SageMath calls a ValueError. The following example shows two ways of

defining a proper pair.

sage: import numpy as np

sage: I = MonomialIdeal(matrix(ZZ,[[4,6],[4,6]]),Q)

sage: PP = ProperPair(np.array([2,0])[np.newaxis].T,(0,),I)

sage: PP

([[2], [0]]^T,[[1], [0]])

sage: QQ = ProperPair(np.array([2,0])[np.newaxis].T,(0,),I,

....: properness =True)

sage: QQ

([[2], [0]]^T,[[1], [0]])

64



The second line tests whether the pair is a proper pair of the given ideal I or not before gen-

erating PP. However, the fourth line with properness=Tue generates QQ without checking

whether QQ is proper pair of I or not. Use the third parameter with True only if the generating

pair is proper a priori. In any case, each PP and QQ denotes proper pair whose initial monomial is

[ 20 ] and whose face is [ 10 ].

The attributes and methods are explained below. We assume that PP denotes a proper pair

(u,F).

• PP.monomial(), PP.face(), and PP.ambient_ideal() return the initial monomial

u (as NumPy 2D array), the face F (as a tuple), and its ambient ideal (as an object of

AffineMonoid) respectively.

• PP.is_maximal() returns a boolean value indicating whether the given pair is maximal with

respect to the divisibility of proper pairs of the ambient ideal. If PP is generated without test-

ing whether its monomial is in the given ideal I or not, this methods raise warning instead of

returning a boolean value.

• PP.is_element(vector v) returns nonnegative integral inhomogeneous solutions (min-

imal integer solutions) of u + Fx = v using zsolve in [1]. If v is not an element of the

submonoid u+ NF, then it returns an empty matrix.

• Like AffineMonoid or MonomialIdeal, one can directly compare proper pairs using the

equality operator == in SageMath.

2.4.1.4 Global functions

• prime_ideal(tuple face, AffineMonoid Q) returns a prime ideal of the given

AffineMonoid object Q corresponding to the tuple object face as an object of the class

MonomialIdeal.

sage: prime_ideal((1,),Q)
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An ideal whose generating set is

[[1]

[0]]

• div_pairs(pair PP, pair QQ) returns a matrix whose column u is a minimal solution

of u+ u+NF ⊆ v +NG if PP = (u,F) and QQ = (v,G). The returned value is a nonempty

matrix if and only if a pair PP divides a pair QQ. For example, suppose two pairs PP and QQ

are [ 20 ] + N [ 10 ] and [ 30 ] + N [ 10 ] respectively. Then,

sage: I = MonomialIdeal(matrix(ZZ,[[4,6],[4,6]]),Q)

sage: PP = ProperPair(matrix(ZZ,[[2],[0]]),(0,),I)

sage: QQ = ProperPair(matrix(ZZ,[[3],[0]]),(0,),I)

sage: div_pairs(PP,QQ)

[1]

[0]

sage: div_pairs(QQ,PP)

[0]

[0]

since ([ 20 ] + N [ 10 ]) ⊇ ([ 30 ] + N [ 10 ]).

• txt_to_affinemonoid(string info) (resp. txt_to_monomialideal(string

info)) loads an AffineMonoid object (resp. a MonomialIdeal object) in the specially

created string variable info, which is generated by AffineMonoid.save_txt() (resp.

MonomialIdeal.save_txt()) methods. These are useful for users who want to avoid

repeating calculation which was previously done. For example, the ideal J in below

sage: I = MonomialIdeal(matrix(ZZ,[[4,2],[4,0]]),Q)

sage: I.standard_cover()

{(): [([[1], [0]]^T,[[], []]),
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([[0], [0]]^T,[[], []]),

([[3], [2]]^T,[[], []]),

([[2], [2]]^T,[[], []])]}

sage: J=txt_to_monomialideal(I.save_txt())

sage: J.standard_cover()

{(): [([[1], [0]]^T,[[], []]),

([[0], [0]]^T,[[], []]),

([[3], [2]]^T,[[], []]),

([[2], [2]]^T,[[], []])]}

is a new MonomialIdeal object, however it does not need time to calculate its standard cover,

since pre-calculated information of the standard cover was stored in I.save_txt() and trans-

ferred to J .

• pair_difference(ProperPair PP, ProperPair QQ) is a global function decom-

posing PP \ QQ as a finite union of pairs. See Theorem 2.4.1 and subsequent arguments for

details.

• from_macaulay2(string var_name) and to_macaulay2(MonomialIdeal I)

are global functions used for communicating with Macaulay2 objects. See Section 2.4.3 for

details.

2.4.2 Implementation of an algorithm finding standard pairs

2.4.2.1 Case 1: Principal Ideal

A cover of standard monomials of an ideal I is a set of proper pairs of I such that the union

of all subsemigroups u + NF corresponding to an element (u,F) of the cover is equal to the set

of all standard monomials. The standard cover of an ideal I is a cover of I whose elements are

standard pairs. The standard cover of a monomial ideal I is unique by the maximality of standard
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pairs among all proper pairs of I . A key idea in [39, Section 4] is to construct covers containing

all standard pairs. Once a cover is obtained, we can then produce the standard cover.

The following result helps to compute the standard cover in the special case of a principal ideal.

Theorem 2.4.1 ([39, Theorem 4.1]). Let v, v′ ∈ NA and let G,G′ be faces of A such that G∩G′ =

G. There exists an algorithm to compute a finite collection C of pairs over faces of G such that

(v +G)∖ (v′ +G′) = ∪(u,F)∈C(u+ F).

The pair difference of the pairs (v,G) and (v′,G′) is a finite collection of pairs over faces of

G given by Theorem 2.4.1.

Corollary 2.4.2. Given a principal ideal I = ⟨v⟩, the pair difference of pairs (0,A) and (v,A) is

the standard cover of I .

Proof. Theorem 2.4.1 implies that the pair difference is a cover of I . To see it is the standard

cover, suppose that the ambient affine semigroup is generated by A = [ u1 ··· un ] . Let (w,F ) be

a proper pair in the pair difference. Without loss of generality, we assume that F = [ u1 ··· um ]

for some m < n by renumbering indices. By the proof of Theorem 2.4.1 in [39], w = A · u

where xu ∈ k[Nn] is a standard monomial such that (xu, {x1, · · · , xm}) is a standard pair of some

monomial ideal J in k[Nn].

Suppose that there exists (d,G) such that F ⊆ G and d + g = w for some g ∈ G. Since

d ∈ NA, d = Aw′ for some w′ ∈ Nn. Since A is pointed, w′ is coordinatewisely less than u.

Thus, (xw′
, {x1, · · · , xm}) contains (xu, {x1, · · · , xm}). Lastly, (xw′

, {x1, · · · , xm}) is a proper

pair of J , otherwise, there exists xv ∈ k[x1, · · · , xm] ⊆ k[Nn] such that xw′+v ∈ J . Then,

xgxw′+v ∈ J =⇒ xu+v ∈ J ∩ (xu, {x1, · · · , xm}) = ∅ leads to a contradiction.

Thus, by maximality of the standard pair, w′ = u. This implies d = w. Moreover, G = F , oth-

erwise there exists j ∈ {1, 2, · · · , n}∖{1, · · · ,m} such that xuxl
j ̸∈ J for any l, which implies that

(xu, {x1, · · · , xm, xj}) is a proper pair of J strictly containing a standard pair (xu, {x1, · · · , xm})

of J , a contradiction.
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Theorem 2.4.1 is implemented as a method pair_difference((v,F), (v′,F′)) in the

library StdPairs. Two input arguments should be of type ProperPair. It returns the pair

difference of pairs (v,F) and (v′,F′) with dictionary type, called Cover. Cover classifies

pairs by its faces. For example, the code below shows the pair difference of pairs (0,A) and

((0, 2),A), which are

0,

2
0


 ,


0
1

 ,

2
0


 ,


1
2

 ,

2
0


 , and


1
1

 ,

2
0


 .

sage: from stdpairs import *

sage: Q = AffineMonoid(matrix(ZZ, [[2,0,1],[0,1,1]]))

sage: I = MonomialIdeal(matrix(ZZ,0),Q)

sage: C = ProperPair(np.array([[0,0]]).T, (0,1,2), I )

sage: D = ProperPair(np.array([[0,2]]).T, (0,1,2), I )

sage: print(pair_difference(C,D))

{(0,): [([[1], [2]]^T,[[2], [0]]), ([[1], [1]]^T,[[2], [0]]),

([[0], [1]]^T,[[2], [0]]), ([[0], [0]]^T,[[2], [0]])]}

By Corollary 2.4.2, it is the standard cover of the ideal I = ⟨(0, 2)⟩ in an affine semigroup

N [ 2 0 1
0 1 1 ].

pair_difference((v,F), (v′,F′)) uses standardPairs of Macaulay2 inter-

nally to find standard pairs of a polynomial ring, which is implemented by [28]. Briefly, this

method pair_difference((v,F), (v′,F′)) calculates minimal solutions of the integer

linear system [
F −F ′

]ũ
ṽ

 = v′ − v

using zsolve in 4ti2. The solutions form an ideal J of a polynomial ring in the proof of

Theorem 2.4.1 on Macaulay2. Next, standardPairs derives standard pairs of J . Lastly,

the method pair_difference constructs proper pairs based on the standard pairs of J , and
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classifies the proper pairs based on their faces and returns the pair difference.

2.4.2.2 Case 2: General ideal

[39, Proposition 4.4] gives an algorithm to find the standard cover of non-principal monomial

ideals.

Proposition 2.4.3 ([39, Proposition 4.4]). Let I be a monomial ideal in k[NA]. There is an al-

gorithm whose input is a cover of the standard monomials of I , and whose output is the standard

cover of I .

According to the proof of [39, Proposition 4.4], this is achieved by repeating the procedures

below.

1. Input: C0, an initial cover of I .

2. For each (u, F ) ∈ C0, find minimal solutions of (u + RF ) ∩ NA using the primitive integral

support functions. (See [39, Lemma 4.2] for the detail.)

• If v1, v2, · · · , vm are minimal solutions of (u + RF ) ∩ NA, construct pairs such as

(v1, F ), (v2, F ), · · · , (vm, F ) and store them in the attribute C1.

3. For each pair (v, F ) ∈ C1, construct (v,G) for any face G which is not strictly contained in F .

If (v,G) is a proper pair of I , save (v,G) on the attribute C2.

4. If C0 is equal to C2, done. Otherwise, set C0 := C2 and repeat the above process.

_czero_to_cone(C0, I) method in the hidden module _stdpairs of StdPairs im-

plements Number 2 to return C1. It calls a method named _minimal_holes(vector u,

face F, affine semigroup A) internally, which is the implementation of Lemma 4.2.

_cone_to_ctwo(C1, I) method implements Number 3 of the above item list. Since the con-

structor method of the class ProperPair checks whether the pair is proper or not, the method

_cone_to_ctwo(C1, I) tries to construct proper pairs as an attribute in SageMath and records

it if it is successful.
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Now we are ready to find the standard cover of a general ideal I whose minimal generators are

⟨v1, · · · , vn⟩. One can find standard pairs as in [39, Theorem 4.5] described below.

1. Find the standard cover C of ⟨v1⟩ using pair difference.

2. For i = 2 to n:

(a) For each pair (v, F ) in C, replace it with elements of the pair difference of pairs (v, F ) and

(vi, A). After this process C is a cover of an ideal ⟨v1, v2, · · · , vi⟩.

(b) Using an algorithm of Proposition 2.4.3 find the standard cover C ′ of ⟨v1, v2, · · · , vi⟩.

(c) Replace C with C ′.

3. Return C.

The returned value C is now the standard cover of I .

StdPairs implements [39, Theorem 4.5] as a hidden method _standard_pairs(I).

This method has an input I whose type is MonomialIdeal. It returns a cover whose type is

dictionary, classifying standard pairs by its face. For example, the code below shows that the

standard cover of an ideal generated by
[
2 2 2
0 1 2
2 2 2

]
in an affine semigroup NA = N

[
0 1 1 0
0 0 1 1
1 1 1 1

]
is

{(
0,
[
0 0
0 1
1 1

])
,
([

1
1
1

]
,
[
0 0
0 1
1 1

])
, and

([
1
0
1

]
,
[
0 0
0 1
1 1

])}
.

sage: from stdpairs import *

sage: Q=AffineMonoid(matrix(ZZ,[[0,1,1,0],[0,0,1,1],[1,1,1,1]]))

sage: I=MonomialIdeal(matrix(ZZ,[[2,2,2],[0,1,2],[2,2,2]]),Q)

sage: I.standard_cover()

{(0, 3): [([[1], [0], [1]]^T,[[0, 0], [0, 1], [1, 1]]),

([[1], [1], [1]]^T,[[0, 0], [0, 1], [1, 1]]),

([[0], [0], [0]]^T,[[0, 0], [0, 1], [1, 1]])]}
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2.4.3 Compatibility with Normaliz package in SageMath and Macaulay2

Normaliz is a package in SageMath and Macaulay2 for finding Hilbert bases of ra-

tional cones and its normal affine monoid [13]. StdPairs has methods translating classes in

Section 2.4.1 into objects in the Normaliz package. If an affine semigroup NA is normal, i.e.,

NA = Zd∩R≥0A, then this translation works well. However, if it is not normal, then this translates

NA into its saturation described in Section 2.4.1.

For SageMath, one can have a polyhedron over Z with the Normaliz package in

SageMath by adding an argument True on the constructor of AffineMonoid. For exam-

ple, the code below gives an AffineMonoid class attribute Q whose attribute Q.poly() is a

polyhedron over Z with Normaliz. Therefore, you can use all methods on Normaliz object.

For example,

sage: from stdpairs import *

sage: Q=AffineMonoid(matrix(ZZ, [[0,1,1,0],[0,0,1,1],[1,1,1,1]]),

is_normaliz=True)

sage: Q.poly().hilbert_series([0,0,1])

(t + 1)/(-t^3 + 3*t^2 - 3*t + 1)

For Macaulay2, to_macaulay2( MonomialIdeal I) returns a dictionary storing at-

tribute of Macaulay2 computations. This dictionary contains an affine semigroup ring, a list of

generators of an ideal, and a list of standard pairs in Macaulay2. For example,

sage: from stdpairs import *

sage: Q=AffineMonoid(matrix(ZZ,[[0,1,1,0],[0,0,1,1],[1,1,1,1]]))

sage: I=MonomialIdeal(matrix(ZZ,[[2,2,2],[0,1,2],[2,2,2]]),Q)

sage: S=to_macaulay2(I)

sage: S

{’AffineSemigroupRing’: ZZ[c, a*c, a*b*c, b*c]
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monomial subalgebra of PolyRing,

’MonomialIdeal’: 2 2 2 2 2 2 2

{a c , a b*c , a b c }

List,

’StandardCover’: {{1, {c, b*c}}, {a*c, {c, b*c}},

{a*b*c, {c, b*c}}}

List}

Moreover, Macaulay2 objects AffineSemigroupRing, MonomialSubalgebra, and

list of standard cover can be accessible via macaulay.eval(string) method with string

R, I, and SC. For instance, the example below shows how to access such Macaulay2 objects.

sage: macaulay2.eval(’R’)

ZZ[c, a*c, a*b*c, b*c]

monomial subalgebra of PolyRing

sage: macaulay2.eval(’I’)

2 2 2 2 2 2 2

{a c , a b*c , a b c }

List

sage: macaulay2.eval(’SC’)

{{1, {c, b*c}}, {a*c, {c, b*c}},

{a*b*c, {c, b*c}}}

List

In Macaulay2, a type MonomialSubalgebra in the Normaliz package may correspond
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to an affine semigroup ring. Since Normaliz has no attributes for a monomial ideal of the type

MonomialSubalgebra, the ideal is stored as a list of its generators. The standard cover of I is

also sent to Macaulay2 as a nested list, similar to the output of the method standardPairs

in Macaulay2.

Conversely, from_macaulay( Macaulay2 S) translates monomialSubalgebra ob-

ject S of Macaulay2 into an AffineMonoid object in StdPairs. For example,

sage: R = macaulay2.eval(’ZZ[x,y,z]’)

sage: macaulay2.needsPackage(’"Normaliz"’)

Normaliz

sage: macaulay2.eval(’S=createMonomialSubalgebra

{x^2*y, x*z, z^3}’)

2 3

ZZ[x y, x*z, z ]

monomial subalgebra of ZZ[x..z]

sage: Q=from_macaulay2(’S’)

sage: Q

An affine semigroup whose generating set is

[[2 1 0]

[1 0 0]

[0 1 3]]

2.5 Degree space with degree pair topology

We now construct the degree space of M ,

⋃
deg(M) :=

⋃
F∈F(Q)

deg(MF ),
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a topological space formed by gluing all degree pairs of localizations of a module. This structure

enables us to simultaneously record all degrees resulting from localizations. Moreover, the mini-

mal open sets of
⋃

deg(M), called grains, partition all degrees belonging to a fixed collection of

localizations. A grain’s chaff is the poset of all localizations that contain the given grain. Together

with Subsection 1.2.5, these tools yield a Hochster-type formula for the Hilbert series of the local

cohomology of M in Section 2.6.

Definition 2.5.1 (Degree space and degree pair topology). The degree space
⋃
deg(M) of a

(finitely generated) finely graded k[Q]-module M is the union of deg(MF ) for all faces F of

F(Q). The degree pair topology is the smallest topology on
⋃
deg(M) such that for any face

F ∈ F(Q) and for an overlap class [u,G ∪ (−F )] ∈ deg. p(MF ), the set
⋃
[u,G ∪ (−F )] is both

open and closed.

Definition 2.5.2 (Grain and chaff). In the degree pair topology, we refer to a minimal nonempty

open set as a grain of
⋃

deg(M). Let G(M) be the set of all such grains. The chaff of a grain G,

DG, is defined as the collection of all localizations of M containing G.

These names are inspired by the agricultural metaphors of Grothendieck; we bundle degree

pairs on
⋃

deg(M) and thresh (topologize) them in order to obtain grains. Chaff is a layer of grain

that provides information about the grain’s containment in certain localizations.

Remark 2.5.3. The sectors and sector partition introduced in [37] are almost the same the grains

and chaff used in this article. The main differences are the topological context, and that grains

actually refine the sector partition.

Lemma 2.5.4. The degree pair topology has finitely many open sets.

Proof. From Lemma 2.1.3, deg. p(MF ) is finite. Also, F(Q) is finite. Finally, a subbase including

all overlap classes and their complements over all localizations is used to generate the topology.

Hence the topology has finitely many open sets.

Our next result is that the grain set G(Q/T ) partitions the degrees of a module.
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Proposition 2.5.5. G(M) partitions
⋃
deg(M) and is therefore a basis of the degree pair topology.

Proof. It suffices to show that G(M) partitions
⋃
deg(M). First of all, for any two elements S and

S ′ of G(M), S∩S ′ = ∅. Otherwise, S and S ′ cannot be minimal nonempty opens, a contradiction.

To see that G(M) covers
⋃

deg(M), suppose u ∈ deg(MF ) for some face F . Let

S :=

 ⋂
u∈[v,G]∈deg.p(MF ′ )

F ′∈F(Q)

(⋃
[v,G]

) ∩
 ⋂

u̸∈[v,G]∈deg.p(MF ′ )
F ′∈F(Q)

(⋃
[v,G]

)c
 .

This is a nonempty open set since u ∈ S. We claim that S ∈ G(M). Suppose not; then there

exists an open set S ′ ⊊ S. By the property of the subbase, we may let S ′ ⊆ S ∩ (
⋃
[v,G]) ⊊ S or

S ′ ⊆ S ∩ (
⋃
[v,G])c ⊊ S for some overlap class [v,G]. If S ′ ⊆ S ∩ (

⋃
[v,G]) ⊊ S holds, then

(
⋃
[v,G])c contains u, thus (

⋃
[v,G])c∩S = S by the construction of S. This implies that S ′ = ∅.

If S ′ ⊆ S ∩ (
⋃
[v,G])c ⊊ S holds, then S ∩ (

⋃
[v,G]) = S implies S ′ = ∅. In both cases, S ′ is

empty, a contradiction.

Example 2.5.6 (Continuation of Example 2.1.16).

1. Given M = k [N [ 1 1 1 1
0 1 3 4 ]] / ⟨xy⟩,

⋃
deg(M) is the union of integral points in y = 4x, y =

4x− 1, y = 4x− 2, y = 0 and {(2, 2)}. Moreover, 10 grains

(red) [ 14 ] + NF2, [ 13 ] + NF2, [ 26 ] + NF1, (blue) [ 10 ] + NF1,(cyan) [ −1
0 ] + N (−F1) ,

(orange) [ −1
4 ] + N (−F2) , [

0
−1 ] + N (−F2) , [ 12 ] + N (−F2) ,(yellow) [ 00 ], (green) [ 23 ]

are depicted in Figure 2.8a. Two grains with the same color have the same chaff. Indeed, for

the given grain G with color from Figure 2.8a,

(red) DG := {0, F2}, (blue) DG := {0, F1}, (cyan) DG := {F1},

(orange) DG := {F2}, (green) DG := {0}, (yellow) DG := {0, F1, F2}.
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Note that [ 12 ] is a hole filled by the localization with respect to F2, and therefore lies only in the

degree pair of MF2 .

2. Given M = k
[
N
[
0 1 1 0
0 0 1 1
1 1 1 1

]]
/ ⟨x2z2, x2yz2, x2y3z3, x3y3z3⟩,

⋃
deg(M) consists of the yz-

plane (x = 0), its translation x = 1, and the point (2, 2, 2). 10 grains

(red)
[
0
0
0

]
+ NF4,

({[
1
0
1

]
,
[
1
1
1

]}
+ NF4

)
, (blue)

[
0
0
−1

]
+ N

[−u1
u4

]t
,
[

1
0
−1

]
+ N

[−u1
u4

]t
, (violet)

[
1
0
0

]
(cyan)

[
0
−1
−1

]
+ N [ u1

−u4
]
t
,
[

1
−1
−1

]
+ N [ u1

−u4
]
t
, (orange)

[
0
−1
−2

]
− NF4,

[
1
−1
−2

]
− NF4, (green)

[
2
2
2

]

are depicted in x = 1 and x = 0 planes of Figure 2.8b except
[
2
2
2

]
. Note that

[
1
0
0

]
is not a

monomial of Q but that of Q− Nu1 or Q− Nu4, and therefore it lies in the intersection of two

degree pairs that came from Mu1 and Mu4 respectively. For the given grain G with color as in

the figures, the chaffs are as follows.

(red) DG := {0, u1, u4, F4} (blue) DG := {u1, F4}, (cyan) DG := {u4, F4},

(orange) DG := {F4}, (green) DG := {0}, (violet) DG := {u1, u4, F4}.

2.6 Hochster-type formula of Hilbert series using grains

We derive a Hochster-type formula for the Hilbert series of the local cohomology of a (finitely

generated) finely graded Zd-graded k[Q]-module M . Quotients of affine semigroup rings by mono-

mial ideals are an important example.

Definition 2.6.1 ([40, Definition 5.1]). Let M be a (finitely generated) finely graded graded k[Q]-

module. Given an element u ∈ Zd, let Mu be the degree-u graded piece of M . Let K be the

transverse section of Q from Subsection 1.2.5. The degree-u graded piece of K over M is the

subset of the face lattice of K given by

Ku := {F ∈ F(K) | u ∈ deg(MF )}.
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Likewise, denote K̂u := {F̂ | F ∈ Ku} the degree-u graded piece of the affine semigroup Q over

M . To align with the Ishida complex, the homological degree of the reduced chain complex of Ku

must be shifted as follows:

C̃ (Ku) : 0 Cd Cd−1 · · · C0 0, Ck :=
⊕

F∈Ku
dimF=k−1

kF∂ ∂ ∂ ∂

with the differential

∂(F ) :=
∑
G∈Ku

dimG=k−1

ϵ(F,G)G for dimF = k,

where ϵ is an incidence function inherited from K and kF is a 1-dimensional k-vector space

having {F} as a basis.

Lemma 2.6.2. C̃ (Ku) is well-defined and
(
L• ⊗k[Q] M

)
= Homk(C̃ (Ku) ,k).

Proof. For any k ∈ N,

(
Lk ⊗

k[Q]
M

)
u

=

 ⊕
F∈F(K)k−1

MF̂


u

=
⊕

F∈F(K)k−1

M
F̂
̸=0

(
MF̂

)
u
∼=

⊕
F∈F(K)k−1

u∈deg(M
F̂
)

kF =
⊕
F∈Ku

dimF=k−1

kF,

which is equal to Ck. Apply the functor Homk(−,k) to obtain C̃ (Ku). Since differentials in

L• ⊗k[Q] M are k-linear, their images under Homk(−,k) agree with differentials in C̃ (Ku).

Furhtermore, if two elements of Zd are in the same grain, their graded pieces of the Ishida

complex coincide.

Lemma 2.6.3. For any u ∈ G ∈ G (M), K̂u = DG. Thus, C̃ (Ku) = C̃ (Kv) if u, v ∈ G. If there is

no grain containing u, then C̃ (Ku) = 0.

Proof. By Proposition 2.5.5, if there is no grain containing u, then u ̸∈ deg(MF ) for any F ∈

F(Q), so C̃ (Ku) = 0. K̂u = DG is clear from the definition of chaff.

As a consequence of the previous result, we may use the notation C̃ (KG) := C̃ (Ku) for the

grain G containing u. C̃ (KG) coincides with the chain complex of KG = DG. Since G(M) is finite,
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according to Lemma 2.5.4, the Hilbert series of the local cohomology of M is a finite sum over

cohomologies of chaffs as follows.

Theorem 2.6.4 (Hochster-type formula for the Ishida complex). The multi-graded Hilbert series

for the local cohomology of a graded module M with support at the maximal ideal m is

Hilb(H i
m(M), t) =

∑
G∈G(M)

dimk H
i(Homk(C̃ (KG) ,k))

∑
u∈G

tu.

Proof.

Hilb(H i
m(M), t) =

∑
u∈Zd

dimk
(
H i

m(M)
)
u
tu =

∑
u∈Zd

dimk

(
H i(L• ⊗

k[Q]
M)

)
u

tu

=
∑

u∈
⋃

deg(M)

dimkH
i(Homk(C̃ (Ku) ,k))tu (Lemma 2.6.2)

=
∑

G∈G(M)

∑
u∈G

dimkH
i(Homk(C̃ (KG) ,k))tu (Lemma 2.6.3)

=
∑

G∈G(M)

dimkH
i(Homk(C̃ (KG) ,k))

(∑
u∈G

tu

)

The Hilbert series in Theorem 2.6.4 is a finite sum involving generating functions of lattice

points in polyhedra. To conclude these generating functions are rational, the underlying cone must

be pointed [2, 3].

Corollary 2.6.5. If Q is pointed, the Hilbert series in Theorem 2.6.4 can be expressed as a (formal)

sum of rational functions.

In the non-pointed case, Hochster-type formulas are not necessarily given by rational functions.

For example, the Hilbert series of the Laurent polynomial ring k[x, x−1] cannot be expressed as a

rational function, since 1
1−x

+ x−1

1−x−1 = 0, which is different from the formal sum
∑

i∈Z x
i.

Vanishing of local cohomology is a standard way to detect whether a ring is Cohen–Macaulay.
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Theorem 2.6.6 (Combinatorial Cohen–Macaulay criterion). Given a pointed affine semigroup ring

k[Q] and a monomial ideal I , k[Q]/I is Cohen–Macaulay ring if and only if every chaff of grains

in G(k[Q]/I) is either acyclic or (-1)-dimensional in homological index l := dimk[Q]/I .

Proof. According to Theorem 2.6.4, Hilb(H i
m(k[Q]/I), t) is zero for all i except i = l if and only

if all chaffs are either acyclic or (-1)-dimensional at index l. Thus, k[Q]/I is a Cohen–Macaulay

module over k[Q] if and only if all chaffs are either acyclic or (-1)-dimensional at index l. Since the

maximal ideal of k[Q]/I is the image of m, it is a Cohen–Macaulay ring if and only if it is a Cohen–

Macaulay module over k[Q] by [11, Theorem 3.5.7]. Finally, apply argument in Corollary 1.2.76

and 1.2.77 using the fact that k[Q] is a ∗-local ring with a unique homogeneous maximal ideal.

More precisely, the given fact implies that H•
m(M) ∼= H•

m k[Q]m
(Mm) and Mm is Cohen–Macaulay

if and only if H•
m k[Q]m

(Mm) is nonzero when • = dimM for any k[Q]-module M [11, Remark

3.6.18, Theorem 3.5.7].

Example 2.6.7 (Continuation of Example 1.2.70).

1. As illustrated in Example 2.5.6(1), Q/I = N [ 1 1 1 1
0 1 3 4 ] / ⟨[ 11 ]⟩ has six distinct colored chaffs. We

take the unions of grains of the same color and color-code these unions. The following table

summarizes their rational generating functions.

(red) fr :=
xy4 + xy3 + x2y6

1− xy4
(blue) fb :=

x

1− x
, (cyan) fc :=

1

x− 1
,

(orange) fo :=
1 + xy3 + x2y6

xy4 − 1
, (green) fg := x2y3, (yellow) fy := 1

where x := t[
1
0 ] and y := t[

0
1 ]. Thus, C̃ (KG) is a member of one of three chain complexes

below.

C̃ (Ky) :0→ k→ k2 → 0 C̃ (Kr) , C̃ (Kb) :0→ k→ k→ 0

C̃ (Kg) :0→ k→ 0→ 0 C̃ (Kc) , C̃ (Ko) :0→ 0→ k→ 0
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As a result,

Hilb(H0
m(S), {x, y}) = fg Hilb(H1

m(S), {x, y}) = fy + fc + fo.

2. As illustrated in Example 2.5.6(2), Q/I = N
[
0 1 1 0
0 0 1 1
1 1 1 1

]
/
〈[

2 2 2 3
0 1 3 3
2 2 3 3

]〉
has six distinct colored

chaffs. As before, we take unions of grains of the same color and index these unions according

to their color. Their rational generating functions are as follows:

(red) fr :=
1 + x

(1− z)(1− yz)
− x, (blue) fb :=

1 + x

(z − 1)(1− yz)
, (green) fg := (xyz)2,

(orange) fo :=
1 + x

(z − 1)(yz − 1)
, (cyan) fc :=

1 + x

(1− z)(yz − 1)
, (violet) fv := x

where x := t

[
1
0
0

]
, y := t

[
0
1
0

]
, and z := t

[
0
0
1

]
. We may classify C̃ (KG) as follows:

C̃ (Kr) :0→ k→ k2 → k→ 0 C̃ (Kb) , C̃ (Kc) :0→ 0→ k→ k→ 0

C̃ (Kg) :0→ k→ 0→ 0→ 0 C̃ (Kv) :0→ 0→ k2 → k→ 0

C̃ (Ko) :0→ 0→ 0→ k→ 0

Hence,

Hilb(H0
m(S), {x, y}) = fg Hilb(H1

m(S), {x, y}) = fv Hilb(H2
m(S), {x, y}) = fo.
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y

x

(a) degree pairs of ⟨x2y2, x3y⟩
y

x

(b) degree pairs of CG = ⟨x⟩
y

x

(c) degree pairs of CF = ⟨xy, xy2⟩

y

x

(d) degree pairs of CO = ⟨x2, xy2⟩

Figure 2.4: A primary decomposition of ⟨x2y2, x3y⟩ in k[x, xy, xy2]
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x

y

z

(a) CF = ⟨x, xy, xyz, xyz2⟩

x

y

z

(b) CG = ⟨x, xz, z2, xyz⟩

Figure 2.5: A primary decomposition of ⟨x, xyz, xyz2⟩ in k [x, xy, xz, xyz, y2, z2]

y

x

(a) degree pairs of I = ⟨x3y2, x5y⟩

y

x

(b) degree pairs of J1 = ⟨x2, x3⟩
y

x

(c) degree pairs of J2 = ⟨xy, xy2⟩

y

x

(d) degree pairs of J3 = ⟨x4, x3y2, x2y4⟩

Figure 2.6: An irredundant irreducible decomposition of I = J1 ∩ J2 ∩ J3 in k[xy, xy2, x2, x3].
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y

x

(a) degree pairs of I = ⟨y2, xy2⟩

y

x

(b) degree pairs of J1 = ⟨y⟩

y

x

(c) degree pairs of J2 = ⟨xy, y2⟩

Figure 2.7: An irredundant irreducible decomposition of I = J1 ∩ J2 in k[x2, y, xy].

y

x, F1

F2

O

(a) Q = N [ 1 1 1 1
0 1 3 4 ] and I = ⟨[ 11 ]⟩

z

y
O

z

y
(1, 0, 0)

(b) Q = N
[
0 1 1 0
0 0 1 1
1 1 1 1

]
and I =

〈[
2 2 2 3
0 1 3 3
2 2 3 3

]〉
Figure 2.8:

⋃
deg(Q/T ) with grains
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3. GENERALIZED ISHIDA COMPLEX

Suppose k is algebraically closed. In this chapter, we generalize the Ishida complex to compute

the local cohomology of the quotient of a polynomial ring by a lattice ideal or ζ-cellular binomial

ideal I by choosing a specific minimal prime toric ideal and its corresponding affine semigroup Q.

Indeed, one may grade k[x]/I using the contraction map to the quotient k[NA] = k[Q] generated

by the minimal prime toric ideal. In this case, if we choose the supporting monomial ideal as a

extension of a radical monomial ideal of k[Q], then one can calculate local cohomology supported

at the chosen ideal using generalized Ishida complex, which we will introduce below.

3.1 Generalized Ishida complex

Definition 3.1.1 (A-grading). Given a lattice ideal I (resp. ζ-cellular binomial ideal I), pick a

minimal associated prime ideal J of I (resp. of I ∩ k[Nζ ]). Since k is algebraically closed, J is

a binomial prime ideal, and the quotient k[Nζ ]/J is isomorphic (by rescaling the variables) to an

affine semigroup ring k[Q] with Q = NA. The natural projection map k[x]/I → k[x]/J ∼= k[Q]

(resp. k[x]/I → k[x]/(J + ⟨xi : i ∈ ζc⟩) ∼= k[Q]) induces A-grading on k[x]/I; in other words,

for any monomial xu ∈ k[x]/I , the A-degree of xu is degA(x
u) = A · u (resp. A · uζ , where

uζ := (ui ∈ u; i ∈ ζ)).

We specify the A-grading on k[x]/I using the triple (I, J, A) unless the minimal prime J or

the generators of affine semigroup NA are understood in context.

Definition 3.1.2. Let I∆ be the radical monomial ideal of k[Q] associated to a subcomplex ∆ ⊂

F(Q). Then,
√
I∆ · k[x]/I denotes the contraction of I∆ via k[x]/I → k[x]/J ∼= k[Q].

To compute the local cohomology of a k[x]/I-module supported on
√
I∆ · k[x]/I , we construct

a (generalized) Ishida complex below.

Definition 3.1.3 (Generalized Ishida complex). Let KI∆ be a transverse section of the polyhedron

R≥0{u ∈ Zζ | xu ∈ I∆} with the canonical isomorphism −̂ : F(KI∆) → F(Q) where F̂ is the

85



minimal face of Q such that R≥0F̂ ⊇ R≥0F . The set of all k-dimensional faces in F(KI∆) is

denoted by F(KI∆)
k. Also, (k[x]/I)F̂ refers to the localization of k[x]/I by the multiplicative set

consisting of all monomials in k[Nζ ] whose A-graded degrees are in NF̂ .

Let L• be the chain complex

L• : 0 L0 L1 · · · Ld 0, Lk :=
⊕

F∈F(KI∆
)k−1

(k[x]/I)F̂
∂ ∂ ∂ ∂

where the differential ∂ : Lk → Lk+1 is induced by a componentwise map ∂F,G with two faces

F ∈ F(KI∆)
k−1, G ∈ F(KI∆)

k such that

∂F,G : (k[x]/I)F̂ → (k[x]/I)Ĝ to be


0 if F ̸⊂ G

ϵ(F,G) · nat if F ⊂ G

with nat, the canonical injection (k[x]/I)F̂ → (k[x]/I)Ĝ when F ⊆ G. We say that L•⊗k[x]/IM is

the Ishida complex of a (k[x]/I)-module M supported at the radical monomial ideal
√

I∆ · k[x]/I .

The following theorem is the main result in this section. The proof is adapted from [11]. The

key ingredients areLemma 3.1.5 andLemma 3.1.6 which are given later.

Theorem 3.1.4. For any k[x]/I-module M , and all k ≥ 0,

Hk
I∆·k[x]/I(M) ∼= Hk√

I∆·k[x]/I
(M) ∼= Hk(L• ⊗

k[x]/I
M).

The first step in our proof is to verify that the zeroth homology of the generalized Ishida com-

plex computes torsion.

Proof. This follows from Lemma 3.1.5 and Lemma 3.1.6 together with the fact that all the sum-

mands of the components of the Ishida complex are flat, thus −⊗k[x]/I L
• is an exact functor.

Lemma 3.1.5. H0(L⊗k[x]/I M) ∼= (0 :M I∞∆ ).
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Proof. It suffices to show that

√√√√〈 ⋃
F∈F(KI∆

)0

{xu ∈ k[Nζ ]/(I ∩ k[Nζ ]) : degA(u) ∈ RelInt(NF̂ )}

〉
=
√
I∆ · k[x]/I.

The generators of the left hand-side ideal might be not the same as those of the multiplicative sets

inducing localization of components in L1 when I is not toric. However, they admit the same

radical ideal in k[x]/I .

First, let xu ∈ k[x]/I be an element whose A-degree is in NF̂ for a vertex F of KI∆ . The

canonical map k[x]/I → k[x]/J ∼= k[NA] sends xu to xdegA(u) ∈ k[NA] where degA(u) ∈

RelInt(NF̂ ). Since F̂ ̸∈ ∆, xdegA(u) ∈ I∆, we have that xu ∈
√

I∆ · k[x]/I by the correspondence

between polyhedral subcomplexes and the radical monomial ideals.

Conversely, let f ∈ k[Nζ ] be a preimage of a monomial in I∆ ⊂ k[NA] and g ∈ k[x]/I be an

A-homogeneous element of k[x]/I . Then, f = xu for some u ∈ Nζ such that Au ∈ NF for some

F ∈ F(KI∆). If dimF = 0, fg is in the left hand-side of the equation. Suppose dimF > 0;

then F has vertices {v1, . . . , vm}. Then, u is a linear combination of elements of Nv̂i over Q, say

u = c1u1 + · · · + cmum where ui ∈ Nv̂i and ci ∈ Q. Multiplying u by a suitable number N , we

may assume that ci ∈ N. Then, fN =
∏m

i=1(fi)
ci where fi = xui , which implies that fNgN is in

the left hand-side, thus fg is in the left hand-side.

To complete the proof of our main result, we need to check that the generalized Ishida complex

is exact on injectives. This is stated in the following lemma, which requires three auxiliary results.

Lemma 3.1.6. If M is an injective k[x]/I-module, then L• ⊗k[x]/I M is exact.

Proof. It suffices to check the case when M is an injective indecomposable module E(k[x]/P )

over a prime ideal P containing I . Let Ai be the i-th column of A. The set F := {Ai |

xiE(k[x]/P ) ∼= E(k[x]/P )} is called the face corresponding to P . Lemma 3.1.7 shows that this

is indeed a face of NA. Lemma 3.1.9 shows that L⊗k[x]/I E(k[x]/P ) is exact using Lemma 3.1.8.
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We start verifying our proposed face is a face.

Lemma 3.1.7. Given a monomial prime ideal P containing I , F ′ := {Ai | xiE(k[x]/P ) ∼=

E(k[x]/P )} is a face of NA.

Proof. Since Ass(E(k[x]/P )) = {P} and the module is indecomposable, xiE(k[x]/P ) is either

0 if xi ∈ P or E(k[x]/P ) if xi ̸∈ P . Now suppose that the given set F ′ is not a face; then

there exists a minimal face F whose relative interior intersects with the relative interior of F ′.

Pick Aj ∈ F \ F ′. Then the corresponding variable xj induces the zero map on E(k[x]/P ). If

Aj is not in the relative interior of F , let f ∈ RelInt(NF ) so that f =
∑

Ai∈F ′ ciAi for some

ci ∈ N. Choose a suitable N1 ∈ N such that N1f =
∑

Ai∈F ′ c′iAi + dAj for some nonnegative

c′i ∈ Q and d ∈ Q>0. By construction, N1f is in the lattice (Lρ, ρ). Thus, there exists N2 > N1

such that N2f =
∑

Ai∈F ′ diAi + d′Aj where di, d ∈ N, d > 0. But then xN2fE(k[x]/P ) = 0,

which is a contradiction. If Aj is in the relative interior of F , a similar argument gives another

contradiction.

The following is necessary to prove exactness.

Lemma 3.1.8. Given a face F ∈ F(NA), K∩F
I∆

:= KI∆ ∩ R≥0F is a face of KI∆ .

Proof. If F = NA, then the statement is clear. Assume dimF < dimNA. First, we claim that

for any G ∈ F(KI∆), G ⊆ R≥0F if and only if Ĝ ⊆ F . One direction follows straight from

the definition of Ĝ. Conversely, assume that Ĝ ̸⊆ F . Then, RelInt(R≥0Ĝ) ∩ R≥0F = ∅ implies

RelInt(G) ∩ R≥0F = ∅. Therefore G ̸⊆ R≥0F . This claim shows that K∩F
I∆

is the union of all

faces G ∈ F(KI∆) such that Ĝ ⊆ F . Thus K∩F
I∆

can be regarded as a realized subcomplex of

F(K∩F
I∆

) := {G ∈ F(KI∆) : Ĝ ⊆ F}.

Next, we claim that F(K∩F
I∆

) has a unique maximal element. Suppose not; let G1 and G2 be

two distinct faces of F(K∩F
I∆

) of maximal dimension. Then, F ⊇ Ĝ1 + Ĝ2 implies that there

is a face Ĝ1 ∨ Ĝ2 ∈ F(NA) such that F ⊇ Ĝ1 ∨ Ĝ2, the join of the two faces. Since G1 and

G2 are distinct and the same dimension, G1 ∨ G2 ̸= G1 or G2. Therefore G1 ∨ G2 ⊋ G1 ∪ G2.

Hence, R≥0(Ĝ1 ∨ Ĝ2) ⊇ R≥0(Ĝ1 ∨G2), which implies F ⊇ Ĝ1 ∨ Ĝ2 ⊇ Ĝ1 ∨G2. Hence,
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G1 ∨G2 ⊆ R≥0F , therefore G1 ∨G2 ∈ F(K∩F
I∆

), contradicting the maximality of G1 and G2. We

conclude F(K∩F
I∆

) has a unique maximal element, say H .

Lastly, we claim that F(H) = F(K∩F
I∆

), which implies K∩F
I∆

= H . For any G ∈ F(K∩F
I∆

), let

G′ := G∨H in F(KI∆). Then, ∅ ≠ RelInt(Ĝ′)∩R≥0(Ĝ∪ Ĥ) ⊆ RelInt(Ĝ′)∩R≥0F =⇒ Ĝ′ ⊆

F =⇒ G′ ∈ F(K∩F
I∆

). By the maximality of H , G′ = H , which implies G ⊆ H .

Lemma 3.1.9. Given a monomial prime ideal P whose corresponding face is F , for k ≥ 1,

Lk ⊗
k[x]/I

E(k[x]/P ) =
⊕

G∈F
(
K∩F

I∆

)k−1

E(k[x]/P ) ∼= HomZ

(
C̃
(
K∩F

I∆

)
(−1), E (k[x]/P )

)

where C̃
(
K∩F

I∆

)
is the reduced chain complex of K∩F

I∆
as a CW complex.

Proof. Lemma 3.1.7 shows that for any F,G ∈ F(NA),

E(k[x]/P ) ⊗
k[x]/I

(k[x]/I)G =


0 if G ̸⊆ F

E(k[x]/P ) if G ⊆ F

.

If F is not the image of a face in KI∆ , then no sub-face of F is the image of a face of KI∆ .

Otherwise, there is a face G ⊆ F containing an unbounded face of R≥0{u ∈ Zζ | xu ∈ I∆}. Then

by the correspondence between radical monomial ideals and subcomplexes of F(Q), RelInt(F )

contains an element of an unbounded face of R≥0{u ∈ Zζ | xu ∈ I∆}, a contradiction. Therefore,

no images of faces are subsets of F . This implies that K∩F
I∆

= 0 and Lk ⊗k[NA] E(k[x]/P ) = 0 for

k ≥ 1.

Otherwise, F := F̂ ′ for some F ′ ∈ F(KI∆). Since Ĝ′ ⊆ F if and only if G′ ∈ F(K∩F
I∆

)

byLemma 3.1.8, so the first equality holds.
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Now observe that HomZ(Z, E(k[x]/P )) ∼= E(k[x]/P ) as a k[NA]-module. Thus,

L• ⊗
k[NA]

E(k[x]/P ) =
⊕

G∈F(K∩F
I∆

)•−1

E(k[x]/P ) ∼=
⊕

G∈F(K∩F
I∆

)•−1

HomZ(Z, E(k[x]/P ))

∼= HomZ

 ⊕
G∈F(K∩F

I∆
)•−1

Z, E(k[x]/P )

 = HomZ

(
C̃
(
K∩F

I∆

)
(−1), E(k[x]/P )

)
.

3.2 Local cohomology with monomial support for cellular binomial ideals

In this section we express the Hilbert series of the local cohomology with monomial support

of k[x]/I as a (formal) finite sum of rational functions when I is a lattice ideal (Theorem 3.2.5) or

a cellular binomial ideal (Theorem 3.2.6). As a corollary, we provide a generalization of Reisner’s

criterion to the context of cellular binomial ideals, which gives a Cohen-Macaulay characterization

for k[x]/I in terms of the cohomology of finitely many chain complexes (Corollary 3.2.8). Let

(I, J, A) be a tuple consisting of a lattice ideal (resp. cellular binomial ideal), a minimal prime

ideal J of I ∩ k[Nζ ], and the corresponding affine semigroup NA = Q. Then J is also a prime

lattice ideal and we may assume after rescaling the variables that J = I(ξ) is toric, with lattice

Lξ = (Lρ)sat. Let T := Lξ/Lρ be the corresponding torsion abelian group, then

Zd/Lρ
∼= T ⊕ ZA.

We may induce a fine grading of k[x]/I by T ⊕ ZA as follows: for any xu ∈ k[x]/I for some

u ∈ Zd, degT,A(xu) := (u + Lρ, A · u). Here we use xu to indicate the image of xu ∈ k[x] in

k[x]/I .

Let I be a monomial ideal of an affine semigroup ring k[Q]. In this article, we extend the

notion of degree space defined on Definition 2.5.1 further.

Definition 3.2.1. Suppose that A is the hyperplane arrangement consisting of the supporting hy-

perplanes of the facets of R≥0Q. Let r(A) be the set of regions ofA. Then, for any region r ∈ r(A),
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regard r ∩ (Zd ∖
⋃

deg(k[Q]/I)) as a space with the trivial topology.

The extended degree space ZQ of I is the disjoint union ZQ = (
⋃
deg(k[Q]/I))∪

(⋃
r∈r(A) r∩

(Zd ∖
⋃

deg(k[Q]/I)
)

as a topological space. (As a set, ZQ equals Zd.) Lastly, let G(ZQ) (resp.

G(k[Q]/I)) be the collection of all grains of the extended (resp. original) degree space of I.

As we did in Definition 2.5.2, we use the same terms grain and chaff to denote grains of the

extended degree space, and its graded parts of the given Ishida complex.

Lemma 3.2.2. G(ZQ) is finite.

Proof. This is came from the fact that G(k[Q]/I) is finite [40, Lemma 4.3] and r(A) is finite.

Definition 3.2.3. Given t := u + Lρ, the monomial ideal corresponding to t It is the following

ideal in k[Q], defined as

It := ⟨xA·u | degT,A(xu) = (t, A · u) and xu ∈ k[x]/I⟩.

For an open set O ∈ G(k[x]/It), let C̃ (O) be the graded part of the generalized Ishida complex

associated to the element xu whose torsion degree is t and whose A-degree is Au ∈ O. This is

well-defined regardless of choice of xu, as is stated below.

Lemma 3.2.4. If xu and xv with the same torsion degree are in the same grain of the extended

degree space of It, then their corresponding graded parts of the Ishida complex coincide.

Proof. If neither A · u nor A · v are in the original degree space of It, they must be in the same

region of the hyperplane arrangement. Hence, for any localization by a face F , either both degrees

are deg((It) · k[NA− NF ]) or they do not belong to the same localization.

If both are in the original degree space, let [u, F ] be an overlap class whose degree set
⋃
[u, F ]

contains A · u and A · v, and such that F is minimal with this property. Then xu and xv do not

appear in the localization of k[x]/I by a multiplicative set generated by variables corresponding to

a proper face of F . Conversely, if there is no overlap class [u,G] containing A · v, this means that
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A · v appears on every localization of Q by faces containing G. This completely determines the

graded parts of the Ishida complex.

Theorem 3.2.5. Given a lattice ideal I , define Q as before. The multi-graded Hilbert series for the

ith local cohomology module of k[x]/I supported on the inverse image of the radical monomial

ideal I∆ ⊂ k[Q] with respect to the T ⊗ ZA-grading is

Hilb(H i
I∆
(k[x]/I), t) =

∑
t∈T

∑
O∈G(k[NA]/It)

dimH i(C̃ (O) ;k)
∑
u∈Zd

Au∈O

xu.

Proof. This is a direct consequence of Lemma 3.2.4.

Since T is finite and G(k[x]/It) is finite for all t ∈ T , the sum is finite. Moreover, each grain

O ∈ G(k[x]/It) is the set of lattice points in a convex polyhedron, so that
∑

u∈Zd

Au∈O
xu can be written

as a rational function [2, 3].

For the case of a ζ-cellular binomial ideal (I, J, A), let M be the multiplicative set consisting

of monomials on the nilpotent variables of k[x]/I . Then,

Theorem 3.2.6. Given a cellular binomial ideal I , the multi-graded Hilbert series for the local

cohomology module of k[x]/I supported on the image of the radical monomial ideal I∆ ⊂ k[Q]

with respect to the
⊕

m∈M(Tm ⊕ ZAm)-grading is

Hilb(H i
I∆
(k[x]/I), t) =

∑
m∈M

∑
t∈Tm

∑
O∈G(k[NAm]/It)

dimH i(C̃ (O) ;k)
∑
u∈Zd

Am·uζ∈O

xu.

Proof. For each m ∈M , (I : m) ∩ k[Nζ ] is a lattice ideal containing I ∩ k[Nζ ]. Hence, according

to Theorem 1.2.85, we may pick an associated prime ideal Jm of I ∩ k[Nζ ] whose extension

Jm k[x]+⟨xi | i ∈ ζc⟩ is the associated prime containing J . Moreover, the quotient k[x]/(Jm k[x]+

⟨xi | i ∈ ζc⟩) is isomorphic to an affine semigroup ring k[NAm] for some integer matrix Am. The

canonical projection k[x]/J → k[x]/(Jm k[x]+⟨xi | i ∈ ζc⟩) induces a monoid map NA→ NAm.

By letting Tm be the quotient of the saturation of the lattice Lm corresponding to (I : m) ∩ k[Nζ ]
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by Lm, we have a fine grading of k[x]/I by the abelian group

⊕
m∈M

(Tm ⊕ ZAm)

via degM,T,A(x
u) = (uζc , uζ + Lm, Am · uζ). Thus, for a fixed m ∈M and a torsion t ∈ Tm, let

It := ⟨xAm·uζ | degM,T,A(x
u) = (deg(m), t, A · uζ) and xu ∈ k[x]/I⟩.

Using the same arguments as for lattice ideals, we know that two elements whose degrees are in

the same grain O ∈ G(k[NAm]/It) have the same graded part of the Ishida complex C̃ (O).

Again, this is a finite sum of rational functions. Corollary 3.2.8 gives us the equivalent of Reis-

ner’s criterion for cellular binomial ideals, providing a characterization of Cohen-Macaulayness in

terms of the cohomology of finitely many polyhedral complexes. First we need an auxilliary result.

Lemma 3.2.7. C̃ (O) is the cochain complex of a polyhedral complex.

Proof. It suffices to show that the nontrivial top dimensional part of C̃ (O) is k1; suppose not; then

there exists distinct maximal faces F̂1 and F̂2 of Q such that degA(xu1) ∈ F̂1 and degA(x
u2) ∈ F̂2

for some distinct xu1 and xu2 with u1, u2 ∈ O. Then, the degree of the product xu1 · xu2 lies

in the relative interior of a face Ĝ in F(Q) which is a minimal face containing both F̂1 and F̂2,

contradicting the maximality of F̂1 and F̂2.

Corollary 3.2.8. Let I be a cellular binomial ideal. Then k[x]/I is Cohen–Macaulay if and only

if H i(C̃ (O) ;k) = 0 for all i ̸= dim(k[x]/I) and for all O ∈ G(k[NAm]/It), m ∈M, t ∈ Tm.

Example 3.2.9. Let L be the following lattice in Z4 and Lsat its saturation.

L :=

〈(
2
0
−3
0

)
,

(
1
−5
1
5

)〉
, Lsat :=

〈(
1
−1
−1
1

)
,

(
0
−2
1
2

)
,

( −1
−1
2
2

)
,

(
−2
0
3
0

)〉
.
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The torsion group T := L/Lsat is isomorphic to Z/5Z. We represent T as follows

T =

{
e =

(
0
0
0
0

)
, ξ =

( −1
1
1
−1

)
, ξ2 =

(
0
2
−1
−2

)
, ξ3 =

( −1
3
0
−3

)
, ξ4 =

(
0
4
−2
−4

)}

using GRevLex term order in Macaulay2.

In this case Q := (Z4/Lsat) ∩ N4 ∼= N [ 3 1 2 0
0 1 0 1 ]. As usual ZQ = Z4/Lsat. On the polynomial

ring k[a, b, c, d], the lattice ideals corresponding to L and Lsat are

IL := ⟨a2 − c3, acd5 − b5⟩ and Isat := ⟨bc− ad, cd2 − b2, c2d− ab, c3 − a2⟩.

Hence, the Ishida complex supported on the maximal monomial ideal is

0→ k[x]/IL → (k[x]/IL)a,c ⊕ (k[x]/IL)d → (k[x]/IL)a,b,c,d → 0.

Here, we see that for any 0 ≤ i,

C•
t,
[
i
j

] : 0→ Kj+1 → Kj+1+5 → K5 → 0

when 0 ≤ j < 5 and

C•
t,
[
i
j

] : 0→ K5 → K10 → K5 → 0

when 5 ≤ j for any t ∈ T . Since there is no non-top cohomology, we conclude that k[x]/IL is

Cohen-Macaulay.
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4. APPLICATIONS AND OPEN PROBLEMS

4.1 Alternative classification of Cohen–Macaulay affine semigroup rings

In this section we concentrate on the special case when I = 0. We give a new criterion using

grains to detect whether k[Q] is Cohen–Macaulay and give an alternative proof of the Cohen–

Macaulay condition in [54]. To begin, we recall a celebrated theorem of Hochster [26] when Q is

normal, and prove it yet again with our methods.

Theorem 4.1.1 ([26]). If Q is normal, k[Q] is Cohen–Macaulay.

Definition 4.1.2 ( [11]). Given a polyhedron P in R-vector space V , let u, v ∈ V two distinct

points. If [u, v] does not contain a point v′ ∈ P with v′ ̸= v, we say that v is visible from u. A

subset S is visible if every v ∈ S is visible.

Proposition 4.1.3 ( [11, Proposition 6.3.1]). Given a polytope P ′, a contractible polyhedral sub-

complex is formed by the set of all visible points from u ∈ V ∖ P ′.

We refer to this polyhedral subcomplex as the u-visible subpolytope of P ′.

Proof. Let A be the hyperplane arrangement generated by hyperplanes in the H-representation of

R≥0Q. We claim that

G(k[Q]) = {rS ∩ ZQ | rS ∈ r(A)}. (4.1)

If the equality (4.1) holds, for the given nonempty S and a point u ∈ rS ∩ ZQ, construct a hy-

perplane H containing u and transversally intersecting R≥0Q. The transverse section K is then

realized as a poytope H ∩ R≥0Q. Thus, the chaff of a grain can be defined as a subset of F(K)

that is not visible from u. Due to the contractibility of both K and u-visible subpolytope of K, the

chain complex over the chaff is contractible via the long exact sequence of cohomology. Thus, ex-

cept the top dimension, the chaff of any grain has vanishing homology. This argument essentially

paraphrases the proof of [11, Theorem 6.3.4].
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To prove (4.1) recall that the poset of regions r(A) partitions
⋃
deg(k[Q]) = ZQ. We may use

induction over the cardinality of S to determine that each grain is of the form rS ∩ ZQ. Assume

that the hyperplane arrangement A consists of the elements H1,H2, · · · ,Hm, and that Fi is the

facet supported byHi for i ≤ m. Start with |S| = m; rS ∩ZQ is a grain since (0, Q) is the unique

degree pair of Q and 0 +Q ⊂ 0 + (Q− NF ) for any face F .

To use induction, suppose we showed that rS ∩ ZQ with |S| ≤ m− i is a grain. Then, for any

S with cardinality m− (i+1), we claim rS ∩ZQ = (
⋂

i∈S(Q−NFi))∖
(⋃

T⊋S rT
)
∩ZQ. Indeed,

(
⋂

i∈S(Q−NFi)) = RS ∩ ZQ by the definition of the cumulative regions and the normality of Q.

Then, the righthand side (
⋂

i∈S(Q−NFi))∖
(⋃

T⊋S rT
)
∩ZQ is nothing more than the construction

of rS from RS . Furthermore, for each T ⊋ S,rT ∩ ZQ is a grain by inductive hypothesis. This

shows the proposed one-to-one correspondence between grains and regions in r(A).

Now pick a grain rS ∩ ZQ. Then rS ⊆ RT ∩ ZQ if and only if T ⊆ S. Hence, its chaff can be

identified as a subset of faces in F(Q) whose corresponding localizations contain rS ∩ ZQ.

When Q is not normal, we need the chaffs and grains of the module k[Qsat]/k[Q] to determine

the chaffs of grains of k[Q]. To distinguish two chaffs and grains from different modules,

Definition 4.1.4. We refer to the grains and chaffs of the module k[Qsat]/ k[Q] as void grains and

void chaffs, respectively, in accordance with the conventions in Example 2.1.7(2).

Theorem 4.1.5. k[Q] is Cohen–Macaulay if and only if every grain consisting of void grains has

vanishing homology except in top dimension.

Proof. If a grain G has a degree which exists in
⋃
deg(Qsat), then we may apply the same argument

of Theorem 4.1.1 to show that the homology of DG vanishes except for the top dimension. Hence,

the only grains we need to investigate the homology of their chaff are a grain consisting of holes.

Now we are prepared to give an alternative proof of the main result of [54]. Let F1, · · · , Fm be

facets of a pointed affine semigroup Q. Let Q̃ :=
⋂m

i=1(Q− NFi). For any nonempty subset S of
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{1, 2, · · · ,m}, let GS :=
⋂

i ̸∈S(Q − NFi) ∖
⋃

j∈S(Q − NFj). Let πS be the simplicial complex

of nonempty subsets I of S such that
⋂

i∈I Fi is a nonempty face of Q. By abuse of notation, we

identify the face lattice F(πS) of πS as a subset {
⋂

i∈I Fi ∈ F(Q) ∖ {∅} | I ∈ πS} ∪ {∅} of

F(Q). We say πS is acyclic if its reduced homology group is zero for all indices.

Theorem 4.1.6 (Main theorem in [54]). k[Q] is a Cohen–Macaulay ring if and only if (1) Q̃ = Q

and (2) for every S ⊆ {1, 2, · · · ,m} with RS ∈ r(A), πS is acyclic.

Proof. Note that for any u ∈
⋃

deg(k[Q]) ∖
⋃m

i=1 deg (Q− NFi), Ku = {Q}, which therefore

only contributes to the (dimQ)-th local cohomology. Thus, to prove the conditions above imply

Cohen–Macaulayness, it suffices to show that for any u ∈
⋃m

i=1Q − NFi, C̃ (Ku) is exact. Since

GS partitions
⋃

deg(k[Q]), assume u ∈ GS for some proper subset of {1, 2, · · · ,m}. Then,

for any F ∈ F(πS)
c, F ̸⊂ Fi for any i ∈ S, since Fi ∈ πS . Thus, F =

⋂
i∈J Fi for some

J ⊂ {1, 2, · · · ,m} ∖ S implies that Q − NF contains u. Conversely, for any face G of
⋂

i∈S Fi,

u ̸∈ Q−NG. Hence Ku = F(πS)
c by identifyingF(πS) as a subset ofF(Q). In this identification,

πS is isomorphic to a polyhedral subcomplex of the transverse section K of R≥0Q. Hence, the

complements F(πS)
c form a polyhedral subcomplex of the dual polytope Kdual. Apply Alexander

duality to conclude that Ku is acyclic. This proves that k[Q] is Cohen–Macaulay in accordance

with Theorem 2.6.6.

Conversely, suppose πS is not acyclic. Pick u ∈ GS such that Ku = F(πS)
c. Now Alexander

duality ensures that C̃ (F(πS)
c) has nontrivial cohomology at i-th index which is less than (dimQ).

Also, if Q′ ̸= Q, Corollary 2.1.15 gives a void pair (v, F ) with dimF ≤ dimQ− 2. Let S be a set

of indices of hyperplanes containing F . By Theorem 1.2.58 there exists u ∈ (v + N(F ∪ (−F )))∩

rS . Hence, Ku = (Q/F )∖ F := {G ∈ F(Q) | Q ⊇ G ⊋ F} is combinatorially equivalent to the

polytope (Q/F )dual without its relative interior. Hence, (dimF )-th homology of Ku is nonzero, as

is the (dimQ−dimF )-th local cohomology. Thus, the u-graded part of the Ishida complex admits

nonzero local cohomology with an index less than dimQ, indicating that the semigroup ring is not

Cohen–Macaulay.
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Example 4.1.7 (Continuation of Example 2.6.7). Both cases are not Cohen–Macaulay due to the

presence of nonzero 0-th local cohomology.

Example 4.1.8 (Examples of non-normal affine semigroup rings).

1. (A 3-dimensional non-Cohen–Macaulay affine semigroup ring) Let Q := N
[
1 1 1 1 1
0 0 0 1 1
0 1 −2 0 1

]
. Index

the rays, facets, and hyperplanes as follows

⟨u1⟩ :=
〈[

1
0
1

]〉
⟨u2⟩ :=

〈[
1
0
−2

]〉
⟨u3⟩ :=

〈[
1
1
0

]〉
⟨u4⟩ :=

〈[
1
1
1

]〉
F1 := ⟨u1, u2⟩ F2 := ⟨u2, u3⟩ F3 := ⟨u3, u4⟩ F4 := ⟨u4, u1⟩

H1 := {y = 0} H2 := {2x− 2y + z = 0} H3 := {x− y = 0} H4 := {x− z = 0}

The Hasse diagram for the region of posets is identical to that in Figure 4.2. Moreover, the

set of holes of the affine semigroup, H(Q), is
[

1
0
−1

]
+ N

[
1
0
−2

]
which lies in the xz-plane.

This is because
[

2
1
−1

]
=
[
1
1
1

]
+
[

1
0
−2

]
acts as a barrier to the spread of holes in the relative

interior of Q. According to Theorem 2.1.14, Q and Q − Nu2 are the only non-normal affine

semigroups that arise as a result of localization. Thus, the space of holes Holes(Q) equals[
1
1
1

]
+Z

[
1
0
−2

]
, which is consistent with the set of holes of Q−Nu2. Using Figure 4.2, Holes(Q)

is decomposed into three possible sets in Table 4.1. Notes thatH1,2,3,4 =
⋂

i=1,3,4(Q−Nui)∖Q

andH1,2 = (Q− NF1) ∩ (Q− NF2)∖ (Q− Nu2),H1,2,3,4 andH1,2 form grains.

H1,2,3,4 H1,2,3 H1,2[
1
1
1

]
+ N

[
1
0
−2

] [
0
1
−1

] [
1
1
1

]
+ Z≤−2

[
1
0
−2

]
Table 4.1: Decomposition of Holes(Q).

On the other hand,

H1,2,3 ⊊ G := (Q− Nu3)∖ (Q ∪ (Q− Nu2) ∪H1,2,3,4)
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shows that H1,2,3 is a part of the grain G, whereas the remaining elements of G come from the

region r2,3. Thus,

G(Q/T ) = {H1,2,3,4,H1,2, Q, (Q− Nu2) ∩ r1,2, (r2,3 ∩ (Q− Nu3)) ∪H1,2,3}

∪ {Z3 ∩ rS | S ∈ index(r(A)) such that S ̸= {1, 2}, {2, 3}, {1, 2, 3, 4}},

where index(r(A)) denotes the set of all indices of elements of r(A). Hence, it suffices to check

whether chaffs

DH1,2,3,4 = {ui, Fj, Q} i=1,3,4
j=1,2,3,4

and DH1,2 = {F1, F2, Q}

have vanishing homology. Since DH1,2 produces a non-zero second homology, the affine semi-

group ring k[Q] is not Cohen–Macaulay.

2. (4-dimensional non-normal Cohen–Macaulay affine semigroup ring [10, Exercise 6.4]) Assume

P is a simplex with the vertices (0, 0, 0), (2, 0, 0), (0, 3, 0), and (0, 0, 5). Z3 is the smallest lattice

that contains vertices of P . The polytopal affine monoid M(P ) [10, Definition 2.18] associated

P is the affine semigroup Q := NA where A = {(1, u) : u ∈ Z3 ∩ P}. In this example,

A = [ u1 u2 ··· u18 ] =

[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2
0 0 0 0 0 0 1 1 1 1 2 2 3 0 0 0 1 0
0 1 2 3 4 5 0 1 2 3 0 1 0 0 1 2 0 0

]
.

R≥0Q is a simplicial polyhedron with tetrahedral transverse section. We index its facets and

hyperplanes as follows

F1 := ⟨u6, u13, u18⟩ F2 := ⟨u1, u7, u11, u13, u14, u17, u18⟩

F3 := ⟨u1, · · · , u6, u14, · · · , u16, u18⟩ F4 := ⟨u1, · · · , u13⟩

H1 := {(30,−15,−10,−6) · t = 0} H2 := {(0, 0, 0, 1) · t = 0}

H3 := {(0, 0, 1, 0) · t = 0} H4 := {(0, 1, 0, 0) · t = 0}
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Since the transverse section K is a tetrahedron, we can index faces as intersections of facets

uniquely. For example, each of the rays can be denoted as follows.

F2,3,4 := ⟨u1⟩ F1,3,4 := ⟨u6⟩ F1,2,4 := ⟨u13⟩ F1,2,3 := ⟨u18⟩ .

According to the HASE package [33], the affine semigroup Q = NA contains holes H(Q) :=

[ 2 1 2 4 ]t + NF1. Thus, the space of holes Holes(Q) is [ 2 1 2 4 ]t + ZF1. We can decompose

Holes(Q) into void grains using the hyperplane arrangement as follows:

HS :=

{[
2+a+b+c

1+2a
2+3b
4+5c

]
| a ∈ sgn4(S), b ∈ sgn3(S), c ∈ sgn2(S)

}

where sgni(S) :=


N if i ∈ S

Z ∖ N if i ̸∈ S

for all {1} ⊆ S ⊆ {1, 2, 3, 4}. There are two types of

grains indexed by 2{1,2,3,4} that emerge from iterative intersections of affine semigroups. For

every S with {1} ⊆ S ⊆ {1, 2, 3, 4}, the union GS∖{1} := HS ∪
(
rS∖{1} ∩

(
Q− NFS∖{1}

))
generates a grain of the first type, whereas GS := rS ∩ (Q− NFS) generates a grain of the

second type. Since there is no grain composed entirely of holes, all chaffs have vanishing

homology except the top dimension. Therefore, k[Q] is Cohen–Macaulay.

4.2 Generalized Hochster’s theorem for (non-normal) simplicial affine semigroup rings

In this section, we generalize the well-known Hochster’s theorem [11, Theorem 5.3.8] for the

quotients of (non-normal) simplicial affine semigroup rings by monomial ideals. The original

theorem was stated for the Stanley-Reisner rings only. To begin with, let (I, I, A) be a prime

lattice ideal I whose corresponding affine semigroup Q = NA.

Definition 4.2.1. An affine semigroup Q is simplicial if the transverse section K of the polyhedral

cone R≥0Q is a d-simplex.

Assume that NA from (I, I, A) is simplicial. Let A = {Hi}di=1 be the minimal hyperplane

arrangement of R≥0Q. Label the faces of K by their supporting facets; for a facet Hi ∩ K, use
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the label [d]∖ {i}. Hence, the zero-dimensional face (of the transverse section) that does not lie in

the hyperplaneHi is indexed by {i}. From the natural isomorphism F(Q) ∼= F(K), we may label

faces of Q using 2[d] = F(K).

In this notation, for a face F ∈ F(Q), rF defined in Subsection 1.2.3 by regarding F as a subset

of [d], is a region generated by the positive half spaces containing F as a face of Q. This labeling

is induced by the observation that the poset of regions r(A) is equal to the face lattice F(K). This

also agrees with the labeling of rF in Subsection 1.2.3; rF is the region contained in the positive

half spaces of Hi where i ∈ F . For example, if F is the zero-dimensional face corresponding to

xi, then rF = r[d]∖{i}.

Let I∆ be a radical monomial ideal of k[Q] ∼= k[x]/I corresponding to a proper subcomplex ∆

of K and a proper face F ∈ F(Q). In this setting, we always label all grains of the original degree

space
⋃

deg(k[Q]/I∆) using a pair of faces as in the following result.

Definition 4.2.2. We denote max(∆) the collection of facets of ∆.

Lemma 4.2.3. For every grain S ∈ G(k[Q]/I) of the degree space
⋃

deg(k[Q]/I∆) there exists a

unique pair of faces (F,G) such that S ⊆ (Q−NF )∩ rF and G ∈ {G′ ∈
⋂
max(∆) | G′ ⊇ G ⊇

F}. We use this pair to label S.

Proof. Given a face F ∈ F(Q), let G(Q/I∆)F be the set of all grains of the degree space⋃
deg(k[x]/I∆) contained in rF . Recall that

⋂
max(∆)F is the collection of faces in

⋂
max(∆)

containing F . We claim that G(Q/I∆)F and
⋂
max(∆)F are in bijection.

Recall that all overlap classes (for I∆) are of the form [0, G] for some face G ∈ max(∆).

Hence, when F = 0̃, the corresponding grain inside of r∅ ∩ Q = Q is obtained by intersection

and complement of faces. If F ̸∈ ∆, then the localization is zero, thus the statement is vacuously

true. Suppose F ⪈ 0̃ ∈ ∆. The extension (I∆)F of the ideal on k[Q − NF ] is still radical and

its overlap classes are of form [0, G ∪ (−F )] where [0, G] is an overlap class of k[Q]/I∆ for some

face G ⊇ F . Thus, every grain in G(Q/I∆)F is obtained by intersecting open sets of the form⋃
[0, G ∪ (−F )]∖

(⋃
F ′⊂G rF ′

)
. Thus G(Q/I∆)F is labeled by

⋂
max(∆)F .
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We are now ready to study graded pieces of local cohomology modules.

Theorem 4.2.4. Let u be an element (degree) in a grain S indexed by (F,G) with F ̸= G. Then,

H i
m(k[Q]/I∆)u = 0 for all i. If u is a degree in a grain indexed by a pair of the same face (F, F ),

H i
m(k[Q]/I∆)u ∼= H̃ i−dimF−1

simp ((K/F ) ∩∆)

where H̃•
simp(−) means the reduced simplicial cohomology.

When our affine semigroup ring is the polynomial ring, the above reduces to the very well

known formulas for local cohomology of Stanley–Reisner rings using homology of links.

Proof of Theorem 4.2.4. Pick a grain S that corresponds to (F,G). We know that deg(S) ⊂ k[Q−

H], where H ∈ (F/G). We may assume G =
⋂m

i=1Gi for some Gi ∈ max(∆) containing G. Then

S is contained in an overlap class of I∆ whose face is Gi. From Definition 3.1.3, the u-graded

part of the Ishida complex is equal to the (shifted) chain complex of ∆(G1, · · · , Gm)/F where

∆(G1, · · · , Gm) is a subcomplex of ∆ such that its maximal faces are G1, · · · , Gm. When F ̸= G,

Lemma 1.2.16 shows that ∆(G1, · · · , Gm)/F is contractible. Otherwise, ∆(G1, · · · , Gm)/F =

∆ ∩ (K/F ).

We remark that this theorem holds more generally, for any affine semigroup Q whose poset of

regions r(A) is in bijection with F(Q).

Corollary 4.2.5. Lemma 4.2.3 and Theorem 4.2.4 hold when Q is an affine semigroup such that

F(Q) is in bijection to the poset of regions r(A) of the hyperplane arrangement of R≥0Q.

Proof. The property we used in the proof of Lemma 4.2.3 is that for any u, there exists a unique

minimal face F such that u ∈ Q − F . This property holds if and only if r(A) is in bijection to

F(Q).

Example 4.2.6 (Counterexample: Segre Embedding, continued from Example 2.5.6(2)). We con-

sider the affine semigroup, Q = N
[
0 1 1 0
0 0 1 1
1 1 1 1

]
, which is depicted in Figure 4.1. Let ui be the i-th
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x

y

z

Figure 4.1: Degrees of Q = N
[
0 1 0 1
0 0 1 1
1 1 1 1

]

ZQ

Q− F1 Q− F2 Q− F3 Q− F4

Q− ⟨u1⟩Q− ⟨u2⟩Q− ⟨u3⟩Q− ⟨u4⟩

Q

ZQ

r1 r2 r3 r4

r1,4 r1,2 r2,3 r3,4

r1,3,4 r1,2,4 r1,2,3 r2,3,4

Q

Figure 4.2: Hasse diagrams of CatQ and r(A) of the Segre embedding

column of
[
0 1 1 0
0 0 1 1
1 1 1 1

]
. Denote the facets Fi and the hyperplane arrangementA = {H1,H2,H3,H4}

as below.

F1 := ⟨u1, u2⟩, F2 := ⟨u2, u3⟩, F3 := ⟨u3, u4⟩, F4 := ⟨u4, u1⟩

H(+)
1 := {y > 0}, H(+)

2 := {z > x}, H(+)
3 := {z > y}, H(+)

4 := {x > 0}.
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For any face F , label F by the subset of {1, 2, 3, 4} whose corresponding facet contains F . For

example, ⟨u1⟩ is indexed by {1, 4}. Then we have the desired injection from F(Q) to r(A) by

sending a face F to rF := R≥0(Q− NF ) \
⋃

G<F R≥0(Q− NG). This relationship is depicted in

Figure 4.2. Note that this is not a bijection; for example,

(0, 1, 0)t = (1, 1, 1)t − (1, 0, 1)t = (0, 1, 1)t − (0, 0, 1)t

is in both Q − ⟨u1⟩ and Q − ⟨u2⟩ but not in Q. Hence, (0, 1, 0)t ∈ r1,2,4. Therefore, we may not

directly apply Corollary 4.2.5. However, still we may apply Corollary 3.2.8 to calculate its local

cohomology by investigating the graded parts of the generalized Ishida complex corresponding to

those “hidden" regions, i.e., regions in the cokernel of the map F(Q)→ r(A).

4.3 Duality between local cohomologies on simplicial affine semigroup rings

In this section, we relate the local cohomology of an affine semigroup ring k[Q] supported on a

radical monomial ideal I∆ to the local cohomology supported on the maximal ideal of the quotient

of k[Q]/I∆. In the case of Stanley–Reisner rings, it is straightforward to determine the vanishing

of such cohomologies using available formulas for (Hilbert series of) local cohomology due to

Hochster and to Terai [53]. Throughout this section, we use the same notation as in Section 4.2.

4.3.1 Duality of graded local cohomologies

Let k[Q] be an affine semigroup ring of dimension d := dim k[Q] as defined in Section 4.2.

Suppose that Q has no hidden regions, i.e., the hyperplane arrangment A consisting of minimal

supporting hyperplanes of R≥0Q has poset of regions r(A) canonically bijective to F(Q) [18,

Lemma 1.3]. For example, this is the case when R≥0Q is a cone over a simplex. Let I∆ be a

monomial radical ideal. Let K be the transverse section of RQ with its index sets defined in

Section 4.2. Then, there is a duality between the local cohomology of k[Q]/I∆ with the maximal

ideal m support and the local cohomology of k[Q] with I∆-support as follow.

Theorem 4.3.1. Given a face F ∈ F(Q), let SF be the grain in the original degree space
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indexed by (F, F ) from Lemma 4.2.3 if it exists. If such grain does not exists, let SF be

rF ∩ (
⋃

deg(k[NA]/J∆)). For any u ∈ SF and v ∈ rF c ∩ ZQ,

(H i
m(k[Q]/I∆))u ∼= (Hd−i

I∆
(k[Q]))v

We will present the proof of this theorem after demonstrating all of the lemmas required for its

verification.

Some duality still holds in the case when hidden regions exist (only degrees outside of hidden

regions are involved), but the statement is complicated and not very enlightening. The result is

false for degrees corresponding to hidden regions, as seen in the following example.

Example 4.3.2 (Continuation of Example 4.2.6). Let I∆ = ⟨x
[
0
1
2

]
, x

[
1
1
2

]
, x

[
2
1
2

]
⟩. It is a radical

monomial ideal such that whose corresponding subcomplex ∆ has F1 and F3 as facets. Then, for

the grade (0, 1, 0)t, notes that x(0,1,0)t ∈ I∆ · k[Q − N⟨u1⟩] ∩ I∆ · k[Q − N⟨u2⟩] and x(0,1,0)t ̸∈

k[Q−N⟨u3⟩]∪k[Q−N⟨u4⟩]∪k[Q−NF3]. This shows that the graded piece of L•
m⊗k[Q]k[Q]/I∆,

the Ishida complex of k[Q]/I∆ supported at the monomial maximal ideal m, is

L•
m ⊗

k[Q]
k[Q]/I∆ : 0→ 0→ 0→ 0→ 0

On the other hand, the transverse section of k[Q]I∆ is also a rectangle whose vertices are

embedded into F2 or F4 respectively. Because (0, 1, 0)t ∈ r1,2,4, x(0,1,0)t ∈ k[Q − NFi] when

i = 1, 2, 4 only. The graded piece of L•
I∆
⊗k[Q] k[Q], the Ishida complex of k[Q] supported at I∆,

is therefore

L•
I∆
⊗
k[Q]

k[Q] : 0→ k4 → k3 → k→ 0
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Consequently,

(
Hj

I∆
(k[Q])

)
deg=(0,1,0)t

=


k j = 1, 2

0 o.w.

,
(
Hj

m(k[Q]/I∆)
)
deg=(0,1,0)t

= 0 for all j.

This contradicts the duality when the affine semigroup contains hidden regions.

From the example, we see that the theorem holds only when the affine semigroup has no hid-

den region. Therefore, an important example of affine semigroup rings where Theorem 4.3.1 is

applicable is simplicial affine semigroup rings.

Corollary 4.3.3. Theorem 4.3.1 holds when Q is a simplicial affine semigroup.

Proof. Since simplicial affine semigroups have no hidden regions, the proof follows directly from

that of Theorem 4.3.1.

Note that F c := {i ∈ [n] | i ̸∈ F} is a well-defined face since it either exists on both F(Q)

and r(A) simultaneously or on neither.

To proceed, assume that I∆ is neither 0 nor k[Q]. G(k[Q]) consists of rF ∩ ZQ for each

face F ∈ F(Q). Given the transverse section KI∆ of R≥0I∆, let (KI∆)rFc∩ZQ = {F ∈ KI∆ |

F̂ ⊃ F c} be the set of faces of KI∆ whose corresponding faces in F(Q) contain F c. Then,

PF c := F(KI∆)∖ (KI∆)rFc∩ZQ form a polyhedral complex since G ⊇ G′ ∈ (KI∆)rFc∩ZQ implies

G ∈ (KI∆)rFc∩ZQ. Consequently, the graded part of the local cohomology of k[Q] with I∆-support

is determined as below.

Lemma 4.3.4. For a degree u ∈ rF c ∩ ZQ,

H i
I∆
(k[Q])u ∼= (H i−1

Ishida(C̃ (PF c)unmoved))
∼= (H̃ i−2

CW (PF c)).

Proof. The u-graded part of the Ishida complex with I∆-support consists of components whose

localizations are by faces in (KI∆)rFc∩ZQ. Hence, the u-graded part of the Ishida complex is equal
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to the unmoved Alexander dual chain complex of PF c . Therefore, the first isomorphism is from

Corollary 1.2.28. The second isomorphism is from the difference between homological degrees of

PF c at the Ishida complex and those of PF c at the CW chain complex.

By construction, PF c is a polyhedral complex consisting of faces of KI∆ whose corresponding

faces of K induce localizations not containing the region rF c ∩ZQ. From a topological viewpoint,

PF c is obtained in two steps; first, cutting out all faces of max(∆) from K to yield KI∆ . Next, cut

out all faces whose corresponding faces of K inducing localizations containing rF c from KI∆ to

get PF c . Recall that cut is defined rigorously at Definition 1.2.18 in Subsection 1.2.1. We claim

that interchanging these two procedures results in a topological space homotopic to |PF c |.

Let KF c be a simplicial complex whose dual is (2[d]/F c) on the simplex K. In other words,

KF c
:= 2[d] ∖ (2[d]/F c). KF c is the result of cutting out all faces from K whose corresponding

faces of K induces localization containing rF c . Now, we cut out all the maximal faces of ∆ from

|KF c| if they exist. We claim that the union of those faces cut by this process is the closure

((K/F ) ∩∆) defined by ((K/F ) ∩∆) := |{σ ∈ 2[n] | σ ∈ τ for some τ ∈ (K/F ) ∩∆}|. This is

because faces contained in the relative interior of KF c as a topological space are faces containing

F . Hence, cutting a maximal face of max(∆) not containing F does not change the combinatorial

connectedness of the KF c . This argument proves the lemma below.

Lemma 4.3.5. If F ̸= K, |PF c| is homotopic to the |KF c |∖ ((K/F ) ∩∆).

Furthermore,

Lemma 4.3.6. If F ̸∈
⋂

max(∆), then (H•
I∆
(k[Q]))v = 0 for any v ∈ rF c ∩ ZQ.

Proof. From Lemma 4.3.5, it suffices to show that |KF c| ∖ ((K/F ) ∩∆) is contractible for any

F ̸∈
⋂

max(∆). First, suppose that F belongs to ∆ but not to
⋂

max(∆). Then there exists a

minimal face G ∈
⋂

max(∆) containing F . Now, G contains the boundary of KF c , thus cutting

G from KF c does not change its contractibility. Next, suppose that F ̸∈ ∆. Then, no faces of⋂
max(∆) contain F , thus if a face of

⋂
max(∆) intersects KF c , then the intersection lies on the

boundary of KF c as a topological space. This keeps |KF c |∖ ((K/F ) ∩∆) contractible.
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Note that in the case when F ̸= 0̃ or K, KF c is homeomorphic to the ball Dd−2 since it

excludes all interior elements of K = 2[d] and “punctures" the boundary of K. If F = 0̃, then KF c

is homeomorphic to a sphere Sd−2. If F = K, then KF c is an empty set as a (−1)-dimensional

polyhedral complex.

Now we are ready to show that there is a homotopic image of PF c which is the dual of (K/F )∩

∆ in a sphere S(d−1)−dimF−1. Recall that (K/F ) ∩ ∆ as a section can be seen as a subspace of

sphere S(d−1)−dimF−1 by taking vertex figures iteratively as mentioned in Subsection 1.2.1.

Lemma 4.3.7. PF c is homotopic to S(d−1)−dimF−1 ∖ (K/F ) ∩∆ where (K/F ) ∩∆ as a ((d −

1)− dimF )-dimensional polyhedral complex realized in S(d−1)−dimF−1.

Proof. If F = 0̃, then PF c is combinatorially equivalent to the empty set as a polytope and

(K/F )∩∆ ∼= Sd−2. Also, if F = K, then ∆ = K, thus PF c = F(K)∖ {K} and (K/F )∩∆ =

{K}. Hence the statement holds for these two cases.

If F is nonempty, not maximal nor minimal in F(K), recall that KF c is a simplicial complex

homotopic to Dd−2 having F in its relative interior. We claim that KF c ∖ ((K/F ) ∩∆) is homo-

topic to its image on Sd−3. To see this, pick a vertex v in F and take a sphere Sd−3 centered at v

but not containing any other vertices. By translation, assume v is the origin of Rd−2 embedded in

PF c . This induces a canonical homotopy map from punctured Rd−2 to the sphere Sd−3 restricted

to KF c ∖ ((K/F ) ∩∆) giving the desired homotopy. Lastly, use Lemma 4.3.5 and Lemma 1.2.17

to conclude that taking vertex figure on KF c preserves its image over a polyhedral complex home-

omorphic to Dd−2 if dimF ≥ 1, or to Sd−3 if dimF = 0. Iterate this for the other vertices in F to

complete the argument.

Corollary 4.3.8. For any i ∈ Z, H̃ i
CW(PF c) ∼= H̃

((d−1)−dimF−1)−i−1
simp ((K/F ) ∩∆).

Proof. Lemma 4.3.7 shows H̃ i
CW(PF c) ∼= H̃ i

CW(S(d−1)−dimF−1 ∖ (K/F ) ∩∆). Hence, from the

topological Alexander duality and the isomorphism between simplicial homology and cohomol-
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ogy,

H̃ i
CW(PF c) ∼= H̃CW,((d−1)−dimF−1)−i−1((K/F ) ∩∆) ∼= H̃simp,((d−1)−dimF−1)−i−1((K/F ) ∩∆)

∼= H̃
((d−1)−dimF−1)−i−1
simp ((K/F ) ∩∆).

Corollary 4.3.9. Let u ∈ SF where SF ∈ G(k[x]/I∆) indexed by (F, F ). Then, for any v ∈

rF c ∩ ZQ,

H i
m(k[Q]/I∆)u ∼= Hd−i

I∆
(Q)v.

H i
m(k[Q]/I∆)u ∼=︸︷︷︸

Theorem 4.2.4

H̃ i−dimF−1
simp ((K/F ) ∩∆)

∼=︸︷︷︸
Corollary 4.3.8

H̃
(d−1)−dimF−1−(i−dimF−1)−1
CW (PF c)

∼=︸︷︷︸
Lemma 4.3.4

H
(d−1)−dimF−1−(i−dimF−1)−1+2
I∆

(k[Q])v ∼= Hd−i
I∆

(k[Q])v.

We are finally ready to prove the main result of this section.

Proof of Theorem 4.3.1. If ∆ = K, then I∆ = 0. Hence H i
m(k[Q]/I∆) = 0 except for i = d, also

H i
0(k[Q]) = 0 except for i = 0. Moreover, by computation, Hd

m(k[Q]/I∆) = k[r∅ ∩
⋃
deg(k[x])]

and H0
0 (k[Q]) = k[Q] = k[r[d] ∩

⋃
deg(k[x])]. Therefore, the desired duality holds.

If ∆ = 0, then I∆ = m. Hence, from the generalized Ishida complex H i
m(k[Q]/m) = 0 except

for i = 0; in case of i = 0, H i
m(k[Q]/I∆) = k = k[{0} ∩

⋃
deg(k[x])]. Also, H i

m(k[Q]) = 0

except for i = d, and Hd
m(k[Q]) = k[R∅ ∩

⋃
deg(k[x])]. Thus, the duality holds for this case.

For all other cases, ∆ is a proper subcomplex of K. Theorem 4.2.4 shows that grains with

index (F, F ) for all F ∈
⋂

max(∆) may have nonzero local cohomology. Also, Lemma 4.3.6

shows that grains RF c ∩ZQ for any F ∈
⋂
max(∆) may have nonzero local cohomology. Lastly,
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d ∆ I∆ degZd H i
m(k[Q]/I∆) degZd H i

I∆
(k[Q])

1 1-sim 0 (∅, r∅) (r1, ∅)
1 ∅ m ({0}, ∅) (∅, r∅)
2 2-sim 0 (∅, ∅, r∅) (r1,2, ∅, ∅)
2 pt ⟨x⟩ (∅, r2, ∅) (∅, r1, ∅)
2 pt ⟨y⟩ (∅, r1, ∅) (∅, r2, ∅)
2 2 pts ⟨xy⟩ (∅, r1 ∪ r2 ∪ {0}, ∅) (∅, r1 ∪ r2 ∪ r∅, ∅)
2 ∅ m ({0}, ∅, ∅) (∅, ∅, r∅)
3 3-sim 0 (∅, ∅, ∅, r∅) (r1,2,3, ∅, ∅, ∅)
3 2-sim(yz) ⟨x⟩ (∅, ∅, r1, ∅) (∅, r2,3, ∅, ∅)
3 2-sim(xz) ⟨y⟩ (∅, ∅, r2, ∅) (∅, r1,3, ∅, ∅)
3 2-sim(xy) ⟨z⟩ (∅, ∅, r3, ∅) (∅, r1,2, ∅, ∅)
3 (xz,yz) ⟨xy⟩ (∅, ∅, r1 ∪ r2 ∪ r1,2, ∅) (∅, r2,3 ∪ r1,3 ∪ r3, ∅, ∅)
3 (xy,yz) ⟨xz⟩ (∅, ∅, r1 ∪ r3 ∪ r1,3, ∅) (∅, r2,3 ∪ r1,2 ∪ r2, ∅, ∅)
3 (xy,xz) ⟨yz⟩ (∅, ∅, r2 ∪ r3 ∪ r2,3, ∅) (∅, r1,3 ∪ r1,2 ∪ r1, ∅, ∅)
3 (xy,yz,xz) ⟨xyz⟩ (∅, ∅, (

⋃
i={1},{2},{3},
{1,2},{1,3},{2,3}

ri) ∪ {0}), ∅) (∅, (
⋃

i ̸={1,2,3} ri), ∅, ∅)

3 (x,yz) ⟨xy, xz⟩ (∅, r2,3 ∪ {0}, r1, ∅) (∅, r2,3, r1 ∪ r∅, ∅)
3 (y,xz) ⟨xy, yz⟩ (∅, r1,3 ∪ {0}, r2, ∅) (∅, r1,3, r2 ∪ r∅, ∅)
3 (z,xy) ⟨xz, yz⟩ (∅, r1,2 ∪ {0}, r3, ∅) (∅, r1,2, r3 ∪ r∅, ∅)
3 (y,z) ⟨x, yz⟩ (∅, r2,3 ∪ r1,2 ∪ {0}, ∅, ∅) (∅, ∅, r1 ∪ r3 ∪ r∅, ∅)
3 (x,z) ⟨y, xz⟩ (∅, r1,3 ∪ r1,2 ∪ {0}, ∅, ∅) (∅, ∅, r2 ∪ r3 ∪ r∅, ∅)
3 (x,y) ⟨z, yz⟩ (∅, r1,3 ∪ r2,3 ∪ {0}, ∅, ∅) (∅, ∅, r2 ∪ r1 ∪ r∅, ∅)
3 (z) ⟨x, y⟩ (∅, r1,2, ∅, ∅) (∅, ∅, r3, ∅)
3 (x) ⟨y, z⟩ (∅, r2,3, ∅, ∅) (∅, ∅, r1, ∅)
3 (y) ⟨x, z⟩ (∅, r1,3, ∅, ∅) (∅, ∅, r2, ∅)
3 (x,y,z) ⟨xy, xz, yz⟩ (∅, r2,3 ∪ r1,3 ∪ r1,2 ∪ {0}2, ∅, ∅) (∅, ∅, r1 ∪ r2 ∪ r3 ∪ r2∅, ∅)
3 ∅ m ({0}, ∅, ∅, ∅) (∅, ∅, ∅, r∅)

Table 4.2: Table of local cohomologies over a simplicial affine semigroup ring k[Q] when whose
dimension d is 1,2, or 3.

Corollary 4.3.9 provides the desired local cohomology.

Example 4.3.10. In Table 4.2, we summarize the degrees of local cohomology over a simplicial

affine semigroup ring k[Q] (with dimk[Q] = 1, 2, or 3) and with a radical monomial ideal J∆ from

a simplicial complex generated by {x} (resp. {x, y} or {x, y, z}) corresponding to the variables of

k[Q].

For example, the 12th row of the table illustrates that, when k[Q] is a 3-dimensional simplicial

affine semigroup ring, and ∆ is a simplicial complex consisting of two edges xy and yz, then its
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corresponding radical monomial ideal is ⟨xy⟩, thus for any xu⃗ ∈ k[Q]/J∆ with u⃗ ∈ r1 ∪ r2 ∪ r1,2

and xv⃗ ∈ k[Q] with v⃗ ∈ r2,3 ∪ r1,3 ∪ r3,

H2
m(k[Q]/I∆)u⃗ ∼= H3−2

J∆
(k[Q]/I∆)v⃗

and for all other u⃗ and v⃗,

H i
m(k[Q]/I∆)u⃗ = H i

J∆
(k[Q]/I∆)v⃗ = 0.

4.4 Open problems

4.4.1 Finding a combinatorial Gorenstein criterion for quotients of affine semigroup rings

There are four important classes of Noetherian graded rings with the unique homogeneous

maximal ideals, which form the following chain of inclusions: Cohen–Macaulay rings ⊃ Goren-

stein rings ⊃ complete intersection rings ⊃ regular rings. For each type of ring, except Gorenstein

rings, there is a combinatorial characterization discerning whether a certain quotient K[Q]/I of

affine semigroup ring by a monomial ideal has the given property or not. For example, K[Q]/I is

regular if and only if K[Q]/I has only one degree pair isomorphic to Nd for some d [36][Theorem

14.4]. Also, [21] and the ZQ-graded Koszul complex over K[Q]/I give such a combinatorial char-

acterization of complete intersection rings among affine semigroup rings or quotients of them by

monomial ideals.

Hence, it seems natural to ask for a combinatorial Gorenstein criterion for quotients of affine

semigroup rings by monomial ideals. Currently, combinatorial characterizations of Gorenstein

affine semigroup rings [10,54] and Gorenstein Stanley-Reisner rings [27,49] are known. The local

cohomology of canonical modules of quotients of affine semigroup rings may answer this question.

The challenge of this problem is to find a finite decomposition of the canonical module compatible

with the Ishida complex.
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4.4.2 Characterizing local cohomology modules with infinite dimensional socles

The support of a graded module M is a set of multidegrees d whose corresponding graded

piece Md is nonzero. The degree pair topology shows that the supports of local cohomology

modules H•
J(K[Q]/I) are covered by grains whose chaff is non-exact, i.e. has topological holes.

The supports of H•
J(K[Q]/I) are unions and set differences of sets of lattice points in polyhedral

objects, since grains are exactly those sets. On the other hand, the degrees of the socle of a module

M can be regarded as lattice points on faces whose outer normal vectors equal the generators of

Q. Hence, one may ask whether one can find a combinatorial condition to determine whether

H•
J(K[Q]/I) has an infinite-dimensional socle [42][Problem 13.18]. This problem was inspired

by Hartshorne’s counter-example for Grothendieck’s conjecture.

4.4.3 Class groups of non-normal toric varieties

Degree pairs may help to study class groups of non-normal toric varieties. Indeed, we con-

structed void pairs which organize all non-lattice points of the polyhedral cone R≥0Q in terms of

translations of faces [40]. Void pairs might allow one to calculate monomial fractional ideals of

non-normal affine semigroup rings. If this was true, then we could calculate the class group of non-

normal toric varieties by generalizing the fact that the class group of normal toric varieties is the

direct sum of the class group of the field and that of the corresponding normal monoid [10][Theo-

rem 4.60].

4.4.4 Irreducible resolution of quotients of non-normal affine semigroup rings

An ideal W of K[Q] is irreducible if W cannot be expressed as an intersection of two distinct

ideals [42]. The irreducible resolution of a module M is an exact sequence 0→M → W
0 → · · ·

such that each W
i

is a direct sum of quotients of K[Q] by irreducible ideals. Unless Q is nor-

mal, there is no known algorithm for constructing irreducible resolutions. Although an algorithm

for constructing irreducible decomposition of normal affine semigroup rings was provided in [24],

this is currently not implemented. A general algorithm was provided in [39] which is imple-

mented in [58], but irreducible resolutions are not yet developed in this context. Void pairs in-
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troduced in Section 4.4.3 seem to give a promising approach towards finding an implementable

algorithm for irreducible resolutions of monomial ideals over non-normal affine semigroup rings

for Macaulay2 or SageMath.

4.4.5 Classifying acyclic chaffs using hyperplane arrangements

Chaffs can be described using the poset of regions generated by hyperplanes of R≥0Q. The

face lattice of R≥0Q is embedded in this poset [5]. For example, every grain of the zero ideal of

an affine semigroup ring has chaff equivalent to the intersection of the upper set of the poset of

regions and the face lattice of the cone of the corresponding affine semigroup.

Despite the fact that the situation when the poset of regions is a lattice is well studied [16,

43–45], it is still unclear whether the intersection between the upper set of the poset of regions and

the face lattice of cone as a sub-lattice of the poset of regions is acyclic or not. In the spirit of the

characterization of f -vectors of simplicial complexes [17, 50] in relation to Kalai’s conjecture [6],

this question may shed lights on the combinatorial decomposition of polyhedral complexes.

113



REFERENCES

[1] 4ti2 team, 4ti2—a software package for algebraic, geometric and combinatorial problems on

linear spaces.

[2] Alexander Barvinok and James E. Pommersheim, An algorithmic theory of lattice points

in polyhedra, New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97), 1999,

pp. 91–147. MR1731815

[3] Alexander Barvinok and Kevin Woods, Short rational generating functions for lattice point

problems, J. Amer. Math. Soc. 16 (2003), no. 4, 957–979. MR1992831

[4] Anders Björner, Paul H. Edelman, and Günter M. Ziegler, Hyperplane arrangements with a

lattice of regions, Discrete Comput. Geom. 5 (1990), no. 3, 263–288. MR1036875

[5] , Hyperplane arrangements with a lattice of regions, Discrete Comput. Geom. 5

(1990), no. 3, 263–288. MR1036875

[6] Anders Björner and Gil Kalai, An extended Euler-Poincaré theorem, Acta Math. 161 (1988),

no. 3-4, 279–303. MR971798

[7] Anders Björner and Martin Tancer, Note: Combinatorial Alexander duality—a short and

elementary proof, Discrete Comput. Geom. 42 (2009), no. 4, 586–593. MR2556456

[8] Anders Björner and Günter M. Ziegler, Combinatorial stratification of complex arrange-

ments, J. Amer. Math. Soc. 5 (1992), no. 1, 105–149. MR1119198

[9] M. P. Brodmann and R. Y. Sharp, Local cohomology, Second, Cambridge Studies in Ad-

vanced Mathematics, vol. 136, Cambridge University Press, Cambridge, 2013. An algebraic

introduction with geometric applications. MR3014449

[10] Winfried Bruns and Joseph Gubeladze, Polytopes, rings, and K-theory, Springer Mono-

graphs in Mathematics, Springer, Dordrecht, 2009. MR2508056

114



[11] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced

Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR1251956

[12] , Semigroup rings and simplicial complexes, J. Pure Appl. Algebra 122 (1997), no. 3,

185–208. MR1481087

[13] Winfried Bruns and Bogdan Ichim, Normaliz: algorithms for affine monoids and rational

cones, J. Algebra 324 (2010), no. 5, 1098–1113. MR2659215

[14] Guillermo Cortiñas, Christian Haesemeyer, Mark E. Walker, and Charles Weibel, Toric

varieties, monoid schemes and cdh descent, J. Reine Angew. Math. 698 (2015), 1–54.

MR3294649

[15] Peter R. Cromwell, Polyhedra, Cambridge University Press, Cambridge, 1997. “One of the

most charming chapters of geometry”. MR1458063

[16] Aram Dermenjian, Christophe Hohlweg, Thomas McConville, and Vincent Pilaud, The facial

weak order on hyperplane arrangements, Sém. Lothar. Combin. 84B (2020), Art. 14, 11.

MR4138642

[17] Art M. Duval, A combinatorial decomposition of simplicial complexes, Israel J. Math. 87

(1994), no. 1-3, 77–87. MR1286816

[18] Paul H. Edelman, A partial order on the regions of Rn dissected by hyperplanes, Trans. Amer.

Math. Soc. 283 (1984), no. 2, 617–631. MR737888

[19] David Eisenbud and Bernd Sturmfels, Binomial ideals, Duke Math. J. 84 (1996), no. 1, 1–45.

MR1394747

[20] Zekiye Sahin Eser and Laura Felicia Matusevich, Decompositions of cellular binomial ideals,

J. Lond. Math. Soc. (2) 94 (2016), no. 2, 409–426. MR3556446

[21] Klaus G. Fischer, Walter Morris, and Jay Shapiro, Affine semigroup rings that are complete

intersections, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3137–3145. MR1401741

115



[22] Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-

Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University,

Fall, 1961. MR0224620

[23] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

MR1867354

[24] David Helm and Ezra Miller, Algorithms for graded injective resolutions and local cohomol-

ogy over semigroup rings, J. Symbolic Comput. 39 (2005), no. 3-4, 373–395. MR2168288

[25] Raymond Hemmecke, Akimichi Takemura, and Ruriko Yoshida, Computing holes in semi-

groups and its applications to transportation problems, Contrib. Discrete Math. 4 (2009),

no. 1, 81–91. MR2541989

[26] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials,

and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR304376

[27] Melvin Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, Ring

theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), 1977, pp. 171–223.

Lecture Notes in Pure and Appl. Math., Vol. 26. MR0441987
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