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ABSTRACT

The thesis is devoted to the study of the fundamental system of invariants of bracket-generating

rank 2 distributions, i.e. fields of planes, on n-dimensional manifolds (shortly, (2, n)-distributions).

Distributions are considered modulo the natural action of the group of diffeomorphisms. In the case

of n = 5, the minimal n for which there are locally nonequivalent maximally nonholonomic (2, n)-

distributions, E. Cartan constructed the fundamental invariant called the Cartan tensor and showed

that vanishing of this invariant implies that the distribution is locally equivalent to the maximally

symmetric one. In a series of works in the 2000s A . Agrachev, B. Doubrov, and I. Zelenko

discovered the relation between local geometry of (2, n)-distributions and classical geometry of

self-dual curves in (2n−7)-dimensional projective space. In particular, from their theory, it follows

that a collection of n − 4 fundamental invariants for such self-dual curves, constructed by E.

Wilczynski in 1905 gives rise to the new invariants of (2, n)-distributions, called the generalized

Wilczynski invariants. I. Zelenko proved that in the case of n = 5, wherein there is only one

generalized Wilczynski invariant, it coincides with the Cartan tensor. Further, B. Doubrov and

I. Zelenko showed that there exists exactly one, up to local equivalence, maximally symmetric

bracket-generating (2, n)-distribution with the 5-dimensional cube, called the symplectically flat

distribution, and for such distribution, all generalized Wilczynski invariants vanish identically.

The natural question is whether or not the symplectically flat distribution is the only, up to local

equivalence, distribution with this property. For n = 5 the answer to this question is positive due to

E. Cartan. The main result of the thesis is that the answer is also positive in the case of left-invariant

maximally nonholonomic (2, 6)-distributions on Lie groups. We also give an example of a left-

invariant distribution with both Wilczynski invariants equal to zero on a 6-dimensional Lie group

which is not isomorphic to the nilpotent Lie group on which the symplectically flat distribution

naturally lives. Among other new results, we clarify the algebraic structure of the generalized

Wilczynski invariants and their dependence on the Tanaka symbol of a distribution.

ii



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Igor Zelenko (the ad-

visor) and J. Maurice Rojas of the Department of Mathematics and Yang Song of the Department

of Urban Planning.

Funding Sources

Graduate study was supported by a fellowship from Texas A&M University.

iii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Equivalence problem for distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. ABNORMAL EXTREMALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. JACOBI CURVES OF ABNORMAL EXTREMALS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Construction of Jacobi curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Osculating flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4. WILCZYNSKI INVARIANTS OF CONVEX CURVES IN PROJECTIVE SPACE . . . . . . . 23

4.1 Laguerre-Forsyth’s Canonical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Wilczynski invariants: original approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Wilczynski invariants: sl2epresentation theory approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Self-dual curves in projective space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5. GENERALIZED WILCZYNSKI INVARIANTS OF RANK 2 DISTRIBUTIONS . . . . . . . . 34

6. QUAIHOMOGENEOUS DECOMPOSITION OF GENERALIZED WILCZYNSKI IN-
VARIANTS AND THE ROLE OF TANAKA SYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Tanaka symbols of distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Quasi-weights and quasihomogeneity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Applications to (2,3,5) distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7. APPLICATIONS TO (2,3,5,6)-DISTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8. LEFT-INVARIANT DISTRIBUTIONS ON LIE GROUPS WITH ZERO WILCZYN-
SKI INVARIANTS ARE LOCALLY FLAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9. AN EXAMPLE OF A LEFT-INVARIANT (2,3,5,6)-DISTRIBUTION WITH ZERO
WILCZYNSKI INVARIANTS ON A SOLVABLE LIE GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iv



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

v



1. INTRODUCTION

1.1 Equivalence problem for distributions

A rank l vector distribution D on an n-dimensional manifold M is, by definition a vector

subbundle of the tangent bundle TM of M with l-dimensional fibers. Equivalently, for every point

q0 the exists a neighborhood U and a tuple {X1, . . . Xl} of vector fields in U such that

D(q) = span{X1, . . . Xl}, ∀q ∈ U (1.1)

The tuple of vector fields {X1, . . . Xl} satisfying (1.1) is called the local basis of the distribution

D. Informally, for each point, q ∈ M , a l−dimensional subspace D(q) of the tangent space TqM

is chosen, and D(q) smoothly depends on q.

Two vector distributions D1 and D2 are called equivalent, if there exists a diffeomorphism

F : M → M such that

F∗D1(1) = D2(F (q))), ∀q ∈ M, (1.2)

where F∗ stands for the push-forward of the diffeomorphism F defined on the tangent bundle TM .

Two germs of vector distributions D1 and D2 at point q0 ∈ M are called locally equivalent, if there

exist neighborhoods U and Ũ and a diffeomorphism F : U → Ũ such that

F∗D(q) = D2(F (q)), ∀q ∈ U ;

F (q0) = q0

In other words, the equivalence (local equivalence) of distributions is the equivalence relations

defined by the natural action (i.e., by push-forward) of the group (pseudo-group) of diffeomor-

phisms (local differomorphism) on the set of distributions (germs of distributions).

The way to solve the corresponding equivalence problem for distributions (germs of distri-

butions), i.e., to determine whether or not two distributions (germs of distributions) are equiva-
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lent (locally equivalent), is to construct and analyze their invariants under the equivalence, i.e.,

the quantities which are preserved under the natural action of the group of diffeomorphism (the

presidio-group of local diffeomorphisms).

A basic example of a discrete invariant of distribution D at q is the small growth vector at q,

which can be obtained by making iterative Lie brackets of the vector fields tangent to the distribu-

tion. In more detail, we construct the filtration of the tangent bundle TM

D ⊂ D2 ⊂ . . . Dr ⊂ · · · ⊂ TM (1.3)

with

D2 = D + [D,D], . . . , Dj+1 = Dj + [D,Dj], (1.4)

where

[D,Dj] = span{[X, Y ] : X ∈ D, Y ∈ Dj} (1.5)

and Dj is called the j−th power of the distribution D.

The small growth vector at q, which can be obtained is a tuple of integers

(dimD(q), dimD2(q), . . . ) (1.6)

of the distribution D. From the naturality of the Lie brackets of vector fields, i.e., the fact that

F∗[X, Y ] = [F∗X,F∗Y ], it follows that the small growth vector is the invariant of the equivalence

problem.

If there exists r such that Dr = TM , we say that D is a bracket-generating distribution. And

the minimal such r is called the degree of nonholonomy of the distribution D. By Rashevskii-Chow

theorem [7, 17], if D is bracket generating distribution on a connected manifold M , then any two

points of M can be connected by a curve which is the concatenation of smooth curves tangent to

D at each point.1

1In fact, it can be shown [15] that they can be shown by a smooth curve.
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In general, for j > 1, the dimensions of Dj(q) vary as one varies the point q. A distribution

D is called equiregular at a point q0 if there is a neighborhood U of q0 in M for each j > 0 the

dimensions of subspaces Dj(q) are constant for all q ∈ U , i.e., the small growth vector of D at

every point q ∈ U is the same. We will say that a distribution is an (ℓ1, ℓ2, . . . , ℓr)-distribution,

where ℓr = n if its small growth vector at every point is equal to (ℓ1, ℓ2, . . . , ℓr).

From now on, we will consider equiregular and bracket-generating distributions. These as-

sumptions are not quite restrictive. Indeed, regarding equiregularity, since for every positive integer

j, the map q → dimDj(q)

from M to Z+ is lower semi-continuous, the set of all regular points is generic on M so that any

distribution is equiregular in a neighborhood of a generic point. Furthermore, if a distribution is

equiregular but not bracket generating in some neighborhood U , then there exists a positive integer

r such that Dr is a proper involutive subbundle of TU and the distribution D is bracket generating

on each integral submanifold of Dr in U . So, we can restrict ourselves to this integral submanifold

instead of U .

The small growth vector is usually a very rough invariant of distributions, i.e., it determines

a distribution up to equivalence only in very few cases, as uequiangularvalence classes of distri-

butions are determined by functional invariants. Let us make a rough estimate for the number of

functional parameters in the equivalence problem under consideration. Recall that the Grassman-

nian Grn(l) of n-dimensional subspaces of Rn is an (n − l)l-dimensional manifold: Indeed, fix

an l-dimensional subspace Λ0 ∈ Grn(l) and a complimentary (n − l)-dimensional subspace Λ∞.

Denote by Λ⋔
∞ the subset of Grn(l), consisting of all l-dimensional subspaces of Rn transversal to

Λ∞. Then any Λ ∈ Λ⋔
∞ can be seen as a graph of the unique linear map LΛ : Λ0 → Λ∞. Hence,

fixing bases on Λ0 and Λ∞, one can assign to any Λ ∈ Λ⋔
∞ the (n− l)× l-matrix AΛ representing

the linear map LΛ in these bases. The set Λ⋔
∞ and the map Λ 7→ AΛ defines a coordinate chart,

and the collection of these charts defines the structure of smooth (n− l)l-dimensional manifold on

Grn(l).

This implies that in a fixed coordinate system on M , in order to describe an (l, n)-distribution
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D, one needs l(n − l) functions, and these functions are independent in general. A coordinate

change is given by n functions, so generically, we can normalize only n functions among those

l(n − l) functions describing D. This means that d(l, n) := l(n − l) − n functions cannot be

normalized.

Although these arguments are not quite rigorous, in all cases when the quantity d(l, n) is non-

positive, i.e., when according to these arguments the functional invariants are not expected, the

generic germs of (l, n)-distributions are equivalent one to each others. Except the trivial cases of

l = 0 and l = n, the quantity d(l, n) is non-positive only in the following three case:

1. l = 1, i.e D is a line distribution. In this case d(1, n) = −1. By the standard theorem on

the rectification of vector fields without stationary points, all line distributions are locally

equivalent to the distribution generated by the vector field ∂
∂x1

in some local coordinates

(x1, . . . , xn).

2. l = n − 1, i.e. D is a corank 1 distribution. In this case d(n − 1, n) = −1. In this

case, the distribution D is the kernel of a nonzero 1-form α defined up to a multiplica-

tion by a nonzero function, and for any q ∈ M the form dα(q)|D(q) is well defined up

to a multiplication by a constant. By the classical Darboux theorem, if the rank of the

form dα(q)|D(q) is constant and equal to 2r, then there exists a local coordinate system

(x1, . . . , xr, p1, . . . , pr, u, v1, . . . vn−1−2r such that the distribution D is the kernel of the 1-

dorm

du− p1d x1 − . . .− prd xr. (1.7)

In the case when the rank 2r of the form dα(q)|D(q) is maxima,l possible, i.e. when r =n− 1

2

, the distribution D is called contact if n is odd and quasi-contact or even-contact

if n is even. Obviously, germs of contact and quasi-contact distributions are generic among

germs of corank 1 distributions and by the Darboux theorem, all such distributions are lo-

cally equivalent to each other. Note that from the formula (1.7), it follows that in the case of
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odd n = 2k + 1 contact distributions are locally equivalent, to the natural distribution on

the space J1(Rk,R) of the first jets of scalar functions u(x1others, xk) of k variables, with

pi =
∂u
∂xi

.

3. l = 2 and n = 4, i.e. D is a distribution of planes on a 4-dimensional manifold. Assume that

at a point q, the small growth vector is (2, 3, 4), i.e., the iterative Lie brackets of sections of

D grow in the maximal possible way. Note that if Then, by the Engel theorem, there exists a

local coordinate system (t, x0, x1, x2) such that D is the intersection of kernels of the 1-forms

dx0 − x1dt and dx1 − x2dt. Note that this is a natural distribution on the space J2(R,R2)

of 2-jets of functions from R to R2.

Note that in the first two cases, d(l, n) = −1 and the analogous statements are valid for more

refined objects such as vector fields and 1-forms that are described by one more function in a fixed

coordinate system compared to line distributions and corank 1 distributions respectively. Therefore

by the analogous counting arguments functional invariants are not expected also for these more

refined structures and moreover, the normal forms of items 1 and 2 above are also valid for them

in generic position.

For all other pairs, (l, n) generic germs of distribution have functional invariants and therefore

there are non-equivalent germs of distributions with the same small growth vector.

1.2 Problem statement and main results

The case l = 2 and n = 5 is the smallest dimensional case when the functional invariants are

expected, and it was treated by E. Cartan in 1910 [5]. To every such distribution, Cartan assigned

an invariant homogeneous polynomial of degree 4 on each plane D(q). He called it the covariant

binary biquadratic form. We call it Car n’s tensor). Moreover, Cartan proved that a (2, 3, 5)-

distribution has the vanishing Cartan tensor if and only if it is locally equivalent to a specific

distribution. The germ of this distribution, up to local equivalence, will be called the Cartan flat

distribution. In modern language, the latter result is a particular case of the general theory of

harmonic curvatures in parabolic geometry ([21, 6, 23]).
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To describe the Cartan flat distribution, describe first a class of rank 2 distributions in Rn that

come from so-called underdetermined ODEs of the type

z′(x) = F
(
x, y(x), . . . , y(n−3)(x), z(x)

)
, (1.8)

for two functions y(x) and z(x). Setting pi = y(i), 0 ≤ i ≤ n−3, with each equation (1.8) one can

associate the rank 2 distribution on Rn with coordinates (x, p0, . . . , pr, z) defined as the annihilator

of the following n− 2 1-forms:

dpi − pi+1dx, 0 ≤ i ≤ n− 4,

dz − F (x, p0, . . . , pn−3, z)dx.

(1.9)

The Cartan flat distribution is represented by the distribution associated with the underdeter-

mined ODE z′(x) =
(
y′′(x)

)2.
Recall that a vector field X is called an �infinitesimal symmetry of a distribution D if [X,D] ⊂

D or ,equivalently, if the local flow generated by X preserves D. Cartan proved that the Cartan

flat distribution is the maximally symmetric distribution among all (2, 3, 5)-distribution having 14-

dimensional algebra of infinitesimal symmetries isomorphic to split real form of the exceptional

simple Lie algebra G2.

In 2006 in [25] I. Zelenko constructed the analog of Cartan’s tensors of bracket-generating

rank 2 distributions on n-diemnsional manifold for every n ≥ 5 using the ideas from Optimal

Control theory, namely studying certain dynamics in the cotangent bundle along the foliation of so-

called abnormal extremals (singular curves) of distributions, see alsosections2 below. In this way,

the relation between local geometry of (2, n)-distributions with 5-dimensional D3 and differential

geometry of curve in Lagrangian Grassmannians was found (see also section 3 below) and the first

nontrivial invariant of such curves gave the invariant of such distributions, called the fundamental

ifrm. Zelenko has shown in [26] that in the case n = 5, his fundamental form coincides with the

Cartan tensor.
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Later B. Doubrov and i. Zelenko ([11],[13], using the classical E. Wilczynski’s theory of self-

dual curves in projective spaces ([22]), constructed n − 4 invariants of rank 2 distribution, called

the generalized Wilczynski invariant on n-dimensional manifolds satisfying certain genericity as-

sumption called maximality of class (see also sections 4, 5 below). The very first generalized

Wilczynski invariant coincides with Zelenko’s fundamental form. Doubrov and Zelenko also show

in [10] that among all rank 2 distributions of maximal class with 5-dimensional D3 on an n di-

mensional manifold, n ≥ 5 the maximally symmetric ones are isomorphic to the one associated

with with the underdetermined ODE z′(x) =
(
y′′(x)

)2, generalizing Cartan’s results in the case

of n = 5. This distribution will be called symplectically flat as the cotangent bundle and the lan-

guage of symplectic geometry is crucial in this theory, and in order to make a distinction with the

notion of flat distribution with the given Tanaka symbol, see subsection 6.1 below. Moreover, the

symplectically flat distribution has all n− 4 generalized Wilczynski invariants equal to zero.

The following question is central to the current thesis:

Main question Whether or not from the fact that all n − 4 generalized Wilczynski invariants

vanish, it follows that the rank 2 distribution with 5-dimensional D3 on an n dimensional manifold

is equivalent to the symplectically flat one in the case n = 6?

By the above, for n = 5 the answer to this question is positive. In [11], the positive answer to

this question was given for rank 2 distributions associated with underdetermined ODEs of the type

z′(x) = F
(
x, y(x), . . . , y(n−3)(x)

)
, Fy(n−3)y(n−3) ̸= 0 (1.10)

i.e. when F in (1.8) is independent of z (the condition Fy(n−3)y(n−3) ̸= 0 is needed to ensure that

rankD3 = 5.

The following reformulation of the aforementioned result from [11] will be crucial for us here:

Theorem 1.2.1. [11, Proposition 2.1 and Theorem 5.1] If a (2, 3, 5, 6)-distribution D has an in-

finitesimal symmetry X lying in D3 but not in D2 2 Then, because both Wilczynski invariants of D

2In fact, in [11][Proposition 2.1] the result is formulated for a rank 2 distribution on n-dimensional manifold with
n ≥ 5 and dimD3 = 5 under additional assumption that the factorization by the foliation of integral curves of X
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vanish, it follows that the distribution is equivalent to the symplectically flat distribution.

The main result of this thesis is that the answer to the main question is positive in the case

of left-invariant (2, 3, 5, 6)-distribution on Lie groups (see Theorem 8.1.1). In section 9, we also

give an example of a left-invariant distribution with both Wilczynski invariants equal to zero on a

6-dimensional Lie group which is not isomorphic to the nilpotent Lie group on which the symplec-

tically flat distribution naturally lives as a left-invariant one. Among other new results, we show in

Theorem 6.2.2 that a Wilczynski invariant of a distribution D at a point q is not zero if it is nonzero

for the flat distribution corresponding to the Tanaka symbol of D at q.

sends D to the Goursat distribution on the quotient manifold. Note that for n = 6, this condition is equivalent to the
one given in the present formulation
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2. ABNORMAL EXTREMALS

The main idea of [25], based on earlier works [2, 1, 4], for the construction of invariants of

distributions was to use the notion of abnormal extremals, coming from the Pontryagin Maximum

Principle (PMP) in Optimal Control [16, 3]. Given a distribution D, a horizontal (or admissible )

curve of D is an absolutely continuous curve α : [0, T ] → M which is tangent to D at almost every

point, i.e., α′(t) ∈ D(γ(t)) for almost every t ∈ [0, T ]. By the aforementioned Rashevskii-Chow

theorem, the set HorD(q0, q1) of the horizontal curves of a bracket -generating distribution D on a

connected manifold M connecting two given points q0 and q1 of M is nonempty. Defining on this

set of curves any cost functional of integral type, for example, a length with respect to a Riemannian

metric on M , we get an optimal control problem with constraints given by the distribution D and

fixed initial and terminal points: among all curves from HorD(q0, q1) to find a curve on which

the chosen cost functional attains its minimum. Such a curve is called a minimizer of the optimal

control problem.

The Pontryagin Maximum Principle gives the necessary condition for a curve to be the min-

imizer of such optimal control problem for all pairs of initial and terminal points (q0, q1): the

minimizers are described as projections of special curves in the cotangent bundle T ∗M , called the

Pontryagin extremals.

There are two types of Pontryagin extremals: normal and abnormal. Normal extremals cor-

respond to a nonzero Lagrange multiplier near the cost functional, while abnormal extremals cor-

respond to a zero Lagrange multiplier near the cost functional and so they do not depend on the

cost functional but on the distribution D itself. So the abnormal extremals can be described purely

geometrically in D without referring to any optimal control problem.

Below we restrict ourselves to this geometric description without relating it to the Pontraygin

Maximum Principle, as it is enough for our purposes. For this, we need to recall the construction

of the canonical symplectic structure on the cotangent bundle T ∗M . Let π : T ∗M → M denote

the canonical projection The tautological Liouville 1-form s on T ∗M is defined as follows: if

9



λ = (p, q) ∈ T ∗M , where q ∈ M and p ∈ T ∗
q M , and v ∈ TλT

∗M , then

s(λ)(v) := p
(
π∗(v)

)
. (2.1)

Given a differential 2-form ω on a manifold N its kernel Kerωz at a point z ∈ N is defined as

follows:

Ker ωz = {X ∈ TzN,ωz(X, Y ) = 0, ∀Y ∈ TzN}. (2.2)

A differential 2-form ω is called nondegenerate at a point z if Kerωz = 0 and it is degenerate

otherwise. Recall that a symplectic manifold is a manifold endowed with a closed nondegenerate

differential 2-form, called a symplectic structure.

Remark 2.1.1. Note that if dimN is odd, then a 2-form is degenerate at any point. This is a

consequence of the fact from linear algebra that the determinant of a skew-symmetric matrix of

odd size is zero. So a symplectic manifold has to be of an even dimension. Also, note that if the

dimension of N then the condition for a 2-form is nondegenerate is generic.

It turns out that the exterior derivative of the tautological 1-form s:

σ := ds. (2.3)

is nondegenerate. The form σ is called the canonical symplectic structure on T ∗M and it makes

T ∗M symplectic manifold.

Further, the filtration (1.3) on TM defines the dual filtration on T ∗M . To define the latte, we

call (Dj)⊥ ⊂ T ∗M the annihilator of the jth power Dl, i.e

(Dj)⊥ = {λ ∈ T ∗M : λ = (p, q), p(v) = 0, ∀v ∈ Dj(q)} (2.4)

In particular, since D1 = D the annihilator D⊥ of the distribution D itself is in fact (D1)⊥.

Note that D⊥ is a codimension l submanifold of T ∗M . We will say that a curve γ : [0, t] → T ∗M
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is nontrivial if γ([0, T ] is not one point.

Definition 2.1.2. An abnormal extremal of the distribution D is an absolutely continuous nontirival

curve γ : [0, T ] → T ∗M such that the following two conditions hold

γ(t) ∈ D⊥ ∀t ∈ [0.T ], (2.5)

γ̇(t) ∈ Ker(σ|D⊥)γ(t) a.e. t ∈ [0, T ], (2.6)

where σ|D⊥ is the restriction of the canonical form σ to the annihilator Dperp of D.

By the last sentence of Remark (2.1.1), if l is even, then one expects that Ker(σ|D⊥)λ = 0 for

a generic point λ ∈ Dperp so there is no abnormal extremal passing through such a point and the

locus of abnormal extremals belong to a proper (stratified) submanifold of D⊥.

To understand this more quantitatively, let us describe Definition 2.1.2 in terms of a local

basis {X1, . . . , Xl} of the distribution D. For this, we need more constructions from elementary

symplectic geometry.

A Hamiltonian is any smooth function on T ∗M . To any Hamiltonian H one can assign a vector

field H⃗ on T ∗M as the unique vector field satisfying

iH⃗σ = −dH, (2.7)

where iH⃗ denotes the operation of the interior product, (iH⃗)σλ(Y ) := σ(H⃗, Y ) for all Y ∈

TλT
∗M . The existence and uniqueness of H⃗ satisfying (2.7) is the direct consequence of the

nondegeneracy of σ. The vector field H⃗ is called the Hamiltonian vector field associated with the

Hamiltonian H . Given two Hamiltonians H1 and H2, the Poisson brackets {H1, H2} is another

Hamiltonian defined by

{H1, H2} :=
−→
H1(H2) = dH2

(−→
H1

)
. (2.8)

Now given a vector field X on M define the Hamiltonian HX : T ∗M → R , the quasi-impulse of

11



X) as follows HX :

HX(λ) = p
(
Xi(q)

)
, where λ = (p, q), q ∈ M, p ∈ T ∗

q M (2.9)

It is easy to see that the corresponding Hamiltonian vector field
−→
HX satisfies π∗

−→
HX = X . The vec-

tor field is called the Hamiltonian lift of X . The Hamiltonian lifts satisfy the following important

natural property:
−→
HX(HY ) = dHY

(−→
HX

)
= {HX , HY } = H[X,Y ]. (2.10)

In particular, the Hamiltonian lift establishes the isomorphism between the Lie algebra of vector

fields on M with the product given by the Lie brackets and the Lie algebra of quasi-impulses with

the product given by the Poisson brackets.

Now, let {X1, . . . , Xl} be a local basis of distribution D and let

ui := HXi
. (2.11)

Then

D⊥ = {λ ∈ T ∗M : u1(λ) = . . . = ul(λ) = 0}. (2.12)

From this , using (2.7), it is easy to show that

Ker(σ|(D)⊥)λ = span{u⃗1

(
λ
)
, . . . , u⃗l

(
λ
)
}, ∀λ ∈ D⊥. (2.13)

This implies the following

Lemma 2.1.3. An absolutely continuous nontrivial curve γ : [0, T ] → T ∗M is an abnormal

extremal of D if and only if condition (2.5) holds and

γ̇(t) ∈ span{u⃗1

(
γ(t)

)
, . . . , u⃗l

(
γ(t)

)
} a.e. t ∈ [0, T ], . (2.14)
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Now apply Lemma 2.1.3 to the case rankD = 2. From now on we assume that rankD2 = 3

The following notations will be convenient in the sequel

WD = (D2)⊥\(D3)⊥ (2.15)

C(λ) = Ker(σ|D⊥)λ ∩ Tλ(D
2)⊥, λ ∈ (D2)⊥ (2.16)

Proposition 2.1.4. An abnormal extremal of a rank 2 distribution D lies in D2⊥. Moreover, if

λ ∈ WD, then dim C(λ) = 1, and a curve lying in WD is an abnormal extremal if and only if it is

an integral curve of the rank 1 distribution C.

Proof. if γ is an abnormal extremal then by (2.14) there exist absolutely continuous functions λ1(t)

and λ(t) such that

γ̇(t) = λ1(t)u⃗1

(
γ(t)

)
+ λ2(t)u⃗2

(
γ(t)

)
a.e. t ∈ [0, T ], . (2.17)

By (2.5) and (2.12) for a.e. t

γ̇(t) ∈ Tγ(t)D
⊥ = {v ∈ Tγ(t)T

∗M : du1(v) = du2(v) = 0}. (2.18)

Hence, substituting (2.17) into (2.18) and (2.10), we get

d u1(α1(t)u⃗1

(
γ(t)

)
+ α2(t)u⃗2

(
γ(t)

)
= −α2(t)H[X1,X2]

(
γ(t)

)
= 0

d u2(α1(t)u⃗1

(
γ(t)

)
+ α2(t)u⃗2

(
γ(t)

)
= α1(t)H[X1,X2]

(
γ(t)

)
= 0

(2.19)

Hence, if γ̇(t) ̸= 0, at least one of αi

(
γ(t)

)
is not zero, so (2.19) implies that

H[X1,X2]

(
γ(t)

)
= 0. (2.20)

so γ(t) ∈ (D2)⊥. From nontriviality and absolute continuity of γ it follows that γ lies (D2)⊥.
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Further, if v ∈ C(λ) where C(λ) is as in (2.16), then there exist scalars α1 and α2 such that

v = α1u⃗1 + α2u⃗2, (2.21)

dH[X1,X2](v) = 0. (2.22)

Substituting (2.21) to (2.22) and using (2.10), we get

α1H[
X1,[X1,X2]

](λ) + α2H[
X2,[X1,X2]

](
λ
)
= 0 (2.23)

Since by our assumptions λ /∈ (D3)⊥, either H[
X1,[X1,X2]

](λ) or H[
X2,[X1,X2]

](λ) is not zero, so

C(λ) is 1-dimensional and in fact

C(λ) = span
{
H[

X1,[X1,X2]
](λ)u⃗2(λ)−H[

X2,[X1,X2]
](λ)u⃗1(λ)

}
. (2.24)

The last statement of the proposition follows from the fact that an abnormal extremal must be

tangent to the rank 1 distribution C at every point of WD, which follows from the previous statement

of the proposition that we proved.

Definition 2.1.5. The rank 1 distribution C defined by (2.16) (or , equivalently, by (2.24)) is called

the characteristic line distribution of D on WD. The foliation of abnormal extremals generated by

the characteristic line distribution C is called the characteristic foliation of WD. The leaves of this

foliation are called regular abnormal extremals.

Remark 2.1.6. Note that for λ ∈ WD the characteristic line distribution satisfies

C(λ) = Ker(σ|(D2)⊥)λ, λ ∈ WD (2.25)
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Indeed, if v ∈ Ker(σ|(D2)⊥)λ then there exist scalars α1 and α2 such that

v = α1u⃗1(λ) + α2u⃗2(λ) + α3

−→
H [X1,X2](λ), (2.26)

du1(v) = du2(v) = 0 (2.27)

dH[X1,X2](v) = 0. (2.28)

Plugging (2.26) into (2.27) and using (2.10) and the fact that Wd ⊂ (D2)⊥, we get

α3H[
X1,[X1,X2]

](λ) = α3H[
X2,[X1,X2]

](λ) = 0. (2.29)

Since by our assumptions λ /∈ (D3)⊥ , either H[
X1,[X1,X2]

](λ) or H[
X2,[X1,X2]

](λ) is not zero, so

equation (2.29) implies that α3 = 0, so v ∈ Ker(σ|D⊥)λ and therefore v ∈ C(λ). So, we proved

that Ker(σ|(D)2⊥)λ ⊂ C(λ). the reverse inclusion is trivial, so we get (2.25).
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3. JACOBI CURVES OF ABNORMAL EXTREMALS

3.1 Construction of Jacobi curve

Note that in addition to the characteristic foliation of abnormal extremals the manifold WD

is endowed with the structure of a fiber bundle. In this section to any abnormal extremal γ of a

rank 2 distribution on WD, we assign a special curve in a Lagrangian Grassmannian, called the

Jacobi curve of γ. Speaking informally, the Jacobi curve of an abnormal extremal γ describes the

dynamics of the fibers of WD along γ. This curve is in fact recovered from a special curve in

projective space. We will refer to it here as the derived Jacobi curve of γ. Invariants of curves

in projective spaces under the action of the projective linear group were constructed by Wilczyn-

ski in [22]. Since all construction is coordinate-free, Wilczynski invariants of the derived Jacobi

curve of each regular abnormal extremal produce invariants of the original distribution called the

generalized Wilczynski invariants. These invariants are the main object of study in this thesis.

We start with some preliminaries. Recall that the Euler field e⃗ on a vector bundle (and in partic-

ular on T ∗M ) is the vector field so that its flow consists of a one-parametric family of homotheties

in its fibers. In more details, let δs be the flow of homotheties on the fibers of T ∗M :

δs(p, q) = (esp, q), q ∈ M, p ∈ T ∗
q M (3.1)

and let

e⃗(λ) =
d

ds
δs(λ)|s=0. (3.2)

Directly from the definition the tautological Liouville 1-form s (see (2.1)) and the canonical sym-

pletic form sigma (see (2.3)) it is easy to show that

ie⃗σ = s. (3.3)
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Consider the following corank 1 distribution ∆̃ on T ∗M :

∆̃ := Kers = {v ∈ TλT
∗M : s(v) = 0} (3.4)

Since the form σ is nondegenerate, the kernel of σ|∆̃ is one-dimensional at every point. Moreover

by (3.3)

Ker σ|∆̃ = span{e⃗} (3.5)

Restrict the distribution ∆̃ from T ∗M to (D2)⊥, i.e. define

∆ := ∆̃ ∩ TP(D2)⊥ (3.6)

Lemma 3.1.1. The following relation holds:

Ker
(
σ|∆
)
λ
= span{C(λ), e⃗(λ)}. ∀λ ∈ WD (3.7)

Proof. Obviously, ∆ is a corank 1 distribution in (D2)⊥. Therefore, since by (2.25) the kernel of(
σ|(D2)⊥

)
λ

is 1-dimensional, the kernel of
(
σ|∆
)
λ

is 2-dimensional

Further, since by (2.24)

π∗C(λ) ∈ D
(
π(λ)

)
, ∀λ ∈ WD. (3.8)

and WD ⊂ D⊥, we have that sλ
(
C(λ)

)
= 0, so

C(λ) ∈ ∆(λ). (3.9)

This together with (2.25) implies that

C(λ) ∈ Ker
(
σ|∆
)
λ
. (3.10)

Finally, e⃗(λ) is tangent to (D2)⊥ as the latter is preserved by its flow of homotheties δs. Besides,
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since e⃗ is vertical, i.e. π∗(e⃗) = 0, e⃗(λ) ∈ ∆(λ). Thus, the latter together with (3.5) implies that

e⃗(λ) ∈ Ker
(
σ|∆
)
λ
. (3.11)

From the fact C(λ) and e⃗(λ) are linearly independent and 2-dimensionality of Ker
(
σ|∆
)
λ

we get

(3.7).

One can lift our original distribution D to the distribution D̂ by the push-forward of the canon-

ical projection π restricted to WD, namely, let

D̂(λ) := π∗D(λ) = {v ∈ TλWD : π∗v ∈ D(π(λ))} (3.12)

By arguments similar to the proof of (3.9) we have that

D̂ ⊂ ∆ (3.13)

and also that

σ|D̂(λ) = 0, ∀λ ∈ WD. (3.14)

Moreover, by Lemma 3.1.1 we have that σ induces the symplectic (i.e. nondegenerate skew-

symmetric) form ω on ∆/span{C(λ), e⃗(λ)} and relation (3.14) implies that the space

D̂/span{C(λ), e⃗(λ)} is isotropic with respect to ω, i.e. the restriction of ω to it is zero. Moreover,

counting the dimensions,

dim ∆/span{C(λ), e⃗(λ)} = 2n− 6,

dim D̂/span{C(λ), e⃗(λ)} = n− 3,

(3.15)

so the latter space is the Lagrangian subspace of the former, i.e. it is a half-dimensional isotropic

subspace w.r.t. to the form ω.

Now we are ready to define the Jacobi curve for a regular abnormal extremal γ. There exists a
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neighborhood Oγ of γ such that the quotient space

N = Oγ/(the characteristic foliation on Oγ) (3.16)

has the natural structure of a smooth manifold.

Consider a canonical projection

Φ : WD → N (3.17)

to the quotient manifold. From (3.10) it follows that

∆ := Φ∗(∆) (3.18)

is a well-define corank 1 distribution on N with the defining 1-form α such that Π∗α = s|Oγ . Note

that dimN is odd (and equal to 2n− rankD2−1 = 2n−4), and ∆ is an even-contact distribution

(see item (2) in the list in the Introduction), i.e dα|∆ has the one-dimensional kernel, which is in

fact generated by Φ∗e⃗. The line distribution span{Φ∗e⃗} is well defined rank 1 distribution on N as

the the distribution span{C(λ), e⃗(λ)} is involutive by (3.7). Thus, the vector space

Sγ := ∆(γ)/span{Φ∗e⃗(λ)}, λ ∈ γ (3.19)

is endowed with the natural symplectic form ωγ induced by dα|∆. Given a point λ ∈ γ define

Jγ(λ) := Φ∗(D̂(λ))/span{Φ∗e⃗}. (3.20)

From (3.14) the space Jγ(λ) is isotropic with respect the form ωγ . Note that by counting dimen-

sions by analogy with (3.15) we get

dimSγ = 2n− 6, dim Jγ(λ) = n− 3, λ ∈ γ, (3.21)
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so Jγ(λ) is a Lagrangian subspace of Wγ . The set of all Lagrangian subspaces of a linear sym-

plectic space Sγ is called the Lagrangian Grassmannian of Sγ and is denoted by LG(Sγ). The

Lagrangian Grassmannian (similar to Grassmannians) is a homogeneous space (of a symplectic

group modulo a subgroup preserving a fixed Lagrangian subspace) and therefore is endowed with

the natural structure of a manifold.

Definition 3.1.2. Given a regular abnormal extremal γ the curve λ 7→ Jγ(λ), λ ∈ γ in the La-

grangian Grassmannian Sγ is called the Jacobi curve of γ.

Since an abnormal have is unparametrized, i.e. does a priori not have a distinguish parametriza-

tion, its Jacobi curve is an unparametrized curve as well.

3.2 Osculating flag

Jacobi curves of regular abnormal extremals of rank 2 distributions are not arbitrary and satisfy

very special properties. These properties can be described via the process of osculation. In more

detail, the Jacobi curve Jγ produces the curve of flags in Sγ via a series of osculations and skew-

orthogonal complements:

. . . ⊂ J (−ν)
γ ⊂ . . . ⊂ J (0)

γ = Jγ ⊂ J (1)
γ ⊂ . . . ⊂ J (ν)

γ ⊂ . . . ⊂ Sγ, (3.22)

where

1. J
(i)
γ with i ≥ 0 is the i-th osculating space of the curve Jγ at λ defined as follows: Let

φ : γ → R be a parametrization of γ with φ(λ) = 0. Here by a parametrization of a curve

γ, we mean a local coordinate map pf gamma, considered as a one-dimensional manifold.

Look on Jγ(·) as a tautological vector bundle over itself, i.e. the bundle over Jγ(·) with the

fiber over the point Jγ(t) being vector space Jγ(t). Let Γ(Jγ) be the space of sections of this

bundle. Define

J (i)
γ (λ) = span{ dj

dτ j
ℓ
(
φ−1(τ)

)
|τ=0 : ℓ ∈ Γ

(
Jγ
)
, 0 ≤ j ≤ i}. (3.23)
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It is easy to see the right-hand side of (3.23) is independent of the choice of the parametriza-

tion φ : γ → R with φ(λ) = 0.

2. J
(−i)
γ :=

(
J
(i)
γ

)∠
, the skew-symmetric complement of J (i)

γ .

As shown in [25, 10], for rank 2 distributions,

dim J (i+1)
γ − dim J (i)

γ ≤ 1. (3.24)

J (−1)
γ (λ) = Φ∗(V(λ)), λ ∈ γ, (3.25)

where

V(λ) = Ker dπ(λ) ∩ Tλ(D
2)⊥ (3.26)

is the vertical distribution of the bundle WD, i.e. the distribution consisting of the tangent spaces

to the fibers of the bundle π : WD → M .

The curve Jγ is called regular if the subspaces Jγ(λ) do not belong to a fixed hyperplane of

Sγ , Hence, for generic λ ∈ γ the following three mutually equivalent conditions hold :

1. J
(n−3)
γ (λ) = Sγ;

2. dim J
(i)
γ = i+ n− 3 for 3− n ≤ i ≤ n− 3;

3. dim J
(4−n)
γ = 1, i.e. near λ, λ̄ 7→ J

(4−n)
γ (λ̄), λ̄ ∈ γ, is the curve in the projective space PSγ

Besides, if one of these three conditions holds then

J (4−n+i)
γ (λ) =

(
J (4−n)
γ

)(i)
(λ), i ≥ 0, (3.27)

where
(
J
(4−n)
γ

)(i)
is the i-th osculating space of the curve J

(4−n)
γ at λ defined by the analogy with

(3.23) (just replacing Jγ with J
(4−n)
γ in that formula). In other words, the whole osculating flag

(3.22) is recovered from the curve in projective space given by J
(4−n)
γ .
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Definition 3.2.1. A smooth curve J in a projective space PW of an (k + 1)-dimensional vector

space W is called convex if the kth osculating space is equal to W at any point.

Let RD ⊂ WD, the Jacobi regularity locus of D, be the set of λ ∈ WD such that the germ at

λ of λ̄ 7→ J
(4−n)
γ (λ̄), λ̄ ∈ γ is a convex curve in the projective space PSγ , where γ is the abnormal

extremal passing through λ. If λ ∈ RD , then the the germ at λ of λ̄ 7→ J
(4−n)
γ (λ̄), λ̄ ∈ γ will be

called the derived Jacobi curve of γ attached to λ.

The rank 2 distribution D is of maximal class at the point q if

RD(q) := RD ∩ π−1(q) (3.28)

is not empty. As shown in [25] all (2, 3, 5) and (2, 3, 5, 6) distributions are of maximal class at

every point. Moreover, examples of rank 2 bracket generating distribution with dimD3 = 5,

which are not of maximal class at generic points are not known.

Any invariant of the derived Jacobi curve with respect to a projective linear group acting on

PWγ (with the action induced by the standard action of GL(Sγ) on Sγ) will produce the invariant

of the original distribution D. The construction of these invariants are discussed in the net section
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4. WILCZYNSKI INVARIANTS OF CONVEX CURVES IN PROJECTIVE SPACE

4.1 Laguerre-Forsyth’s Canonical Forms

Let J be a convex curve in a projective space PV of a (k + 1)-dimensional vector space V .

First, fix a parametrization on J : t 7→ J(t) (in this section a parametrization of a curve J is an

injective immersion for an interval of R to J).

As before, we consider J as a tautological bundle over itself and denote by Γ(J) the space of

the smooth section of this bundle. Let E ∈ Γ(J) be a nowhere zero section of J E(t) ∈ J(t).

From the convexity assumption E(t), E ′(t), . . . , E(k)(t) constitute a basis of V , i.e. there exists

the unique collection of functions B0(t), . . . , Bk(t) such that

dk+1

dtk+1
E(t) =

k∑
i=0

Bi(t)
di

dti
E(t). (4.1)

If Ẽ is another nowhere zero section of J , Ẽ(t) ∈ J(t), then there exists a nonzero scalar-valued

function λ(t) such that Ẽ(t) = λ(t)E(t). This function is called the transition scaling between

sections E and Ẽ. If B̃0(t), . . . , B̃k(t) is the collection of functions such that

dk+1

dtk+1
Ẽ(t) =

k∑
i=0

B̃i(t)
di

dti
Ẽ(t). (4.2)

then by direct calculations

B̃k(t) = Bk(t) + (k + 1)
λ′(t)

λ(t)
. (4.3)

So, we can make B̃k(t) ≡ 0 by choosing the scaling λ(t) so that it satisfies the following linear

ordinary differential equation:

λ′(t) = − 1

k + 1
Bk(t)λ(t). (4.4)
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In this case (4.1) becomes

dk+1

dtk+1
E(t) =

k−1∑
i=0

Bi(t)
di

dti
E(t). (4.5)

A section E, satisfying

Bk(t) ≡ 0, (4.6)

is called a canonical section of the curve J w.r.t. the chosen parametrization t → J . If E and Ẽ

are two canonical sections with respect to the same parametrization then both Bk and B̃k are zero

identically and (4.4) become λ′(t) = 0, i.e. λ(t) is a nonzero constant. In other words,a canonical

section with respect to the given parametrization is defined up to a constant scaling.

Further, assume that

τ = φ(t) (4.7)

and we consider a reparametrization τ → J(φ−1(τ) of J . Assume that E is a canonical section

with respect to the parameter t and Ē is a canonical section with respect to the parameter τ . Let

B̄0(t), . . . , B̄k(t) be the collection satisfying the decomposition (4.1) with E replaced by Ē and t

replaced by tau (note that by the assumption B̄k ≡ 0. Then by direct computations, first,

Ē
(
φ(t)

)
= C(φ′(t))k/2E(t) (4.8)

for a nonzero constant C, and second we have the following transformation rule for Bk−1 under

reparametrization (4.7):

B̄k−1(φ(t))
(
φ′(t)

)2
=

Bk−1(t) +
(k + 1)(k + 2)

12
S(φ(t)

 , (4.9)

where

S(φ) :=
φ(3)

φ′ − 3

2

(
φ′′

φ′

)2

(4.10)
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is the Schwarzian derivative of function φ. So we can make B̄k−1(t) ≡ 0 by choosing the

reparametrization (4.7) so that it satisfies the following ordinary differential equation:

S(φ) = −
12

(k + 1)(k + 2)
Bk−1. (4.11)

It is a classical fact that φ is a solution of the ordinary differential equation

S(φ) = ρ (4.12)

for a given function ρ if and only of φ = y1
y2

, where y1 and y2 form a fundamental set of solutions

of the linear homogeneous second order ordinary differential equation

y′′ + ρy = 0.

This implies that (4.11) has a solution at least in a neighborhood of a given time moment and all

solutions are in fact defined up to a Möbius transformation, i.e., if φ and φ̃ are solutions of (4.12)

then there exist constants a, b, c, d, ad− bc ̸= 0 so that

φ̃ =
aφ+ b

cφ+ d
. (4.13)

This implies that the set of parametrizations for which for a canonical section we have that

Bk−1(t) ≡ 0. (4.14)

is not empty, and all such parametrizations are defined up to a Monious transformation as in (4.13).

These special parametrizations are called projective parametrizations of J and we say that they

define the canonical projective structure on the convex curve J .

If t is a projective parametrization and E is a canonical section with respect to it, the moving
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frame (E(t), E ′(t), . . . , E(k)(t)) satisfies

dk+1

dtk+1
E(t) =

k−2∑
i=0

Bi(t)
di

dti
E(t), (4.15)

i.e. Bk = Bk−1 = 0, compared to (4.1). The decomposition (4.15) is called the Laguerre -Forsyth

canonical form of the moving frame (E(t), E ′(t), . . . , E(k)(t)). Equations (4.8) and (4.13) show

that the group of all transformations of the pairs (parametrization,canonical section) preserving the

Laguerre-Forsyth form consists of transformations of the form

(
t, E(t)

)
7→

at+ b

ct+ d
,

α

(ct+ d)k
E

at+ b

ct+ d


 , ad− bc = 1, α ̸= 0. (4.16)

This group of transformation is in fact isomorphic to GL2(R).

4.2 Wilczynski invariants: original approach

Now assume that t and τ , τ = φ(t), are two projective parametrizations and Bk−2(t) and

B̄k−2(t) are the corresponding coefficients near (k − 2)nd derivative in the decomposition (4.15).

Then from (4.15), applied both for t and τ , it follows immediately that

Bk−2(t) = B̄k−2

(
φ(t)

)(
φ′(t)

)3
, (4.17)

or, equivalently

Bk−2(t)dt
3 = B̄k−2(τ)dτ

3 (4.18)

This means that the form

W1 = (k − 2)!Bk−2(dt)
3 (4.19)

considered as a special cubic polynomial on the tangent line to every point of the curve of J ,

or, shortly, a special section of the line bundle Sym3(T ∗J), is independent of the choice of the
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projective parametrization.1 This form is called the Wilczynski invariant of degree 3.

More generally, Wilczynski [22, p.32, equation (48)] found that the following section of the

line bundle Symi+2(T ∗J)

Wi(t)
def
=

(i+ 1)!

(2i+ 2)!

 i∑
j=1

(−1)j−1(2i− j + 3)!(k − i+ j − 2)!

(i+ 2− j)!(j − 1)!
B

(j−1)
k−2−i+j(t)

 (dt)i+2 (4.20)

on J does not depend on the choice of the projective parameter. We call this form ith Wilczynski

invariant, where 1 ≤ i ≤ k − 1.

To get (4.20) Wilczynski used the Sophus Lie theory of finding the invariants of objects under

the action of Lie groups. In our case, the action is of GL2(R) and is given by (4.16). He tried to

find the ith Wilcyznski invariant in the form of a linear combination of {B(j−1)
k−2−i+j(t)dt

i+2}ij=1, i.e.

in the form (
i∑

j=1

αi,jB
(j−1)
k−2−i+j(t)

)
(dt)i+2. (4.21)

for some tuple of constants {αi,j}ij=1 and to determined for which tuple of {αi,j}ij=1 the quantity

in (4.21) is transformed as in (4.17) (with the factor
(
ϕ′(t)

)3 replaced by
(
ϕ′(t)

)i). Following

the Lie idea, instead of looking at how the quantity (4.21) transforms under the action of the Lie

group GL2(R) given by (4.16), it is more convenient to look at how the infinitesimal version of

the quantity (4.21) transforms under the induced action of the Lie algebra lg2(R). This lead to a

system of i− 1 independent linear equations for the tuple {αj}ij=1 and

αi,j =
(i+ 1)!

(2i+ 2)!

(−1)j−1(2i− j + 3)!(k − i+ j − 2)!

(i+ 2− j)!(j − 1)!
, j = 1, . . . i (4.22)

as in (4.20) is a generator of the line of solutions of this linear system.

Remark 4.2.1. Note that by (4.20) if for a projective parameter Bk−2 ≡ . . . ≡ Bk−2−i = 0, then

1the coefficient (k− 2)! in (4.19) is not important, as it is just a choice of normalization so that it will be consistent
to a more general formula (4.20).
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the first i Wilcynski invariants vanish and the ith Wilczynski invariant Wi satisfies

Wi(t) = (k − 1− i)!Bk−1−i(t)dt
i+2. (4.23)

In an arbitrary (not necessarily projective) parameter t the ith Wicyinski invariant Wi(t) can be

written in the form

Wi(t) = Ai(t) dt
i+2 (4.24)

for some function Ai called the density of the ith Wilczynski invariant with respect to the parameter

t.

4.3 Wilczynski invariants: sl2epresentation theory approach

In practice, and in particular, in section 5 initial parametrization on a curve in projective space

is not projective and instead of making reparametrization to the projective one it is more convenient

to express the density of the Wilczinski invariant with respect to the initial parameter in terms of

the coefficient of (4.5) i.e. including the coefficient Bk−1 and its derivative. In order to do this, it is

more convenient to use an alternative approach by means of the representation of the Lie algebra

sl2 is given in [18, 19, 9].

Below we briefly describe this approach. Recall that sl2(R is the Lie algebra of traceless 2× 2

matrices. Choose the basis {H,X, Y } of sl2(R as follows:

H :=

1 0

0 −1

 , X :=

0 0

1 0

 , Y =

0 1

0 0

 . (4.25)

Then we have the following commutation relations

[H,X] = −2X, [H, Y ] = 2Y, [X, Y ] = H, (4.26)

Any basis of sl2 satisfying the commutation relations (4.26) is called sl2-triple. It is well known

([14, chapter 11]) that for every integer k the space Symk(R2) with the action of sl2(R), induced
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from the standard action sl2(R) on R2, is the unique, up to an isomorphism, irreducible sl2(R)-

module of dimension k + 1. One can choose a basis {e1, . . . ek+1} of Symk(R2) such that the

induced action of H , X , and Y on Symk(R2) is as follows :

H.ei = (k − 2i)ei, i = 1, . . . , k + 1.

X.ek+1 = 0, X.ei = ei+1, i = 1, . . . , k

Y.e1 = 0, Y.ei = i(k − i+ 1)ei−1, i = 2, . . . , k + 1.

(4.27)

In the sequel, we denote the matrices representing actions of H ,X and Y form (4.27) in the basis

{e1, . . . ek+1} by Hk, Xk, and Yk, respectively. The main result of Se-Ashi theory can be formu-

lated as follows:

Theorem 4.3.1. Given a convex curve J in a projective space PV of a (k+1)-dimensional vector

space V , a parametrization t 7→ J(t) of J , and a canonical section E of J with respect to the

parameter t, there exist the unique moving frame E1(t) = E(t), E2(t), . . . Ek+1(t) satisfying the

following structure equation:

(
E ′

1(t), . . . , E
′
k+1(t)

)
=
(
E1(t), . . . , Ek+1(t)

)(
Xk + ρ(t)Yk +

k∑
i=2

Θi−1(t)(Yk)
i
)
. (4.28)

Moreover, the forms Θi(t) dt
i+2, j = 1, . . . , k−1 are well-defined, i.e. independent of a parametriza-

tion elements of Symi+2(T ∗J) and there exist the universal nonzero constant Ci,k and the universal

polynomials Pi,k of i − 3 variable without free terms such that the density Ai(t) of the Wilczynski

invariant from (4.24) w.r.t. the same parameter t is expressed in terms of Θ1, . . .Θi as follows

Ai(t) = Ci,kΘi(t) + Pii,k
(
Θ1(t), . . . ,Θi−1(t)). (4.29)

Remark 4.3.2. The forms Θi(t)dt
i+2 will be called the ith Se-Ashi invariant Since Ci,k ̸= 0 in

(4.29) one can recover all Se-Ashi invariants from the Wilczynski invariants and vice versa.

The main advantage of (4.28) is that it defines Se-Ashi forms immediately in an arbitrary

29



parameter without reduction to projective parameters. Projective parameters correspond to the

case of ρ(t) ≡ 0 in (4.28).

To get an explicit form of (4.29) and then the formula for the Wilczynski invariants in terms of

coefficients {Bi(t)}k−1
i=0 in arbitrary parameter, one can proceed as follows:

1. Express the moving frame E(t), E ′(t), . . . E ′(k)(t) in terms of

E1(t), . . . Ek+1(t) and (ρ(t), {Θi}k−1
i=1 ), using (4.28).

2. Use the relation between moving frame from the previous item and (4.5) to express

(ρ(t), {Θi(t)}k−1
i=1 ) in terms of {Bi(t)}k−1

i=0 .

3. For ρ ≡ 0 (which is equivalent to Bk−1 ≡ 0,) the previous item will give the relation between

{Θi(t)}k−1
i=1 and {Bi(t)}k−2

i=0 , and therefore via (4.20) the explicit forms of the formula (4.29)

4. For arbitrary ρ using the formulas obtained in item (2) and (3), one get the expression for the

density Ai(t) of Wilczynski invariants in the arbitrary parameter in terms of {Bi(t)}k−1
i=0 .

As the direct consequence of Theorem 4.3.1 and Remark 4.3.2 we get the following

Corollary 4.3.3. The density Ai(t) of the ith Wilczinsky invariant is a polynomial with respect to

the collection of functions {Bi(t)}k−1
i=0 from the decomposition (4.5) and their derivatives (possibly

of high order).

The explicit results of the implementation of the strategy given in Remark 4.3.2 in particular

cases needed for this thesis will be given in the next section 4.4.

Remark 4.3.4. In fact, using either Wiczynski or Se-Ashi technique one can show that the state-

ment of Corollary 4.3.3 is valid also for the colleciton of function {Bi(t)}k−1
i=0 from the decomposi-

tion (4.1).

4.4 Self-dual curves in projective space

As follows from section 3.2 the derived Jacobi curve of an abnormal extremal, even if it is

convex, is not an arbitrary curve in projective space but it comes from the process of osculations/
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skew-symmetric complement with respect to the symplectic form given in the even-dimensional

ambient vector space. Such convex curves are self-dual in the following sense: Given a convex

curve J in PV the dual curve J∗ in PV ∗ consists of lines in PV ∗ annihilating the hyperplanes

J (k−1) obtained from J by the osculation of order k − 1. The curve J is called self-dial if it is

equivalent to its dual, i.e. there exists an isomorphism L : V → V ∗ such that

LJ(t) = J∗(t). (4.30)

In fact, it can be shown that if dimV = k + 1 = 2m then J is self-dual if and only if there

exists the unique, up to a multiplication by a constant, symplectic form ω on V , such that the curve

J (m−1) of (m − 1)st osculating subspaces of J is Lagrangian w.r.t. ω. The relation between the

form ω and the isomorphism satisfying (4.30) is given by

ω(x, y) = Lx(y). (4.31)

Theorem 4.4.1. [22, Chapter 2, §5] The curve is self-dual if and only if all Wilczynski invariants

of odd degree vanish.

In particular, by Remark 4.2.1 first nontrivial Wilczynski invariant is of degree 4: and in the

projective parameter

W2 = (k − 3)!Bk−3(t)dt
4.

The main reason why Theorem 4.4.1 holds is that in order that the matrices in the structure equation

(4.28) must belong to the corresponding symplectic algebra, which implies vanishing of Θi (and

therefore of Ai) for odd i.

According to (3.21), for derived Jacobi curves of an abnormal extremal γ ⊂ RD of rank 2

distribution on n-dimensional manifold the dimension of the ambient vector space is 2(n − 3).

From now one set

m := n− 3. (4.32)
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Then k = 2m− 1.

Remark 4.4.2. Note that for n = 5, k = 3, and so by Theorem (4.4.1), W2 is the only possibly

nonzero Wilzcinski invariant. If n = 6, then k = 5 and there are two possibly nonzero invariants

W2 and W4.

Implementing the procedure of Remark 4.3.2 one can get by direct computation that in the

arbitrary parameter t we have the following density for potentially nonzero Wilczinski invariants

for self-dual curves in the 2m− 1-diemsnioal projective space in the case m = 2 and m = 3:

1. m = 2 (the case of (2, 3, 5) distributions, see also [26])

A2 = B0 +
9

100
(B2)

2 − 3

10
B′′

2 ; (4.33)

2. m = 3 (the case of (2, 3, 5, 6) distributions)

A2 = 2

(
B2 +

37

175
(B4)

2 − 9

5
B′′

4

)
, (4.34)

A4 = B0 +
1

441
B2B4 +

178

15435
(B4)

3 − 5

18
B′′

2− (4.35)

5

441
(B′

4)
2 − 59

441
B4B

′′
4 +

37

7
B

(4)
4 . (4.36)

Remark 4.4.3. The formula for the density of the first possible nonzero Wilczynski invariants of a

self-dual curve for the general m ≥ 2 is

A1 = (2m− 2)!

(
1

(2m− 2)(2m− 3)
B2m−4 +

(10m+ 7)

20(4m2 − 1)m
B2

2m−2 −
3

20
B′′

2m−2

)
(4.37)

Finally, in the sequel, we need the following

Remark 4.4.4. If J is a self-dual curve, t → J(t) is a parametrization and ω. Then it can be

shown (see [27]) that a section E is canonical if and only if corresponding symplectic form as in
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(4.31), then a section E is canonical if and only if ω
(

dm

dtm
E(t), dm−1

dtm−1E(t)
)

≡ const Moreover,

in our case, the ambient space Sγ of the derived Jacobi curve Jγ is endowed with the symplectic

structure and not a symplectic structure ω = ωγ , up to a multiplication by a constant. Therefore

one can “normalize" further the canonical section by imposing that

∣∣∣∣ω( dm

dtm
E(t),

dm−1

dtm−1
E(t)

)∣∣∣∣ ≡ 1. (4.38)

The section satisfying 4.38 will be called the �canonical section of the self-dual curve in the projec-

tive space with the ambient symplectic space. This canonical section is defined up to multiplication

by ±1 and can be found as follows. Assume that Ẽ is some nowhere zero section, and

α(t) =

∣∣∣∣ω( dm

dtm
Ẽ(t),

dm−1

dtm−1
Ẽ(t)

)∣∣∣∣ . (4.39)

Then

E(t) = ±α(t)−1/2Ẽ(t) (4.40)

is the canonical section in the sense of (4.38).
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5. GENERALIZED WILCZYNSKI INVARIANTS OF RANK 2 DISTRIBUTIONS

Now we are ready to look closely on the invariant of a rank 2 distribution defined by taking the

2ith Wilczinski invariant of rank 2 distributions of the derived Jacobi curves of abnormal extremals.

First, fix a local basis of the distribution D and let

X3 := [X1, X2], X4 := [X1, X3], X5 := [X2, X3] (5.1)

Using the notations introduced in (2.9) let

ui := HXi
, i = 1, . . . 5. (5.2)

If we assign to the local basis {X1, X2} of D the vector field h⃗
X1,X2

on (D2)⊥ as follows:

h⃗
X1,X2

:= u4
−→u 2 − u5

−→u 1, (5.3)

then by (2.24), using the new notation in (5.2), for every λ ∈ WD the charactersitic line distribution

C is generated by h⃗
X1,X2

.

Let, as before, RD ⊂ WD be the Jacobi regularity locus of D , i.e. the set of λ ∈ WD such

that the germ of Jγ(λ) at λ is convex, where γ is the abnormal extremal passing through λ. For

any λ ∈ RD, let Wλ
2i be the 2ith Wilczynski invariants of the Jacobi curve Jγ at λ, 1 ≤ i ≤ n− 4.

Recall that by constructions Wλ
2i is a degree 2(i+ 1) homogeneous function on the tangent line to

γ at λ.

Define the following real-valued function on RD

AX1,X2

2i (λ) := Wλ
2i

(
h⃗

X1,X2
(λ)
)
. (5.4)

Note that by our constructions if t 7→ Jγ(e
t⃗h

X1,X2λ) is a parametrization of Jγ , where e
t⃗h

X1,X2
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denotes the flow generated by the vector field h⃗
X1,X2

, then AX1,X2
i (λ) is nothing but the density of

the 2ith Wilcynski invariant of this curve w.r.t. the parametrization t at t = 0.

Let us check how AX1,X2

2i (λ) is transformed under the change of the local basis of D.

Lemma 5.1.1. If (X̃1, X̃2) is another basis of the distribution D, (X̃1, X̃2) = (X1, X2)T , T ∈

GL2(R), then

h⃗
X̃1,X̃2

(λ) =
(
detT

(
π(λ)

))2 (
π(λ)

)
h⃗

X1,X2
(λ). (5.5)

Proof. Assume that X̃3, X̃4, and X̃5 are defined from X̃1, and X̃2 similar to (5.1). Then by direct

computations

X̃3 = detT X3 modD (5.6)

(X̃4, X̃5) = detT (X4, X5)T modD2. (5.7)

Let ũi = HX̃i
, i = 1, . . . , 5. Since u1 = u2 = u3 = 0 on (D2)⊥, (5.7) implies that

( ⃗̃u1, ⃗̃u2)(λ) = (u⃗1, u⃗2)λ)T
(
π(λ)

)
, λ ∈ (D2)⊥ (5.8)

(ũ4, ũ5)(λ) = detT
(
π(λ)

)
(u4, u5)T

(
π(λ)

)
, λ ∈ (D2)⊥ (5.9)

From (5.3),

h⃗
X̃1,X̃2

= ũ4
⃗̃u2 − ũ5

⃗̃u1 (5.10)

Plugging (5.8) and (5.9) into (5.10) we get (5.5).

Lemma 5.1.1 and the homogeneity of W2i implies that

AX̃1,X̃2

2i (λ) = detT
(
π(λ)

)4(i+1)
AX1,X2

2i (λ) (5.11)

i.e., the restriction AX1,X2

2i to the fiber RD(q) of the bundle RD over M (as in (3.28)) is the well-

defined function on RD , up to the multiplication on a positive constant. We call it the ith general-

ized Wilczynski of D at the point q.
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In the sequel, for shortness, we will use h⃗ := h⃗
X1,X2

and A2i := AX1,X2

2i .

We call the set

SingD := (D2)⊥\RD (5.12)

the Jacobi singularity locus of D. We also set SingD(q) = SingD ∩ π−1(q).

Proposition 5.1.2. If the rank 2 distribution is of maximal class at a point q ∈ M , then A2i|(D2)⊥(q)

is a degree 2(i+1) homogeneous rational function on (D2)⊥(q) with singularities lying in SingD(q)

.

Proof. First note that from (5.3) it follows that of δs is the homothety as in (3.1)

π∗h⃗
(
δs(λ)

)
:= esπ∗h⃗(λ) (5.13)

This together with the fact the 2ith Wilczinski invariant of the derived Jacobi curve Jγ is homoge-

neous of degree 2(i+1) on the tangent line of the Jacobi curve implies that A2i|(D2)⊥(q) is a degree

2(i+ 1) homogeneous function (which is well- defined on RD(q))).

Now we prove that this function is rational. Let N be the space of abnormal extremals near an

abnormal extremal γ, as defined in (3.16) and Φ be as (3.17). For calculation of the generalized

Wilczynski invariants, it is more convenient to work with special filtration of T (D2)⊥ induced by

the osculating flag (3.22). This filtration is given by

J (i)(λ) := (Φ∗)
−1
(
J (i)
γ (λ)

)
, λ ∈ γ, i ∈ Z (5.14)

V(i)(λ) := J (i)(λ) ∩ V(λ) (5.15)

In particular,

J (0)(λ) = D̂(λ), (5.16)

J (−1)(λ) = V(λ)⊕ C(λ) (5.17)
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by (3.20) and (3.25), respectively. Further, for any λ ∈ γ the TγN is naturally identified with

Tλ(D
2)⊥/C(λ),

TγN ∼= Tλ(D
2)⊥/C(λ) (5.18)

and under this identification (3.20), (5.16), and (5.14) imply that

J (i)
γ

(
et⃗hλ

)
:= e−t⃗h

∗

(
J (i)

(
et⃗hλ

))
/span{h⃗(λ), e⃗(λ}. (5.19)

Here, as before, et⃗h denotes the flow generated by the vector field h⃗.

Recall that the operation of Lie derivative Lieh⃗ along the vector field h⃗ restricted to vector fields

is defined as follows:

Lieh⃗Y (λ) =
d

dt
e−t⃗h
∗ Y

(
et⃗hλ

)
|t=0 (5.20)

for any vector field Y on (D2)⊥ and it coincides with the operation adh⃗ of taking Lie brackets

[⃗h, Y ], i.e.

Lieh⃗Y = ad h⃗ Y. (5.21)

Therefore the operation d
dt

on sections of parametrized curves J (i) translates to the operation

ad h⃗ on appropriate sections of J (i). In particular, (3.27) implies that

J (4−n+i)(λ) = (ad h⃗)i
(
J (4−n)(λ)

)
= (ad h⃗)i

(
V(4−n)(λ)

)
λ ∈ RD, i ≥ 0. (5.22)

For a section Ẽ of the derived Jacobi curve t 7→ J (4−n)(et⃗h) (as long as et⃗hλ ∈ RD) there exist the

unique mod span{e⃗(et⃗hλ)} vector Ẽ(et⃗hλ) ∈ V(4−n)(et⃗hλ) such that

Φ∗(Ẽ) = Ẽ (5.23)
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or, equivalently, under the identification (5.18),

Ẽ(t) = e−t⃗h
∗ Ẽ

(
et⃗hλ

)
mod span

{
h⃗(λ), e⃗(λ)

}
(5.24)

Consequently, by (5.21)

Ẽ (i)(0) = (ad h⃗)iẼ(λ) mod span
{
h⃗(λ), e⃗(λ)

}
. (5.25)

Vice versa any section Ẽ of V(4−n) ( which is a rank 2 distribution RD) which is nowhere colinear

to the Euler field e⃗ defines nowhere section of Jacobi curves of abnormal extremals lying in RD

through the relation (5.23). Hence, given such a section Ẽ the decomposition (4.2) translates to the

decomposition

(adh⃗)2mẼ(λ) =
2m−1∑
i=0

B̃i(λ)(adh⃗)
iẼ(λ) (5.26)

for a collection of functions {B̃i(λ)}2m−1
i=0 well -defined on RD . Moreover, by Remark (4.3.4)

the generalized Wilczynski invariant A2i is a polynomial with respect to the collection of functions

{Bi}2m−1
i=0 from the decomposition (5.26) and their (iterative) directional derivatives in the direction

of h⃗.

Further, extend the collection (X1, . . . , X5) to a local frame (X1, X2, . . . , Xn) of TM . Then

there exist functions ckij , 1 ≤ i, j, k ≤ n such that

[Xi, Xj] =
6∑

k=1

ckijXk. (5.27)

These functions are called the structure functions associated with {Xi}i = 1n. Let ui := HXi
be

the quasi-impulse of Xi as defined in (2.9).

Let Xi be the vector field on T ∗M defined as follows

π∗(Xi) = Xi,

duj(X̄i) = 0, 1 ≤ i, j ≤ n

(5.28)
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The tuple

{X1, . . . , Xn, ∂u1 , . . . , ∂un} (5.29)

forms the local moving frame of T ∗M.

The Hamiltonian lift u⃗i of the vector field Xi can be written in this frame as follows:

u⃗i = Xi +
n∑

j=1

u⃗i(uj)∂uj
= Xi +

n∑
j=1

n∑
k=1

ckijuk∂uj
, (5.30)

In particular, we have

h⃗ = u4u⃗2 − u5u⃗1 = u4X2 − u5X1+

n∑
j=1

n∑
k=1

(ck2juku4 − ck1juku5)∂uj
.

(5.31)

Further by (5.22) for i = n− 4 (= (m− 1)) and (5.16)

V(λ) = span {(adh⃗)iẼ(λ)}m−2
i=0 mod span

{
h⃗(λ), e⃗(λ)

}
(5.32)

where V is as (3.26). Since

V(λ) = span{∂u4(λ), . . . , ∂un(λ)} (5.33)

relation (5.32) implies that the vector field Ẽ can be chosen such that it has rational components

with respect to the frame (5.29). Since by (5.31) the vector field h⃗ has the same property, then all

vector fields of the form (ad h⃗)iẼ satisfy this property as well, and so by (5.26) all functions B̃i are

rational on the fibers of (D2)⊥ (and smooth on RD). The statement of proposition follows from

this and the last sentence of the previous paragraph.

Remark 5.1.3. The proof of Proposition 5.1.2 can be performed without relying on Remark (4.3.4)

(which formally does not follow from Theorem (4.3.1) but Corollary 4.3.3, which gives conclu-
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sions on canonical sections ones instead of arbitrary one. Translating the conclusions of Remark

(4.4.4) from curves in projective space to distributions based on the relation (5.24), we get that if

Ẽ is a section of V(4−n) on distribution RD) which is nowhere colinear to the Euler field e⃗ and by

analogy with t(4.39) and (4.40)

α(λ) =
∣∣∣σ ((adh⃗)mẼ(λ), (adh⃗)m−1Ẽ(λ)

)∣∣∣ (5.34)

where σ is the canonical symplectic form on T ∗M as defines in (2.3). Then

E = ±α−1/2Ẽ (5.35)

gives the canonical sections of the derived Jacobi curve after application of Φ∗ similar to (5.23).

This procedure defines the unique , up to multiplication by ±1 and mod span{e⃗} section of V(4−n),

which will be also the canonical section associated to the local basis (X1, X2). In this case, similar

to (4.5) we get the following decomposition

(adh⃗)2mE(λ) =
2m−2∑
i=0

Bi(λ)(adh⃗)
iE(λ), (5.36)

i.e. B2m−1 ≡ 0 compared to (5.26).

Even choosing Ẽ with rational components, (5.35) implies the components of E are in general

not rational, as α(λ)1/2, in general, is not rational. Nevertheless, the differences of powers of

α appearing in (adh⃗)iE is always integer ,so the coefficients {Bi(λ)}2m−2
i=0 are rational and one

completes the proof of Proposition 5.1.2by referring to Corollary 4.3.3.

Finally, we can translate the formulas (4.33), (4.34), (4.35), and (4.37) for the first two non-

trivial Wilczynski invariants of self-dual curves in projective space to the generalized Wilczynski

invariants of rank 2 distributions we get the following:

If {Bi(λ)}2m−2
i=0 is a collection of functions from decomposition (5.36) then the first nontrivial
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Generalized Wilczynski invariant satisfies (compare with (4.37)

A2 = (2m−2)!(
1

(2m− 2)(2m− 3)
B2m−4+

10m+ 7

20(4m2 − 1)m
(B2m−2)

2−
3

20
(ad h⃗)2B2m−2), (5.37)

In particular,

1. for m = 2 (the case of (2, 3, 5) distributions, compare with (4.33)) we have

A2 = B0 +
9

100
(B2)

2 − 3

10
(ad h⃗)2B2. (5.38)

2. for m = 3 (the case of (2, 3, 5, 6) distributions, compare with (4.34)) we have:

A2 = 2(B2 +
37

175
(B4)

2 − 9

5
(ad h⃗)2B4), (5.39)

For the second nontrivial generalized Wilczinski invariant A4 we need the formula only in the case

of the smallest dimension it appears, i.e. for (2, 3, 5, 6) and it is s follows (com[are to (4.35)):

A4 = B0 +
1

144
B2B4 +

178

15435
(B4)

3 − 5

18
(ad h⃗)2B2−

5

441
((ad h⃗)B4)

2 − 59

441
B4(ad h⃗)

2B4 +
37

7
(ad h⃗)4B4.

(5.40)
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6. QUAIHOMOGENEOUS DECOMPOSITION OF GENERALIZED WILCZYNSKI

INVARIANTS AND THE ROLE OF TANAKA SYMBOL

While by Proposition 5.1.2 the generalized Wilczynski invariants A2i are homogeneous ratio-

nal functions on the fibers in the usual sense, we can say more about its algebraic structure by

introducing natural quasi-weights (or multi-weights) respecting the natural filtration on the fibers

of (D2)⊥. In this case the terms of maximal possible quasi-weight of the numerator and denomi-

nator of A2i correspond to the so-called Tanaka symbol of distributions. Tanaka symbol is another

basic invariant of an equivariant distribution, which in general is more subtle than its small growth

vector, and depending on the situation can be discrete or continuous, but again usually it does

not determine the equivalence class of distributions. All our construction so far through abnormal

extremals do not depend on Tanaka symbols and this is the big advantage of this approach as in

general Tanaka symbols are impossible to classify. However, such a basic invariant as Tanaka sym-

bol inevitably encoded in the generalized Wilczynski invariants. The next subsection is a detour

on Tanaka symbol required in the sequel.

6.1 Tanaka symbols of distributions

Let D be an equiregular bracket-generating distribution with a degree of nonholonomy r. Set

m−1(q) := D(q), m−j(q) := Dj(q)/Dj−1(q), ∀j > 1 (6.1)

and consider the graded space

m(q) =
−1⊕

j=−µ

mj(q), (6.2)

associated with the filtration (1.3).

The space m(q) is endowed with the natural structure of a graded Lie algebra, i.e. with the

42



natural Lie product [·, ·] such that

[mi1(q),mi2(q)] ⊂ mi1+i2(q), (6.3)

defined as follows:

Let pj : Dj(q) 7→ m−j(q) be the canonical projection to a factor space. Take Y1 ∈ m−i1(q) and

Y2 ∈ m−i2(q). To define the Lie bracket [Y1, Y2] take a local section Ỹ1 of the distribution Di1 and

a local section Ỹ2 of the distribution Di2 such that

pi1
(
Ỹ1(q)

)
= Y1, pi2

(
Ỹ2(q)

)
= Y2. (6.4)

It is clear from definitions of the spaces Dj that [Y1, Y2] ∈ mi1+i2(q). Then set

[Y1, Y2] := pi1+i2

(
[Ỹ1, Ỹ2](q)

)
. (6.5)

It can be shown ([20, 24]) that the right-hand side of (6.5) does not depend on the choice of sections

Ỹ1 and Ỹ2.

Definition 6.1.1. The graded Lie algebra m(q) from (6.2) is called the symbol of the distribution

D at the point q.

By constructions, it is clear that the Lie algebra m(q) is nilpotent and generated by m−1(q). A

Z−-graded nilpotent Lie algebra, generated by its −1 component is called the fundamental graded

Lie algebra. Given a fundamental graded Lie algebra m we say that a distribution D has constant

symbol m (or it is of constant type m), if the Tanaka symbol of d at every point is isomophic to m

(as graded Lie algebras). A distirbution Dm is called the flat distribution of constant type m if it is

locally equivalent (at every point) to the left-invariant distribution D̂ on the simply connected Lie

group with the Lie algebra m and the identity e , such that this left-invariant distribution is equal to

m−1 at e.

Example 6.1.2. (2, 3, 5) distributions Let D be a rank 2 distribution in R5 with small growhth
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vector (2, 3, 5). Such distributions were treated by E. Cartan in his famous work [5]. In this case

m(q) = m−1(q) ⊕ m−2(q) ⊕ m−3(q) with dimm−1(q) = dimm−3(q) = 2 and dimm−2(q) = 1.

Choose a basis X1, X2 of m−1(q) and set

X3 = [X1, X2], X4 = [X1, X3], X5 = [X2, X3]. (6.6)

Then by assumptions on the small growth vector X1, X2, X3, X4, and X5 constitute a basis of m(q)

and the products in (6.6) are the only nonzero products among elements of this basis, taking into

account slew-symmetricity. Therefore, the symbol m(q) at any point q is isomorphic to the step 3

free nilpotent Lie algebra with two generators. The flat distribution with this symbol is isomorphic

to the Cartan distribution as define in subsection 1.2

Example 6.1.3. (2, 3, 5, 6)-distributions. Let D be a (2, 3, 5, 6)-distribution. Let us classify all

possible Tanaka symbols in this case. Note that g−2(q) = D−2(q)/D−1(q) is a line. Fixing a

generator Z of this one has a well defined linear map adZ : m−1 7→ m−3 given by adZ(Y ) :=

[Z, Y ], Y ∈ m−1(q). Since in the considered case dimm−1(q) = dimm−3(q) = 2, the linear map

adZ is an isomorphism. Moreover, since Z is defined up to a multiplication by a nonzero constant,

then adZ defines the identification between m−1(q) and m−3(q) up to a multiplication by a nonzero

constant. Furthermore, the Lie product on m(q) defines the linear map from m−1(q) ⊗ m−3(q) to

m−4(q), which, using the identification between m−1(q) and m−3(q), gives the linear map from

m−1(q) ⊗ m−1(q) to m−4(q), defined up to a multiplication by a nonzero constant. Since the

latter space is one- dimensional, this map is nothing but a bilinear form on m−1(q) defined by a

multiplication by a nonzero constant. More precisely, choose a generator W of m−4(q), then there

exist a bilinear form B such that

[
Y1, [Z, Y2]

]
= B(Y1, Y2)W. (6.7)

Moreover, from constructions and Jacobi identity, this bilinear form is symmetric. Indeed, for any
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Y1 and Y2 in m−1 we have

B(Y1, Y2)W =
[
Y1, [Z, Y2]

]
W =

[
[Y1, Z], Y2

]
W =

[
Y2, [Z, Y1]

]
W = B(Y2, Y1)W,

which implies that B(Y1, Y2) = B(Y2, Y1). Here for getting the second equality we use the Jacobi

identity and the fact that [Y1, Y2] and Z are collinear because they belong to m−2, which is one-

dimensional.

The symmetric bilinear form B form (6.7) or, more precisely, its conformal class is called the

canonical symmetric form of the (2, 3, 5, 6)-distribution D.

Obviously, the rank and the signature of the corresponding quadratic form Y 7→ B(Y, Y )

are invariants of the Tanaka symbol of D at q. Moreover, the symbol is uniquely determined by

the rank and the signature of the quadratic form Y 7→ B(Y, Y ). Indeed, we can choose a basis

X1, . . . X6 of m(q) such that m−1 = ⟨X1, X2⟩, vectors X3, X4, and X5 are as in (6.6), and the

bilinear form B on m−1(q), given by (6.7) with Z = X3 and W = X6, satisfies

B(X1, X1) = 1, B(X1, X2) = 0, B(X2, X2) = ε, ε ∈ {−1, 0, 1}.

or, equivalently, the only (possibly) nonzero Lie products of vectors X1, . . . X6, in addition to (6.6)

and taking into account skew-symmetricity, are

[X1, X4] = X6, [X2, X5] = εX6, ε ∈ {−1, 0, 1} (6.8)

Thus in this case we have exactly 3 non-isomorphic symbols mϵ depending on the values of ε:

1. elliptic, when ε = 1, or ,equivalently, the quadratic form B(Y, Y ) is positive definite,

2. hyperbolic, when ε = −1, or ,equivalently, the quadratic form B(Y, Y ) is non-degenerate

and sign indefinite, and

3. parabolic, when ε = 0 or, equivalently, the quadratic form B(Y, Y ) is degenerate but not

equal to zero. The kernels of the form B at q is a distinguished rank 1 subdistribution on
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each fiber D(q) and if X2 is the local basis of this rank 1 distribution, then

[X2, D
3] ⊂ D3. (6.9)

It is easy to see that the t distribution with parabolic symbol is isomorphic to the symplecti-

cally flat (2, 3, 5, 6) distribution as defined in subsection 1.2

6.2 Quasi-weights and quasihomogeneity

Assume that an equiregular rank 2 bracket generating distribution D has the small growth

vector (j1, j2, ldots, jr) with j1 = 2, j2 = 3, j3 = 5, jr = n. Set j0 := 0. Fix a local frame

(X1, X2, . . . , Xn) of TM which is adapted to the weak derived flag, i.e.

Dk = ⟨X1, . . . , Xjk⟩, 1 ≤ k ≤ 4.

Let ckij be the structure functions of this frame as defined in (5.27). We also denote by θ1, . . . θj the

dual coframe of the frame (X1, X2, . . . , Xn) defined by θj(Xi) = δji , where δji is the Kronecker

symbol.

From the procedure of calculations of the generalized Wilczynski invariants described in the

proof of Proposition 5.1.2 it follows that the generalized Wilczynski invariants are rational func-

tions of ui, ckij and their (iterative) directional derivatives in the direction of vector fields X1 and

X2. It is useful to define quasi-weights wt to Xi’s, ui’s , ckij , their directional derivatives and

products of those as follows:

1. wt(Xi) = k if jk−1 < i ≤ jk;

2. wt(ui) = wt(u⃗i) = −wt(∂ui) = −wtθi := wt(Xi);

3. wt(ckij) := wt(Xi) + wt(Xj)− wt(Xk).

4. The quasi-weight of the product of two quasihomogeneous objects is equivalent to the sum

of the individual quasi-weights of each object. This applies to both regular multiplication,
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the directional derivative along a vector field, and wedge product of forms. The exterior

differential does not change the weight.

Remark 6.2.1. Note that wt(ckij) ≥ 0 as [Di, Dj] ⊂ Di+j and ckij with wt(ckij) > 0 do not

contribute to the Tanaka symbol and therefore to the calculation of the Wilczynski invariant of the

flat distribution corresponding the Tanaka symbol of D at the given point. The same is true for the

derivatives of ckij wt(c
k
ij) = 0, as such ckij are considered constant for the flat distribution (note that

these derivative have positive quasi-weight in our setting).

We say that an object (a polynomial, a vector field, a differential form) is quasi-homogeneous

(counting the quasi-weights of structure functions and their derivatives) if it is a sum of terms of the

same quasi-weight wt. Rules (1)-(4) define quasi-homogeneous components of functions, vector

fields polynomial and differential forms. Note that in this setting the quasi-weight of a constant

function is equal to zero.

For example,

wt(⃗h) = wt(u4)wt(u⃗2) = wt(u5)wt(u⃗1) = 3 + 1 = 4 (6.10)

Note also that the tautological Liouville form s on T ∗M defined by (2.1) can be written as

s =
n∑

i=1

uiπ
∗θi (6.11)

Therefore s has a quasi-weight 0. Consequently, the canonical symplectic form σ = ds on T ∗M

has quasi-weight zero as well.

Since u⃗j and h⃗ are quasi-homogeneous, from the arguments in the proof of Proposition 5.1.2

a section Ẽ of J (4−n nowhere colinear to the Euler field, can be taken as quasi-homogeneous.

Consequently, all vectors fields adh⃗)iẼ are quasi-homogeneous.

Therefore, the canonical section E(λ) associated with the local basis (X1, X2) defined in Re-

mark 5.1.3 and all vector fields (adh⃗)iE are quasihomogeneous as well. Now let us determine their

quasi-weight.
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First, by (6.10) the quasi-weights of adh⃗)iE form the arithmetic progression with the difference

between any two consecutive numbers equal to 4. Second, by (4.39) and (5.35)

∣∣∣σ ((adh⃗)mE(λ), (adh⃗)m−1E(λ)
)∣∣∣ ≡ 1 (6.12)

Since the quasi-eight of a constant is zero as well as of the form σ we get that

wt(adh⃗)mE(λ) = −wt(adh⃗)m−1E(λ),

which together with the fact that their difference is equal to 4 implies that

wt(adh⃗)mE(λ) = −wt(adh⃗)m−1E(λ) = 2,

and, more generally,

wt(adh⃗)iE(λ) = −wt(adh⃗)m−1E(λ) = 2− 4m+ 4i. (6.13)

This implies that the weight of the functions Bi from the decomposition (5.36) satisfy

wtBi = wt
(
adh⃗)2mE

)
− wt

(
adh⃗)iE

)
= 8m− 4i (6.14)

The Wilczynski invariantis A2i is quasi-homogeneous and has the same weigh as B2m−2−i, i.e.

wtA2i = wt(B2m−2−2i) = 8(i+ 1). (6.15)

So far in the calculation of quasi-weight, we counted the quasi-weights of structure functions and

their derivatives. If we will count the quasi- weight of ui’s only the numerator and the denominator

of the ith generalized Wilczynski invariant A2i of a distribution D at a point q ∈ M will become

not quasi-homogeneous and can be decomposed into quasihomogeneous components. The quasi-
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homogeneous components of maximal possible weight will depend on ckij with weight zero, i.e.

according to Remark 6.2.1, these components will be the same as if one calculates the ith general-

ized Wilczynski invariant of the flat distribution corresponding the Tanaka symbol of D at q. So, if

the monomial containing ckij with weight zero in theor coefficient does not appear, it means that the

ith generalized Wilczynski invariant of the flat distribution corresponding the Tanaka symbol of

D at q vanishes, but if such terms appear it means that the ith generalized Wilczynski invariant of

the flat distribution corresponding the Tanaka symbol of D at q does not vanishes these terms will

have the maximal quasi-weight in ui’s and will appear for all distributions with the same Tanaka

symbol at q. Hence, we proved the following

Theorem 6.2.2. The ith generalized Wilczynski invariant of a distribution D at a point q is not

zero if it is nonzero for the flat distribution corresponding to the Tanaka symbol of D at q.

6.3 Applications to (2,3,5) distributions

For n = 5 and (2, 3, 5)-distributions (D3)⊥(q) = 0 and by (3.25), we J (4−n) = V , where, as

before V , is the tangent to the fiber of (D2)⊥ (see (3.26)). This implies that the Jacobi singularity

locus SingD is empty which implies that The only one nontrivial generalized Wilczynski invariant

A2 is a homogeneous degree 4 polynomial on the fibers and can be computed using the formula

(5.38) using (5.36) and the fact that the canonical section w.r.t. to h⃗ satisfies:

E(λ) = γ4(λ)∂u4 + γ5(λ)∂u5 , where γ4(λ)u5 − γ5(λ)u4 ≡ 1

For example, one can take E = 1
u5
∂u4or − 1

u4
∂u5 , see [25, 26] for more details.

In the considered case one can look at the generalized Wilczinski invariant in a slightly different

way. Note that for every v ∈ D(q) there exist the unique, up to homothety, λ ∈ (D2)⊥(q) and the

unique v̂ ∈ C(λ) such that π∗v̂ = v. The map

v 7→ Wλ
2 (v̂) (6.16)
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is a well-defined degree 4 homogeneous function (and in fact a polynomial by the previous para-

graph) on D(q), called the tangential generalize Wilczynski invariant of a (2, 3, 5)- distribution.

Theorem 6.3.1. [26] The tangential generalized Wilczynski invariant of a (2, 3, 5)- distribution

coincides, up to a universal constant multiple, with its Cartan tensor.

From this and (6.16) it follows that for (2, 3, 5)-distributions vanishing the generalized Wilczyn-

ski invariant is equivalent to the vanishing of its Cartan tensor and so the answer to the main

question posed in the Introduction is positive, i.e. vanishing the generalized Wilczynski invariant

implies that (2, 3, 5) is locally equivalent to the Cartan flat one (not etha in this case there is only

on tanaka symbol).
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7. APPLICATIONS TO (2,3,5,6)-DISTRIBUTIONS

One can choose a local basis (X1, X2) of the distribution such that it can be extended to a local

frame X1, . . . , X6) of TM so that depending on their Tanaka symbol in addition to (6.6)

X6 = [X1, X4] (7.1)

[X2, X5] = εX6 modD3, ε ∈ {−1, 0, 1}. (7.2)

Using (5.31) we have

[⃗h, ∂u6 ] = u5∂u4 − εu4∂u5 ∈ V (7.3)

From this and (5.32) it is not difficult to show that

V(−2)(λ) = span{∂u6(λ), e⃗(λ)}. (7.4)

The relation (7.4) has the following coordinate-free interpretation:Let q = π(λ) and (Di)perp(q) =

(Di)⊥ ∩ π−1(q). Then V(−2)(λ) is equal to the plane in (D2)perp(q) passing through th e origin

and the line through λ which is parallel to (D3)perp(q).

Lemma 7.1.1. The following relation holds

|σ(adh⃗3(∂u6), adh⃗
2(∂u6)| = (εu2

4 + u2
5)

2 (7.5)

and the canonical section E the canonical section associated to the chosen local basis (X1, X2) is

, up to multiple on ± and modulo span{e⃗(λ)}, equal to

E =
1

εu2
4 + u2

5

∂u6 . (7.6)
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Proof. By direct calculation,

(adh⃗)2(∂u6) = −u5X2 − εu4X1 modV = (7.7)

− u5u⃗2 − εu4u⃗1 + (εu2
4 + u2

5)∂u3 modV , (7.8)

(adh⃗)3((∂u6)) = (εu2
4 + u2

5)X3mod D̂ = (7.9)

(εu2
4 + u2

5) (u⃗3 + u4∂u1 + u5∂u2) mod D̂. (7.10)

where D̂ is as in (3.12). Substituting (7.8) and (7.10) into the left-hand side of (7.5) and using

(2.7) and (2.8) one gets the right-hand side of (7.5). Then (7.6) follows from (5.35).

Formula (7.6) has the following more intrinsic interpretation: Let B be canonical symmetric

form of the distribution D, defined by (6.7) Define

Q(λ) := B
(
π∗h⃗(λ), π∗h⃗(λ)

)
. (7.11)

Then in the chosen local frame Q(λ) = εu2
4 + u2

5, so (7.6) can be written as

E =
1

Q
∂u6 . (7.12)

While the function Q depends on the choice of the local basis (X1, X2) its zero level set is inde-

pendent of this choice.

Corollary 7.1.2. The Jacobi singularity locus SingD of a (2, 3, 5, 6)-distribution D satisfies

SingD = {λ ∈ WD : Q(λ) = 0}, (7.13)

i.e. λ ∈ SingD if and only if the charcteristic line C(λ) is projected to a null (isotropic) line of B

and π(λ). In particular, any (2, 3, 5, 6)-distribution is of maximal class at every point.

Further, from (7.12) and formulas (5.39) and (5.40) , we have the following
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Proposition 7.1.3. The i generalized Wilczynski invariant A2i, i = 1, 2, of a 2, 3, 5, 6)-distribution

has the form

A2i =
Pi

Q2(i+1)
, i = 1, 2. (7.14)

where Pi is a polynomial.

It is easy to analyze the quasi-weight (counting the structure functions) and the usual degree of

the polynomial Pi:

1. From (6.15) and the fact that wt (Q) = 6, it follows that

wt(Pi) = wt(A2i) + 2(i+ 1)wt(Q) = 20(i+ 1), i = 1, 2; (7.15)

2. If deg denotes the usual degree, then degA2i = 2(i+ 1) and degQ = 2. Consequently.

degPi = degA2i + 2(i+ 1)degQ = 6(i+ 1). (7.16)

Lemma 7.1.4. Polynomials P1 and P2 defined in (7.14) can be written in the following form form

P1 =
4∑

i=0

gk(u4, u5)u
k
6,

P2 =
6∑

i=0

qk(u4, u5)u
k
6,

(7.17)

where gk and qk are polynomials in u4 and u5 of degrees 12−k and 18−k, respectively. Moreover,

the weight of structure functions appearing ion gk and qk is equal to 4− k and 6− k respectively.

Proof. Assume that the monomial ul
4u

j
5u

k
6 appears in Pi. Then since wtu6 = 4 and wtu4 = wtu5 =

3 by (7.15) and (7.16) it follows that

3(l + j) + 4k ≤ 20(i+ 1), (7.18)

l + j + k = 6(i+ 1) (7.19)
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Subtracting 3 times (7.19) from (7.18) we get k ≤ 2(i+1). This implies (7.17). The degrees of gk

and qk are calculated from (7.16). The weights of structure functions in gk and qk are equal to

20(i+ 1)− 3(l + j)− 4k
(7.19)
= 2(i+ 1)− k (7.20)

with i = 1 for gk and i = 2 for qk. This completes the proof of the lemma.

In general, the denominator in (7.14) is not canceled. However, if the characteristic distribution

C is tangent to the zero level sets of Q, then the generalized Wilczynski invariants A2 and A4 are

polynomials.

In particular, by direct computations using (7.6), (5.31), (6.6), (6.8),(5.36), (5.39), and (5.40)

one can show that for the flat distributions with given Tanaka symbol

A1 = −ε2
54

175
u4
6, A2 = −

1354

15435
εu6

6, ε ∈ {−1, 0, 1}. (7.21)

This shows that for the flat (2, 3, 5, 6)- distribution with parabolic Tanaka symbol (i.e. when

ε = 0) both generalized Wilczinski invariants vanish identically, for the flat (2, 3, 5, 6)- distribution

with elliptic or hyperbolic Tanaka symbol bith generalized Wilczynski invariants are not zero. This

together with Theorem 6.2.2 implies the following

Corollary 7.1.5. For a (2,3,5,6)-distribution with an elliptic or hyperbolic symbol at a given point

both Wilczynski invariants do not vanish identically at this point.

The last sentence of Lemma 7.1.4 implies the weight of any structure function appearing in g4

and q6 is zero, i.e. g4 and q6 are the same as in the case of the flat distribution with given Tanaka

symbol:

g4 = −
54

175
ε2Q4, q6 = −

1354

15435
εQ6. (7.22)
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In particular, if the symbol of a distribution at a point is parabolic then

g4 = 0, q6 = 0. (7.23)

Corollary 7.1.5 implies that in order to address the main question of the Introduction we must

concentrate on (2, 3, 5, 6)-distributions with a parabolic Tanaka symbol at every point.

In this case, we can take a local basis (X1, X2) of the distribution D so that X2 generates the

kernel of the canonical symmetric form B. We can complete it to a local frame {Xi}6i=1 on M by

X3 = [X1, X2], X4 = [X1, X3],

X5 = [X2, X3], X6 = [X1, X4].

(7.24)

We call the frame {Xi}6i=1 satisfying (7.24), the standard extension of the local basis {X1, X2}

of D with X2 generating the kernel of B.

Remark 7.1.6. From (7.24), using Jacobi identity, it follows that

[X1, X5] = [X2, X4] (7.25)

Indeed,

[X1, X5] =
[
X1, [X2, X3]

]
=
[
[X1, X2], X3

]
+
[
X2, [X1, X3]

]
=

[X3, X3] +
[
X2, X4

]
= [X2, X4].

(7.26)

By direct calculation one can show that in the parabolic case, in addition to (7.23) we have

g3 = 0. (7.27)
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Let rk,j be the coefficients of the monomial u12−k−j
4 uj

5 in gk,

gk =
∑
j

rk,ju
12−k−j
4 uj

5 (7.28)

The most general change of the local basis (X1, X2) preserving the property that X2 generates the

kernel of the canonical symmetric form B is

X̃1 = a11X1 + a12X2, X̃2 = a22X2 (7.29)

for some functions a11, a22, a12 on an open set of M where the local basis (X1, X2) is defined.

Then plugging this to (7.24), one gets by direct computations:

X̃3 = a11a22X3 modD,

X̃4 = a11a22(a11X4 + a12X5) modD2,

X̃5 = a11a
2
22X5 modD2,

X̃6 = a311a22X6 modD3.

(7.30)

Consequently, on (D2)⊥

ũ4 = a11a22(a11u4 + a12u5),

ũ5 = a11a
2
22u5,

ũ6 = a311a22u6 mod a linear form in u4 and u5.

(7.31)

Using the transformation rules (7.31) one can get invariants of (2, 3, 5, 6)- distribution with parabolic

Tanaka symbol from (7.17) and (7.28). In particular, (7.23), (7.27), and (7.31) imply that the co-

efficient of the monomial in the polynomial g2 with the maximal possible degree of u5, i.e. the

coefficient r2,8 is the relative invariant of the distribution, i.e. it is either 0 or nonzero, indepen-

dently of the choice of a local frame. In fact, By direct but tedious computations one can prove
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Lemma 7.1.7. The coefficients r2,j vanish for 0 ≤ j ≤ 7 and

r2,8 =
4032

25
(c425)

2. (7.32)

In particular, if the first generalized Wilczynski invariant vanishes then

c425 ≡ 0. (7.33)

Remark 7.1.8. The fact that the structure function c425 is the relative invariant of a 2, 3, 5, 6)-

distribution with the parabolic symbol can be checked directly without referring to the calculations

of the first generalized Wilczynski invariant: it is easy to show using (7.30) that under the change

of local basis as in (7.29) c425 is transformed to
a22

a11
c425.
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8. LEFT-INVARIANT DISTRIBUTIONS ON LIE GROUPS WITH ZERO WILCZYNSKI

INVARIANTS ARE LOCALLY FLAT

The following theorem is the main result of this thesis:

Theorem 8.1.1. A left-invariant (2, 3, 5, 6)-distribution on a 6-dimensional Lie group G with both

generalized Wilczynski invariants equal to zero is locally equivalent to the flat distribution with

parabolic Tanaka symbol (equivalently, to the symplectically flat (2, 3, 5, 6)-distribution).

Proof. First of all, by Corollary 7.1.5 such distribution D must have the parabolic Tanaka symbol

at every point. We can take a basis {X1, X2} of D consisting of left-invariant vector fields such

that X2 generates the kernel of the canonical symmetric form B on D. We can extend it to the

frame on M as in (7.24). Since Lie brackets of left-invariant vector fields are left-invariant, this

frame consists of left-invariant vector fields, and all structure functions of the frame, defined by

(5.27), are constant.

The main idea is to show that if D satisfies the assumptions of Theorem 8.1.1, then it satisfies

the assumptions of Theorem 1.2.1, i.e. that D has an infinitesimal symmetry X lying in D3 but not

in D2. Recall that

D3 = span {X1, . . . X5}. (8.1)

Since any right-invariant vector field commutes with any left-invariant vector field and D is left-

invariant, any right-invariant vector field is an infinitesimal symmetry of D. Therefore, it is enough

to show that there exists a right-invariant vector field lying in D3, but not in D2. By(8.1) a right-

invariant vector field X lies in D3 if and only if the following relation holds:

(Rg)∗X ∈ span
{
{(Lg)∗Xi}5i=1}

}
,∀g ∈ G (8.2)

where Lg and Rg are the left and right translations by an element g or, equivalently, by applying

(Lg−1)∗ and using the definition of the adjoint representation Ad of the group G on its Lie algebra
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given by Adg := (Lg)∗(Rg−1)∗ we get

Adg(X) ∈ span
{
{Xi}5i=1}

}
,∀g ∈ G (8.3)

which is equivalent to is infinitesimal version

adY (X) ∈ span
{
{Xi}5i=1}

}
,∀Y ∈ LieG, (8.4)

where LieG denotes the Lie algebra of G. The latter can be equivalently reformulated as

Im(adX) ⊂ span
{
{Xi}5i=1}

}
, (8.5)

where Im(adX) stands for the image of the operator adX . Let us show that under the assumption

such X exists.By (8.1) We look for X in the form

X =
4∑

i=1

αiXi +X5. (8.6)

By assuming that the coefficient of X5 is nonzero (and so can be made into 1 by scaling) we ensure

that X does not lie in D2.

First, by (6.9),

[X,X2] ∈ span
{
{Xi}5i=1}

}
. (8.7)

Second, by (6.9) again

[X,X1] = α4X6mod span
{
{Xi}5i=1}

}
So, to get (8.5) we need

α4 = 0. (8.8)

Further, using the Jacobi identity (see (9.8), the definition of structure function given by (5.27),
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relations (7.24), and the fact that X2 is the kernel of the canonical symmetric form, we get

[X3, X5] = [[X1, X2], X5] = [[X1, X5], X2] + [X1, [X2, X5]] = (8.9)

( 5∑
i=1

(ci15c
6
i2 + c61ic

i
25)
)
X6 mod span

{
{Xi}5i=1}

}
= c425X6 mod span

{
{Xi}5i=1}

}
. (8.10)

By Lemma 7.1.7 vanishing the first Wilczynski invariant implies that c425 = 0, so the last relation

implies

[X3, X5] ∈ span
{
{Xi}5i=1}

}
. (8.11)

So, plugging (8.6) into [X,X3] and using (8.11) and (8.8) we get that

[X,X3] = mod span
{
{Xi}5i=1}

}
. (8.12)

By the same arguments

[X,X5] = mod span
{
{Xi}5i=1}

}
. (8.13)

Next,

[X,X4] = (α1 + α3c
6
34 − c645)X6 mod span

{
{Xi}5i=1}

}
, (8.14)

[X,X6] = (α1c
6
16 + α2c

6
26 + α3c

6
36 + c656)X6 mod span

{
{Xi}5i=1}

}
(8.15)

So we have to solve the following system of linear equations w.r.t. α1, α2, and α3:

α1 + α3c
6
34 = c645,

α1c
6
16 + α2c

6
26 + α3c

6
36 = −c656.

(8.16)

Case 1: Either c626 ̸= 0 or c636 ̸= c616c
6
34. In this case system (8.16) has a solution, as the matrix

of the system, i.e.  1 0 c634

c616 c626 c636
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has rank 2.

Case 2: Assume that

c626 = 0 (8.17)

c636 = c616c
6
34. (8.18)

In this case for solvability of system (8.16) it is enough to prove that the following matrix

 1 0 c634 c645

c616 0 c636 −c656

 (8.19)

has rank 1. First from Jacobi identities,(8.7), and (7.24) we get

[X3, X6] = [[X1, X2], X6] = [[X1, X6], X2] + [[X1, [X2, X6]] =

(−c616c
6
26 + c616c

6
26 + c426)X6 span

{
{Xi}5i=1}

}
= c426X6 span

{
{Xi}5i=1}

}
,

(8.20)

i.e.

c426 = c336. (8.21)

Second, from Jacobi identities, (8.11), (8.21), (8.17), and (7.24) it follows that

[X5, X6] = [[X2, X3], X6] = [[X2, X6], X3] + [[X2, [X3, X6]] =

(c426c
6
43 + c626c

6
36)X6 mod span

{
{Xi}5i=1}

}
= −c636c

6
34 mod span

{
{Xi}5i=1}

}
,

(8.22)

i.e., taking also into account (8.18),

c656 = −c636c
6
34 = −c616(c

6
34)

2. (8.23)
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Further, use the Jacobi identity, (7.24), and (7.25), to get

[X3, X4] = [[X1, X2], X4] = [[X1, X4], X2] + [X1, [X2, X4]] =

(c415 − c626)X6 mod span
{
{Xi}5i=1}

}
,

(8.24)

i.e., taking into account (8.17), we get

c634 = c415 − c626 = c415 (8.25)

Finally, using Jacobi identity, (7.25)(8.17) and (8.25) we get

[X4, X5] = [X4, [X2, X3]] = [[X4, X2], X3] + [X2, [X4, X3]] =

− [[X1, X5], X3]− [X2, [X3, X4]] = −c415c
6
34 + c626c346 mod span

{
{Xi}5i=1}

}
=

(c634)
2X6 mod span

{
{Xi}5i=1}

}
,

(8.26)

i.e.,

c645 = (c634)
2. (8.27)

Combining formulas (8.18), (8.23), and (8.27) we get that in the nonzero matrix (8.19) the second

row is equal to the first row multiplied by c616, so this matrix has rank 1, which completes the proof

of the theorem.
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9. AN EXAMPLE OF A LEFT-INVARIANT (2,3,5,6)-DISTRIBUTION WITH ZERO

WILCZYNSKI INVARIANTS ON A SOLVABLE LIE GROUP

The goal of this section is to give an example of a left-invariant distribution with both Wilczyn-

ski invariants equal to zero on a 6-dimensional Lie group whose Lie algebra is not isomorphic

to the parabolic Tanaka symbol. Then by Theorem 8.1.1 a local diffeomorphism establishing the

local equivalence of this distribution with the flat distribution of the parabolic Tanaka symbol does

not preserve the group operation.

As already mentioned before, Corollary 7.1.5 such distribution D must have the parabolic

Tanaka symbol. Again take a basis {X1, X2} of D consisting of left-invariant vector fields such

that X2 generates the kernel of the canonical symmetric form B on D. We can extend it to the

frame on M as in (7.24). Since Lie brackets of left-invariant vector fields are left-invariant, this

frame consists of left-invariant vector fields, and all structure functions of the frame, defined by

(5.27), are constant.

Now assume that

[X1, X5] = [X2, X4] = c515X5, c515 ̸= 0, (9.1)

[X2, X6] = c526X5, (9.2)

[X1, X6] ∈ span{X2, X4}. (9.3)

Proposition 9.1.1. Given an arbitrary constant c526 and an arbitrary nonzero constant c515 there

exists the unique Lie algebra on a vector space spanned by X1, . . . , X6 with Lie brackets satisfying

(7.24) and (9.1)-(9.3). The only nontrivial Lie brackets on the elements of the basis X1, . . . , X6, in
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addition to the ones from (7.24) and (9.1)-(9.3) and taking onto account skew-symmetricity are

[X1, X6] = −
(
c526 − (c515)

2
)2

X2 + (2c526 − (c515)
2)X4, , (9.4)

[X3, X4] =
(
(c515)

2 − c526
)
X5, (9.5)

[X3, X6] = c515
(
(c515)

2 − c526
)
X5, (9.6)

[X4, X6] =
(
c526 − (c515)

2
)2

X5 (9.7)

Proof. The proof is by verification of all possible Jacobi identities

[
[Xi, Xj], Xk

]
=
[
[Xi, Xk], Xj]

]
+
[
Xi, [Xj, Xk]

]
, (9.8)

for i, j, k ∈ {1, 2, . . . , 6}. Indeed,

1. Relation (9.5) is obtain from (9.8) for i = 1, j = 2, and k = 4, using (7.25), (9.1), and the

fact that X3 = [X1, X2].

2. Applying (9.8) for i = 1, j = 2, and k = 6, then using the fact that X3 = [X1, X2] and

relations (9.2) and (9.3), we get

[X3, X6] = c515
(
c526 − c416)

)
X5 (9.9)

3. Applying (9.8) for i = 1, j = 3, and k = 4, then using that [X1, X3] = X4, [X1, X4] = X6,

and (9.5), (9.9) we get that

c416 = 2c526 − (c515)
2. (9.10)

Substituting this into (9.9) we get (9.6).

4. Applying (9.8) for i = 1, j = 3, and k = 6, then using that [X1, X3] = X4 and relations
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(9.3), (9.6) we get that

[X4, X6] =
(
c216 + 2

(
c526 − (c515)

2
)2)

X5. (9.11)

5. Applying (9.8) for i = 1, j = 4, and k = 6, then using the fact that [X1, X4] = X6 and the

relations (9.3), (7.25), (9.11), we get that

c216 = −
(
c526 − (c515)

2
)2
. (9.12)

This together with (9.10) and (9.3) implies (9.4). Further, substituting (9.12) into (9.11) we

get (9.7).

All other Jacobi identities hold automatically. This completes the proof of the proposition.

Further, note that using scaling X1 → α1X1 and X2− > α2X2 and extending the new local

basis in a standard way as in (7.24) we get that

c515 → α1c
5
15, c526 → α2

1c
5
26.

Consequently, under assumption that c515 ̸= 0 we can make

c515 = 1. (9.13)

by appropriate scaling. Denote by c := c526 the remaining parameter. So, we get the left-invariant

distribution Dc with the local basis of left-invariant vector fields {X1, X2} on the Lie group with the

Lie algebra spanned by (X1, . . . , X6) so that the only nontrivial brackets, up to skew-symmetricity,

are (7.24) and
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[X1, X5] = [X2, X4] = X5,

[X2, X6] = cX5,

[X1, X6] = − (c− 1)2X2 + (2c− 1)X4,

[X3, X4] = (1− c)X5,

[X3, X6] = (1− c)X5,

[X4, X6] = (c− 1)2X5.

(9.14)

Theorem 9.1.2. The distribution Dc has both vanishing Wilczynski invariant if and only if c = 3.

Proof. We follow the algorithm for the calculations of the Wilczynski invariants. By (5.30) in this

case h⃗ on (D2)⊥ has the form

h⃗ = u4u⃗2 − u5u⃗1 = u4(X̄2 + u5∂u4 + cu5∂u6)− u5(X̄1 + u6∂u4 + u5∂u5 + (2c− 1)u4∂u6) =

u4X̄2 − u5X̄1 + (u4u5 − u5u6)∂u4 − u2
5∂u5 + (1− c)u4u5∂u6 .

(9.15)

Let E be as in (7.6). Then by direct computation
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adh⃗E =
1

u5

∂u4 +
2

u5

∂u6 (9.16)

adh⃗2E = − 1

u5

X̄2 + 2∂u4 + (c+ 1)∂u6 (9.17)

adh⃗3E = − 3X̄2 + X̄3 + (c− 1)u5∂u4 + 2(c− 1)u5∂u6 (9.18)

adh⃗4E = − (c− 1)u5X̄2 + 3u5X̄3 − u5X̄4 + u4X̄5 + (c− 1)(c− 3)u2
5∂u6 (9.19)

adh⃗5E =(c− 1)u2
5X̄2 + (c− 4)u2

5X̄3 − 2u2
5X̄4 + (2u4u5 − u5u6)X̄5 (9.20)

+ u2
5X̄6 + (c− 1)(c− 3)u2

5(∂u4 − 2∂u6) (9.21)

adh⃗6E =(c− 3)
(
−6(c− 1)u4

5∂u4 + (c− 1)(c+ 5)u4
5∂u6 − 3u3

5X3 − 3u3
5X4 + 3u4u

2
5X5

)
(9.22)

In particular, if c = 3 we have adh⃗6E = 0 which implies that both Wilczynski invariants vanish in

this case.

It remains to show that for c ̸= 3 at least one of Wilczynski’s invariants does not vanish. For

this, using (9.16), one can show by direct computations that the coefficients Bi i = 0, . . . , 4, from

the decomposition (5.36) satisfy1:

B4 = 3(c− 3)u2
5, B3 = −12(c− 3)u3

5, B2 = −3(c− 13)(c− 3)u4
5

B1 = 12(c− 7)(c− 3)u5
5, B0 = (c− 13)(c− 7)(c− 3)u6

5

(9.23)

Substituting this into (5.39) and (5.40) and using (9.15) we get

A2 = −
24

175
(c− 3)(16c− 13)u4

5 (9.24)

A4 =
2

5145
(c− 3)(3321c2 − 32176c+ 4635889)u6

5 (9.25)

so that A2 vanish if and only of c = 3 or c = 13
16

, but A4 does not vanish in the latter case. This

1Note that B5 = 0 because E is the canonical section of the Jacobi curves
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completes the proof of the theorem.

Finally, note that for c = 3 (and in fact for any c) the Lie algebra with the product rules given by

(7.24) and (9.14) is not nilpotent 2 and therefore is not isomorphic to the parabolic Tanaka symbol.

2Note that it is solvable.
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