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ABSTRACT 

This dissertation investigates extreme temperature events, their drivers, and their impact 

on society across three main sections. As the climate warms, understanding these events and their 

consequences becomes increasingly important for developing adaptation strategies and informing 

policy decisions. 

In the first section, the dissertation examines the role of global warming and the internal 

variability of climate systems in extreme heat and humidity events using a large ensemble of 

climate models. It is found that extreme heat and humidity events significantly elevate between 

1.5°C and 2.0°C of global warming. The El-Niño Southern Oscillation is the largest driver of 

extreme heat and humidity events on a smaller scale, while global warming becomes more 

significant when looking at larger regions. With 3°C of warming, 10% of the population will 

experience extreme heat conditions, and regions with lower GDP will be more vulnerable to 

extreme heat events. This highlights the need for targeted adaptation strategies in vulnerable 

regions. 

The second section evaluates the impact of climate change on Texas' energy sector, 

focusing on the Electric Reliability Council of Texas (ERCOT), which controls the state's electric 

power. An empirical model for estimating power demand based on temperature is developed, 

accounting for the insufficiency of using only the last decade of temperature data for calculating 

seasonal power demand. The model reveals a 17% and 19% chance of power demand exceeding 

extreme peak-load scenarios in summer and winter, respectively. In the Texas winter storm Uri, 

the study concludes that power demand exceeded ERCOT's extreme peak load scenario by 15 GW 

or 22%, emphasizing the need for improved demand forecasting and infrastructure resilience. 
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The final section investigates the impact of climate change on temperature-related deaths 

in the United States. A temperature-mortality relationship for 106 cities is established, and a model 

is developed to approximate the role of adaptation by comparing cities with different climates. 

Using high-resolution climate model outputs, future temperature-related deaths are projected under 

various adaptation scenarios. At 3°C of global average warming, temperature-related deaths will 

reach 175,000 per year, a significant increase from the current 37,000 deaths. Adaptation can 

minimize this increase by 37,000 per year, with a notable northward shift in temperature-related 

deaths. This underscores the importance of proactive adaptation measures to minimize the human 

cost of climate change. 

This dissertation serves as a capstone project for climate informatics, which combines 

climate data with data from other sectors to investigate the climate impact. Its findings contribute 

to a deeper understanding of extreme temperature events and their consequences, offering insights 

for effective adaptation strategies and policymaking in a warmer climate. 
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CHAPTER I  

INTRODUCTION 

 

1.1. Motivation 

Since the industrial period, anthropogenic activities, mainly CO2 emissions, have altered the 

long-term climate. Due to this climate change, not only the global average temperature has 

increased. Since extreme climate events occur from the combination of high mean and high 

variability of the climate, climate change overall has increased multiple climate hazards. 

Recently, the impact of extreme temperature events has received considerable attention due to 

its frequency, magnitude, and impact. For example, Pacific Northwest heat wave in 2021 

(Overland, 2021; Patel et al., 2022; Silberner, 2021; Vasquez, 2022) left billions of dollars of 

damages, including collapse of infrastructure that could not tolerate the heat. Society is still 

vulnerable to extreme climate variability, not only extreme heat, but also to extreme cold. Winter 

storm Uri, which occurred in Texas 2021, has caused power outages leading to hundreds of tens 

of billions of dollars of damage (Busby et al., 2021; Doss-Gollin, Farnham, Lall, & Modi, 2021; 

Ivanova, 2021; C. W. King et al., 2021; Ulrich, 2022). Thus, it is important to thoroughly 

investigate the physical drivers of extreme temperatures along with their impact on human and 

natural systems. 

This doctoral study tackles major scientific questions regarding drivers and impact of extreme 

temperature events, and further suggests the possibility of incorporating climate data effectively 

with other sectors of society which can be used for climate informatics. 
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1.2. Background and Literature Review 

Three levels of analysis should be performed to thoroughly investigate extreme temperature 

events. The first is determining the causes of extreme temperature events, and the second is 

quantifying the change in temperature and temperature metric due to those causes. Lastly, the 

impact of extreme temperature events in our society and a range of diverse natural systems should 

be studied. 

 

1.2.1. Drivers of Extreme Temperature Events 

Regarding the drivers of extreme temperature events, a few prevalent drivers influence extreme 

temperature events: external forcing, internal variability, and local modulation of temperature. 

External forcings, which come from anthropogenic or natural activities, drive energy imbalances 

in the climate system.  These have been investigated in previous studies and it has been concluded 

that they modulate the frequency and magnitude of extreme temperature events. For the 

anthropogenic effect, global average temperature increase due to emission of greenhouse gases, 

also known as global warming, is the major contributor (Allen et al., 2019; Frölicher, Winton, & 

Sarmiento, 2014). For the natural part of external forcing, intensity of solar output (Erlykin, Sloan, 

& Wolfendale, 2009) and impact of Milankovitch cycle (Marsh, 2014) have been studied. Volcanic 

eruptions (Black, Lamarque, Marsh, Schmidt, & Bardeen, 2021; H. Zhang et al., 2022) are another 

example of natural forced change, which alters regional and global temperature for relatively short-

term. 

Internal variability is unforced variability that comes from the chaotic nature of climate system. 

Mechanisms of internal variabilities impacting extreme temperature events has been studied 

intensively, where major modes of variability include El Niño Southern Oscillation (ENSO) (Birk, 
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Lupo, Guinan, & Barbieri, 2010; Meehl, Tebaldi, Teng, & Peterson, 2007; Thirumalai, DiNezio, 

Okumura, & Deser, 2017), Pacific Decadal Oscillation (PDO) (Birk et al., 2010; G. Zhang, Zeng, 

Li, & Yang, 2020), Atlantic Multi-decadal Oscillation (AMO) (G. Zhang et al., 2020), and 

Northern Atlantic Oscillation (NAO) (Moore & Renfrew, 2012). These major modes of variability 

are known to have bi-annual to decadal oscillations and known to impact regional and global 

extreme temperature events. 

Local modulators of large-scale extreme heat events come from small-scale phenomenon, such 

as city-level urban heat island (UHI) effect. UHI effect is a phenomenon in which urban built-up 

areas are significantly warmer than surrounding rural areas and it can contribute to local extreme 

heat event (Jay et al., 2021; Mallen, Stone, & Lanza, 2019; Qian et al., 2022). 

Local extreme temperature events are always a combination of long-term forced change, acting 

in concert with internal variability of climate and local modulators. So, it is critical to determine 

the mechanism of each driver to comprehend the nature of extreme temperature events, and for 

assessing the future risk of extreme events. 

 

1.2.2. Change in Temperature and Temperature Metric 

Although we physically understand the drivers of extreme temperature events, it is also 

important to quantify the change of temperature each drivers results in. For example, multiple 

studies quantitively linked long-term forced change with extreme heat (Allen et al., 2019; Masson-

Delmotte et al., 2018). Furthermore, previous studies identified how much ENSO (Feng & Hao, 

2021; Hao, Hao, Singh, & Zhang, 2018; Seager, Kushnir, Nakamura, Ting, & Naik, 2010),  PDO 

(Mariano, Carolina, & Miranda Leandro, 2018; G. Zhang et al., 2020), AMO (Shi et al., 2018; 

Zhou & Wang, 2016), and NAO (López-Moreno et al., 2011; Moore & Renfrew, 2012) increase 
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or decrease local extreme temperature event. 

Furthermore, since temperature is a representation of only one single metric, other metrics such 

as the absolute increase of maximum temperature from the reference period (Wobus et al., 2018), 

risk ratio of population’s exposure to heat (Kharin et al., 2018), wet-bulb temperature (Heo, Bell, 

& Lee, 2019), and heat wave magnitude index (S. Russo, Sillmann, & Sterl, 2017) are used for 

detailed assessment of extreme temperature event. 

 

1.2.3. Impact of Extreme Temperature Events 

One of the important motivations to conduct research on extreme temperature events is because 

it has a significant impact on human and natural systems. Thus, it is essential to investigate the 

impact of extreme temperature on those systems. This topic is often referred to as climate impacts 

research, where researchers incorporate climate data with data from other sectors to assess the 

impact of climate. Several sectors of human and natural systems have been studied in this aspect.  

Impact on human system includes the energy sector, public health, economic inequity, 

agriculture, and dairy farming (IPCC, 2022). Impacts on the natural system have also been 

analyzed. For the cryosphere, previous studies mainly focused on ice sheet and permafrost melting 

(Colucci & Guglielmin, 2019; Koenigk, Key, & Vihma, 2020; Naughten et al., 2021; Stokes et al., 

2022). Studies of the ocean biosphere have analyzed animal biomass (Chapman, Lea, Meyer, 

Sallée, & Hindell, 2020) and primary production in the ocean (Kulk et al., 2020). 

 

1.2. Dissertation Outline 

This dissertation aims to examine extreme temperature events from cause to impact. 

Chapter 2 employs a single-model initial-condition large ensemble (SMILE) of global climate 
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model (GCM) to investigate the causes of extreme heat and humidity events, as well as the 

corresponding increase in temperature and humidity metrics. Using a SMILE allows us to separate 

increasing temperature and extreme heat events into forced change (global warming) and internal 

variability components. Furthermore, in this chapter, per capita gross domestic product data, as 

well as energy-related metrics, including cooling degree days and warming degree days, are used 

to quantify the impact of global warming on economic inequity and energy demand. 

Chapter 3 of the dissertation moves to the impact sector of extreme temperature events. The 

Electric Reliability Council of Texas (ERCOT) manages the grid that supplies electricity to the 

majority of Texas residents. However, when projecting potential power demand, ERCOT only 

uses weather data from the previous decade, ignoring changing climate and climate variability 

beyond the recent historical record. In this section, we propose a new method for using a SMILE 

to generate realistic probability-based future weather forecasts to predict Texas energy demand. 

Chapter 4 focuses on temperature-related deaths in the US. Three factors influence future 

temperature-related deaths. The first is the magnitude of climate change, followed by demographic 

and population change. The final factor is society’s adaptation to the warming temperature. In this 

section of the dissertation, we integrate future climate scenarios, demographic and population 

projections, and adaptation assumptions to create a comprehensive framework for projecting future 

temperature-related deaths. 

Chapter 5 synthesizes this study’s findings about extreme temperature events and provides 

concluding remarks and implications for the future work. 

  



 

 

6 

 

 

 

CHAPTER II 

THE EFFECT OF FORCED CHANGE AND UNFORCED VARIABILITY ON  

HEAT WAVES, TEMPERATURE EXTREMES, AND  

ASSOCIATED POPULATION RISK IN A CO2-WARMED WORLD* 

 

2.1. Introduction 

 The long-term goal of the 2015 Paris agreement is to keep the increase in global 

temperature well below 2°C above pre-industrial levels, while pursuing efforts to limit the 

warming to 1.5°C. Given that no one lives in the global average, however, understanding how 

these global average thresholds translate into regional occurrences of extreme heat and humidity 

is of great value (Harrington, Frame, King, & Otto, 2018). Previous studies have reported that 

regional extreme heat events will not only be more frequent, but also more extreme in a warmer 

world. This was discussed in various assessment and reports such as US National Climate 

assessment and those by IPCC (Hoegh-Guldberg et al., 2018; Masson-Delmotte et al., 2018; 

Melillo, Richmond, & Yohe, 2014; Wuebbles, Fahey, & Hibbard, 2017) and it is expected to have 

significant impacts on human society and health. More importantly, previous studies have 

analyzed the risk (Lundgren, Kuklane, Gao, & Holmer, 2013; Quinn et al., 2014; Sun et al., 2014), 

exposure (Dahl, Licker, Abatzoglou, & Declet-Barreto, 2019; Liu et al., 2017; Luber & McGeehin, 

2008; Ruddell, Harlan, Grossman-Clarke, & Buyantuyev, 2009), vulnerability (Chow, Chuang, & 

 
* Reprinted with permission from “The effect of forced change and unforced variability in heat waves, temperature 

extremes, and associated population risk in a CO2-warmed world” by Jangho Lee, Jeffrey C. Mast, and Andrew E. 

Dessler, 2021. Atmospheric Chemistry and Physics, 21, 11889-11904, Copyright 2021 by Jangho Lee 
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Gober, 2012; Wilhelmi & Hayden, 2010) and susceptibility (Arbuthnott, Hajat, Heaviside, & 

Vardoulakis, 2016) of population in the current and warmer climates. 

Many criteria and indices have been used to assess extreme heat, such as the absolute 

increase of maximum temperature from the reference period (Wobus et al., 2018), risk ratio of 

population’s exposure to heat (Kharin et al., 2018), and heat wave magnitude index (S. Russo et 

al., 2017). In this study, we utilize four locally defined heat wave indices from Fischer and Schär 

(2010) and Perkins, Alexander, and Nairn (2012) of duration, frequency, amplitude, and mean. We 

also focus on consecutive-day extremes, which are known to cause more harm than single-day 

events (Baldwin, Dessy, Vecchi, & Oppenheimer, 2019; Simolo, Brunetti, Maugeri, & Nanni, 

2011; Tan et al., 2010). In addition, because the combined effect of temperature and humidity is 

known to affect human health by reducing the body’s ability to cool itself through perspiration, 

wet-bulb temperature is frequently analyzed (Kang & Eltahir, 2018), so we will analyze wet-bulb 

temperature also.  

Climate extremes often occur from a combination of long-term forced climate change 

acting in concert with unforced variability (Deser, Phillips, Bourdette, & Teng, 2012).  Thus, 

characterizing and quantifying both long-term change due to external forcing and the unforced 

variability of the climate system is crucial in assessing the future risk of extreme events. There 

have been numerous studies that link dominant modes of unforced variability to extreme events. 

For example, previous studies have investigated temperature connections with El Niño Southern 

Oscillation (ENSO) (Meehl et al., 2007; Thirumalai et al., 2017), the Pacific Decadal Oscillation 

(PDO) (Birk et al., 2010) , the Atlantic Multidecadal Oscillation (AMO) (Mann, Steinman, 

Brouillette, & Miller, 2021; G. Zhang et al., 2020).  The effect of climate extremes on different 

populations depends on numerous factors, including the level of economic development, with 
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impacts of heat extremes being more severe in less economically developed countries (de Lima et 

al., 2021; Diffenbaugh & Burke, 2019; Harrington et al., 2016; A. D. King & Harrington, 2018). 

For example, as temperatures go up, increased energy demand to cool buildings will be required 

(Parkes, Cronin, Dessens, & Sultan, 2019; Sivak, 2009) in metropolitan area.  But this requires 

resources to both install air conditioning and then operate it. The greater impacts of extreme heat 

in economically less developed region in a warmer climate has been discussed in multiple studies 

(Marcotullio, Keßler, & Fekete, 2021; Simone Russo et al., 2019). 

In this paper, a single-model initial-condition ensemble of 28 simulations of a global 

climate model (GCM) are used to quantify heat and humidity extremes in a warmer world.  We 

use population data to look at population risk for mortality events in daytime (Mora et al., 2017) 

and nighttime (Chen & Lu, 2014). We also utilize per capita gross domestic product (GDP per 

capita) data to investigate how climate change impacts extreme heat events on different levels of 

economic status. To quantify the impact on energy demand, we also quantify changes in cooling 

degree days and warming degree days. 

 

2.2. Data 

2.2.1. MPI-GE ensembles 

  Simulation data in this study come from an ensemble of runs of the Max-Plank Institute 

Earth System Model collectively known as the MPI Grand Ensemble (MPI-GE) project (Maher et 

al., 2019). Each of the 28 ensemble members branches from different points of a 2000-year pre-

industrial control run and are integrated for 150 years, forced by CO2 concentration increasing at 

1% per year (hereafter, 1% runs).  Because the radiative forcing scales as the log of CO2 

concentration, the 1% runs feature radiative forcing that increases approximately linearly in time. 
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We analyze 6-hourly output with 1.875° ×  1.875° spatial resolution, which is the original 

resolution of the model output, for land areas between 60°N and 60°S. Our analysis will focus on 

2-meter temperature (hereafter, t2m) and 2-meter dew point temperature (d2m), from which 2-

meter relative humidity (rh) and wet-bulb temperature (w2m) are calculated using the methods of 

Davies-Jones (2008) with a predesigned module, HumanIndexMod (J. Buzan, Oleson, & Huber, 

2015). 

 Unforced variability in the climate system generates uncertainties in the projection of the 

climate by impacting the dynamic component of the climate, especially for extreme events (J. E. 

Kay et al., 2015; Thompson, Barnes, Deser, Foust, & Phillips, 2015). One way to analyze the 

impact of unforced variability in climate system is to use an initial-condition ensemble. Each 

members of initial-condition ensemble are generated by perturbating the initial conditions of single 

climate model. This perturbation will then propagate to generate different sequence of climate, 

such as ENSO, PDO, etc. (Deser et al., 2012; J. E. Kay et al., 2015). In this paper, we use the 

ensemble to allow us to estimate the impact of unforced variability on temperature extremes. 

 Since the model used only considers CO2 forcing without aerosols, and it represents a 

continuously warming climate, one might question if the model simulation accurately represents 

the real climate. To judge the fidelity of the simulations, we compare 15 years (2003-2017) of 

ERA-Interim reanalysis data (Dee et al., 2011) from the European Centre for Medium Range 

forecast (ECMWF) with 15 years of the MPI-GE 1% ensemble which have the same ensemble- 

and global-average temperatures (years 39-53); in the rest of the paper, we will refer to these as 

the reference periods.  In both data sets, we then calculate 90th percentile and mean t2m and w2m 

for each grid points. This calculation was done for each member of the model ensemble. For each 

of the 4 values (90th percentile t2m/w2m and mean t2m/w2m), we determine if the values from the 
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reanalysis fall into the spread of 28 ensemble members of the 1% runs. For each grid point, if the 

reanalysis value falls within the ensemble spread, we mask out the grid point; if not, we plot how 

far the reanalysis value is from the closest member of the 1% ensemble (Figure 2.1).  

Generally, the 1% runs overpredicts t2m and w2m in Northern hemisphere, and 

underpredicts in Southern hemisphere, except for India. This difference is consistent with the fact 

that the 1% models do not contain aerosol forcing, which should lead to biases of the sign seen in 

Fig. 2.1.  The w2m shows larger area of differences than t2m, which suggests that there are larger 

biases in the dew point, which is needed in the calculation (Davies-Jones, 2008). The area-

weighted averages of these differences are -0.08°C, -0.03°C, -0.04°C, and -0.11°C globally for 

90th percentile t2m, mean t2m, 90th percentile w2m, and mean w2m respectively, which means 

that the model is, on average, underpredicting land temperature. Breaking down to Northern and 

Southern hemisphere, the bias is 0.20°C, 0.21°C, 0.15°C, 0.14°C in NH and -0.64°C, -0.54°C, -

0.36°C, and -0.44°C, confirming that the model is overpredicting temperature in NH land and 

underpredicting in SH land.  

To quantify the impact of the biases in Fig. 2.1 on the occurrence of heat extremes, we will 

perform sensitivity tests on the calculations by adding to each grid point of each member of the 

ensemble the average differences between the ensemble average t2m and w2m and the reanalysis.  

By evaluating how much our results change, we come up with an estimate of the impact of model 

biases on our results.  As we will show later, these biases have little impact on the results of the 

paper. 
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Figure 2.1. Difference of 1% CO2 runs compared with ERA-Interim in same level of global 

warming (0.87°C). The grid points where ERA-Interim falls within the ensemble spread of 1% 

runs are masked with gray, while other grid points show the difference between the nearest 

ensemble member and ERA-Interim for (a) 90th percentile of 15-year daily average t2m, (b) mean 

of 15-year daily average t2m, (c) 90th percentile of 15-year daily average w2m, and (d) mean of 

15-year daily average w2m. 

 

2.2.2. Global population and GDP per capita data 

 Global population data from the NASA Socioeconomic Data and Applications Center 

(SEDAC, 2018) are used to weight the heat wave indices by population. The data represent the 

population in year 2015 at 30′′ × 30′′ spatial resolution, and we re-gridded to the 1.875° × 1.875° 

grid of the MPI model by summing the values in grid boxes surrounding the MPI grid centers. In 

our population-weighted calculations, we assume that the relative distribution of population 

remains fixed into the future. 

 Gridded GDP per capita data (Kummu, 2019) over 1990-2015 are used to estimate the risk 

of heat extreme events for different levels of wealth. These data are re-gridded from the original 

5′′ × 5′′ spatial resolution to the MPI model’s resolution of 1.875° × 1.875° by averaging the GDP 

inside the grid box. When doing this average, per capita GDP was weighted by population and 
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also averaged over the 1990-2015 period.  We assume that the relative percentile of GDP per capita 

for each grid point is fixed into the future, so changes in climate risk are due to exposure to warmer 

climate extremes, not changes in relative per capita wealth. 

 

2.3. Method of analysis 

2.3.1. Global warming 

 Global warming is defined as the global and annual average temperature increase compared 

to the average of first 5 years of the 1% run. We find that ensemble- and global-average t2m 

reaches 1.5°C, 2°C, 3°C and 4°C occur in years 59, 76, 108, and 133 years, respectively, and 

reaches 4.6°C at the end of the 150-year run. The increase of global average temperature is nearly 

linear for both t2m and w2m, consistent with a linear ramping of the forcing (J. R. Buzan & Huber, 

2020). 

 The focus on the paper will be on heat extremes at 1.5°C, 2°C and 3°C. The 1.5°C and 2°C 

thresholds are the limits described in the Paris Agreement, while 3°C is the warming we are 

presently on track for (Hausfather & Peters, 2020).   

 

2.3.2. Heat wave indices 

 Identification of heat waves is done in several steps. First, for each grid point, we smooth 

a daily maximum temperature (determined form 6-hourly temperatures) using a 15-day moving 

window for the first 5 years of 1% runs, which is the period before significant warming has 

occurred. Then, the 90th percentile of smoothed daily maximum temperature for the first 5 years 

was calculated at each grid point (Fischer & Schär, 2010). This value is used as a threshold for the 
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heat waves at that grid point. Then we calculate the heat wave days, defined as days that exceed 

the threshold for three or more consecutive days (Baldwin et al., 2019). 

We then define four indices to represent the characteristics of these heat waves. To 

determine the occurrence of events, heat wave duration (HWD; longest heat wave of the year) and 

heat wave frequency (HWF; total number of heat wave days in a year) are calculated. From an 

intensity perspective, heat wave amplitude (HWA; maximum temperature during heat wave days 

during a year) and heat wave mean (HWM; mean temperature during heat wave days in a year) 

are selected. These indices are also calculated in an analogous fashion for wet bulb temperature 

(w2m), since wet-bulb temperature is arguably more relevant for human health (J. R. Buzan & 

Huber, 2020; Heo et al., 2019; Morris, Gonzales, Hodgson, & Tustin, 2019).  These indices are 

summarized in Table 2.l. 

  

2.3.3. Deadly days and tropical nights 

Heat wave thresholds are different for each grid point because they are based on pre-

industrial temperatures at that grid point. Combined with regional differences in the ability to 

adapt, this means that heat waves in different regions may have different implications for human 

society. We therefore also count the number of days each year with daily maximum w2m above 

26°C, which we refer to as “deadly days”.  We note that other values could be chosen (Liang et 

al., 2011), with higher values occurring less frequently but having more significant impacts.  This 

value is based on the analysis of Mora et al. (2017), who demonstrated that w2m of about 24°C is 

the threshold which fatalities from heat-related illness occur. However, since we find that there are 

some regions that already experience over 9 months of 24°C w2m events per year, we increase 

this threshold to 26°C in our analysis. We could have chosen higher w2m values, but any choice 
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in this range is associated with negative impacts, so we have chosen a value near the bottom of the 

range where mortality occurs in order to maximize the signal in the model runs. 

A warm nighttime minimum temperature can be as important as a high maximum 

temperature for human health and mortality (Argaud et al., 2007; Patz, Campbell-Lendrum, 

Holloway, & Foley, 2005), so we define “tropical nights” as a daily minimum t2m over 25°C 

(Lelieveld et al., 2012). 

 

2.3.4. Cooling degree days and heating degree days 

To assess the economic and energy impact of heat extremes, cooling degree days (CDD) 

and heating degree days (HDD) are calculated. CDD and HDD are metrics of the energy demand 

to cool and heat buildings. For each grid point, annual CDD is calculated by subtracting 18°C from 

the daily average temperature and summing only the positive values over the year. HDD is the 

absolute value of the sum of the negative values. Previous studies reported that CDD and HDD 

are closely related to energy consumption (Sailor & Muñoz, 1997). 

 

Table 2.1. Explanation of heat wave indices used in this study. 

Acronym Index Definition Units 

HWDt2m/w2m Heat wave duration 
Length of longest period of consecutive 

heat wave days in a year 
# days 

HWFt2m/w2m Heat wave frequency 
Total number of heat wave days in a 

year 
# days 

HWAt2m/w2m Heat wave amplitude 
Maximum temperature over all heat 

wave days in a year 
°C 
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HWMt2m/w2m Heat wave mean 
Average temperature over all heat wave 

days in a year 
°C 

Deadly Days Deadly Days 
Daily maximum wet-bulb temperature 

over 26°C 
# days 

Tropical Nights Tropical Nights Daily minimum temperature over 25°C # days 

CDD Cooling degree days 
Sum of positive values after removing 

18°C from daily average temperature 
°C days 

HDD Heating degree days 

Absolute value of sum of negative 

values after removing 18°C from daily 

average temperature 

°C days 

 

 

2.4. Results 

2.4.1. Impact of unforced variability of climate on regional heat extremes 

To investigate the impact of unforced variability on more regional heat extremes, we take 

the 15 largest cities by population (Fig. 2.2a) and determine the number of deadly days and tropical 

nights over time by averaging the heat wave metric of the 3×3 grid points surrounding the city, 

only including the land grid points. Figure 2.2b-d depicts the ensemble averaged number of deadly 

days and tropical nights, as well as the spread between the ensemble members. The error bars in 

Figure b-d show the highest and lowest values of the extremes.  

This difference within the ensemble is the result of unforced variability. For all 15 cities, 

average spread in the number of deadly days at 1.5°C, 2.0°C, 3.0°C, and 4.0°C of global warming 

between the ensemble members with maximum and minimum numbers are 14.3, 15.1, 20.6, and 

21.9 days per year. For tropical nights, the spreads are 29.3, 27.7, 29.1, and 26.7 days on 5-year 

averaged values. So, on average, unforced variability can change the number of extreme days and 
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nights by a few weeks per year. There is no significant variance of ensemble spread between the 

cities except for cities with very low ensemble-averaged values (e.g., Mexico City at 1.5°C 

warming) or very high values (e.g., tropical nights in Manila at 4.0°C warming). However, for the 

cities that do not see large increase in extreme temperatures (e.g., New York City), this represents 

a very large fraction of the predicted change of extremes, while for cities that experience much 

larger increase (e.g., Manila), it represents a smaller percentage. 

As discussed in Section 2.2.1, we examine the sensitivity of our results to potential biases 

of the model by recalculating the deadly days and tropical nights using model data after adding in 

the bias estimated by comparison to the reanalysis. The average difference of deadly days in the 

sensitivity test (absolute difference) at 1.5°C, 2.0°C, 3.0°C, and 4.0°C warming is 2.1, 2.5, 5,5, 

and 7.6 days per year when averaged over 15 cities. The standard deviation of difference calculated 

between the cities is 2.5, 3.4, 6.7, and 9.7 days at each level of warming. For tropical nights, 

sensitivity test produced differences of 3.6, 3.6, 5.3, and 3.5 days per year at each level of warming, 

with standard deviations within the ensemble of 3.6, 4.9, 6.9, and 1.8 days.  Thus, model mean 

biases are unlikely to have a large impact on our results. 
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Figure 2.2. (a) Location of 15 largest cities in the world and the number of annual heat extremes 

at (b) 1.5, (c) 2.0, (d) 3.0, and (e) 4.0°C of global warming. Orange (purple) bars represent the 

ensemble average annual number of deadly days (tropical nights), averaged 5 years after each level 

of warming is exceeded. Number of heat extreme days are calculated by averaging 3×3 land-only 

grid covering the selected city. Error bars represent the values of maximum and minimum 

ensemble members.  

 

Previous work has attempted to distinguish the mechanisms of unforced variability of 

temperature and temperature extremes (Birk et al., 2010; Meehl et al., 2007; G. Zhang et al., 2020). 

To probe the statistical modes of variability affecting this ensemble spread and to identify the 

underlying physical mechanisms, empirical orthogonal function (EOF) analysis (North, 1984) was 

performed on the detrended and normalized time series of deadly days and tropical nights for the 

15 cities. For each city, the 28 ensemble members are concatenated together (total of 28×150 

years) in order for all ensemble to share the same EOF. In this way, we aim to find the dominant 

drivers of unforced variability that impacts heat extremes in the largest cities around the world.  

The first three EOF patterns for each city are plotted in Fig. 2.3 as bars. The first EOF mode 

of deadly days shows large values for Delhi, Shanghai, Dhaka, and Karachi, while cities in other 

regions show lower values. The second and third EOFs for deadly days show more variability 

between the cities. The first EOF for tropical nights (Fig. 2.3d) show large positive values for cities 

in the India-Pakistan region, with other cities showing smaller magnitude changes. The second 

EOF shows large negative values in Cairo, Istanbul, and Manila, while the third EOF for tropical 

nights shows more variability between the cities.  
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The PC time series are projected onto detrended annual sea surface temperature (SST) 

anomalies. This allows us to investigate how heat extreme events in 15 major cities are associated 

with global modes of unforced variability. Maps of correlation coefficients are also plotted in Fig. 

2.3. Characteristic patterns for ENSO (Trenberth, 2020), PDO (Deser & Trenberth, 2016), and 

AMO (Trenberth & Zhang, 2021) are calculated for each ensemble using all 150-year of SSTs, 

and the pattern is averaged over ensembles to come up with a single ENSO, PDO, and AMO SST 

pattern for the ensemble. Then, those patterns are compared with the PC projection on SST to see 

how PC projected SST resembles the patterns of unforced variability. Correlation coefficients 

between the standard climate indices and PC projected SST is shown on lower panel of Fig. 2.3 as 

numbers. All of the projections of deadly day PCs and projections of the first two modes of tropical 

nights shows patterns similar to El Niño-Southern Oscillation (ENSO) and Pacific Decadal 

Oscillation (PDO).   

 



 

 

19 

 

 

 

 

Figure 2.3. First three EOFs of annual values of deadly days (a, b, c) and tropical nights (d, e, f) in 

the world’s 15 largest cities. For each panel, the bar graph shows the EOF pattern of the number 

of heat extreme days per year. Contour plots shows the SST pattern associated with the EOF mode, 

obtained by projecting each mode of PC onto SST anomalies. Ensemble members are averaged to 

yield the SST pattern. Pattern correlation with major modes of climate variability (ENSO, PDO, 

AMO) are also shown, as discussed in the text. 

 

Power spectra of the PCs are calculated individually for each ensemble member, and then 

the ensemble average is plotted Figure 2.4. Overall, the spectra of the deadly day PCs look very 

much like the spectrum for ENSO, and it notably does not have the ~20-year peak of the PDO 
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spectrum. This tells us that, in this model at least, the variability in the occurrence of deadly days 

in these four large cities is strongly regulated by ENSO. This may be a consequence of the fact 

that these large cities are mostly located near ocean and at lower latitudes. The third deadly day 

PC has lower correlations with ENSO or PDO index, so it is harder to draw firm conclusions about 

the mechanism behind it. Also, higher modes of EOFs are unlikely to refer to a single mode of 

climate due to the orthogonality constraints between each mode.  The tropical night PCs also show 

peaks at ENSO periods (Fig. 2.4b) suggesting that, like deadly days, tropical night variability is 

controlled by ENSO.    

 

 

Figure 2.4. Frequency power spectrum of ENSO, PDO, and PC of first three EOF modes for (a) 

deadly days and (b) tropical nights. ENSO is calculated with the Niño 3.4 Index, and PDO is 

calculated as a leading EOF of SST anomaly in North Pacific basin. Monthly SST data is used for 

both ENSO and PDO, and then each index is averaged over the year to have consistency with 

deadly days and tropical nights. 
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2.4.2. Cluster analysis and population risk of heat wave indices 

 We calculate HWD, HWF, HWA, and HWM for both t2m and w2m each year at each grid 

point, which generates eight different 150-year time series for each of the 28 ensemble members. 

Each time series at each grid point is regressed vs. time, yielding a slope and the intercept for each 

time series in all 28 ensemble members. The 16 variables (8 [heat wave indices] × 2 [slope, 

intercept]) are then utilized as a predictor variable for K-means clustering (Likas, Vlassis, & 

Verbeek, 2003) to categorize the spatial variation of heat waves using the Euclidean distance of 

its predictor variables (16 variables). With slope and intercept, we can characterize the heat indices 

of each grid point with response to CO2 forcing (slope) and climatology (intercept). The number 

of clusters in this study is set to 6, using the elbow method (Syakur, Khotimah, Rochman, & Satoto, 

2018). When using 5 clusters, we find that two clusters (the light and dark blue regions in Figure 

2.5a) merge, and when using 7 clusters, we find that one cluster (the dark blue region in Figure 

2.5a) divides into two separate clusters.  

Figure 2.5a shows the cluster value that most ensembles assigned to each grid point and it 

shows distinct geographical characteristics, as summarized in Table 2.2 (the result of clustering 

shows little difference between individual ensemble members).  As might be expected from how 

we calculated the 16 variables for clustering, each cluster shows a different evolution of heat 

extremes in warmer world (Figure 2.6).  Although the warming signal is largest in the polar regions 

(Figure 2.5b), the largest increases of HWD and HWF are found at lower latitudes (in cluster 1 

and 2 on Figure 2.6a-d). This is mostly due to low variability in these regions compared to polar 

regions, making it easier for a trend to exceed the heatwave threshold.  
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Figure 2.5. (a) Clustered regions via K-means clustering. Characteristics of each cluster are listed 

in Table 2.2. (b) Zonal average of temperature increases at the time of 0.87°C (our reference 

period), 1.5°C, 2°C, and 4°C of global warming compared to pre-industrial baseline in the 1% 

runs. Temperatures are averaged over a 5-year period after each warming threshold is exceed in 

the model. 
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Figure 2.6. Evolution of each index averaged over each cluster. Colors are consistent with Figure 

2.5 and Table 2.2. Values of each metric are calculated by averaging the grid points that belongs 

to each cluster. This was done for each ensemble member and then the ensemble average is plotted. 
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Vertical lines with dots show the maximum and minimum of 28 ensemble members at each 

threshold of warming to represent the spread between the ensemble members. 

 

These results are insensitive to potential model biases.  Sensitivity tests show that adding 

the bias to the model changes HWD, HWF, deadly days, and tropical nights, by less than 5% for 

all metric and clusters. For HWA and HWM, the difference caused by adding the bias was less 

than 1°C for all metric and clusters, suggesting that the impact of model biases is small in this 

analysis. 

For HWA and HWM, the rate of increase is similar for all clusters, with increases of 

HWAt2m and HWAw2m of 1.45°C per degree of global average warming and 0.85°C per degree of 

global average warming, respectively, and HWMt2m and HWMw2m of 0.66°C per degree of global 

average warming and 0.47°C per degree of global average warming, respectively (Figure 2.6e-h). 

The exception is HWAt2m in cluster 6.  The large increase of HWAt2m in this region is connected 

to the strong global warming signal in high latitudes that has been predicted for decades and now 

observed (Stouffer & Manabe, 2017). 

Turning to deadly days (Fig. 2.6i), we find a substantial increase occurs in cluster 1 after 

2.0°C of warming; this is important because it gives additional support for the Paris Agreement’s 

aspirational goal of limiting global warming to 2.0°C. Almost all increases in deadly days are in 

low latitudes (cluster 1, 2, and 3). For tropical nights, low latitudes and deserts (cluster 4) 

contribute most of the increase.  Figure 2.6 also shows the spread in within the ensemble for each 

metric and cluster. We find that the spread for a cluster is generally small compared to the change 

over time as well as the difference between the clusters.  
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 We also generated indices weighted by global population. Heat wave indices for the 95th 

percentile of population (meaning 5% of the population is exposed to higher values), 90th percentile 

of population, and median of the population are depicted in Figure 2.7. Figure 2.7a shows that with 

3°C of warming, 5% of the Earth’s population will experience heat waves lasting 122 days 

(standard deviation between ensemble members: 1𝜎  = 17 days), 10% of the population will 

experience heat waves of 94 days (1𝜎 = 7 days), and half of the population will experience heat 

waves around 50 days (1𝜎 = 4 days).  These are large increases over present-day values of 50, 42, 

and 21 days.  The average of the standard deviation between the ensemble members (calculated 

every year and then averaged), are 10.6, 6.2 and 3.7 days for the 95th, 90th percentile and median, 

respectively. This is significantly smaller than values from the analyses of cities in Figure 2.2, 

where the unforced variability makes larger differences in the occurrence of heat waves.   

The rate of increase of HWFw2m in Fig. 2.7d shows a rapid increase until global average 

warming reaches about 2.5°C. Given that the planet has already warmed about 1°C above pre-

industrial, this suggests that the world should presently be experiencing a rapid increase of wet-

bulb extreme frequency, particularly in the tropics. This is related to the increased slope in Figure 

2.6, in which cluster 1 and 2’s values of HWDw2m and HWFw2m increase rapidly until 3.0°C and 

2.0°C of global warming. At warmer temperatures, HWDw2m and HWFw2m reach a plateau, since 

values over 300 days per year means there is little room for additional increase. For HWAt2m/w2m 

and HWMt2m/w2m, the increase is mostly linear. Also note that, at 3°C of global warming, the 90th 

percentile of population weighted HWAw2m reaches over 29°C, which while not immediately fatal 

to humans may nevertheless indicate great difficulty for even a developed society to adapt to. 
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Figure 2.7. Changes of population-weighted heat wave indices as a function of global average 

warming. Each line denotes one ensemble member for different percentiles of population. 
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Currently, 10% of the total population faces more than 45 deadly days and 181 tropical 

nights per year. This grows to 65 and 195 days, respectively, at 1.5°C warming. With 2°C of global 

warming, 10% of the population will face about 3 months of deadly days and 7 months of tropical 

nights every year, and this increase to 4 months and 8 months in 3°C of warming. Also, with 3°C 

of global warming, 5% of the population will be in an environment where 8 months and 10 months 

in a year is a deadly days and tropical night. Our sensitivity tests suggest that model bias generates 

less than 5% differences for HWD, HWF, deadly days, and tropical nights for all metrics and 

percentile of population at every level of global warming, except when the metrics are near-zero. 

Potential model biases also generate small differences in HWA and HWM, with less than 1°C 

difference in all metrics for every period. Furthermore, with 3°C of global warming, the minimum 

ensemble member of deadly days is above the maximum ensemble of the present-day reference 

(0.87°C) for all population percentiles (5%, 10%, and 50%). This occurs at 2°C for tropical nights. 

Details of ensemble spread are also shown in Table 2.3. 

 

Table 2.3. Number of deadly days each percentile of global population faces with reference period 

(0.87°C), 1.5°C, 2°C, 3°C, and 4°C global warming from the pre-industrial condition. Standard 

deviations between the ensembles (1𝜎) are also shown. 

  Global Warming 

 Population 0.87°C 1.5°C 2.0°C 3.0°C 4.0°C 

Deadly 

Days 

95th p. 85 (± 7) 105 (± 10) 125 (± 7) 161 (± 12) 229 (± 15) 

90th p. 45 (± 5) 65 (± 10) 86 (± 8) 132 (± 12) 198 (± 12) 

50th p. 0.3 (± 0.1) 1.5 (± 1.3) 5 (± 2) 23 (± 4) 63 (± 5) 

Tropical 

Nights 

95th p. 211 (± 11) 232 (± 14) 253 (± 13) 306 (± 17) 358 (± 3) 

90th p. 280 (± 7) 195 (± 9) 205 (± 9) 232 (± 12) 277 (± 14) 

50th p. 15 (± 4) 27 (± 7) 41 (± 6) 71 (± 6) 102 (± 4) 
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It is notable that, although there is a large spread between the ensemble members in each 

city (Figure 2.2), the spread in the clusters (Figure 2.6) and population-weighted metrics (Figure 

2.7) is not as large. This emphasizes that the effect of unforced variability might be large at small 

scales but, as the region expands, the impact of unforced variability decreases. This is also found 

in Table 2.3, where in each case, the standard deviation between ensembles is less than 20% of the 

average, except in a few cases. This indicates that unforced variability will generally play a minor 

role in determining global exposure to temperature above thresholds, although different people 

may be affected in different realizations of unforced variability. 

In addition, with 1.5°C of global warming, the lowest ensemble of the 90th percentile of 

HWDt2m, HWDw2m, and HWFt2m exceeds the highest ensemble of the same metric in the current 

climate (red lines in Figure 2.7). With 2°C of warming, the minimum ensemble of HWDt2m/w2m, 

HWFt2m/w2m, HWMw2m, and tropical nights exceed the maximum ensemble of the current climate, 

and with 2.5°C of warming, the minimum ensemble of all metrics exceeds the maximum ensemble 

of the same metric in the current climate. Thus, this model predicts that the occurrence of extremes 

will soon be able to exceed values likely possible in our present climate for these metrics.  

 

2.4.3. Analysis on GDP per capita 

 It is well-known that not everyone is equally vulnerable to extreme weather, with rich, 

relatively more developed communities having more resources to deal with extreme events than 

poorer communities. In that context, global gridded GDP per capita is used to calculate average 

risk at each level of wealth. The ensemble-average result is depicted in Figure 2.8, which shows 

the absolute number of deadly days and tropical nights as well as the increase in number of deadly 
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days and tropical nights that each level of economic level experience relative to the reference 

period warming of 0.87°C. This plot assumes that the relative distribution of population and GDP 

remains fixed through time.  Our sensitivity tests show that the model bias yields small differences 

in the results, with less than 5% difference in both the absolute number of extreme events as well 

as the changes in extremes. 

 For each level of warming, we find that the lower GDP regions will experience not only 

higher absolute numbers of extreme temperature days but also the largest increases. For deadly 

days, the increase is largest between 10th to 40th percentile of GDP, and for tropical nights, the 

increase is largest below the 30th percentile of GDP. The regions that contribute the most for the 

low GDP percentiles are Southeast Asia, including Myanmar, Laos, and Cambodia, and Tropical 

Africa, including Republic of the Congo, Kenya, Uganda, Ethiopia, and Sudan, which are in 

clusters 1 and 2 in our cluster analysis (Figure 2.5). The maximum difference of heat wave days 

between the ensembles is less than 25% for all GDP and global warming levels.  

 



 

 

30 

 

 

 

 

Figure 2.8. Increase in (a) deadly days and (b) tropical nights compared to the reference period 

(0.87°C warming), binned by percentile of GDP per capita at selected levels of warming compared 

to reference climate (calculated by subtracting reference values, shown as heatmap), averaged over 

the population within the GDP percentile (for example, averaged over population in 0~10 

percentile of GDP), and over all ensemble members for 5-year window after each level of warming 

first occurs. Green text inside the heatmap represent the absolute number of deadly days and 

tropical nights in each level of warming. 
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2.4.4. Energy demand on large cities 

 Annual CDD and HDD have been calculated for the 15 cities in section 2.4.1. Both CDD 

and HDD are calculated by averaging the CDD and HDD values of 3×3 grid points surrounding 

each city, including only land grid points. CDD and HDD values are then averaged for 5 years 

after global warming reaches each levels of threshold. Fig. 2.9 shows the percent change of CDD 

and HDD at 1.5°C, 2.0°C, 3.0°C, and 4.0°C relative to the reference period CDD and HDD values. 

This was done for each city, and for each ensemble member. At 1.5°C, 2.0°C, 3.0°C, and 4.0°C 

warming, CDDs in the 15 cities increase by an average of 9%, 22%, 54% and 70%.  Our sensitivity 

tests show that the application of the average model bias yields changes of less than 1% in these 

numbers. This suggests an enormous increase in energy required for cooling.  

In contrast, average energy demand on cold days (HDD) decreases by 21%, 36%, 59%, 

and 65% in cities considered, compared to present day, partially offsetting the increase in energy 

required for cooling. Mania shows 0% change in HDD for all period, since Manila does not 

experience HDD days in present or future periods. Sensitivity tests also show less than a 1% 

difference in HDD change due to model biases. 
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Figure 2.9. (a-d) Change (absolute value) of ensemble averaged cooling degree days (CDD; red) 

and heating degree days (HDD; blue) compared to the reference climate (0.87°C) in the 1% CO2 

experiments at the time they reach the global mean temperature thresholds of (a) 1.5°C, (b) 2.0°C, 

(c) 3.0°C, and (d) 4.0°C, respectively. Error bars represent the standard deviation of CDD and 

HDD values between the ensemble members.  (e-h) Same as (a-d), but for percent change. 

 

2.5. Conclusion 

In this study, we found that extreme heat events will become more frequent and severe in 

a warming world. We find that both forced and unforced variability play a key role in extreme heat 

events, highlighting the necessity of considering both contributions to extreme heat. We also look 

at population weighted, and GDP sorted statistics of extreme heat in warmer world.  

Our results show that ENSO is the dominant mode of unforced variability impacting the 

occurrence of extreme heat and humidity events in the world’s largest 15 cities. But while the 

impact of unforced variability might be significant regionally and temporarily, it becomes less 

important when one looks at larger aggregate regions.  

Looking at global population-weighted statistics, we found that with 1.5°C of global 

average warming, over 10% of population will face heat waves of 45°C temperature, and 28°C 

wet bulb temperatures. And 5% of the population will face more than 105 days of deadly days and 

232 tropical nights per year. With 3°C of warming, which we are currently on track for, 10% of 

the population will experience over 132 days of deadly days and over 232 days of tropical nights 

per year. And 10% of population will face 47°C temperature and 30°C wet bulb temperature. Given 

these two metrics have important implications for human mortality, such increases may have 

significant impact on human health globally.  
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Sorting heat and humidity events by wealth, we confirm that increasing frequency and 

severity of extreme events will fall mostly on the poorer people. To further investigate some 

economic impacts of increasing heat extremes, cooling degree days (CDD) and heating degree 

days (HDD) are calculated for the world’s 15 largest cities. Energy demand for cooling (CDD) 

increases by average of 9% on 1.5°C and 54% on 3.0°C of warming, while energy demand for 

heating (HDD) decreases by 21% and 59%. Since CDD is known to have a piecewise linear 

relationship with the energy consumption, with slope increasing with higher CDD (De Rosa, 

Bianco, Scarpa, & Tagliafico, 2014; Shin & Do, 2016), increasing CDD in a warmer world could 

be one of the factors driving increased economic inequity from global warming related heat 

extremes, due to relative high cost and need for energy in poorest countries. 

Uncertainties in this analysis include our use of gridded 6-hourly climate model output. 

More detailed analysis could be done with climate simulations with higher temporal and spatial 

resolution. The model has biases relative to measurements, potentially due to the fact that there 

are no aerosols in the forcing, which is another source of uncertainty. This was tested by adding 

the difference between the ensemble average and the reanalysis data to the model fields and 

recomputing the heat wave indices.  In general, the impact of this bias was not important. In future 

analyses, this could be better resolved with use of multi-model ensembles or detailed bias-

correction of the model.  

Another uncertainty is that our runs are continuously warming, and it is possible that an 

equilibrium world at any given temperature may experience different occurrence of extremes than 

in the runs in this paper.  Additionally, since an increasing proportion of the population is expected 

to live in dense metropolitan areas, there is also the possibility that actual heat and humidity 

extremes that populations experience could be more severe than the gridded data due to local 
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phenomena such as the urban heat island effect (Murata, Nakano, Kanada, Kurihara, & Sasaki, 

2012). Statistical or dynamical downscaling could be used for a more detailed analysis (Dibike & 

Coulibaly, 2006; Wood, Leung, Sridhar, & Lettenmaier, 2004). Also, land models with capacity 

to decompose urban and rural environment could be applied in same context (Bonan et al., 2002; 

Dickinson et al., 2006). Also, this study could gain further insights by considering changing 

population and socioeconomic distribution in the future. Overall, however, none of these things 

are expected to change the broad conclusions of this study that global warming will lead to 

increased exposure to extremes in heat and humidity. 
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CHAPTER III 

THE IMPACT OF NEGLECTING CLIMATE CHANGE AND VARIABILITY ON 

ERCOT’S FORECASTS OF ELECTRICITY DEMAND IN TEXAS* 

 

3.1. Introduction 

Most of the citizens of the State of Texas get electricity from a grid managed by the Electric 

Reliability Council of Texas (ERCOT). During February 2021, a significant winter storm (Doss-

Gollin et al., 2021) caused widespread blackouts throughout the State that left more than 10 million 

people without electricity (Busby et al., 2021). These blackouts and their downstream impacts led 

to the deaths of hundreds of people and caused nearly $200B of damages (Frankenfield, 2021; 

Ivanova, 2021). 

To maintain the reliability of the grid, ERCOT makes short-term seasonal power-demand 

assessments (e.g., https://www.ercot.com/files/docs/2020/11/05/SARA-FinalWinter2020-

2021.pdf) to ensure adequate resources will be available. These assessments are based on the 

weather from the past decade and factors such as population, but they do not account for a changing 

climate or the likelihood of climate variability outside the very recent historical record. The impact 

of extreme temperatures due to climate change and extreme variability on power demand has been 

investigated in multiple studies and in different regions (Auffhammer, Baylis, & Hausman, 2017; 

Franco & Sanstad, 2008; Kim & Lee, 2019). In this paper, we evaluate ERCOT’s methodology 

 
* Reprinted with permission from “The Impact of Neglecting Climate Change and Variability on ERCOT’s Forecasts 

of Electricity Demand in Texas” by Jangho Lee and Andrew E. Dessler, 2022. Weather, Climate, and Society, 14, 

499-505, Copyright 2022 by Jangho Lee @ American Meteorological Society. Used with permission. 
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and develop a new method for incorporating more realistic predictions of future weather into 

energy projections for Texas. 

 

3.2. The model ensemble and comparisons to historical temperature data 

Our observational temperature data are daily-average 2-m air temperatures from the 

ECMWF ERA5 reanalysis (Hersbach et al., 2020), which has a resolution of 0.25° for both latitude 

and longitude and hourly temporal resolution. Average daily temperature for ERA5 is calculated 

by averaging the hourly temperatures in a day. While the reanalysis might produce a smoother 

temperature field than reality, our analysis uses Texas-average temperature, and this large-scale 

average should be insensitive to smoothing of the temperature field.  

We also use temperatures from an ensemble of 39 model runs known as the Community 

Earth System Model Large Ensemble (CESM-LE) (Jennifer E Kay et al., 2015), which has a 

resolution of 0.94° × 1.25° for latitude and longitude. CESM-LE only has daily average values of 

temperature, and we take these values from 1981 to 2021 for historical analysis and to 2025 for 

future analysis. The members of this ensemble use an identical climate model and the same 

evolution of historical natural and anthropogenic forcing. The members differ only in their initial 

conditions, so the variation in climate across the ensemble is entirely due to random climate and 

weather variability.  

To estimate the temperature of Texas, we average the grid points whose centers are within 

the state border of Texas. We find a difference of 0.7°C and 0.6°C in the June-July-August (JJA) 

and December-January-February seasons (DJF) between the ensemble average and the ERA5 over 

the last 40 years. Such a bias is not surprising since the climate model is not tuned to simulate the 

absolute temperature of the Earth. This bias is small compared to the magnitude of the temperature 
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variations we are analyzing, but we nonetheless adjust for it by adding the offset to each grid point 

and time step of the model fields so to bring the average values into agreement.  

Figure 3.1 shows the highest 1-day and 5-day average temperature during each JJA and 

lowest 1-day and 5-day average temperature during each DJF since 1981 in the ECMWF ERA5 

reanalysis and bias-corrected CESM-LE. The convention in this paper is that DJF refers to three 

consecutive months; for example, DJF 2010 is Dec. 2009 and Jan. and Feb. 2010. For the JJA 

maximum, the highest 5-day average temperature was in 2011 (32.9°C) while the highest 1-day 

temperature (33.1°C) was in 2020. For the DJF minimum, the coldest 5-day (-6.3°C) and 1-day 

average temperature (-11.1°C) were both in 2021.  

 

We note that that focus of this paper is on the temperature extremes, and we see no evidence 

of larger biases in the tails of the distributions. Fitting the ERA5 and CESM-LE data to a 

generalized extreme value (GEV) distribution tells us that the 2020 1-day temperature of 33.1°C 

was a 1-in-7 year event in the ERA5, while it was a 1-in-5 year event in CESM-LE. The 2021 

winter 1-day temperature of -11.1°C was a 1-in-55 year event in the ERA5, while it was a 1-in-87 

year event in the CESM-LE. The standard deviation of ERA5 data is 2.0°C and 4.9°C in JJA and 

DJF, while the average of standard deviation in each member of CESM-LE is 1.8 (1𝜎 of ensemble 

standard deviation values is 0.22) and 4.0 (1𝜎=0.58). Based on these comparisons, we feel 

confident we can use this ensemble to evaluate ERCOT’s forecasts. 
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Figure 3.1. Time series of seasonal maximum and minimum temperature over Texas (not 

population weighted). (a) JJA maximum 1-day (solid line) temperature and 5-day (dashed line) 

temperature in ERA5, and green and yellow area each denotes the maximum and minimum 

ensemble member of 1-day and 5-day temperature in CESM-LE. (b) Violin plot for distribution of 

1-day and 5-day JJA maximum temperature in ERA5 and CESM-LE. Error bars represent the 95th 

and 5th percentile of the distribution, and the dots represent the median of the distribution. (c, d) 

Same as (a, b), but for DJF minimum temperature. 

 

3.3. The connection between electricity consumption and temperature in the historical 

record 

Historical hourly electric power consumption is obtained from ERCOT for the period Jan. 

1996-Feb. 2021 (http://www.ercot.com/gridinfo/load/load_hist/). 2001 data are not available, so 

our analysis excludes DJF 2001, JJA 2001, and DJF 2002. The first step is to regress population-

weighted daily average temperature against daily average power. We use the population 

distribution averaged from 2000 to 2020 from CIESIN (2016) for the population weighting. We 

http://www.ercot.com/gridinfo/load/load_hist/
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use time-invariant population distribution since we found there are negligible changes in the 

population distribution over this period 

We perform the regression separately for each season of each year. Figs. 3.2a and 3.3a 

show a tight relationship between temperature and power usage in JJA and DJF for the first and 

last year of ERCOT’s record — other years (not shown) show similarly tight relationships. This 

indicates that, within a season, variations in temperature are the primary controlling factor for 

power usage.  

Based on our examination of the data, we use a linear fit for JJA and a non-linear 

polynomial fit (𝑃 = 𝐶0 + 𝐶1𝑇 + 𝐶2 𝑇1.75) for DJF. Previous studies also discussed power usage 

increasing with higher temperature in summer and colder temperature in winter (Auffhammer et 

al., 2017; Craig, Jaramillo, Hodge, Nijssen, & Brancucci, 2020; Franco & Sanstad, 2008; 

Mirasgedis et al., 2007; Murphy, Sowell, & Apt, 2019; Psiloglou, Giannakopoulos, Majithia, & 

Petrakis, 2009). This was done by using everything from a simple linear and piecewise-linear fit 

(Almuhtady, Alshwawra, Alfaouri, Al-Kouz, & Al-Hinti, 2019; Guan, Beecham, Xu, & Ingleton, 

2017; Guan et al., 2014; Ihara, Genchi, Sato, Yamaguchi, & Endo, 2008) to complex regressions 

up to 5th degree fit (Jovanović et al. 2015). In Section 1 of the supplement, we discuss this in detail 

how we arrive at the form of our fit. 

From each year’s fit, we calculate 𝑃𝑟𝑒𝑓 for that year, which is power usage at a reference 

temperature (𝑇𝑟𝑒𝑓). We use a reference temperature equal to the median temperature for JJA 

(28.8°C) and DJF (10.9°C). The time series of 𝑃𝑟𝑒𝑓 is plotted in Figs. 3.2b and 3.3b; this can be 

thought of as the seasonal average power usage that would have occurred if the temperature were 

fixed at the reference temperature. The increase in 𝑃𝑟𝑒𝑓 over time is due to changes in non-climate 
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factors, such as population. We then perform a linear fit to represent 𝑃𝑟𝑒𝑓 as a function of year 

(𝑃𝑟𝑒𝑓(𝑦)) (coefficients for all of the fits can be found in Supplement Section 2).  

 

We expect the coefficients from each year’s temperature-power regressions (Fig. 3.2a and 

3.3a) to be correlated with 𝑃𝑟𝑒𝑓. For example, increases in population will change the slope of the 

power-temperature relation because, as population increases, changes in temperature will drive 

larger changes in power usage. Figs. 3.2c, 3.3c, and 3.3d show that these coefficients are indeed 

correlated with 𝑃𝑟𝑒𝑓.  

Given this, we can model daily average power usage at as a function of year and daily 

average temperature T. For JJA: 

𝑃𝐽𝐽𝐴(𝑦, 𝑇) =  𝑃𝑟𝑒𝑓 (𝑦) + (𝑆(𝑦) × (𝑇 − 𝑇𝑟𝑒𝑓)) (1) 

Where 𝑃𝐽𝐽𝐴(𝑦, 𝑇) is the daily average power for a day in year 𝑦 with a population-weighted, daily 

average temperature 𝑇. 𝑃𝑟𝑒𝑓 (𝑦) is the value of 𝑃𝑟𝑒𝑓  during JJA in year 𝑦, 𝑆(𝑦) is the slope of the 

power-temperature regression in year 𝑦, and 𝑇𝑟𝑒𝑓 is the JJA reference temperature. Note that 𝑆 

was plotted in Fig. 2c as a function of 𝑃𝑟𝑒𝑓, but because 𝑃𝑟𝑒𝑓  is a function of year, we can also 

express 𝑆 as a function of year 𝑦. 

Our equation for DJF is similar to the JJA equation except that the power-temperature 

relation has higher order terms: 

𝑃𝐷𝐽𝐹(𝑦, 𝑇) = 𝑃𝑟𝑒𝑓(𝑦) + (𝐶1(𝑦) × (𝑇 − 𝑇𝑟𝑒𝑓)) + (𝐶2(𝑦) × (𝑇 − 𝑇𝑟𝑒𝑓)1.75) (2) 

As with the JJA relation, the coefficients 𝐶1 and 𝐶2 correlate with 𝑃𝑟𝑒𝑓 (Figs. 3c and 3d), so we 

can also express them as functions of year. Also remember that DJF 𝑃𝑟𝑒𝑓 and 𝑇𝑟𝑒𝑓 are different 

from JJA 𝑃𝑟𝑒𝑓 and 𝑇𝑟𝑒𝑓. 



 

 

42 

 

 

 

 

 

Figure 3.2. (a) Scatterplot of population-weighted daily average temperature and JJA daily average 

power usage in the first and last year of ERCOT’s historical record. Red circle denotes the power 

at the reference temperature (𝑃𝑟𝑒𝑓). (b) Evolution of 𝑃𝑟𝑒𝑓 over time. The red dashed line is a linear 

trend. (c) Slope of the temperature-power relation as a function of 𝑃𝑟𝑒𝑓. Each point represents a 

value from a single year. Shaded area represents the standard error of the linear fit. 
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Figure 3.3. Same as Figure 3.2, but for DJF. Because we use a 1.75-D power-temperature fit in 

DJF, we have two constants, and these are plotted in panels c and d. 

 

 

3.4. Prediction of future electricity consumption  

Using the methodology described in the last section, we can produce an estimate of daily 

average power usage using the coefficient estimates from the parametric fits. For comparison to 

ERCOT forecasts, we convert this to daily maximum power (hereafter DMP), the highest hourly 

power demand during the day, using a linear regression between daily maximum and daily average 

power usage developed from the historical data. The correlation between these quantities has R 

values of 0.99 and 0.98 in JJA and DJF and an RMS error of 1.0 and 1.1 GW, respectively.  

Plugging ERA5 temperatures into Eq. 1 and 2, we can reproduce the historical seasonal 

maximum power (the highest hourly power demand during the season, hereafter SMP) quite 

closely (Figs. 3.4a and 3.4b), with RMS differences of 1.0 GW and 1.5 GW for JJA and DJF, 

respectively (2021 is excluded from the DJF calculation due to the blackout). This good agreement 

may be surprising because we left out factors that one might have anticipated would be important 

(e.g., weekday vs. weekend). We investigated these factors and found that none of them 

significantly improved our ability to reproduce the observations (Supplement Section 3). We note 

that this is true when averaging of a large area like the state of Texas, but other factors may be 

important at smaller scales, such as a county or neighborhood. 

We also have taken the CESM-LE temperatures and used Eq. 1 and 2 to estimate SMP for 

the 1996-2021 period. The shaded regions show the range of power predicted by the ensemble and 

ERCOT’s historical power demand falls comfortably within the ensemble’s envelope. This result 
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is consistent with the fact that observed temperatures over this period fall within the CESM-LE’s 

range of predicted temperatures (Fig. 3.1). 

 

 

Figure 3.4. Time series of seasonal maximum hourly power usage (SMP). (a) JJA SMP for 1996-

2020. Black solid line represents the historical ERCOT record, and black dashed line represent the 

historical power usage estimated by us using ERA5 temperatures. The grey area depicts the range 

of power usage estimated from the CESM-LE. (b) Same as panel (a), but for DJF 1997-2021. 

 

3.5. Comparison of seasonal power demand 

3.5.1. Summer power demand 

In order to evaluate ERCOT’s seasonal 2021 summer resources assessment 

(https://www.ercot.com/files/docs/2021/05/06/SARA-FinalSummer2021.pdf), we have calculated 

a probability distribution of SMP for JJA 2021 using temperatures from the CESM-LE from the 

period 2016-2025, but with 2021’s 𝑃𝑟𝑒𝑓 (Fig. 3.5a).  

ERCOT predicted a most likely SMP of 77 GW, in good agreement with the peak of our 

probability distribution. ERCOT also predicted an extreme peak-load scenario of 80 GW, which 

they derived assuming that the worst-case scenario is a repeat JJA 2011 temperatures. Note that 

ERCOT publicly provides no probabilistic information with which to interpret their extreme 

scenarios, although in an email they told us that it should be exceeded in 10% of the years (Jeff 
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Billo, personal communication, 2021). We calculate that there was a 17% chance of JJA 2021 

SMP exceeding 80 GW (Fig. 3.5a), suggesting that the use of limited historical temperatures may 

lead to an underestimate of the occurrence of extreme demand.  

ERCOT also estimated a best-case of 87 GW of power available to satisfy peak demand. 

Comparing this to Fig. 3.5a shows that the ERCOT grid is running with very little margin, with 

5% of the summers in the CESM-LE having an SMP within 4.3 GW of ERCOT’s estimate of best-

case available power and 20% of summers within 7.1 GW. In such a situation, minor but 

unanticipated declines in available power, such as what happens when several power plants go 

offline due to forced outages (Craig et al., 2020; Murphy et al., 2019), puts the ERCOT grid at risk 

of being unable to satisfy power demand. 

 

3.5.2. Comparison of winter power demand 

We now evaluate ERCOT’s seasonal resource assessment made right before the DJF 2021 

season (https://www.ercot.com/files/docs/2020/11/05/SARA-FinalWinter2020-2021.pdf). We do 

that by comparing it to a probability distribution of SMP for DJF 2021 that we calculated using 

temperatures in the CESM-LE between 2016 and 2025, but with 2021’s 𝑃𝑟𝑒𝑓  (Fig. 3.5b). 

ERCOT’s most-likely SMP is 57 GW, very close to the peak of our predicted distribution. 

ERCOT’s extreme peak load scenario is 67 GW, calculated assuming that the worst case was that 

Texas would experience temperatures as cold as DJF 2011’s, the most recent very cold Texas 

winter.  

Like their summer estimates, this extreme peak load scenario is low — we estimate that 

there was an 19% chance that SMP would exceed this value. Reality provided support for this: 

2021 DJF minimum daily average population-weighted temperatures were 3.4°C colder than 
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2011’s, from which we estimate that peak demand was 82 GW — about 15 GW above ERCOT’s 

worst-case prediction.  

ERCOT communicated to us that their estimate of DMP during the 2021 winter storm was 

76 GW (Jeff Billo, personal communication, 2021), 6 GW lower than our estimate. We do not 

know how ERCOT comes up with their number, and without more information about ERCOT’s 

methodology, we cannot identify the source of the disagreement. This difference has important 

implications for how much margin the ERCOT grid has. ERCOT estimates that, in the best case, 

there was 83 GW of power available. If our estimate is correct, then the ERCOT grid had 

essentially no margin in DJF 2021, so that any loss of power, e.g., due to lack of weatherization of 

energy infrastructure, meant that the ERCOT grid could not satisfy power demand.  

More generally, Fig. 3.5b shows that the ERCOT grid also runs with very little margin in 

winter, just as it does in summer. For DJF 2021, we estimate that 5% of winters in the CESM-LE 

had an SMP within 7.9 GW of ERCOT’s best-case estimate of available power and 10% and 20% 

of winters were within 12 and 17 GW, respectively. And 1.5% of the winters had SMP in 2021 

DJF exceeding best-case available power, as apparently happened in 2021.  
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Figure 3.5. Probability distribution of seasonal hourly maximum power usage (SMP) in (a) JJA 

2021 and (b) DJF 2021, predicted by the CESM-LE. Calculations use temperatures from 2016-

2025 and 𝑃𝑟𝑒𝑓 for 2021. Grey and black vertical lines represent the ERCOT’s seasonal forecast for 

extreme peak-load and best-case available power. 

 

3.6. Conclusions 

One of ERCOT’s most important jobs is ensuring that there is sufficient power available 

to the Texas electrical grid. In support of this objective, ERCOT makes seasonal assessments of 

future power demand. However, ERCOT does not use modern climate forecasting tools to estimate 

climate variability when making these forecasts. Instead, they exclusively use the recent historical 

climate record.  
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In this paper, we describe an empirical methodology to estimate the impacts of weather 

variability on power demand. We then use output from an ensemble of climate model runs (the 

CESM-LE) to estimate the impact of climate variability on ERCOT’s forecasts. We find that 

ERCOT’s exclusive use of historical temperatures means that they underestimate the worst-case 

scenarios. In 2021, we estimate a 17% and 19% chance that Texas temperature could have caused 

the power demand to exceed ERCOT’s extreme peak load scenarios, respectively. After the fact, 

we find that 2021 DJF maximum power demand exceeded ERCOT’s extreme peak load scenario 

by 15 GW or 22%.  

JJA in 2021 was not unusually hot in Texas. Maximum load in JJA 2021 was 74 GW, 

which is lower than ERCOT’s extreme peak-load scenario (80 GW). The CESM-LE tells us that 

JJA 2021 was at the lower end in the distribution of possible summertime temperatures. There was 

88 % chance that summer with higher temperature would have happened, and 17 % chance that it 

would have exceeded ERCOT’s extreme peak-load scenario. 

ERCOT disputes our estimate of peak demand during the 2021 DJF (82 GW) — they 

estimate demand was 76 GW. Resolution of this difference is important because it has implications 

for how robust the ERCOT grid is when power plants unexpectedly go offline, but ERCOT’s 

model and underlying data are not publicly available so we are unable to identify the source of this 

disagreement. ERCOT should be transparent about their forecasts and should make their forecast 

model public so researchers can better evaluate their methodology.  

In both summer and winter, we find that ERCOT’s electricity grid has little spare capacity. 

According to ERCOT, best-case power available in 2021 is in the mid-80s GW. We find that power 

demand can get close to that limit in both summer and winter. That means that unforeseen 
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problems that reduce supply even slightly below the best case can lead to the power grid being 

unable to satisfy power demand.  

Finally, we encourage ERCOT to make probabilistic forecasts of temperature using 

modern tools, like climate model ensembles. ERCOT’s insistence on using a relatively short 

historical record means they are underestimating climate variability, leading to underestimates of 

the most extreme power demand forecasts. Using a longer historical record would be a poor 

solution since it would ignore the fact that the climate is changing.  

 

3.7. Supplementary Materials for Chapter 3 

3.7.1. Selection of temperature-power relationship 

As discussed in the main text, there are several approaches to model the relationship 

between temperature and power. Linear (Guan et al., 2017; Guan et al., 2014), piecewise fits 

(Almuhtady et al., 2019; Ihara et al., 2008), and polynomial regressions with up to 5th order 

(Jovanović, Savić, Bojić, Djordjević, & Nikolić, 2015) have been used in previous studies. 

Previous work has also used cooling and heating degree-days instead of temperature (Mirasgedis 

et al., 2007; Psiloglou et al., 2009). Here we show the sensitivity of model selection and describe 

the best performing model. 

 

3.7.1.1. Model for DJF 

We tested a piecewise-linear fit — where the slope changes at 10°C— and a set of non-

linear polynomials (𝑃 = 𝐶0 + 𝐶1𝑇 + 𝐶2 𝑇𝑥  where x = 1.25, 1.5, 1.75, and 2). Because using 

degree-days is equivalent to a linear fit of temperature over (or below) a certain threshold, this 

shows similar results to the piecewise fit. After fitting the data using all these models, we calculated 



 

 

50 

 

 

 

each model’s mean and RMS error as a function of temperature. These values are then divided by 

average power usage of each season of the year to account for overall increase of power usage (see 

Fig. 3 in main text), which yields a relative error.  

The results are shown in Fig. 3.6 for piecewise linear and x = 1.75 and 2. All of the models tested 

show similar performance between 3°C to 18°C. However, at very cold temperatures, below -3°C, 

the x = 2 model tends to overpredict the power while piecewise-linear fit underpredicts power. The 

x = 1.75 model shows the best performance in terms of relative error.  

Because of this, we have used the x = 1.75 fit in the paper.  The choice of model really only 

matters at the coldest temperatures, such as DJF 2021. Previous studies also examined the 

empirical relationship between temperature and daily electricity usage (Auffhammer et al., 2017; 

Franco & Sanstad, 2008) and reported a non-linear relationship between temperature and 

electricity usage at cold temperatures.  

 

3.7.1.2. Model for JJA 

Summertime temperature is consistently hot in Texas (see Fig. 1 and 2 in the main text), 

meaning that the difference between the hottest and coolest summer is small. As a result of the 

relatively small range of temperatures, the temperature-power relationship in JJA is well described 

by a linear relation. We tested non-linear fits and found they did no better than a linear model. 
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Figure 3.6. (a) Mean relative error and (b) RMS relative error for 1-D, 1.75-D, and 2-D fit of 

temperature-power relationship. Relative errors are averaged for every 3°C bins of temperature. 

The dots represent the mean error in each temperature bins, while the error bars represent the 

standard deviation of errors in each temperature bins.  

 

3.7.2. Description of temperature-power relationship 

As discussed in the main text, our model for estimating daily average power usage (DAP) 

from the daily average temperature are given as follows: 

𝑃𝐽𝐽𝐴(𝑦, 𝑇) =  𝑃𝑟𝑒𝑓 (𝑦) + (𝑆(𝑦) × (𝑇 − 𝑇𝑟𝑒𝑓)) (𝑆1) 

𝑃𝐷𝐽𝐹(𝑦, 𝑇) = 𝑃𝑟𝑒𝑓(𝑦) + (𝐶1(𝑦) × (𝑇 − 𝑇𝑟𝑒𝑓)) + (𝐶2(𝑦) × (𝑇 − 𝑇𝑟𝑒𝑓)1.75) (𝑆2) 

Where 𝑦 indicates year and 𝑇 denotes temperature (°C). In this section, we provide the coefficients 

of this fit. 
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(1) Coefficients for JJA (Eq. S1) 

a. 𝑃𝑟𝑒𝑓 (𝑦) = (𝑦 × 0.6470) − 1255.2777 

b. 𝑆(𝑦) = (𝑃𝑟𝑒𝑓 (𝑦) × 0.0480) − 0.2424 

 

(2) Coefficients for DJF (Eq. S2) 

a. 𝑃𝑟𝑒𝑓 (𝑦) = (𝑦 × 0.5942) − 1162.0179 

b. 𝐶1(𝑦) = (𝑃𝑟𝑒𝑓 (𝑦) × −0.0291) + 0.2907 

c. 𝐶2(𝑦) = (𝑃𝑟𝑒𝑓 (𝑦) × 0.0029) − 0.0213 

 

With historical hourly power load data from ERCOT, we are able to calculate the linear 

relationship between daily average power usage (DAP) and daily maximum power usage (DMP). 

The equations for JJA and DJF are: 

𝐷𝑀𝑃𝐽𝐽𝐴 = 𝐷𝐴𝑃𝐽𝐽𝐴 × 1.1290 − 2.0849 (𝑆3) 

𝐷𝑀𝑃𝐷𝐽𝐹 = 𝐷𝐴𝑃𝐷𝐽𝐹 × 1.1247 + 0.7091 (𝑆4) 
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Figure 3.7. (a) Probability distribution of SMP probability in JJA, using the last 40 years of ERA-

5 data. (b) Same as (a), but for DJF. (c, d) same as (a, b), but for the last 10-years of record. Grey 

and black dashed lines show the ERCOT’s estimate of extreme peak-load scenario and best-case 

available power. Black solid line represents the values from in Fig. 5 in the main text (derived 

from the CESM-LE temperatures). 

 

3.7.3. Sensitivity on including weekend effect 

As discussed in the main text, we tested the sensitivity of our model by including other 

factors that are expected to impact the power usage other than daily average temperature. In this 

section, we include weekend effect and see how it changes our result. 

To include the weekend effect, we estimate two different model for each season (JJA and 

DJF), one for weekdays and the other for weekends. We follow the same procedure described in 

the main text and supplementary section 2 but using only weekday or weekend data. After coming 

up with models for weekdays and weekends, we then compare those with the original model used 

in the main text. 
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When comparing with historical daily ERCOT load data, average of RMS error for each year of 

the original model is 3.05 (1𝜎=0.56) % and 4.01 (0.42) % for JJA and DJF. The combined 

weekday/weekend models yield RMS errors of 2.97 (0.58) % and 3.91 (0.41) % for JJA and DJF.  

There is less than 0.1% increase of performance when adding weekend effect to our current 

model. Adding weekend effect will increase the sensitivity of our model due to smaller sample 

size and also add complexity, while it only adds very small amount of predictability. So, we 

decided not to add the weekend effect in our analysis. 

 

3.7.4. Advantages of using CESM-LE 

Figure 3.7 shows a plot similar to Fig. 3.5 in the main text, but with ERA-5 data with last 

40 years (Fig S2a, S2b) and last 10 years (Fig 3.7.c, 3.7.d) of the historical record instead of CESM-

LE temperatures. 

In JJA, the PDFs using ERA5 temperatures are shifted to lower values (by a few GW) compared 

to those in Fig. 3.5 in the main text (shown in Fig 3.7 as the solid black line), almost certainly due 

to climate change that has occurred over this period. 

 In DJF, the main peak of the PDF is quite similar, reflecting the fact that typical 

temperatures are frequently near the flat part of the power-temperature relation, so slight global 

warming will not have much of an effect. It’s at unusually cold temperatures where we would 

expect to see an impact (if one exists), but it’s hard to determine since the historical record does 

not really have enough cold events to fill out the tail. Nevertheless, we see nothing in the PDFs 

using ERA5 temperatures that contradicts the results using the CESM-LE temperatures. 
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CHAPTER IV 

FUTURE TEMPERATURE RELATED DEATHS IN THE U.S.: 

THE IMPACT OF CLIMATE CHANGE, DEMOGRAPHICS, AND ADAPTATION 

 

4.1. Introduction 

The relationship between temperature and human mortality has been the subject of many 

previous studies (Berko, 2014; Bobb, Peng, Bell, & Dominici, 2014; Demoury, Aerts, 

Vandeninden, Van Schaeybroeck, & De Clercq, 2022; Dimitrova et al., 2021; Gasparrini & 

Armstrong, 2011; Gasparrini, Guo, Hashizume, Lavigne, et al., 2015; Guo, Barnett, Pan, Yu, & 

Tong, 2011; Kalkstein & Greene, 1997; Ma et al., 2015; Yi & Chan, 2015; Y. Zhang et al., 2016). 

Previous studies have projected future temperature-related mortality covering different regions, 

such as global major cities (Gasparrini et al., 2017; Takahashi, Honda, & Emori, 2007; Vicedo-

Cabrera et al., 2018), the U.S. (Anderson, Oleson, Jones, & Peng, 2018; A. I. Barreca, 2012; 

Jackson et al., 2010; Knowlton et al., 2007; Lo et al., 2019; Petkova et al., 2017; Wang, Shi, 

Zanobetti, & Schwartz, 2016; Weinberger et al., 2017), cities in Europe (Hajat, Vardoulakis, 

Heaviside, & Eggen, 2014; Martínez-Solanas et al., 2021; Muthers, Matzarakis, & Koch, 2010), 

or Asia (J. Y. Lee & Kim, 2016; Yang et al., 2021). Using historical data sets, previous studies 

have found that temperature and mortality show a V-shaped curve, where mortality increases as 

temperatures become very hot or very cold (Berko, 2014; de Schrijver et al., 2022; Dimitrova et 

al., 2021; Gosling, McGregor, & Lowe, 2009; Vardoulakis et al., 2014). Thus, we expect climate 

change to influence temperature-related mortality. 

Another issue we explore in this paper is the impact of demographics. Older populations 

are known to be more vulnerable to temperatures extremes (Anderson et al., 2018; Å ström, 



 

 

56 

 

 

 

Forsberg, Edvinsson, & Rocklöv, 2013; Barnett, 2007; Bobb et al., 2014; de Schrijver et al., 2022; 

Hintz, Luederitz, Lang, & von Wehrden, 2018; J. Y. Lee & Kim, 2016; Lin, Ho, & Wang, 2011; 

Yi & Chan, 2015; Y. Zhang et al., 2016), and since population is projected to both age and grow 

globally, the compound effect of demographic and population changes will increase temperature-

related mortality (Li et al., 2016; Marsha, Sain, Heaton, Monaghan, & Wilhelmi, 2018). Previous 

studies included demographic and population change in their projection (Deschenes & Moretti, 

2009; Deschênes & Greenstone, 2011; Hajat et al., 2014; Jenkins et al., 2014; J. Y. Lee & Kim, 

2016; Li et al., 2016; Petkova et al., 2017; Vardoulakis et al., 2014), mostly using population 

projections from shared socioeconomic pathways (SSPs) (Hauer, 2019). 

It is also clear that people will take actions to head off the impacts of extreme temperatures 

(A. Barreca, Clay, Deschenes, Greenstone, & Shapiro, 2016; Carson, Hajat, Armstrong, & 

Wilkinson, 2006; Davis, Knappenberger, Michaels, & Novicoff, 2003; Folkerts et al., 2020; 

Fouillet et al., 2008; Gasparrini, Guo, Hashizume, Kinney, et al., 2015; Kyselý & Plavcová, 2012). 

However, such adaptation takes resources, which many people do not have, so how well this can 

be done is an uncertainty that any analysis of future temperature-related mortality must address.  

There are few ways to incorporate adaptation to the future projections. Previous studies simply 

shifted the temperature-mortality relationship to warmer temperatures (Folkerts et al., 2020; 

Gosling et al., 2009; Jenkins et al., 2014), extrapolated the historical trends of temperature-

mortality relationship (Muthers et al., 2010; Petkova et al., 2017), or adjusted the slope of 

temperature-mortality relationship (Jenkins et al., 2014). Here we use an “analog city” approach 

(Heutel, Miller, & Molitor, 2021; Kalkstein & Greene, 1997; Knowlton et al., 2007), where the 

mortality model for a city with warmer climate is applied to cooler city in a warming climate. For 

example, in Knowlton et al. (2007), they assumed that New York in the 2050s will have similar 
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temperature-mortality relationship as Washington and Atlanta in 1973-1994, since temperatures 

in New York in 2050s are similar to temperatures in Washington and Atlanta in 1973-1994. 

In this paper, we consider all three of the factors that will impact future temperature-related 

mortality: climate change, population and demographics change, and adaptation, in order to 

determine how important each factor is.  

 

4.2. Temperature-Mortality Relationship 

Mortality data from the National Morbidity Mortality Air Pollution Study (NMMAPS) 

(Samet et al., 2000) contain the number of daily non-accidental deaths, stratified by age group 

(<65, 65-75, >75). We aggregate the two younger age groups to create a single category for ages 

<75. Data are collected from 106 large U.S. cities (Fig. 4.1a) and cover the period from 1987 to 

2000. Population data are also included in NMMAPS, which come from the National Center for 

Health Statistics (NCHS). These 106 cities contain 65% of the population in the US.  

Historical hourly 2-m air temperatures from ERA-5 Land reanalysis (Muñoz-Sabater et al., 

2021) are averaged to obtain daily average temperatures. The data have a horizontal resolution of 

0.1°×0.1° and the average of the 9 grid points nearest to the center of each city are used to represent 

the daily average temperature of the city. 

Following the framework of Gasparrini, Guo, Hashizume, Kinney, et al. (2015) and 

Gasparrini, Guo, Hashizume, Lavigne, et al. (2015), we use a Distributed Lag Non-Linear Model 

(DLNM) to describe the association between temperature and mortality. We model the daily 

number of deaths as a function of daily average temperature separately for each city and age group 

(under/over 75). An important advantage of the DLNM is that it can capture the lagged effect of 

temperature, where consecutive extreme days results in higher risk compared to single-day event 
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(Gasparrini & Armstrong, 2011; Wang et al., 2016). Previous studies reported that the impact of a 

hot day can extend for up to 3 days, while the impact of a cold day could extend 21 days (Demoury 

et al., 2022; Dimitrova et al., 2021). Therefore, we include lags of up to 21 days in the DLNM 

model. We also include the day of week to account for the weekly cycle, day of year for the annual 

cycle, and year for the long-term trend. A detailed explanation of the DLNM model used in this 

study can be found in section 1 of the supplement. 

 

Figure 4.1. (a) Location of 106 cities used in this study. (b) Risk ratio (RR) of under/over 75 age 

groups, averaged for all cities in this study. Shaded regions show the 5th percentile to 95th percentile 
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range of RR curve for all cities. RR is the number of deaths at each temperature divided by the 

number of deaths at the curve’s minimum (the MMT), around 22°C. 

 

4.3. Historical Temperature-Related Mortality  

Fig. 4.1b summarizes the mortality risk as a function of temperature, averaged over all 

cities (curves for individual cities can be found in Fig. S1). The quantity plotted here, the 

cumulative relative risk (RR), is the number of deaths at each temperature divided by the number 

of deaths at the minimum mortality temperature (MMT), after summing the RR at each lag, up to 

21 days. Our curve is similar to those found in previous work (Gasparrini, Guo, Hashizume, 

Kinney, et al., 2015; Gasparrini, Guo, Hashizume, Lavigne, et al., 2015; Gasparrini et al., 2017; 

Guo et al., 2011; Lin et al., 2011; Ma et al., 2015; Yi & Chan, 2015; Y. Zhang et al., 2016). 

With the regression models for each city and age group, we calculate the number of 

temperature-related excess deaths in the NMMAPS data in two steps. First, we define baseline 

deaths, which is the number of deaths at the MMT, calculated by averaging the number of deaths 

at temperatures around MMT (±0.5°C). With this baseline death value, we then calculate the 

number of deaths in each city using observed temperatures and the mortality-temperature curves.  

There are an average of 36,444 temperature-related deaths per year between 1987-2000 

(solid line in Fig. 4.2a). There is a clear trend over this period, and we can remove the effect of 

population changes by dividing the number of excess deaths by the population in each year, and 

then multiplying by the average population over the period. Doing this removes most of the trend 

(dashed line in Fig. 4.2a). 

We can separate temperature-related deaths occurring above and below MMT, which by 

convention we refer to as heat- and cold-related deaths. We estimate there are an average of 4,819 
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heat-related deaths per year and 31,625 cold-related deaths. This is consistent with previous work 

that also found that most of the deaths were due to cold, rather than heat (Vardoulakis et al., 2014). 

We also found that 75.3% of deaths are from older (over 75) age groups (1 standard deviation of 

inter-city variance = 6.2%). The older age group is responsible for 75.6% (1σ=4.6%) and 75.1% 

(1σ=6.9%) of the heat- and cold-related mortality, respectively, despite being only 5.1% 

(1σ=1.3%) of the population. This point will be important later in the paper. 

While 86% of temperature-related deaths are cold-related mortality, most of the deaths 

categorized as “cold-related” occur at temperatures only slightly below the MMT (typically around 

22°C). While the risk of temperature-related death for these pleasant temperatures is low, the 

temperatures occur so frequently that a significant number of deaths nevertheless is occurring at 

these temperatures, a point also made by Gasparrini, Guo, Hashizume, Lavigne, et al. (2015). 

This motivated us to look at mortality caused by significant heat and cold. For each city, 

we select the 30 days each year with the highest heat- and cold-related deaths, which we refer to 

as significant heat- and cold-related deaths (Fig. 4.2d and 2e). Summing up all cities, there are on 

average 2,607 deaths per year due to significant heat, and 6,894 due to significant cold, which are 

54% and 21% of total heat and cold related deaths, respectively. Thus, heat-related deaths tend to 

be more skewed towards extreme heat than cold deaths are towards extreme cold. 
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Figure 4.2. Time series of temperature-related deaths, summed over all 106 cities. (a) Solid line 

represents all temperature related deaths, while dashed line represents all temperature related 

deaths with fixed population (average population over 1987-2000 period). (b) Same as (a), but for 

heat-related deaths. (c) Same as (a), but for cold-related deaths. (d) Time series of deaths in the 30 

days with largest number of heat-related deaths in each city. (e) Same as (d), but for cold-related 

deaths. 

 

4.4. Measuring Adaptation 

With the relatively short-term time period covered by the data (1987-2000), it is difficult 

to quantify the impacts of adaptation in data for a single city. However, we can quantify the effects 

of adaptation by comparing cities with different climates, an approach that has been used 

previously (Knowlton et al., 2007). In our implementation, for each city, we calculate the linear 

slope of cumulative RR versus the temperature for temperatures above the MMT (hot RR slope) 

and slope of RR below the MMT (cold RR slope). While the RR curves are not linear, the linear 
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fit gives us a metric for how steeply the curve rises. We do this fit separately for each age group. 

Fig. 4.3a and 3c show the hot RR slope regressed against median of daily average temperatures of 

the hot season (June, July, and August, JJA) of the 1987-2000 period. Fig. 4.3b and 3d show the 

cold RR slope regressed against the median daily average temperature of the cold season 

(December, January, and February, DJF). 

There is a clear anti-correlation between the RR slopes and the cities’ seasonal 

temperatures. Cities with warmer summers are less vulnerable to heat-related mortality (hot RR 

slopes closer to zero, Fig. 4.3a, c), while cities with colder winters are less vulnerable to cold-

related mortality (cold RR slopes closer to zero, Fig. 4.3b, d). One can think of these fit lines in 

Fig. 4.3 as measures of existing adaptation to hot and cold climates (Gasparrini, Guo, Hashizume, 

Lavigne, et al., 2015; Heutel et al., 2021; Kalkstein & Greene, 1997; Knowlton et al., 2007).  

We do not know how people will adapt as the climate warms, so we analyze two limiting 

scenarios. The first is no further adaptation. For this, we assume the RR curve of each city remains 

fixed at values obtained from the 1987-2000 mortality data as climate warms (Fig. 4.S1). Our 

second scenario, which we consider to be a strong adaptation case, assumes that, as each city 

warms up, the hot side of the city’s mortality curve decreases following the regression lines in 

Figs. 4.3a and 4.3c. Specifically, we set the hot RR slope of each city in a particular year using the 

regression lines in Figs. 4.3a and 4.3c and that city’s temperature over the previous 10 years. This 

is done by multiplying the hot-side RR curve by the ratio of the linear slope before and after 

adaptation. This process is done separately for two age groups.  

The same methodology applied to the cold side of the mortality curve would result in cities 

becoming less adapted to the cold. We view this as implausible, so we incorporate adaptation on 

the cold side by scaling the cold RR slope by 18.5% of the ratio used to scale the hot RR slope 
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(18.5% is the ratio of the hot-side to cold-side fits shown in Fig. 4.3). A detailed example of how 

adaptation is incorporated is provided in Section 3 of the supplement. 

 

Figure 4.3. Relationship between the slope of each city’s RR curve and that city’s climate. (a) 

Relationship between slope of RR curve above MMT (hot RR slope) for under 75 age groups and 

the JJA median daily temperature. The points represent individual cities, and the line is a linear 

regression fit. (b) Same as (a), but for slope of RR curve below MMT (cold RR slope) and the 

median DJF temperature. (c, d) Same as (a, b), but for over 75 age groups. 
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4.5. Future Temperature-Related Deaths 

For our projection of future temperature-related mortality, we utilize historical and RCP 

8.5 scenario runs from NA-CORDEX (Mearns et al., 2017), which contain bias-corrected outputs 

of regional climate model (RCM) runs over North America, using boundary conditions from global 

climate models (GCM). Twelve combinations of GCMs and RCMs are used in this study, and 

these are summarized in Table 4.1. Historical simulations cover the period from 1950 to 2005 and 

RCP 8.5 simulations cover 2006 to 2099. Bias-corrected NA-CORDEX temperature only has daily 

maximum and daily minimum temperatures, so daily average temperature is calculated by 

averaging those. NA-CORDEX data are in 0.22°×0.22° horizontal resolution, so the 4 grid points 

nearest to each city are used to represent the temperature of the city.  

 

Table 4.1. Description of NA-CORDEX members used in this study. 

Scenario 
Global Climate 

Model 

Regional Climate 

Model 

Bias-

Correction 

Historical 

+ RCP 8.5 

CanESM2 
CanRCM4 

MBCn 

using Daymet 

CRCM5-UQAM 

GEMatm-Can CRCM5-UQAM 

GEMatm-MPI CRCM5-UQAM 

GFDL-ESM2M 
RegCM4 

WRF 

HadGEM2-ES 
RegCM4 

WRF 

MPI-ESM-LR 

CRCM5-UQAM 

RegCM4 

WRF 

MPI-ESM-MR CRCM5-UQAM 
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We validate the NA-CORDEX ensemble by predicting temperature-related deaths in 1987-

2000 period. We do this by plugging temperatures from the NA-CORDEX ensemble for each city 

over that period into that city’s regression model. The average number of temperature-related 

deaths estimated using NA-CORDEX temperatures is 36,675 (inter-model 95% CI = 36,189 – 

37,231), in which 5,067 (95% CI = 4,666 – 5,332) deaths are heat-related, and 31,608 (95% CI = 

31,111 – 32,331) are cold-related. Using ERA-5 temperatures, we estimated 36,444, 4,819, and 

31,625 deaths, respectively. This provides some confidence in the NA-CORDEX temperature 

fields.  

For future temperature-related mortality predictions, we also need predictions of 

population and demographics. For this, we use the SSP5 scenario, a fossil-fueled development 

scenario, which is usually paired with the RCP8.5 emissions. We use data from Hauer (2019), 

which contains county-level estimates of population and demographics at 5-year intervals from 

2020 to 2100. To convert the county-level estimate to the city level, we extract counties containing 

each city in our analysis. 74% of the cities are within 1 county, and for these we assume that the 

city’s population remains a constant fraction of the county’s population. For cities that are in 

multiple counties, we sum the population of all counties that include the cities. Because the 

counties and city do not perfectly overlap, we take historical demographic data from 2020 and 

SSP5 data from 2020 and estimate the fraction of the total counties’ population living in the city, 

and assume that fraction is constant over the century. From this, we come up with time series of 

population estimates in two age groups for each city in the coming century. A summary of 

population and demographic projections, as well as sensitivity due to choice of socioeconomic 

pathways can be found on the Supplement section 4.  
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To estimate future deaths, we plug NA-CORDEX temperatures for the 21st century for each 

city into that city’s regression model (Fig. 4.6) and then use population and demographic 

information to convert RR to temperature-related mortality numbers.  

RCP8.5 emissions will likely exceed actual emissions, so we plot estimated mortality as a 

function of global average surface temperature (relative to the 1850-1859 period). We take global 

average warming in each year of the CORDEX-NA from averages of the four global climate 

models included in CORDEX-NA: CanESM2 (5 ensemble members) (Chylek, Li, Dubey, Wang, 

& Lesins, 2011), GFDL-ESM2M (1 run) (Dunne et al., 2020), HadGEM2-ES (3 ensemble 

members) (Collins et al., 2011) and MPI-ESM (100 ensemble members) (Maher et al., 2019) with 

historical and RCP 8.5 forcing. We first average the ensemble members of each climate model and 

then average those to come up with the final global average temperature time series. This gives us 

the global average warming of 0.83°C in 2000 and 1.37°C in year 2022, close to observed values.  

With future climate projections from NA-CORDEX, future population and demographics 

projection from SSP5, and our two adaptation scenarios, we calculate future temperature-related 

mortality (Fig. 4.4a-d). Looking at total temperature-related deaths and no adaptation, we find that 

there are 45,800 deaths annually between 2011-2020 (1.16°C warming) and that is projected to 

grow to 200,000 with 3°C of global average warming, with both heat- and cold-related deaths 

increasing (Fig. 4.4a and 4.4b). There are 12,500 deaths due to significant temperatures (Fig. 4.4c, 

4.4d), which is projected to increase to 63,000 at 3°C, a proportionally larger increase than all-

temperature deaths. Adaptation will decrease this number, reducing the increase of temperature-

related mortality at 3°C by about 28%. 

We now decompose the increase in temperature-related mortality into contributions from 

climate change, demographics change, and population change. To estimate the impact of each of 
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these terms, we repeat the mortality calculation with that term fixed and then subtract the values 

obtained from the calculation with all terms varying.  

To estimate the impact of climate change, we fix climate by repeating the daily temperature 

of recent years (2011-2020) for the entire period (1987-2100) and then subtracting the resulting 

temperature-related mortality from the all-factor calculation. For the no-adaptation case, lives 

saved by less cold balances the lives lost due to more hot temperatures until about 3°C. Above 

that, the increase in heat-related mortality overwhelms and total mortality rises rapidly. For the 

adaptation scenario, temperature-related mortality decreases at all temperatures. 

We also find that temperature-related mortality in response to the most significant 

temperatures will increase at all levels of warming (Fig. 4.4g-h). This tells us that most of the lives 

saved in a warming world are due to a reduction in moderate cold temperatures. 

Next, we look at impact of demographics (Fig. 4.4i-l) by performing a fixed-demographics 

calculation that fixes the ratio of under/over 75 population to the 2011-2020 average and then 

subtracting this from the all-factor calculation. We find that the aging of our population drives an 

enormous increase in deaths (Fig. 4.4i) due to the older age group being more vulnerable to 

temperature-related mortality (Fig. 4.4j).  

Finally, we calculate the impact of population (Fig. 4.4m-p) by fixing population at the 

2011-2020 average value and subtracting the results from the all-factor calculation. As the 

population increases, the total number of deaths also increases.  

Comparing the three contributing terms, we find that changes in demographics and 

population are the most important driver of future mortality, and then climate change. This likely 

reflects the enormous investments in adaptation that have already been made (e.g., nearly 100% 

air conditioner penetration in cities like Phoenix and Houston). It seems certain that poorer 
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countries are experiencing more temperature-related mortality today and will experience even 

more as the climate warms in the future (Carleton et al., 2022).  

 

Figure 4.4. Estimates of future temperature-related deaths as a function of global average warming. 

(a-d) Future temperature-related deaths incorporating all factors: climate, demographics, and 

population. Upper limit of shaded region represents no-adaptation scenario, while the lower limit 

represents the adaptation scenario. (a) All temperature related mortality, (b) heat- and cold-related 

deaths, (c) mortality due to significant temperatures, (d) mortality due to significant heat and cold. 

Lower rows follow the same pattern as (a-d), but considering only climate change (e-h), 

demographics change (i-l) and population change (m-p). In all panels, dashed lines represent the 

average of the current value (2011-2020). 
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4.6. The Spatial Pattern of Temperature-Related Deaths 

We now analyze the spatial distribution of heat-related mortality. We focus on the 

meridional variations in number of deaths at 3°C global average warming, approximately business-

as-usual warming for 2100. We find that most of the temperature-related deaths occur between 

40°N and 45°N (Fig. 4.5a). Analyzing per capita deaths, we find they are also weighted towards 

higher latitudes (Fig. 4.5c).  

Looking at the climate contribution (Fig. 4.5e and 4.5g), we see that climate change shifts 

mortality poleward. This occurs because Southern cities in the U.S. are already well adapted to 

heat (Fig. 3), so further warming does not add significantly to heat-related deaths. However, these 

Southern cities do experience a decline of cold-related deaths, leading to a net reduction in 

temperature-related mortality. Northern cities, on the other hand, are less adapted to heat, so they 

experience large increases in heat-related mortality, which exceeds the decline in cold-related 

mortality. 

The impact of adaptation is particularly pronounced between 30°N-35°N (Fig 4.5e) due to 

demographics. Currently, the 30°N-35°N region is the second youngest region (percentage of over 

75 age group = 5.29%); when the Earth reaches 3°C of global average warming, it will be the 

oldest region (17.32%). Since the older age group is both more vulnerable to high temperatures 

and more sensitive to adaptation (Fig. 4.3), adaptation will have a large impact on mortality over 

this latitude range. 

We have made similar plots for significant heat- and cold-related deaths (mortality in the 

hottest and coldest 30 days), and they show a stronger impact from climate change (Fig. S5). 

Numbers for all temperature-related deaths at 3°C warming are tabulated in Section S6 of the 

supplement. 
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Figure 4.5. Meridional distribution of temperature-related deaths in 3°C world. (a) Number of 

temperature related deaths in 3°C world. The upper limit of the shaded region represents no-

adaptation scenario, while the lower limit represents the adaptation scenario. (b) Same as (a), but 

for heat- and cold-related deaths. (c, d) Same as (a, b), but per capita (each bin has been divided 

by population in that bin). (e-h) Contribution of climate change to mortality, (i-l) contribution of 

demographic changes to mortality, (m-n) contribution of changes in population. 

  

4.7. Conclusions 

In this paper, we use mortality and temperature data obtained between 1987 and 2000 to 

develop a temperature-mortality relationship for 106 cities in the U.S. covering about 65% of the 

total population. We then use the regression models with temperatures from an ensemble of high-
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resolution climate simulations to estimate future temperature-related deaths. Because of the key 

role of adaptation, we make two different adaptation scenarios: a scenario with no adaptation and 

what we consider to be an aggressive adaptation scenario that follows the observed variations in 

adaptation between cities with different climates. We also incorporate estimates of changing 

population and its age distribution. 

We estimate that there was an average of 36,444 temperature-related deaths per year during 

the period 1987-2000 in the cities in our data set. Consistent with previous work (Berko, 2014; 

Gasparrini, Guo, Hashizume, Kinney, et al., 2015; Gasparrini et al., 2017; Heutel et al., 2021), we 

find that 86% of these deaths were cold-related. Most of the cold-related deaths took place at 

moderate temperatures just below the minimum mortality temperature (MMT), typically around 

20°C, so they are categorized as cold related even though many would consider the temperatures 

to be mild.  

We project that, with a warming climate and an increasing and aging population, 

temperature-related deaths will reach 200,000 per year at 3°C of global average warming without 

adaptation. Assuming effective adaptation reduces the increase of this number of temperature-

related deaths at 3°C of warming by 28%.  

By decomposing mortality into climate, demographics, and population factors, we find that 

demographic shifts, primarily the aging of the population, and increasing population – will be the 

biggest drivers of increased temperature-related mortality. Climate change will cause small 

changes in mortality below 3°C of global average warming due to offsetting decreases in cold-

related mortality and increases in heat-related deaths. Above 3°C, the result depends on the level 

of adaptation with increases in heat-related deaths dominating without adaptation. Without 

adaptation, total mortality rises rapidly; with adaptation, mortality declines. 
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While changes in temperature-related mortality due to climate change may be small below 

3°C, there is a meridional shift of mortality, with deaths shifting from the South to the North (Fig. 

4.5g-4.5h). Since Southern cities in U.S. are already well adapted to heat, additional warming does 

not add a significant number of deaths. However, Northern cities are not well adapted to heat, so 

heat-related mortality increases there dominate decreases in cold-related mortality.  

Ultimately, no one knows how effectively we will adapt to the warmer temperatures of the 

coming century. However, the investments society has made to make cities like Houston or 

Phoenix livable in a hot climate are massive and it is far from assured that we will make similar 

investments in other cities as the climate warms. Many adaptive responses (e.g., installing air 

conditioning, improved health care, better urban planning) are too expensive for poorer individuals 

or communities, so adaptation will necessarily require society to pay for much of the adaptation. 

This would represent a huge transfer of wealth from richer to poorer members of our society, a 

dicey proposition in today’s political environment.  

There are important limitations to our analysis. First, our analysis covered 106 large cities 

in the U.S., so we can’t reach any conclusions about rural populations of the U.S. population or 

Northern states that are not included in the mortality dataset (MT, ID, WY, ND, and SD). Second, 

we also cannot comment on the future of heat-related mortality in the rest of the world. However, 

given the wealth of the U.S., our present levels of adaptation are higher than in many poorer 

countries and our ability to enhance our adaptation is also higher. Thus, it seems likely that heat-

related mortality will be a more significant problem in the rest of the world as climate change 

progresses through the century (Carleton et al., 2022).  
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4.8. Supplementary Materials for Chapter 4 

4.8.1. Distributed Lag Non-linear Model (DLNM) – Model Specification and Sensitivity 

The DLNM setup in this study follows a framework from Gasparrini, Guo, Hashizume, 

Kinney, et al. (2015) and Gasparrini, Guo, Hashizume, Lavigne, et al. (2015). All calculations are 

done with the R packages dlnm and mvmeta. 

 

4.8.1.1. First stage model 

In the first stage, estimates of location and the age-specific temperature-mortality 

relationship is derived using a generalized linear model with a quasi-Poisson family. We use the 

following equation in this model: 

𝑙𝑜𝑔(𝐷𝑒𝑎𝑡ℎ𝑐,𝑎) = 𝑐𝑏(𝑡𝑀𝑒𝑎𝑛𝑐, 𝑙𝑎𝑔 = 21) + 𝐷𝑂𝑊 + 𝑛𝑠(𝐷𝑂𝑌) + 𝑛𝑠(𝑌𝑒𝑎𝑟) (1) 

Where 𝐷𝑒𝑎𝑡ℎ𝑐,𝑎 represents number of daily deaths in city c and age group a. 𝑐𝑏(𝑡𝑀𝑒𝑎𝑛𝑐, 𝑙𝑎𝑔 =

21) is a cross basis function of temperature in city c, with up to 21 days of lag, which is obtained 

by the two equations of exposure-response relationship and lag-response relationship between 

temperature and mortality (Gasparrini, 2014). In this study, we select a cross-basis composed of 

quadratic B-spline with three internal knots placed at the 10th, 75th, and 90th percentiles of the 

location-specific temperature. An indicator of day of week (DOW) is included for the weekly cycle. 

A natural cubic B-spline with 8 degrees of freedom for day of year is included to control the 

seasonal cycle (ns(DOY)), and a natural cubic B-spline with 1 degree of freedom per decade is 

included for the long-term trend (ns(Year)).  
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The association of overall temperature-mortality relationship from eq. 1 is reduced to the 

cumulative relationship between temperature and mortality with the function crossreduce, 

included in dlnm. 

 

4.8.1.2. Second stage model 

The multivariate meta-analysis model (Gasparrini & Armstrong, 2013; Gasparrini, 

Armstrong, & Kenward, 2012) is used for the meta-analysis. It is difficult to extract the 

temperature-mortality relationship from some of the cities with small number of populations, due 

to high signal-to-noise ratio of daily deaths. Multivariate meta-analysis allows the temperature-

mortality relationship in small cities to share the information of temperature-mortality relationship 

of larger cities with similar characteristics. For the characteristics for the city, we include average 

temperature, temperature range (75th percentile – 25th percentile), and latitude of each city 

(Gasparrini & Armstrong, 2011; Gasparrini, Guo, Hashizume, Kinney, et al., 2015; Gasparrini, 

Guo, Hashizume, Lavigne, et al., 2015). Package mvmeta is used for this analysis, and technical 

details of this analysis can be found in Gasparrini and Armstrong (2013). 

 

4.8.1.3. Calculation of excess deaths due to temperature 

Cumulative risk ratio (RR) is calculated as a sum of RR in all lags (up to 21 days). This 

returns a cumulative RR relative to the mortality at minimum mortality temperature (MMT; Fig. 

1 in main text and Fig. S1). Baseline deaths per thousand (baseline DPT) at the MMT is calculated 

by averaging the DPT values for the days within 0.5°C of MMT. From this, we can calculate DPT 

values at each day by multiplying cumulative RR to base DPT. We then calculate the number of 

excess deaths due to temperature by multiplying excess DPT by population. 
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4.8.1.4. Sensitivity analysis 

We tested the sensitivity of our results to the selection of parameters in the DLNM. The 

number of degrees of freedom to account for seasonality (dfSeas) was modulated from 7 to 9 

(current value=8), and the number of degrees of freedom to account for the long-term trend 

(dfTrend) was modulated from 1 to 2 (current value=1). Table 4.2. shows the percent change in 

the number of deaths caused by this modulation, calculated for each city. Overall, the choice of 

parameters changes excess deaths by less than 8%. 

 

Table 4.2. Percent change of number of deaths due to sensitivity analysis. Percent changes are 

calculated for each city and average percent changes are shown in the table, while the inter-city 

standard deviation is shown in parentheses. 

JJA 

 dfSeas=7 dfSeas=8 dfSeas=9 

dfTrend=1 1.76 

(3.95) 

0 0.02 

(3.21) 

dfTrend=2 1.86 

(4.10) 

-0.08 

(0.08) 

-0.10 

(3.26) 

    

DJF 

 dfSeas=7 dfSeas=8 dfSeas=9 

dfTrend=1 4.19 

(8.84) 

0 -7.55 

(5.06) 

dfTrend=2 4.81 

(8.60) 

0.52 

(0.84) 

-6.92 

(4.47) 
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4.8.1.5. Impact of Ozone 

High Ozone (O3) concentration is known to impact human health (Ren, Williams, 

Morawska, Mengersen, & Tong, 2008). However, O3 is also known to be correlated with 

temperature, especially in summertime (Porter & Heald, 2019), so it is difficult to distinguish the 

impact of O3 and temperature on number of deaths. In that context, we tested if prediction errors 

of the DLNM (residuals) correlated with O3 concentration. 

In cities that average more than 20 daily deaths (24 cities), we calculate the prediction 

residual and regress against O3 concentration. Annually, the p value of this regression is 0.58 (inter-

city standard deviation 1σ=0.28). For JJA, the p value is 0.48 (1σ=0.29), showing no significant 

correlation between the prediction residual and O3 concentration.  

Since the effect of O3 could be non-linear, we computed the composite analysis between 

the residuals on the high O3 days (over 75th percentile of O3) and low O3 days (under 25th percentile 

of O3). In a t-test comparing the means of the annual values, the p value is 0.59 (1σ=0.27). When 

comparing only JJA, the p value is 0.48 (1σ=0.30), showing that there is no significant difference 

of the prediction residuals on high O3 days vs. low O3 days. 

With this analysis, we see no evidence that our results are impacted by O3. However, given 

the high collinearity between temperature and O3, we cannot rule out some contribution to 

mortality from O3. Clearly, more work on this is warranted. 

 

4.8.2. RR Curve for Populated Cities 

Fig. 4.1 in the main text shows the RR values that are averaged for all cities. Fig. 4.6 shows 

the RR curves for the 25 most populated cities.  
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Figure 4.6. RR curve for 25 most populated cities. The red line represents the RR for the over 75 

age group and the blue line represents the under 75 group. Solid lines are for historical temperature 

range, and dashed line are extrapolated RR values for the temperature outside the historical 

observations. Shaded regions show the 95% confidence interval of RR curve. 

 

4.8.3. Measuring and Applying Adaptation – Example of New York 

For a more detailed explanation of measuring adaptation, here we go through an example 

of how we apply adaptation in our analysis. We select the >75 old age group in the city of New 

York City (NYC) in this example, but same process is applied for all age groups and all individual 

cities. 
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Fig. S2a shows that, in the 1987-2000 period, median JJA temperature in NYC was 22.7°C, 

according to ERA-5. From the projections of CORDEX-NA, median JJA temperature rises to 

25.6°C in a world with 3°C global average warming.  

In the 1987-2000 period, the hot-side RR slope of NY is 0.0491 (RR/°C) (blue dashed line 

and blue dot in Fig. S2b). As seen in Fig. S2c, the RR curves are not exactly linear, but the linear 

fit gives us a metric for how steeply the curve rises. 

Using the slopes of the linear fits computed from all cities, we find that the hot side RR 

slope changes by -0.0057 (RR/°C/°C) as JJA median temperature increases (Fig. 4.3c in the main 

text, gray dashed line in Fig S2b). Using the increase in JJA median temperature for NYC, we 

therefore estimate that the hot-side RR slope of NY would decrease to 0.0296 (RR/°C) in a 3°C 

warmer world (red dashed line and red dot in Fig. 4.7.b). 

The last step is to adjust the RR curve by multiplying the hot-side mortality curve by the 

ratio of hot-side RR slope of 1987-2000 to that in 3°C world (0.0322/0.0491). This gives the RR 

curve in 3°C world (red line above the MMT in Fig. 4.7.c). For the cold-side RR curve, the 

mortality curve is decreased by 18.5% of the ratio of the hot-side RR curve (red line below the 

MMT Fig. 4.7.c), as discussed in the main text.  
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Figure 4.7. Example of measuring and applying adaptation, with >75 age group in New York City 

as example. (a) Current and future JJA median temperature. Gray shaded region is the upper and 

lower limit of climate projection from CORDEX-NA, and the gray solid line is the mean projection 

of NA-CORDEX. The values for the NA-CORDEX are smoothed with 10-yr moving average. 

Blue point is the 1987-2000 JJA median temperature from ERA-5, and red point is the JJA median 

temperature at 3°C of global warming. (b) Change of hot side RR slope with temperature. Gray 

points and dashed line represent the individual cities and the linear fit of those cities, same as Fig. 

3c in the main text. Blue point and red point each show the hot side RR slope of NYC in 1987-

2000 period and 3°C world. (c) Change of RR curve in NYC. Blue line represents the RR curve in 

1987-2000 period, and red line represents the RR curve in 3°C world, when adaptation applied. 

 

4.8.4. Future Population Scenario 

Fig. 4.8 summarizes the future population and demographic change. In the 106 cities used 

in this study, total population increases at a rate of 18.5 million/decade. The fraction of population 
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over 75 also increases at an average rate of 1.7%/decade. Top three cities with highest population 

increase are Austin (TX), Denver (CO), and Raleigh (NC), wile top three cities with fastest aging 

population are Jackson (MS), Richmond (VA), and Santa Ana/Anaheim (CA). 

Furthermore, we test the sensitivity due to future population scenario by comparing SSP2 

(middle of the road) scenario with SSP5 scenario (currently used in the main text). First looking 

at total population, we observe a lower population increase in SSP2 scenario (Fig. 4.8.a). This 

would decrease the contribution of population to total deaths (Figs. 4.4.m-444.p). The proportion 

of >75 age groups are very similar until year 2080 (3.3°C warming, Fig. 4.8.b), so the contribution 

of changing demographics would be similar (Figs. 4.4.i-4.4.l), although the magnitude differs by 

the ratio of population in SSP5 and SSP2 (0.8 in 3°C warming). The impact of climate change 

(Figs. 4.4.e-4.4.h) is also similar with magnitude decreasing by the ratio of population in SSP5 and 

SSP2.  

The inter-city pattern of slope of change in population and >75 age group ratio is nearly 

identical in SSP5 and SSP2. The R2 of the regression between the population slope distribution 

(Fig. 4.8.c shows the slopes for SSP5) between SSP5 and SSP2 is 0.999 and R2 value of aging 

slope distribution (Fig. 4.8.d) is 0.996.  
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Figure 4.8. Summary of future population and demographic change. (a) Change of total population 

for all 106 cities in SSP2 and SSP5 scenarios. (b) Change in fraction of > 75 population, calculated 

by adding all > 75 population over 106 cities and dividing by total population. (c) Distribution of 

population trends of individual cities in the SSP5 scenario, relative to average historical population 

(1987-2020). (d) Distribution of growth of the fraction of the > 75 age group, in the SSP5 scenario. 

 

4.8.5. Meridional Distribution of Significant Temperature Related Deaths 

In correspondence with Fig. 4.5 in the main text, here we show the plot same as Fig. 4.5, 

but using significant temperature related deaths, which is 30 days each year with the highest heat- 

and cold-related deaths. 
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Figure 4.9. Meridional distribution of significant temperature-related deaths in 3°C world, where 

significant refers to the 30 days of the year with the highest number of heat- and cold-related 

deaths. (a) Number of deaths in 3°C world. Upper limit of the shaded region represents no-

adaptation scenario, while the lower limit represents the adaptation scenario. (b) Same as (a), but 

for heat- and cold-related significant deaths. (c, d) Same as (a, b), but per capita (each bin has been 

divided by population in that bin). (e-h) Contribution of climate change to mortality, (i-l) 

contribution of demographic changes to mortality, (m, n) contribution of changes in population. 

 

4.8.6. Future predictions of Temperature Related Deaths 

In correspondence with Fig. 4.4 and 4.5 in the main text, Table 4.3 shows the values of 

total projected deaths including all factors at 3°C global average warming as well as our estimate 

of deaths just due to climate change. Table 4.4 shows the same thing for significant temperatures. 

 

Table 4.3. The number of temperature related deaths in each city at 3°C warming, and number of 

deaths caused by climate change. XA = excluding adaptation, OA = with adaptation. Negative 



 

 

83 

 

 

 

numbers indicate a reduction in mortality at 3°C. Shading in the table represents the magnitude of 

increase (red) and decrease (blue) 

City 

Deaths Climate Effect 

Heat+Cold Heat Cold Heat+Cold Heat Cold 

XA OA XA OA XA OA XA OA XA OA XA OA 

Akron, OH 713 645 244 194 468 451 13 -8 118 93 -105 -101 

Albuquerque, NM 972 706 320 129 652 577 -16 -90 159 66 -176 -156 

Arlington, VA 623 555 199 150 424 405 -3 -22 93 69 -96 -92 

Atlanta, GA 3080 2633 972 653 2109 1980 -75 -215 546 368 -621 -583 

Austin, TX 2255 1451 674 143 1581 1308 -316 -516 376 93 -692 -609 

Bakersfield, CA 1200 971 491 311 709 660 64 -20 271 173 -207 -193 

Baltimore, MD 782 716 272 223 510 493 20 -1 138 113 -118 -114 

Baton Rouge, LA 309 231 113 55 195 176 -17 -42 68 35 -85 -77 

Biddeford, ME 613 562 238 198 375 364 38 19 125 103 -87 -84 

Birmingham, AL 612 496 207 123 404 373 -1 -41 124 74 -125 -115 

Boston, MA 2214 1993 837 667 1376 1326 98 21 427 338 -329 -317 

Buffalo, NY 1536 1413 567 472 969 940 87 43 293 243 -207 -200 

Cayce, SC 413 330 141 81 272 250 -10 -34 72 42 -82 -75 

Cedar Rapids, IA 648 565 203 144 445 421 2 -20 92 65 -90 -85 

Charlotte, NC 2658 2286 903 630 1754 1656 5 -114 479 333 -474 -447 

Chicago, IL 8665 7827 2531 1949 6134 5878 -98 -329 1213 926 -1311 -1255 

Cincinnati, OH 1042 921 347 259 695 662 12 -25 172 128 -160 -153 

Cleveland, OH 1456 1348 468 390 988 958 15 -18 235 195 -220 -213 

Columbus, GA 305 259 113 78 192 181 8 -9 70 49 -62 -58 

Columbus, OH 3511 3126 1161 879 2351 2247 11 -101 548 412 -537 -513 

Colorado Springs, CO 1833 1653 907 756 926 897 316 225 603 502 -286 -277 

Corpus Christi, TX 327 228 187 104 140 124 21 -21 132 78 -111 -99 

Coventry, RI 204 180 72 54 132 126 7 -1 38 28 -30 -29 

Dayton, OH 528 471 181 140 346 331 9 -9 89 68 -80 -77 

Washington, DC 2346 2109 772 599 1574 1509 8 -61 371 286 -363 -348 

Denver, CO 8438 7269 3648 2713 4790 4556 1093 564 2293 1706 -1200 -1142 

Des Moines, IA 1443 1253 450 316 993 937 2 -50 217 152 -214 -202 

Detroit, MI 1555 1376 486 359 1069 1017 14 -35 220 162 -207 -197 

Dallas/Fort Worth, TX 7806 5467 2411 792 5395 4675 -332 -1071 1472 516 -1804 -1587 

El Paso, TX 818 532 194 35 625 497 -118 -173 81 19 -199 -192 

Evansville, IN 333 282 115 78 218 204 10 -6 61 41 -51 -47 

Fresno, CA 1472 1198 595 380 877 819 79 -18 304 192 -225 -210 

Fort Wayne, IN 816 706 277 195 540 511 4 -26 124 87 -120 -113 

Grand Rapids, MI 1835 1647 653 512 1182 1136 60 5 296 231 -235 -226 

Greensboro, NC 981 862 348 259 633 603 13 -25 180 134 -167 -159 

Houston, TX 5956 3763 1985 460 3971 3303 -770 -1387 1154 298 -1924 -1685 
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Huntsville, AL 740 629 238 159 501 470 -2 -39 140 94 -142 -133 

Indianapolis, IN 1770 1536 592 422 1177 1115 9 -58 281 199 -272 -257 

Jackson, MS 368 283 123 62 244 221 -12 -40 72 37 -85 -77 

Jacksonville, FL 963 776 451 297 512 479 67 -19 303 202 -237 -221 

Jersey City, NJ 1622 1433 561 420 1061 1013 35 -23 269 200 -234 -223 

Johnstown, PA 89 81 33 27 56 55 4 1 16 13 -13 -12 

Kansas City, MO 2175 1926 729 548 1446 1378 67 -22 423 318 -356 -339 

Kansas City, KS 324 287 111 84 213 203 13 0 66 50 -53 -50 

Kingston, NY 231 213 84 70 147 143 8 2 40 33 -32 -31 

Knoxville, TN 732 649 265 203 467 446 30 -1 153 117 -123 -118 

Los Angeles, CA 7391 4216 2581 369 4810 3848 -1894 -2435 1005 203 -2900 -2638 

Lafayette, LA 439 304 160 59 279 244 -29 -72 95 38 -125 -109 

Las Vegas, NV 6564 4997 1974 906 4591 4091 36 -369 974 467 -938 -837 

Lexington, KY 653 558 221 151 433 407 6 -24 113 77 -108 -101 

Lincoln, NE 779 646 246 153 533 493 10 -28 125 78 -115 -107 

Lake Charles, LA 261 181 93 35 168 146 -18 -43 59 24 -77 -68 

Louisville, KY 1498 1286 498 343 1000 943 9 -57 254 175 -245 -231 

Little Rock, AR 569 452 175 93 394 359 -3 -41 105 57 -108 -98 

Lubbock, TX 409 285 133 45 277 240 -26 -60 72 26 -98 -86 

Madison, WI 1435 1279 447 336 988 942 -7 -45 188 141 -195 -186 

Memphis, TN 1333 1147 462 325 870 822 51 -20 286 201 -235 -221 

Miami, FL 1365 468 979 221 386 246 195 -391 785 189 -590 -580 

Milwaukee, WI 1526 1349 460 335 1066 1014 18 -38 237 170 -218 -207 
Minneapolis/St. Paul, 
MN 4752 4320 1403 1105 3349 3216 34 -73 610 480 -576 -553 

Mobile, AL 302 227 119 62 183 165 2 -28 80 42 -77 -70 

Modesto, CA 728 638 299 227 429 411 33 -1 161 122 -128 -123 

Muskegon, MI 548 511 196 168 352 343 37 22 115 98 -78 -76 

Nashville, TN 1553 1342 541 385 1012 957 44 -31 313 223 -268 -254 

Newport News, VA 255 220 100 72 155 147 10 -3 54 39 -45 -42 

New Orleans, LA 1532 1383 694 573 838 810 137 61 513 424 -375 -363 

Norfolk, VA 327 287 129 97 198 189 14 -1 72 55 -58 -55 

Newark, NJ 2122 1876 735 551 1388 1324 47 -29 353 264 -306 -292 

New York, NY 18954 16245 6440 4439 12513 11805 381 -458 3164 2168 -2783 -2626 

Oakland, CA 1589 1389 865 689 725 700 13 -65 450 356 -436 -421 

Oklahoma City, OK 1615 1270 528 282 1087 988 6 -109 318 175 -312 -284 

Olympia, WA 642 584 289 241 353 343 21 3 116 96 -95 -92 

Omaha, NE 1534 1315 475 322 1059 993 14 -49 239 163 -226 -212 

Orlando, FL 1423 1119 803 538 621 582 237 67 603 410 -367 -343 

Philadelphia, PA 2795 2484 998 764 1797 1719 91 -8 491 376 -401 -384 

Phoenix, AZ 9961 1098 2139 360 7822 738 -1076 -7074 684 171 -1760 -7245 

Pittsburgh, PA 1646 1501 572 463 1074 1037 32 -13 275 221 -243 -234 

Portland, OR 2855 2569 1270 1034 1585 1534 128 44 490 395 -363 -351 

Providence, RI 971 842 348 250 623 592 36 -8 178 127 -142 -135 
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Raleigh, NC 2992 2573 1070 755 1923 1818 9 -120 537 380 -528 -499 

Richmond, VA 1160 1015 420 311 739 704 16 -29 205 152 -189 -180 

Riverside, CA 2388 1842 972 537 1416 1305 -123 -288 492 280 -615 -569 

Rochester, NY 1072 993 389 329 683 664 44 15 206 173 -162 -158 

Sacramento, CA 2427 2091 932 670 1494 1420 29 -81 452 320 -423 -401 

Salt Lake City, UT 3578 3118 1438 1080 2140 2038 396 209 849 640 -453 -432 

San Antonio, TX 2389 1291 725 170 1664 1120 -437 -848 380 116 -817 -964 

San Bernardino, CA 2074 1789 775 556 1299 1233 -102 -186 396 288 -498 -474 

San Diego, CA 2133 1385 1434 742 700 642 162 -213 922 486 -760 -699 

San Francisco, CA 535 452 426 347 108 105 125 76 279 225 -154 -150 

San Jose, CA 1728 1516 691 522 1037 994 -266 -310 257 191 -523 -501 

Seattle, WA 2931 2732 1436 1267 1495 1465 284 210 670 588 -386 -378 

Shreveport, LA 298 219 93 38 205 181 -16 -40 56 24 -72 -64 

Spokane, WA 1592 1418 668 530 924 888 199 139 331 266 -132 -127 

Santa Ana/Anaheim, CA 2211 1671 1251 774 960 897 -73 -288 707 442 -780 -730 

St. Louis, MO 710 627 231 172 479 455 13 -14 124 92 -111 -106 

Stockton, CA 933 829 404 320 529 509 35 -4 211 166 -176 -170 

St. Petersburg, FL 736 466 375 148 362 318 50 -87 285 119 -235 -205 

Syracuse, NY 611 549 236 188 375 361 29 8 113 89 -84 -81 

Tacoma, WA 1706 1556 783 660 922 897 114 63 347 290 -233 -227 

Tampa, FL 1407 986 756 396 651 590 178 -48 572 308 -394 -356 

Toledo, OH 505 439 162 115 343 325 3 -15 72 51 -70 -66 

Topeka, KS 225 193 78 55 147 138 9 -3 45 32 -37 -35 

Tucson, AZ 456 232 114 25 342 207 -57 -150 43 13 -100 -164 

Tulsa, OK 1373 1104 480 282 893 822 47 -55 301 178 -254 -234 

Wichita, KS 871 684 287 152 583 531 22 -44 169 90 -147 -134 

Worcester, MA 1164 1035 396 301 768 735 24 -15 181 136 -158 -151 

 

 

Table 4.4. The number of significant temperature related deaths in each city at 3°C warming, and 

number of significant temperature related deaths caused by climate change. 

 

City 

Deaths Climate Effect 

Heat+Cold Heat Cold Heat+Cold Heat Cold 

XA OA XA OA XA OA XA OA XA OA XA OA 

Akron, OH 212 187 103 83 108 104 38 29 46 37 -8 -8 

Albuquerque, NM 288 190 135 55 152 135 31 0 58 23 -27 -24 

Arlington, VA 182 158 82 62 100 95 27 19 35 26 -8 -7 

Atlanta, GA 956 796 400 273 556 522 111 56 195 135 -84 -79 

Austin, TX 708 446 234 53 474 393 -32 -81 87 28 -120 -109 
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Bakersfield, CA 406 312 223 142 183 170 87 48 112 72 -25 -24 

Baltimore, MD 241 216 120 99 121 117 48 38 58 48 -10 -10 

Baton Rouge, LA 99 75 35 18 64 57 1 -4 15 8 -14 -13 

Biddeford, ME 197 176 110 92 86 84 50 41 56 47 -6 -6 

Birmingham, AL 188 148 80 49 108 100 24 10 40 25 -16 -15 

Boston, MA 690 604 369 294 321 310 155 119 178 141 -23 -22 

Buffalo, NY 476 427 261 218 215 209 117 95 131 109 -14 -14 

Cayce, SC 126 98 52 31 73 68 12 4 21 13 -9 -8 

Cedar Rapids, IA 184 154 85 61 99 93 31 21 36 26 -5 -5 

Charlotte, NC 825 689 379 268 446 421 128 78 181 128 -53 -50 

Chicago, IL 2408 2114 1066 827 1343 1287 374 275 453 351 -79 -76 

Cincinnati, OH 303 261 139 104 164 156 48 33 62 47 -14 -13 

Cleveland, OH 431 390 208 174 223 217 81 65 98 81 -17 -16 

Columbus, GA 99 82 45 32 53 50 16 9 24 17 -9 -8 

Columbus, OH 1017 882 464 354 552 528 156 110 198 150 -42 -40 

Colorado Springs, CO 694 610 461 384 233 226 240 194 287 239 -47 -45 

Corpus Christi, TX 117 86 57 32 60 53 5 -4 31 19 -25 -23 

Coventry, RI 64 54 33 25 31 29 14 10 16 12 -2 -2 

Dayton, OH 156 136 74 58 82 78 27 20 34 26 -7 -6 

Washington, DC 702 615 328 256 374 359 116 85 145 113 -29 -28 

Denver, CO 2877 2375 1766 1318 1110 1056 903 648 1033 771 -130 -124 

Des Moines, IA 410 343 188 133 223 210 72 49 83 59 -11 -11 

Detroit, MI 446 380 214 159 232 221 77 54 90 67 -13 -13 

Dallas/Fort Worth, TX 2352 1551 935 321 1417 1230 188 -66 459 174 -271 -240 

El Paso, TX 232 140 74 14 158 126 -12 -29 22 6 -34 -35 

Evansville, IN 98 81 47 32 51 48 17 11 22 16 -5 -4 

Fresno, CA 479 371 263 169 217 202 97 53 124 78 -27 -25 

Fort Wayne, IN 233 195 109 78 124 117 36 23 44 31 -8 -8 

Grand Rapids, MI 541 471 281 221 261 250 109 83 123 96 -14 -13 

Greensboro, NC 299 256 140 105 159 151 47 32 65 49 -17 -17 

Houston, TX 1878 1210 610 152 1268 1058 -134 -244 221 75 -355 -318 

Huntsville, AL 223 184 95 64 128 120 32 17 49 33 -17 -16 

Indianapolis, IN 510 430 234 168 276 262 78 51 99 71 -21 -20 

Jackson, MS 110 83 42 22 68 62 7 0 18 10 -11 -10 

Jacksonville, FL 342 278 158 106 184 172 58 31 92 63 -34 -32 

Jersey City, NJ 484 413 239 180 244 233 88 62 106 79 -18 -17 

Johnstown, PA 28 25 15 12 14 13 6 5 7 6 -1 -1 

Kansas City, MO 661 567 326 247 335 319 155 113 180 137 -26 -24 

Kansas City, KS 100 86 51 39 50 47 25 18 29 22 -4 -4 

Kingston, NY 73 65 38 32 35 33 15 12 18 15 -2 -2 

Knoxville, TN 230 200 111 85 119 114 45 32 59 46 -14 -14 

Los Angeles, CA 2683 1517 972 147 1711 1369 -311 -482 247 59 -558 -541 

Lafayette, LA 138 98 48 18 90 79 -2 -10 19 9 -21 -18 
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Las Vegas, NV 1836 1274 861 405 975 870 284 114 352 175 -68 -61 

Lexington, KY 193 160 87 60 106 99 29 17 40 27 -11 -10 

Lincoln, NE 225 177 105 66 120 111 42 25 49 31 -7 -6 

Lake Charles, LA 82 58 29 12 54 47 0 -5 13 6 -13 -12 

Louisville, KY 435 362 194 136 241 227 63 38 86 60 -23 -22 

Little Rock, AR 171 129 73 40 98 89 25 9 38 21 -13 -12 

Lubbock, TX 124 82 50 18 74 65 5 -6 21 8 -16 -14 

Madison, WI 397 343 180 136 216 207 56 40 67 51 -11 -10 

Memphis, TN 403 337 188 134 214 202 76 48 104 74 -27 -26 

Miami, FL 582 259 263 57 319 202 -82 -232 157 37 -239 -269 

Milwaukee, WI 439 372 210 154 229 218 88 60 102 74 -14 -14 
Minneapolis/St. Paul, 
MN 1312 1156 612 484 700 672 229 177 253 200 -23 -22 

Mobile, AL 97 73 39 21 57 52 10 1 21 12 -11 -10 

Modesto, CA 248 211 138 105 111 106 52 36 70 53 -18 -17 

Muskegon, MI 172 156 95 82 77 75 49 42 54 47 -5 -5 

Nashville, TN 472 397 220 159 252 238 86 56 115 83 -29 -27 

Newport News, VA 80 67 41 30 40 38 16 11 20 15 -4 -4 

New Orleans, LA 461 413 235 194 226 219 118 94 145 121 -27 -26 

Norfolk, VA 104 89 53 41 51 49 22 16 27 21 -5 -5 

Newark, NJ 636 544 316 238 320 306 118 83 141 106 -23 -22 

New York, NY 5627 4616 2759 1910 2869 2707 1032 650 1250 855 -218 -206 

Oakland, CA 634 549 382 305 252 244 83 49 176 139 -93 -90 

Oklahoma City, OK 487 364 218 119 269 245 77 31 114 65 -38 -34 

Olympia, WA 240 212 152 127 88 85 51 41 59 49 -9 -8 

Omaha, NE 438 359 202 138 235 221 82 54 94 65 -12 -11 

Orlando, FL 569 462 277 189 292 273 113 61 186 129 -73 -68 

Philadelphia, PA 852 734 434 334 418 400 169 124 200 153 -31 -30 

Phoenix, AZ 2608 364 874 175 1734 189 10 -1336 187 72 -177 -1408 

Pittsburgh, PA 493 440 237 193 256 247 88 68 108 87 -20 -19 

Portland, OR 1048 912 664 541 383 371 227 177 261 210 -34 -33 

Providence, RI 297 247 154 111 144 136 63 43 73 53 -10 -10 

Raleigh, NC 902 756 412 293 490 463 125 76 180 128 -55 -52 

Richmond, VA 352 300 169 126 183 175 57 39 75 56 -17 -17 

Riverside, CA 862 639 424 235 439 404 87 8 199 112 -112 -103 

Rochester, NY 331 300 175 149 156 152 78 64 89 75 -11 -11 

Sacramento, CA 788 655 414 299 375 356 124 76 179 127 -54 -52 

Salt Lake City, UT 1191 989 728 547 464 442 349 254 398 300 -48 -46 

San Antonio, TX 782 422 251 62 530 360 -68 -184 88 34 -156 -218 

San Bernardino, CA 713 599 338 243 375 356 75 35 159 115 -84 -80 

San Diego, CA 1001 645 677 347 325 298 180 -1 416 215 -237 -217 

San Francisco, CA 235 200 180 147 55 54 57 39 98 79 -41 -40 

San Jose, CA 663 573 308 233 355 340 -4 -26 103 76 -107 -103 

Seattle, WA 1147 1048 782 691 365 357 320 277 351 308 -31 -31 



 

 

88 

 

 

 

Shreveport, LA 91 64 35 15 56 50 6 -2 16 7 -10 -9 

Spokane, WA 573 487 380 301 194 186 184 145 191 152 -7 -7 

Santa Ana/Anaheim, CA 918 689 534 330 384 359 89 -5 279 173 -190 -177 

St. Louis, MO 208 179 97 73 111 106 40 28 48 36 -8 -8 

Stockton, CA 328 285 185 147 143 138 63 45 90 71 -27 -26 

St. Petersburg, FL 285 199 112 47 173 153 17 -15 71 32 -54 -47 

Syracuse, NY 189 166 103 82 87 83 42 32 48 38 -6 -6 

Tacoma, WA 647 574 423 356 224 218 162 132 182 152 -20 -20 

Tampa, FL 542 405 235 127 307 278 67 9 153 86 -86 -77 

Toledo, OH 143 119 67 48 76 72 22 15 27 19 -5 -4 

Topeka, KS 69 57 35 25 34 32 16 11 19 14 -3 -3 

Tucson, AZ 127 62 43 11 84 51 -3 -26 10 4 -13 -30 

Tulsa, OK 423 324 204 122 218 201 89 46 116 71 -27 -25 

Wichita, KS 256 189 121 66 135 123 51 23 64 35 -13 -12 

Worcester, MA 349 300 174 133 174 167 65 46 76 57 -11 -11 
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CHAPTER V 

CONCLUSIONS 

 

This thesis investigates extreme temperature events, including their drivers, corresponding 

metric changes, and societal impact. We find that the main large-scale drivers causing an increase 

in extreme heat events are global warming and ENSO (Chapter 2). Given that global warming is a 

long-term trend and ENSO is an internal variability of the climate, the impact of ENSO is greater 

in small regions, but the impact of global warming grows with the size of the regions. We also find 

the change of heat related metric with warmer climate. With 3°C of warming, which we are 

currently on track for, 10% of the population will experience over 132 deadly days (DD) and over 

232 tropical nights (TN) per year. And 10% of the population will face temperatures in excess of 

47°C and 30°C wet-bulb temperature. We also discover that most heat-related metrics increase 

significantly between 1.5°C and 2.0°C of global warming, supporting the Paris Agreement’s goal 

of limiting global warming below 1.5°C and well below 2.0°C. 

 We have also examined the societal impact of extreme temperature events. There are three 

primary findings on this aspect. The first is economic inequity on projected extreme heat events 

(Chapter 2). The findings of Chapter 2 verify that the increase in frequency and magnitude of 

extreme heat is expected to disproportionately affect the poor. Given the high cost of adaptation 

and mitigation to higher temperatures, this conclusion highlights the moral aspect of climate 

change. 

Secondly, this dissertation concludes that the current ERCOT method, which uses the last 

two decade’s weather data to forecast future power demand, is insufficient to represent climate 

change and variability outside of the very recent decade (Chapter 3). Using the model developed 
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in Chapter 3, we found that ERCOT’s electricity grid has little spare capacity. In the summer and 

winter 2022, there was a 17% and 19% chance power demand in Texas would exceed ERCOT’s 

extreme peak-load scenario. Furthermore, in the Texas winter storm Uri in 2021, this study 

concludes that power demand in Texas exceeded ERCOT’s extreme peak load scenario by 15 GW, 

or 22%. We encourage ERCOT to make probabilistic temperature forecasts using modern tools, 

such as climate model ensembles, as done in this dissertation. 

Finally, this dissertation examines forecasting future temperature-related deaths in the US 

(Chapter 4). Using the advanced temperature-mortality regression model that integrates future 

climate change, population/demographic change, and adaptation, this dissertation reveals that 

temperature-related deaths will increase rapidly in the future. We found that annual temperature-

related deaths will increase from 36,444 deaths today to 175,000 per year with 3°C of warming. 

The aging population is the primary driver, and the role of climate change is relatively minor below 

3°C of global average warming because increases in heat-related deaths and decreases in cold-

related deaths cancel each other. However, above 3°C, the increase in heat-related deaths outpaces 

cold-related deaths. The role of adaptation is also examined, and it is found to reduce temperature-

related mortality. While total numbers of temperature-related deaths might not change, we do find 

a northward shift of deaths.  This arises because Southern cities are already well adapted to heat, 

so that the reduction in cold-related mortality outpaces increases warm-related mortality. At higher 

latitudes, this is not the case and heat-related mortality dominates.  

Although this dissertation examined the causes and impacts of extreme temperature events, 

there are several additional studies to be conducted related to this topic. This dissertation focused 

solely on large-scale drivers of extreme heat, such as global warming or ENSO. However, more 

regional drivers of extreme temperatures, such as the urban heat island effect, should be 
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investigated for a more detailed understanding of urban extreme temperature events. Furthermore, 

the impact of extreme temperature events on economic inequity, power demand in Texas, and 

temperature-related deaths in the US were the focus of this dissertation. More human and natural 

system sectors should be investigated, such as transportation, agriculture, dairy farming, and 

fishery. However, this dissertation can serve as capstone research for climate informatics, which 

integrates climate data and data from other sectors to investigate the climate impact. 
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