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ABSTRACT  

Passive seismicity is crucial for optimizing hydraulic fracture treatments and reducing the risk of 

hydraulic fracturing-induced seismicity. Unsupervised machine learning is suitable for 

understanding fracturing-induced seismicity because it can process large amounts of data without 

prior knowledge or labeling and identify patterns and relationships in the data that isn’t apparent 

to the human eye. Clustering and dimensionality reduction can be used to group similar 

earthquakes and reveal patterns in the distribution and evolution of seismicity over time. This 

can provide valuable insights into the behavior of the fractures and help identify the conditions 

that may lead to induced seismicity.   

In case of meso-scale (~ 10 m) microseismicity, the analysis is based on Experiment 1 of the 

EGS Collab Project. A non-linear dimension reduction is applied on the high dimensional 

features extracted from seismic signals generating embeddings in low dimensions. The different 

groups obtained by clustering the low dimension embeddings reveal that different clusters are 

related to distinct fracture networks. A separate study on the same experiment focused on the 

simultaneous, wide-band hydrophone signals. Low frequency signals (2-80 Hz) were found to be 

strong related to the fluid injection. Workflows were developed to reliably locate the sources of 

the low frequency signals and their spatiotemporal distribution was correlated with the 

distribution of natural fractures. Additionally, workflows based on semi-supervised, graph-based 

label propagation are developed to reliably extend fracture labels to noisy and unlabeled 

microseismic data. Lastly, a field (~km) scale microseismic dataset containing high quality 

moment tensor information was used to explore relationship between the three-dimensional 

motion recorded at geophones and the deformation occurring at hydraulic fracture planes.  
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1. INTRODUCTION 

Fractures are ubiquitous and are either naturally or artificially generated. In petroleum and 

geothermal engineering, hydraulic fracturing is widely used to generate artificial fractures to 

enhance rock permeability.  Hydraulic fracture characterization is of great significance because it 

is a crucial step before making forecasts and taking development measures. This is a huge 

challenge at present because of the large heterogeneities and uncertainties involved, especially 

after hydraulic fracturing and underground mining. In recent years progress has been made in 

monitoring technologies and assisted fracture interpretation and modeling approaches, such as 

seismic and microseismic monitoring, but many knowledge gaps persist. The response of 

mechanical and electromagnetic waves within geological media is complicated due to the 

inherent complexity of rocks - heterogeneous composition, presence of material discontinuities 

(fractures, voids) and variable void size and shape distribution.  

Common to all these methods is the fact that they generate a large data volume. Moreover, 

human factors such as cognitive restrictions in vision, fatigue, subjectivity, and bias can 

introduce uncertainty in the outcomes.  

Machine Learning (ML) methods are well suited for signal processing associated with seismic 

based fracture characterization. ML methods can be broadly divided into two groups: supervised 

(in which the target data label for set of measurements is known) and unsupervised (in which no 

a-priori information about the target label is known). Unsupervised ML methods like clustering 

can be applied to datasets to reveal physics previously unaccounted for by analytical models.  

The problem statements driving the research contained in this thesis are outlined as follows:  
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1. Only the first phase arrivals are used for characterizing the stimulated reservoir volume 

(SRV) from microseismic data.  

2. Except for specialized research, the three-component information is not utilized for 

microseismic-based hydraulic stimulation monitoring. 

3. Poor understanding of spatial distribution of moment tensor types over the stimulated 

reservoir volume, and the predictive potential of seismic signal for moment tensor type. 

4. Low frequency seismic signals are not utilized for characterization of SRV. 

5. Difficulty in assigning fracture labels to event hypocenters for SRV interpretation.  

The first chapter sets the precedent for the research directions in the dissertation. It gives a high-

level overview of the challenges associated with passive seismic measurements and the 

opportunities unsupervised machine learning presents for tackling those challenges.  The second 

chapter presents select geophysical theories of seismic wave propagation in fractured media, 

focal mechanisms associated with fracturing related rock deformation and concept of moment 

tensors. Third chapter gives a literature review of the research done till now that is related to the 

objectives of research objectives undertaken herein. The first part outlines the state of the art for 

seismic based hydraulic fracture characterization. The second part outlines a survey of 

unsupervised machine learning applied to seismological data analysis.  Fourth chapter gives a 

detailed description of the experiments analyzed in laboratory scale, intermediate scale, and field 

scale hydraulic fracturing experiments. Fifth chapter discusses details about the data processing 

associated with experiments involved in analysis. The sixth chapter presents the results and 

conclusions of the analysis of the multi scale fracturing based on unsupervised learning.  
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2. RELEVANT THEORY FOR WAVE PROPAGATION IN FRACTURED MEDIA, FOCAL 

MECHANISMS AND MOMENT TENSORS 

2.1 Wave transmission through fractured rock  

To understand how fractures affect transmission of seismic waves, researchers can use a 

mathematical approach that treats the fracture as a boundary where there is a discontinuity in the 

displacement of particles. This boundary condition is characterized by a fracture stiffness, and it 

leads to a discontinuity in displacement across the boundary that is proportional to the ratio of 

the seismic stress to the specific stiffness. In addition to causing this discontinuity in 

displacement, the boundary behaves like a low-pass filter, meaning that it allows low-frequency 

waves to pass through while blocking high-frequency waves (Pyrak-Nolte et al., 2001).  

The characteristics of a fracture that are important for understanding its effects on wave 

propagation include its length, the extent to which its faces are in contact, and the material filling 

the fracture. Fractures in rock can affect the behavior of waves passing through them, including 

the time it takes for a wave to pass through the fracture and changes to the wave's amplitude. 

These effects depend on the fracture parameters mentioned above, and on the angle at which the 

wave is incident on the fracture and the frequency of the wave. The way that the fracture 

influences the wave can be described using reflection and transmission coefficients, as shown in 

Figure 1, which are also dependent on these factors. As the medium through which the wave is 

traveling (the rock surrounding the fracture) has properties that vary with frequency and angle of 

incidence, it is possible to study these properties using seismic experiments and infer information 

about the fracture parameters by measuring the velocity and attenuation of the wave at different 

frequencies and angles of incidence (Boadu, 2007). 
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Figure 1: (Top) Schematic diagram of the displacement discontinuity model and the effect 

of fracture on the transmitted waveforms. (Bottom) Waveforms and corresponding short-

time Fourier Transform spectrograms for transmitted waves after interaction with varying 

levels of fracturing damage encountered along the travel path. 

2.2 Seismic energy radiation from crack displacement 

When a force couple is applied to a small crack, the resulting displacement patterns are similar 

for both force couples. Therefore, it is difficult to distinguish between the two possible solutions 

when using observed waves to model the source, and the solution typically becomes a double-

couple. The images below (Figure 2) show displacement results from a simple model of a small 

horizontal and vertical crack, with the arrows indicating the direction of the displacement. 
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Figure 2: Crack model showing identical displacement pattern surrounding a vertical and 

horizontal crack (upper panel). (Lower panel) seismic moment calculation parameters 

highlighted.  Hotter colors represent greater displacements (adapted from Beghini and 

Bertini, 1990). 

The displacement field caused by a dislocation on a plane is like that produced by a double-

couple. In a homogeneous and isotropic medium, the moment of a seismic event caused by a 

shear fracture on a plane can be represented by: 

M = G x D x A ......................................................................................................................... (1) 

Where M = Seismic moment, G = Shear stiffness, A = area of slip and D = displacement 

The energy source parameter represents the energy that is radiated away from the source, rather 

than the total work done during the event. It is important to note that the elastic energy radiated 
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by a seismic event is just a fraction of the total work done by the source. A moment tensor is a 

way of representing the source of a seismic event. It is like the stress tensor, which describes the 

state of stress at a specific point. A moment tensor, on the other hand, describes the deformation 

at the source location that produces seismic waves (Figure 3). 

The figure below (Figure 3) illustrates the similarity between stress and moment tensors. The 

moment tensor describes the deformation at the source based on generalized force couples, 

arranged in a 3x3 matrix. The matrix is symmetric, so there are only six independent elements 

(e.g., M12 = M21). The diagonal elements (e.g., M11) are called linear vector dipoles, which are 

equivalent to the normal stresses in a stress tensor. The off-diagonal elements are moments 

defined by force couples. To generate a moment tensor for a seismic event, it is necessary to use 

the Green's function. This function calculates the ground displacement recorded by the seismic 

sensor based on a known moment tensor (the "forward" problem). A moment tensor inversion is 

the process of using the inverse Green's function to determine the source moment tensor based 

on sensor data. 
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Figure 3: (above panel) Graphical representation of stress tensor and moment tensor and 

their respective matrix representations. (Bottom panel) Relationship between moment 

tensor, Greens function and the measured signal. 

Focal mechanisms, which represent the type and orientation of faulting that occurred during an 

earthquake, can be calculated using a technique that tries to match the direction of P-wave 

arrivals recorded at each seismograph station. For a double-couple source mechanism (a type of 
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faulting that involves only shear motion on the fault plane), the first P-waves indicating 

compression should be in the quadrant containing the tension axis, while those indicating 

dilatation should be in the quadrant containing the pressure axis.  

2.3 Moment tensor representation with beachball diagram 

To construct a beach ball diagram, the moment tensor is used to determine the magnitude and 

direction of the first motion at each point on the surface of a sphere (Vavrychuk, 2011). Points 

where the motion is inward towards the source are colored white (red arrows), while points 

where the motion is outward away from the source are colored black (blue arrows). The border 

between white and black on the beach ball represents points where the motion is tangential 

(purple arrows), with the direction of motion across the border being white to black. 

The figure following (Figure 4) illustrates the first ground motion on the beach ball surface, 

separated into radial and tangential components. The lengths of the radial and tangential arrows 

indicate the relative strength of the P and S waves, respectively. P-waves tend to be strongest in 

the middle of the white and black regions, while S-waves are strongest at the border between 

white and black. 
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Figure 4: Illustration of relationship between fault orientation and beachball diagram.  

In beach ball diagrams "red" holes radiates objects outward from the center of ball, while 

"white" pulls inward, towards the center. 

There is often ambiguity in determining the fault plane on which an earthquake occurred when 

calculating focal mechanisms using first-motion directions or certain waveform modeling 
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techniques. This is because there are two mathematically equivalent, orthogonal auxiliary planes 

that could represent the fault plane. Four examples are provided to demonstrate this ambiguity, 

with block diagrams showing the two possible types of fault motion that the focal mechanism 

could represent. The view angle for each diagram is 30 degrees to the left and above. The 

ambiguity can sometimes be resolved by comparing the two potential fault plane orientations to 

the alignment of small earthquakes and aftershocks. The first three examples involve purely 

horizontal (strike-slip) or vertical (normal or reverse) fault motion, while the fourth example 

involves fault motion with both horizontal and vertical components (oblique-reverse). 

 2.4 Caveats associated with Beachball representations of moment tensors 

First P-waves may be recorded in the wrong quadrant. This can happen for several reasons: the 

algorithm may have misidentified the direction of the P-wave due to a lack of impulsive signal, 

the earthquake location and velocity model used to calculate the first P-wave arrivals may be 

incorrect, or the seismograph may be improperly wired such that up is recorded as down (which 

is rare). When calculating focal mechanisms using only first P-wave arrival directions, these 

incorrect observations can significantly affect the results. In some cases, multiple focal 

mechanism solutions may fit the data equally well depending on the quality and distribution of 

the first P-wave data. 

2.5 Physical interpretation moment tensors and moment tensor decomposition  

The moment tensor is a mathematical representation of the forces that caused an event, such as 

an earthquake. It can be difficult to interpret the geological or physical mechanism of the event 

based on the moment tensor alone. Therefore, the moment tensor is often decomposed into its 
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constituent elementary mechanisms by rotating the matrix to zero out the off-diagonal elements. 

This is like finding the principal axes of a stress tensor, which involves zeroing out the shear 

elements and leaving the normal stresses. As a result, every moment tensor can be expressed as 

three linear vector dipoles (orthogonal) that are rotated to a specific orientation. These dipoles 

are known as the P (pressure), B (neutral or null), and T (tension) principal axes. 

2.5.1 Isotropic source 

An isotropic source is a type of seismic source that produces waves that are equally strong in all 

directions. This means that the orientation of the P, B, and T axes has no meaning for an 

isotropic source, as the wave strength does not vary based on the orientation of the axes. An 

isotropic source only produces P-waves, which are pressure waves that travel through the Earth's 

interior. An isotropic source can be either an expansion or a contraction of the source volume. If 

the source is an expansion, such as an explosive event, the isotropic component is positive. This 

could be due to a confined blast or rock bulking. If the source is a contraction, such as an 

implosive event, the isotropic component is negative. This could be due to a pillar burst, 

buckling, or rock ejecting into a void. In the case of an implosive event, the first motion recorded 

by the waves will be towards the source, as they are traveling around a void. 

2.5.2 Deviatoric Source  

The deviatoric component of a moment tensor represents the part of the seismic source that 

causes displacement without changing the overall volume of the source. This means that there is 

an equal amount of movement in and out of the source. The deviatoric component is obtained by 

removing the isotropic component from the moment tensor. The deviatoric component is usually 
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caused by a general dislocation of a fault, which can involve both shear and normal displacement 

(although there is still no net volume change). To better understand the relative proportions of 

shear and normal displacement, the deviatoric component can be decomposed into two elemental 

sources: the DC (double couple) source and the CLVD (compound linear and volumetric 

dilation) source. The DC source represents a pure shear displacement, while the CLVD source 

represents a combination of shear and volumetric displacement. 

2.5.3 Double Couple source  

A double couple source refers to a type of source that is characterized by two pairs of forces that 

are equal in magnitude but opposite in direction and act along two orthogonal planes. The 

moment tensor of a double couple source has four independent parameters, which describe the 

magnitudes and orientations of the two pairs of forces. A double couple source generates seismic 

waves that are strongly directional, with maximum amplitude in two opposite directions. In 

contrast, an isotropic source generates seismic waves that are symmetric in all directions. The 

moment tensor of a double couple source mechanism is fully described by four independent 

elements of moment tensor matrix, that represent the magnitudes and orientations of the forces. 

2.5.4 Compensated Linear Vector Dipole Source  

A Compensated Linear Vector Dipole (CLVD) source is a type of deviatoric source that 

represents a normal displacement on a plane. The normal displacement from one linear vector 

dipole is compensated (hence the name) by opposing displacement from the other two linear 

vector dipoles, so there is no net volume change. An isotropic source is a seismic source that 

radiates seismic energy equally in all directions, and its moment tensor has a single nonzero 
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element, which represents the isotropic component of the seismic moment. In other words, an 

isotropic source is a spherically symmetric source that does not have any preferred direction of 

motion. On the other hand, a compensated linear vector dipole (CLVD) source is a seismic 

source that has a preferred direction of motion and exhibits a double-couple plus a compensated 

linear vector dipole pattern. The CLVD pattern describes the deformation of the seismic source 

that is related to the vertical stretching or squeezing of the earth's crust. The moment tensor of a 

CLVD source has four nonzero elements, which represent the double-couple component and the 

CLVD component of the seismic moment.  The main difference between an isotropic source and 

a CLVD source in moment tensors is that the former represents a spherically symmetric source 

that does not have any preferred direction of motion, while the latter represents a source that has 

a preferred direction of motion and exhibits a deformation pattern related to the vertical 

stretching or squeezing of the earth's crust. 

For a positive CLVD source, a single tensile dipole (stretching or pulling force) is compensated 

by two compressive dipoles (squeezing or pressing forces). A pure CLVD source would imply a 

Poisson's ratio of 0.5, a property shown by materials like chewing gum or toothpaste. There is no 

geological example of a pure CLVD source, but it can make sense as a mixed source event that 

includes both isotropic and CLVD components. This type of event mechanism may be dominant 

for confined pillar crushing events. 

2.6 Hudson plot for representing moment tensor  

Double-couple components of moment tensors can be represented using "beach balls," which 

show the orientation of the fault and the slip vector indicating the shear motion along the fault. 

Non-double-couple components of moment tensors are displayed in source-type plots. Moment 
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tensors occupy a "source-type space," which is a wedge in 3-dimensional space. The magnitude 

of the vector in this space is the scalar moment, and its direction indicates the type of source. To 

visualize the type of source, it is useful to plot the unit vectors of the source-type space in a 2-

dimensional figure using certain projections. A source with pure or dominant shear faulting is 

located near the origin of coordinates on a source-type plot. An explosion or implosion source is 

located at the top or bottom vertex of the plot, respectively. Motion on a pure tensile or 

compressive crack is plotted at the margin of the plot. Points along the CLVD axis correspond to 

faulting on non-planar faults, and points in the first and third quadrants of the plot correspond to 

shear-tensile sources. 

 

Figure 5: Hudson plot for representing moment tensors. See above text for explanation. 
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The Hudson plot can be used to visualize the decomposition of the moment tensor and see the 

relative proportions of the isotropic, DC, and CLVD elemental sources. The vertical axis of the 

chart represents the isotropic component, from -100% (implosion) to 100% (explosion). The 

horizontal axis represents the deviatoric decomposition, from +100% to -100% CLVD, with 

100% DC in the center (0% isotropic, 0% CLVD). The outer border of the chart is the 0% DC 

line. The chart (Figure 5) can be used to understand the relative proportions of the different 

elemental sources in a seismic event. 

 

 

 

 

 

 

 

 

 

 

 



16 
  

3. LITERATURE REVIEW 

3.1 Table 1: Summary of literature review of select key studies on the characterization of 

hydraulic fracture-induced seismicity at various length scales.  

 

Author Method (scale) Description 

Pyrak-Nolte 

et al., 1990 

Seismic transmission  

(lab) 

Seminal experiments on seismic 

transmission in dry and saturated fractured 

rock samples and influence on transmission 

coefficient and frequency spectra 

Pater et al., 

2001 

Seismic transmission 

(lab) 

Seismic transmission of lab scale sandstone 

sample post-fracturing to infer fracture 

extent by analyzing transmitted signal 

Figuiredo et 

al., 2013 

Seismic transmission 

(lab) 

Effect of aligned fractures on the frequency 

of transmitted waves in synthetic samples 

Damani et al., 

2012 

Scanning electron 

microscopy (lab) 

SEM analysis of stimulated reservoir 

volume of Tennessee sandstone in micro and 

nano meter scale post fracturing 

Bhoumick et 

al., 2017 

Acoustic emission (lab) Acoustic emission and shear wave 

transmission analysis of 6-inch samples both 

pre and post-fracturing 

Leggett et al., 

2022 

Distributed acoustic 

sensing (lab) 

Low-frequency DAS responses to 

propagating hydraulic fracture in lab scale 

plexiglass samples 



17 
  

Leggett et al., 

2022 

Distributed acoustic 

sensing (lab) 

Thermal effects DAS responses to 

propagating hydraulic fracture in lab scale 

plexiglass samples 

Kwatiek et al., 

2018 

Multi-modal sensing 

including active and 

passive seismic  

(meso) 

Meso-scale (~10m) experimentation that 

allows dense instrumentation including 

active and passive seismic and rock core 

analysis in mine at depth of ~ 120 m  

Ammann et 

al., 2018 

Multi-modal sensing 

including active and 

passive seismic (meso) 

Meso-scale (~10m) experimentation that 

allows dense instrumentation including 

active and passive seismic and rock core 

analysis at mine at depth of ~ 500 m 

Schoenball et 

al., 2019 

Multi-modal sensing 

including active and 

passive seismic 

(meso) 

Meso-scale (~10m) experimentation that 

allows dense instrumentation including 

active and passive seismic and rock core 

analysis at mine at depth of ~ 1500 m 

Neimz et al., 

2021 

Multi-modal sensing 

including active and 

passive seismic 

(meso) 

Low frequency seismic signals associated 

with hydraulic fracturing  

Boese et al., 

2022 

Multi-modal sensing 

including active and 

passive seismic 

(meso) 

Low frequency seismic signals associated 

with hydraulic fracturing  
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Liu et al., 

2020 

Distributed acoustic 

sensing (field) 

Stress and strain rate responses recorded by 

low frequency DAS for fracture propagation 

and fracture hit detection  

Liu et al, 2021 Distributed acoustic 

sensing (field) 

Algorithm and sensitivity analysis for 

hydraulic fracture width inversion from Low 

frequency DAS signals  

Majer et al., 

1997 

Cross-well seismic 

survey (field) 

Transmitter / receiver located in one or more 

of the wells to the seismically probe the 

region between two sensors. 

Warpinski et 

al., 2001 

Microseismicity (field) Geometric analysis of hydraulic fracturing 

induced microseismicity  

MacBeth, 

2002 

Seismic reflection (field) Multi-component analysis for fracture 

induced seismic anisotropy  

Burns et al., 

2007 

Seismic wave scattering 

(field) 

Seismic wave scattering for estimating 

fracture geometry in field scale 

Martinez-

Garzon et al., 

2017  

Microseismic (field) Analysis of moment tensors associated with 

fracturing-induced earthquakes in igneous 

and metamorphic rocks  

He and Duan, 

2019 

Microseismicity (field) Analysis of microseismic point clouds 

associated with fracture induced seismicity 

Szafranski 

and Duan, 

2022 

Microseismicity (field) Integrating machine learning and numerical 

simulation for analysis of microseismicity 
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Zhang et al., 

2019 

Microseismicity (field) Moment tensors associated with field scale 

hydraulic fracturing in shale rocks  

Chakravarty 

and Misra, 

2021 

Acoustic emission and 

seismic transmission 

(lab) 

Wavelet fusion-based data fusion of active 

and passive seismic measurements in lab 

scale fractured rock sample. 

Chakravarty 

et al., 2022 

Multi-modal sensing 

including active and 

passive seismic 

(meso) 

Low-frequency (2-80 Hz) seismic signal 

source location and correlation with 

microseismic and discrete fracture network. 

 

Liu et al., 

2021 

Software simulation 

(milimeter scale) 

Supervised classification of crack location 

and type using wavelet transform based 

features 

Liu et al., 

2022 

Software simulation 

(milimeter scale) 

Causal inference-based analysis of crack 

type and location using simulations  

Liu et al., 

2022 

Software simulation 

(milimeter scale) 

Supervised learning based on simulated 

signal analysis of multiple sensors for crack 

characterization 

Jin and Misra, 

2022 

Software simulation 

(milimeter scale) 

Modelling fatigue crack growth using 

reinforcement learning methods.  

 

The summary from Table 1 indicates that considerable research has been done in the field of 

fracture characterization at length scales ranging from laboratory (millimeter) to field 

(kilometer).  Majority of research is based on signals recorded on geophones. Recent advances in 
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the field of fiber optics and its commercialization have led to increased adoption of fiber optics 

for both research and commercial purposes. With fiber optics (DAS) the key quantity of interest 

is the strain field around the wellbore (at which the fiber optic cable is installed). Most of the 

conventional seismology related to seismic based fracture characterization is on reflection 

seismology. Relatively less focus is on transmission seismology, largely due to the increased 

complexity and increased cost of data acquisition.  

3.2 Table 2: Summary of literature review of application of unsupervised machine learning 

for seismological data analysis  

Author Dataset Description 

Holtzmann et al., 

2017 

Microseismic (field 

scale) 

Applied non-negative matrix 

factorization to extract features from a set of 

earthquakes recorded at a geothermal field 

and determined clusters which corresponded 

to distinct periods and rates of fluid injection 

Mousavi et al., 

2019 

Regional-scale 

earthquakes 

Used deep learning features based on 

earthquake spectrograms to distinguish 

between local and tele-seismic signals. 

Bolton et al., 

2019 

Acoustic emissions 

(lab scale) 

Applied clustering on statistical features of 

continuous acoustic emissions recorded 

during a laboratory-scale friction stick-slip 

experiment 
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Ross et al., 2020 Regional-scale 

earthquakes 

Showed an unsupervised method of 

estimating directivity large populations 

earthquakes, using frequency spectra. 

Directivity is focusing of wave energy along 

a discontinuity in the direction of rupture 

Watson et al., 

2020 

Volcano-induced 

seismicity 

Volcanic earthquake signals have been 

studied using machine learning to interpret 

the signals associated with different stages of 

eruptive cycles.  Time-domain and statistical 

features were reduced in dimension using 

principal component analysis and k-means 

clustering applied to assign labels. 

Johnson et al., 

2020 

Regional-scale 

seismicity 

Used the spectral characteristics of 

continuous geophone signal combined with 

k-Means clustering to determine five types 

of signals recorded over the San Jacinto 

fault. They concluded that the non-tectonic 

signals primarily consist of distinct type of 

noise. The area under study was isolated and 

thus recoded minimal anthropogenic signals. 

Chakravarty et 

al., 2021 

Lab scale shear 

wave transmission 

data 

Showed that machine learning methods can 

improve fracture imaging from 

measurements in laboratory-scale 
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experiments using acoustic emissions and 

ultrasonic transmission. 

Shi et al., 2021 Regional 

earthquakes 

Used array-signal processing features to 

obtain the covariance matrix-based features 

like entropy, coherency, and variance to 

determine clusters in the principal 

component space and showed that the 

clusters were well correlated to the temporal 

evolution of the events. 

Chakravarty et 

al., 2022 

Meso-scale (~ 10 m) 

fracturing-induced 

seismicity data 

Applied polarization analysis to three 

component accelerometer data to delineate 

different hydraulic fracture planes in a 

microseismic point cloud. 

 

The summary from Table 2 indicates that very limited research exists in the domain of 

unsupervised machine learning in seismology. Most of the work done in the domain of 

unsupervised learning in seismology is associated with phenomena occurring in regional or field 

(kilometer) scale where the researchers have benefit of well characterized field information and 

high signal to noise ratio. Specifically, no reference exists in the field of unsupervised machine 

learning pertaining to signals from hydraulic fracturing. Chakravarty et al., 2021 was in the 

authors opinion, the pioneering study in the field of unsupervised machine learning on seismic 

signals associated with hydraulic fracturing.  



23 
  

4. DESCRIPTION OF EXPERIMENTS AND DATA* 

Key points in this chapter: 

1. Three sets of experiments are considered in this dissertation, each of a characteristic 

length scale. The first is a laboratory scale hydraulic fracturing setup which measured acoustic 

emissions and wave transmission.  

2. The next experiment is a meso-scale (~ 10 m) hydraulic fracturing experiment conducted 

at depth of 1.5 kilometer. Accelerometer and hydrophone data are analyzed.  

3. The last set is a field (kilometer) scale hydraulic fracturing in Duvernay Shale formation. 

This research work analyses of data acquired from three separate experiments – all of which 

involve hydraulic fracturing. The length scale of the experiments spans six order of magnitude – 

ranging from millimeter-scale laboratory experiments to field scale hydrofracturing experiments. 

This section will cover the details of experimental setup and data acquisition.  

4.1 Laboratory scale uniaxial hydraulic fracturing setup  

This analysis is based on the measurements first reported by Bhoumick et al. (2017). 

Experiments were performed on two cylindrical Tennessee sandstone core blocks of dimensions: 

length 154 mm and diameter 152 mm. The schematic of the setup is shown in Figure 6. The 

plane containing the circular face of core block is termed the axial plane. The wellbore is 

designed perpendicular to axial plane. The two perpendicular planes containing the wellbore are 

 
* Reprinted with permission from “Visualization of hydraulic fracture using physics-informed clustering to process 

ultrasonic shear waves” by Chakravarty, A., Misra, S., and Rai, C. S., International Journal of Rock Mechanics and 

Mining Sciences, 137, 104568. Copyright 2021 by Elsevier.  
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termed as the frontal planes. The experimental parameters and sample details are summarized in 

Table 3. 

 

Figure 6: Schematic of transmitted shear waveform measurements in axial (left) and 

frontal (right) directions. Dotted lines in the right-side figure mark the portion of sample 

clipped to enable the scans. The irregular dotted contour in the figures is the expected 

outline of the primary hydraulic fracture. 

The first step is circumferential velocity analysis to measure the P-wave velocity that 

corresponds to the direction of velocity anisotropy. In the next step, shear transmission 

waveforms were measured along axial and frontal planes using seven source/receiver pairs, as  

Table 3: Experimental parameters associated with the laboratory scale setup 

Sample Name TSU6 TSU1 

Data Available SW 

transmission 

SW 

transmission 
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Acoustic 

emission 

X-ray CT 

Sample properties 
  

Length (mm) 154 NA 

Diameter (mm) 152 NA 

Porosity (%) 9.7 NA 

Permeability (mD) 13 NA 

Composition (wt %) Quartz/Clay is 

9:1 

Quartz/Clay is 

9:1 

Experimental 

parameters  

 
NA 

Stress (psi) 870 NA 

Injection rate (cc/min) 15 NA 

Fracturing fluid Water Water 

Breakdown pressure 

(psi) 

2764 NA 

Injection depth (mm) 80 NA 

Borehole Depth (mm) 83 NA 

shown in Figure 6. To ensure consistent sample-sensor contact between, the assembly is pressed 

on to the sample using air-driven actuators and honey is used as coupling medium. Before 

hydraulic stimulation, the transducers scan along the axial orientation of the sample (Fig. 6, left). 

The same scan is redone after fracturing. To facilitate shear wave transmission in the frontal 

orientation, flat surfaces are generated on the sample by clipping two portions of the sample of 
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length 0.5 inches from each side (Fig. 6, right).  

All the seven transducer pairs touch the sample when in axial orientation, while only five sensor 

receiver pairs touch the frontal plane. The scan is performed at 1mm intervals that results in 133 

measurement points along each of the two planes. Before fracturing, data is collected only in the 

axial orientation, and after fracturing data is collected for both axial and frontal directions. Two 

identical Tennessee sandstone samples, (TSU6 and TSU1) were analyzed in our study (Table 3). 

TSU6 has all the analyses described above but no X-ray tomography, and TSU1 only has axial 

transmission and acoustic emission and X-ray tomography.  

4.2 Meso-scale hydraulic fracturing setup  

The test site is the Sanford Underground Research Facility (SURF) located at Leads, South 

Dakota (Figure 7) located at a depth of 1500 meters. The data used in this analysis is from EGS 

Collab project (Schoenball et al., 2020). The setup comprises of six monitoring boreholes, one 

production and one injection wellbore. The monitoring boreholes contain active seismic sources, 

three-component accelerometers, hydrophones (pressure transducers), electrical resistivity 

probes, fiber optics - distributed temperature sensing (DTS), distributed strain sensing (DSS) and 

distributed acoustic sensing (DAS) and all instrumentation are cemented in place. On the 

injection well, notches were etched at target depths to encourage the fracture initiation from a 

well-defined location. Present analysis is on the data measured during the stimulation of a notch 

at depth of 50 m (from the wellhead) in the well E1-1 between 22 May and 24 May 2018. The 

experimental details are summarized in Table 4.  
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Figure 7: Location of the EGS Collab experiment 1 testbed at the Sanford Underground 

Research Facility in Leads, South Dakota. Facility structure and the layout of the injection 

well (green), production well (red) and monitoring boreholes. Passive seismicity measured 

during stimulation on the notch 50 m depth. 

The continuous passive seismic signal is recorded by a set of accelerometers and pressure 

transducers installed in six monitoring boreholes. The raw data recorded by the arrays consists of 

32-second-long continuous signals with a frequency of 100 kHz. There is a gap of 1.5 seconds 

between two sets of measurements. After removing artefacts associated with active seismic the 

signal is filtered between 3 kHz to 10 kHz to isolate the range of interest.  

Table 4: Hydraulic protocol associated with the EGS Collab experiment 22 May to 24 May  
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4.3 Field scale hydraulic stimulation setup 

The data analyzed in this study originates from Tony Creek dual Microseismic Experiment 

(ToC2Me) which is a research-oriented field test conducted by the University of Calgary 

between October and December 2016 (Zhang et al., 2019). The data analyzed comes from three 

component geophones (Trillium Compact) buried at depths of 27 meter. The broadband sensors 

have a flat frequency response between 20 second and 100 Hz and the sampling frequency is 500 

Hz. The data was collected from sensors and formatted into 60 second intervals in SEG2 file 

format. A sledgehammer source was used to calibrate the orientation of the three component 

geophones Individual events were detected using a cross correlation-based method (Eaton et al., 

2017). The raw data used in this study are the filtered microseismic events which have a high 

signal to noise ratio and an associated moment tensor. The schematic of the layout is shown in 

Figure 8. 
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Figure 8: Schematic of the field scale hydraulic stimulation setup in Duvernay shale, 

Canada. The exact location is proprietary and undisclosed. Black dots represent geophones 

buried at 27-meter depth and blue dots represent the passive seismicity. 
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5. DATA PROCESSING METHODS AND UNSUPERVISED MACHINE LEARNING 

WORKFLOWS* 

Key points in this chapter:  

1. Lab scale: feature extraction from time frequency (short time Fourier transform) of 

signals. Workflow for obtaining labels that indicate fracture damage.  

2. Meso-scale: Polarization feature extraction, clustering methods, clustering metrics, 

dimensionality reduction using UMAP, validation of UMAP representations using Wasserstein 

distances and Tau statistic. Low frequency signals source location. Filters for refining low 

frequency seismic source locations. 

5.1 Lab-Scale Experimental Data Processing  

In this study, the spectral energy density of the transmitted waveform was calculated using the 

coefficients of the short-time Fourier transform (STFT) spectrogram (examples of which are 

shown in Figure 9). To account for inconsistencies in identifying the first arrival of the stress 

wave that may be caused by scattering and reflection, the authors used the time of arrival of the 

first peak of the spectral energy as a surrogate. They also introduced a parameter called "J" to 

combine the effects of arrival time and transmission coefficient based on displacement-

discontinuity theory. The J parameter is calculated as the ratio of the transmission coefficient to 

the arrival time of the first peak of spectral energy. The J parameter is found to decrease as the 

 
* Reprinted with permission from “Visualization of hydraulic fracture using physics-informed clustering to process 

ultrasonic shear waves” by Chakravarty, A., Misra, S., and Rai, C. S., International Journal of Rock Mechanics and 

Mining Sciences, 137, 104568. Copyright 2021 by Elsevier.  
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specific stiffness of the fractures decreases, which is a direct indicator of the geomechanical 

alteration induced by hydraulic fracturing of the transmission zone. 

 

Figure 9: (Top) Schematic diagram of the displacement discontinuity model and the effect 

of fracture on the transmitted waveforms. (Bottom) Waveforms and corresponding short-

time Fourier Transform spectrograms for transmitted waves after interaction with varying 

levels of fracturing damage encountered along the travel path. 

To interpret the results of the clustering analysis, the authors assigned a geomechanical alteration 

index (GAI) to each cluster based on the median and range of J parameter values in the cluster. A 

GAI of 1 indicates the least alteration, which corresponds to high values of the J parameter, 

while progressively higher GAIs indicate higher levels of alteration represented by lower values 

of the J parameter. However, the authors caution that the J parameter should not be used on its 
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own to assess damage, because it does not consider the entire waveform, while the clustering 

analysis considers the entire waveform when grouping the data from different locations. 

The process for obtaining physically consistent geomechanical alteration indices is described in 

Figure 10 as follows: 

1. Transmitted shear wave signals are collected from samples before and after hydraulic 

fracturing. 

2. The short-time Fourier transform (STFT) of the transmitted shear waveform features is 

extracted and subject to scaling and dimensionality reduction. 

3. The processed data is input into a clustering method to identify clusters. 

4. The identified clusters are made statistically consistent by using cohesion, separation, and 

silhouette scores to determine the optimal number of clusters. 

5. The optimal clusters are assigned a physical meaning based on the J parameter, which 

combines the effects of arrival time and transmission coefficient based on displacement-

discontinuity theory. 

6. Geomechanical alteration indices (GAIs) are assigned to the clusters based on the median 

and range of J parameter values in the cluster, with a GAI of 1 indicating the least alteration and 

progressively higher GAIs indicating higher levels of alteration. 

 

 



33 
  

 
 

Figure 10:  Workflow for quantifying the spatial distribution of geomechanical alteration 

due to hydraulic fracturing. 

5.2 Meso-Scale Experiment Data Processing  

The Obspy package is a widely used open-source software library for processing and analyzing 

seismic data in Python. It provides a range of tools and functions for handling and manipulating 

seismic data, including tools for filtering, detection, and visualization, and has been used for 

seismic data processing in this section.  

Table 5: Hydraulic stimulation protocol under study for infrasound, stimulation carried 

out at the notch at 50-meter depth on the injection well E1-I.  
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The short-time-average (STA) is a measure of the average amplitude of a seismic signal over a 

short time period, typically a few tens of milliseconds. The long-term-average (LTA) is a 

measure of the average amplitude of a seismic signal over a long time period, typically a few 

seconds or longer. The STA/LTA filter compares the STA to the LTA and looks for instances 

where the STA exceeds the LTA by a certain threshold. This indicates the presence of an 

impulsive signal or "trigger." The length of the triggers, in this case 8 ms, is an important 

parameter that determines the sensitivity of the STA/LTA filter. A shorter trigger length will 

result in a higher sensitivity but may also result in more false positives. The margins at the start 

and end of the triggers are adjusted to maintain a uniform size for each trigger, which can help 

with the consistency and accuracy of the analysis. 
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Figure 11: X-component signal of different three-component accelerometers showing 

different sensitivity of each accelerometer.  OT16 has the highest signal to noise ratio.  

The signal-to-noise ratio (SNR) is a measure of the relative strength of a signal compared to the 

noise present in the data. It is defined as the ratio of the energy of the signal to the energy of the 

noise. A higher SNR indicates a stronger signal relative to the noise, which can make it easier to 

detect and analyze the signal. In this case, the SNR is being calculated for triggers identified 

using the STA/LTA filter. The SNR is calculated as the ratio of the energy of each trigger to the 

energy of a noise sample of the same length. The SNR values for the different accelerometers 

show that one of the accelerometers (OT16) has a significantly higher SNR compared to the 
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others (Figure 11 and 12). This may be due to a higher sensitivity to ground motion or better 

coupling with the ground, which can result in a stronger signal. As a result, the analysis is 

focused on the OT16 sensor. 

 

Figure 12: Difference in signal to noise ratio (SNR) of various accelerometers under 

consideration. The SNR of accelerometer OT16 is significantly higher than the other 

accelerometers. 

The hodogram is a scatter plot that shows the relationships between the three components of a 

seismic signal, typically the acceleration in the x, y, and z directions (Figure 13). It can be used 

to visualize the polarization of the signal and understand the source mechanism of the seismic 

event. To extract features from the hodograms, the first step is to compute the covariance matrix 

of the three-component trigger signal. The covariance matrix is a 3x3 matrix that describes the 

correlations between the different components of the signal. It is useful in this case because 
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scattering distortions and seismic noise are usually uncorrelated among the three components, 

which can help with the analysis of noisy signals.  

 

Figure 13: Hodograms of triggers from accelerometer OT-16. Cooler colors indicate early 

time and hotter colors indicate later times. 

The covariance matrix can be factorized to yield the eigenvalues and eigenvectors, which can be 

used to define various polarization parameters. The eigenvalues are typically represented as λ1, 

λ2, and λ3, and the eigenvectors are represented as u1, u2, and u3. These parameters can be used 
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to describe the orientation, shape, and size of the hodogram and provide insight into the source 

mechanism of the seismic event. 

Using the eigen values and vectors, polarization features can be defined as follows:  

Azimuth   = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑢21

𝑢11
) .......................................................................................................  (1) 

 

Incidence = 𝑎𝑟𝑐𝑐𝑜𝑠 (√𝑢11
2 + 𝑢21

2 𝑢31⁄ ) .................................................................................... (2) 

 

Rectilinearity = 1 − √
𝜆1

𝜆2
 ..........................................................................................................  (3) 

 

Planarity = 1 −
2𝜆3

𝜆1+𝜆2
  ............................................................................................................... (4) 

In summary, the process described involves using the STA/LTA filter to detect impulsive signals 

or "triggers" in a continuous stream of seismic data. Each trigger has a duration of 8 ms and 

consists of 800 timesteps of data. Four features are extracted from each trigger using the 

hodogram and the covariance matrix of the three-component acceleration data. These four 

features are then used as inputs for unsupervised learning. In this case, the data from May 22 was 

used, resulting in a feature matrix with 815 rows (one for each trigger) and four columns (one for 

each feature). The feature matrix is then scaled using MinMax scaling to optimize the 

performance of unsupervised methods. MinMax scaling is well suited for this type of data 

because the features are either bound between 0 and 1 or between -180 and +180. MinMax 

scaling scales the data to a fixed range, typically between 0 and 1, which can help with the 

consistency and accuracy of the analysis. 

5.3 Dimensionality Reduction: Uniform Manifold Approximation Projection  
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 Manifold learning is a type of machine learning that involves projecting high-dimensional data 

onto a lower-dimensional manifold or surface. It is often used when there are non-linear 

relationships within the data and the goal is to represent the distribution of the data in a lower-

dimensional space. The UMAP (Uniform Manifold Approximation and Projection) algorithm is 

a popular manifold learning method that can be used to project high-dimensional data onto a 

lower-dimensional manifold (McInnes et al., 2018). The main steps in the UMAP algorithm 

involve generating a graph of the data and finding a low-dimensional representation that 

optimizes an objective function. The main inputs for the algorithm include the target data for 

dimension reduction, the number of neighboring samples for localized approximation, the 

dimension of the reduced space, a layout control parameter (min-dist), and the number of 

optimization steps for the graph layout. The UMAP algorithm is based on a set of equations that 

govern the construction of the graph and the optimization of the objective function. These 

equations involve concepts such as the weights of the edges in the graph, the distances between 

data points, and the embedding of the data in the lower-dimensional space. Detailed descriptions 

of these equations and the mathematics behind the UMAP algorithm can be found in the original 

UMAP paper (McInnes et al., 2018). Key equations governing UMAP are as follows:  

𝑝𝑖|𝑗   =  𝑒
−(

𝑑(𝑥𝑖,𝑥𝑗)− 𝜌𝑖  

𝜎𝑖
)
 .......................................................................................................  (5) 

 

 .................................................................................................................... (6) 

 

 

 ...................................................................................... (7) 

  

𝑘 =  2(∑ 𝑝𝑖𝑗𝑖 ) 

𝑞𝑖𝑗 =  (1 + 𝑎(𝑦𝑖  −  𝑦𝑗)2𝑏)−1 
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....................... (8) 

 

Eq (5) describes an exponential probability distribution that is used to measure the distances 

between pairs of points in the high-dimensional feature space (X). The distance between the 

points (Y) is a function of the distance of the i-th data point from its nearest neighbor (ρ).  

Eq (6) defines the number of nearest neighbors (k) used in the UMAP algorithm. This value is 

used to construct a weighted k-neighbors graph of the data, which serves as the basis for the low-

dimensional representation.   

Eq (7) defines a family of curves that is used to model the distance probability in the low-

dimensional space. These curves are based on the distances between points in the high-

dimensional space and the number of nearest neighbors (k).  Eq (8) defines the binary cross 

entropy (CE) loss function, which is used to project the data from the high-dimensional space 

(X) onto the lower-dimensional manifold. The loss function helps to optimize the low-

dimensional representation of the data by minimizing the distance between the data points and 

their corresponding points on the manifold.  

It's important to note that the number of nearest neighbors and the minimum distance metric used 

in the UMAP algorithm are not based on the physical distances between the data points in three 

dimensions, but rather on the distances on the nearest-neighbor graph derived from the data 

using the UMAP algorithm. This allows the UMAP algorithm to capture the underlying structure 

and relationships within the data, even when the data is non-linear or has complex relationships. 

 

𝐶𝐸(𝑋, 𝑌) = ∑ ∑ [𝑝𝑖𝑗(𝑋) log (
𝑝𝑖𝑗(𝑋)

𝑞𝑖𝑗(𝑋)
) + (1 − 𝑝𝑖𝑗(𝑋)) log (

1 − 𝑝𝑖𝑗(𝑋)

1 − 𝑞𝑖𝑗(𝑌)
)]

𝑗𝑖
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5.4 Clustering Methods 

5.4.1 K-Means clustering  

K-Means clustering is a widely used unsupervised machine learning algorithm for dividing a 

dataset into a predefined number of clusters (Everitt et al., 2011). It works by iteratively 

assigning each data point to the closest cluster centroid and then updating the cluster centroids 

based on the mean of the points in the cluster. The main steps in the K-Means algorithm are: 

1. Initialize K cluster centroids randomly. 

2. Assign each data point to the closest cluster centroid. 

3. Update the cluster centroids to the mean of the points in the cluster. 

4. Repeat steps 2 and 3 until convergence is reached (i.e., the cluster centroids do not 

change significantly). 

The quality of the clustering solution is determined by the sum of the distances between the data 

points and their corresponding cluster centroids. The goal of the K-Means algorithm is to 

minimize this sum and obtain clusters that have minimum variance around the centroids. 

K-Means is a fast and efficient algorithm for clustering large datasets, but it can be sensitive to 

the initial choice of cluster centroids and may not always produce the optimal solution. It is also 

limited to identifying clusters that are spherical in shape and equally sized. 

5.4.2 Agglomerative clustering  

Agglomerative clustering is a type of hierarchical clustering algorithm that works by iteratively 

merging the closest pairs of clusters until all the data points are in a single cluster (Everitt et al., 

2011). It is a bottom-up approach, meaning that it starts by considering each data point as a 
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separate cluster and then progressively combines them into larger clusters. The main steps in 

agglomerative clustering are: 

1. Initialize each data point as a separate cluster. 

2. Calculate the distance between all pairs of clusters using a distance metric. 

3. Merge the two closest clusters. 

4. Update the distance matrix. 

5. Repeat steps 2-4 until all the data points are in a single cluster. 

The distance metric and linkage criteria used in agglomerative clustering determine how the 

clusters are merged and grouped. The most common distance metrics are Euclidean distance, 

Manhattan distance, and Cosine similarity, and the most common linkage criteria are single-

linkage, complete-linkage, and average-linkage. Agglomerative clustering is a flexible method 

that can identify clusters of different shapes and sizes, but it can be computationally expensive 

for large datasets. 

5.4.3 DBSCAN  

DBSCAN (Density-based Spatial Clustering of Applications with Noise) is a density-based 

clustering algorithm that is used to identify clusters in a dataset (Everitt et al., 2011). It works by 

identifying dense regions in the feature space and marking the points within these regions as 

belonging to the same cluster. Points that lie in low-density regions are marked as noise. The 

steps in DBSCAN are: 

1. Choose a point at random from the dataset and determine its density. 
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2. If the point is in a dense region, it is marked as a core point. All other points in the same 

region are also marked as core points. 

3. All points that are reachable from the core points (i.e., within a certain distance, known as 

the Eps value) are added to the same cluster. 

4. Repeat steps 1-3 until all points have been processed. 

DBSCAN has two main parameters: Eps and MinPts. Eps is the maximum distance between two 

points to be considered in the same cluster, and MinPts is the minimum number of points 

required to form a cluster. DBSCAN is well suited for identifying clusters of different shapes and 

sizes, and it can handle datasets with noise and outliers. It does not require the user to specify the 

number of clusters in advance, but it can be sensitive to the choice of Eps and MinPts values. 

5.4.4 Mean Shift clustering  

Mean shift clustering is a non-parametric, unsupervised machine learning algorithm that is used 

to identify clusters in a dataset (Everitt et al., 2011). It works by shifting the data points towards 

the mean of the points in their local neighborhood until convergence is reached. The points that 

end up at the same location after the mean shift process become part of the same cluster. The 

mean shift algorithm has several parameters that can be adjusted to influence the clustering 

process. These include the kernel function (which determines the shape of the local 

neighborhood around each data point), the bandwidth (which controls the size of the 

neighborhood), and the convergence threshold (which determines when the mean shift process is 

complete). Mean shift clustering is well suited for data that is non-linearly distributed and has 

multiple modes (or clusters) in the feature space. 
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5.5 Clustering Metrics  

5.5.1 Silhouette score  

The silhouette score is a measure of the quality of a clustering solution (Rousseeuw, 1987). It is 

based on the concept of cohesion, which refers to the similarity of the data points within a 

cluster, and separation, which refers to the distance between different clusters. The silhouette 

score for a data point (s of datapoint i) is defined as the difference between the mean distance to 

the other points in the same cluster (a(i)) and the mean distance to the points in the nearest 

cluster (b(i)), divided by the maximum of these two values. Silhouette score is defined as: 

                                          ........................................................................................................  (8)                                                

 

Cohesion is defined as the mean dissimilarity of the data point i with all other points in the same 

cluster. Low cohesion correlates with low values of intra-cluster distance a. Separation is the 

lowest mean dissimilarity of a data point i to other points in the clusters to which the datapoint i 

does not belong. High separation corresponds to high values of mean nearest cluster distance b. 

For every data point i, the intra-cluster distance is denoted as a and the mean nearest cluster 

distance is denoted as b. An effective cluster has high separation and low cohesion for each sample 

and consequently a high silhouette score. To ensure the statistical consistency of the clusters, it is 

important to determine the optimal number of clusters using a clustering method. The silhouette 

score can be used to evaluate the quality of a clustering solution and identify the optimal number 

of clusters. An effective clustering should have low cohesion and high separation, which will result 

in a high silhouette score. The silhouette score can be used to compare different clustering solutions 

and select the one with the highest score, which will generally correspond to the optimal number 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max (𝑏(𝑖),  𝑎(𝑖))
 



45 
  

of clusters. Figure 14 below outlines the workflow for part 1 of Meso-scale seismicity analysis that 

aims to delineate the distinct fracture planes starting from the unlabeled microseismic point cloud. 

 

Figure 14: Unsupervised learning workflow from continuous passive seismic data  

5.5.2 Calinski-Harabasz Index  

The Calinski-Harabasz index, also known as the variance ratio criterion, is a measure of the 

quality of a clustering solution (Everitt et al., 2011). It is based on the ratio of the sum of 

between-cluster dispersion to the sum of inter-cluster dispersion for all clusters. Between-cluster 

dispersion refers to the variance within each cluster, while inter-cluster dispersion refers to the 

variance between the clusters. The Calinski-Harabasz (CH) index is calculated as: 
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Calinski-Harabasz index = 
𝐵(𝑘−1)

𝑊(𝑛−𝑘)
 ........................................................................................ (9) 

where B is the sum of between-cluster dispersion, k is the number of clusters, W is the sum of 

inter-cluster dispersion, and n is the total number of data points. The higher the Calinski-

Harabasz index, the better the performance of the clustering solution. This measure can be used 

to compare different clustering solutions and identify the one with the highest index, which will 

generally correspond to the optimal number of clusters.  

5.6 Calculating Distances Between Clusters of Different Sizes Using Wasserstein Distance 

The Wasserstein distance, also known as the earth mover's distance, is a measure of the distance 

between two probability distributions (Ni et al., 2009). It is based on the idea of moving mass 

from one distribution to another, with the cost of moving each unit of mass equal to the distance 

it needs to be moved. The Wasserstein distance is defined as the minimum cost of moving mass 

from one distribution to the other. The Wasserstein distance is a popular measure in machine 

learning and data analysis because it can capture the underlying structure of the distributions, 

even when the distributions are very different. It is often used in image processing and natural 

language processing applications to measure the similarity between two distributions, such as the 

distributions of pixel intensities in an image or the distribution of word frequencies in a 

document. The Wasserstein distance can be expressed as follows:  

Let u1 and u2 be probability measures and their cumulative distribution functions be F1(x) and 

F2(x). Optimal transport preserves the order of probability mass elements, so the mass at quantile 

q of u1 moves to quantile q of u2. The p-Wasserstein distance between u1 and u2 is expressed as  
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 ........................................................................ (10)  

 

where 𝐹1
−1 and 𝐹2

−1 are the quantile functions (inverse cumulative distribution function). When 

p= 1, the formula becomes  

 .................................................................................... (11) 

The Wasserstein distance (Wp) has several desirable properties, such as being able to handle 

discontinuities and outliers, and being able to capture subtle differences between distributions. It 

is also a metric, meaning that it satisfies the triangle inequality, which makes it well suited for 

use in clustering and classification tasks. 

5.7 Quantifying Order of Distances Between Cluster Pairs Using Kendall-Tau Statistic  

Concordant/discordant pairs can be defined as following: for two sets X and Y, if Xi > Xj given 

Yi>Yj for every i and j, then pairs are said to be concordant, else discordant. 

The Kendall-Tau statistic is a measure of the ordinal association between two variables (Kendall, 

1970). It is based on the concept of concordance, which refers to the degree to which the 

variables are ranked in the same order. The Kendall-Tau statistic is defined as the number of 

pairs of observations (x, y) for which x is ranked higher than y in one variable and y is ranked 

higher than x in the other variable, divided by the total number of pairs of observations.  

The Kendall-Tau statistic is a non-parametric measure that is often used to evaluate the strength 

of an ordinal relationship between two variables (Kendall, 1970). It is particularly useful when 

the data is not normally distributed or when the relationship between the variables is not linear. 

The Kendall-Tau statistic can take on values between -1 and 1, with values close to 1 indicating a 

𝑊𝑝(𝑢1,  𝑢2) = (∫ | 𝐹1
−1(𝑞) −  𝐹2

−1(𝑞)|𝑝
1

0

)1/𝑝 

𝑊𝑝(𝑢1,  𝑢2) =  ∫|𝐹1(𝑥) −  𝐹2(𝑥)|𝑑𝑥 
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strong ordinal relationship between the variables, and values close to -1 indicating a strong 

inverse ordinal relationship. A value of 0 indicates no ordinal relationship between the variables. 

 The Kendall-Tau statistic is widely used in statistics and data analysis to evaluate the strength of 

an ordinal relationship between two variables. It is a robust measure that is not sensitive to the 

distribution of the data and can handle missing values. The tau statistic, τ [Kendall, 1970] is 

defined as the difference of concordant and discordant pairs to the total number of pairs.  

 

 .........................................................................................  (12) 

 

All pairs perfectly concordant, tau statistic = 1; All pair perfectly discordant, tau statistic = -1 

Figure z below summarizes the part 2 workflow based on UMAP that attempts to refine the 

representation learning by optimizing model hyperparameters and correspondence with input 

data. 

 

τ=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠
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Figure 15: Workflow for UMAP-based representation learning from microseismic data. 

5.8 Mesoscale Infrasound Processing and Source Location  

To locate the source of emergent signals, such as tremor, a cross-correlation based grid search 

approach is used (Wech and Creager, 2008). This involves comparing the observed travel time 

lag, calculated from the cross-correlation of signals from different stations, with the calculated 

theoretical time lag between the stations using an input velocity model. The workflow is outlined 

in Figure 15. The source location is determined as the grid node with the minimum misfit 

between the observed and calculated time lags. The input for the algorithm includes hydrophone 

signals, a grid (as presented in Figure 16), and a velocity model. The grid is defined based on the 

extent of the hydrophone network, with an extension of 30% in both directions. The velocity 

model used is an isotropic velocity of 5.5 km/second for the compressional wave. The window 

length and overlap are important parameters in this process, and a window length of 1 second 
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with a 0.5 second overlap is used. The duration of the emergent signals is difficult to determine 

accurately due to uncertainty in detecting the first arrivals. To estimate the pulse duration, the 

STA-LTA filter is applied to a sample of hydrophone data, and an average value of one second is 

obtained as the pulse duration of the infrasound signals. This information is used to set the 

window length and overlap for the analysis. 

 

Figure 16: Grid for the cross correlation-based infrasound location workflow.  

5.8.1 Postprocessing Steps on the Grid Search Output 

To improve the accuracy of the cross correlation-based grid search location technique described 

in the paper, which is data-driven, filters are applied to remove false positives from the results. 

The filtering process includes the following steps: 
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1. To remove false positives from the results of the location technique, two filters are 

applied based on the normalized cross-correlation (CC) coefficient. The first filter removes 

signals with extremely high CC coefficients, which are likely to be correlated noise. The upper 

bound for this filter is set at 0.95. The second filter removes signals with very low CC 

coefficients, which are likely to be uncorrelated noise. The lower bound for this filter is set at 

0.6. Windows with CC coefficients outside of these bounds are discarded to improve the 

accuracy of the location technique. This helps to eliminate false positives that may be caused by 

correlated noise or uncorrelated noise in the data. 

2. The second filter applied to remove false positives from the location technique is based 

on the array beam power (Kvaerna and Doornbos, 1985). The relative power of the hydrophone 

array is calculated using the same window lengths and overlaps as used in the location algorithm. 

The resulting timestamps are then compared to the timestamps produced by the grid search-

based location. Locations that have a normalized beam power lower than the noise floor of the 

beamforming output are discarded. A threshold value of 0.03 is used to effectively differentiate 

between located and non-located timestamps. This helps to remove locations that may have a 

relative power lower than the noise floor, which may be false positives. The differences between 

the beam power of the retained and discarded timestamps are shown in Figure 19. 

3. The third filter applied to remove false positives from the location technique is based on 

bootstrapping. For each timestep, 20 iterations are performed using the cross-correlation-based 

locations. In each iteration, 5% of the cross correlograms are randomly removed and the 

resulting scatter is used as a measure of location uncertainty. The data points with the highest 

10% of scatter values are discarded (Figure 20). These points represent locations showing the 

most scatter in the determined locations and are likely to be false positives.  
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4. The final filter applied to remove false positives from the location technique is based on 

the misfits obtained in the grid search algorithm. The misfit is defined as the difference between 

the maximum normalized cross-correlation function and the cross-correlation function 

corresponding to the located grid node. A large misfit indicates weak support from the modeled 

time lag (derived from the cross correlation) with the observed time lag. 50% of the data 

showing the highest misfit values is discarded. Despite losing half the data, the spatial coverage 

of the source locations shows little change, demonstrating the effectiveness of the misfit filter 

(Figure 21 and 22). This filter helps to improve the accuracy of the location technique by 

removing locations with high misfits, which may be false positives. 

 

Figure 17: Relative orientation of wells E1-OT (yellow circle) and E1-PDB (pink circle) 

microseismic cloud with the injection and production wells in green and red respectively. 
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Figure 18: Histogram of infrasound pulse durations for 24 May hydrophone OT-03  

obtained by applying STA LTA filter. 
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Figure 20: Horizontal scattering obtained from station bootstrapping, shown here for 24 

May. The highest 10% of scattered values are discarded. 

 

 

 

 



56 
  

 

 F
ig

u
re

 2
1
: 

H
is

to
g
ra

m
s 

o
f 

m
is

fi
t 

v
a
lu

es
 o

b
ta

in
ed

 f
o
r 

2
4
, 

2
5
p

1
 a

n
d

 2
5

p
2
 e

x
p

er
im

en
ts

 (
le

ft
, 

ce
n

te
r,

 a
n

d
 r

ig
h

t 
re

sp
ec

ti
v
el

y
).

 B
lu

e 
b

a
rs

 r
ep

re
se

n
t 

a
ll

 m
is

fi
t 

v
a
lu

es
 a

n
d

 o
ra

n
g
e 

b
a
rs

 r
ep

re
se

n
t 

d
a
ta

 w
it

h
 5

0
%

 o
f 

h
ig

h
es

t 
m

is
fi

t 
v
a
lu

es
 r

em
o
v
ed

. 

 



57 
  

 

 

F
ig

u
re

 2
2
: 

E
ff

ec
t 

o
f 

a
p

p
ly

in
g
 t

h
e 

m
is

fi
t 

fi
lt

er
 f

o
r 

in
fr

a
so

u
n

d
 l

o
ca

ti
o
n

s.
 P

re
 a

n
d

 p
o
st

 f
il

te
re

d
 d

a
ta

 s
h

o
w

n
 i

n
 

re
d

 a
n

d
 g

re
en

 r
es

p
ec

ti
v
el

y
. 
X

-a
x
is

 d
en

o
te

s 
ea

st
in

g
 a

n
d

 Y
-a

x
is

 n
o
rt

h
in

g
 d

ir
ec

ti
o
n

s 
in

 t
h

e 
g
ri

d
. 

 



58 
  

5.9 Semi Supervised Learning: Label Propagation  

In semi-supervised learning, a machine learning algorithm is trained on a dataset that is a mixture 

of labeled and unlabeled data. The algorithm can use both types of data to make predictions. This 

can be useful when it is expensive or time-consuming to label a large dataset, as is often the case 

in natural language processing and computer vision tasks. 

Semi-supervised learning is a type of supervised learning because the algorithm is still being 

trained to make predictions based on input data. However, it is "semi" supervised because it does 

not require as much labeled data as traditional supervised learning algorithms. This can make it a 

useful approach when labeled data is scarce.  There are several techniques that can be used for 

semi-supervised learning, including self-training, co-training, and multi-view learning. (Dunham 

et al., 2020) 

Label propagation on graphs is a technique for semi-supervised learning that can be used when 

the data points can be represented as a graph, with the edges between the points representing 

relationships between the points. The technique involves starting with a small number of labeled 

data points and propagating the labels to the unlabeled points by "smoothing" the labels across 

the edges of the graph. The process of label propagation involves iteratively updating the labels 

of the unlabeled points based on the labels of their neighbors. The labels of the unlabeled points 

are updated in such a way as to minimize the overall error in the labels of the entire graph. This 

process is repeated until the labels of the unlabeled points converge or until a maximum number 

of iterations is reached (Dunham et al., 2020). The specifics are outlined as follows:  

1. It formulates the dataset X as a fully connected graph of n = l + u nodes (l = labelled, u = 

non-labelled) where each node corresponds to a data point in X. Y is the vector representing data 
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labels. 

2.  The edges connecting each pair of nodes have weights w
i,j

, where w
i,j 

=  f(x
i
, x

j
) where f 

is the kernel function that gauges the proximity between a pair of data points.  

3.  If defines the extent to which two data points are like each other. This reflects the 

method’s central idea that points closer to each other should have similar labels.  

4.  In label propagation, the probabilities Y are updated using a transition matrix with the 

rule T(t+1) = TY(t) at the t
th

 iteration.  

5. Every transition matrix element T
ij
 ∝ w

ij
 indicates the probability that the node j will be 

assigned the value Y
i 
of the node i. 

Label propagation is a simple and effective technique for semi-supervised learning, and it has 

been successfully applied to a variety of tasks, including image classification and text 

classification. Label propagation is a probabilistic method and the uncertainty in the final labels 

obtained for a node can be quantified in terms of probability score.  

The core information provided from microseismicity are the hypocenter locations. The locations 

the primary input for interpretation of conductive pathways for material transport in subsurface – 

for fluid flow between reservoir and production well in case of oil/gas or permeable pathways 

between injection and production well in case of geothermal resources. There is high uncertainty 

in the hypocenter locations due to the highly anisotropic nature of the subsurface, and the limited 

signal quality of signal. Additionally, the assignment of reliable fracture labels is possible only 

for a small percentage of events because of only a few events have sufficiently high signal to 

noise, and/or are favorably located for unambiguous assignment. For a large proportion of 

events, however, the assignment is ambiguous, and prone to variability due to interpreter bias. 
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Semi-supervised learning is the branch of machine learning focused on learning from small 

number of labelled data and massive number of unlabeled data – and therefore a strong fit for 

solving the problem. In the proposed approach two streams of readily available input data are 

considered: rough approximations of locations and the three-component geophone signal, as 

outlined in Figure 23. The data-driven workflow minimizes the human-induced bias related with 

associating fracture labels to microseismicity. By utilizing a rare dataset which has high number 

of events that are reliably associated with fracture planes, the data-driven method will be refined. 

As a result, the final product will be a generalizable, scalable workflow which can be applied to 

different length scales ranging from decameter scale experiments to km-scale field scale 

operations. Such a workflow can be useful in drilling optimization, well completions, or any 

other operations which requires good knowledge about the hydraulic fracture extent.  

 

Figure 23: Workflow for semi supervised label propagation of meso scale Collab 

microseismic dataset. 
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5.9.1 Data description  

Input features: three component Fourier transform spectra of microearthquake signals recorded at 

sensor OT-16. Target label: Fracture labels assigned to microseismic point cloud. 

5.9.2 Workflow 1: Hyperparameter optimization for label propagation algorithm   

The dataset is divided into training and testing sets with training set ratio of 0.3 and testing set 

size ratio of 0.7 and the splitting was stratified based on target labels. The key hyperparameter 

for label propagation algorithm are the kernel types and their respective sizes. The two kernel 

types are 1. K-nearest neighbor (‘KNN) and kernel size corresponding to the number of 

neighbors and 2. Radial basis function (‘RBF) and the corresponding kernel size being ‘gamma’. 

The gamma parameter defines how far the influence of a single training example reaches, with 

low values meaning 'far' and high values meaning 'close'. In each run either the RBF or the KNN 

kernel was chosen. The number of neighbors was varied as 2, 4, 7, 10, 15 and 20. 20 iterations 

were performed for each hyperparameter value, and the performance of label propagation 

algorithm was determined based on the average recall score of all fracture labels in the testing 

set.  The performance of the label propagation algorithm was quantified on the recall score of the 

testing set. For KNN kernel, the highest recall score was achieved with number of neighbors =15 

and for RBF kernel the highest recall was achieved with gamma =10. Overall, KNN kernel (with 

nn = 15) performed marginally better than RBF kernel (with gamma = 10) and was therefore 

chosen for subsequent analysis. 

5.9.3 Workflow 2: Determining training data size on performance of label propagation.  

This workflow is designed to answer the following questions: what is the smallest amount of 

training data which can yield good performance for a fixed about of testing data using label 
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propagation for the given microseismic dataset.  

To this end, the testing data size was fixed at 0.6 and the training data size was varied between 

0.05 to 0.4. the splitting was stratified based on the target variable. The label propagation was 

performed using KNN kernel with number of neighbors equal to 15. The performance was 

quantified based on the precision and recall values obtained for the testing set for each fracture 

label.  

5.9.4 Workflow 3: Effect of locational error on performance of label propagation  

 

 
 

Figure 24: Absolute value of Displacement between final and rough estimate of 

microseismic locations in northing (left), easting (center) and depth (right) directions for 

EGS collab experiment 1 dataset. 

The displacement between the rough estimate and the final position of each point in the 

microseismic cloud is used to calculate the mean and standard deviation in each direction. The 

histograms of the displacements in northing, easting and depth are shown in Figure 24. the 

standard deviation is calculated in each direction from this distribution. To introduce noise in the 
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locations, the standard deviation is multiplied by a factor, termed here as the ‘Sigma multiplier 

factor’ and added to the point. The sigma multiplier is varied from 0 to 3. Multiplier factor of 1 

implies that one standard deviation error is added to the original location in each direction. A 

visualization for the locational error is shown in Figure 25. These locations, along with the three 

component signal spectra as used as input features for the UMAP-based dimension reduction. 

The reduced dimension embeddings obtained from UMAP are the dataset on which label 

propagation is performed.  For a given sigma multiplication factor, the dataset is split into 0.1 

training and 0.9 ratio and stratified based on the target variable. The label propagation algorithm 

is applied using knn kernel type and number of neighbors equal to 15. The performance for 

individual fracture plane (target label) is quantified based on the precision and recall obtained on 

the testing set. 

 

Figure 25: Microseismic locations, blue points indicate actual locations and orange points 

indicate points with added locational error based on standard deviation calculated between 

final locations and initial location estimates. (Left) case when multiplier factor =0.5 

meaning orange points have half standard deviation error and (right) case when multiplier 

= 2 (twice standard deviation). 

5.10 Relationship Between Geomechanical Deformation and Recorded Seismic Motion in 

Field Scale Hydraulic Fracturing Induced Seismicity  



64 
  

Conventional approaches of microseismicity interpretation are usually limited to spatial extend 

of the hypocenter locations. The effective drainage volume in case of hydrocarbon reservoirs or 

the effective heat exchange volume in case of geothermal reservoirs- is estimated on grounds of 

binning or shrink wrapping (Chakravarty & Misra et al., 2022) of the microseismic cloud. In this 

process however, no differentiation is made between different types of microseismic events. It is 

well understood that the mode of rock deformation reflects differences in the moment tensor of 

the seismicity (Martínez-Garzón et al., 2017). The specific mode of rock deformation during 

hydraulic fracturing manifests as differences in the radiation pattern of the corresponding 

seismicity. The signatures of the radiation pattern in turn manifest as differences in the moment 

tensor of the seismic event. It is established that certain classes of moment tensors like ISO and 

CLVD are more strongly correlated with the permeability enhancement compared than other 

classes (like DC) (Martínez-Garzón et al., 2017).  

 

Figure 26: Workflow for establishing data-driven link between full waveform signal, 

moment tensor and fracture planes in field scale Duvernay shale microseismic dataset. 
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The joint analysis of moment tensors, spatial distribution of microseismicity and corresponding 

three component signal properties during hydraulic fracturing is therefore an important yet 

unexplored avenue of research. The absence of a well-defined analytical method for such 

analysis, and the presence of massive amounts of structured data makes this problem a strong 

candidate for applying machine learning methods. The outcomes of the proposed workflow 

(Figure 26) will deepen our understanding of the relationship between microseismicity and 

classes of subsurface rock deformation during hydraulic fracturing operations. While earlier it 

was limited to the spatial density of microseismic locations. It will reveal the contribution of 

different event classes to permeability enhancement, thereby enabling the usage of 

microseismicity to obtain a clearer picture of the subsurface conductive pathways. 
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6. RESULTS AND CONCLUSIONS* 

6.1 Lab Scale Analysis  

The first part of results addresses the following question:  

“How to discover generalizable and physically relevant signatures of fracturing by analyzing the 

wave-transmission and microseismic-emission measurements using clustering methods?” 

The key takeaways from this part of results are as follows:  

1.  The workflow preempts the need for picking arrival time of seismic waves; thereby, 

reducing the uncertainty associated with sonic/wave data analysis.  

2.  The energy and time-frequency contents of the waveforms are used to cluster the 

multipoint ultrasonic measurements. Following that, the tenets of the experimentally proven 

displacement discontinuity theory are applied ascribe physical meaning to the clusters by 

converting them into a geomechanical alteration index, which proves to be a robust measure of 

the hydraulic fracturing induced geomechanical alteration. 

3.  The results of the proposed workflow agree favorably with independent measurements 

from acoustic emission and X-ray computed tomography. The STFT of a waveform can 

accurately capture changes in the frequency, duration, and energy of a wave as it passes through 

a discontinuity. This is demonstrated by the difference in STFT-derived features of waveforms 

traveling through intact and fractured materials, as shown in a principal component space plot 

 
* Reprinted with permission from “Visualization of hydraulic fracture using physics-informed clustering to process 

ultrasonic shear waves” by Chakravarty, A., Misra, S., and Rai, C. S., International Journal of Rock Mechanics and 

Mining Sciences, 137, 104568. Copyright 2021 by Elsevier. Reprinted with permission from “Unsupervised learning 

from three-component accelerometer data to monitor the spatiotemporal evolution of meso-scale hydraulic 

fractures” by Chakravarty, A. and Misra, S., International Journal of Rock Mechanics and Mining Sciences, 151, 

105046. Copyright 2022 by Elsevier.  
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(Figure 27). The proposed method of feature extraction can effectively distinguish between 

waveforms that have passed through intact and fractured materials. 

 

Figure 27: Projection of STFT-derived features from pre-fracture (blue shades) and post-

fracture (red shades) in principal component space, projected in first (PC1) and second 

(PC2) principal components. The different shades of a color correspond to different 

transducers. This is evidence that STFT features in the principal component space can 

distinguish between shear transmission signals traveling through fractured material versus 

those through intact material.  

 

Table 6 compares the mean silhouette scores of different clustering methods for different 

numbers of clusters. The table helps to identify the optimal clustering method and the number of 

clusters that will produce the most reliable results. In the current dataset, K-Means clustering has 

the highest silhouette scores, while Agglomerative clustering has slightly lower scores and tends 
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to be more computationally intensive. DBSCAN performs poorly when there are more than 2 

clusters because the density of the data is concentrated in two main areas, beyond which the 

algorithm's effectiveness drops significantly (Table 6). 

Table 6: Silhouette scores of various clustering methods for different cluster numbers 

obtained by processing the shear-waveform measurements after physically relevant feature 

extraction. The light grey filled boxes indicate the extremely poor clustering results, while 

the dark grey filled boxes indicate decent clustering performance. 

Orientation Number of 

Clusters 

DBSCAN 

 

K-Means Agglomerative 

Axial Plane 2 0.49 0.55 0.51 

3 -0.15 0.56 0.47 

4 -0.13 0.56 0.52 

5 -0.15 0.29 0.34 

6 -0.17 0.28 0.16 

First Frontal Plane 

(wave transmission 

perpendicular to 

fracture) 

2 -0.25 0.43 0.41 

3 -0.27 0.26 0.24 

4 -0.29 0.25 0.25 

5 -0.29 0.25 0.26 

6 -0.29 0.13 0.11 

Second Frontal 

Plane 

(wave transmission 

parallel to fracture) 

2 -0.23 0.75 0.75 

3 -0.30 0.71 0.73 

4 -0.33 0.24 0.22 

5 -0.34 0.26 0.23 

6 -0.34 0.21 0.22 

Figure 28 uses violin plots to show the reliability and uncertainty of the clustering results as 

measured by the J parameter. These plots are used to determine the optimal method and number 
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of clusters, as well as to understand the physical meaning of each cluster. The plots visualize the 

distribution of each cluster as a function of the J parameter, with the middle horizontal line 

indicating the median value and the horizontal lines at the ends representing the 95th percentile. 

A robust clustering should have a clear separation between the 95th percentile values of different 

clusters, with minimal overlap between their spread in terms of the J parameter.  
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By comparing the silhouette scores, median values, and 95th percentile values of the J parameter 

for various numbers of clusters and clustering methods (i.e., by considering both Figure 28 and 

Table 6), the optimal number of clusters is determined to be 4, 3, and 4 for the axial, frontal 

(perpendicular), and frontal (parallel) orientations, respectively. Among these clusters, Cluster 1 

is the least robust in the axial and second frontal planes because it contains a small number of 

samples, while Clusters 3 and 4 in the axial plane are very similar but distinct from the other 

clusters. Cluster 4 in the second frontal plane is the most robust, followed by Cluster 3 in the first 

frontal plane. In general, the proposed method of feature extraction and physics-informed 

unsupervised approach is more effective at detecting areas with higher levels of geomechanical 

alteration. Figure 29 illustrates the output of the workflow for different orientations of sample 

TSU6, with hotter colors representing higher levels of geomechanical alteration. In the axial 

orientation, the damage is concentrated in the center plane of the sample, with the elongated 

region of red color representing the fracture length and thickness. The area with the highest GAI 

(geomechanical alteration index) coincides with the region of highest acoustic emission density. 

In the frontal plane with transmission parallel to the fracture, most of the alteration is found at 

the center of the sample, with the damage extending towards the lower right where there is a 

fracture outcrop on the surface. There is a high overlap between areas of high alteration and high 

acoustic emission density. In the frontal plane with transmission perpendicular to the fracture, 

the maximum alteration is found in the upper half of the sample, corresponding to the fracture 

width. There is also significant alteration in the lower right region, but this is not due to 

fracturing but rather to improper coupling between the sample and the transducers.  
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6.1.1 Assumptions and Limitations of presented workflow 

 

There are a few limitations to using transmission measurements, such as: 

1. Higher cost of deployment at the field scale because it is more difficult to place receivers 

to collect transmission data. 

2. Reflection data is better for obtaining a 3D description of embedded structures, while 

transmission data is more suited for 2D characterization along the travel path. 

3. Geological materials often have a high attenuation coefficient, which limits the use of 

higher frequencies and therefore the resolution of transmission measurements. 

The current study also has some limitations: 

1. The fracturing-induced alteration can only be visualized in 2D for the axial and two 

frontal planes. 

2. The effects of the borehole on ultrasonic wave transmission have not been fully 

considered. 

3. The effects of sample boundaries on wave transmission have not been fully incorporated 

into the proposed workflow. 

When analyzing transmission data, any area of improper contact between the sample and 

transducer will show a high geomechanical alteration index. 

6.1.2 Conclusions 

1. This study employed a method that utilizes physically-relevant feature extraction and 

physics-based unsupervised learning to non-invasively show the changes in geological material 

caused by hydraulic fracturing. This approach eliminates the need for determining the arrival 
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time of stress waves, thus decreasing uncertainty in sonic/wave data analysis. The ultrasonic 

wavelength is on the same scale as mechanical discontinuities, so the proposed method does not 

rely on the effective medium theory. Instead, the energy and time-frequency aspects of the 

waveforms are utilized to group the ultrasonic shear-wave transmission measurements 

(Chakravarty et al., 2021) 

2. This study applies the principles of the experimentally-verified displacement 

discontinuity theory to give physical significance to the clusters by converting them into a 

geomechanical alteration index, which serves as a reliable measure of changes caused by 

hydraulic fracturing. The non-invasive visualizations are consistent with measurements made 

using acoustic emission and X-ray computed tomography. Techniques such as short-time Fourier 

transform spectrogram, wave-transmission coefficient, silhouette score based on separation and 

cohesion, and dimensionality reduction were used to achieve the desired non-invasive 

visualization of the geomechanical alteration caused by hydraulic fracturing. 

3. Propagation through fractures causes two notable changes: a decrease in transmission 

coefficient and an increase in the phase arrival time of the wave (slowness increases). The study 

uses whole signal waveform features as inputs for clustering and obtains clusters that do not have 

physical significance. These clusters are given physical meaning by defining a parameter (J) that 

accounts for the two physical changes. This parameter serves as a proxy for the mechanical 

alteration caused by cracks in the material. To spatially map the geomechanical alteration index, 

the clusters identified using the clustering method are first made statistically consistent using 

cohesion, separation, and silhouette score to determine the optimal number of clusters; then, the 

optimal clusters are assigned physical meaning based on the newly developed J parameter. 

Overall, the proposed method of physically relevant feature extraction and physics-informed 
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unsupervised learning is more effective in detecting regions that have undergone greater 

geomechanical alteration (Chakravarty et al., 2021). 

6.2 Representation Learning Using UMAP Part 1: Native UMAP Implementation for 

Polarization Features From OT-16 Sensor 

 

The second part of results addresses the following question:  

“What is the best strategy for characterizing fracturing induced microseismic locations by 

analyzing the borehole-based 3-component accelerometer data using manifold learning 

methods?” 

The key takeaways from this analysis are as follows:  

1. Our study shows that the density-based clusters in the projected 3D space correspond to 

distinct types of hydraulically induced fracture zones in the reservoir volumes around the 

injection points. 

2. The temporal evolution of these clusters is used to track the intensity and duration of 

reservoir stimulation (fracture creation and propagation) for the various types of fracture zones.  

3. Considering the data from EGS Collab experiment 1, we showed that well-defined 

seismic polarization features from the microearthquake signal at a single station 

contain within the signatures of the fracture planes on which they lie. Hence, micro-seismic point 

cloud interpretation can be aided by the results of this workflow.  

Using the identical STA/LTA (short-term average/long-term average) thresholds, 815 triggers 

were detected in 10 minutes of continuous recording on May 22 (Day 1), 4800 triggers were 

detected in 90 minutes of continuous recording on May 23 (Day 2), and 14000 triggers were 
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detected in 25 minutes of continuous recording on May 24 (Day 3). Figure 30 compares the 

injection rate with the trigger rate for the three days. The hypocenters (locations of the 

earthquake focus or origin) were determined by inverting the arrival times of high signal-to-noise 

ratio events detected simultaneously on multiple accelerometers and hydrophones. 

 

Figure 30: Different regimes of microseismicity recorded over 3 days. The x-axis represents 

injection rate and y-axis represents the number of triggers detected per second. 

Day 1:  Figure 31 and Figure 32 shows the distribution of 815 triggers in the 3D UMAP (uniform 

manifold approximation and projection) space for the May 22, 2018 (Day 1) stimulation. Four 

dominant clusters are observed in the May 22 dataset, with a minor fifth cluster near the 

embedding axis 3 corresponding to electronic noise signals. Due to the high planarity and 

rectilinearity of electronic noise, this cluster is relatively distant from the other clusters in the 

UMAP space.  
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Figure 31: Locations of fracture-laden hypocenter triggers in the UMAP space for May 22. 

The minor fifth cluster near embedding axis 3 corresponds to the set of electronic noise 

signals. Due to the high planarity and rectilinearity of electronic noise, the corresponding 

cluster lies relatively distant from the other clusters. The four events lie on distinct clusters 

in the UMAP space with no two different fractures sharing the same clusters. 

The projection of polarization features in the UMAP space is an effective unsupervised method 

for filtering high-amplitude electronic noise from the continuous record. Out of the 815 triggers 

detected on OT16 using STA/LTA, only 37 of them correspond to located events. Figure 31 

shows 4 of the 37 events that have been assigned a fracture plane based on the cumulative 

information of the event hypocenters at the end of the stimulation in December 2018. These four 

events are located on distinct clusters in the UMAP space, with no two different fractures sharing 

the same cluster. This is likely because events located in distinct fracture planes tend to have 

distinct polarization features due to the surrounding media and their location in space and time.  
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The temporal variations in the clusters obtained are shown in Figure 33. Located 

microearthquakes, which are a subset of the triggers, are also assigned to clusters (second panel 

from bottom) based on their distance from the injection point in the notch at 164 feet in well E1-

I. Cluster 4 is dominant at the early time, while cluster 3 is dominant at the late time. Clusters 1 

and 2 are predominant at the middle time of the injection. Cluster 1 (blue) has the largest 

dimensions among the four fracture sets. Although cluster 2 (green) has relatively high activity 

throughout the injection, its extent is small and limited to the area around the injection point. The 

propagation of such fracture strands is influenced by factors such as the near-wellbore stresses 

and the virgin rock's geomechanical properties, including elastic anisotropy and pre-existing 

planes of weakness. Additionally, a stress gradient was created by the temperature difference 

between the mine shaft and the rock volume. The complex interactions between these factors 

result in the highly heterogenous propagation of fracture strands in space and time, causing 

different fracture branches to have disparate trajectories emanating from the injection point. This 

may explain why cluster 2 is limited to a small volume near the injection. 
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Figure 33: Temporal distribution of the fracture clusters created in the May 22 (Day 

1) injection cycle (top four panels). Second last panel shows the time distribution of 

the 37 event hypocenters that were located out of 815 triggers. Bottom panel shows the 

hydraulic stimulation parameters, namely injection rate and pressure.  

The spatial distribution of the 37 microearthquakes in the stimulated volume around the injection 

point that occurred on May 22 is shown in Figure 34. Each event is assigned a cluster label and 

color based on the proposed unsupervised learning workflow. There are 4 clusters in the figure. 
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Events with the same cluster label are in similar positions in space. Clusters 1 and 3 (blue and 

red, respectively) represent the two main branches of the hydraulic fracture, while Cluster 2 

(green) is limited to the area beneath the injection points. Cluster 4 (cyan) corresponds to a 

fracture that has grown along the wellbore. 

 

Figure 34: Close-up (left) and gun-barrel (right) view of the microseismic point 

density colored by cluster labels. The cluster labels are marked over their corresponding 

fracture branches. Red and blue indicate production and injection well, respectively. Pink 

sphere is OT 16 sensor. Green patch over the well represents the injection 

interval. The average distance between the injection and production well is 10 meters.   

The recorded signal from a single sensor can be thought of as the result of combining a source 

function and a medium transfer function. The particle motion (and therefore the polarization 

features) represents the seismic wavefield at discrete times. Points with the same cluster label 

create similar seismic wavefields on the accelerometer. This suggests that microseismicity from 

different strands of fractures represents statistically different seismic wavefields. The examples 

from Days 1, 2, and 3 show that different strands of hydraulic fractures have different 

polarization signatures. The different clusters in the data represent different fracture branches 
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around the injection point. The temporal changes in the energy of triggers from different clusters 

can be used to track the growth of these fracture branches over time. 

Day 2: On the second day of the study, 129 microearthquakes were recorded (Figure 32 and 35). 

The fluid injection lasted for about 60 minutes, during which the injection rate and pressure were 

gradually increased to create a fracture with a nominal radius of 5 meters. Initially, the seismicity 

was observed near the locations of the previous day, but after about 12 minutes, the earthquakes 

began to migrate downward and towards the injection well. After about 30 minutes, the 

seismicity shifted and moved closer to a monitoring borehole. This shift was also reflected in the 

temperature measurements taken by the distributed temperature sensing equipment. The 

measurements taken by the accelerometer in the borehole became extremely noisy after this 

point, possibly due to the vibrations caused by water jetting. The stimulated volume reached 

close to the production well, and different clusters of microearthquakes were observed in 

different areas, with many small secondary fractures being created rather than a single large one. 
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Figure 35: Temporal distribution of the fracture clusters created in the May 23 (Day 2) 

injection cycle (top four panels). Second last panel shows the time distribution of the 129 

microearthquakes and their distance from the injection point (notch at 164 feet, E1-1). 

Bottom panel shows the hydraulic stimulation parameters (injection rate and pressure).  
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Figure 36: Temporal distribution of the fracture clusters created in the May 24 (Day 3) 

injection cycle (top four panels). Second last panel shows the time distribution of the 129 

microearthquakes and their distance from the injection point (notch at 164 feet, E1-1). 

Bottom panel shows the hydraulic stimulation parameters (injection rate and pressure).  

 

Day 3: On the third day of the study, a fluid injection was performed at a higher rate of 5 liters 

per minute until fracture breakthrough was achieved at the production borehole. The 

microearthquakes observed during this injection had different polarizations, which were related 
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to their spatial distribution. The higher flow rate of the injection on this day resulted in a much 

higher number of microearthquakes being recorded, with 296 events located and around 14,000 

triggers recorded at the accelerometer in a span of 25 minutes. The microearthquakes (Figure 32 

and 36) were divided into different clusters based on the timing of their occurrence, with the blue 

cluster being dominant at the beginning, the green and cyan clusters being dominant in the 

middle, and the red cluster being dominant at the end. 

6.2.1 Conclusions 

1. This study examines the use of an unsupervised manifold-learning method on multi-

component accelerometer measurements obtained from a small-scale field experiment, which 

was designed to study the spatial and temporal changes in fractures caused by hydraulic 

fracturing in an enhanced geothermal system (Chakravarty and Misra 2021). 

2. Considering signal-to-noise ratio, the study used three-dimensional particle motion data 

measured by a single accelerometer installed on the monitoring borehole surrounding the 

stimulated volume. The continuous data stream was divided into individual triggers to identify 

the signals associated with the hydraulically induced microseismic events.  

3. However, a limitation of this approach is that all triggers are treated equally in the 

unsupervised learning process, which may include non-hydraulic fracturing seismic signals in the 

trigger dataset. These non-hydraulic signals can come from various sources such as personnel 

movement in the mining area, drilling machinery, local and regional seismicity, and sensor 

interference (Chakravarty and Misra 2021). 

4. The study derived four polarization features (azimuth, incidence, rectilinearity, and 

planarity) from the identified signals. These features were then processed using uniform 
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manifold approximation methods to project the raw signals of the microseismic events onto a 3D 

space. The study found that the density-based clusters in the projected 3D space correspond to 

different types of fractures caused by hydraulic fracturing in the reservoir volumes around the 

injection points.  

5. The projection of polarization features in the UMAP space is an efficient unsupervised 

method to filter out high-amplitude electronic noise from the continuous record. The study also 

showed that well-defined seismic polarization features from the microearthquake signal at a 

single station contain information about the fracture planes on which they lie, which can aid in 

the interpretation of microseismic point clouds. 

6.3 Representation Learning Using UMAP Part 2: Refined UMAP Implementation for 

Microseismic Interpretation 

The third part of results addresses the following question:  

“Do the signals corresponding to the microseismicity induced by the fluid injection carry distinct 

signature of its underlying fracture plane?” 

The key takeaways from this study are the following:  

1. Our workflow involved feature extraction from a single sensor, followed by dimension 

reduction using the optimized UMAP algorithm (a novel development in this analysis), to 

generate embeddings that carried reliable signatures of the fracture planes. 

2. We validated the strong correspondence between UMAP embeddings and microseismic 

coordinates. The first step of the validation computing calculating distances between pairs of 

differently sized clusters with Wasserstein distance. 
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3. This study showed that pressure signals from hydrophones also held diagnostic 

signatures, marking the first use of pressure transducer data in a non-marine setting. 

The selection of appropriate sensor data features is crucial for successful representation learning. 

In this study, two sets of features were considered: (1) three-component Fourier spectra, which 

are derived from the Fast Fourier Transform of 3 ms-long trigger signals, and (2) short-time 

Fourier transform (STFT) of a single component of the trigger. While the three-component FFT 

can capture more detailed information about wave propagation, it is time-invariant, meaning it 

does not capture the time-varying nature of the signal. Additionally, the high frequency of the 

signal leads to low signal-to-noise ratios in the Fourier transform.  

 
 

Figure 37: Microseismicity locations (left) and UMAP embeddings (right) derived from 

OT-16 accelerometer signals. Colors correspond to distinct fracture planes. 

 

The STFT captures the time-varying nature of the signal, but it may not capture information from 

motion in the other two dimensions due to the large size of the feature vector. Despite this, the 

STFT was found to produce better UMAP embeddings, possibly because it captures the time-
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varying nature of the signal that is absent in the time-invariant Fourier spectra. As a result, the 

STFT was chosen as the signal feature extraction method for the remainder of the study. 

Another important reason for choosing STFT as the signal feature extraction method is that it is 

more generalizable to situations where sensors are only capturing a single channel of motion or a 

single quantity. In these cases, it is not possible to obtain three-dimensional features, so selecting 

single channel features allows the workflow to be applied more broadly. This makes the STFT 

method more suitable for a wide range of applications. 

The previous analysis was conducted using a sensor (OT-16) located within the region of 

injection-induced microseismicity (Figure 37). However, in industrial applications of passive 

seismicity, sensors are often located at a considerable distance from the zone of seismicity. For 

example, in commercial oil and gas operations, sensors are typically located on the surface of the 

earth. To test the workflow in a meso-scale hydraulic fracturing context, the analysis was 

repeated using a sensor (OB-15) that was placed at a considerable distance from the stimulated 

reservoir volume, on a monitoring well parallel to the well containing the OT-16 sensor. The 

OB-15 sensor is in the same line of sight as OT-16 (as shown in Figure 38), and the azimuthal 

variations in the signal properties due to wave propagation in an anisotropic medium are 

expected to be minimal between the two sensors. This allows for a more realistic simulation of 

the conditions that are commonly encountered in industrial applications. 

Since the OT-16 and OB-15 sensors are collinear, it is assumed that any variations in the time-

frequency characteristics of signals measured at the two sensors are due solely to the distance 

from the source. This configuration allows for the assessment of the effect of distance on the 

UMAP embeddings derived from the signal features. The results shown in Figure 39 indicate 
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that the STFT features combined with UMAP dimension reduction produce robust and widely 

applicable embeddings, even when the sensors are located at a considerable distance from the 

source. The separation of different fracture planes in the UMAP space is as good as those 

obtained from the OT-16 sensor, which is in the middle of the microseismic cloud. This suggests 

that the STFT and UMAP method is suitable for a wide range of source-sensor relative distances. 

 

 

Figure 38: Location of OT-16 and OB-15 accelerometers and OT12 hydrophone in the EGS 

Collab experiment 1 testbed. OT-16 and OT-12 are located close to stage 1 microseismicity 

(around northing -1280 m) whereas accelerometer OB-15 is relatively distant from stage 1 

microseismicity. The sensors are cemented in place inside the monitoring wells. Black lines 

represent monitoring wells. Blue and red lines indicate injection and production wells 

respectively.  
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Figure 39: Microseismicity locations (left) and UMAP embeddings (right) derived from 

OB-15 accelerometer signals. Colors correspond to distinct fracture planes.  

So far, we have demonstrated that the proposed workflow is effective for analyzing 

accelerometer signals that measure particle motion. In the following section, we extend the 

workflow to the analysis of pressure signals. Pressure waves are of scientific and commercial 

interest and are commonly used in underwater and marine environments. The use of pressure 

transducers in the EGS Collab experiment was an attempt to determine the suitability of 

hydrophones for measuring hydraulic fracturing-induced seismicity signals and related 

mechanical deformation signatures. It has been shown that pressure waves generated from 

subsurface fracturing phenomena can provide valuable information about fracture monitoring 

and characterization. 
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Figure 40: Microseismicity locations (left) and UMAP embeddings (right) derived from 

OT-12 hydrophone (pressure transducer) signals. Colors correspond to distinct fracture 

planes. 

The propagation of mechanical waves is accompanied by the propagation of pressure waves that 

travel at the speed of P-waves in solid media. This pressure is like hydrostatic pressure due to 

wave propagation in fluids and can be measured using hydrophones or pressure transducers. In 

this study, a hydrophone (OT-12) was located on the same monitoring well as the accelerometer 

OT-16. Like accelerometers, the sensitivity of hydrophones is dependent on the coupling 

between the sensor and the medium (cement). The signal-to-noise ratio of hydrophones is 

generally lower than that of accelerometers, but hydrophones have a broader sensitivity response 

(from 2 Hz to 20 kHz). Figure 6 shows the corresponding UMAP embeddings derived from the 

signal features measured using the hydrophone OT-12. The embeddings (as shown in Figure 40) 

show excellent separation in terms of the underlying fracture planes, indicating that pressure 

waves also carry diagnostic signatures related to their location within a fractured network. 
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Figure 41: Kendall Tau statistic for three sensors corresponding to all the fracture planes 

considered in the study. OT-16 (highest SNR) shows best overall performance. 

It is important to confirm the correspondence between pairwise distances in physical and UMAP 

space. In other words, for a given fracture plane, the order of distances to other fracture planes 

should be the same (or as close as possible) to the order of distance of corresponding data points 

in UMAP space. The "distance" in this context refers to the Wasserstein distance, rather than the 

Euclidean distance. Figure 41 shows the Tau statistic for the three sensors considered in this 

study. In general, the accelerometers have a better Tau statistic compared to the co-located 

hydrophone. Overall, the Tau statistic is above 0.5, indicating a strong correspondence between 

the pairwise fracture cluster "Wasserstein" distances in physical (cartesian) and UMAP space. 

Fracture plane 1002 shows the consistently lowest tau scores due to its geometric 

indistinguishability from planes 1001, 1003 and 1005. Further explanation is provided in the 

appendix. 

6.3.1 Conclusions 
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1. Fractures are important for subsurface mass and energy transport and are crucial for safe 

and efficient energy operations in the hydrocarbon and geothermal industry. The networks of 

fractures created by hydraulic fracturing have complex geometries, and it is essential to 

confidently identify different branches of the fracture network for effective and consistent 

characterization of hydraulic fractures.  

The current study aims to answer the question of whether passive seismic signals contain 

diagnostic signatures of their locations within the fracture network, and how much information 

about the underlying fracture planes can be extracted from the waveforms through representation 

learning. Another key contribution of the analysis is the development of a modified UMAP 

algorithm optimized for application in microseismic datasets with available fracture label 

information. 

2. We used data from a unique hydraulic fracturing experiment that had detailed 

measurements to identify the location of fractures. We developed a process that involves 

analyzing data from a single sensor and reducing the amount of information using a specific 

algorithm called UMAP.  

We also made changes to the UMAP algorithm to make it more effective for analyzing data from 

hydraulic fracturing operations. These changes involve choosing the most suitable settings for 

the algorithm, which can impact the results obtained from the sensor data. 

3. We found that data from accelerometers at various distances from the seismic activity 

have accurate information about the location of fractures. Additionally, we discovered that 

pressure data from hydrophones also have useful information about the location of the 

microseismic event. This is the first time that pressure data from a non-marine setting has been 

used in this way. Overall, we showed that using an algorithm like UMAP and specifically 
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designed features can effectively uncover the structure of the signals in an unsupervised learning 

approach. 

6.4 Low Frequency Seismic in EGS Collab Experiment 1 

The fourth part of this thesis addresses the following question:  

“Can near-infrasound and infrasound signals be used to better characterize the mechanical 

deformation processes associated with hydraulic fracturing?” 

The key takeaways from this study are as follows:  

1. The joint analysis of infrasound and microseismic encapsulates frequencies on the 

observable bounds of acquisition instrumentation (2 Hz to 15000 Hz). As a result, both high and 

low frequency fracturing phenomena driven by fluid injection are captured.  

2. The joint data (microseismic and infrasound) reflects fluid injection-induced subsurface 

deformation that lies on a continuum - with one end representing of high frequency, small-scale 

shear slippage on fractures and the other end representing low frequency, large-scale void 

volume dilation or contraction.  

3. It is hence concluded that microseismicity and infrasound signals contain complementary 

information about rock deformation due to fluid injection, and their joint analysis renders a more 

complete picture of the stimulated fractures in subsurface. 

Two sets of hydrophones, each consisting of 12 hydrophones, were used to record infrasound 

and infrasound emissions during the injection of fluids. One set of hydrophones, E1-OT, was 

positioned perpendicular to the point cloud of microseismic activity and intersected it, while the 

other set, E1-PDB, was positioned subparallel to the cloud but did not intersect it (Figure 42). 
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The hydrophones in the E1-OT set were closer to the fluid-induced deformation and therefore 

recorded a stronger infrasound signal intensity than the E1-PDB hydrophones, which recorded a 

signal energy that was about five orders of magnitude weaker. On May 24, the fluid injection 

caused hydraulic fracture propagation until it intersected the production well, leading to a 

decrease in microseismicity. Later experiments mostly involved fluid flow through a fractured 

volume with a lower rate of microseismicity.  

The change from fracture propagation to fluid flow through a fracture is reflected in the nature of 

the cumulative signal energy, with impulsive energy release (indicative of stick slip fracture 

propagation) dominant on May 24 and long-period infrasound tremors (indicative of long 

duration energy release) more common during fluid flow through fractures. A strong relationship 

was consistently observed between the cumulative injected volume and cumulative signal energy 

(Figure 43), suggesting that the infrasound signals are generated by fluid-driven processes. 

Importantly, both sets of hydrophones, regardless of their distance from the microseismic cloud, 

showed similar behavior in terms of the nature of the recorded energy, even though the E1-OT 

hydrophones recorded a much higher energy overall. This suggests that the energy recorded at 

different locations may have the same characteristics but differ in scale. 
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Figure 43: Dependence of cumulative infrasound (2-80 Hz) measured by combined 

hydrophone arrays (located on the monitoring wells E1-OT and E1-PDB). 

On May 22nd and 23rd, the maximum rate at which the substance was injected was 200 mL/min 

and 400 mL/min, respectively, but only very weak infrasound signals were detected. On May 

24th and the two parts of May 25th, when the maximum injection rate was 4.5 L/min, the 

strongest infrasound signals were detected. Figure 44 shows where the infrasound sources were 

located. After using filters to analyze the initial data from the grid search using cross correlation, 

a total of 322, 818, and 1117 infrasound sources were identified for the three stimulations. 

6.4.1 Spatiotemporal variation of locations 

The infrasound sources in Figure 44 show a temporal evolution with respect to the injection well. 

On the first day, the sources spread out perpendicular to the injection well, but around a certain 

time they become concentrated along a line sub parallel to the injection well. As the events 
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continue, the sources migrate northward and align in the same direction. The microseismicity 

shown in Figure 44 corresponds with the infrasound sources, with a point cloud situated at a 

specific distance from the injection point and overlapping with the infrasound sources north of 

the injection point. On the second day, the infrasound sources have a less diffuse distribution and 

are primarily located along an east-west trend south of the injection point, with a sparse group of 

sources on the north. At the start of injection on the second day, the infrasound sources fall on 

two sub parallel lineaments on either side of the injection point, being sub perpendicular to the 

injection well. Later events on this day align sub parallel to the injection well. 

6.4.2 Joint analysis of Discrete Fracture Network and Infrasound Source Locations 

Fusing complementary imaging techniques, such as active and passive seismic, can improve the 

imaging of fractures. Combining the analysis of high and low frequency components of 

deformation can also provide more information about fractures than can be obtained from 

individual methods. In the case of fluid injection, which can cause cracks to open in fractured 

rock, the injection of pressurized fluid can cause the crack to expand or contract like a 

diaphragm, producing mechanical waves. This process can generate both high frequency shear 

motion (microseismicity) and low frequency P-waves. This conceptual model of fluid-driven 

infrasound generation is illustrated in Figure 45. 
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Figure 44: Infrasound source locations on a, b) May 24; c, d) May 25 part 1; and e, f) May 

25 part 2. Colored points show infrasound while black points show the simultaneously 

recorded microseismicity. Blue and red lines indicate injection and production wells 

respectively. Pink star on the injection well E1-I marks the injection point. Black line 

subparallel to injection and monitoring wells is hydrophone string E1-PDB, and sub 

horizontal line is string E1-OT. Orange squares overlain on lines mark the hydrophone 

sensors emplaced in the monitoring wells. 

Figure 45 shows the orientation and distribution of natural fractures in a discrete fracture 

network. These fractures, which are oriented roughly in the direction of the least horizontal stress 

and the injection well, are the most likely to be pressurized with fluid, as shown in Figure 4C. 
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The infrasound source has two main directions of activity, with the dominant direction being 

140° counterclockwise from east and the minor direction being east-west. The east-west trending 

fractures were created through hydraulic fracturing. It is also noteworthy that a significant 

portion of the infrasound activity is not located near the production well, which suggests that 

there are different fluid pathways present. The area with microseismicity is where fluid 

interactions mobilize critically stressed cracks, causing shear motion, while the area with 

infrasound activity is likely to be pressurized natural fractures that generate low-frequency 

compressional motion. This complexity in the stimulated rock volume, as opposed to the 

idealized penny-shaped fracture, is supported by the high amount of fluid leak off observed in 

the fractured formation, as indicated by the large difference between injected and produced water 

volumes. The final conceptual model consists of the microseismic and low frequency seismic 

generation in highly fractured rock and intact rock.  

In case of highly fractured rock, we find strong, significant occurrence of low frequency seismic, 

followed by generation of microseismicity. Moreover, since the media is highly fractured, the 

high frequency signals of microseismic are attenuated a much greater rate than they would be in 

an intact rack. So even if microseismic signals are generated, their measurement by sensors is 

diminished due to increased attenuation. On the other hand, the low frequency signals are 

attenuated far less, due to their lower frequency. This dual effect of fractures leads to significant 

infrasound measurement and relatively low microseismic measurement by distant sensors. In 

case of intact rock, there is negligible low frequency seismic generation and relatively greater 

occurrence of high frequency microseismic.  Moreover, the attenuation of high frequency signals 

is far less in a intact rock compared to a fractured rock. So whatever microseismic signals are 

generated, a relatively large portion of them is measured by sensors located at a distance. Hence 
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in an intact environment, not only more high frequency signals are generated, but also their 

acquisition is far more compared to a fractured environment.  

 

Figure 45: a) Schematic representation of the fluid-injection driven infrasound and 

microseismic energy release in a naturally fractured rock volume. MEQ’s are microseismic 

events. b) Schematic representation of the fluid-injection driven infrasound and 

microseismic energy release in an intact rock volume.  c) Comparison with microseismic 

and discrete fracture network (DFN). The interpreted network shows the orientation of 



102 
  

pre-existing natural fractures in the testbed, with large majority of the features inclined at 

140֯ counterclockwise from east. Red box highlights the area of located infrasound activity. 

c) Their combined location cloud shows strong agreement with overall orientation inferred 

from the DFN. 

6.4.3 Conclusions 

1. The study analyzed low-frequency hydrophone signals captured during a hydraulic 

fracturing experiment at a depth of 1.5 km and a meso-scale of around 10 m. The hydrophone 

array was used to detect infrasound sources that had not been previously identified. The 

infrasound was found to be caused by the injection of fluid. Three different stimulations were 

conducted, resulting in a total of 322, 818, and 1117 infrasound source locations being identified.  

2. The energy release at the beginning of the stimulation was found to be associated with 

the propagation of fractures, while later stages of the stimulation resulted in a smoother release 

of energy, which was linked to fluid flow in conduits causing tremor-like motions. 

3. The study found that infrasound signals with a usable signal to noise ratio were only 

produced at high fluid injection rates. Since the infrasound is an emergent signal, traditional 

threshold-based methods for detecting the first arrival were found to be unreliable. To locate the 

infrasound source locations, the study used a data-driven cross-correlation-based grid search 

method. Four filtering steps were applied to improve the accuracy of the source location 

algorithm. These filters included: thresholds based on the array power, thresholds based on the 

misfit in the cross-correlation based grid searching, scatter in locations obtained from station 

bootstrapping, and upper and lower bounds on the normalized cross correlation coefficient. 

4. After obtaining the final locations of infrasound sources, the study analyzed how these 

source locations evolved over the course of three episodes of fluid injection. It was observed that 

the infrasound hotspots shifted around the fluid injection point during the fracturing operations. 
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Some locations were found to produce exclusively one type of signal, while others produced 

both infrasound and microseismicity, indicating that these locations were experiencing both high 

and low frequency deformation from fluid injection. By comparing the spatiotemporal evolution 

of the infrasound sources to the microseismic sources and the discrete fracture network model, 

the study suggested that the pressurized fluid was causing the volume of the fractures to expand 

or contract depending on whether fluid was being injected or drained, and that this change in 

volume was generating compressional waves. 

5. The study also found a strong agreement between the fracture orientations and infrasound 

source locations based on the discrete fracture network model of the testbed before fracturing. 

The study suggests that the pressurization of natural fractures is the most likely mechanism for 

generating infrasound. The observation that infrasound corresponds to fluid flow also indicates 

that a significant portion of the injected fluid is diverted away from the intended location, such as 

the production well. However, it is important to note that the location method used in the study 

only outputs the location of infrasound sources in two dimensions, which is a limitation of the 

study. 

6. It is widely understood that microseismicity only captures a small fraction of the input 

hydraulic energy and only partially images the fracture network. By combining the analysis of 

infrasound and microseismic data, the study can capture both high and low frequency fracturing 

phenomena driven by fluid injection. The joint data reflects a continuum of fluid injection-

induced subsurface deformation, with one end representing high frequency, small-scale shear 

slippage on fractures, and the other end representing low frequency, large-scale void volume 

dilation or contraction. Thus, it is concluded that microseismicity and infrasound signals contain 
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complementary information about rock deformation due to fluid injection, and their joint 

analysis provides a more complete picture of the stimulated fractures in subsurface. 

6.5 Semi-Supervised Label Propagation (EGS Collab) 

 

The fifth part of this thesis addresses the following question:  

“How to apply semi-supervised learning methods on microseismic locations with limited 

labelled data and massive unlabeled data to improve the passive seismicity-based monitoring of 

the subsurface during hydraulic fracturing?” 

The key takeaways from this study are follows:  

1. Graph-based label propagation is applied to the reduced features derived from the 

microseismic signals to extend identities of fracture planes to unlabelled hypocenter locations. 

2. The performance of label propagation weakens at the smallest sizes of training data i.e., 5 

% and stabilizes near the 20 % in terms of both precision and recall. 

3. Precision and recall values stay somewhat constant until one standard deviation after 

which both the quantities show a considerable downward shift. It is thus concluded that the 

algorithm is well tolerant to locational errors of up to one standard deviation in each direction. 

The first part of result refers to determining the smallest training data size that yields optimal 

performance in terms of precision. Tabular plots are chosen to represent results as for every run 

(i.e., train/test data size), 20 iterations are performed, each iteration considering a shuffled and 

stratified sample. The model used KNN kernel with number of neighbors hyperparameter set at 

15. See methods section for workflow describing in detail the selection procedure of kernel type 

and kernel size. Since the objective is to determine size with highest median value and low 
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variability, we consider the ratio of median and variance (MVR). The test fraction showing 

highest ratio of median, and variance is deemed the optimal test fraction for the label 

propagation. The performance of label propagation seems to deteriorate as the at the smallest 

sizes of training data i.e., 5 % and stabilizes between 15 and 25 % (Figure 46 and 47) in terms of 

both precision and recall.  

 
 

Figure 46: Tabular results showing the variation in precision of label propagation 

algorithm with fixed testing data size of 0.6 for fracture plane 1002. The MVR (median to 

variance ratio) is considered to choose the optimal test fraction, here seen as 15%. 
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Figure 47: Tabular plots showing the variation in precision of label propagation algorithm 

with fixed testing data size of 0.6 for fracture plane 1005. The optimal test fraction is 

deemed as 15% that corresponds to the highest median to variance ratio (MVR). 

The second part of analysis addresses the effect of locational uncertainty on the performance of 

the label propagation algorithm. Error is introduced on the microseismic locations which is then 

used as an input feature along with three component signal spectra for UMAP based dimension 

reduction. These locations, along with the three component signal spectra as used as input 

features for the UMAP-based dimension reduction. The reduced dimension embeddings obtained 

from UMAP are the dataset on which label propagation is performed. For a given sigma 

multiplication factor, the dataset is split into 0.1 training and 0.9 ratio and stratified based on the 

target variable. The label propagation algorithm is applied using knn kernel type and number of 

neighbors equal to 15. The performance for individual fracture plane (target label) is quantified 

based on the precision and recall obtained on the testing set. 
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Figure 48: Violin plots showing the effect of locational error on precision and recall of label 

propagation. Results are shown for fracture plane 1011 using 10 % training data.  

Figure 48 shows the effect of sigma multiplier factor on the precision and recall of the label 

propagation algorithm. A multiplier factor of 1 implies one standard deviation error being added 

to the original location in each direction. The precision and recall for a given fracture plane 

reduces as the multiplier factor is increased from 0 to 3. It is observed that the precision and 

recall values stay somewhat constant until one standard deviation after which both the quantities 

show a considerable downward shift. It is thus concluded that the algorithm is well tolerant to 

locational errors of up to one standard deviation in each direction.  
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6.5.1 Explaining differences in the performance of label propagation on fracture clusters 

The differences in the precision and recall of label propagation algorithm for different fracture 

planes depends on the geometrical distribution of the UMAP embedding of input data. The input 

data comprises of signal features and the locations. Therefore, the physical location of 

microseismic point clouds has an important contribution to the overall performance of label 

propagation. The likelihood of correct label propagation depends on the geometry (shape) of the 

point clouds and its position and orientation relative to the other fracture planes.  

For every cluster of points corresponding to different fracture planes, the following properties are 

calculated:  

1. Density: calculated as the number of points divided by the sum of pair wise Euclidean 

distances for every point in the cluster  

2. Minimum and sum Wasserstein distances: See calculation of Wasserstein distance in the 

methods. Minimum distance is the Wasserstein distance to the closest cluster and sum is defined 

as the summation of pair wise Wasserstein distances to all the other clusters. Low minimum 

distance greater chances of interference between nearby cluster whereas higher minimum 

distance implies lesser interference and hence greater confidence in correct label assignment by 

the label propagation algorithm. Greater sum of Wasserstein distance also implies greater 

confidence in correct label assignment by the label propagation algorithm and vice versa.  

3. The degree of planarity is quantified the residual of the least squares plane fit to the 

cluster of points. Higher residual implies lesser planarity and vice versa. 

Table 7: Quantifying the density, inter-cluster distances and geometry (planarity) of 

different hydraulic fracture clusters comprised of microseismic point clouds 
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Table 7 summarizes the results of geometric analysis. Fault ID’s 1005, 1007 and 1009 show the 

poorest performance in the label propagation algorithm and show least values for minimum 

Wasserstein distances. Low minimum Wasserstein distances is a strong indicator that 

neighboring fracture planes are overlapping or intersecting with these fracture planes. As a 

result, there is relatively higher probability of incorrect label assignment by algorithm that 

considers the location of points, along with other quantities.  

Similarly, the measured signal properties of closely laying, or overlapping and intersection 

fractures planes are also bound to have greater similarity compared to signals from two points 

that lie further apart. Both the features (location and signal properties) are bound to highly 

similar for fracture planes which show low minimum Wasserstein distances. The minimum 

Wasserstein distance, therefore, is a reliable metric to explain the output of difference 

microseismic fracture planes.  

6.5.2 Conclusions 
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1. Smallest size of training data for a fixed test data size: to quantify the least training data 

size, the testing data size was fixed at 0.6 and the training data size was varied between 0.05 to 

0.4. the splitting was stratified based on the target variable. The label propagation was performed 

using KNN kernel with number of neighbors equal to 15. The performance was quantified based 

on the precision and recall values obtained for the testing set for each fracture label. The 

performance of label propagation weakens at the smallest sizes of training data i.e., 5 % and 

stabilizes near the 20 % in terms of both precision and recall.  

2. Both graph-based label propagation kernel types ‘RBF’ and ‘KNN’ yield similar results 

for semi supervised label propagation task i.e., estimating fracture plane from the microseismic 

features.  

3. Effect of locational uncertainty on the performance of semi-supervised algorithm 

performance: Error is introduced on the microseismic locations which is then used as an input 

feature along with three component signal spectra for UMAP based dimension reduction. For a 

given sigma multiplication factor, the dataset is split into 0.1 training and 0.9 ratio and stratified 

based on the target variable. The label propagation algorithm is applied using knn kernel type 

and number of neighbors equal to 15. It is observed that the precision and recall values stay 

somewhat constant until one standard deviation after which both the quantities show a 

considerable downward shift. It is thus concluded that the algorithm is well tolerant to locational 

errors of up to one standard deviation in each direction.  

4. Explaining differences in the performance of label propagation on different fractures: 

Fault ID’s 1005, 1007 and 1009 show the poorest performance in the label propagation algorithm 

and show least values for minimum Wasserstein distances. Low minimum Wasserstein distances 

is a strong indicator that neighboring fracture planes are overlapping or intersecting with these 
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fracture planes. As a result, there is relatively higher probability of incorrect label assignment by 

algorithm that considers the location of points, along with other quantities.  Similarly, the 

measured signal properties of closely laying, or overlapping and intersection fractures planes are 

also bound to have greater similarity compared to signals from two points that lie further apart. 

Both the features (location and signal properties) are bound to highly similar for fracture planes 

which show low minimum Wasserstein distances. 

6.6 Uncovering Relationship Between Geomechanical Deformation and Wave Motion 

Through Clustering 

 

The sixth part of this thesis addresses the following question:  

“How to characterize regions with similar and dissimilar geomechanical deformation by 

analyzing the microseismic data captured by geophone array? Do dissimilar geomechanical 

alterations exist near each other within SRV? Do the different classes of microseismic events in a 

fracture plane exhibit relatively similar 3D motion?” 

The key takeaways from this study are as follows:  

1. Moment tensor properties are they information correspond to micro seismically-derived 

geomechanical deformation in a hydraulic stimulation.  

2. Clustering followed by analysis of descriptive statistics of the moment tensors shows 

differences in the faulting style operating at different parts of the stimulative reservoir volume.  

3. One dominant class of moment tensor is present in each strand of hydraulic fracture 

network.  
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4. Strong statistical correlation is seen between the three-dimensional wave motion and 

class of moment tensors. The correlation is quantified using Calinski-Harabasz index. 

Additionally, it is observed that three component wave motion is a better diagnostic of moment 

tensor class compared to polarization features of signal.  

Input data: 530 hypo central locations and their signals recorded on 69 three component 

geophones located at depth of ~ 30 m and spread evenly above the SRV. The average depth of 

events is ~ 4 km.  The 530 locations are showing little temporal grouping (Figure 49) and are 

clustered based on their density distribution to form four groups that represent spatially distinct 

fracture sets as shown in Figure 50. Zhang et al. 2021, have determined the moment tensors of 

the 530 locations to a high confidence and the detailed of their workflow can be found in (Zhang 

et al., 2019). The first part of the analysis is to answer the following research question: 1.) How 

to find hydraulically fractured regions that are geomechanically similar and those that are 

geomechanically dissimilar by analyzing the microseismic data captured by geophone array? and 

2) Do dissimilar geomechanical alterations and damages exist near each other within SRV? 
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Figure 49: Plan view of the microseismicity recorded in the Toc2Me experiment in the 

Duvernay shale formation in 2018. Cooler colors show early event and hotter colors show 

later events. No clear spatiotemporal trend is observed in the microseismicity. 
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Figure 50: Fracture clusters in the Duvernay shale field scale microseismicity. Four 

spatially distinct clusters are present, represented by different colors. Grey points 

represent non-clustered events.  

The moment tensor associated with an earthquake is represented by a symmetric 3 X 3 matrix. 

This implies that are the six distinct elements that uniquely define a matrix. The six elements are 

taken as input features for clustering moment tensor data. The scaling of inputs is done using 

RobustScaler functionality in Scikit-learn.  Scaled data is embedded in three dimensions using 

UMAP (see previous methods sections for details on UMAP) and clustered using DBSCAN to 

obtain three clusters. The geophysically descriptive statistics of three clusters now follow.  
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Figure 51: Fuzzy beachball representation of three clusters of moment tensors of the 

Toc2Me dataset. Within a single beachball, the fuzzy appearance is due to overlaying of 

several beachballs. Note the very small amount of intra cluster variability.  The orientation 

of red and white axes on the beachball show relative position of faulting axes in the 

corresponding earthquake. 

First part of descriptive statistics for the moment tensors are the corresponding beachball 

diagrams as shown in Figure 51. The moment tensor can be visualized using a beach ball 

diagram, which consists of a circle divided into quadrants, with each quadrant representing one 

of the three principal axes of the earth (X, Y, and Z). The orientation of the fault planes is 

depicted by the placement of the colors within the quadrants. For example, if the red quadrant is 

on the bottom and the white quadrant is on the right, this indicates that the earthquake was 

caused by a thrust fault that occurred along the X axis and a strike-slip fault that occurred along 

the Y axis. In the second step, the moment tensor is decomposed into isotropic and deviatoric 

components and deviatoric is further divided into DC and CLVD components using the 

methodology described in (ref) and implemented for the current dataset using the Pyrocko library 

in Python.  

Label 2 shows much higher values of isotropic component compared to Labels 0 and 1, as shown 

in Figure 52. Isotropic components are associated with volumetric expansion which are 
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obviously tied to the dilation caused from fluid injection in subsurface voids. On the other hand, 

Labels 0 and 1 show much higher proportion of double couple component.  Double couple 

motion is associated with more typical shear mechanisms that occur in tectonic earthquakes.  

The CLVD moment tensor is used to describe faulting that is not purely isotropic (symmetrical) 

or pure shear (asymmetrical). Instead, it represents a combination of these two types of faulting, 

with the amount of each type being proportional to the magnitude of the three independent terms. 

Label 2 also shows the highest CLVD ratio and Label 1 shows the lowest CLVD ratio.   

The deviatoric component of the moment tensor is the part of the moment tensor that represents 

the deviation of the faulting from a purely isotropic (symmetrical) state. It is calculated by 

subtracting the hydrostatic (isotropic) component of the moment tensor from the full moment 

tensor. 
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Figure 52: Box plots showing cluster-wise variation in the isotropic and deviatoric 

components of the moment tensor. Deviatoric components are further divided into double 

couple (DC) and compensated linear vector dipole (CLVD) components.  

The hydrostatic component of the moment tensor represents the part of the faulting that is caused 

by uniform, isotropic stress, such as that caused by the weight of the overlying rocks. The 

deviatoric component, on the other hand, represents the part of the faulting that is caused by non-



118 
  

uniform, anisotropic stress, such as that caused by tectonic forces.  

The deviatoric component of the moment tensor is often used to study the anisotropic 

(asymmetrical) nature of earthquakes and the tectonic forces that caused them. 

As label 2 shows the highest isotropic ratio, in turn it also shows the lowest deviatoric 

composition among the clusters. Both Labels 0 and 1, representing a largely double couple 

mechanism, show high ratios of deviatoric component in the moment tensors. 

Overall, cluster analysis of moment tensor information establishes that label 2 has the highest 

expression of hydraulic stimulation induced volumetric expansion. Labels 0 and 1 are 

representative of more typical, tectonic earthquakes- events which are greater in proportion 

compared to label 0 but not directly associated with the volumetric expansion. Label 0 events are 

the type which are responsible for fracture creation whereas labels 1 and 2 are representative of 

seismicity which is more associated with fault reactivation. The population analysis also makes it 

clear that events associated with fault reactivation are greater in number than actual fracture-

generating events in a field scale hydraulic fracture experiment. This observation can be 

explained as the experiment occurs in a shale hosted sedimentary formation. Being shaley in 

nature, there is an extensive fracture network that is critically stressed and amenable to activation 

with little to no hydraulic stimulation.  

After the geomechanical characterization of the moment tensors, we now consider the spatial 

distribution of the different moment tensor types. Figure 53 shows the fracture-wise distribution 

of moment tensor types. Every fracture label has one clear majority of moment tensor type. 

Hence, it is clear from figure that at least in the present experiment, there is one dominant 

moment tensor type in each fracture cluster. -1 indicates the non-clustered event locations. 
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Fracture label 3 shows the most diverse population amongst the lot- it shows the presence of all 

three moment tensor types where all the other fracture clusters show at most two cluster types.  

 

Figure 53: Distribution of moment tensor clusters in different fracture zones 

in the Toc2Me experiment. MT type 1 is the most widely spread whereas MT type 2 is the 

least widely spread moment tensor cluster. Overall, one fracture has one dominant moment 

tensor type implying that one fracture plane usually has a dominant deformation style that 

generates seismicity during a hydraulic fracturing operation.  

Moment tensor type 0 – which is the most volumetric type in the population shows dominant 

presence in fracture set S1 (blue colored points in Figure z). Moment tensor type 1 is the 

geographically most widely spread cluster, with its presence in all the locational clusters and 

dominant presence in 2 out of 4 locational clusters. Note that moment tensor type 1 also has the 

largest population in the dataset. Moment tensor type 2 is geographically the least widely spread 

cluster in the dataset with it being present in one locational cluster (Fracture set) `– in which it is 

also the dominant population.  
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Figure 54 is the corollary of Figure 53, in that it shows the fracture set composition of moment 

tensor types i.e., which fracture planes carry any given moment tensor. Fracture set S4 

(frac_label 3) is the most homogenous fracture plane in that it contains almost only moment 

tensor type 2 events - the events showing maximum volumetric component. Moment tensor type 

0 and 1, that are more representative of double couple type events (more typical of tectonic type) 

events have a more heterogeneous distribution.  

 

Figure 54: Distribution of fracture clusters for different moment tensor classes. Colors 

represent different fracture clusters.  

Next in analysis it the temporal evolution of moment tensor classes. Figure 55 shows the time 

evolution of moment tensor types during the hydraulic fracture experiment that lasted for two 

months from early October 2016 to late November 2016. Moment tensor types 0 and 1 dominate 

the early part of the injection (early October to early November). Another important feature is 
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that there is hardly any overlap between the moment tensor classes. This implies that only one 

type of mechanical deformation is active at any given time during hydraulic fracturing.  

 

Figure 55: Temporal evolution of moment tensor types for the Toc2me experiment that 

lasted from early October 2016 to late November 2016. The classes are well separated with 

little to no overlap in the early part of the experiment. During the later stages (November) 

there is significantly more overlap between the moment tensor classes. Double couple type 

events are active at early times and isotropic type (volumetric expansion) type events are 

more active exclusively at the later stages of the experiment.  

The start of the experiment is dominated by moment tensor type 0 that extends from early 

October to 6 November 30 (Figure 55). Over this interval the distribution is uneven, with the 

events clustered in in tight groups and not actively outside those clusters. The second regime of 

experiment begins around 6 November and extends till 15 November. Only the moment tensor 

type 1 is active during this time. We note that both the clusters are double couple type events that 

are associated with tectonic type earthquakes. The second half of the experiment is dominated by 

the moment tensor type 2 events which represent volumetric expansion of the subsurface voids. 

There is also significantly more overlap between the classes in the second half. The geophysical 

interpretation of this pattern is that fault reactivation is the dominant form of seismicity during 

the initial part of the stimulation. These events are indicative of reactivation of the extensive 
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fracture network in the subsurface whereas fracture dilation and fracture propagation are more 

active at later stages. 

 

Figure 56: Fault dip, strike and rake determined for the different moment tensor classes.  

The fault dip and strike refer to the orientation and inclination of a fault plane, while rake refers 

to the angle between the fault plane and the direction of motion on the fault (Figure 56). The 

fault dip is the angle at which the fault plane slopes downward from the horizontal, while the 

fault strike is the direction of the line formed by the intersection of the fault plane with the 

horizontal plane (Aki and Richards, 1980). The rake is the angle between the fault plane and the 

direction of motion on the fault, and it can be positive (meaning the fault motion is towards the 

dip direction) or negative (meaning the fault motion is away from the dip direction). Strike of 

fault plane is significantly different for three moment tensor classes. The dip angle for all three 
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moment tensor classes does not show as drastic differences as other angles. The rake angle of 

moment tensor cluster type 2 is significantly different from the remaining two classes.   

The final part of analysis is for addressing the question: How to find hydraulically fractured 

regions that are geomechanically similar and those that are geomechanically dissimilar by 

analyzing the microseismic data captured by geophone array?  Do the different microseismic 

events in a fracture plane exhibit relatively similar 3D motion? 

To that end, different sets of signal features were used as inputs for generating embeddings in 

UMAP space, and then the labels derived from moment tensor classes were imposed on the 

embeddings. The match of the moment tensor classes with the intrinsic clustering of the 

embeddings in UMAP space was quantified using the Calinski-Harabasz Index (see chapter 3 for 

detailed theoretical background of Calinski-Harabasz Index). Five different sets of signal 

features were tested. The features which yield the highest CH index are deemed the most 

indicative of the differences observed in their corresponding moment tensors. For every one of 

530 earthquakes, the measured signal from each one of 69 geophones the following features 

were considered:  

1. Vertical component short-time Fourier transform (termed as STFT)  

2. Three-component Fourier transform spectra (termed as 3C FFT)  

3. P-phase polarization features (azimuth, incidence, rectilinearity and planarity)  

4. S-phase polarization features (azimuth, incidence, rectilinearity and planarity) 

5. P + S -phase polarization features (azimuth, incidence, rectilinearity and planarity) 

6. Combined polarization and Fourier spectra  
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Figure 57: Calinski-Harabasz scores for time frequency features (left) and polarization 

features (right). In case of time frequency features, three component Fourier spectra 

features show higher CH scores and hence indicate better clustering match with moment 

tensor clusters, compared to vertical component STFT features. In case of polarization, 

combined P+ S polarization features showed higher statistically averaged scores over 

individual phase polarization features. Results comparing 3C Fourier spectra and 

combined polarization and 3C Fourier spectra are shown in the Appendix.  

Overall, time-frequency features yielded higher scores compared to polarization features as 

shown in Figure 57. For time-frequency features, three-component Fourier spectra features show 

higher CH scores and hence indicate better clustering match with moment tensor clusters, 

compared to vertical component STFT features. In case of polarization, combined primary and 

shear phase polarization features showed higher statistically averaged scores over individual 

phase polarization features. Therefore, the variations in three-component signal features are the 

most indicative of the variation on the moment tensor types. Table 8 shows the summary of the 

Calinski-Harabasz scores obtained from the list of wave motion features from 70 sensors. 

Table 8 Calinski-Harabasz scores obtained from wave motion features from 70 sensors 
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S. No. Feature name Median Calinski-

Harabasz score 

1. Vertical STFT 126.02 

2. 3C FFT  187.16 

3. P-phase polarization 133.69 

4. S-phase polarization 106.29 

5. P + S -phase polarization 128.39 

6. Combined polarization and 3CFFT 143.18 

 

Based on the observations, we provide the answers to the question asked at the outset: 

How to find hydraulically fractured regions that are geomechanically similar and those that are 

geomechanically dissimilar by analyzing the microseismic data captured by geophone array? 

Answer: Geomechanical differences can be reliably quantified based on moment tensors 

acquired from high quality phase arrivals of microseismic signals acquired from geophone array. 

Do the different microseismic events in a fracture plane exhibit relatively similar 3D motion? 

Answer: Yes, different classes of microseismic events are shown to exhibit their signature wave 

motion. This notion is supported from observations from data of 70 geophones surrounding the 

stimulated reservoir volume, as quantified by high Calinski-Harabasz scores (median score=187) 

once the wave motion features are embedded in UMAP space and overlain by cluster labels. The 

final step of the analysis investigates the spatial distribution of the Calinski-Harabasz scores 

determined for different sensors.  
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This is done to check if there is any systematic variation in the azimuth or the distance and the 

goodness of fit between the moment tensor types and signal features. Figure z shows the spatial 

distribution of CH scores for all the geophones in the Toc2Me experiment. For single vertical 

component short time Fourier transform features, it appears that the scores tend to increase from 

the northeast to the southwest (Figure 58). The highest score (~320) is shown by the geophone 

located at the south-western extremity of the sensor distribution. For three component Fourier 

spectra, the trend is different and more subtle. The CH score tends to increase from south-west to 

the northeast. This orientation is different from that observed from single component features. 

The highest score is shown by sensor at the north-western extremity of the geophone 

distribution.  For the polarization features, no clear directional pattern is observed.  Overall, it is 

concluded that distance of the sensors from the region of seismicity does not have a direct impact 

on the control on the moment tensor types.  
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6.6.1 Conclusions  

 

1. There is no spatiotemporal pattern observed in the 11-month long microseismicity 

generated in a field (km) scale hydraulic fracturing experiment. The microseismic events form 

distinct clusters over space. Using UMAP for dimension reduction, the moment tensors 

associated with the microseismic events show three clusters using the density-based clustering 

algorithm. The clusters obtained from combination of UMAP and density-based clustering show 

statistical differences in terms of the moment tensor decompositions described in terms of DC, 

CLVD and ISO, as well as the fracture orientations described in terms of dip, strike and rake of 

the faults described by the moment tensors.  

2. Each cluster of hydraulic fractures is associated with a predominant moment tensor type. 

This is evident from the fact that each fracture label is linked to one specific majority moment 

tensor type. The label -1 in the results represents event locations that are not clustered. Among 

the clusters, label 3 stands out as having the most varied population, as it includes all three 

moment tensor types, while the other clusters exhibit a maximum of two types. 

3. The moment tensor type 0, which is the most volumetric type in the population, is 

primarily found in the fracture set S1 (as indicated by the blue points in Figure z). The moment 

tensor type 1 is the most geographically widespread among the clusters, with its presence in all 

locational clusters and a dominant presence in 2 out of 4 locational clusters. Additionally, it has 

the largest population in the dataset. On the other hand, moment tensor type 2 is the least 

geographically widespread among the clusters, being present only in one locational cluster 

(Fracture set) and being the dominant population in that cluster. 

4. Fracture set S4 (frac_label 3) is the most consistent in terms of its moment tensor type, 

with almost all its events being of moment tensor type 2, which is characterized by a maximum 
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volumetric component. On the other hand, moment tensor type 0 and 1, which are more closely 

associated with double couple type events (more typical of tectonic-related events) have a more 

varied distribution. 

5. Based on the results overall, the time-frequency features performed better than the 

polarization features in terms of clustering match with the moment tensor clusters. Specifically, 

among the time-frequency features, the three-component Fourier spectra features yielded higher 

CH scores and thus demonstrated a better match with the moment tensor clusters, compared to 

the vertical component STFT features. 

6. In the case of polarization, the combination of primary and shear phase polarization 

features demonstrated higher statistically averaged scores compared to the individual phase 

polarization features. This suggests that variations in the three-component signal features are the 

most indicative of variations in the moment tensor types. 
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APPENDIX 

 

Figure A1: Calinski-Harabasz scores for the comparison of combined polarization and 

three component Fourier spectra against three component Fourier spectra for 70 sensors in 

the Toc2Me microseismic dataset. The median scores of different feature sets are 

summarized in Table 8. 
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Figure A2: Highlighted location of fracture plane 1002 (red box). The most likely 

explanation for the low Tau statistic of fracture plane 1002 is that its location is tightly 

overlapping with 1003, 1001 and 1005. It is only through independent observations like 

core measurements that it is distinguished from the other three planes. Note that other 

three plans have distinct azimuths and dips which makes them easily distinguishable from 

geometric analysis alone, unlike fracture plane 1002.  
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