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ABSTRACT

Data science for experimentation, including the rapidly growing area of the design and anal-

ysis of computer experiments, aims to use statistical approaches to collect and analyze (physical

or virtual) experimental responses and facilitate decision-making. The cost for each run of an ex-

periment can be expensive. This dissertation proposes novel data-efficient methodologies to tackle

three different challenges in this field. The first two are regarding computer experiments, and the

third one is regarding physical experiments.

The first work aims to reconstruct the input-output relationship (surrogate model) given by the

computer code via scattered evaluations with small sizes based on Gaussian process regression.

Traditional isotropic Gaussian process models suffer from the curse of dimensionality when the

input dimension is relatively high given limited data points. Gaussian process models with additive

correlation functions are scalable to dimensionality, but they are more restrictive as they only work

for additive functions. In the first work, we consider a projection pursuit model in which the

nonparametric part is driven by an additive Gaussian process regression. We choose the dimension

of the additive function higher than the original input dimension and call this strategy “dimension

expansion”. We show that dimension expansion can help approximate more complex functions.

A gradient descent algorithm is proposed for model training based on the maximum likelihood

estimation. Simulation studies show that the proposed method outperforms the traditional Gaussian

process models.

The second work focuses on the designs of experiments (DoE) of multi-fidelity computer ex-

periments with fixed budget. We consider the autoregressive Gaussian process model and the

optimal nested design that maximizes the prediction accuracy subject to the budget constraint. An

approximate solution is identified through the idea of multilevel approximation and recent error

bounds of Gaussian process regression. The proposed (approximately) optimal designs admit a

simple analytical form. We prove that, to achieve the same prediction accuracy, the proposed op-

timal multi-fidelity design requires much lower computational cost than any single-fidelity design

ii



in the asymptotic sense.

The last work is proposed to model complex experiments when the distributions of training and

testing input features are different (referred to as domain adaptation). In this work, we propose a

novel transfer learning algorithm called Renewing Iterative Self-labeling Domain Adaptation (Re-

ISDA) to tackle the domain adaptation problem. The learning problem is formulated as a dynamic

programming model, and the latter is then solved by an efficient greedy algorithm by adding a

renewing step to the original ISDA algorithm. This renewing step helps avoid a potential issue

of the ISDA that the possible mis-labeled samples by a weak predictor in the initial stage of the

iterative learning can cause serious harm to the subsequent learning process. Numerical studies

show that the proposed method outperforms prevailing transfer learning methods. The proposed

method also achieves high prediction accuracy for a cervical spine motion problem.
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1. INTRODUCTION

1.1 Background

Experimentation is one of the most common activities people implement to explore relation-

ships between the input features and the response in applications [1]. It starts by setting the input

variables purposely to the system (also referred to as designs of experiments (DoE)) and then

models the input-output relationships via statistical tools based on the collected data. Modern ex-

perimental design and analysis date back to the pioneering work of R. A. Fisher in the 1930s in

the development of blocking, randomization, replication, orthogonality, and the use of analysis of

variance (ANOVA) and fractional factorial designs. G. E. P. Box and co-workers found that fo-

cusing more on process modeling and optimization than treatment comparison was more valuable,

which led to the development of central composite development and optimal designs. After that,

G. Taguchi advocated using robust parameter design to make the system less sensitive to variation.

More recently, new challenges have been posed to traditional experimentation methodologies.

On the one hand, today’s experiments can be very complex. Given these complexities, traditional

methods, e.g., linear models, ANOVA, and factorial designs, are too naive to work well [2; 1].

For instance, making designs for experiments involving human motion can be very hard using

traditional methods. On the other hand, in many cases, collecting enough input-response pairs from

physical experiments is hard because each run of a physical experiment can be very costly. Given

these two challenges, data-efficient methodologies with stronger modeling abilities are urgently

needed.

Modern experimentation methodologies are now mainly developed in two directions to solve

the aforementioned challenges. One direction is to implement more advanced methodologies,

such as Gaussian process regression [3; 4] and neural networks [5; 6], to model complex computer

experiments efficiently. The other direction is to use computer experiments to mimic complex

physical systems. Compared with physical experiments, computer experiments are often much
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less costly and more flexible to run. For example, computer models are implemented to simulate

oil pressure at a well of a hydrocarbon reservoir [7]. Conceptually, each computer model is based

on a mathematical model in terms of, for instance, a set of partial differential equations. The

aim of a computer code run is to find a numerical solution to this mathematical model. However,

each computer code run can still be expensive. For example, each run of a typical computational

fluid dynamics model for aerospace engineering takes a few days or even weeks to run [8]. The

design and analysis of computer experiments, an area drawing increasing attention recently, aim

to use statistical approaches to collect and analyze computer simulation responses and facilitate

decision-making. We refer to the books [2; 3] for an introduction to this field.

One of the most important tasks for computer experiments is to build fast and accurate surro-

gate models of computer experiments. A surrogate model is a statistical model constructed using

the computer outputs over a selected set of input sites. A point evaluation of a surrogate model is

much less costly than running the corresponding computer simulation code. Thus we can use the

surrogate model to explore and analyze the underlying computer response function, which expe-

dites the decision-making. The step towards an efficient surrogate model is to make efficient DoEs.

As observed by many researchers, there is an essential distinction between designs for computer

experiments when constructing the surrogate model [9; 2]. Therefore, another critical mission of

computer experiments is to obtain efficient designs of experiments. In real applications, a limited

budget is often allowed to make designs. Given that, we need to implement data-efficient design

methods to collect information as much as possible.

This dissertation focuses on data-efficient methodologies for three different challenges, i.e.,

high-dimensional data modeling, multi-fidelity experimental designs, and domain adaptation in

the design and analysis of experimentation. The first two are regarding computer experiments, and

the third one focuses on physical experiments. In the rest of this chapter, the motivation and related

works will be included for these three works, respectively.
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1.2 Projection Pursuit Gaussian Process Regression

Gaussian process regression [10; 2] is one of the most popular surrogate models. Various mod-

ifications and extensions of the standard Gaussian process regression models have been proposed

to address the specific needs in practical situations. An incomplete list of these methods include

composite Gaussian processes [11], treed Gaussian processes [12], non-stationary models [13],

transformed approximately additive Gaussian processes [14], etc.

Data analysis for computer simulations usually suffers from the “small data” issue, because

the computer simulation runs can be highly costly. For example, each run of a typical computa-

tional fluid dynamics model for aerospace engineering takes a few days or even weeks to run [8].

Many computer simulations also pose the curse of dimensionality problem, in the sense that the

input dimension is relatively high so that building an accurate surrogate model based on limited

data points becomes more challenging. Classic approaches for dimension reduction in computer

experiments include sensitivity analysis [15; 16; 17], ridge approximation [18; 19; 20]. Variable

selection for Gaussian processes models is considered in [21], [22] and [23]. In Gaussian process

regression, it is also known that some correlation structures perform better in high-dimensional

scenarios [24]. Recently, additive Gaussian process models have received considerable attention

[25; 26; 27; 28; 29; 30]. Although these models are more scalable to the input dimension, their

capability of model fitting is lower because these models can only reconstruct additive functions

precisely.

In this work, we propose a novel surrogate modeling technique based on the projection pursuit

methodology [31] and additive Gaussian process models. Gaussian process regression can provide

prediction variance as opposed to projection pursuit (neural networks). Additionally, unlike the

conventional estimation approaches for projection pursuit [32; 33; 34], we suggest choosing a

large number of intermediate nodes to introduce more model flexibility. Then we use the maximum

likelihood estimation to identify the model parameters. A gradient descent algorithm is proposed

to search the maximum of the likelihood function. In this work, we also find an error bound of the

prediction error for Gaussian process regression with additive Matérn correlation functions. Our

3



theoretical results show that the prediction error of additive Gaussian process models is much lower

than that given by isotropic Gaussian process models for high-dimensional problems, provided that

a design with nice projection properties, such as a Latin hypercube design, is adopted.

1.3 Fixed-budget optimal designs for multi-fidelity computer experiments

Many computer simulation codes allow users to specify an accuracy level of the numerical

responses in terms of the degree of discretization, the number of iterations, etc. Generally, there

is a trade-off between the accuracy and the computational cost: a high-accuracy computer run is

more costly than a low-accuracy run [35; 36]. Many statisticians have considered the problem

of integrating the computer responses from multiple accuracy (also known as fidelity) levels to

make predictions. The first model was suggested by [7], who proposed a Gaussian-process-based

autoregressive model to integrate the output data from computer experiments with multiple fidelity

levels. This model has been widely used in real-world applications, e.g., simulation oil pressure

[7], designing of linear cellular alloy [36] and prediction of band gaps [37]. Alternative models

multi-fidelity computer experiments include Bayesian hierarchical models [35], deep Gaussian

process model [38], and nonstationary Gaussian process models [39]. In this article, we focus on

the autoregressive models given the wide acceptance of these models.

Despite the widespread use of multi-fidelity computer experiments, there remain some unan-

swered questions. First, it is unclear why one would prefer a multi-fidelity computer experiment

over a simple single-fidelity experiment. A conventional explanation says that the low-fidelity data

can help explore the underlying response function quickly, and the high-fidelity data are then used

to refine the model. This assertion is usually confirmed by numerical studies, but there is a lack of

quantitative analysis of this relationship.

The second question is regarding the choice of the set of input sites for the computer simulation,

known as a design of experiment. Studying the design of computer experiments is considered

important because each computer run can be costly, and a good design can help collect more

information under the same computational cost [2; 40]. The importance of design of experiments

is even more dramatic for multi-fidelity computer experiments, because a poor design can even
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make an adverse effect on the performance.

A number of designs for multi-fidelity computer experiments are proposed in the literature.

[41] proposed the Nest Latin hypercube designs (NLHDs). The design points of an NLHD on

one fidelity level forms a Latin hypercube, and those from different fidelity levels are nested. [42]

proposed the nested orthogonal array-based Latin hypercube designs to achieve stratification in

both bivariate and univariate margins. [9] constructed nested maximin Latin hypercube designs

using a numerical search algorithm. See also [41; 43; 44; 45; 39; 36; 42; 46] for more related

works. Despite the rich literature, none of these works addressed the aforementioned questions.

Some existing works provided theoretical justifications in terms of numerical integration, e.g., [47],

but it is still not clear why these designs are suitable for the autoregressive models.

There is another class of approaches from the area of applied mathematics for a related prob-

lem, known as multilevel Monte Carlo (MLMC) [48; 49; 50]. These methods are algorithms

for computing expectations that arise in stochastic simulations with different levels of accuracy.

reduces the computational cost of the traditional Monte Carlo method by taking most samples

with low accuracy, and only very few samples taken at high accuracy. Multifidelity Monte Carlo

(MFMC) [51], based on the control variable techniques for Monte Carlo simulation, resembles

the MLMC method for more general engineering models. More related works can be found in

[52; 53; 54; 55; 56]. Even though these multilevel based design are equipped with rigorous math-

ematical foundations, they are not based on Gaussian process models so that they cannot be used

for posterior-based analysis and uncertainty quantification.

This work aims at underpinning the multi-fidelity computer experiments by analyzing their

predictive error theoretically. Inspired by the idea of multilevel methods, we formulate a model

framework for multi-fidelity computer experiments. We then consider the fixed precision optimal

design defined as the design with the minimum total simulation cost subject to an accuracy guar-

antee. Our main theoretical contribution is to obtain the order of magnitude of the simulation cost

as the required predictive error of the autoregressive model goes to zero. The analysis is based on

the error bounds for Gaussian process regression provided by [57]. We prove that a well-designed
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multi-fidelity experiment will require much lower simulation cost in the order of magnitude to

reach the same accuracy level, compared with the best single-fidelity experiment. This result con-

firms the superiority of multi-fidelity computer experiments. Based on the theory, we propose a

novel design scheme. Compared with the existing optimal design methods, the proposed method

is easy to implement because it does not require a numerical search. Numerical studies confirm

the superiority of the proposed method over existing alternatives.

1.4 Renewing Iterative Self-labeling Domain Adaptation with Application to the Spine Mo-

tion Prediction

Advanced supervised learning approaches, e.g., neural networks, are widely used in modeling

complex physical experiments. A primary task of supervised learning is to learn the input-output

relationship within a training set. This learned relationship is described by a model; the model

can then be used to make predictions for another set of interests, e.g., the testing set. Traditional

supervised machine learning algorithms learn models based only on labeled training data. In prac-

tice, the marginal distribution of the training inputs often differs from that of the testing set. See

[58] for an example in web-document classification. When this difference is large, traditional su-

pervised machine learning algorithms may not give accurate predictions on the testing set, even

if their models fitting on the training set are good. In such a circumstance, one needs to consider

a transfer learning method, which builds machine learning models based on not only the training

data but also the inputs of the testing set. We refer to [58; 59] for an introduction to this field.

According to [58], a domain is defined as D = {X,P (X)}, where X stands for a feature space

and P (X) denotes the marginal distribution of these features. Besides, a task T based on a specific

domain D is defined as T = {Y, P (Y |X)} where Y is the label space and P (Y |X) denotes the

conditional distribution. Given a source domain (training set) Ds with a learning task Ts and a

target domain (test set) Dt with a learning task Tt, transfer learning aims to improve the learning

of the predictive function on the target domain when Dt ̸= Ds or Ts ̸= Tt. To be simple, transfer

learning is proposed to enhance the prediction when the source and target domains are correlated

but not the same. Based on this definition, the aforementioned difference between input features
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can be summarised as Xs = Xt, Ps(X) ̸= Pt(X), and Ts = Tt, which is also referred to as domain

adaptation.

The existing transfer learning methods for domain adaptation mainly fall into two general cat-

egories. The first category, instance-based transfer learning, proceeds by re-sampling the training

data according to suitably chosen weights to approximate the distribution of testing samples. One

of the most popular instance based methods is Kernel Mean Matching (KMM) [60], which esti-

mates the weights for the source samples to make the input from two domains close. Dai proposes

TrAdaboost in [61] to apply the Adaboost to find suitable weights. Chattopadhyay proposes Con-

ditional Probability based Multi-source Domain adaptation (CP-MDA) and Two Stage Weighting

Framework for Multi-source Domain adaptation (2SW-MDA) in [62] for multiple source transfer

learning. The CP-MDA and 2SW-MDA decide the weights for different source domains based

on their distance between the target domain. See [62; 63; 64] for related work. These methods

are not suitable for problems with limited labeled samples because the information loss due to the

re-sampling is more severe in problems with limited samples. The second category, feature-based

transfer learning, proceeds by finding a transformation of the inputs so that the transformed input

features from the two domains become closer. The most important work of this field is the Transfer

Component Analysis (TCA) [65], which tries to find a suitable Reproducing Kernel Hilbert Space

(RKHS) to minimize the Maximum Mean Discrepancy (MMD) between the input features in this

space. Based on TCA, Duan proposes domain transfer multiple kernel learning in [64] to add the

multiple kernel structure into TCA. Long puts forward a Joint Component Analysis (JCA) [66]

to simultaneously correct for the marginal and conditional distribution differences. Pan gives a

Spectral Feature Alignment (SFA) in [67] to discover a new feature representation by identifying

the domain-specific and domain-independent features. See [68; 69; 70] for more related work.

However, deciding a suitable transformation can be difficult and domain-dependent [58].

In this work, we adopt the general idea of the iterative self-labeling domain adaptation (ISDA)

method [71] and propose a novel method, called the renewing self-labeling domain adaptation (Re-

ISDA). The original ISDA method is a domain adaptation method for classification problems. In
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this work, we propose a new framework, under which a version of the ISDA method is applicable

for regression problems, by formulating the regression problem as a dynamic programming model

with uniformly stable algorithms [72]. We also provide a greedy algorithm to solve this dynamic

programming model efficiently, which proceeds by renewing all labels of testing samples labeled

in former steps. This renewing step helps avoid a potential issue of the ISDA that the possible

mis-labeled samples by a weak classifier in the initial stage of the iterative learning can cause

serious harm to the subsequent learning process, which is also called mis-labeling issue [73; 74].

In our synthetic numerical examples, the proposed method outperforms three prevailing domain

adaptation approaches. We also apply the proposed Re-ISDA method to a spine motion prediction

problem. We find that the performance of Re-ISDA is superior to the three prevailing domain

adaptation approaches.
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2. PROJECTION PURSUIT GAUSSIAN PROCESS REGRESSION*

2.1 Introduction

In this chapter, we will introduce the proposed projection pursuit Gaussian process regression

in detail. The remaining part of this chapter is organized as follows. In Section 2.2, we review the

background of Gaussian process regression with isotropic and additive Matérn correlation func-

tions. In Section 2.3, we introduce the proposed methodology, called the projection pursuit Gaus-

sian process regression. An algorithm of the proposed method is given at the end of Section 2.3. In

Section 2.4 and 2.5, we conduct simulation studies to demonstrate the use of the proposed method,

and show that the proposed method outperforms some existing methods. In Section 2.6, we shows

that the performance of the proposed method is satisfactory through a real-world application.

2.2 Review on Gaussian process regression

In this section, we review a simple version of the Gaussian process emulation [2]. Let Z be a

stationary Gaussian process on Rd with mean zero, variance σ2, and correlation function Φ. Given

scattered evaluations (x1, Z(x1)), . . . , (xn, Z(xn)), one can reconstruct Z using its conditional ex-

pectation

Ẑ(x) := E(Z(x)|Z(x1), . . . , Z(xn)) = rT (x)K−1Y, (2.1)

for x ∈ Rd, where r(x) := (Φ(x − x1), . . . ,Φ(x − xn))
T , K = (Φ(xj − xk))jk and Y =

(Z(x1), . . . , Z(xn))
T .

2.2.1 Curse of dimensionality in Gaussian process regression with isotropic Matérn corre-

lation

Curse of dimensionality is one of the fundamental challenges in various high-dimensional sta-

tistical and machine learning problems. In this section, we review how the curse of dimensionality

*This work is an Accepted Manuscript of an article published by Taylor & Francis in IISE Transactions on 30
Aug. 2022, available online: https://doi.org/10.1080/24725854.2022.2121882.
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can affect the prediction performance of Gaussian process regression.

The prediction error of the Gaussian process regression is

Z(x)− Ẑ(x) = Z(x)− E(Z(x)|Z(x1), . . . , Z(xn)),

which is a function of x. In [57], the author studies the rate of convergence of the prediction error

under different function norms, under the assumption that the Gaussian process has an isotropic

Matérn correlation function [2], defined as

Φ(x; ν, ϕ) =
1

Γ(ν)2ν−1
(2
√
νϕ∥x∥)νKν(2

√
νϕ∥x∥), (2.2)

where ν > 0 is the smoothness parameter, Kν is the modified Bessel function of the second kind,

ϕ > 0 is the scale parameter.

To explain the curse of dimensionality issue posed by the isotropic Matérn correlation func-

tions, we refer to Theorem 3.3 of [57], which states a lower bound of the maximum of the pre-

diction error of an isotropic Gaussian process. For simplicity, we consider the expected maximum

prediction error. Suppose the input region of interest is Ω, and then the expected maximum pre-

diction error is E supx∈Ω |Z(x)− Ẑ(x)|. Here the expectation is taken over the randomness of the

Gaussian process Z(·). Theorem 3.3 of [57] implies

E sup
x∈Ω
|Z(x)− Ẑ(x)| ≥ Cσn−ν/d

√
log n, (2.3)

for a constant C independent of n, σ and the choice of the experimental design.

The lower bound in (2.3) shows that the uniform error of a Gaussian process regression predic-

tor with an isotropic Matérn correlation is no less than a multiple of n−ν/d
√
log n. This rate grows

dramatically as d increases with a fixed ν. Therefore, when a Gaussian process model with an

isotropic Matérn correlation is considered, its prediction suffers from the curse of dimensionality,

in the sense that, for a high-dimensional problem, acquiring extra data points cannot improve the
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prediction accuracy as effectively as in lower-dimensional problems.

In Gaussian process regression, the curse of dimensionality is inevitable if the underlying func-

tion is indeed a realization of a Gaussian process with isotropic Matérn correlation. The reason

behind this is that the reproducing kernel Hilbert spaces generated by these correlation functions

are too large in high-dimensional circumstances. Fortunately, in most real applications, we con-

front much “simpler” high-dimensional functions. These functions admit certain “sparse represen-

tation”, and therefore, at least theoretically, can be recovered at a much higher rate of convergence.

In Section 2.2.2, we examine a special and simple structure of this kind.

2.2.2 Additive models: accuracy and limitations

A scalable Gaussian process regression approach proceeds by equipping an additive correlation

function. Denote x = (x(1), . . . , x(d)). We consider the following function:

Φ(x) =
1

d

d∑
j=1

Φ1(x(j)), (2.4)

where Φ1 denotes a one-dimensional correlation function. It is easily seen that Φ is positive definite

if Φ1 is positive definite. Thus one can consider Gaussian process models with correlation (2.4).

This approach is called the additive Gaussian process regression [25; 26; 27].

Compared to isotropic models, additive models are much more scalable to the dimensionality.

It can be shown that the rate of convergence of the uniform error is independent of d. Specifically,

if Φ1 is a Matérn correlation function with smoothness ν, the uniform prediction error in (2.3)

can have a rate of convergence O(n−ν
√
log n); see our theoretical results in the Supplementary

Materials.

Despite the above advantages, the limitations of additive models are also evident. Only additive

functions, i.e., the functions that can be decomposed as the sum of functions such that each of them

relies on only one entry of x, can be accurately reconstructed. This assumption is not true for most

of the practical problems. Consider a two-dimensional input (x, y). A simple non-additive function

is f(x, y) = xy + x2. Figure 2.1 shows that the additive model cannot fit this function well, while
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Figure 2.1: Contour plots of f(x, y) = xy + x2 and the reconstructed functions by additive and
isotropic Gaussian process regression (GPR) using a same 25-point random design between −1
and 1. It can be seen that the isotropic model has a much better prediction performance.

the isotropic model works in this case.

2.3 Projection pursuit Gaussian process regression

In this section, we propose a general approach to reconstruct multi-dimensional functions that

admits more complicated sparse representations. To this end, we consider a model which is more

flexible than additive Gaussian process models. Specifically, we employ the projection pursuit

regression method [31] to model the underlying function as

y(x) = f(wT
1 x,w

T
2 x, . . . , w

T
Mx), (2.5)
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where w1, . . . , wM are unknown vectors, M is a positive integer, and f is an additive function in

the sense that f can be written as

f(wT
1 x,w

T
2 x, . . . , w

T
Mx) = f1(w

T
1 x) + f2(w

T
2 x) + · · ·+ fM(wT

Mx), (2.6)

with unknown univariate functions f1, . . . , fM . In other words, this model first applies a linear

transformation on the input space, and then use an additive function to fit the responses.

A projection pursuit model can be represented by a four-layer network shown in Figure 2.2,

which is similar to a neural network model. Neural networks have been widely used to enhance

the precision of nonparametric regression [6; 75; 5; 76]; deep neural networks are employed in

[77] and [78] to reduce the dimension of data; In [79], the author combines neural networks with

Gaussian process regression method to tackle multi-task problems. The main difference between

the projection pursuit method and neural networks lies in the activation functions. In neural net-

works, the activation functions are chosen as fixed function, such as rectified linear unit (ReLU)

functions. In contrast, the projection pursuit method uses estimated activation functions. In this

work, we call the two hidden layers the transformation layers.

Figure 2.2: Network structure of PPGPR.
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When M = 1, the projection pursuit model reduces to a single index model, which provides

a parsimonious way to implement multivariate non-parametric regression. By imposing suitable

priors on the parameters, [80], [81] and [82] use the Bayesian approach to estimate the parameters

of the single index model. In [83], a dimension reduction method is applied to choose the number

of nodes and then the link function is estimated using Gaussian process regression. In this work,

we consider projection pursuit models with M ≫ 1, which are much more flexible than single

index models.

Given a sufficiently large M , it is known that the projection pursuit model can approximate any

continuous function arbitrarily well [84]. For example, the non-additive function f(x, y) = xy+x2

can be represented by projection pursuit as shown in Figure 2.3. Figure 2.3 also shows that the

representation is not unique.

(a) (b)

Figure 2.3: Two different representations of f(x, y) = xy + x2 via projection pursuit.

The non-uniqueness of the projected pursuit representation suggests that each of the “direc-

tions” wi may not be essential. In contrast, these vectors exhibit a “synergistic effect”, so that they

need to be estimated jointly. Consider the example shown in Figure 2.3 (a). Taking the direction

x + y/2 along is not helpful in obtaining the underlying function xy + x2; this direction makes

sense only when it is paired by the direction y. This phenomenon differs from the classical results

in linear models, in which the significant directions (usually defined by the principal components)

are fixed, and their importance is ordered by the corresponding eigenvalues.

Understanding this difference between the linear and nonlinear models helps build a better pro-

jection pursuit regression model. Traditionally, the projection pursuit method is usually regarded
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as a dimension reduction approach [32; 33], and greedy algorithms are usually applied to identify

wi’s [33; 85; 86]. These strategies have the following deficiencies: 1) it is often hard to accurately

approximate the underlying functions through dimension reduction (M ≪ d). For example, the

function f(x, y) = xy + x2 cannot be recovered through a one-dimensional factor. 2) Greedy

algorithms, which proceed by picking the current “most significant” direction in each step, cannot

perform well when there is no order of importance in the directions, as in the example shown in

Figure 2.3. In this work, we propose a method, which conducts a dimension expansion (M ≥ d)

to improve the approximation power substantially.

When M ≥ d, the projection pursuit model is in general non-identifiable; see Figure 2.3 for

an example. The learning outcome on wi’s are meaningless, and we only focus on the prediction

of the underlying response at untried input points. Our numerical experience shows that as long as

M is large enough, the prediction performance of the proposed method is not heavily dependent

on the specific value of M . We recommend choosing M close to, but slightly less than the sample

size n.

In this work, we propose a novel approach, called the projection pursuit Gaussian process re-

gression (PPGPR). To reconstruct the underlying function, we need to: 1) estimate the weight

parameters w = (w1, w2, ..., wM); 2) reconstruct the combination function f given w using Gaus-

sian process regression [2; 10]. Recall that the design matrix is denoted as X = (x1, x2, ..., xn)
T ,

xi ∈ Rd for i = 1, 2, ..., n, and the response as Y = (f(x1), f(x2), ..., f(xn))
T . Now we employ

the idea of Gaussian process regression to assume that f is a realization of a Gaussian process.

Specifically, we assume that the Gaussian process has mean zero and an additive correlation func-

tion (2.4). We believe that the mean zero assumption is not too restrictive because the model is

already non-identifiable.

The training of the proposed method proceeds by an iterative approach. First, we choose an ini-

tial weight parameter w. Then we compute the initial correlation matrix Kω =
(

1
M

∑M
k=1 Φ(w

T
k (xi − xj))

)
ij
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based on the initial ω. Next, we invoke (3.1) to reconstruct the underlying function f as

f̂(x) = rT (wTx)(Kω + δI)−1Y, (2.7)

where δ is a nugget term to enhance the numerical stability.

Our goal is to seek for w∗ which maximizes the log-likelihood function of Gaussian Process

Regression [2], that is,

min
w

(l(w)) = min
w

(Y T (Kw + δI)−1Y + log det(Kw + δI)). (2.8)

We refer l(w) to the model loss. The gradient of l(w) with respect to wk is

∂l(w)

∂wk

= − 1

M

n∑
i=1

n∑
j=1

(Y TK−1
w

∂Kw

∂wk

K−1
w Y + Tr(K−1

w ))(xi − xj)
T , (2.9)

for k = 1, 2, ...,M . The derivative of the matrix Kw can be computed using the following facts.

The derivative of the Matérn correlation function is [87]

∂

∂x
Φ(x; ν, ϕ) = − 2νx

ϕ2(ν − 1)
Φ

(√
ν

ν − 1
x; ν − 1, ϕ

)
,

and the derivative of the Gaussian correlation function is

∂

∂x
Φ(x;ϕ) = −|x|

ϕ2
exp

(
− x2

2ϕ2

)
.

Then the gradient decent method can be applied here to find the minimizer via iteratively updating

wk ← wk − η
∂l(w)

∂wk

,

where η is the step length for the gradient descent algorithm, and is referred to the learning rate in

the rest of this article.
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When the algorithm converges or a stopping criterion is met, one can again reconstruct the un-

derlying function using (2.7). Algorithm 1 lists the detailed steps of the proposed training method,

each iteration (epoch) includes calculating the gradient for all weights and renewing the weights.

To avoid overfitting, early-stopping criterion [88] should be implemented when choosing P (the

number of epochs).

Besides P , there are other hyper-parameters in the proposed methodology, including M, η and

the hyper-parameters of the covariance function. We refer the activity of adjusting these parameters

to the tuning process. Below is a list of our general recommendations for tuning.

• The proposed method does not use the ML estimators [2] to estimate the hyper-parameters

of the GP covariance because the ML estimators are likely to overfit with relatively small

sample sizes [2].

• Determining a proper learning rate η through cross-validation such that it maintains a stable

training process (i.e., the model loss decreases neither too sharply nor too slowly);

• Increasing the size of representation nodes M until the performance on the testing points

starts to deteriorate. In practice, we recommend considering M in the range [4d, 8d] in a

d-dimensional problem;

• Adopting early stopping policies [88] in the training process when choosing P to avoid

overfitting;

• Using cross-validation to choose the hyper-parameters of the covariance function.

More discussion regarding the tuning process is provided through a numerical study in Section

2.4.1.

2.4 Simulation Studies

In this section, we examine the performance of the proposed method via simulation studies.

Based on four numerical experiments, we will provide some guidelines for parameter tuning for
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Algorithm 1 Training steps for transformation weight w

Input: design matrix X = (x1, x2, ..., xn), response Y = (y1, y2, ..., yn), initialized weight w =
(w1, w2, ..., wM), correlation function Φ, learning rate η, number of iterations P

Output: transformation weight w
for p in 1 : P do

2: X
′ ← wTX

Kw ← Φ(X
′
, X

′
)

4: for k in 1 : M do
gradk ← − 1

M

∑n
i=1

∑n
j=1(Y

TK−1
w

∂Kw

∂wk
K−1

w Y + Tr(K−1
w ))(xi − xj)

T

6: wk ← wk − η · gradk
end for

8: end for

PPGPR in Section 2.4.1. In Section 2.4.2, we compare the proposed method with some other

prevailing algorithms and show the advantages of the proposed method.

2.4.1 Choice of tuning parameters

In this section, we study how the choice of the hyper-parameters of PPGPR can affect its

prediction performance. Recall that the hyper-parameters include the learning rate η, the size

of nodes M in the transformation layers, the number of epochs (iterations) P , the choice of the

correlation function (Matérn or Gaussian) and smoothness parameter ν if a Matérn correlation is

used.

In the rest of this subsection, we will use the Borehole function [89] as the test function to

study the performance of the proposed PPGPR under different choices of hyper-parameters. The

Borehole function is defined as

y =
2πTu(Hu −Hl))

log( r
rw
)[1 + Tu

Tl
+ 2LTu

log( r
rw

)r2wKw
]
,

with the ranges for the eight variables given by rw ∈ (0.05, 0.15), r ∈ (100, 50000), Tu ∈

(63070, 115600), Hu ∈ (900, 1110), Tl ∈ (63.1, 116), Hl ∈ (700, 820), L ∈ (1120, 1680) and

Kw ∈ (9855, 12045). A Halton sequence† [90] with 40 samples are used as the training set inputs

†Halton sequence are deterministic low discrepancy sequences used to generate points in space for numerical
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and 500 random samples are used as the testing set inputs. We consider different choices of the

tuning parameters and compare the corresponding prediction performance in terms of the mean

absolute percentage error (MAPE) [91]:

MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ , (2.10)

where n = 500 is the size of testing samples; ŷ and y denote the predictive value and true value of

a testing sample, respectively.

The details of the numerical experiments are described in Sections 2.4.1.1-2.4.1.3. We choose

10−6 as the nugget term of (2.8) in this section to avoid some numerical instability, see [92] for

more guideline for choosing nugget terms.

2.4.1.1 Learning rate η and number of representation nodes M

In this experiment, a Matérn correlation function with ν = 2.5 is used and training epochs

P = 150. We examine the performance of PPGPR under different learning rates and different

node sizes in the transformation layers.

Figure 2.4 shows the MAPE of PPGPR under different learning rate with respect to the size of

representation nodes. It can be seen that when η = 10−10, the MAPE is much higher than those in

the other three situations. For η = 10−8, the model reaches its best performance when M = 28.

The models with M = 35 have lower MAPE when η = 10−7 and η = 10−9. In general, the models

with η = 10−9 perform slightly better and more stably.

According to [84], the PPGPR model can approximate any continuous functions as M → ∞.

This explains why the performance of PPGPR grows as M increases when M is small. However,

when M is above 35, the MAPE becomes worse for most of the curves in Figure 2.4, which may

be due to overfitting because there are too many hidden nodes. In practice, we suggest employing

cross-validation to select the optimal M .

Figure 2.5 shows four curves generated with a common initial w and different learning rates

experiments. The Halton sequences can be generated efficiently by an R package “SDraw”.
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Figure 2.4: MAPE under different learning rates and size of nodes in transformation layers

when M = 35. Each of them shows the relationship between the model loss defined in (2.10)

and the number of iteration. From Figure 2.5, we find that, 10−10 is too low as a learning rate,

because the model loss is still high (about 5 × 105) even after 100 iterations. This observation is

also confirmed by the MAPE results in Figure 2.4, in which the MAPE for M = 35 corresponding

to η = 10−10 is much higher than those in the other ones. The model loss curves for the other

three learning rates are similar. We believe that the choice of η = 10−9 gives a slightly better

result than those given by η = 10−8 or η = 10−7, because the model loss curve under η = 10−9

decreases more smoothly than the other two, which implies a more stable learning process [93].

According to [94], a flat minima might have higher generalization than sharp minima. Besides,

a too small model loss after training might result in overfitting which will be shown in Section

2.4.1.3. Figure 2.4 also implies that η = 10−9 gives the best MAPE when M = 35. In practice,

the optimal learning rate relies on the underlying function. Therefore, we recommend tuning η via

cross-validation.

2.4.1.2 Effects of correlation function type and parameters

In this experiment we examine the performance of PPGPR under different correlation functions

and smoothness parameters with η = 10−9 and P = 150.

Figure 2.6 shows the MAPE for PPGPR with the Matérn correlation functions under different
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Figure 2.5: Model loss with different learning rate

M and ν with ϕ = 1. It can be seen that when ν = 2.5 (green line), the model performs better

than other choices. Under ν = 2.5, the best prediction performance is achieved when M =

35. Generally, with a larger ν, the reconstructed function would be smoother, which may lead to

overfitting; with a smaller ν, the reconstructed function would be less smooth, which may result

in instability or underfitting. Figure 2.7 shows the MAPE for PPGPR with Gaussian correlation

functions under different M and ϕ. We can see that, when M = 35, the green line (ϕ = 0.5)

reaches its lowest MAPE, which is slightly better than the MAPE under other M and ϕ in this

experiment. This experiment shows that Matérn correlation functions with ν = 2.5 seem to be

an appropriate choice of the correlation functions. We also recommend using cross-validation to

determine the optimal correlation function if computational resource permits. Table 4.1 shows the

numerical values of the lowest MAPE of PPGPR under the above Matérn and Gaussian correlation
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functions.

Figure 2.6: MAPE under different ν and M for Matérn correlation functions

Figure 2.7: MAPE under different ϕ and M for Gaussian correlation functions

2.4.1.3 Training epochs P

In this experiment the model loss and the prediction error of PPGPR during the training process

are monitored. Here we use a Matérn correlation function with ν = 2.5 and η = 10−8, M = 21.
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Table 2.1: Best MAPE for PPGPR with Gaussian and Matérn correlation functions

M ϕ ν MAPE

Matérn 35 1 2.5 0.124

Gaussian 42 0.5 - 0.263

Figures 2.8a and 2.8b plot the model loss and prediction error against the training epochs,

respectively. We can see from Figure 2.8a that the model loss is monotonically decreasing as

M increase. This implies that the proposed gradient descent algorithm works in a desired way.

However, Figure 2.8b shows that the prediction error is not a monotonic function in the model

loss. The model achieves its best performance when P = 220, and as P further increases, the

prediction error increases. This phenomenon has been observed in other network structures such

as neural networks. In a typical neural network training process, a slower early-stopping criterion

with 4% (i.e., stopping the training process when the relative generalization improvement is less

than 4%) could be used to avoid overfitting caused by an overshot training process [88]. We suggest

adopting a similar approach in training the proposed PPGPR model.

(a) Model loss in training process (b) Precision during the training process

Figure 2.8: Model loss and precision during the training process

23



2.4.2 Numerical comparisons

In this section we compare PPGPR with GPR, Neural Network (NN), SVR (Supporting Vector

Regression) and GBDT (Gradient Boosting Decision Trees) using three test functions: OTL circuit

function [95], Borehole function [89] and Wingweight function [96]. The training set is chosen as

Halton series [90] with length p = 5 × d, where d is the dimension of input space, and the size

of testing set is 500. The implementation details of five methods for these experiments are shown

below:

• SVR: Matérn correlation with ν = 2.5;

• GBDT: Gaussian distribution and 100 trees;

• NN (deep learning): for OTL circuit function, it has structure (6, 12, 24, 12, 1) (meaning the

node size of input layer is 6, the second layer has 12 nodes and so on) with learning rate 0.01

and 150 epochs. For Borehole function it has structure (8, 16, 32, 1) with learning rate 0.01

and 150 epochs. For Wingweight function it has structure (10, 20, 30, 20, 1) with learning

rate 0.1 and 200 epochs;

• GPR (with isotropic and product correlation functions): We use the Dicekriging package

[97] with isotropic and product Matérn correlation and smoothness ν = 2.5 to compute

the predictive results. The product correlation is defined as K(x) =
∏n

i=1Φ1(x(j)), where

Φ1(x(j)) is the same as in (2.4);

• PPGPR: for OTL circuit function, Matérn correlation with ν = 2.5, M = 42, η = 10−9,

P = 150, for Borehole function, Matérn correlation with ν = 2.5, M = 35, η = 10−9,

P = 150, for Wingweight function, Matérn correlation with ν = 2.5, M = 35, η = 10−10,

P = 150.

The MAPE of each method above is given in Table 4.2. One can easily find that the perfor-

mances of SVR and GBDT are inferior, which can be explained because these approaches may

require more training data [98; 99]. We try our best to tune the parameters of the NN, in order

24



to obtain the best results we can achieve. It is worth noting that the parameter tuning for NN is

time-consuming. In contrast, the tuning process of PPGPR is much easier because it has only one

hidden layer. Also, PPGPR outperforms NN in all three experiments. Moreover, PPGPR can beat

GPR with isotropic and product correlation functions because the curse of dimensionality has less

impact on PPGPR. Note that GPR with isotropic kernels performs worse than GPR with prod-

uct kernels. This is not surprising in view of the slow rate of convergence for isotropic kernels

shown in Section 2.1. The rate of convergence for product kernels under a general condition is

not well-established, but they are known to outperform the isotropic kernels in high-dimensional

circumstances [100].

Table 2.2: MAPEs of Supporting Vector Regression (SVR), Gradient Boosting Decision Trees
(GBDT), Neural Network (NN), Gaussian Process Regression (GPR) with isotropic and prod-
uct correlations and Projection Pursuit Gaussian Process Regression (PPGPR) for three functions.
PPGPR outperforms all other methods.

OTL circuit(d = 6) Borehole(d = 8) Wingweight(d = 10)

SVR 0.121 0.792 0.127

GBDT 0.130 0.407 0.142

NN 0.0334 0.222 0.240

GPR(iso) 0.0182 0.204 0.0224

GPR(pro) 0.0162 0.134 0.0199

PPGPR 0.0139 0.124 0.0184

Additionally, we compare the performance of PPGPR and GPR with product kernel when the

size of training set changes. Figure 2.9 shows the MAPEs of the proposed PPGPR and GPR with

product kernels for OTL function, when the number of training set varies. It can be seen that

when the size of training samples is less than 48 (8d) the PPGPR works much better than GPR.

When the size of training set increases the MAPEs of both methods decrease and the MAPE of
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GPR decreases faster than PPGPR. The results in Figure 2.9 can prove that the proposed PPGPR

is highly suitable for a sparse learning environment but when enough traning samples are available

the PPGPR is not recommended.

Figure 2.9: MAPEs of GPR and PPGPR with different size of training set for OTL function

2.5 More numerical studies

We conduct more numerical studies. The results show the proposed PPGPR method outper-

forms the alternatives under different design and test functions. Due to the space limitation, we

place these results in the Appendix A.

2.6 Approximated heat exchanger case study

In this section, we apply the proposed method PPGPR on a heat exchanger (HE) application

introduced by [45]. The HE data in [45] have two fidelities, known as detailed data (high fidelity)

and approximated data (low fidelity). Because this work considers only the surrogate modeling

for single-fidelity datasets, we use only the approximated data to implement the proposed method.

The main objective of this application is to explore the impact of four factors, including the mass

flow rate of entry air m, the temperature of entry air Tin, the temperature of the heat source Twall

and the solid material thermal conductivity M , on the total rate of steady state heat transfer ya

achieved by a heat exchanger. All design points live in a hypercube whose upper and lower bounds
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are shown in Table 2.3. We follow the treatment in [45] to partition the dataset into a training set

of 64 samples and a testing set of 14 samples.

Table 2.3: Assumed design range for HE case

m(kg/s) Tin(K) k(W/mK) Twall(K)

Lower Bound 0.00055 270.00 202.4 330

Upper Bound 0.001 303.15 360.0 400

In this section, we compare the performance of GPR with isotropic and product correlations,

Transformed Approximately Additive Gaussian Process Regression (TAAG) proposed in [14], and

the proposed PPGPR. In [14] the performance was assessed in terms of the root mean square error

(RMSE), defined as

RMSE =

√√√√ 1

n

i=1∑
n

(ŷ − y)2, (2.11)

where ŷ is the predicted value and y means the true value for every sample, n stands for the size

of testing set. Therefore, we consider RMSE of all the candidate methods. The implementation

details of the these methods are as follows:

• GPR (with isotropic and product correlation functions): we use the Dicekriging package

[97] with isotropic and product Matérn correlation and smoothness ν = 2.5 to compute the

predictive results;

• TAAG: the result in [14] is refered here;

• PPGPR: we use the Matérn correlation with smoothness ν = 2.5 and M = 28, η = 10−9.
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The results of these three methods are shown in Table 3.5. It can be seen that the proposed

method has a lower RMSE than other methods.

Table 2.4: RMSEs of Gaussian Process Regression (GPR) with isotropic and product correlations,
Transformed Approximately Additive Gaussian Process Regression (TAAG) and the Projection
Pursuit Gaussian Process Regression (PPGPR)

GPR(iso) GPR(pro) TAAG PPGPR

RMSE 4.20 4.26 2.08 1.82

In the Appendix A, we present an upper bound of the uniform prediction error of Gaussian

process regression with an additive correlation function, which implies a promising rate of conver-

gence of additive Gaussian process models. Also, more numerical studies are included in Appendix

A.
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3. FIXED-BUDGET OPTIMAL DESIGNS FOR MULTI-FIDELITY COMPUTER

EXPERIMENTS

3.1 Introduction

In this chapter, we will introduce the proposed multi-level Gaussian process optimal design

method and analysis the corresponding cost theoretically. This chapter is organized as follows.

Section 3.2 reviews the autoregressive models. In Section 3.4, we introduce the formulation of the

modified autoregressive model and propose the MLGP design method. In Section 3.5, we give the

detailed steps for implementing the MLGP method in applications. In Section 3.6, some numerical

studies are conducted to show the superiority of the proposed MLGP.

3.2 Review on Gaussian process regression and autoregressive models

In this section, we review the Gaussian process regression and the autoregressive models for

multi-fidelity computer experiments.

3.2.1 Gaussian process regression

Let Z be a Gaussian process on Rd with mean zero and covariance function r(x1, x2). We call Z

stationary [2] if r can be expressed as a function of x1−x2, i.e., r(x1, x2) = σ2Φ(x1−x2), where σ2

is the variance, and Φ is a correlation function with Φ(0) = 1; otherwise, we call it nonstationary.

Given scattered evaluations (x1, Z(x1)), . . . , (xn, Z(xn)), the Gaussian process regression method

(also known as kriging) estimates Z(x) for any x ∈ Rd using the conditional expectation

Ẑ(x) := E(Z(x)|Z(x1), . . . , Z(xn)) = aT (x)R−1Y, (3.1)

where a(x) := (r(x−x1), . . . , r(x−xn))
T , R = (r(xj−xk))jk and Y = (Z(x1), . . . , Z(xn))

T . In

the area of computer experiments, (3.1) is used to reconstruct the response function Z(x), where

{x1, . . . , xn} denotes the set of designs points, {Z(x1), . . . , Z(xn)} the corresponding response,

and x an untried point.
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3.2.2 Autoregressive model

[7] proposes a model to fit multi-fidelity computer experiments using Gaussian process regres-

sion. The main objective of this model is to incorporate the computer outputs with different fidelity

levels and predict the response value of the computer code at an untried point of the highest fidelity

level.

Suppose we have K levels of computer codes, with increasing accuracies, denoted as y1, . . . , yK .

[7] considers the following autoregressive model to link each pair of consecutive yi’s:

yi(x) = ρi−1yi−1(x) + δi(x), for i = 2, . . . , K, (3.2)

where ρi’s are known or unknown autoregressive coefficients, and y1 and δt’s as mutually indepen-

dent Gaussian processes.

This autoregressive model contains some hyper-parameters. The parameter estimation is usu-

ally done using maximum likelihood [101] or Bayesian methods [7]. Both approaches involve

certain iterative algorithms and thus are expensive in computation. Here we skip the details of

the hyper-parameters estimation because they are irrelevant to our main topic. We only consider

the prediction for the computer outputs at the highest fidelity given the hyper-parameters. The

autoregressive model has been widely used in real-world applications for multi-fidelity computer

experiments e.g., simulation oil pressure [7], designing of linear cellular alloy [36] and prediction

of bandgaps [37].

3.3 Autoregressive models for computer code with infinite fidelity levels

In this work, we focus on computer experiments with infinite fidelity levels. There are many

examples of this kind. For example, in finite element analysis, the accuracy is governed by the

mesh density, which, at least conceptually, has infinite levels. Other examples include the step

length in a finite difference algorithm, the number of iteration in an iterative algorithm, etc. Such

a parameter is referred to as a “tuning parameter” in [39].

Now let us use the finite element method (FEM) as an example to introduce our intuition. FEM

30



generally uses piecewise linear functions over prespecified local patches to approximate general

functions, such as the partial differential equation (PDE) solutions. The number of local patches

are governed by the chosen mesh size. In multi-fidelity computer experiments, one may consider

a sequence of consecutively refined meshes. Figure 3.1 shows the finite elements corresponding to

the first three mesh size in the set of refining meshes {1/2, 1/4, 1/8, ..., 1/2n, ...} in a unit square.

Figure 3.1: Consecutively refined meshes. The number of the triangle local patches quadruples as
the mesh size is halved.

The question here is: what is a suitable configuration of autoregressive models for the above

FEM example which can potentially have infinite fidelity levels? Clearly, we need to make some

modifications to (3.2). The most obvious one follows from the fact that in the above example, there

are infinite fidelity levels. That is, conceptually, we should have computer response functions yi

for i = 1, . . . , K, . . .. Next, we presume that the FEM solution converges to the exact solution of

the PDE as the mesh size goes to zero, which is usually the case. Then the underlying quantity of

interest is the function y∞ := limi→∞ yi. To guarantee the existence of this limit, more constraints

must be imposed in the autoregressive model (3.2). First, we must have limi→∞ ρi = 1 as the

existence of y∞ requires limi→∞(yi − yi−1) = 0. In this work, we assume ρi = 1 for all i for

simplicity. Then we have the expression
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y∞ = y1 +
∞∑
i=2

δi.

Note that var(y∞)=var(y1)+
∑∞

i=2 var (δi). To ensure that y∞ has a finite variance, δi must

have decreasing variances. Here we model δi∼GP (0, λ2iσ2Φi) for some correlation function Φi,

variance σ2 and 0 < λ < 1. The exponential decay in the variance can be justified because the

mesh size in Figure 3.1 also decays exponentially as the refinement continues. It is also fair to

assume that all the δ′is share the same correlation function Φ because we we have not seen the data

yet.

We now define the modified version of the autoregressive model as,

yi(x) = yi−1(x) + δi(x), for i = 0, . . . , K, . . . , (3.3)

where y−1 = 0, and δi∼GP (0, λ2iσ2Φ) are mutually independent.

3.4 Multiple fidelity designs based on multi-level Gaussian processes

Many statisticians have considered the problem of integrating the computer responses from

multiple accuracy (also known as fidelity) levels to make predictions. To achieve this goal, the first

step is to choose a pre-determined model to model the specific multi-fidelity computer experiment.

Next step is to construct designs of experiments for the chosen model. In this work, we propose the

multi-level Gaussian processes (MLGP) method to construct optimal designs for the autoregressive

model.

At the same time, the number of finite elements increases exponentially as the mesh refines

iteratively so that the resulted cost for each untried point also increases exponentially. In view of

this, we assume the cost for each sample in the i-th level as Ci ≤ Caa
i, where Ca is a constant,

a > 1 is the cost ratio. Additionally, the difference of the approximation values given by successive

mesh sizes decreases as mesh size gets finer.
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3.4.1 A fixed precision optimal design for multi-fidelity models

In this section, we introduce the problem setting for constructing optimal designs for the mod-

ified autoregressive model with a fixed precision. As discussed in the above section, we use y∞

to denote the underlying function. (3.3) allows us to reduce the multi-fidelity problem to a se-

quence of single-fidelity problems. If we can reconstruct δi (i.e., yi − yi−1) for each i, we are

able to reconstruct y∞ using the summation of all these constructed functions. To reconstruct δi, a

simple idea is to evaluate the function δi over a set of selected points, denoted as Xi correspond-

ingly, via the Gaussian process regression. We assume the underlying function in the K-th layer,

i.e., yK =
∑K

i=0 δi, is sufficiently accurate. One can reconstruct the yK by ŷK defined as (3.4) to

approximate y∞.

ŷK(x) = E

[
K∑
i=0

δi(x)
∣∣∣yK(XK), ..., y0(X0)

]
(3.4)

Denote the desired accuracy as ϵ (ϵ < 1). Then we can formulate the general objective function

for constructing optimal designs for the modified autoregressive model as

min
ni,K

K∑
i=0

niCi (3.5)

s.t. E ∥y∞ − ŷK∥2L2 ≤ ϵ2, (3.6)

where ni ∈ N denotes the sample size of Xi, and ∥y∞ − ŷK∥2L2 is the expected squared predictive

error of ŷK . This objective function can be interpreted as: we want to minimize the cost caused by

the designs {ni, K} which satisfies the accuracy requirement.

3.4.2 MLGP method

The main difficulties for solving (3.5) include: 1) y∞ is unknown; 2) ŷK shown in (3.4) does

not have a closed form under an arbitrary design; 3) the integer optimization problem is NP-hard.

In this section, we make some approximations and restrictions to make (3.5) solvable. In detail,
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to make the expected squared error in (3.6) tractable, we only consider nested designs [102; 41]

to simplify ŷK . Additionally, we replace the left hand side of (3.6) by its upper bound to get

an approximated solution. We also relax ni’s and K to be real numbers at first to search for the

optimal solution, and then round down them as the final optimal solution.

The widely used nested designs can refine the low-accuracy experiments with the high-accuracy

experiments to obtain a better model because the response is also available in low-accuracy exper-

iments at the same design points [41]. Denote X0,X1, . . . ,XK as a sequence of nested sets of

points, then the correlation between them can be formulated as XK ⊂ · · · ⊂ X1 ⊂ X0. A good

property of the nested design given in Theorem 3.4.1 helps simplify the approximation (3.4).

Theorem 3.4.1. Suppose δi
i.i.d∼ GP (0, σ2Φ), i = 0, 1, . . . , K, where σ2 is the variance and Φ is

the correlation function. Let XK ⊂ · · · ⊂ X1 ⊂ X0 be a sequence of nested sets of points. Then

for each x, the estimator ŷK(x) defined in (3.4) admits the expression

ŷK(x) =
K∑
i=0

E
[
(yi − yi−1)(x)

∣∣∣(yi − yi−1)(Xi)
]
. (3.7)

Theorem 3.4.1 shows that if a nested design is used, Gaussian process regression for an au-

toregressive model can be done by solving a set of single-fidelity Gaussian process regression

problems. Theorem 3.4.1 inspires us to use a nested design for the multi-fidelity computer exper-

iment. Let XK ⊂ · · · ⊂ X1 ⊂ X0 be a sequence of nested sets of points, where Xi consists of ni

points. Therefore the multilevel interpolation approximation (3.4) can be rewritten as (3.7).

The next step is to construct the nest designs for the (3.5). We can get a upper bound for the

expected predictive error in (3.6) by:

E ∥y∞ − ŷK∥2L2 ≤ E ∥y∞ − yK∥2L2 + E ∥yK − ŷK∥2L2 . (3.8)

To achieve the desired accuracy, we assume it is sufficient to bound both error contributions in
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right hand side of (3.8) by ϵ2/2, i.e., we convert the constrain (3.6) into

E ∥y∞ − yK∥2L2 < ϵ2/2, (3.9)

and

E ∥yK − ŷK∥2L2 < ϵ2/2. (3.10)

where (3.9) bounds the error caused by using yK to approximate y∞ and (3.10) bounds the error

caused by the Gaussian process interpolation. Next we will handle these two parts separately.

First, we focus on (3.9). Given the modified autoregressive model with shrinking variance, it

is easy to computer the upper bound of the error of the left hand side of (3.9).

Theorem 3.4.2. Assume an infinite series δi
i.i.d∼ GP (0, λ2iσ2Φ), i = 0, 1, . . . , K, . . . , 0 < λ2 < 1

and σ2 is the variance. Denote y∞ and yK as the summation of the whole series and the summation

of the first (k + 1) terms, respectively, then we have

E ∥y∞ − yK∥2L2 ≤ C2
l λ

2Kσ2, (3.11)

where Cl =
√
Cs/(1− λ) is a constant, Cs is constant meaning the area of the region of x.

Based on Theorem 3.4.2, it is sufficient to bound the upper bound of the left hand side of (3.11)

by ϵ2/2 to make (3.9) hold, that is,

E ∥y∞ − yK∥2L2 ≤ C2
l λ

2Kσ2 ≤ ϵ2/2.

Then we can choose

K =

⌈
logλ2

ϵ2

2C2
l σ

2

⌉
, (3.12)
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as the total number of levels K, where ⌈a⌉ denotes the smallest integer which is larger or equal to

a.

Next, we focus on (3.10) which is about the error caused by Gaussian process interpolation.

Let’s first focus on the error caused by original Gaussian process interpolation. Given scattered

evaluations (x1, Z(x1)), . . . , (xn, Z(xn)) where the design is quasi-uniform, if we use the Matérn

kernel to reconstruct the underlying function Z(x), then there exist two positive constants p and q

such that [57]:

E
∥∥∥Z(x)− Ẑ(x)

∥∥∥2
L2

< pn−2ν0/d, (3.13)

and

E
∥∥∥Z(x)− Ẑ(x)

∥∥∥2
L2

> qn−2ν0/d, (3.14)

where Ẑ(x) is the reconstructed function, ν is the smoothness parameter of the Matern kernel and

d is the dimension of the design. Here we make the similar assumption as the [57] to our nested

designs. Before introduce the assumption, we make some definitions. Assume a set of design

points X = {x1, x2, ..., xn} ⊂ Ω, define the fill distance as

hX,Ω = sup
x∈Ω

inf
xj∈X
||x− xj||,

and the separation radius as

qX = min
1≤j ̸=k≤n

||xj − xk||/2.

XK ⊂ ... ⊂ X1 ⊂ X0 is a sequence of nested sets of points, denote the corresponding fill distance

and separation radius as hXi,Ω and qXi
. There exists a constant A such that hXi,Ω/qXi

≤ A holds

for all i.

Based on the error bound of the original Gaussian process regression, we propose the upper

bound of the interpolation error in the modified autoregressive model in Theorem 3.4.3.

Theorem 3.4.3. Assume a infinite series δi
i.i.d∼ GP (0, λ2iσ2Φ). Denote yK as the summation of
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the first (K + 1) terms, and ŷK defined in (3.7) as the emulation of yK based on the set of points

Xi and Matern kernel, then under Assumption 3.4.2 we have

E ∥yK − ŷK∥2L2 ≤
K∑
i=0

pλ2iσ2n
−2ν/d
i , (3.15)

where ni is the number of points of Xi, d is the number of dimension, p is a constant, ν is the

smoothness parameter of Φ.

Based on Theorem 3.4.3, it is sufficient to bound the upper bound of the left hand side of (3.15)

by ϵ2/2 to make (3.10) hold. Then we can approximate the solution of objective function (3.5)

with (3.6) by solving a relaxed version, i.e.,

min
ni

K∑
i=0

niCi

s.t.
K∑
i=0

pλ2iσ2n
−2ν/d
i ≤ ϵ2/2

(3.16)

where K = ⌈2 logλ2
ϵ

2Clσ
⌉. One can see that (3.16) is an integer programming problem which is

NP-hard. In view of this, we consider a relaxed version of it. First we assume ni’s can choose any

real number, then (3.16) becomes a convex optimization problem whose optimal solution is

ni =

(
ϵ2

2pσ2S

)− d
2ν
(

ai

λ2i

)− d
d+2ν

, i = 0, ..., K, (3.17)

where S =
∑K

i=0(a
i)

ν
d+2ν (λ2i)

d
d+2ν , p is a constant. The proof of (3.17) is given in the Supplemen-

tary.

Note that ⌈ni⌉’s also locate in the feasible region of (3.16). We regard the ⌈ni⌉’s shown in

(3.18) as a nearly optimal solution to (3.16).

ni =

⌈(
ϵ2

2pσ2S

)− d
2ν
(

ai

λ2i

)− d
d+2ν

⌉
, i = 0, ..., K, (3.18)
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In summary, we consider the designs generated based on (3.18) and (3.12) as the optimal

designs for the modified autoregressive model. We will discuss the implement details in Section

3.5.

3.4.3 Comparison with single-fidelity experiments

In this section, we will show that the MLGP needs less cost than any single-level method to

achieve a given accuracy provided that the accuracy level is small enough. Let us denote a =

exp (α) and λ2 = exp (−β) for convenience (α, β > 0). In this section, we use the symbol “≲"

to represent that the left hand side of this symbol is less than the right hand side multiplied by a

constant depending only on Φ. First, we give the upper bound for the total cost if we use the MLGP

method to reach a fixed accuracy ϵ.

Theorem 3.4.4. Assume yi(x) = yi−1(x)+δi(x), for i = 0, . . . , K, . . . , where δi
i.i.d∼ GP (0, λ2iσ2Φ),

λ2 < 1 and y−1 = 0. If we use the design (3.12) and (3.18) to reach a fixed accuracy ϵ, then the

upper bound for the total cost is summarized as

Cϵ ≲


ϵ−d/ν , 2αν < dβ

ϵ−d/ν | ln ϵ2| d+2ν
2ν , 2αν = dβ

ϵ−2α/β, 2αν > dβ

(3.19)

Next, we discuss the lower bound for the total cost if we implement the single-fidelity method

to reach the accuracy ϵ.

Theorem 3.4.5. Assume yi(x) = yi−1(x)+δi(x), for i = 0, . . . , K, . . . , where δi
i.i.d∼ GP (0, λ2iσ2Φ),

λ2 < 1 and y−1 = 0. If we only spread design samples in one layer to reach a fixed accuracy ϵ,

then the lower bound for the total cost is

CSL
ϵ ≳ ϵ−( d

ν
+ 2α

β
). (3.20)

The proofs of Theorem 3.4.4 and Theorem 3.4.5 are given in the Supplementary.
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3.5 Fixed budget designs

For many real applications, a more realistic assumption is that the total budget, rather than the

accuracy, is fixed. In this section, we will introduce how to implement the MLGP design method

given a fix budget.

First, assume we know the values for the hyper-parameters λ2, correlation function, and ν. In

practice, λ2 can be decided based on expert knowledge. For example, we can choose the decreasing

ratio of the mesh sizes as λ2 in the FEM case. The correlation function and the corresponding

parameter(s) need to be decided based on the smoothness of the underlying function, see [103; 104]

for more information.

In order to obtain the designs based on (3.12) and (3.18) under a certain budget B, we need to

have the exact values for the parameters p, Cl, σ and the desired accuracy ϵ. These parameters are

often hard to decide in real-world applications. However, the number of available layers is often

determined in specific application. Based on this, we just assume K is determined. Please note

that this assumption does not mean we need to use all the layers in our designs because ni can

be very small for a certain layer if the MLGP method thinks that the corresponding layer is not

needed.

The next thing is to calculate ni. Denote τ := pσ2/ϵ2 and η := p/C2
l , then we rewrite (3.18) as

ni =

⌈
(2τS)

d
2ν (

ai

λ2i
)−

d
d+2ν

⌉
, i = 0, 1, ..., K (3.21)

where τ = η
2λ2K .

In order to avoid the estimation of those constants (p, Cl, σ and ϵ), one can tune η to get the

corresponding optimal design under the fixed budget B. By choosing a value for η, we can get a

value for τ which leads to corresponding ni, i = 0, ..., K according to (3.21). The resulted design

that triggers the highest cost and meets the budget requirement can be chosen as the optimal design

n∗
i ’s. In applications, the user can try different values for η in a pre-specified set (e.g., the integers

from 1 to 100) to search for the optimal design n∗
i ’s.
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Note that the design n∗
i ’s do not use all the budget in most cases because we need to choose an

integer for n∗
i ’s when implementing (3.21). Denote the unallocated budget as

BK = B −
K∑
i=0

n∗
iCi. (3.22)

The final step is to re-allocate BK to modify the design n∗
i , i = 0, ..., K. We implement a greedy

algorithm to solve the following objective function (3.23) to re-allocate the budget to further reduce

the error in the left hand side of the constrain of 3.16.

min
n∗∗
i

∑K
i=0 λ

2iσ2((n∗∗
i )−2ν/d − (n∗

i )
−2ν/d) (3.23)

s.t.
∑K

i=0(n
∗∗
i − n∗

i )Ci ≤ BK (3.24)

Then we get the final optimal designs n∗∗
i , i = 0, ..., K.

Denote a K level design as a vector N = [n1, ..., nK ], and a function G(N∗∗) =
∑K

i=0 λ
2iσ2((n∗∗

i )−2ν/d−

(n∗
i )

−2ν/d). Also denote a vector with the i-th element equal to 1 and other elements equal to 0

(i.e., 1i = [0, ..., 1, ...0]) as one sample in the i-th layer. Now the detailed steps of the re-allocating

starting from the design N∗ are as follow:

• Search i exhaustively in the range [0, K] to minimize G(N∗ + 1i) on the condition that

Ci ≤ BK ;

• Add one sample to the i-th layer of N∗, that is, N∗ = N∗ + 1i;

• Calculate the unallocated budget BK = BK − Ci;

• Repeat the above steps until BK = 0 or BK cannot afford any additional sample.

Remark 1. In this section, we regard some hyper-parameters as known (i.e., λ and smoothness

parameter ν) to derive the optimal designs, but we may not know the true values for them in real-

world applications. However, we will prove that the designs generated by the proposed MLGP can
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also beat others even with the misspecified values of these hyperparameters. See Section 3.6.2 for

more details.

Given the detailed steps for calculating the n∗∗
i ’s for each layer, we still need to decide how

to spread these samples in each layer. Please recall that the error bound in Theorem 3.4.3 only

holds when Assumption 3.4.2 holds. But it is very hard to maintain this assumption in applications

rigorously because it involves a lot of optimization steps. we consider approximately space-filling

sequences, such as Halton sequences [90] which is a type of low-discrepancy sequences. Halton

sequences enjoy the following two advantages. First, it can give designs of any sample sizes.

Second, the sequences have analytical expressions which are easy to compute.

3.5.1 Examples

In this section, we visualize the designs generated by the MLGP under different budgets or

different λ2 in [0, 1]2. We choose a = 1 and Ca = 1 for the experiments in this section.

In the first experiment, we use B = 192, K = 2 and Matérn correlation function with ν = 1.25

to generate designs under four different λ2 using the MLGP. Tabel 3.1 and Figure 3.2 show the

design structures when λ2 changes from 1/8 to 3/4. Note that the column "Design structure"

shows the number of samples from the lowest to the highest layer. For example, the design 20, 7, 3

means a nested design with 20 samples (empty circles in 3.2) in the 0-th layer, 7 samples (filled

circles in 3.2) in the 1st layer and 3 samples (filled triangles in 3.2) in the 2nd layer. The subplot

a, b, c and d are corresponding to λ2 = 1/8, λ2 = 1/4, λ2 = 1/2 and λ2 = 3/4, respectively. It

can be seen that the MLGP allocates more budget on the higher layers with the λ2 increases. This

phenomenon exactly matches the changing of the true function. This is because the variance of δi’s

in 3.7 in the high layers take less proportion in the underlying function yK if λ2 is small. In other

words, the information of the higher layers plays a less important role in the overall accuracy. As a

result, if we want to get a low error as much as possible under a fixed budget, we should pay more

budget on the samples in the lower layers and vice versa. This exclusive flexibility of the MLGP

can help the users a lot to construct suitable designs when facing different λ2 while the multi-level

and single-level methods can only build designs with fixed proportions.
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In the second experiment, we use K = 2, λ2 = 1/2, Matérn correlation function with ν = 1.25

to generate designs under budgets from 96 to 240 using the MLGP. Table 3.2 and Figure 3.3 show

the design structures generated by the MLGP under different B.

In the third experiment, we test our method under large ν’s for the Matérn correlation function.

We use K = 3, λ = 1/2 and budget B = 4760 to generate designs under different ν’s from 5 to

50. Table 3.3 shows the designs in this experiment, we can see that our method still works well

under large ν’s.
Table 3.1: Designs under dif-
ferent λ2

λ2 Design structure

1/8 48, 16, 5

1/4 32, 16, 6

1/2 24, 14, 7

3/4 16, 12, 8

Table 3.2: Designs under dif-
ferent budgets B

B Design structure

96 20, 7, 3

144 24, 10, 5

192 24, 14, 7

240 28, 17, 9

Table 3.3: Designs under dif-
ferent budgets B

ν Design structure

5 24,16,16,7

10 16, 9, 17, 7

25 16, 9, 9, 8

50 16, 9, 9, 8

3.6 Numerical study

In this section, some numerical studies will be conducted to show the superiority of the pro-

posed MLGP. In Section 3.6.1, we will first compare the performance of the proposed MLGP,

classical multi-fidelity designs, and single-level designs in 1-dimensional cases when we know all

hyper-parameters (λ2, correlation function, and ν). Then we will test the performance of these

three methods if one of the hyper-parameters is misspecified in Section 3.6.2. In Section 3.6.3, we

will compare the proposed MLGP with Nested Latin Hypercube designs and single-level designs

in a 2-dimensional case. Emulators given by the proposed MLGP yield more accurate results than

other methods in all cases.

42



Figure 3.2: Designs generated by MLGP under different λ2

3.6.1 Numerical study in one-dimensional space

In the section, we prepare a four-level function f(x) (i.e., K = 3) defined in [0, 15] as the

simulation function. Each level is assumed as an i.i.d Gaussian process with zero mean and Matérn

correlation function. We assume λ2 = 1/3, the correlation matrix is Matérn correlation function

with ν = 1.25. In this experiment, we choose the cost ratio a = 8 and the cost for each sample in

the 0-th layer to be 1, i.e., Ca = 1.

In this experiment, we assume all the true values hyper-parameters are known. We calculate

three groups of designs based on the proposed MLGP method, the classical multi-fidelity design

method, and the single-level design method under different budgets. After calculating the number

of samples in each layer, we generate the corresponding (nested) design samples based on the

Halton sequences [90] for all three methods. Then we train a Gaussian process regression (GPR)

emulation based on each design to test the prediction accuracy on a testing set with 200 samples.
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Figure 3.3: Designs generated by MLGP under different budgets

Note that we do not use maximum likelihood estimation (MLE) to estimate the variance and the

length parameter. The accuracy of GPR emulations is measured by the root mean squared error

(RMSE) defined as RMSE =
√

N−1
∑N

i=1(yi − ŷi)2, where N = 200, yi, and ŷi are the true

label and the predictive label for the i-th testing sample, respectively.

In order to make the results more convincing and show the robustness of the proposed MLGP

algorithm, we repeat this experiment 30 times starting from different realizations of f(x) and

compare the mean RMSE of these methods.

Figure 3.4 shows the average RMSEs of the three methods under different budgets. The blue

line shows the performance of the single-level method, and it almost keeps the same even with dif-

ferent budgets. This is because in all cases, the best accuracy of the single-level method is achieved

by only sampling at the 2-th layer. The red line and the black line represent the performance of the

multi-level method and the MLGP, respectively. One can easily see that the designs given by the

MLGP lead to the emulations with the lowest RMSEs compared with other methods, which proves
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Figure 3.4: RMSEs of the MLGP, classical multi-fidelity method and single-level method for the
1-dimensional case under different budgets.

the superiority of the proposed MLGP.

3.6.2 Numberical study for the situations with misspecified hyper-parameters

We may not get the exact values for all the hyper-parameters in some cases. To show the ro-

bustness of the MLGP, we also test the performance of the proposed MLGP when we incorporate a

misspecified hyper-parameter. First, we use the same parameters as the first experiment to generate

the four-level function f(x), i.e., K = 3, λ2 = 1/3, Matérn correlation function with ν = 1.25.

Also, we choose the cost ratio a = 8 and Ca = 1. We generate designs based on the proposed

MLGP using all the same parameters but a misspecified λ2 = 1/2. Then we test the GPR emulation

trained by this design and compare the accuracy of the testing set with other methods. Next, we

use the hyper-parameters K = 3, λ2 = 1/3, Matérn correlation function with ν = 1.25 to generate

the four-level function f(x) and generate designs based the proposed MLGP using all the same

parameters but a misspecified ν = 1.5. GPR emulation is also used to compare the performance of

the MLGP and the other two methods.

Table 4.2 shows the results for these two experiments. One can see that the MLGP still gets the

lowest error even though the misspecified hyper-parameters are incorporated.
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Table 3.4: Mean RMSEs for the proposed MLGP method, classical multi-fidelity design method
and single-level design method with misspecified λ2 or ν

Situation Method Average RMSE Designs structure

MLGP 0.2831 88, 32, 21, 6
misspecified λ2 Multi-fidelity 0.3441 56, 28, 14, 7

Single-level 0.3789 0, 0, 74, 0

MLGP 0.1652 88, 40, 20, 6
misspecified ν Multi-fidelity 0.2127 56, 28, 14, 7

Single level 2 0.2064 0, 0, 74, 0

3.6.3 Case study in two-dimensional space

In this section, we will compare the performance of the proposed MLGP, nested Latin hyper-

cube design (NLHD) and single level design in a two-dimensional case. We prepare a three-level

function f(x) (i.e., K = 2) defined in [0, 1]2 as the simulation function. Each level is assumed as

an i.i,d Gaussian process (GP) with zero mean and Matérn correlation function with ν = 1.25. We

assume λ2 = 1/2. In this experiment, we choose the cost ratio a = 4 and the cost for each sample

in the 0-th layer to be 1, i.e., Ca = 1.

In this experiment, we assume all the true parameters are known, i.e., λ2 = 1/2, the correlation

function is Matérn correlation function with ν = 1.25. For the proposed MLGP and single-level

methods, we first calculate the design structure and then generate the corresponding (nested) sam-

ples using the Halton sequences [90]. As for the NLHD, we use a design given in 3.6. Then we

train a GPR emulation based on each design to test the prediction accuracy on a testing set with

500 samples based on the root mean squared error (RMSE). In this experiment, 30 different real-

izations of f(x) are generated to test the average RMSE of the GPR emulations. Table 3.5 shows

the average RMSEs and the design structures of these three methods. We can see that the MLGP

yields the lowest RMSE, which proves the superiority of the MLGP in two-dimensional cases.

In Appendix B, we present proofs regarding the theorems in this chapter.
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Table 3.5: Results for the proposed MLGP method, Nested Latin hypercube design (NLHD) and
single level design method

Method Average RMSE Designs structure

MLGP 0.1510 20, 7, 3
Multi-fidelity 0.1735 32, 8, 2
Single-level 0.1658 0, 0, 6

Table 3.6: Nested Latin hypercube designs in two-dimensional space

Level 3 (0.166670,0.863640), (0.712120,0.318180),

Level 2

(0.166670,0.863640), (0.712120,0.318180),
(0.590910,0.712120), (0.984850,0.590910),
(0.863640,0.984850), (0.045455,0.166670),
(0.439390,0.045455), (0.287880,0.469700),

Level 3

(0.166670,0.863640), (0.712120,0.318180),
(0.590910,0.712120), (0.984850,0.590910),
(0.863640,0.984850), (0.045455,0.166670),
(0.439390,0.045455), (0.287880,0.469700),
(0.954550,0.409090), (0.833330,0.681820),
(0.196970,0.136360), (0.348480,0.924240),
(0.681820,0.954550), (0.651520,0.530300),
(0.136360,0.378790), (0.530300,0.439390),
(0.893940,0.833330), (0.621210,0.075758),
(0.318180,0.772730), (0.257580,0.287880),
(0.772730,0.106060), (0.075758,0.742420),
(0.378790,0.196970), (0.106060,0.560610),
(0.560610,0.227270), (0.803030,0.500000),
(0.469700,0.621210), (0.227270,0.651520),
(0.924240,0.257580), (0.409090,0.348480),
(0.500000,0.893940), (0.742420,0.803030),
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4. RENEWING ITERATIVE SELF-LABELING DOMAIN ADAPTATION WITH

APPLICATION TO THE SPINE MOTION PREDICTION

4.1 Introduction

In this chapter, we will introduce the renewing iterative self-labeling domain adaptation method

and apply it to a spine motion prediction case. The remainder of this chapter is organized as

follows. We first formulate the problem mathematically in Section 4.2 and review the iterative self-

labeling domain adaptation briefly in Section 4.3. Then we establish a new theoretical foundation

for ISDA and propose the Re-ISDA in Section 4.4. A numerical example is investigated in Section

4.5. In Section 4.6, we apply the proposed method to a cervical spine motion prediction problem,

for which we are supposed to construct an efficient domain adaptation model based on limited

labeled samples.

4.2 Problem formulation

We start with a general formulation of domain adaptation, as discussed in [58]. A domain is

defined as D = {X,P (X)}, where X stands for a feature space and P (X) denotes the marginal

distribution of these features. Besides, a task T based on a specific domain D is defined as T =

{Y, P (Y |X)} where Y is the label space and P (Y |X) denotes the conditional distribution. Then

a domain adaptation task can be described as [105; 58]: Given a source domain (training set) Ds

and learning task Ts based on Ds, domain adaptation aims to help improve the learning of the

target predictive function on target domain (testing set) Dt where Xs = Xt, Ps(X) ̸= Pt(X) and

Ts = Tt.

In this work, we focus on regression problems in domain adaptation. Assume that the source

domain Ds = {(x1
s, y

1
s), (x

2
s, y

2
s), ..., (x

q
s, y

q
s)} and the target domain as Dt = {x0

t , x
1
t , ..., x

p−1
t }.

Besides, choose a labeled sample as a calibration point (xc, yc). In Section 4.4.2 we will discuss

how to choose this calibration point in detail. Let (Xs, Ys) and (Xt, Yt) be the joint distributions

of inputs and outputs on the source and the target domains. We suppose that P (Xs) ̸= P (Xt), i.e.,
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the two data sets have different input distributions. We also assume that the relationship between

the input and output, characterized by the conditional distributions, are the same, i.e., P (Ys|Xs) =

P (Yt|Xt). Let (xs, ys) and (xt, yt) be data from the source and the target distributions, respectively.

Suppose we are given a loss function L(h;x, y), such as the quadratic loss L(h;x, y) = (y−h(x))2.

The observed data are independent copies of (xs, ys) and independent copies of xt. The problem

of interest is to estimate

hT := argminh EL(h;xt, yt).

4.3 Review to the iterative self-labeling domain adaptation

[71] propose the ISDA based on the domain adaptation SVM (DASVM) [106] and gives a

theoretical foundation for this domain adaptation classification algorithm. The procedure of ISDA

is illustrated in Figure 4.1: assume we have some blue points as the training set (source domain)

and our mission is to predict the labels of red points (target domain) as shown in the first plot of

Figure 4.1. In order to predict the labels for target samples more precisely, ISDA mainly repeats

these three steps in its iteration process:

• First, learn a model fn from the current labeled and pseudo labeled sample set Sn. As shown

in the first plot of Figure 4.1, it learns a classifier through the labeled samples (blue points);

• Second, pseudo-label some target samples based on fn. If we assume it pseudo-labels one

target sample each step, one of the target samples will be labeled as Y 1
1 as shown in the

second plot of Figure 4.1;

• Then incorporate the newly labeled target sample(s) into the source samples to build up Sn+1

to progressively modify the current classifier. As shown in the third plot of Figure 4.1, the

ISDA will train a new classifier based on the source samples and the newly labeled target

sample, and then label a new target sample using the new classifier as Y 2
2 .

Note that in original ISDA, k source samples will be eliminated from the source domain at each

step based on their distance from the classification boundary. In this work we assume k = 0.
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Figure 4.1: Iteration process of ISDA.

Habrard proves that the final classifier will work better for domain adaptation problem if all the

classifiers during the iteration work better than random guessing and at least one of these classifier

is good enough. However, the possible mis-labeled samples by a weak classifier in the initial stage

of the iterative learning can cause serious harm to the subsequent learning process, which is also

called mis-labeling issue [73; 74].

4.4 Renewing Iterative Self-labeling Domain adaptation

The proposed Renewing Iterative Self-labeling Domain Adaptation (Re-ISDA) method also

follows the general steps of ISDA but it renews all the pseudo labels of target samples at each

step to modify their possible error. The proposed Re-ISDA proceeds by iteratively repeating the

following three steps:

1. Learn a model fn from the current labeled and pseudo labeled sample set Sn;

2. Pseudo-label some new target samples and update all the pseudo labels given in previous

steps based on fn;

3. Combine the newly labeled target sample(s) and the target samples with updated labels with

the source samples to build up Sn+1.

The main steps of Re-ISDA are illustrated in Figure 4.2. First, we learn a predictor through the

source samples (blue points). In Figure 4.2, we pseudo-label only one target sample per step. Then

the Re-ISDA labels one of the target samples as Y 1
1 which is shown in the second plot of Figure

4.2. Next, as shown in the third plot of Figure 4.2, the ISDA will train a new predictor using the
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source samples and the newly labeled target sample with its label Y 1
1 . Based on this new predictor,

it will label a new target sample using the new predictor as Y 2
2 and update the pseudo-label Y 1

1

by Y 1
2 which means the label for the first target sample in the second iteration. By adding this

updating strategy, the Re-ISDA has the ability to modify the possible mis-labels in the previous

steps and prevent the mis-labeling issue. It is worth noting that in practice, we may pseudo-label

multiple target samples in one step; see Section 4.4.2 for more discussions.

Figure 4.2: Iteration process of Re-ISDA.

In Section 4.4.1, we introduce a theoretical foundation of the Re-ISDA by constructing a dy-

namic programming framework for the domain adaptation regression problems. Some implemen-

tation guidelines for the proposed method are provided in Section 4.4.2.

4.4.1 The proposed methodology

The theoretical foundation of ISDA given by [71] is not applicable in the current context,

because it focuses on classification problems but we are interested in regression problems. Before

introducing our dynamic programming framework, let us introduce some basic concepts. [72]

define the uniform stable algorithms as follows:

Definition 1. An algorithm A has a uniform stability β with respect to the loss function l if ∀S ∈

{X × Y }m,∀i ∈ 1, 2, ...,m

sup
(x,y)∈S

|l(hS(x), y)− l(hS\i(x), y)| < β, (4.1)
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where hypothesis hS is learned from S and S\i is obtained from S with deleting the i-th sample.

It is also shown that β decreases at the order of magnitude O(1/m) if the algorithm is stable,

where m is the size of S. So we can denote it as βS [72]. According to this definition, we can get

an equivalent proposition:

Assume that there exists a function f with uniform stability βS which can fit a big enough

labeled set S = {(x1, y1), (x2, y2), ..., (xq, yq)}, then for each point (x, y) ∈ S,

∑
f∈F

|f(x)− y| < nβ0, (4.2)

where F = {f = T (s)|s ⊆ S\(x, y)}, f = T (s) means f is trained based on the set s, the size of

every s is big enough, n is the number of such f , β0 = max{βs|s ⊆ S\(x, y)}.

We only consider the big enough subsets of S in Proposition 4.4.1 because when the size of s

is too small, the corresponding β could be arbitrarily large, which makes the left hand side of (4.2)

intractable. If we define the left hand of (4.2) as the point loss of a fixed point in S, Proposition

4.4.1 can be interpreted as: if a big enough labeled set can be fitted by a uniformly stable function,

then the point loss is small for each fixed point in this set.

In view of Proposition 4.4.1, we have an equivalent statement of the original domain adaptation

problem. Let Dtl be the labeled target domain. The equivalent problem is to find labels Yt for Dt

such that Dtl

⋃
Ds can be fitted by a uniformly stable function, i.e., find labels Yt to minimize the

point loss of a calibration point (xc, yc), that is,

min
Yt

∑
f∈F

|f(xc)− yc|, (4.3)

where F = {f = T (s)|s ⊆ Ds

⋃
Dtl}, Dtl is the labeled target domain by Yt, the size of s is

big enough. But the size of F in (4.4) may be too large, which makes this problem intractable.

To address this challenge, we propose an approximation scheme. We define a proper subset of F ,
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denoted as F . Then instead of solving (4.3), we consider the approximated problem

min
Yt

∑
f∈F

|f(xc)− yc|. (4.4)

Next, we fix the order of the target samples and model the problem (4.4) as a dynamic program-

ming problem. First, define state sn = {un
1 , u

n
2}, where u1 is the set of labeled or pseudo-labeled

samples, and u2 is the set of η newly unlabeled target samples in each state. Also we define action

function as an, yn2 determined by an is the set of pseudo labels for un
2 . The loss at each state caused

by the action an is denoted as

r(sn, an) = |fn(xc)− yc|, (4.5)

where fn = T (un
1

⋃
(un

2 , y
n
2 )). Figure 4.3 shows the first two states of the whole system, where

Xn = {xnη, xnη+1, ..., x(n+1)η−1}, n = 0, 1, ..., p/η − 1. For example, at state S0, u0
1 represents

Ds, u0
2 stands for X0, pseudo labels y02 for X0 is determined by action a0 and the loss r(s0, a0) =

|f0(xc)− yc|, where f0 = T (Ds

⋃
(X0, y

0
2)).

Figure 4.3: First two states of the system.

Our goal is to find the optimal policy {an}, n = 0, 1, ..., p/η − 1, that minimizes the sum of
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loss, i.e.,

min
{an}

n∑
i=0

r(sn, an). (4.6)

Now we consider problem (4.4) on the set F := {f0, f1, ..., fn}, n = 0, 1, . . . , p/η − 1. Then

the problem is equivalent to the dynamic programming problem (4.6).

Solving (4.6) exactly is usually still computationally intractable. Thus it is reasonable to con-

sider approximate algorithms to tackle (4.6). The ISDA can be regarded an simple greedy algo-

rithm to cope with (4.6), that is, to solve

min
an

r(sn, an), (4.7)

step by step, for n = 0, 1, . . . , p/η − 1 if we assume the action function as follows

yn2 = f ∗
n(u

n
2 ), (4.8)

where f ∗
n = T (un

1

⋃
(xc, yc)) and T is a stable basic learner. This function means if we need

to find suitable labels for un
2 to minimize the loss in (4.5) we can just use the predictor trained by

{un
1

⋃
(xc, yc)} to predict the labels. And the solution to the previous step is assumed as known and

fixed in the subsequent steps. The detailed process can be seen as Figure 4.4. At the sate S0, the

pseudo label for X0 is given by the action a0 where the predictor f ∗
0 is trained from Ds

⋃
(xc, yc),

i.e., f ∗
n = T (un

1

⋃
(xc, yc)). At the same time, the action a0 will result in a loss r0. Then the

iteration continues.

As a simple greedy algorithm, the ISDA has the following deficiency: once a pseudo label-

ing error occurs, it can never be corrected. If the errors at early iterations are large, the entire

downstream process can be highly disturbed, which is also called mis-labeling issue [73; 74]. This

phenomenon will be shown in our experiments.

We propose a modification of the ISDA action function, which enables a self-correcting ca-
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Figure 4.4: Iteration process for action function (4.8).

pability of the method and stabilizes the iteration process. Let un
1 = {Ds, d

n}, where dn =

(dn−1
t , yn−1

pl ), dn−1
t is the set of target samples added in former steps, and yn−1

pl is the set of their

pseudo labels given by former steps. The modified action function consists of two components:

yn2 = f ∗
n(u

n
2 ), (4.9)

and

ynpl = f ∗
n(d

n−1
t ), (4.10)

where f ∗
n = T (un

1

⋃
H t) and T is a stable basic learner. In other words, in each epoch, we first

pseudo label the newly added target samples, and then renew the pseudo labels of target samples

added before. The first step (4.9), following the ISDA algorithm, explores the labels for the newly

added points. The second step (4.10) updates the former pseudo labels in order to correct any

possible errors. Note that (4.10) will not dramatically change the pseudo labels of former points

because the difference between ynpl and yn−1
pl should be small, which promises a stable iteration

process. We call this new method Renewing Iterative Self-labeling Domain Adaptation (Re-ISDA).

The iteration process of Re-ISDA is illustrated in Figure 4.5. For example, at the state s1 there
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will be two actions: a1 and a′1: a1 gives the pseudo label of x1 based on the predictor f ∗
1 trained on

{Ds

⋃
H∗⋃ (X0, y

0
2)}; a′1 renews the label y02 (y0pl) by y0∗2 (y1pl) based on f ∗

1 .

Figure 4.5: Iteration process for action functions (4.9) and (4.10).

The detailed algorithm of Re-ISDA is shown in Algorithm 2. We need to choose a basic learner

Q, the calibration point (xc, yc), the order of adding target samples and the size of added samples

η at each step when implementing the Re-ISDA. Some suggestions for implementation details of

the proposed algorithm will be provided in Section 4.4.2.

Algorithm 2 Training steps for Re-ISDA

Input: ordered training set S = {(xs1 , ys1), (xs2 , ys2), ..., (xsn , ysn)}, a labeled calibration point
(xc, yc), testing samples Xt = (xt1 , xt2 , ..., xtm), the number of newly added testing samples
η, number of epochs P , initial iterative set S0 = S

⋃
(xc, yc), a basic learner Q.

Output: Final predictor f̂P (·)
1: for p in 1 : P do
2: Train a predictor f̂p(·) based on Sp−1 and Q

3: Pseudo-predict set Gp = {(xt1 , f̂p(xt1)), (xt2 , f̂p(xt2)), ..., (xtrp , f̂p(xtrp))}
4: Renew iterative set Sp = S0 ∪Gp

5: end for
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4.4.2 Implementation details for Re-ISDA

In this section, we offer some practical guidelines for implementing the proposed Re-ISDA

method.

4.4.2.1 Basic learner Q

We recommend using feed-forward neural networks (FNNs) as a basic learner. According to

[107], FNNs are robust learners. Besides, FNNs can handle huge data sets and do not require

complex transformation or representation learning for the raw data before training [5]. In order

to get a well-performing FNN, one needs to choose suitable hyper-parameters such as the number

of layers and nodes, learning rate, the number of training epochs, and so on. Detailed tuning

guidelines for FNNs can be found in [108; 6; 109].

4.4.2.2 Calibration points (xc, yc)

In domain adaptation problems we may face two different situations: 1) no labeled target

samples can be used; 2) a few labeled target samples are available. Here we give some guidelines

for choosing the calibration points under different occasions:

• If we only have the labels for the source domain, we recommend choosing the source sample

as the calibration point which has the least average distance between the target samples;

• If we only have one labeled target sample, we can choose this one as the calibration point;

• If we have several labeled target samples, we can choose one point randomly from them as

the calibration point or implement Re-ISDA for each labeled target sample and ensemble

their results to give the final prediction results.

4.4.2.3 Order of added target samples

We make the suggestions below for the order of added target samples under two types of data:

• If the data is in a time-series format, we should maintain the original order to keep the

dynamic properties.
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• If the data does not have a temporal structure, we recommend sorting the target samples from

small to large according to their distance to the calibration point.

4.4.2.4 Size of added samples in each step η

The numerical experiments in Section 4.6 show that the Re-ISDA with smaller η will lead to

more precise prediction results and a more stable iteration process. On the other hand, a smaller η

will require more iteration steps and thus increase the computational cost. Therefore, we recom-

mend setting η as small as possible provided that the computational cost is affordable.

4.5 Simulation studies

In this experiment we assess the performance of proposed Re-ISDA method and compare the

results with TCA, KMM, ISDA and the situation without domain adaptation. We use the Friedman

Function [31; 110] as the test function, which is defined as:

f(z) = 10 sin(πz1z2) + 20(z3 − 0.5)2 + 10z4 + 5z5. (4.11)

Suppose the source domain is [0.2, 1.2]5. A Halton sequence [90] with 80 samples in [0.2, 1.2]5 and

the corresponding labels are used as the training set, denoted as Xs = {(x1, y1), (x2, y2), ..., (x80, y80)}.

From the target domain we choose 41 samples given by adding 0.2 to each dimension of the in-

puts of the first 41 samples in Xs, i.e., Xt = {x1 + 0.2, x2 + 0.2, ..., x41 + 0.2}, where 0.2 =

(0.2, 0.2, 0.2, 0.2, 0.2)T . Additionally, the calibration point is (xc, yc) = (x1 + 0.2, f(x1 + 0.2)),

where f is the function in (4.11). Further, we reorder the testing samples from the smallest to the

largest by their distance from (xc, yc). The performance of each predictor is evaluated by the root

mean squared error (RMSE) defined as:

RMSE =

√√√√ 1

n

i=1∑
n

(ŷi − yi)2, (4.12)

where n is the size of testing set, ŷi is the predicted value of i-th testing sample and yi is its true

value. The implementation details are given below:
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• The NN without domain adaptation uses a neural network with structure c(5, 10, 5, 1), i.e., a

fully connected neural network with four layers, in which the first layer has five dimensions;

the second layer has ten dimensions; and so on. Its learning rate is 0.1, and the number

of training epochs is 300. This network is also used as the base learner in the following

algorithms;

• The KMM method uses the Gaussian kernel function with parameter 0.5 to re-weight the

source samples, and then the NN used above is implemented to learn from the re-weighting

set;

• The TCA method transforms the source input and target input to a new source input set and a

new target input set, respectively, to minimize the distance between their distributions0 in a

reproducing kernel Hilbert space. The new source and target input set have five dimensions.

After the transformation, the new source set is used to train the base learner mentioned before

and then to predict the values of the new target set;

• The ISDA pseudo labels two samples in each step according to the new order of target

domain, and the predictor learner is the neural network with the same structure as mentioned

before;

• The Re-ISDA is implemented similarly to ISDA except that it renews labels of all added

target samples at the current state.

The RMSEs of the four methods are given in Table 4.1. Figure 4.6 gives the box plot of the

absolute error of five methods. Table 4.1 and Figure 4.6 show that the proposed Re-ISDA has the

lowest overall prediction error.

The pointwise predictive value of five methods for every point is shown in Figure 4.7 where the

black points represent the true values. We can make the following observations from the Figure

4.7:
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Table 4.1: RMSEs for the five methods on Friedman Function.

NN without DA TCA ISDA Re-ISDA KMM

RMSE 3.623 8.901 4.070 2.033 2.70

Figure 4.6: Absolute error of the five methods for Friedman Function.

• The brown line (NN) is almost all below the black one (true value) and can not follow the

changing trend of the true value;

• The difference between the purple line (KMM) and the black line is significant, especially

for the former half. The possible reason might be the loss of information caused by re-

weighting;

• The blue line (TCA) vibrates heavily and has large errors for some points. As a result, the

performance of TCA is not desirable;

• The performance of green line (ISDA) is much better than NN and TCA. However, its per-

formance for the latter half points is much worse than the former half ones. The reason might

be the mis-labeling issue [73; 74];

• The red line (Re-ISDA) is distributed much evenly on both sides of the black line compared
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Figure 4.7: Prediction values of the five methods for Friedman Function.

with the above methods. Additionally, it follows the changing trend of true value much

better and has better performance for the latter half points than ISDA. As a result, the Re-

ISDA gains the lowest RMSE among the four methods.

4.6 Cervical spine motion prediction

In this section, we apply the proposed Re-ISDA method to the cervical spine motion prediction

problem. The numerical results show that the Re-ISDA is more suitable for the cervical spine

motion prediction problem compared with some prevailing transfer learning methods.

4.6.1 Background

Cervical spine, a highly complex multi-joint structure, supporting the head weight and provid-

ing the mobility and flexibility of the head [111], is susceptible to injuries that occur acutely and

chronically. To design effective injury prevention and control, an accurate characterization of the

cervical spine motion is needed for a better understanding of the neck biomechanics as well as the
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pathomechanics of neck injury and neck pain [111; 112; 113].

Conventional approaches to measuring in vivo three-dimensional (3D) skeletal motion and po-

sition often involve using optical markers systems and inertial sensors placed on the body surface.

Such surface-based measurements are subject to soft tissue motion artifacts and therefore do not

reflect the underlying skeletal motion accurately [114; 115; 116; 117]. In addition, marker-based

or sensor-based approaches are more suited for measuring the kinematics of long bones (i.e., ex-

tremities). For structures such as the cervical spine where relatively small individual bones are

inter-connected by complex joints, surface-based measurements are simply too error-prone. Dy-

namic stereo-radiography (DSX) has proven to be an accurate, effective, and non-invasive method

of quantifying 3D in vivo cervical spine motion and is regarded as the gold standard 4. However,

the technology is not widely accessible and incurs tremendous cost both in development and use.

Previous studies have focused on using surface markers to estimate 3D bone motion or access-

ing the correlations between measurements from surface markers and from rigid markers (i.e., the

markers are mounted on the bones) but are all limited to the lower extremity [118; 119; 120]. In a

recent study, Nichoson et. al developed machine learning algorithms to predict scapular kinematics

using optical motion measurement data [121], which further inspires us to use statistical or ma-

chine learning approaches to estimate and predict 3D cervical spine motion using optical motion

measurements. This and our recent success in measuring cervical spine motion using DSX and

optical motion capture inspire us to pursue new machine learning approaches to estimate cervical

vertebrae motion.

Specifically, There are two fundamentally different approaches to the measurement of cervical

spine motion: 1) surface-based approach, which is most widely used and more practical but is

subject to significant error sources such as soft tissue motion artifact in estimating the underlying

skeletal (i.e., rigid-body) movement; 2) dynamic radiography, which provides the “gold standard”

measurement of skeletal movement but is costly, not well accessible and predisposes human sub-

jects to radiation exposure. In view of the practical challenges in acquiring the dynamic radiog-

raphy data, we hope to build a subject-specific machine learning model that can predict subjects’
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skeletal motion (output) based only on their surface-based measurement (input).

4.6.2 Domain adaptation in the spine motion prediction problem

In the spine motion prediction problem, the joint distribution of the surface-based measurement

(input features) for each subject may vary with one’s distinct BMI, sex and other characteristics

(i.e., Ps(X) ̸= Pt(X)). At the same time, we assume the relationship between the surface-based

measurement and the skeletal movement for all subjects, characterized by the conditional distri-

butions, are the same (i.e., P (Ys|Xs) = P (Yt|Xt)). Based on the above two assumptions, we can

formulate the spine motion prediction problem as a domain adaptation problem.

4.6.3 Experimental data acquisition

In this experiment, participants performed self-paced head-neck flexion-extension tasks (i.e.,

dynamic free range-of-motion tasks) with the head-neck moving primarily in the sagittal plane

while their cervical spine region was imaged continuously using a DSX system [122]. A 12-

camera Vicon motion capture system (Vantage-Series, Vicon Motion Labs, Oxford, UK) was used

to monitor and record the head-neck motions from retro-reflective spherical surface markers placed

on ten anatomical landmarks: glabellae, inferior border of each orbit (left and right), the tragion

notches (left and right), acromion processes (left and right), suprasternal notch, sternum, and C7

spinous process as shown in Figure. 4.8.

The recorded trajectories of the surface markers were tracked in a global laboratory coordinate

system, resulting in time-histories of three coordinates (x, y, and z) in each marker.

Three-dimensional (3D) orientation and position of each vertebra were determined via a previ-

ously validated volumetric model-based tracking algorithm [123; 124; 125; 126]. Cervical sagittal

spinal curvature was measured at each time frame using the Cobb method [127; 128; 129] where

the Cobb angle was defined by the angle between the two inferior endplates of the vertebrae.

However, due to the lack of the endplate in C1 (the topmost vertebra), the cervical sagittal spinal

curvature in this study was calculated by the Cobb angle between C2 and C7 inferior endplates as

shown in Figure 4.9. The raw data consists of the following parts:
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Figure 4.8: Retro-reflective spherical surface marker placements: a the front view; b the back view.
1 glabella (marker Forehead), 2&3 inferior border of each orbit on both sides (marker LORBIT
and marker RORBIT), 4&5 the tragion notches of both sides (marker LMP and marker RMP), 6&7
acromion processes (marker LSHO and marker RSHO), 8 suprasternal notch (marker CLAV), 9
sternum (marker STRN), and 10 C7 spinous process (marker C7).

• The coordinates information given by 9 markers which named as C7, CLAV, LMP, LORBIT,

LSHO, RMP, RORBIT, RSHO, STRN (9× 3 in total);

• BMI information and C7-MMP statistic which is the distance between marker C7 and the

midpoint of marker RMP and marker LMP calculated at the neutral static posture;

• Neck angle, measured as the angle between the horizontal plane and the plane defined by the

marker C7, LMP, and RMP;

• Head angle, measured as the angle between Franfort plane and the horizontal plane, where

the Frankfort was defined by the surface markers LMP, RMP, LORBIT, and RORBIT;

• C7-MMP, the distance between the marker C7 and the midpoint of marker RMP and marker

LMP at each frame during the dynamic head-neck flexion-extention motion trial;

• Cobb angle as measured by dynamic biplane radiography.
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Figure 4.9: Cervical spinal curvature determined by Cobb angle.

4.6.4 Pre-processing

We shall use the marker coordinates information, BMI information, C7-MMP statistic, neck

angle, head angle, and C7-MMP as the input data to predict the corresponding Cobb angle. In

contrast to the BMI information and C7-MMP, which do not evolve in time, the rest of the input

data are time series. They capture the position of the corresponding markers and are collected

sequentially with fixed time intervals.

As a pre-processing step, we take the difference of every two consecutive frames of the time-

series data. We believe that this difference can be used to enhance the prediction performance

because it reflects the velocity of each marker. We include this computed “velocity information”

of the time-series input variables as part of the input data for each candidate learning method. In

summary, the input dimension is 62.
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4.6.5 Objective and problem formulation

We have labeled information (both marker information and its corresponding Cobb angle in-

formation) of six people: subject #3, 4, 17, 31, 34, 38. The goal is to identify the suitable method

to predict the Cobb angle information based on the corresponding marker information, which is re-

quired and necessary for a better understanding of the neck biomechanics. To this end, we partition

the dataset into two parts:

• Source domain (training set): subject #3, 4, 31, 34, 38 (called Ds1, Ds2, Ds3, Ds4, Ds5);

• Target domain (testing set): subject #17 (called Dt).

Additionally, we assume that a labeled target sample {x∗, y∗} is available (working as the cal-

ibration point), which is the first sample of subject #17 with its true label. This assumption is

reasonable in real-world applications because we only need one frame of the biplane radiography

data, which can be collected via a conventional static radiography equipment in an inexpensive

experiment.

In this work, we consider four candidates of domain adaption methods: the proposed Re-ISDA

and other three prevailing transfer learning methods. The performance of each method is measured

by the RMSE under the testing data.

4.6.6 Data analysis

First, we apply the max-min normalization on both the source and target domain data set to

stabilize the forthcoming training process. Next, we employ the principal component analysis

(PCA) to reduce the dimensions. Figure 4.10 shows the variances of the first ten components given

by PCA. The eleventh principal component accounts for only about 1% of the total variance, which

is almost negligible. In this experiment, we choose the first ten components as the new design.

Figure 4.11 shows the distribution of the first two components of #3, 4, 31, 34, 38, 17 against

their true Cobb angle information, which can approximately reflect their distribution in the 63

dimensions space. From Figure 4.11, the data from each subject can be fitted by a separate curve.
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Figure 4.10: The variance of components in PCA.

Thus, we consider the task of prediction as a multi-source transform learning problem. Denote the

function trained by each source as fi = T (Dsi), i = 1, 2, 3, 4, 5, and the prediction function for

target domain Dt as ft. For convenience, we choose ft according to the following rule:

ft = argmin
fi
|fi(x∗)− y∗|, (4.13)

In this experiment, we choose f5 as ft and the initial source domain Ds = Ds5.

Then we implement the four methods as follow:

• the NN without domain adaptation uses a neural network with structure c(10, 16, 16, 8, 1).

Its learning rate is 0.1, and the number of training epochs is 1500. This network is also used

as the base learner in the following algorithms;

• the KMM method uses Gaussian kernel function with parameter 2 to re-weight the source

samples, and the NN used above is implemented to learn from the re-weighting set;

• the TCA method skips the PCA, and is implemented directly on the original input with 63

dimensions. The new source and target input set have ten dimensions. After the transforma-
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Figure 4.11: The distributions of first two components of #3, 4, 31, 34, 38, 17 against their Cobb
angle (in degrees).

tion, the new source set is used to train the base learner mentioned before and then to predict

the values of the new target set;

• the ISDA pseudo labels two samples in each step according to the new order of target domain,

and the predictor learner is the neural network with the same structure as mentioned before;

• the Re-ISDA is implemented similarly to ISDA except that it renews labels of all added

target samples at the current state.

The RMSEs of the four methods are given in Table 4.2 and Figure 4.12 shows the absolute

error of the five methods in the box plot. These two figures prove that the Re-ISDA has the best

performance compared with the other four methods.

Table 4.2: RMSEs for the five methods in the spine motion prediction problem

NN without DA TCA ISDA Re-ISDA KMM

RMSE 8.19 28.88 6.21 2.68 13.2
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Figure 4.12: Absolute error of the five methods in the spine motion prediction problem.

The pointwise predictive value for every point is shown in Fig.4.13 where the black points

represent the true values. Clearly, we can see from the Fig.4.13:

• The brown line (NN) deviates far away from the black one (true value), especially for the

latter half, representing that the traditional predictor can not work well for this situation;

• The performance of the purple line (KMM) is worse than NN. In this experiment, the dif-

ference between weights of different source samples is up to 1010. As a result, many points

with tiny weights are actually deleted from the training set, which causes the under-fitting of

the model;

• The blue line (TCA) is approximately a straight line. We have tried different kernel functions

and their parameters for the TCA but get some straight lines just like the line shown here.

The possible reason might be that the TCA makes the source domain harder to learn for a

regression mission;

• The green line (ISDA) works much better than the above three methods and is very close

to the black line. However, its performance for the former half part is not desirable. The

69



Figure 4.13: Prediction values of the five methods in the spine motion prediction problem.

possible reason for it might be the little flexibility of ISDA so that it can not modify the

labels of the former samples based on the points coming afterward;

• The red line (Re-ISDA) is approximately the same as the black one, which indicates that our

method works highly well. This result shows that the proposed Re-ISDA method can transfer

the predictor through different marginal distributions and is flexible enough to modify the

pseudo labels in the former steps.

Additionally, we test the performance of Re-ISDA for different η. Figure 4.14 shows the

RMSEs for the labeled points (both newly labeled and labeled in previous steps) at each step

of Re-ISDA when η = 2, 3, 5. In the iteration processes, the RMSEs of predictors increase at

the beginning and then fall, proving that the Re-ISDA modifies the prediction error of the added

points through the new coming samples. Besides, if we choose the smaller η, the performance

of the predictor changes more smoothly and ends at a lower RMSE. However, a smaller η means
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more training epochs and higher computation cost, so that one needs to make a trade-off between

precision and cost.

Figure 4.14: Performance of Re-ISDA for different η during their training processes.
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5. SUMMARY AND DISCUSSIONS

In this thesis, we propose novel data-efficient methodologies for three different challenges

regarding modeling or experimental designs in the experimentation field.

In the first work, we propose a projection pursuit approach based on Gaussian process regres-

sion to fit deterministic computer outputs. The proposed method has a better model prediction and

generalization power when the input dimension is high, and the sample size is small.

Despite its advantages, the proposed method has a few issues to be addressed in future in-

vestigations. First, PPGPR involves quite a few hyper-parameters. Although we have provided a

few guidelines regarding the choice of these hyper-parameters, how to better choose or tune these

parameters requires further investigation. Second the current algorithm can only handle moderate

data sets due to its high computational cost. We believe that this issue can be mitigated by im-

plementing the following techniques: 1) parallel or GPU computation, 2) the recent advances in

scalable GP inference and prediction [130].

In the second work, we propose a novel design methods for multi-fidelity computer experi-

ments. We first assume a sequence of independent Gaussian process with shrinking variance for

the autoregressive model. By incorporating the error bound for Gaussian process regression given

by [57], we come up with the optimal designs for a fixed accuracy. Additionally, we prove that our

well-designed multi-fidelity experiments will require much lower cost compared with the single-

fidelity experiments in the order pf magnitude to reach the same accuracy level. The numerical

studies show the superiority of our MLGP method over the single-fidelity method and the LHD

method.

Since the error bound in Theorem 3.4.3 is proved based on Matern kernel, all the follow-up

results include the smoothness parameter ν. As a result, the proposed MLGP method may have

trouble when Gaussian kernels (with ν = ∞) are used. However, the examples in 3.5.1 show that

the MLGP method can work well for large ν’s. Given this, we recommend substituting a large

enough ν to generate designs when implementing the MLGP method for Guassian kernels.
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In the last work, we propose a novel method called Re-ISDA for the domain adaptation problem

with limited labeled samples based on the ISDA algorithm. We first formulate the learning problem

as a dynamic programming model and then propose a greedy algorithm to solve it efficiently. The

proposed method updates all labels of the target samples (both newly added and added in former

iterations) at each iteration, leading to higher flexibility and fewer mis-labeling issues than ISDA.

Our numerical experiments and a cervical spine motion prediction example confirm the prediction

performance of the proposed method.

The computational cost of the proposed method is slightly higher than the other domain adap-

tation methods we have compared with. Thus the proposed method should be more suitable for

moderate-sized data. Besides, the Re-ISDA is more suitable for the time-series data because it

can incorporate the time-series information. In this work, we only consider prediction problems,

but the proposed method, with proper modifications, should also be applicable to classification

problems.
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APPENDIX A

APPENDIX FOR CHAPTER II

A.1 Rate of convergence for additive models

In this section, we state an upper bound of the uniform prediction error of the additive Gaussian

process models and its proof. The mathematical tool involved in the proof, namely, the local poly-

nomial reproduction, originates in the scattered data approximation theory. We make substantial

improvements to this tool so that it can accommodate the additive correlations. Although the the-

ory for additive Gaussian process models cannot justify the use of the proposed projection pursuit

models, this theory is related to the motivation of the proposed model, as it shows the additive

models have a better prediction power than isotropic models. Besides, the theory can serve as a

justification for the standard additive Gaussian process models, and its variations, such as TAAG

by [14].

In Section A.1.1, we introduce the main theorem (Theorem A.1.2) and the required conditions.

In Section A.1.2, we establish a major mathematical tool for the proof of Theorem A.1.2. The

proof of Theorem A.1.2 is presented in Section A.1.3.

A.1.1 Conditions and theorems

We suppose that the design set {x1, . . . , xn} ⊂ [0, 1]d. For any x = (x(1), . . . , x(d)) and positive

integer m, define vector

vm(x) := (1, x(1), x
2
(1), . . . , x

m
(1), x(2), x

2
(2), x

m
(2), . . . , x(d), x

2
(d), . . . , x

m
(d))

T .

Clearly, vm(x) has md+ 1 entries.

Definition 2. We call the design set X = {x1, . . . , xn} ⊂ [0, 1]d regular with order m, if the matrix

V := (vm(x1), . . . , xm(xn)) is full row rank.

Obviously, a necessary condition for an n-point design set with order m is that n ≥ md + 1.
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In fact, n ≥ md + 1 is also “almost” a sufficient condition, in the sense that the design set X

without mth regularity form a set with Lebesgue measure zero in Rn×d. To see this, it suffices to

consider the case n = md+ 1. Then V becomes a square matrix and the goal is to check whether

detV = 0. Noting that detV is a (nonzero) polynomial of all entries of the design points (and

there are in total nd of them), the set {X : detV = 0} forms a (nd−1)-dimensional manifold and

thus has Lebesgue measure zero. Therefore, mth regularity can be automatically achieved with

probability one by random sampling provided that n ≥ md + 1. Besides, when n ≥ md + 1, any

non-regular design can be rectified by adding a small perturbation.

We also require the following regularity condition.

Condition 1. The entries of each xj are distinct.

It turns out that the projection properties of the design are critical for additive models. Let xk(j)

denote the jth entry of xk.

Definition 3. Define the jth marginal fill distance of a design set X ⊂ [0, 1]d as

hj = max
−1≤t≤1

min
1≤k≤n

∥t− xk(j)∥.

Latin hypercube designs [131] are ideal in terms of having small marginal fill distances. To

further ensure Condition 1 and the regularity condition in Definition 2, we suggest choosing each

point of the Latin hypercube design randomly within the corresponding cell. clearly, for this de-

sign, we have

max
1≤j≤d

hj ≤ 2/n.

As shown in [132], the uniform upper bound of Gaussian process regression is closely tied to

its predictive variance

V ar[Z(x)|Z(x1), . . . , Z(xn)] = σ2(1− rT (x)K−1r(x)) := σ2P 2(x),

where r and K are the same as in (1) in the main article. We give a uniform upper bound of
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P 2(x) in Theorem A.1.1. Although we are primarily interested in Matérn correlation functions,

we consider a more general characterization of one-dimensional correlation functions in terms of

their spectral density, i.e, the function fΦ such that the correlation Φ can be reconstructed by the

inverse Fourier transform of fΦ as

Φ(x) =

∫
R
fΦ(ω)e

iωxdω,

where i2 = −1, and fΦ(ω) is a real symmetric and nonnegative function according to Bochner’s

Theorem [24; 87]. It is well-known that one-dimensional Matérn correlation in (2) in the main

article has spectral density [10; 2; 24]

π−1/2Γ(ν + 1/2)

Γ(ν)
(4νγ2)ν(4νγ2 + ω2)−(ν+1/2), (A.1)

which is bounded above and below by (1 + ω2)−(ν+1/2) multiplying two constants, respectively.

Theorem A.1.1. Suppose that Condition 1 is fulfilled, the design X is regular with order m, and

hj ≤ m−2/4 for each j = 1, . . . , d. Define h = max1≤j≤d hj . Consider Gaussian process

regression model with additive correlation defined in (4) in the main article in which Φ1 has a

spectral density fΦ1 with

fΦ1(ω) ≤ c(1 + ω2)−(ν+1/2), (A.2)

for constants c, ν > 0 with ν + 1/2 ≤ m. Then its predictive variance has the following property:

sup
x∈[0,1]d

P (x) ≤ Cdhν ,

where C is independent of d and X .

Combining Theorem A.1.1 with Theorem 1 of [132] yields Theorem A.1.2.

89



Theorem A.1.2. Under the conditions of Theorem A.1.1 and denote the Gaussian process in The-

orem A.1.1 as Z. Let σ2 be the variance of Z. Then for any s > 0, with probability at least

1− 2 exp{−s2/(2σ2C1dh
ν)},

sup
x∈[−1,1]d

|Z(x)− Ẑ(x)| ≤ C2dh
ν
√

log(1/h) + s,

where C1, C2 are independent of d and X .

Corollary A.1.1 below is a special case of Theorem A.1.2 with the design been chosen as, for

instance, the aforementioned Latin hypercube design.

Suppose Z is a Gaussian process with mean zero and correlation function defined in (4) in

the main article, with Φ1 a Matérn correlation function with smoothness ν. Then under a suitably

chosen design of experiment, we have the rate of convergence

sup
x∈[0,1]d

|Z(x)− Ẑ(x)| = Op(n
−ν
√
log n). (A.3)

A.1.2 Simultaneous local polynomial reproduction

Polynomial reproduction is one of the essential tools to derive error estimates for function

approximation. Its main objective is to identify a stable scheme to reconstruct polynomials in

a finite dimensional space. Specifically, let πm be the space with real polynomials with degree

no more than m. Given design points {x1, . . . , xn} ⊂ [0, 1]d with n ≥ l, the interest lies in

reconstructing any polynomial function in πl at an untried point x, by identify numbers α1, . . . , αn

satisfying the following conditions:

1. (exact recovery) for any p ∈ πm, p(x) =
∑n

j=1 αjp(xj);

2. (stability)
∑n

j=1 |αj| < c for some c independent of n;

3. (local support) αj = 0 if |xj − x| > ρ for some (small) ρ > 0.

For detailed discussions of local polynomial reproduction, we refer to [87].
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It turns out in our analysis that, under the additive context, we need a stronger polynomial

reproduction condition called “simultaneous polynomial reproduction”, in the sense that we need

to recover d polynomials simultaneously with the same set of coefficients α1, . . . , αn.

It is worth noting that, in our situation, we do not need to construct the coefficients α1, . . . , αn

explicitly. We only have to prove the existence of these numbers. A nonconstructive approach to

get α1, . . . , αn is based on the following observation. Note that x defines a linear functional on πm

as φ(p) := p(x). Our goal is to represent φ(p) in terms of p(x1(j)), . . . , p(xn(j)) for each j. The

commutative diagram below shows the main idea. For simplicity, we show only the case d = 2 in

this diagram.

D1 πm R

D1 +D2 D2 Rn

T−1
1

id

φ

T1

T2

id

T−1

T 1
2

id

ϕ̃

Specifically, we take the following steps.

1. Define Tj : W → Rn as Tj(p) = (p(x1(j)), p(x2(j)), . . . , p(xn(j)))
T for each j. Let Dj be the

image of Tj . Clearly, Tj is injective under Condition 1. Therefore, the inverse mapping T−1
j

exists.

2. We can map Dj to the sum
∑d

j=1Dj using the identity map. Since we assumed that the

set set is regular with order m, it can be easily verified that Dj ∩ Dk = V1 for any j ̸= k,

where V1 denotes the vector space {(c, c, . . . , c)T : c ∈ R}, i.e., Tj(π0) for any j. Because

Tj|π0’s are identical for all j, there exists a unique map T−1 :
∑d

j=1Dj → πm such that

T−1|Dj
= T−1

j for each j.

3. Let I be a compact interval. Now we equip πm with the L∞(I) norm, and equip Rn as well as

its subspaces Dj and
∑d

j=1 Dj the l∞ norm. Because any ξ ∈
∑d

j=1Dj can be represented
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as ξ =
∑d

j=1 ξj with ξj ∈ Dj , we have

∥T−1∥ := sup
ξ∈

∑d
j=1 Dj

∥T−1ξ∥L∞(I)

∥ξ∥∞

= sup
ξj∈Dj

∥T−1
∑d

j=1 ξj∥L∞(I)

∥
∑d

j=1 ξj∥∞

≤
d∑

j=1

sup
ξj∈Dj

∥T−1ξj∥L∞(I)

∥ξj∥∞
=

d∑
j=1

∥T−1
j ∥. (A.4)

4. Define map ϕ :
∑d

j=1Dj → R as ϕ = φ ◦ T−1. Then we have

∥ϕ∥ = ∥φ ◦ T−1∥ ≤ ∥φ∥ · ∥T−1∥ = ∥φ∥ · ∥T−1∥ ≤ ∥T−1∥,

where the last inequality follows from the fact that

∥φ∥ = sup
p∈πm

|p(x)|/∥p∥L∞ ≤ 1.

5. Because
∑d

j=1Dj is a subspace of Rd, according to Hahn-Banach theorem, there exists a

map ϕ̃ : Rn → R, such that ϕ̃|∑n
j=1 Dj

= ϕ and

∥ϕ̃∥ = ∥ϕ∥ ≤ ∥T−1∥. (A.5)

Now we examine what we have got. Because ϕ is a linear functional on Rn, we can express ϕ

as

ϕ(α1, . . . , αn) =
n∑

j=1

cjαj.

Then

∥ϕ∥ = sup
α1,...,αn

|
∑n

j=1 cjαj|
∥(α1, . . . , αn)∥∞

=
n∑

j=1

|cj|. (A.6)
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Combining (A.4)-(A.6) yields
∑n

j=1 |cj| ≤
∑d

j=1 ∥T
−1
j ∥. Our next goal is to bound ∥T−1

j ∥.

Lemma A.1.3. Suppose that Condition 1 is fulfilled and the length of I is no less than 4m2hj .

Then ∥T−1
j ∥ ≤ 2.

Proof. It suffices to prove that

∥Tj∥ = sup
1≤k≤n,p∈πm,∥p∥L∞(I)=1

p(xk(j)) ≥ 1/2. (A.7)

Let d0 be the length of I . Markov’s inequality [133] for an algebraic polynomial p ∈ πm states

max
t∈I
|p′(t)| ≤ 2

d0
m2max

t∈I
p(t). (A.8)

Choose p ∈ πm with ∥p∥L∞(I) = 1. Because I is compact, there exists t0 ∈ I such that |p(t0)| = 1.

The mean value theorem and (A.8) yields

|p(t0)− p(t)| ≤ 2m2|t0 − t|/d0 ≤ |t0 − t|/(2hj) (A.9)

for all t ∈ I . By the definition of hj that there exists k, so that |xk(j) − t0| ≤ hj , which, together

with (A.9), yields

|1− p(xk(j))| ≤ 1/2.

Thus |p(xk(j))| ≥ 1/2, which proves (A.7).

We now arrive at our main conclusion in this section.

Theorem A.1.4. Suppose that Condition 1 is fulfilled, the design X is regular with order m, and

hj ≤ m−2/4 for each j = 1, . . . , d. Then for each x ∈ [0, 1]d, there exist constants α1, . . . , αn ∈ R,

such that

pj(x) =
n∑

k=1

αkpj(xk(j)),
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for any pi ∈ πm with j = 1, . . . , d. In addition, we have
∑n

k=1 |αk| ≤ 2d, and αk = 0 if

|xk(j) − x(j)| ≥ 4m2hj , where x(j) denotes the jth entry of x.

Proof. Take any interval I ⊂ [−1, 1] with length 4m2hj . Imagine a new set of design points

Xnew := {xk ∈ X : xk(j)∈Ij ,j=1,...,d. Because Xnew is a subset of X , Condition 1 also holds for

Xnew. Thus we can invoke Lemma A.1.3 with the new design Xnew. Denote Xnew = {xn1 , . . . , xnm}.

Lemma A.1.3 implies that there exist αn1 , . . . , αnm such that

pj(x) =
n∑

k=1

αnk
pj(xnk(j)),

and
∑n

k=1 |αnk
| < 2d. Now for any xk ∈ X \Xnew, we set αk = 0. Then we arrive at all desired

results.

A.1.3 Proof of Theorem A.1.1

The mathematical tools for proving Theorem A.1.1 include the simultaneous polynomial re-

producing we developed in Section A.1.2 and the Fourier transforms. The idea is inspired by

[134].

Via direct calculations, we can verify that

P 2(x) = 1− rT (x)K−1r(x) = min
u∈Rn

1− 2uT r(x) + uTKu =: min
u∈Rn
Q(u).

Because the correlation function is additive, we can write Q(u) =
∑d

j=1Qj(u)/d with

Qj(α) = 1− 2uT rj(x) + uTKju,

where rj(x) = (Φ1(x1(j)−x(j)), . . . ,Φn(x1(j)−x(j))), Kj = (Φ1(xk(j)−xl(j)))kl and x(j) denotes

the jthe entry of x.

Next we can representQj(u) in terms of the spectral density fΦ1 . It can be verified by elemen-
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tary calculations that

Qj(u) =

∫
R

∣∣∣∣∣eiωx(j) −
n∑

k=1

uke
iωxk(j)

∣∣∣∣∣
2

fΦ1(ω)dω

=

∫
R

∣∣∣∣∣1−
n∑

k=1

uke
iω(xk(j)−x(j))

∣∣∣∣∣
2

fΦ1(ω)dω,

where uk denotes the kth entry of u.

Now we choose uk as αk defined by Theorem A.1.4 satisfying

p(0) =
n∑

k=1

αkp0(xk(j) − x(j)) (A.10)

for all p ∈ πm. Consider the mth order Taylor polynomial of ez, which is p0(z) =
∑m

k=0 z
k/k!.

We write ez = p0(z) + e(z). For any z ∈ C, we can bound |e(z)| as

|e(z)| =

∣∣∣∣∣
∞∑

k=m+1

zk/k!

∣∣∣∣∣ ≤
∞∑

k=m+1

|z|k/k!

= e|z| − p0(|z|) ≤ e|z||z|m+1/(m+ 1)!, (A.11)

where the last inequality follows from Taylor’s theorem. Now we have

n∑
k=1

αke
iω(xk(j)−x(j)) =

n∑
k=1

αk

{
p0
(
ω(xk(j) − x(j))

)
+ e

(
ω(xk(j) − x(j))

)}
= 1 +

n∑
k=1

αke
(
ω(xk(j) − x(j))

)
,

where the last equality follows from (A.10) and the fact that p0(ω·) is also a polynomial.
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New it remains to bound

Qj(u) =

∫
R

∣∣∣∣∣
n∑

k=1

αke
(
ω(xk(j) − x(j))

)∣∣∣∣∣
2

fΦ1(ω)dω

=

(∫
|ω|≤1/hj

+

∫
|ω|>1/hj

)∣∣∣∣∣
n∑

k=1

αke
(
ω(xk(j) − x(j))

)∣∣∣∣∣
2

fΦ1(ω)dω

=: I1 + I2.

To bound I1, we use (A.11) to get

I1 ≤
∫
|ω|≤1/hj

∣∣∣∣∣
n∑

k=1

αke
ω(xk(j)−x(j))|ω(xk(j) − x(j))|m+1

∣∣∣∣∣
2

fΦ1(ω)dω/(m+ 1)!

≤
∫
|ω|≤1/hj

∣∣∣∣∣
n∑

k=1

αke
4m2|4ωm2hj|m+1

∣∣∣∣∣
2

fΦ1(ω)dω/(m+ 1)!

≤ C1

∫
|ω|≤1/hj

(
n∑

k=1

|αk|

)2

|ω|2m+2h2m+2
j fΦ1(ω)dω

≤ C2d
2h2ν−2m−2

j h2m+2
j = C2d

2h2ν
j ,

where the second inequality follows from the fact that αk = 0 if xk(j) − x(j) ≥ 4mhj; and the last

inequality follows from
∑n

k=1 |αk| ≤ 2d, (A.2) and elementary calculus.

To bound I2, we use the fact that

∣∣∣∣∣1−
n∑

k=1

uke
iω(xk(j)−x(j))

∣∣∣∣∣ ≤ 1 +
n∑

k=1

|uk| ≤ 2d+ 1

to obtain

I2 ≤
∫
|ω|>1/hj

(2d+ 1)2fΦ1(ω)dω ≤ C3d
2h2ν

j .

Then the proof is completed.

A.2 More numerical studies

In this section, more numerical studies are conducted. The results show the superiority of the

PPGPR method.
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A.2.1 Performance of GPR and PPGPR for more simulation functions

We compare the performance of GPR and PPGPR for three more simulation functions: Dette

Pepelyshev (2010) curved function [135], Robor arm function [136] and Welch function [137; 95].

The training sets are generated by Halton sequences [90] with sample size 5d, and 500 random

samples are generated as the testing set in this experiment. We use the package Dicekriging [97]

to implement GPR (with product kernel). Table A.1 shows the performance measured by MAPE

of GPR and PPGPR. One can see that the proposed PPGPR overperforms GPR a lot for these three

functions.

Table A.1: MAPEs of GPR with product correlations and PPGPR for three different simulation
functions

Dette Pepelyshev (2010) curved (d = 3) Robot arm (d = 8) Welch (d = 20)

GPR 0.413 0.751 1.246

PPGPR 0.258 0.738 1.066

A.2.2 Performance of GPR and PPGPR under Latin hypercube designs with different sizes

We compare the performance of GPR and PPGPR under Latin hypercube designs [138] with

different sample sizes. The Dette Pepelyshev (2010) curved function [135] is chosen as the sim-

ulation function. The package lhs (see https://cran.r-project.org/web/packages/lhs/index.html for

details) in R is used to generate the Latin hypercube designs using the maximin criterion [139].

The size of the testing set is 500. Figure A.1 shows the MAPEs of GPR and PPGPR under the

sample sizes from 40 to 120. It can be easily seen that the PPGPR has lower MAPEs than GPR

most time. GPR has a lower MAPE only when the sample size is 63. Figure A.1 proves the supe-

riority of the proposed PPGPR over GPR under the Latin hypercube design with different sample

sizes.
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Figure A.1: MAPEs of PPGPR and GPR for Dette Pepelyshev (2010) curved function under Latin
hypercube designs with different sample sizes

A.2.3 Performance of PPGPR under different initial ws

In this section, we investigate the performance of the proposed PPGPR starting with different

initial ws. The Dette Pepelyshev (2010) curved function [135] is chosen as the simulation function.

The training sets are generated by Halton sequences [90] with sample size 5d and 500 random

samples are chosen as the testing set in this experiment. We fix some hyper-parameters, i.e.,

η = 10−9, P = 150, and Matérn kernel with ν = 2.5. For each M = 7, 14, 21, 28, 35, 42, 49, 56,

we train seven PPGPR models with different initial ws and test them on the testing set, as shown in

Figure A.2. One can see that the performance of PPGPR models starting with different ws highly

varies when M < 20, but when M > 20 the performance are very close. Since we recommend a

large M when implementing PPGPR, the initial ws may not influence the results much.

A.2.4 Computational cost of GPR and PPGPR

We study the computational cost of the proposed PPGPR using Dette Pepelyshev (2010)

curved function (d=3). The training samples are generated by the Halton sequences [90] with
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Figure A.2: MAPEs of PPGPR for Dette Pepelyshev (2010) curved function under different initial
ws

sample size 5d. In this experiment, GP costs 0.02s to run while the computational cost of PPGPR

(η = 10−9, P = 150, Matérn kernel with ν = 2.5) under different numbers of nodes are shown in

Table A.2. The proposed PPGPR is slower than ordinary Gaussian process regression, but it is still

affordable for moderate datasets. The higher computational cost of the proposed method is because

1) it requires nonlinear optimization, and 2) dimension expansion incurs additional computational

costs.

Table A.2: Computational cost of PPGPR for Dette Pepelyshev (2010) curved function under
different number of nodes

Number of nodes 7 14 21 28 35 42 49 56

Time(s) 8.6 13.6 24.5 32.5 40.3 48.4 56.5 64.7
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APPENDIX B

APPENDIX FOR CHAPTER III

B.1 Proof for Theorem 1-3

In this section, we will show the proof for them 1-3.

B.1.1 Theorem 1

Proof of Theorem 3.4.1. By definition,

ŷK(x) = E

[
K∑
i=0

δi(x)
∣∣∣yK(XK), ..., y0(X0)

]

=
K∑
i=0

E
[
δi(x)

∣∣∣yK(XK), ..., y0(X0)
]

Because δi’s are mutually independent, for each i we can get

E
[
δi(x)

∣∣∣yK(XK), . . . , y0(X0)
]

= E
[
δi(x)

∣∣∣yK(XK)− yK−1(Xk), . . . , y1(X1)− y0(X0), y0(X0)
]

= E
[
δi(x)

∣∣∣yi(Xi)− yi−1(Xi)
]
.

Then we can rewrite the ŷK(x) as

ŷK(x) =
K∑
i=0

E
[
δi(x)

∣∣∣yi(Xi)− yi−1(Xi)
]
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B.1.2 Theorem 2

Proof of Theorem 3.4.2. By definition,

E ∥yK − y∞∥2L2 = E

∥∥∥∥∥
∞∑

i=K+1

δi

∥∥∥∥∥
2

L2

=
∞∑

i=K+1

E ∥δi∥2L2

=
∞∑

i=K+1

E(
∫
X

δ2i dx)

=
∞∑

i=K+1

∫
X

E(δ2i )dx

=
∞∑

i=K+1

Csλ
2iσ2

= C2
l λ

2Kσ2.

where X denotes the input domain of x, Cs is the area of X and constant Cl =
√
Cs/(1− λ).

B.1.3 Theorem 3

Proof of Theorem 3.4.3. Based on the Thm 1, we have

E ∥yK − ŷK∥2L2
= E

∥∥∥∥∥
k∑

i=0

(Ii(δi)− δi)

∥∥∥∥∥
2

L2

=

∫
X

k∑
i=0

(Ii(δi)− δi)
2dx

=

∫
X

k∑
i=0

E((Ii(δi)− δi)
2)dx

≤
k∑

i=0

pσ2λ2in
−ν/d
i ,

where ni is the number of samples in the i-th step, p is a constant only based on the correlation

function, d is the dimension of the input space and ν is a constant.
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B.2 Solve the objective function

Consider the optimization problem

min
ni

K∑
i=0

niCi (B.1)

s.t.
K∑
i=0

λ2iσ2n
−2ν/d
i ≤ ϵ2/2 (B.2)

We form the Lagrange function of (B.1) as

L(n0, n1, ..., nK , η) =
K∑
i=0

niCaa
i + η(

K∑
i=0

pλ2iσ2n
−2ν/d
i − ϵ2/2). (B.3)

To find a relative extremum, we require∇L = 0, leading to the K + 2 conditions

∂L

∂ni

= Caa
i − 2pην

d
λ2iσ2n

−(2ν/d+1)
i = 0, i = 0, 1, ..., K (B.4)

∂L

∂η
=

K∑
i=0

pλ2iσ2n
−2ν/d
i − ϵ2/2 = 0. (B.5)

Solve the (K + 1) equations in (B.4) we can get

ni = (
pCad

2νσ2

ai

λ2i
η−1)−

d
d+2ν , i = 0, 1, ..., K. (B.6)

Substitute (B.6) into (B.5) we have

η =
Cad

2ν
(σ2)

d
2ν (

pϵ2

2S
)−

d+2ν
2ν , (B.7)

102



where

S =
K∑
i=0

(ai)
2ν

d+2ν (λ2i)
d

d+2ν .

Substitute (B.7) into (B.6) we get

ni = (
ϵ2

2pσ2S
)−

d
2ν (

ai

λ2i
)−

d
d+2ν , i = 0, 1, ..., K. (B.8)

Since ni is an integer, we choose

n∗
i = ⌈ni⌉. (B.9)

B.3 Analysis of cost for the MLGP

In this section, we make the analysis of the cost based on the K and n∗
i given in the above

section. The total cost is given by

Cϵ =
K∑
i=0

n∗
iCi ≤

K∑
i=0

n∗
iCaa

i.

Since ⌈ni⌉ ≤ ni + 1, we have

Cϵ ≤
K∑
i=0

Ca(ni + 1)ai

≂
K∑
i=0

(Sσ2(ϵ2/2)−1)
d
2ν

K∑
i=0

(a
2ν

d+2ν λ
2d

d+2ν )i +
K∑
i=0

ai

= (2σ2ϵ−2)
d
vS

d+2ν
2ν +

K∑
i=0

ai. (B.10)

We denote the first part in the right hand side of (B.10) as part (I) and the second part as (II), and

consider them separately.
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If (ai)
2ν

d+2ν (λ2i)
d

d+2ν = 1 (i.e., 2αν = dβ), then

(I) = (2σ2ϵ−2)
d
v (K + 1)

d+2ν
2ν

≂ ϵ−d/ν(2 logλ2

ϵ

2Clσ
)
d+2ν
2ν

≂ ϵ−d/ν | ln ϵ2|
d+2ν
2ν ;

(II) =
aK(1− a−(K+1))

1− a−1

≂ aK ≂ (ϵ2)(ln a/ lnλ2)

= ϵ−d/ν .

Since ϵ−d/ν | ln ϵ2| d+2ν
2ν > ϵ−d/ν , Cϵ ≲ ϵ−d/ν | ln ϵ2| d+2ν

2ν .

If (ai)
2ν

d+2ν (λ2i)
d

d+2ν < 1 (i.e., 2αν < dβ), S will converge to a limitation which is independent

of K. As a result, we have

(I) ≲ ϵ−d/ν ;

(II) ≲ ϵ−2α/β.

Since d/2ν > α/β, Cϵ ≲ ϵ−d/ν .

If (ai)
2ν

d+2ν (λ2i)
d

d+2ν > 1 (i.e., 2αν > dβ), we have

(I) ≲ ϵ−d/ν(exp
2αν − dβ

d+ 2ν
)
K(d+2ν)

2ν

≲ ϵ−d/ν exp (−(ln ϵ2(2αν − dβ))

2νβ
)

= ϵ−2α/β;

(II) ≂ ϵ−2α/β.
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As a result, Cϵ ≲ ϵ−2α/β .

In summary,

Cϵ ≲


ϵ−d/ν , 2αν < dβ

ϵ−d/ν | ln ϵ2| d+2ν
2ν , 2αν = dβ

ϵ−2α/β, 2αν > dβ

(B.11)

B.4 Analysis of cost for single-level

The error caused by single-level approximation can be bounded as

E(
∥∥y∞ − ŷSLK

∥∥2) = E(
∥∥y∞ − ySLK

∥∥2 + ∥∥ySLK − ŷSLK

∥∥2), (B.12)

where ŷSLK = I(δK). Then the objective function for this single-level approximation can be sum-

maried as

min
K,nK

nKCK (B.13)

s.t. E
∥∥y∞ − ŷSLK

∥∥2
L2 ≤ ϵ (B.14)

Based on Thm.1 and Thm.2, we have

E
∥∥y∞ − ŷSLK

∥∥2 ≳ λ2Kσ2 + σ2n
−2ν/d
K , (B.15)

where nK is the number of samples. It should be sufficient to bound the upper bound of the error

by ϵ, that is,

λ2K + n
−2ν/d
K ≲ ϵ2. (B.16)
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From the (B.16), we can get the lower bound for nK , that is,

nK ≳ (ϵ2 − λ2K)−d/2ν . (B.17)

Then we have the lower bound for the cost of single-level approximation:

CSL
ϵ = nKCk ≳ aK(ϵ2 − λ2K)−d/2ν . (B.18)

We denote a = exp (α) and λ2 = exp (−β) for convenience, α, β > 0. Then wen can rewrite

(B.18) as

lnCSL
ϵ ≳ αK − d

2ν
ln (ϵ2 − e−βK). (B.19)

Now we want to find the lower bound of CSK
ϵ , that is, we need to find the lower bound for the right

hand side of (B.19). Consider the following function with respect to K:

T (K) = αK − d

2ν
ln (ϵ2 − e−βK). (B.20)

Set the derivative of T with respect to K equal to 0:

dT

dK
= α +

dβ

2ν
(1− ϵ2

ϵ2 − e−βK
) = 0. (B.21)

We can get the solution K0 = − 1
β
ln 2ϵ2αν

2αν+βd
. When K < K0, T (K) is decreasing and when

K > K0, T (K) is increasing. Substitute K = 0 into T (K), we can get the lower bound of the cost

for the single-level:

CSL
ϵ ≳ ϵ−( d

ν
+ 2α

β
). (B.22)
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