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ABSTRACT 

 

 Downy mildew (caused by Plasmopara viticola) and Grey Mold (caused by Botrytis 

cinerea) are fungal diseases that significantly impact grape production globally. Cytochrome b 

plays a significant role in the mitochondrial respiratory chain of the two fungi that cause these 

diseases and is a key target for Quinone outside inhibitor (QoI) based fungicide development. 

QoI fungicides are common antifungal agents that are used to treat downy mildew or grey mold 

infections in fruits and vegetable crops by binding to cytochrome b and inhibiting respiratory 

function. Since the mode of action (MOA) of QoI fungicides is restricted to a single active site, 

the risk of developing resistance toward these fungicides is deemed high. Consequently, using a 

combination of fungicides in a rotational program is considered an effective way to reduce 

development of QoI resistance. In this study, a combination of in silico simulations that include 

Schrodinger Glide docking, molecular dynamics, MMGBSA and AutoQSAR modeling were 

used to screen the most potent QoI-based fungicide combinations to wild-type, G143A (Glycine 

to Alanine), F129L (Phenylalanine to Leucine) and double mutated versions that had both 

G143A and F129L mutations of fungal cytochrome b. The fungicides mandestrobin, 

fenaminstrobin and dimoxystrobin had high docking scores against multiple mutated versions of 

cytochrome b of Plasmopara viticola, which suggests their high affinity toward mutated variants 

of cytochrome b. Famoxadone, fenamidone, ametoctrodin and thiram also showed reasonable but 

relatively weaker binding affinity towards Plasmopara viticola cytochrome b. For the case of 

Botrytis cinerea, mandestrobin, pyribencarb and famoxadone showed strong binding affinity 

toward the four different variations of cytochrome b, which indicates that they are potential 

effective candidates against mutated cytochrome b. Four other fungicides, ametoctradin, 

fenamidone, metominostrobin and thiram were also effective against mutated cytochrome b. 
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Based on both the docking simulations and QSAR/machine learning analysis ametoctradin 

emerged as a potential high-affinity QoI fungicide against the G143A mutation. The QoI-based 

fungicide combinations that include famoxadone, mandestrobin and ametoctradin preferentially 

are suggested to be considered in a fungicide management program in combination with 

fungicides that target other MOA as a potential treatment against Plasmopara viticola and 

Botrytis cinerea based fungal infections.  
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NOMENCLATURE 

 

QoI                                              Quinone outside inhibitors  
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1. INTRODUCTION 

Grapes, one of the world’s most valuable cash crops, play an important role in the global 

economy. In 2020, the global production of grapes was 78 million tonnes from 6.95 million 

hectares and the total production value was over $80 billion [9] with ~6 million tons of grapes 

being produced in the U.S. [20]. Cultivated grapes are sold as table grapes and processed grape 

products such as jam, wine, vinegar juice and jelly. Over 50% of grapes are used in wine 

production that contributes to over a billion U.S. dollars each year in the U.S. However, there is a 

serious impact on the growth of grapes caused by fungal diseases, which also affects the quality 

of wine and other products. An estimated 40% reduction in grape production occurs annually 

because of various fungal diseases, causing significant economic losses [27].  

Downy mildew caused by Plasmopara viticola is one of the most serious fungal diseases 

that attack grapevines. Downy mildew was a native pathogen to North America and caused 

serious damage to European vineyards in the late 1800s [18]. Plasmopara viticola invades 

leaves, shoot and young berries under warm and moist conditions so that the pathogen can take 

nutrients from these parts to produce sporangia, causing larger infections [4] [18]. Yellow spots 

with white downy mold occur on the surfaces of infected leaves and the spots turn brown and 

eventually necrotic [1]. Necrotic areas on leaves caused by downy mildew largely affect the 

photosynthesis of the grapevine and reduce the formation of glucose provided by photosynthesis, 

which hinders grape growth and causes reduction of berries. Young shoots and berries are also 

vulnerable to downy mildew, which causes young shoots to be twisted and decreases the 

translocation of water and organic nutrients, slowing growth [1]. This infection also causes 

berries to dry out and fall causing significant losses [1]. When there is abundant rainfall in warm 

seasons, the pathogen easily invades grapevines and reproduces more sporangia which can be 
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carried by wind or rain to infect surrounding grapevines [1] [24]. Although downy mildew is 

devastating, QoI fungicides have thus far been able to manage the disease effectively [1] [5] 

[14]; however, key mutations to the target has been threatening several of these fungicides to 

show resistance.  

Grey mold caused by Botrytis cinerea is another fungal disease that causes serious 

destruction to grapevine. Grey mold is also one of the “Top 10 fungal plant pathogens” in the 

survey established by Molecular Plant Pathology because this fungal disease has a wide host 

range, and it has the capability to invade a host plant in all stages from seedling to maturity [7]. 

The berries of grapevine are the most susceptible when an infection occurs under moderate 

temperatures and high humidity [8]. When the berries are infected, a reddish-brown and watery 

decay can be observed from the pedicel to the stylar end [8]. Infected regions also provide 

favorable conditions for a secondary inoculum which will generate more sporangia and infect 

other berries nearby [8]. Infected berries finally dry out, resulting in significant economic losses. 

Botrytis cinerea also invades leaves, flowers, and shoots, causing similar brown lesions on plant 

parts [8]. QoI fungicides are commonly used for chemical control of Botrytis cinerea [8]; and 

resistance threatens the effectiveness of several of these fungicides. 

The application of fungicide is a chemical control that targets specific molecules like 

amino acids to block fungal metabolism, restricting fungal reproduction [11]. The binding target 

of QoI fungicides is cytochrome b, a protein within the cytochrome bc1 complex in Plasmopara 

viticola and Botrytis cinerea which plays a significant role in respiratory function [3]. When QoI 

fungicides bind cytochrome b, the ubiquinol oxidase substrate is unable to transfer electrons 

within cytochrome b and cytochrome c1 interrupting and inhibiting the production of ATP [3][5]. 

This shortage of ATP interrupts the propagation of the pathogen, meaning downy mildew treated 
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by QoI fungicides is not able to infect other parts of the grapevine. However, since QoI 

fungicides are single-site fungicides (specifically bind to cytochrome b), downy mildew and grey 

mold will develop fungicide resistance after continuous usage of QoI fungicides [5] [13][31]. 

Due to fungicide resistance development, Fungicide Resistance Action Committee (FRAC) has 

labeled QoI fungicides as high-risk. G143A (Glycine to Alanine) and F129L (Phenylalanine to 

Leucine) mutations are two main known mutations that reduce the efficacy of QoI fungicides 

toward grape downy mildew because the mutations of these two target sites weaken the binding 

affinity between protein and fungicides [5] [14] [30]. While developing new types of fungicides 

can resolve this issue, it takes a significant amount of time and resources to identify alternative 

active sites and go through rigorous approval processes. In the meantime, an effective, economic 

and viable management strategy may include using combinations of fungicides. A fungicide 

combination combines one or more high-risk fungicides with one or more low-risk fungicides 

from currently used fungicides [14]. By using this strategy, QoI fungicides can be combined with 

another low-risk fungicide so that the mixture has multiple binding targets, thus increasing the 

effectiveness against mutation(s) [14].  

According to existing literature, no studies have addressed the selection of fungicide 

combinations for QoIs based on molecular structures and their affinity to the cytochrome b active 

site. In this study, we aim to provide a thermodynamic-based quantitative strategy to identify and 

select antifungal agents from QoIs (high-risk group) to be combined with low-risk fungicides to 

form fungicide combination(s) that can mitigate fungicide resistance. This approach is based on 

docking selected fungicides from QoIs and low-risk fungicides with a homology model of 

cytochrome b to identify the fungicides with the highest affinity, and further evaluation of the 
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screened fungicides using molecular dynamic simulations, MM-GBSA energy calculations and 

QSAR models with machine learning statistical methods. 
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2. MATERIALS AND METHODS 

2.1   Protein structure and ligand structure preparation  

A homology model in PDB format of Plasmopara viticola (GenBank: DQ209286.1) was 

created by using cytochrome b from plant mitochondrial complex III2 from Viga radiata (PDB: 

7JRG. 1 .C) as a template on the SWISS-MODEL server [2][12] [23] [32]. The quality of this 

homology model was evaluated by using the program ERRAT and PROVE on the SAVES v6.0 

server (https://saves.mbi.ucla.edu accessed on 8 January 2023) [6][28]. The homology model 

contained G143 and F129, which was a WT cytochrome b. This model was mutated into three 

other versions on Maestro Schrödinger: G143A, F129L and a mutation containing both G143 

and F129L mutations. The 3D structures of ligands were obtained from ZINC15 or PubChem (all 

ligands are provided in supplementary materials) and generated in PDB format using online 

SMILES translator [15] [19]. All the protein and ligand structures were prepared for docking 

using the Protein Preparation Wizard which added missing hydrogens, corrected bond orders, 

fixed missing segments and minimized the structure under Optimized Potentials for Liquid 

Simulations 3 (OPLS3) force field [16].  

A homology model was built and validated for Botrytis cinerea using analogous methods 

developed for Plasmopara viticola.  

2.2   Molecular docking 

Schrodinger Glide was used for the docking of the ligands on the protein. The grid box 

was centered around original active sites (G143 and F129; coordinates X - 195.53, Y – 213.29, Z 

– 176.3) or mutated active sites (G143A; coordinates X -192.6, Y – 212.54, Z – 171.55; F129L; 

coordinates X – 196.55, Y – 213.55, Z – 177.96; or F129L with G143A; coordinates X – 195.53, 
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Y – 213.29, Z – 176.3) and the size of the grid box was 44 × 46 × 56 Å. Glide docking scores 

between cytochrome b and 26 ligands were generated using Schrödinger Glide XP mode with 

default settings in three replicates and the highest binding scores were used for binding affinity 

analysis. The ligand-protein interactions were analyzed using a Ligand Interaction diagram. 

2.3   Molecular dynamic simulations   

Molecular dynamic simulations were conducted for select fungicides using Schrodinger 

Desmond for further verification. The protein-ligand structures were created by merging the 

protein with a selective ligand. An orthorhombic box (distance 10 × 10 × 10Å) in a Transferable 

Intermolecular Potential with 3 Points (TIP3P) solvent model was generated using the System 

Builder of Schrödinger Desmond under an OPLS3 force field. The charge of this system was 

kept in a neutral state by adding NaCl in 0.15 M concentration [16] [26]. The NPT (normal 

pressure and temperature) ensemble was applied for the molecular dynamics simulations using 

temperature at 300K and pressure at 1.01325 bar [17]. Each protein-ligand structure within the 

orthorhombic box contained around 33161 atoms with 9798 water molecules (data from the 

structure of cytochrome b with ubiquinol). The molecular dynamic simulation for each system 

was run for 500 nanoseconds (ns) and generated 1000 frames and a 500-picosecond (ps) 

trajectory. Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and 

Protein-Ligand contacts for each simulation were analyzed using Schrödinger Simulation 

Interaction Diagrams.  

2.4   Binding free energy analysis 

Molecular Mechanism-Generalized Born Surface Area (MMGBSA) calculation showed 

the binding affinity between protein and ligands was based on the free binding energy [21]. By 
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using the thermal_MMGBSA.py script from Schrödinger Prime for molecular dynamic 

simulation with 1000 frames, the free binding energy of each frame or each segment, depending 

on command -step_size on the script, was calculated for analysis of binding affinity [21]. 

2.5   AutoQSAR model analysis 

 In order to evaluate if the predictions made by the docking followed by molecular 

dynamic simulations could be replicated, the Schrodinger automated quantitative structure-

activity relationship (AutoQSAR) model that uses a machine-learning approach which a subset 

of Artificial Intelligence (AI) was used. The AutoQSAR model is a machine-learning approach 

that builds numerical models with minimal inputs to interpret the relationship and make 

predictions between the bioactivity and chemical properties of ligands [29]. In this case, the 

binding affinity was used as the input variable. Numerical models were developed by using 

multiple linear regression (MLR), partial least-squares regression (PLS), kernel-based partial 

least-squares regression (KPLS) and principal components regression (PCR) based on the given 

ligands’ fingerprints including linear, radial, dendritic and milprint2D or descriptors [29]. The 

AutoQSAR split the selected ligands into a 75% training set and a 25% test set for Plasmopara 

viticola and Botrytis cinerea [29]. This model generated a scatter plot that showed the correlation 

between observed and predicted binding affinity. The accuracy of this model was evaluated by 

an external validation data set. 
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3. RESULTS AND DISCUSSION 

3.1   Building of the homology models for Plasmopara viticola Cytochrome b 

The homology model of Plasmopara viticola cytochrome b included the regions between 

residues 79 to 295 found by BLAST. The sequence identity was 69.59% and sequence similarity 

was 0.53 [32]. The Quaternary Structure Quality Estimate (QSQE) was 0.81 (with 0.7 to be 

acceptable), indicating a high level of reliability of quaternary structure. The Global Model Quality 

Estimate (GMQE) is 0.89, meaning the homology model had over half of the target sequence 

coverage [32]. The ERRAT value for the homology model was 93.5 which meant that the 

homology model had acceptable nonbonded atomic interactions [6]. Based on the PROCHECK 

report, 92.9% of residues (171 out of 217) were located in the most favored regions, 6.5% (12 out 

of 217) were located in the additional allowed regions, 0% were located in the generously allowed 

regions and 0.5% (1 out of 217) were located in the disallowed regions [22]. The residue score 

provided by PROCHECK was 99.5%, which indicated the conformation of homology model of 

Plasmopara viticola cytochrome b was stable [34]. Based on favorable scores, this homology 

model was used for in-silico studies.   

3.2   Identification of the Active Site for Plasmopara viticola 

During the initial docking, the homology model was divided into top (covering residues: 

ARG79-TRY94, MET124-PHE180 and PHE245-MET295) and bottom sections (covering 

residues: ILE95-PHE121 and SER181-ILE244). To identify the docking site in cytochrome b, two 

conserved regions around the center of protein were picked from the top and bottom parts based 

on existing literature [12]. Initial docking results and Site Map shown on Figure 1 revealed strong 

binding of probe molecules to the top region (covering residues: ARG79-TRY94, ILE122-PHE180 

and PHE245-MET295) of cytochrome b. Since the top region showed stronger binding and 
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included the two key residues where antifungal-resistant mutations occur, this region was used for 

docking analyses in all subsequent steps. Glide docking scores of selected fungicides on the top 

binding site of cytochrome b are given in Table 1, and the key interactions of ubiquinol at the 

binding site are given in Figure 1.  
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Figure 1: A) Site map output depicting possible binding sites of Plasmopara viticola cytochrome 

b (G143 - Blue residue; F129 - Red residue; hydrophobic - Yellow areas; Hydrogen bonding 

acceptor - Red areas; Hydrogen bonding donor - Blue areas); B) the top orientation of ubiquinol 

on cytochrome b; and C) key interactions of ubiquinol with cytochrome b amino acid residues.  

 

 

A) B) 

C) 
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3.3   Fungicide binding behavior on Plasmopara viticola Cytochrome b 

3.3.1 General Observations 

Since the focus of this study was to identify fungicides that were effective against multiple 

mutations of the cytochrome b, a set of known antifungal agents were docked onto four variations 

of Plasmopara viticola cytochrome b: the WT, G143A mutated, F129L mutated, and double 

mutated, which included both G143A and F129L mutations. Here, G143A and F129L mutations 

were specifically selected since those mutations are reported to be most significant for antifungal 

resistance [12]. Glide docking scores of the fungicides on each cytochrome b variation are given 

in Table 1. 
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Table 1: Average Glide docking scores (binding affinity) for fungicides on four variations of 

Plasmopara viticola cytochrome b targeting at different versions of G143 and F129 (average of 

the top three binding poses). 

Fungicide 

Wild type 

average 

docking 

score 

(G143 and 

F129 as 

binding 

center) 

G143A 

average 

docking 

score 

 

F129L 

average 

docking 

score 

 

Double 

mutation 

average 

docking 

score 

 Resistance1 

Fungicide 

Type2 

Ubiqunol -8.598 -7.638 -7.025 -5.343 NA NA 

Famoxadone -6.447 -5.882 -5.565 -6.288 HR QoI 

Azoxystrobin DNB3 DNB DNB DNB HR/R QoI 

Fenamidone -6.470 -6.254 -5.584 -5.276 HR QoI 

Coumoxystrobin DNB -6.177 DNB DNB HR QoI 

Flufenoxystrobin DNB -6.279 -3.761 DNB HR QoI 

Enoxastrobin -3.398 DNB -4.570 -0.391 HR QoI 

Pyraoxystrobin DNB DNB DNB DNB HR QoI 

Picoxystrobin DNB DNB -3.774 DNB HR QoI 

Metyltetraprole DNB DNB DNB DNB HR QoI 

Fenaminstrobin -7.179 -7.466 -6.570 -5.187 HR QoI 

Pyribencarb -3.766 -5.844 -3.384 -2.790 HR QoI 

Dimoxystrobin -7.076 -7.548 -6.095 -5.606 HR QoI 

Triclopyricarb DNB DNB DNB DNB HR QoI 

Metominostrobin -5.353 -5.067 -3.215 -4.896 HR QoI 

Pyrametostrobin DNB DNB DNB DNB HR QoI 

Mandestrobin -7.337 -7.393 -5.568 -6.193 HR QoI 

Fluoxastrobin DNB DNB DNB DNB HR QoI 

Pyraclostrobin DNB DNB DNB DNB HR QoI 

Orysastrobin DNB DNB DNB DNB HR QoI 

Folpet DNB -5.891 -4.925 -2.942 LR PHT 

Ferbam -1.1809 -3.0380 -1.1489 -0.1295 LR DTC 

Captan DNB DNB DNB -2.994 LR PHT 

Mancozeb -2.368 -1.878 -1.701 -1.932 LR DTC 

Ametoctradin -6.059 -6.299 -3.529 -5.342 HR/R QoI 

Thiram -4.367 -4.285 -4.070 -4.358 LR DTC 

Zineb -2.766 -2.408 -0.7244 -2.809 LR DTC 
1 Resistance: NA native, HR high risk, LR low risk for the resistance of fungicides. 
2 Fungicide type: QoI quinone outside inhibitor, DTC dithiocarbamate, PHT phthalimides. 
3 DNB: the ligand donot bind to the Cytochrome b. HR-High Risk; LR-Low Risk; R-resistant. 

 

 



 

13 
 

Native substrate ubiquinol had the strongest binding affinity to WT, F129L mutated and 

G143A mutated types of cytochrome b protein (Table 1). Cytochrome b had strong hydrophobic 

interactions with ubiquinol, which was also predominant between cytochrome b and the fungicides 

tested (Figure 1). The interactions between ubiquinol and cytochrome b were strongly hydrophobic 

in general. Hydrogen bonding was also observed with ARG178 for WT, F129L and double 

mutated cytochrome b. Ubiquinol formed strong hydrogen bonding with MET295 of G143A 

mutated type.  

Among the tested fungicides, fenamidone, famoxadone, mandestrobin, dimoxystrobin 

and fenaminstrobin showed strong affinity towards WT, F129 mutated G143A mutated and 

double mutated versions of cytochrome b, suggesting that they are the most promising candidates 

against these mutations. Ametoctradin had a lower binding affinity toward F129L mutated 

cytochrome b but it had a relatively higher affinity towards WT, G143A mutated, and double 

mutated versions of cytochrome, meaning it was also a potential mutation adaptive candidate 

against cytochrome b. Although all six fungicides are categorized as high-risk based on the 

MOA pertaining to only one target site, they bind strongly to cytochrome b with both known 

mutations suggesting their robustness against mutations.  

While metominostrobin showed high affinity towards WT, its binding affinity is poor 

toward some of the mutated versions, suggesting its susceptibility to potential resistance. 

Azoxystrobin and ametoctradin were two fungicides known to be resistant for Plasmopara viticola 

[25][35]. Ametoctradin showed a somewhat strong affinity towards both G143A and double 

mutated versions, although the docking scores towards G143A mutated cytochrome b were lower 

than fenamidone, famoxadone and mandestrobin. Azoxystrobin had a poor docking score, 

indicating that it may not be effective against cytochrome b inhibition. Among low-risk fungicides, 
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i.e., the fungicide having more than one MOA, thiram showed a strong affinity toward all versions 

of cytochrome b. Folpet only showed a strong affinity toward G143A and F129L mutated versions 

of cytochrome b and not the WT or the double-mutated versions suggesting it was a weaker choice 

against susceptibility to resistance.  

In order to capture the effectiveness of fungicides on different forms of Plasmopara 

viticola cytochrome b, a general statistical analysis was performed (Figure 2). Here, ubiquinol, as 

a native substrate, had the highest binding affinity toward WT, G143A, F129L and G143A- F129L 

double mutated types of cytochrome b of Plasmopara viticola. From high-risk fungicides, 

mandestrobin, fenaminstrobin, dimoxystrobin, famoxadone, fenamidone, and ametoctradin 

emerged as those with the strongest affinity toward Plasmopara viticola cytochrome b.   

 

Figure 2: The performance of select QoI fungicides on WT, G143A, F129L, and double mutated 

cytochrome b of Plasmopara viticola in general. 
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Pyraoxystrobin, pyrametostrobin, pyraclostrobin, triclopyricarb, orysastrobin, 

fluoxastrobin and metyltetraprole did not bind (i.e., had the lowest affinity) to any type of 

cytochrome b indicating high susceptibility to possible resistance. Azoxystrobin, already 

identified to be a resistant fungicide to Plasmopara viticola cytochrome b in certain regions, did 

not bind to any version of cytochrome b – corroborating field observations. Thiram showed a 

stronger binding affinity than the other low-risk fungicides, indicating its potentially superior 

efficacy against cytochrome b among low-risk category. Fungicides folpet, zineb, mancozeb, 

ferbam and captan showed weaker affinity or did not bind to the protein, meaning these low-risk 

fungicides were not appropriate options for cytochrome b inhibition.  

A common recommendation is to use fungicide combinations that consist of different 

MOA, i.e., to combine one MOA with others, in a fungicide rotation program. Due to the ability 

to tackle multiple mutations, fenamidone, famoxadone, mandestrobin, dimoxystrobin, 

fenaminstrobin, ametoctradin and thiram are identified as suitable candidates to be considered in 

a rotational program targeting Plasmopara viticola.   

3.3.2   Mutation-specific Observations 

In order to reveal any specific interactions of fungicides to particular mutations, the 

statistical analysis was directed to focus on each of the individual versions of Plasmopara 

viticola cytochrome b. This type of analysis will be helpful in identifying the best possible 

fungicide(s) if the mutation is known. 

3.3.2.1   Fungicide recommendations for WT 

For the case of WT, ubiquinol showed a strong binding affinity to WT cytochrome b 

(Figure 3) as expected. Mandestrobin, fenaminstrobin, dimoxystrobin, fenamidone, famoxadone 
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and ametoctradin had stronger affinity than other high-risk fungicides, meaning they were 

effective agents for WT cytochrome b. Metominostrobin and thiram had higher affinities than the 

other fungicides, indicating that they were also effective against cytochrome b. Pyraoxystrobin, 

pyrametostrobin, pyraclostrobin, flufenoxystrobin, coumoxystrobin, picoxystrobin, 

triclopyricarb, orysastrobin, fluoxastrobin and metyltetraprole did not bind to WT cytochrome b, 

and thus extensive usage of these fungicides have a high propensity to develop resistance. The 

resistant fungicide, azoxystrobin, did not bind to WT cytochrome b. Low-risk fungicides captan, 

folpet, ferbam and zineb did not bind tightly to WT cytochrome b, which meant that these low-

risk fungicides are not recommended.   

 

Figure 3: The performance of select QoI fungicides on WT cytochrome b of Plasmopara viticola 

in specific grid box. 

 

3.3.2.2 Fungicide recommendations for G143A mutation 
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Ubiquinol as a native substrate also showed strong affinity to the G143A mutation of 

cytochrome b (Figure 4). Mandestrobin, fenaminstrobin, dimoxystrobin, fenamidone, famoxadone 

and ametoctradin, which showed strong affinity toward WT cytochrome b, also were effective 

agents against G143A mutated cytochrome b. Coumoxystrobin, Flufenoxystrobin, Pyribencarb 

and Metominostrobin did not show a high binding affinity to WT cytochrome b, but they were 

effective fungicides when the G143A mutation occurred, meaning the interaction between G143A 

mutated version and those ligands was stronger than the WT cytochrome b. Pyraoxystrobin, 

pyrametostrobin, pyraclostrobin, flufenoxystrobin, enoxastrobin, picoxystrobin, triclopyricarb, 

orysastrobin, fluoxastrobin and metyltetraprole did not bind to the G143A mutated cytochrome b 

indicating that these high-risk fungicides are not preferred with the G143A mutated cytochrome b. 

Low-risk fungicides folpet and thiram showed higher binding affinities than ferbam, zineb, 

mancozeb and captan, which meant folpet and thiram would be more effective fungicides for the 

G143A mutated cytochrome b. As a resistant fungicide, azoxystrobin did not bind to both WT and 

G143A mutated cytochrome b as expected. 
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Figure 4: The performance of select QoI fungicides on G143A mutated cytochrome b of 

Plasmopara viticola in specific grid box. 

 

3.3.2.3   Fungicide recommendations for F129L mutation and G143A-F129L double mutation 

In the case of F129L cytochrome b, ubiquinol still showed a strong binding affinity 

(Figure 5), which followed an analogous pattern to WT and G143A mutated cytochrome b. 

Among high-risk fungicides, mandestrobin, fenaminstrobin, dimoxystrobin, fenamidone and 

famoxadone still showed strong affinity toward F129L mutated cytochrome b. Although 

ametoctradin had high affinity toward WT and G143A mutated cytochrome b, ametoctradin did 

not bind strongly to F129L mutated version. Coumoxystrobin, flufenoxystrobin, pyribencarb and 

metominostrobin were effective against G143A mutated cytochrome b but were not effective 

against F129L mutated version. Pyraoxystrobin, pyrametostrobin, pyraclostrobin, triclopyricarb, 

orysastrobin, fluoxastrobin and metyltetraprole did not bind to F129L mutated cytochrome b. 

Enoxastrobin had a weaker affinity toward WT and G143A mutated cytochrome b but it showed 

a better affinity for F129L mutated version. Folpet and thiram also showed a higher affinity 
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toward F129L mutated version than ferbam, zineb, mancozeb and captan. As a resistant 

fungicide, azoxystrobin did not bind to WT, G143A and F129L mutated cytochrome b as 

expected. 

 

Figure 5: The performance of select QoI fungicides on F129L mutated cytochrome b of 

Plasmopara viticola in specific grid box. 

 

Unlike the interaction with WT, F129L and G143A mutated cytochrome b, ubiquinol did 

not show the highest binding affinity toward cytochrome b when F129L-G143A double mutation 

occurred (Figure 6). Famoxadone, mandestrobin and dimoxystrobin showed a higher affinity to 

double-mutated cytochrome b, indicating their potential superiority against the double-mutated 

cytochrome b. Ametoctradin, fenamidone, fenamindtrobin and metominostrobin also had a 

higher affinity than the other fungicides, meaning they were also effective against the double-

mutated version. Pyraoxystrobin, pyrametostrobin, pyraclostrobin, coumoxystrobin, 

picoxystrobin, flufenoxystrobin and metyltetraprole did not bind to the double-mutated 

cytochrome b. Pyraoxystrobin, pyrametostrobin, pyraclostrobin, triclopyricarb, orysastrobin, 
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fluoxastrobin and metyltetraprole did not bind to any type of cytochrome b, which meant they 

had a high propensity to become resistant. Also, binding affinity from WT, G143A, F129L and 

G143A-F129L mutated versions verified the tendency of azoxystrobin to be resistant. Only 

thiram showed higher affinity for the G143A- F129L double-mutated cytochrome b as compared 

to the other low-risk fungicides analyzed (folpet, ferbam, zineb, mancozeb and captan).  

 

Figure 6: The performance of select QoI fungicides on F129L-G143A Double mutated 

cytochrome b of Plasmopara viticola in specific grid box. 

 

The interactions of top conformation of the highest affinity fungicides with G143A, 

F129L mutated and double-mutated versions are given in Figure 7. Dimoxystrobin, famoxadone 

and ametoctradin showed strong hydrophobic and hydrogen bonding interactions with MET125 

of all three mutated versions of cytochrome b. It was evident that the primary interactions 

between fungicides and cytochrome b were hydrophobic, which agreed with the predominantly 

hydrophobic nature of cytochrome b proteins [10][33]. Figure 7 shows three fungicides forming 
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strong hydrophobic interactions with 122-147 and 275-295 regions in G143A, F129L, and 

double-mutated versions. For the low-risk fungicide, thiram showed strong hydrophobic 

interactions with cytochrome b.  

 

 

Figure 7: Binding interaction of a) Dimoxystrobin with G143A b) Ametoctradin with F129L 

mutated and c) Famoxadoone with double mutated type of cytochrome b. 

 

Based on the binding analysis (Figure 8), the pocket located on the top region of 

cytochrome b that contains residues F129 and G143 seemed to be an important binding position 

when targeting Plasmopara viticola inhibition. Ametoctradin, famoxadone, fenamidone, 

a) b) 

c) 
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fenaminstrobin, mandestrobin, dimoxystrobin, metominostrobin and Thiram tended to bind to 

this pocket including the native substate ubiquinol.  

 

Figure 8: Ametoctradin, Famoxadone, Fenamidone, Fenaminstrobin, Mandestrobin, 

Dimoxystrobin, Metominostrobin, Thiram, and Ubiquinol with WT cytochrome b of Plasmopara 

viticola. 

 

3.3.3   Molecular Dynamic Simulations with Plasmopara viticola Cytochrome b 

To further evaluate the binding behavior of these fungicides to cytochrome b, molecular 

dynamic (MD) simulations were done for select antifungal agents on multiple mutated versions of 

cytochrome b. Emodel and MM-GBSA energies for selected antifungal agents based on MD 

simulations are given in Table 2. The energy values were calculated for various combinations of 

mutations. 
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Table 2: Emodel and MMGBSA Energies of the binding of antifungal agents on cytochrome b 

based on molecular dynamic simulations (based on two starting locations) 

L123_G137 

Binding 

Energy 

(kcal/mol) Emodel_MD F129_G143 

Binding 

Energy 

(kcal/mol) Emodel_MD 

Ubiquinol -112.872 -73.747 Ubiquinol -126.815 -45.868 

Fenamidone -80.994 -43.187 Fenamidone -76.720 -36.630 

Famoxadone -76.531 -59.682 Famoxadone -54.023 -48.809 

Mandestrobin -61.791 -41.374 Mandestrobin -60.710 -39.923 

Azoxystrobin -68.634 -57.910 Ametoctradin -64.640 -38.293 

Captan -36.357 -25.133 Thiram -52.433 -31.147 

Thiram -25.115 -32.646 Azoxytrobin DNB DNB 

      

L123F_G137   F129L_G143   

Ubiquinol -146.167 -78.895 Ubiquinol -139.022 -53.130 

Fenamidone -74.073 -45.443 Fenamidone -72.140 -43.909 

Famoxadone -92.628 -58.078 Famoxadone -96.813 -48.809 

Mandestrobin -60.794 -38.257 Mandestrobin -63.548 -36.662 

Azoxystrobin -60.789 -57.400 Ametoctradin -36.603 -23.568 

Captan -51.978 -21.199 Folpet -59.962 -32.186 

Thiram -35.643 -28.846 Thiram -34.603 -37.411 

   Azoxystrobin DNB DNB 

      

L123_G137A   F129_G143A   

Ubiquinol -137.872 -67.460 Ubiquinol -92.641 -61.849 

Fenamidone -77.810 -45.726 Fenamidone -56.688 -37.063 

Famoxadone -64.570 -57.756 Famoxadone -62.046 -38.265 

Mandestrobin -63.381 -42.106 Mandestrobin -52.780 -30.869 

Azoxystrobin -58.050 -55.299 Ametoctradin -21.478 -26.039 

Captan -49.964 -28.915 Azoxystrobin -41.085 -18.536 

Thiram -48.837 -24.120 Folpet -47.835 -26.049 

   Thiram -51.838 -26.899 

      

L123F_G137

A   

F129L_G143

A   

Ubiquinol -158.153 -73.468 Ubiquinol -116.358 -57.339 

Fenamidone -60.840 -41.674 Fenamidone -54.340 -42.041 

Famoxadone -68.740 -60.499 Famoxadone -74.989 -46.843 

Mandestrobin -62.485 -42.106 Mandestrobin -41.318 -41.520 

Azoxystrobin -43.013 -55.299 Ametoctradin -35.546 -29.086 

Captan -48.054 -24.120 Thiram -36.393 -32.139 

Thiram -42.518 -28.915 Azoxystrobin DNB DNB 
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According to the average binding free energy and Emodel values, ubiquinol, the native 

substrate, showed a strong affinity toward all versions of cytochrome b. When the target site was 

randomly confined to residues L123 and G137 or their mutated version(s) (L123F and G137A), 

the high-risk fungicides, including fenamidone, famoxadone and mandestrobin showed more 

negative binding free energy and Emodel values as compared to the low-risk fungicides (thiram 

and captan), indicating that the high-risk fungicides had stronger affinities as compared to low-

risk ones. Similar behavior was observed when the active site was confined to F129 and G143 or 

their mutated version(s), with high-risk fungicides showing tighter binding with cytochrome b. 

Based on binding free energies and Emodel values, fenamidone and famoxadone were identified 

as promising antifungal agents which showed high affinity to all mutated versions of cytochrome 

b, while mandestrobin, ametoctradin and thiram showed strong binding to some of the variations.       

In order to get an in-depth understanding of how each ligand bound to the target domain, 

dominant interactions of ligands with cytochrome b during MD simulations were analyzed. 

Interactions of fenamidone with WT and F129L mutated cytochrome b is given in Figure 9, and 

the interaction diagrams for all other ligands are included in Supplementary data. Similar to the 

docking results, hydrophobic interactions were dominant between Plasmopara viticola 

cytochrome b and the ligands. For native substrate ubiquinol, strong hydrophobic bonding could 

be observed for both WT and F129L mutated versions, while there was a significant change in 

ubiquinol interactions for G143A mutated and double mutated versions. For G143A mutated 

version, ubiquinol formed strong hydrophobic interactions at PHE141, and hydrogen bonding at 

ALA260; while for double mutated versions, TYR94 and TRP273 were the main points of 

hydrophobic interactions.  
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Figure 9: Interactions of Fenamidone with a) wild type and b) F129L mutated versions at F129 

and G143 binding site of Plasmopara viticola. 

 

 

 

 

b) 

a) 
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Other ligands also showed significant changes in interactions as a result of the mutation. 

Fenamidone showed high robustness against mutations, forming strong hydrophobic interactions 

and hydrogen bonding in the regions of ILE122-PHE129 and PHE151-TRP164 in all mutated 

versions of cytochrome b. Famoxadone also showed strong interactions at these regions for all 

variations except for the G143A mutation, while it formed strong hydrogen bonding at ILE269 

and TRY279 with the G143A mutated version. This observation agrees with the high binding 

energies shown by fenamidone and famoxadone against all variations of cytochrome b. 

Mandestrobin formed strong hydrophobic interactions in the vicinity of TYR279 for all versions 

except the double-mutated version, while for the double-mutated version, the ILE119 was the 

major site forming hydrophobic interactions. This agrees with the binding energies of 

mandestrobin and suggests that mandestrobin has lower affinity towards the double mutated 

version of cytochrome b compared to the other three versions.   

Among low-risk fungicides, thiram showed strong hydrophobic interactions at the 

vicinity of PHE129 for both WT and G143A mutated versions, and at PHE121 and PHE278 for 

F129L and double mutated versions. However, the interactions of thiram were much weaker than 

the high-risk fungicides, which agrees with the less negative binding energies. While 

ametoctradin had strong hydrophobic binding at ILE147 and PHE151 with the WT protein, it 

had only weak hydrophobic interactions against the mutated versions, suggesting that it may not 

be effective against the mutations, which also agrees with the published literature [25].  

When the docking site was centered on L123 and G137, a randomly selected location, 

interactions of native substrate ubiquinol changed significantly with mutated versions. However, 

both fenamidone and famoxadone showed strong hydrophobic interactions or hydrogen bonding 

at the region ILE121-TYR132 of all variations, suggesting that these two compounds are robust 
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against these mutations also. Similar to the F129 and G143 centered simulations, interactions of 

famoxadone changed significantly under G137A and double-mutated versions. Thiram, captan 

and azoxystrobin bound weakly against most of the mutated versions. Thus, based on the 

interactions during molecular simulations, fenamidone and famoxadone were identified as the 

most robust fungicides against all tested mutations.  

Stability of the binding interactions during the (MD) simulations were evaluated using 

RMSD diagrams. Simulations of ubiquinol, fenamidone, famoxadone, mandestrobin and 

ametoctradin equilibrated against all versions of cytochrome b, which shows stable binding with 

all mutated versions. However, thiram showed significant fluctuations against F129L and 

F129L-G143A mutated versions, suggesting its potential susceptibility to resistance due to low 

affinity. Azoxystrobin also did not show stable binding with multiple mutations, which is 

expected since it has been shown to be resistant and ineffective against some mutations of 

cytochrome b. RMSD diagrams for the ligands against different variations of cytochrome b is 

given in Supplementary data. Overall, the MD simulations further reinforced the findings from 

the docking analysis. 

3.4   Fungicide binding behavior on Botrytis cinerea Cytochrome b 

To further verify binding affinities, an additional set of docking simulations were 

performed, this time using a grid box covering the ubiquinol binding site and the specific 

residues G143 and F129 on cytochrome b of Botrytis cinerea. For this analysis, the same 26 

fungicides covering resistant, high-risk and low-risk, were selected (Table 3). Botrytis cinerea 

was used because Plasmopara viticola was an obligate parasite and experimental validations 

could only be done under field conditions, whereas Botrytis cinerea validations could easily be 

done in a laboratory setting. 
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3.4.1   General Observations 

Table 3. Glide docking scores for fungicides on four variations of Botrytis cinerea Cytochrome b 

covering G143 and F129 site (average of the top three binding poses). 

Fungicide 

Wild type 

average 

docking 

score 

(G143 and 

F129 as 

binding 

center) 

G143A 

average 

docking 

score 

 

F129L 

average 

docking 

score 

 

Double 

mutation 

average 

docking 

score 

 Risk 

Fungicide 

Type 

Ubiqunol -9.338 -4.680 -7.805 -2.408 NA NA 

Famoxadone -8.091 -8.765 -6.697 -4.021 HR QoI 

Azoxystrobin DNB DNB DNB DNB HR/R QoI 

Fenamidone -6.246 -5.950 -5.784 -5.058 HR QoI 

Coumoxystrobin DNB DNB DNB DNB HR QoI 

Flufenoxystrobin -7.509 DNB -6.108 -0.0784 HR QoI 

Enoxastrobin -10.162 DNB DNB DNB HR QoI 

Pyraoxystrobin -11.518 -4.717 DNB -4.121 HR QoI 

Picoxystrobin -7.473 -8.200 DNB  DNB HR QoI 

Metyltetraprole DNB DNB -4.142 -3.305 HR QoI 

Fenaminstrobin -9.330 DNB -2.3223 -0.6988 HR QoI 

Pyribencarb -9.534 -8.446 -9.761 -4.671 HR QoI 

Dimoxystrobin -8.957 -4.234 -4.469 -1.650 HR QoI 

Triclopyricarb -5.445 DNB DNB DNB HR QoI 

Metominostrobin -7.891 -7.417 -3.576 -4.032 HR QoI 

Pyrametostrobin DNB DNB DNB DNB HR QoI 

Mandestrobin -10.876 -8.690 -7.911 -5.913 HR QoI 

Fluoxastrobin DNB DNB DNB DNB HR QoI 

Pyraclostrobin -9.060 -3.442 DNB -3.117 HR QoI 

Orysastrobin DNB DNB DNB DNB HR QoI 

Folpet -7.406 DNB DNB DNB LR PHT 

Ferbam -3.034 -3.136 -0.549 -1.123 LR DTC 

Captan -5.513 DNB -3.705 -3.899 LR PHT 

Mancozeb DNB DNB DNB DNB LR DTC 

Ametoctradin -6.970 -6.954 -6.156 -5.767 HR QoI 

Thiram -4.714 -4.935 -3.700 -4.749 LR DTC 

Zineb -2.635 -2.452 -2.413 -2.287 LR DTC 
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Based on an initial analysis, praoxystrobin, mandestrobin, pyribencarb and enoxastrobin 

showed stronger affinity towards WT cytochrome b. When G143A or F129L mutations occurred, 

pyribencarb, famoxadone and mandestrobin showed strong affinity to cytochrome b. If the 

G143A-F129L double mutation occurred, fenamidone, ametoctradin, mandestrobin, thiram and 

pyraoxystrobin showed a strong affinity to mutated cytochrome b. Ubiquinol had a strong 

affinity to WT, G143A or F129L cytochrome b but the binding affinity to G143A-F129L double-

mutated cytochrome b was low. Praoxystrobin bound tightly to the WT cytochrome b but its 

affinity decreased as mutations occurred on cytochrome b. High-risk fungicides had less affinity 

for double mutated cytochrome b. Among high-risk fungicides, mansestrobin, pyribencarb, 

fenamidone, famoxadone and ametoctradin were effective fungicides against all versions of 

cytochrome b. Thiram showed a strong affinity to all four types of cytochrome b among all the 

low-risk fungicides. Azoxystrobin did not show stable binding with multiple mutations, which is 

expected since it was resistant against cytochrome b. Then we did a replicated study to find out 

the behavior of fungicides in more detail.  

Comparison of binding affinities against WT, F129L, G143A and double mutated 

cytochrome b of Botrytis cinerea revealed that mandestrobin, pyribencarb, famoxadone and 

ametoctradin had a higher binding affinity than ubiquinol, meaning these fungicides may be 

effective against inhibiting cytochrome b of Botrytis cinerea (Figure 10). Fenamidone, 

metominostrobin, pyraoxystrobin, dimoxystrobin, and thiram had higher affinities than the others 

indicating their broad-spectrum ability to bind to the active site regardless of the occurrence of 

the two common mutations. It should also be noted that was azoxystrobin which was identified 

as a resistant fungicide did not bind to wild type nor any of the mutated versions. Also, since 

coumuxystrobin, fluoxastobin, and orysastrobin did not bind to WT or any of the mutated 
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versions, these fungicides are considered to show the highest propensity to develop resistance. 

Also, fungicides folpet, ferbam, zineb, and captan that were categorized as low risk did not bind 

with appreciable affinity to the active site indicating that these were probably not best 

considering their propensity to avert resistance. 

 

Figure 10: The performance of select QoI fungicides on WT, G143A, F129L, and G143A-F129L 

double mutated cytochrome b of Botrytis cinerea in general. 

 

3.4.2   Mutation-specific Observations 

3.4.2.1   Fungicide recommendations for WT 

It was observed that pyraoxystrobin, mandestrobin, enoxastrobin and pyribencarb had 

higher binding affinity than ubiquinol to WT cytochrome b indicating their potential superiority 

as effective fungicides via inhibition of cytochrome b of Botrytis cinerea (Figure 11). 

Fenaminstrobin, pyraclostrobin, dimoxystrobin, famoxadone, metominstrobin, pyrametostrobin, 

flufenoxystrobin, picoxystrobin, folpet, ametoctradin, fenamidone, captan and triclopyricarb had 
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higher affinities to WT cytochrome b than the other fungicides. Azoxystrobin as an identified 

resistant fungicide did not bind to the WT cytochrome b. Coumoxystrobin, fluoxastrobin, 

metyltertrapole and orysastrobin did not bind to the WT cytochrome b, indicating their high 

possibility to succumb to resistance. Also, zineb and ferbam were low-risk fungicides that 

showed weaker binding affinity than captan, thiram and folpet, which meant zineb and ferbam 

were likely not effective fungicides against inhibiting cytochrome b of Botrytis cinerea. 

 

Figure 11: The performance of select QoI fungicides on WT cytochrome b of Botrytis cinerea in 

specific grid box. 

 

3.4.2.2   Fungicide recommendations for G143A mutation 

Fungicides famoxadone, mandestrobin, pyribencarb, picoxystrobin, metominostrobin, 

fenamidone, pyraoxystrobin and thiram showed strong affinity to G143A mutated cytochrome b 

of Botrytis cinerea than ubiquinol indicating their superior ability to withstand resistance caused 

by the G143A mutation of cytochrome b of Botrytis cinerea (Figure 12). Enoxastrobin, 

fenaminstrobin, flufenoxystrobin, pyrametostrobin also showed a strong affinity toward WT 
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cytochrome b but did not bind or bind weakly toward G143A mutated cytochrome b, meaning 

these fungicides may not be effective if G143A mutation occurred. Coumoxystrobin, 

fluoxastrobin, metyltertrapole and orysastrobin did not bind to the G143A cytochrome b. 

Azoxystrobin as identified resistant fungicide did not bind to the G143A cytochrome b. Ferbam 

and zineb had weaker binding affinity while captan and foplet did not bind to the G143A 

cytochrome b, indicating that these four low-risk fungicides were not likely effective against 

G143A mutated cytochrome b of Botrytis cinerea.   

 

Figure 12: The performance of select QoI fungicides on G143A cytochrome b of Botrytis cinerea 

in specific grid box. 

 

3.4.2.3   Fungicide recommendations for F129L mutation and G143A-F129L double mutation 

Mandestrobin and pyribencarb showed a stronger binding affinity to F129L mutated 

cytochrome b of Botrytis cinerea than ubiquinol, meaning these fungicides may be effective 

against the F129L mutation (Figure 13). Pyrametostrobin, famoxadone, ametoctradin, 

flufenoxystrobin and fenamidone had higher binding affinity than the rest of fungicides, which 
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also showed strong affinity toward F129L cytochrome b. Coumoxystrobin, fluoxastrobin and 

orysastrobin did not bind to F129L cytochrome b indicating that these three QoIs may not be 

effective against this mutation. Azoxystrobin, the identified resistant fungicide, did not bind to 

the G143A mutated cytochrome b. The low-risk fungicides, folpet and ferbam, did not bind to 

cytochrome b. Thiram, captan and zineb only showed weak binding affinities indicating that 

these low-risk fungicides may not be effective against inhibiting F129L mutated cytochrome b.  

 

Figure 13: The performance of select QoI fungicides on F129L and G143A-F129L mutated 

cytochrome b of Botrytis cinerea in specific grid box. 

 

The QoIs fenamidone, mandestrobin, ametoctradin, pyribencarb and thiram showed 

strong binding affinity toward the G143A-F129L double mutated cytochrome b of Botrytis 

cinerea. The G143A-F129L double mutation may not be usual since ubiquinol did not show any 

strong affinity to the double mutated cytochrome b. Pyraoxystrobin, metominostrobin, 

famoxadone, captan, metylteraprole, pyraclostrobin and zineb showed higher binding affinity 

a) b) 
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than the rest of the fungicides with the double-mutated cytochrome b, but they may not be as 

effective as the top binding fungicides, i.e., fenamidone, ametoctradin, pyribencarb and thiram. 

Coumoxystrobin, fluoxastrobin azoxystrobin and orysastrobin did not bind appreciably and may 

not be appropriate for Botrytis cinerea cytochorme b inhibition. Among the low-risk group, 

folpet and ferbam emerged to be not effective against cytochrome b inhibition.  

An analysis of the binding behavior of ametoctradin, pyraoxystrobin, mandestrobin, 

enoxastrobin and pyribencarb at the vicinity of the G143 and F129 residues of WT cytochrome b 

of Botrytis cinerea indicated that they all bound close to the two residues (Figure 14). For the 

G143A mutation, picoxystrobin, metominostrobin, pyribencarb, famoxadone and mandestrobin 

bound to the same site as WT cytochrome b. This position was also the binding site for ubiquinol 

on both WT and G143A cytochrome b, indicating that this site is crucial when deciding effective 

QoIs targeting Botrytis cinerea cytochrome b inhibition.  
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Figure 14: a) Fenamidtrobin, Pyraoxystrobin, Mandestrobin, Enoxastrobin, Pyribencarb and 

Ubiquinol with WT cytochrome b and b) Picoxystrobin, Metominostrobin, Pyribencarb, 

Famoxadone, Mandestrobin and Ubiquinol with G143A cytochrome b of Botrytis cinerea. 

 

 

Analysis of interactions (Figure 15) of cytochrome b of WT Botrytis cinerea with 

ubiquinol and pyraoxystrobin indicated that hydrophobic bonding was the primary interaction 

that occurred. There was also a hydrogen bonding with PHE164 and ARG178 for ubiquinol and 

GLU273 for pyraoxystrobin. For the G143A mutated cytochrome b, hydrophobic bonding still 

played a major role in pyribencarb. The interaction with the residue F129 was hydrophobic 

regardless of the ligand. However, the interaction of ligands with the residue G143 was not 

apparent in WT cytochrome b; however, pyribencarb showed hydrophobic bonding once the 

G143A mutation occurred.  

b) a) 
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Figure 15: a) Ubiquinol and b) Pyraoxystrobin with WT cytochrome b and c) Pyribencarb with 

Botrytis cinerea cytochrome b with G143A mutation. 

 

 

 

 

 

 

a) b) 

c) 
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3.5   AutoQSAR model evaluation 

3.5.1   Application of AutoQSR to predict fungicides for Botrytis cinerea 

3.5.1.1   Training data set without validation sets 

An initial training set was developed using 16 QoI and 18 non-QoI fungicides. The top 

five QSAR models and their performance parameters generated for Botrytis cinerea are depicted 

in Figure 16, and were pls_19, kpls_radial_19, kpls_dendritic_19, kpls_desc_19 and 

kpls_linear_19. Based on the scoring functions, the best model was pls_19 that was generated by 

partial least square regression (PLS), using the 19th spilt of the learning set into a test and 

training set (34 ligands) without validation set. This model had a standard deviation (S.D) of 

2.1184, R2 of 0.6378, root-mean-square error (RMSE) of 2.1419, Q2 of 0.6172 and a ranking 

score of 0.5892. Binding affinity, Y(Obs), and predicted affinity, Y(Pred), from the QSAR 

model of all selected ligands is shown in Figure 17, with 75% of ligands belonging to the 

training set and 25% ligands in the test set for Botrytis cinerea. The five scatter plots in Figure 

18 were generated based on Y(Obs) and Y(Pred). The results indicate that about 50% of training 

sets were close to the regression line.  
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Figure 16: Top 10-ranked QSAR models without a validation set for fungicides used in Botrytis 

cinerea. 
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Figure 17: Model reports for a) pls_19, b) kpls_radial_19, c) kpls_dendritic_19, d) kpls_desc_19 

and e) kpls_linear_19 models. 

a) b) c) 

c) 
d) 
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Figure 18: Scatter plot about performance for a) pls_19, b) kpls_radial_19, c) kpls_dendritic_19, 

d) kpls_desc_19 and (e) kpls_linear_19 models. 

 

 

In order to evaluate if the predictions could be improved, it was decided to refine the 

models by systematically removing outliers that were chemically distinct from the ones that 
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function as QoIs and/or when the difference between actual and predicted affinities were larger 

than 3 kCal/mol.  

 

3.5.1.1.1   Iteration #1  

The new external validation set that includes 19 ligands was used to estimate the 

prediction accuracy of the QSAR model made by the top five numeric models listed in Figure 16 

(Table 4). The R2 value of the best-fit line was 0.06, meaning the QSAR model was not able to 

predict with an acceptable level of accuracy for the given validation set. Also, some ligands in 

Figure 19 fell outside the applicability domain of the QSAR model, which would decrease the 

prediction accuracy of the QSAR model. Visual inspection for Figure 19 showed that 

metominostrobin, azaconazole, dithianon and picarbutrazox were outliers, indicating these 

ligands were possibly unsuitable to be included in the validation set to the built model. Both 

azaconazole and picarbutrazox had multiple heterocyclic nitrogen atoms (Figure 20). Dithianon 

was the only ligand that contained heterocyclic dual sulfur atoms among 19 ligands. 

Metominostrobin, azaconazole, dithianon and picarbutrazox had an oxygen-containing aromatic 

ring, and there were at least two oxygen atoms in each ligand. The structural reasons mentioned 

above might be possible reasons that caused these four ligands to be improper to be included in 

the validation set. To improve the prediction accuracy of QSAR model, these ligands would be 

considered to be removed in the next iteration. 
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Figure 19: Scatter plot of external validation set for all top five models in Figure 16. 

 

 
Figure 20: Four compounds a) Azaconazole, b) Dithianon, c) Picarbutrazox and d) 

Metominostrobin that were outliers in Figure 19.  

 

  

a) b) c) d) 
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Table 4: Calculated binding affinity (via docking simulations) and predicted binding affinity 

between 19 selected ligands and G143A mutated cytochrome b of Botrytis cinerea by using 

QSAR model without validation set. 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Furametpyr -2.705 -7.218 

Azaconazole -5.702 -7.084 

Penthiopyrad -4.203 -6.899 

Oxathiapiprolin -3.960 -6.481 

Triazoxide -2.937 -6.233 

Fenpropidin -4.878 -5.989 

Fenoxanil -4.928 -5.862 

Isoflucypram -5.261 -5.737 

Ametoctradin -6.954 -5.485 

Flusulfamide -5.418 -5.410 

Polyoxin -4.119 -5.132 

Diethofencarb -1.966 -4.710 

Tebufloquin -4.352 -4.359 

Mandestrobin -8.690 -4.224 

Picarbutrazox -0.453 -4.068 

Famoxadone -8.765 -3.443 

Iprodione -4.797 -3.353 

Dithianon -2.515 -3.347 

Metominostrobin -7.417 -2.032 
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3.5.1.1.2   Iteration #2 

After removing metominostrobin, azaconazole, dithianon and picarbutrazox, 15 ligands 

were next considered in the validation set (Table 5). The R2 value of the best-fit line increased 

from 0.06 to 0.26, indicating the four outliers might be potential factors that affected the 

prediction accuracy of the QSAR model. Both furametpyr and iprodione had chlorine in their 

chemical structure, which was similar to azaconazole that was removed in first iteration (Figure 

22). Furametpyr, iprodione and penthiopyrad had heterocyclic dual nitrogen atoms. 

Diethofencarb had a similar structure to metominostrobin that was removed in the first iteration. 

Based on the visual inspection of Figure 21 and similar chemical structures, furametpyr, 

iprodione, penthiopyrad and diethofencarb were considered as potential outliers. 

 

 
Figure 21: Scatter plot of external validation set after removing four outliers in Figure 19. 
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Figure 22: Four compounds a) Furametpyr, b) Iprodione, c) Penthiopyrad and d) Diethofencarb 

that were outliers in Figure 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) c) d) 
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Table 5: Calculated binding affinity (via docking simulations) and predicted binding affinity 

between 15 selected ligands and G143A mutated cytochrome b of Botrytis cinerea by using 

QSAR model without validation set. 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Furametpyr -2.705 -7.218 

Penthiopyrad -4.203 -6.899 

Oxathiapiprolin -3.960 -6.481 

Triazoxide -2.937 -6.233 

Fenpropidin -4.878 -5.989 

Fenoxanil -4.928 -5.862 

Isoflucypram -5.261 -5.737 

Ametoctradin -6.954 -5.485 

Flusulfamide -5.418 -5.410 

Polyoxin -4.119 -5.132 

Diethofencarb -1.966 -4.710 

Tebufloquin -4.352 -4.359 

Mandestrobin -8.690 -4.224 

Famoxadone -8.765 -3.443 

Iprodione -4.797 -3.353 
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3.5.1.1.3 Iteration #3 

After removing the eight outliers (metominostrobin, azaconazole, dithianon, 

picarbutrazox, furametpyr, iprodione, penthiopyrad and diethofencarb) in the next iteration, the 

R2 value in Figure 23 of the best-fit line increased from 0.26 to 0.53. The compounds in Table 6 

as external validation set were more acceptable than the data set in Table 5, meaning that they 

would be expected to generate better predictions. The top predictions that would withstand 

G143A mutated cytochrome b of Botrytis cinerea were fenpropidin (an amine), fenoxail (a 

melanin biosynthesis inhibitor dehydrates), isoflucypram (a succinate dehydrogenase inhibitor) 

and ametoctradin (a QoI). Although oxathiapiprolin and triazoxide had high predicted binding 

affinity, their original affinity was low, so they may not be acceptable. Chlorine and multiple 

heterocyclic nitrogen might be considered as similarities in outliers’ structure. 

 
Figure 23: Scatter plot of external validation set after removing four outliers in Figure 21. 
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Table 6: Calculated binding affinity (via docking simulations) and predicted binding affinity 

between 11 selected ligands and G143A mutated cytochrome b of Botrytis cinerea by using 

QSAR model without validation set. 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Oxathiapiprolin -3.960 -6.481 

Triazoxide -2.937 -6.233 

Fenpropidin -4.878 -5.989 

Fenoxanil -4.928 -5.862 

Isoflucypram -5.261 -5.737 

Ametoctradin -6.954 -5.485 

Flusulfamide -5.418 -5.410 

Polyoxin -4.119 -5.132 

Tebufloquin -4.352 -4.359 

Mandestrobin -8.690 -4.224 

Famoxadone -8.765 -3.443 
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3.5.1.2   Training data set with validation sets 

In this case, two QoI fungicides, picoxystrobin and pyribencarb, were assigned as a 

validation set for the QSAR models. This resulted in 32 ligands in the training set for the QSAR 

model (Figure 25). The ranking score for the top five QSAR models with a validation set (Figure 

24) were higher than the model without the validation set, meaning that test set predictions of 

model with validation set might be more accurate. Top QSAR models shown for Botrytis cinerea 

in Figure 24 were kpls_molprint2D_39, kpls_radial_8, kpls_linear_30, kpls_dendritic_30 and 

kpls_dendritic_39. The best model was kpls_molprint2D_39 that was generated by kernel partial 

least square regression (KPLS) with molprint2D fingerprint, using the 39th spilt of the learning 

set into a test and training set (32 ligands) with the validation set (2 ligands). This model had a 

S.D of 1.8732, R2 of 0.7081, RMSE of 1.8919, Q2 of 0.6860 and ranking score of 0.6582. From 

the plots in Figure 26, training sets were closer to the regression line (Figure 18) indicating the 

better prediction ability of the model. 

 
Figure 24: Top 10-ranked QSAR model reports with validation sets for fungicides used in 

Botrytis cinerea.  
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Figure 25: Model reports for a) kpls_molprint2D_39, b) kpls_radial_8, c) kpls_linear_30, d) 

kpls_dendritic_30 and e) kpls_dendtitic_39 models. 

  

a) b) c) 

d) e) 



 

51 
 

 
Figure 26: Scatter plot about performance for a) kpls_molprint2D_39, b) kpls_radial_8, c) 

kpls_linear_30, d) kpls_dendritic_30 and e) kpls_dendritic_39 models. 

 

 

Similar to the procedure that was adopted in the previous run, several iterations were 

done while removing chemically distinct outliers.  
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3.5.1.2.1   Iteration #1 

In Table 7, the external validation set had the same 19 ligands to estimate the prediction 

accuracy of the QSAR model. The R2 value of the best fit line was 0.05, meaning the QSAR 

model did not perform well for the given validation set. Visual inspection in Figure 27 showed 

penthiopyrad, isoflucypram, picarbutrazox and metominostrobin fell outside the applicability 

domain of the QSAR model, which would decrease the prediction accuracy of the model. Also, 

penthiopyrad and isoflucypram had fluorine in their chemical structure (Figure 28). 

Penthiopyrad, isoflucypram and picarbutrazox contained multiple heterocyclic nitrogen atoms. 

Penthiopyrad, isoflucypram and metominostrobin had nitrogen-hydrogen structures. To improve 

the prediction accuracy of QSAR model, these ligands were removed in the next iteration. 

 

 
Figure 27: Scatter plot of external validation set for all top five models in Figure 24. 
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Table 7. Calculated binding affinity (via docking simulations) and predicted binding affinity 

between 19 selected ligands and G143A mutated cytochrome b of Botrytis cinerea by using 

QSAR model with validation set. 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Penthiopyrad -4.203 -6.652 

Isoflucypram -5.261 -6.601 

Oxathiapiprolin -3.960 -6.351 

Azaconazole -5.702 -6.137 

Furametpyr -2.705 -6.077 

Flusulfamide -5.418 -5.391 

Fenoxanil -4.928 -5.288 

Triazoxide -2.937 -5.241 

Fenpropidin -4.878 -5.115 

Iprodione -4.797 -4.581 

Tebufloquin -4.352 -4.436 

Ametoctradin -6.954 -4.396 

Polyoxin -4.119 -4.141 

Diethofencarb -1.966 -3.925 

Famoxadone -8.765 -3.726 

Picarbutrazox -0.453 -3.643 

Dithianon -2.515 -3.639 

Mandestrobin -8.690 -3.244 

Metominostrobin -7.417 -1.958 
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Figure 28: Four compounds a) Penthiopyrad, b) Isoflucypram, c) Picarbutrazox and d) 

Metominostrobin that were outliers in Figure 27. 

 

 

3.5.1.2.2   Iteration #2 

After removing penthiopyrad, isoflucypram, picarbutrazox and metominostrobin, the R2 

value of the best fit line slightly increased (Table 8). Visual inspection of Figure 29 suggested 

the presence of several outliers (oxathiapiprolin, azaconazole, flusulfamide, diethofencarb and 

dithianon) that would be needed to be removed to improve the QSAR model. Oxathiapiprolin 

and flusulfamide had fluorine in their chemical structure (Figure 30). Azaconazole and 

flusulfamide had chlorine in their chemical structure. Diethofencarb had similar structure to 

metominostrobin. Only dithianon contained heterocyclic dual sulfur atoms.  

 

 
Figure 29: Scatter plot of external validation set after removing four outliers in Figure 27. 

a) b) c) d) 
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Table 8. Calculated binding affinity (via docking simulations) and predicted binding affinity 

between 15 selected ligands and G143A mutated cytochrome b of Botrytis cinerea by using 

QSAR model with validation set 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Oxathiapiprolin -3.960 -6.351 

Azaconazole -5.702 -6.137 

Furametpyr -2.705 -6.077 

Flusulfamide -5.418 -5.391 

Fenoxanil -4.928 -5.288 

Triazoxide -2.937 -5.241 

Fenpropidin -4.878 -5.115 

Iprodione -4.797 -4.581 

Tebufloquin -4.352 -4.436 

Ametoctradin -6.954 -4.396 

Polyoxin -4.119 -4.141 

Diethofencarb -1.966 -3.925 

Famoxadone -8.765 -3.726 

Dithianon -2.515 -3.639 

Mandestrobin -8.690 -3.244 
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Figure 30: Four compounds a) Oxathiapiprolin, b) Azaconazole, c) Flusulfamide, d) 

Diethofencarb and d) Dithianon that were considered outliers in Figure 29. 

 

 

3.5.1.2.3   Iteration #3 

To further improve the QSAR model, outliers including oxathiapiprolin, azaconazole, 

flusulfamide, diethofencarb and dithianon were removed (Table 9). The R2 value of the best fit 

line significantly increased from 0.08 to 0.67, indicating those ligands had structural properties 

that were not predictable using the models (Figure 31). The top predictions that would withstand 

G143A mutated cytochrome b of Botrytis cinerea were fenoxanil (a melanin biosynthesis 

inhibitor dehydrates), fenpropidin (an amine), iprodione (a dicarboximde) and tebufloquin (a 4-

quinolyl-acetate), and Ametoctradin (a QoI). Furametpyr and triazoxide had high predicted affinity 

but the difference between their original affinity and predicted affinity was higher than the other 

four ligands. It should be noted that the model was not able to make accurate predictions when 

ligands had chlorine, fluorine and hetrocyclic nitrogen atom in the chemical structure.    

 

a) b) c) d) 

e) 
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Figure 31: Scatter plot of external validation set after removing five outliers in Figure 29. 
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Table 9: Calculated binding affinity (via docking simulations) and predicted binding affinity 

between 10 selected ligands and G143A mutated cytochrome b of Botrytis cinerea by using 

QSAR model with validation set. 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Furametpyr -2.705 -6.077 

Fenoxanil -4.928 -5.288 

Triazoxide -2.937 -5.241 

Fenpropidin -4.878 -5.115 

Iprodione -4.797 -4.581 

Tebufloquin -4.352 -4.436 

Ametoctradin -6.954 -4.396 

Polyoxin -4.119 -4.141 

Famoxadone -8.765 -3.726 

Mandestrobin -8.690 -3.244 
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3.5.2   Application of AutoQSR to predict fungicides for Plasmopara viticola 

3.5.2.1   Training data set without validation sets 

Here, an initial training set was developed using 16 QoI and 20 non-QoI fungicides. The 

top five QSAR models for Plasmopara viticola are kpls_desc_2, kpls_radial_24, kpls_linear_22, 

kpls_radial_22 and pls_2 (Figure 32). The best model was kpls_desc_2, generated by kernel 

partial least square regression (KPLS) with desc fingerprint, using the 12nd spilt of the learning 

set into a test and training set (36 ligands) without validation set. This model had a S.D of 

1.7498, R2 of 0.7032, RMSE of 1.615, Q2 of 0.7350 and ranking score of 0.7116. In Figure 33, 

75% ligands occupied the training set and 25% ligands the test set. The scatter plots in Figure 34 

indicate that the first four models’ training sets correlated closely with the test sets.  

 

 
Figure 32: Top 10-ranked QSAR model reports without validation set for fungicides used in 

Plasmopara viticola. 
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Figure 33: Model reports for a) kpls_desc_2, b) kpls_radial_24, c) kpls_linear_22, d) 

kpls_radial_22 and e) pls_2 models. 

 

a) b) c) 

d) e) 
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Figure 34: Scatter plot about performance for a) kpls_desc_2, b) kpls_radial_24, c) 

kpls_linear_22, d) kpls_radial_22 and e) pls_2 models. 

 

Here, in order to evaluate if the predictions could be improved, it was decided to refine 

the models by systematically removing outliers that were chemically distinct from the ones that 

function as QoIs and/or when the difference between actual and predicted affinities were larger 

than 3 kCal/mol as previously done.  
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3.5.2.1.1   Iteration #1 

In this iteration, the external validation set had 17 ligands to estimate the prediction 

accuracy of the QSAR model (Table 10). The R2 value of the best-fit line was not impressive 

(Figure 35). Visual inspection of Figure 34 indicated two apparent ligands, fluindapyr and 

picarbutrazox, falling outside the applicability domain of the QSAR model. Triazoxide, 

polyoxin, dithianon and dimoxystrobin also deviated significantly from the regression line. Both 

fluindapyr and triazoxide had chlorine in their chemical structure (Figure 36). Dithianon was the 

special ligands that had heterocyclic dual sulfur atoms in aromatic rings. Picarbutrazox and 

dimoxystrobin had a similar structure. Triazoxide and polyoxin showed oxygen with a negative 

charge. To improve the prediction accuracy of QSAR model, these ligands would be considered 

to remove out in the next iteration. 

 
Figure 35: Scatter plot of external validation set for all top five models in Figure 32. 
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Table 10. Calculated binding affinity (via docking simulations) and predicted binding affinity 

between 17 selected ligands and G143A mutated cytochrome b of Plasmopara viticola by using 

QSAR model without validation set. 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Fluindapyr -5.424 -8.091 

Furametpyr -4.667 -6.826 

Fenpropidin -4.410 -6.714 

Fluoxapiprolin -2.857 -6.600 

Isoflucypram -1.367 -6.354 

Flusulfamide -5.110 -5.920 

Ametoctradin -6.299 -5.824 

Tebufloquin 0 -5.767 

Diethofencarb -3.406 -5.649 

Ethaboxam -5.662 -4.842 

Famoxadone -6.238 -4.785 

Triazoxide 0 -4.617 

Mandestrobin -7.393 -4.611 

Polyoxin -3.621 -4.568 

Dithianon 0 -4.306 

Dimoxystrobin -7.548 -4.034 

Picarbutrazox -4.188 -2.413 

 

 

 

 

 

 

 

 

 

 



 

64 
 

 
Figure 36: Six compounds a) Fluindapyr, b) Picarbutrazox, c) Triazoxide, d) Polyoxin, e) 

Dithianon and f) Dimoxystrobin that were outliers in Figure 35. 

 

 

3.5.2.1.2   Iteration #2 

After the first iteration, six ligands were removed and 11 ligands remained in Table 11. 

Although the R2 value of the best-fit line increased from 0 to 0.25, there were still some outliers 

like furametpyr, fenpropidin and tebufloquin shown in Figure 37. Furametpyr had chlorine that 

was similar to triazoxide in Figure 36. Tebufloquin had fluorine that was similar to fluindapyr. 

All the three ligands (furametpyr, fenpropidin and tebufloquin) had a similar carbon structure as 

shown in in Figure 38. To further improve the accuracy, these ligands were removed in the next 

iteration.  

 

a) b) c) 

d) e) 
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Figure 37: Scatter plot of external validation set for all top five models after removing six 

outliers in Figure 35. 

 

 

 
Figure 38: Three compounds a) Furametpyr, b) Fenpropidin and c) Tebufloquin that were 

outliers in Figure 37. 
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Table 11. Calculated binding affinity (via docking simulations) and predicted binding affinity 

between 11 selected ligands and G143A mutated cytochrome b of Plasmopara viticola by using 

QSAR model without validation set. 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Furametpyr -4.667 -6.826 

Fenpropidin -4.410 -6.714 

Fluoxapiprolin -2.857 -6.600 

Isoflucypram -1.367 -6.354 

Flusulfamide -5.110 -5.920 

Ametoctradin -6.299 -5.824 

Tebufloquin 0 -5.767 

Diethofencarb -3.406 -5.649 

Ethaboxam -5.662 -4.842 

Famoxadone -6.238 -4.785 

Mandestrobin -7.393 -4.611 
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3.5.2.1.3   Iteration #3 

After removing the outliers mentioned in second iteration (Table 12), the R2 value of the 

best fit line (Figure 39) became 0.63, with an acceptable prediction accuracy. The top predictions 

that would withstand G143A mutated cytochrome b of Plasmopara viticola  were flusulfamide 

(a benzene-sulfonamide), ametoctradin (a QoI), ethaboxam (a thiazole carboxamide) and 

famoxadone (a QoI). Isoflucypram and diethofencarb showed a high predicted affinity with low 

original affinity so that they were not appropriate validation set for QSAR prediction model. 

Outliers for this QSAR model would carry fluorine, chlorine, and oxygen with a charge, and an 

aromatic ring with sulfur. 

 

 
Figure 39: Scatter plot of external validation set for all top five models after removing three 

outliers in Figure 37. 
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Table 12. Calculated binding affinity (via docking simulations) and predicted binding affinity 

between eight selected ligands and G143A mutated cytochrome b of Plasmopara viticola by 

using QSAR model without validation set. 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Fluoxapiprolin -2.857 -6.600 

Isoflucypram -1.367 -6.354 

Flusulfamide -5.110 -5.920 

Ametoctradin -6.299 -5.824 

Diethofencarb -3.406 -5.649 

Ethaboxam -5.662 -4.842 

Famoxadone -6.238 -4.785 

Mandestrobin -7.393 -4.611 
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3.5.2.2   Training data set with validation sets 

In this case, two QoI fungicides, fenaminstrobin and fenamidone, were assigned as the 

validation set for the QSAR models. Consequently, there were 34 ligands used for the QSAR 

model (Figure 41). The ranking score for the top five QSAR models with a validation set (Figure 

40) were higher than the model without a validation set. The results of QSAR models from both 

Botrytis cinerea and Plasmopara viticola showed that a validation set may provide more 

accurate prediction models. Top QSAR models shown for Plasmopara viticola in Figure 40 were 

kpls_linear_39, kpls_desc_31, kpls_dendritic_31, kpls_linear_2 and kpls_linear_31. The best 

model was kpls_linear_39 that was generated by kernel partial least square regression (KPLS) 

with linear fingerprint, using the 39th spilt of the learning set into a test and training set (34 

ligands) with validation set. This model had a S.D of 1.4315, R2 of 0.7953, RMSE of 1.4160, Q2 

of 0.7624 and ranking score of 0.7733. From the scatter plots in Figure 42, the pattern of training 

sets was similar to the plots in Figure 33. 
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Figure 40: Top 10-ranked QSAR model reports with validation set for for fungicides used in 

Plasmopara viticola. 
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Figure 41: Model reports for a) kpls_linear_39, b) kpls_desc_31, c) kpls_dendritic_39, d) 

kpls_linear_2 and e) kpls_linear_31 models. 
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d) e) 
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Figure 42: Scatter plot about performance for a) kpls_linear_39, b) kpls_desc_31, c) 

kpls_dendritic_39, d) kpls_linear_2 and e) kpls_linear_31 models. 

 

 

3.5.2.2.1   Iteration #1 

The predicted binding affinities in Table 13 were slightly lower than those in Table 10. 

The R2 value of the best-fit line was 0.03 shown in Figure 43. Visual inspection of Figure 43 

showed three apparent ligands (fluindapyr, picarbutrazox and dimoxystrobin) falling outside the 
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applicability domain of the QSAR model, which affected the prediction accuracy of the QSAR 

model. Dithianon was another ligand that lay further from the regression line, and it was the only 

ligand that contained an aromatic ring with sulfur (Figure 44). Fluindapyr and picarbutrazox had 

similar aromatic rings. To improve the prediction accuracy of QSAR model, these ligands were 

removed during the next iteration. 

 

 
Figure 43: Scatter plot of external validation set for all top five models in Figure 40. 

 

 
Figure 44: Four compounds a) Fluindapyr, b) Picarbutrazox, c) Dimoxystrobin and d) Dithianon 

that were outliers in Figure 43. 
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Table 13: Calculated binding affinity (via docking simulations) and predicted binding affinity 

between 17 selected ligands and G143A mutated cytochrome b of Plasmopara viticola by using 

QSAR model with validation set. 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Fluindapyr -5.424 -7.845 

Furametpyr -4.667 -6.300 

Flusulfamide -5.110 -6.275 

Isoflucypram -1.367 -6.054 

Fenpropidin -4.410 -5.903 

Diethofencarb -3.406 -5.608 

Tebufloquin 0 -5.436 

Fluoxapiprolin -2.857 -5.307 

Triazoxide 0 -4.943 

Ametoctradin -6.299 -4.740 

Ethaboxam -5.662 -4.672 

Dithianon 0 -4.287 

Polyoxin -3.621 -4.257 

Famoxadone -6.238 -4.117 

Mandestrobin -7.393 -3.989 

Dimoxystrobin -7.548 -3.157 

Picarbutrazox -4.188 -2.351 
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3.5.2.2.2   Iteration #2 

After the first iteration, four ligands were removed and 13 ligands remained in Table 14. 

The R2 value of the best fit line shown on Figure 30 improved from 0.03 to 0.16 in this iteration 

(Figure 45). Furametpyr, flusulfamide, tebufloquin, triazoxide, polyoxin, famoxadone and 

mandestrobin were outliers based on visual inspection. Furametpyr, flusulfamide and triazoxide 

had chlorine. Flusulfamide and tebufloquin had fluorine in their ligands structure (Figure 46). 

Both triazoxide and polyoxin had oxygen with a charge in their ring structure. Famoxadone and 

mandestrobin had similar structure to dimoxystrobin. For further improvement on the model, 

these ligands were removed. 

 
Figure 45: Scatter plot of external validation set after removing four outliers in Figure 43. 
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Table 14. Calculated binding affinity (via docking simulations) and predicted binding affinity 

between 13 selected ligands and G143A mutated cytochrome b of Plasmopara viticola by using 

QSAR model with validation set. 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Furametpyr -4.667 -6.300 

Flusulfamide -5.110 -6.275 

Isoflucypram -1.367 -6.054 

Fenpropidin -4.410 -5.903 

Diethofencarb -3.406 -5.608 

Tebufloquin 0 -5.436 

Fluoxapiprolin -2.857 -5.307 

Triazoxide 0 -4.943 

Ametoctradin -6.299 -4.740 

Ethaboxam -5.662 -4.672 

Polyoxin -3.621 -4.257 

Famoxadone -6.238 -4.117 

Mandestrobin -7.393 -3.989 
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Figure 46: Four compounds a) Furametpyr, b) Flusulfamide, c) Tebufloquin, d) Triazoxide, e) 

Polyoxin, f) Famoxadone and g) Mandestrobin that were outliers in Figure 45. 

 

 

3.5.2.2.3   Iteration #3 

In this case, the R2 value of the best-fit line shown on Figure 47 was 0.64, meaning the 

prediction accuracy of QSAR models was acceptable. The top predictions that would withstand 

G143A mutated cytochrome b of Plasmopara viticola were fenpropidin (an amine), ametoctradin 

(a QoI) and ethaboxam (a thiazole carboxamide). Isoflucypram, diethofencarb and fluoxapiprolin 

were not appropriate selection since their predicted affinities were very different from their 

original affinities (Table 15). Outliers for this QSAR model also contained fluorine and chlorine, 

which was similar to QSAR model with using a validation set. 

 



 

78 
 

 
Figure 47: Scatter plot of external validation set after removing seven outliers in Figure 45. 
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Table 15. Calculated binding affinity (via docking simulations) and predicted binding affinity 

between six selected ligands and G143A mutated cytochrome b of Plasmopara viticola by using 

QSAR model with validation set. 

Fungicide Calculated Binding Affinity Predicted Binding Affinity 

Isoflucypram -1.367 -6.054 

Fenpropidin -4.410 -5.903 

Diethofencarb -3.406 -5.608 

Fluoxapiprolin -2.857 -5.307 

Ametoctradin -6.299 -4.740 

Ethaboxam -5.662 -4.672 
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4. CONCLUSIONS 

 The primary purpose of this study was to use in silico simulations to select the highest 

affinity QoI fungicides to cytochrome b targets of Plasmopara viticola and Botrytis cinerea. 

Based on different in-silico simulation methods that consisted of generalized and site-directed 

ligand impingement methods, both docking and MD simulations showed ubiquinol to be the 

highest affinity ligand for cytochrome b, regardless of the sourced organism. Ubiquinol bound to 

cytochrome b primarily via hydrophobic interactions.  

 For the case of WT cytochrome b of Plasmopara viticola, mandestrobin, fenaminstrobin, 

dimoxystrobin, fenamidone, famoxadone and ametoctradin bound with highest affinity and thus 

are considered as effective fungicides. They were also effective agents against G143A and 

F129L mutated cytochrome b. Ametoctradin and Metominostrobin had a strong affinity to WT, 

G143A, and G143A-F129L double mutated cytochrome b but did not bind strongly enough to 

the receptor with F129L mutation. While coumoxystrobin, flufenoxystrobin and pyribencarb 

showed strong affinity towards F129L mutated cytochrome b, their affinities were poor toward 

WT and other mutated versions, suggesting their susceptibility toward potential resistance. As a 

resistant fungicide, azoxystrobin did not bind to WT, G143A, F129L and G143A-F129L mutated 

cytochrome b as expected. Although folpet, a FRAC code low-risk fungicide, showed reasonable 

affinity toward G143A and F129L mutated cytochrome b, only thiram had stable and strong 

affinities toward all four variations of cytochrome b among the selected low-risk fungicides. 

According to the general analysis, mandestrobin, fenaminstrobin, dimoxystrobin, famoxadone, 

fenamidone, ametoctradin and thiram emerged as those with the strongest affinity from high-risk 

and low-risk groups toward Plasmopara viticola cytochrome b. Based on MD simulations and 

MM-GBSA calculations, two high-risk QoI fungicides, famoxadone and fenamidone, showed 
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strong affinity toward Plasmopara viticola cytochrome b with site-directed docking. 

Mandestrobin and thiram had slightly weaker but still acceptable affinity and stability. These 

MD results consolidated what was revealed by the docking analysis.  

Pyribencarb, mandestrobin, fenamidone, famoxadone and ametoctradin were effective 

agents against WT, G143A and F129L mutated cytochrome b of Botrytis cinerea. Among these 

fungicides, mandestrobin, fenamidone and ametoctradin showed strong affinity toward 

cytochrome b with the G143A-F129L double mutation, indicating that they are potential 

candidates against the four variations of cytochrome b. While pyraoxystrobin and 

metominostrobin had a strong affinity toward WT cytochrome b, its affinity was poor toward 

mutated cytochrome b. The low-risk fungicides, folpet and captan had a strong affinity with WT 

cytochrome b but did not bind to any of the mutated versions of Botrytis cinerea cytochrome b. 

Thiram showed consistent but moderate affinities. Based on the general analysis, mandestrobin, 

pyribencarb, famoxadone, ametoctradin, fenamidone and thiram emerged as those with the 

strongest affinity from high-risk and low-risk fungicides toward to all four version of Botrytis 

cinerea cytochrome b.  

According to the binding affinity simulation analysis, famoxadone and mandestrobin, 

emerged as the top binders for both Plasmopara viticola and Botrytis cinerea cytochrome b 

regardless of common mutations. Thiram, on the other hand, emerged as a reasonable low-risk 

fungicide that works on WT and mutated versions of both fungi. However, the affinity analysis 

clearly indicated the difficulty of making such broad-spectrum recommendations due to the 

peculiarities of cytochrome b proteins within different organisms.  

Based on a QSAR analysis with an extended array of fungicides, fenpropidin (an amine), 

fenoxail (a melanin biosynthesis inhibitor dehydrates), isoflucypram (a succinate dehydrogenase 
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inhibitor) and ametoctradin (a QoI) emerged to be effective against G143A mutated cytochrome b 

of Botrytis cinerea. Moreover, fenoxanil, fenpropidin, iprodione (a dicarboximde), tebufloquin (a 

4-quinolyl-acetate), and ametoctradin emerged as high-affinity inhibitors in an analysis with a 

secondary validation set. The QSAR analysis without a validation set revealed flusulfamide (a 

benzene-sulfonamide), ametoctradin, ethaboxam (a thiazole carboxamide) and famoxadone (a QoI) 

emerged as effective fungicides against G143A mutated cytochrome b of Plasmopara viticola. 

Also, fenpropidin, ametoctradin and ethaboxam showed strong affinity on the analysis with a 

secondary validation set. Based on both the docking simulations and QSAR analysis, ametoctradin 

emerged as a potential high-affinity QoI fungicide against the G143A mutation.  

4.1   Suggestion for future studies 

The modeling results should be experimentally validated via in vitro and/or in planta field 

studies.  Free energy perturbation could be used to improve the accuracy of the modeling results 

and thus should be considered in future studies. The accuracy of the QSAR model needs to be 

improved using a substantial amount (at least 50 compounds) of experimental (validation) data.  
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APPENDIX 

 

Table 16. Glide docking scores for fungicides on the top site of three mutated versions 

Plasmopara viticola Cytochrome b targeting at mutated version of G137 and L123. 

Fungicide 

G137A 

average 

docking 

score 

 

L123F 

average 

docking 

score 

 

Double 

mutation 

average 

docking 

score 

 Resistance 

Fungicide 

Type 

Ubiqunol  -8.6020 -10.2483 -9.6594 HR NA 

Famoxadone -4.6450 -7.4714 -4.7018 HR QoI 

Fenamidone -6.1589 -6.4199 -6.5964 HR QoI 

Mandestrobin -5.8189 -6.9176 -7.6937 HR QoI 

Fenaminstrobin -7.9325 -5.5149 -3.9721 HR QoI 

Pyribencarb -3.1905 -5.8536 -5.0871 HR QoI 

Dimoxystrobin -3.9699 -4.3608 -6.8004 HR QoI 

Metominostrobin -4.2267 -4.8323 -6.9727 HR QoI 

Pyraclostrobin -4.5521 -4.6161 -7.0383 HR QoI 

Flufenoxystrobin -2.2911 -3.0611 -4.0351 HR QoI 

Metyltetraprole -4.4752 -3.9500 -7.6200 HR QoI 

Ametoctradin -5.6017 -4.9131 -5.3848 HR/R QoI 

Thiram -4.4892 -4.5784 -4.5284 LR DTC 

Ferbam -3.2534 -3.2846 -3.4527 LR DTC 

Mancozeb -2.4433 -2.4208 -2.6703 LR DTC 

Zineb -2.8342 -2.5861 -3.0747 LR DTC 

Folpet -3.9663 -2.5276 -2.7277 LR PHT 

Captan -4.0550 -4.2980 -4.0246 LR PHT 

Azoxystrobin -3.4418 -4.9330 -4.5320 HR/R QoI 

 

 




