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 ABSTRACT 

Meta-analytic Structural Equation Modeling (MASEM) is the combination of 

meta-analysis (MA) and structural equation modeling (SEM). With new MASEM 

methodologies developed over the past few years, there is an opportunity to compare the 

past approaches with the new ones.  

The purpose of this dissertation is two-fold. First, the parameter estimates, 

standard errors, confidence intervals, and heterogeneity measures are compared across 8 

MASEM approaches (fixed-effect and random-effects univariate r, fixed-effect and 

random-effects univariate z, fixed-effect and random-effects Two-Stage SEM approach, 

and fixed-effect and random-effects One-Stage MASEM approach) using 25 studies 

relating to college persistence. Overall, results found only slight differences in estimates 

across methods (differences to two or three decimal places). The biggest difference was 

found in significant path estimates between univariate and multivariate approaches, 

which is primarily due to sample size differences.   

The second purpose of this paper was to synthesize the current literature 

pertaining the relationships between student background characteristics, institutional 

characteristics, academic integration, and social integration on student success.  Results 

indicate that student background characteristics, academic integration, and social 

integration had a direct significant impact on student success. Although institutional 

characteristics did not have a significant impact on student success directly, it had a 

significant impact on academic and social integration.  
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NOMENCLATURE 

 

𝑘𝑘  study identification index 

𝐾𝐾  total number of studies with 𝑘𝑘 = 1 … ,𝐾𝐾 ≥ 2  

𝑇𝑇𝑘𝑘  𝑘𝑘th general effect size 

𝑣𝑣𝑘𝑘  variance of the 𝑘𝑘th effect size 

𝜃𝜃  population effect size  

𝜎𝜎𝑘𝑘2  variance of the population effect size  

𝑒𝑒𝑘𝑘  univariate within-studies error  

𝜃𝜃�  estimated population effect size  

𝑤𝑤�𝑘𝑘  weight for the fixed-effect model  

𝑣𝑣𝑣𝑣𝑟𝑟𝜃𝜃�   variance of the estimated population effect size 

𝜇𝜇  mean of the population distribution of all effect sizes  

𝑢𝑢𝑘𝑘  between-studies error 

𝜏𝜏2  between-studies variance  

�̂�𝜏2  estimated between-study variation  

�̂�𝜇  estimated mean effect size 

𝑤𝑤�𝑘𝑘∗  weight for the random-effects model 

𝑝𝑝  number of effect sizes that are of interest in a multivariate meta-analysis 

𝑝𝑝𝑖𝑖  number of observed effect sizes in the 𝑖𝑖th study  

𝒚𝒚𝑖𝑖  𝑝𝑝𝑖𝑖 × 1 matrix of observed effect sizes 

𝑿𝑿𝑖𝑖  𝑝𝑝𝑖𝑖 × 𝑝𝑝 design matrix with 0’s and 1’s to select the observed effect size 
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𝒇𝒇𝑖𝑖  𝑝𝑝 × 1 vector of population effect sizes 

𝒆𝒆𝑖𝑖  𝑝𝑝𝑖𝑖 × 1 vector of sampling errors 

𝑽𝑽𝑖𝑖  known covariance matrix of 𝒆𝒆𝑖𝑖 

𝛽𝛽𝐹𝐹  population “true” effect for a multivariate meta-analysis 

𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺  function that is minimized using generalized least squares to determine the fixed-

effect size 

�̂�𝛽𝐹𝐹  estimated overall effect size in a multivariate fixed-effect model 

Ω�𝐹𝐹  estimated asymptotic covariance matrix in a multivariate fixed-effect model 

𝛽𝛽𝑅𝑅  average population effect size under a random-effects model in multivariate 

analysis 

𝒁𝒁  a matrix composed of 0’s and 1’s to select the random effects in multivariate 

analysis 

𝑢𝑢𝑖𝑖  stacked random effects (between-studies error) for all studies in multivariate 

analysis 

�̂�𝛽𝑅𝑅  multivariate random effects estimated overall effect 

𝑽𝑽�  asymptotic sampling covariance matrix for random-effects multivariate analysis  

Ω�𝑅𝑅  estimated asymptotic sampling covariance matrix for random-effects multivariate 

effect size 

Q  the weighted sum of squared deviations between individual studies and fixed 

effect 

𝑄𝑄𝑈𝑈𝑈𝑈𝑈𝑈  Q-statistic for the univariate case 

𝑤𝑤𝑖𝑖  See definition for 𝑤𝑤�𝑘𝑘 
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𝑄𝑄𝑀𝑀𝑈𝑈𝐺𝐺  Q-statistic for the multivariate case  

𝐼𝐼2  ratio of true heterogeneity to total variances across observed effect estimates  

𝜏𝜏2  true variance of effect sized (between-studies variance)  

�̂�𝜏2  estimated variance of the true effects (estimated between-studies variance)  

𝑇𝑇2  see definition of  �̂�𝜏2  

𝑇𝑇   see definition of �̂�𝜏 

�̂�𝜏  estimated standard deviation of the true effects 

𝑣𝑣�  typical within-study sampling variance when calculating 𝐼𝐼2 

𝐼𝐼𝑄𝑄(𝑀𝑀𝑈𝑈𝐺𝐺)
2  multivariate 𝐼𝐼2 index  

𝑑𝑑𝑓𝑓𝑀𝑀𝑈𝑈𝐺𝐺  degrees of freedom for multivariate test of homogeneity  

𝑊𝑊𝑖𝑖  study weight; see definition for 𝑤𝑤�𝑘𝑘 

𝐹𝐹𝑀𝑀𝐺𝐺(𝜃𝜃) maximum likelihood discrepancy function  

𝑛𝑛𝑖𝑖𝑀𝑀𝐺𝐺   sample size reported in the 𝑖𝑖th group for multi-group SEM 

𝐹𝐹𝑖𝑖(𝜃𝜃) fit function for the 𝑖𝑖th group 

𝑟𝑟 sample correlation coefficient  

𝜌𝜌  population correlation coefficient  

𝑧𝑧  Fisher’s z value  

𝐼𝐼  total number of observed variables  

𝑌𝑌𝑖𝑖  𝑖𝑖th observed variable in a study with 𝑖𝑖 = 1, … , 𝐼𝐼 

𝑛𝑛𝑖𝑖  sample size for the 𝑖𝑖th study  

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖  sample correlation between variables 𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑖𝑖 in the 𝑖𝑖th study  

𝜌𝜌𝑖𝑖𝑖𝑖  population correlation between variables 𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑖𝑖 
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�̅�𝑟𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖   overall mean of the correlations between 𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑖𝑖 under fixed-effect model  

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖  inverse-variance weight for fixed-effect model with correlations 

𝑠𝑠𝑟𝑟2𝑖𝑖𝑖𝑖𝑖𝑖    variance of 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 

�̅�𝑟𝑅𝑅𝐹𝐹𝑖𝑖𝑖𝑖   overall mean of the correlations between 𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑖𝑖 under random-effects model 

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
∗   weight for random-effects model with correlations 

�̂�𝜏𝑖𝑖𝑖𝑖2   estimated between studies variance for the correlation between 𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑖𝑖 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 the Fisher’s z value between 𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑖𝑖 for the 𝑖𝑖th study  

𝑠𝑠𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
2   variance of 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 

𝑧𝑧�̅�𝐹𝐹𝐹𝑖𝑖𝑖𝑖   fixed effect weighted overall mean Fisher’s z 

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
+   weight for fixed-effect Fisher’s z model  

𝑧𝑧�̅�𝑅𝐹𝐹𝑖𝑖𝑖𝑖   random effects weighted overall mean Fisher’s z 

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
++  weight for random-effects Fisher’s z model  

𝑝𝑝𝑔𝑔  number of observed variables in the 𝑔𝑔th study 

𝚺𝚺𝑔𝑔  covariance matrix for the 𝑔𝑔th study  

𝑫𝑫𝑔𝑔  𝑝𝑝𝑔𝑔 × 𝑝𝑝𝑔𝑔 diagonal matrix of standard deviations in the 𝑔𝑔th study 

𝑷𝑷𝑔𝑔  𝑝𝑝𝑔𝑔 × 𝑝𝑝𝑔𝑔 correlation matrix in the 𝑔𝑔th study 

𝐼𝐼  identity matrix  

𝚲𝚲𝑔𝑔  factor loadings for the 𝑔𝑔th study 

𝚽𝚽𝑔𝑔  factor covariance for the 𝑔𝑔th study 

𝚿𝚿𝑔𝑔  error variance matrix 

𝑷𝑷� estimated pooled correlation matrix using the fixed-effect TSSEM approach 
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𝑽𝑽� asymptotic covariance matrix of parameter estimates for the TSSEM approaches 

N  total sample size 

𝑛𝑛𝑔𝑔  sample size for the 𝑔𝑔th study 

𝒑𝒑�𝑅𝑅  pooled average correlation matrix for the random-effects TSSEM approach  

𝑽𝑽�𝑅𝑅  asymptotic sampling covariance matrix for the random-effects TSSEM approach  

𝐹𝐹(𝜸𝜸)  the discrepancy function for stage 2 of the TSSEM approaches 

𝒓𝒓∗  𝑝𝑝′ × 1 vector of elements from the sample correlation matrix  

𝝆𝝆(𝜸𝜸)  𝑝𝑝′ × 1 vector of elements from the pooled correlation matrix (under fixed or 

random effects) 

𝑝𝑝𝑔𝑔  see definition for 𝑝𝑝𝑔𝑔 

𝑞𝑞  total number of variables  

𝑫𝑫𝑔𝑔  see definition for 𝑫𝑫𝑔𝑔 

𝑷𝑷𝑔𝑔  see definition for 𝑷𝑷𝑔𝑔 

𝑴𝑴𝑔𝑔  𝑝𝑝𝑔𝑔 × 𝑞𝑞 selection matrix composed of 0’s and 1’s  

𝑷𝑷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 model implied correlation matrix  

𝑭𝑭  selection matrix composed of 1’s for observed variables and 0’s for latent 

variables 

𝑰𝑰  Identity matrix  

𝑺𝑺  symmetric matrix with variances and covariances in random-effects OSMASEM 

path model  

𝑨𝑨  symmetric matrix with asymmetric paths used in random-effects OSMASEM 

path model 
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CHAPTER I  

INTRODUCTION  

 

 Two popular quantitative methods in applied research are meta-analysis and 

structural equation modeling. Structural equation modeling (SEM) aims to test a 

hypothesized causal model by fitting a model to a single data set and then determining 

how well the model fits the data. Meta-analysis (MA) is a method of combining 

quantitative results (namely effect sizes) across many studies.  Both quantitative 

methods rely heavily on theoretical justification and are used in multiple disciplines 

(Borenstein et al, 2021; Kline, 2016). Since the 1970s, publications using either method 

has grown from virtually nonexistent to thousands each year (Cheung, 2015).  

Although there has been a rise in popularity of structural equation modeling in 

recent years, researchers have been interested in synthesizing SEM studies since the 

1980’s (Brown & Peterson, 1993; Hom et al, 1992; Premack & Hunter, 1988; Wagner, 

1988). As fitting a SEM often involves a correlation or covariance matrix, early works 

focused on how to combine correlation matrices (Becker, 1992; Becker, 1996; Hedges & 

Olkin, 1985; Hunter & Schmidt, 1982; Viswesvaran & Ones, 1995). Research has since 

expanded to more advanced methodological issues such as missing data, fixed-

effect/random-effects models, univariate/multivariate models, and small sample sizes 

(Cheung & Chan, 2005; Cheung & Cheung, 2014; Cho, 2015; Furlow & Beretvas, 2005; 

Jak & Cheung, 2020; Sheng et al, 2016; Yuan, 2016; Zhang, 2011).  
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 Cheung (2009) described three main advantages of MASEM: to address the 

generalizability of findings across settings, to identify potential moderators that 

influence the structure of the model, and to obtain more precise estimates by increasing 

sample size. Because of the ability to comprehensively synthesize research in addition to 

its flexibility as a methodology, researchers across disciplines where SEMs are of 

interest will also find MASEM of interest as well. In this dissertation, the aim is to add 

to the current body of MASEM literature while concurrently applying by comparing 

eight MASEM approaches using a data set related to two-year college students and their 

success based on social and academic integration, student background characteristics, 

and institutional characteristics.  

MASEM Framework 

There are three important factors to consider when determining which MASEM 

approach is most appropriate for analysis. Should a parameter-based approach be used or 

correlation-based approach? Are the effect sizes assumed to originate from a single 

population (fixed effect), or is there an expectation that the effect sizes originate from 

multiple populations (random effects)? Lastly, is it assumed that the effect sizes are 

independent or dependent of one another?  

There are generally two main approaches to synthesizing SEMs: the parameter-

based approach and correlation-based approach. Parameter-based MASEM aims to 

combine parameter estimates (e.g., factor loadings or path coefficients) across studies 

(See Figure 1). Cheung & Cheung (2016) commented that one of the main strengths of 

parameter-based MASEM is that the heterogeneity of parameter estimates (instead of 
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correlation matrices in the correlation-based approach) can be calculated. However, 

limitations of this approach include the inability to handle missing parameter estimates 

and its inappropriate use in the case of some over-identified models (Cheung & Cheung, 

2016). The most notable parameter-based approaches include the full-information 

MASEM (Yu et al., 2016), parameter-based MASEM (Cheung & Cheung, 2016), and 

Bayesian MASEM (Ke, et al, 2018).  

 

Figure 1: Illustration of Parameter-Based MASEM 

In correlation-based MASEM, there are usually two stages. First, the 

homogeneity of correlation matrices is assessed and then correlations are combined or 

pooled. Then, the pooled correlation matrix is used to fit a SEM. The correlation-based 

approach has been the more popular approach as this method was developed sooner, can 

handle missing correlation coefficients and varying structural models can be tested and 

compared; however, one main limitation (like parameter-based MASEM) is the possible 

inappropriate use with over-identified models (Cheung & Cheung, 2016). The most 
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well-known correlation-based approaches are the univariate-r approach (Viswesvaran & 

Ones, 1995), the generalized least squares (GLS) approach (Becker, 1992), and the two 

stage SEM approach (TSSEM) (Cheung, 2014). See Figure 2 for an illustration of 

correlation-based MASEM.  

 

Figure 2: Illustration of Correlation-based MASEM 

Two approaches that also use correlations that do not include two separate stages 

are the Maximum Likelihood MASEM approach (Oort & Jak, 2016) and the one-stage 

MASEM (OSMASEM) approach (Jak & Cheung, 2021). The former method is the fixed 

effect equivalent to the latter’s random-effects method. In both approaches, correlations 

from individual studies are fitted directly to an SEM, without needing to pool correlation 

matrices first. Multigroup SEM is used to determine homogeneity.  

In meta-analysis, it is generally assumed that effect sizes are either from the same 

population (fixed-effect model), or effect sizes originate from different populations 

(random-effects model). There are special cases of mixed-effect models, where the effect 
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sizes are grouped into categories (random effects) then assumed to be fixed effect within 

each category as well. In MASEM, this is also the case. Fixed-effect models in MASEM 

assume that either the correlation matrices or parameter estimates are from the same 

population (homogenous), whereas random-effect models assume the effect sizes 

(correlation matrices or parameter estimates) are from different populations 

(heterogeneous). Univariate models assume that correlations or parameter estimates are 

independent of each other whereas multivariate models assume that correlation matrices 

or parameter estimates are dependent. 

Motivation for this Dissertation 

Comparing MASEM Approaches Across Model Assumptions 

Since the development of MASEM, research has recommendations and best 

practices have been published to help guide researchers in choosing the most appropriate 

MASEM method (Cheung, 2009; Sheng et al, 2016; Yuan, 2016). Sheng et al (2016) 

found that out of 160 MASEM studies, 36.3% acknowledged and discussed at least one 

issue with using MASEM. Additionally, they reported that out of 160 MASEMs, only 

nine (5.6%) had used the fixed-effect TSSEM approach, a multivariate approach, even 

10 years after it had been published.    

Several simulation studies have been conducted comparing the various 

methodological approaches of MASEM (Becker, 1992; Cheung & Chan, 2005; Furlow 

& Beretvas, 2005; Oort & Jak, 2016; Jak & Cheung, 2020; Cho, 2015; Zhang, 2011). 

Although there are heterogeneity indices to provide evidence as to whether the effect 

sizes originate from a fixed-effect or random-effects model, it is not recommended to 
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rely on these indices alone; a theoretical basis should be included in the analysis of 

which model best represents the effect sizes (Borenstein et al, 2021; Cooper, 2017). 

However, it is not uncommon for researchers to use these heterogeneity indices to justify 

their model selection. Therefore, it is not a trivial task to compare MASEM approaches 

across model assumptions.   

Overall Effects of Academic and Student Integration on Two-Year Students 

Interestingly, although enrollment into higher education has generally increased 

over the past two decades, persistence and retention rates have stayed relatively 

consistent. Enrollment into an undergraduate institution of higher education has 

increased almost 26% over the past 20 years from roughly 13.2 million students to 16.6 

million students (Hussar et al., 2020). In the fall of 2018 alone, around 35 percent (or 

roughly 5.7 million students) enrolled into a two-year institution, and it is projected to 

increase over the next 10 years (Hussar et al., 2020). However, student retention has 

only seen an increase of roughly 5% from the past 15 years, with graduation rates 

increasing 7.6% for four-year institutions and 2.1% for two-year institutions (National 

Center for Education Statistics, 2019, Table 326.10; National Center for Education 

Statistics, 2019, Table 326.20; National Center for Education Statistics, 2019, Table 

326.30). 

Although obtaining at least some education from a two-year college is becoming 

more prevalent as there are less barriers to entry, retention rates and graduation rates are 

significantly lower amongst two-year students when compared to their four-year 

counterparts. In 2018, the percentage of first-time full-time undergraduates retained at 
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the four-year institution was roughly 81% with whereas for two-year institutions the 

retention rate was 62% (Hussar et al., 2020). The retention rate for part-time students at 

two-year institutions is even lower at around 45% (National Center for Education 

Statistics, 2019, Table 326.30). The overall graduation rate within 150% of normal time 

for first-time full-time undergraduates at four-year institutions (6 years) was 62% in 

2018, whereas 33% of full-time undergraduates at two-year institutions graduated within 

150% of normal time (in 3 years) (Hussar et al., 2020). One of the main contributors to 

the difference in retention and graduation can be explained by the difference in student 

population that is served from a four-year institution to a two-year institution.  

Retention theories over the past 100 years have aimed to try to explain the factors 

that impact student retention, generally focusing on full-time students attending four-

year institutions (Crisp & Mena, 2012). Major contributing factors usually involve 

student background characteristics, characteristics about the institution itself, and 

measures of the student’s experience while enrolled at the institution. Dolan (2019) 

conducted a MASEM based on the work of Tinto (1975). Although the “Stage 2” model 

fit was moderate to poor, there were significant relationships between academic 

integration, social integration, institutional commitment, and organization factors, 

whereas student background characteristics and external factors were not significant 

predictors of student persistence. Because there are few-to-no MASEMs focusing on 

two-year institutions, there is a need to investigate how these retention theories apply to 

two-year college students, as well as a need to synthesize the impacts of academic and 

social integration on two-year college students.  
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Statement of Purpose & Research Questions 

There are two purposes for this dissertation. The primary purpose is to compare 

eight MASEM approaches (the fixed- and random-effects models of the univariate r, 

univariate z, TSSEM and OSMASEM approaches -Table 1 displays the methods to be 

compared) using a data set to fit a path model relating to academic and social integration 

and student retention (see Figure 3). As a byproduct of the first purpose of this 

dissertation, the second purpose to add to the current body of higher education literature 

by interpreting the results of the MASEMs in addressing students attending two-year 

institutions and the impact of social and academic integration on their retention and 

success.  

Table 1: MASEM Approaches 

Method Authors 
Fixed/Random 

Effects 

Univariate/ 

Multivariate 

Univariate r Viswesvaran & Ones (1995) Fixed  Univariate 

Univariate r Viswesvaran & Ones (1995) Random  Univariate 

Univariate z Hedges & Olkin (1985) Fixed  Univariate 

Univariate z Hedges & Olkin (1985) Random  Univariate 

TSSEM Cheung & Chan (2005) Fixed Multivariate 

TSSEM Cheung & Chan (2014) Random Multivariate 

OSMASEM Oort & Jak (2016) Fixed Multivariate 

OSMASEM Jak et al (2020) Random Multivariate 
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Figure 3: Proposed Path Model  
 

The first purpose of this dissertation is paired with the following research 

questions:  

RQ1a: How do the parameter estimates, standard errors, goodness-of-fit indices, and 

heterogeneity measures compare across all eight methods?  

RQ1b: Are the findings in RQ1a consistent with current literature?  

RQ1c: What are the implications for practitioners and researchers regarding the use of 

these methods?  

 The second purpose of this dissertation is paired with the model proposed below 

based on Yu (2015) along with the following questions regarding two-year college 

students:   

RQ2a: What is the overall impact of student characteristics on academic integration? 
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RQ2b: What is the overall impact of student characteristics on social integration?  

RQ2c: What is the overall impact of student characteristics on student retention?   

RQ2d: What is the overall impact of institutional characteristics on academic 

integration?   

RQ2e: What is the overall impact of institutional characteristics on social integration? 

RQ2f: What is the overall impact of institutional characteristics on student retention? 

RQ2g: What is the overall impact of academic integration on student retention?   

RQ2h: What is the overall impact of social integration on student retention?  

Significance of the Study 

One of the unique aspects of this study is that it compares both fixed-effect and 

random-effects models in the same study. Most new MASEM approaches will compare 

their results within the same assumptions about the data (e.g., fixed effect or random 

effects). The results of this dissertation will contribute knowledge on the differences 

between approaches and across different model assumptions.  

For higher education research, this dissertation will help provide an overall effect 

of social and academic integration, student background characteristics, and institutional 

characteristics on student retention for those attending two-year colleges. As two-year 

colleges have an increase in student attendance as well as face the diverse challenges to 

retain students, this dissertation can help provide some information on the average effect 

in addition to, more importantly, the variability of the effect. If the effect is extremely 

variable, further MASEMs can be conducted using subgroups of the population to 
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determine for which groups academic and/or social integration are the most important 

(i.e., mixed effect approach).  
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CHAPTER II  

LITERATURE REVIEW 

 

Meta-Analysis 

 One of the primary goals of meta-analysis is to calculate an overall effect size by 

combining several effect sizes across studies using statistical methods. Gene Glass 

(1976) first used the term “meta-analysis” and defined it as: “…the analysis of analyses. 

I use it to refer to the statistical analysis of a large collection of analysis results from 

individual studies with the purpose of integrating the findings.” Although this term was 

first used in 1976, the interest in combining quantitative results started well before this 

time with Pearson (1904) and has only grown in interest across disciplines since then 

(Cooper, 2017).  

 There are some underlying assumptions about the effect sizes that need to be 

determined prior to conducting a meta-analysis. Generally, there are univariate 

approaches (which assumes independent effect sizes) and multivariate approaches 

(which consider the dependent effect sizes). Additionally, effect sizes can originate from 

a single population (fixed-effect model) or can originate from different populations 

(random-effects model). To assess heterogeneity across studies, content expertise and 

statistical measures can indicate which model best represents the effect sizes. 

Additionally, as maximum likelihood estimation is most often used to fit a SEM, the 

effect sizes are assumed to be multivariate normal (Kline, 2016). For univariate meta-

analysis, effect sizes are assumed to be normally distributed (Borenstein et al, 2009) 
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Univariate Methods 

As mentioned above, one assumption about the effect sizes is that they either are 

obtained from a single population (fixed-effect model) or obtained from several different 

populations (random-effects model). The variation in the study effect sizes from the 

population is due to sampling error (within studies variation) for a fixed-effect model. In 

a random-effects model, the difference between a study effect size and the mean 

population effect size can be due to sampling error (within studies error) as well as error 

due to belonging to different populations (between studies error).  

The univariate approach in meta-analysis assumes that effect sizes are 

independent of each other. For 𝐾𝐾 studies, let 𝑇𝑇𝑘𝑘 represent the 𝑘𝑘th sample effect size and 

𝑣𝑣𝑘𝑘 represent the sample variance of the 𝑘𝑘th study. Then,   

𝑇𝑇𝑘𝑘 = 𝜃𝜃 + 𝑒𝑒𝑘𝑘, 

where 𝜃𝜃 represents the population effect size and 𝑒𝑒𝑘𝑘 represents the sampling 

error (within-studies error term). It is assumed that 𝑇𝑇𝑘𝑘 is normally distributed with mean 

𝜃𝜃 and variance 𝜎𝜎𝑘𝑘2.The estimated overall effect size under a fixed-effect model is 

calculated using the inverse-variance weighted mean:  

𝜃𝜃� =
∑ 𝑤𝑤�𝐾𝐾
𝑘𝑘=1 𝑘𝑘𝑇𝑇𝑘𝑘
∑ 𝑤𝑤�𝐾𝐾
𝑘𝑘=1 𝑘𝑘

, 

with weight 

𝑤𝑤�𝑘𝑘 = 1
𝑣𝑣𝑘𝑘

, 

and  
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𝑣𝑣𝑣𝑣𝑟𝑟𝜃𝜃� = 1
∑ 𝑤𝑤�𝐾𝐾
𝑘𝑘=1

= 1
∑ 1

𝑣𝑣𝑘𝑘
𝐾𝐾
𝑘𝑘=1

. 

For the random-effects model, there is an additional error term in the estimated 

effect size that is due to between-studies variation. That is,  

𝑇𝑇𝑘𝑘 = 𝜇𝜇 + 𝑢𝑢𝑘𝑘 + 𝑒𝑒𝑘𝑘, 

where 𝜇𝜇 represents the mean of the population distribution of all true effect sizes, 

𝑢𝑢𝑘𝑘 represents the between-studies error term and 𝑒𝑒𝑘𝑘 represents the within-studies error 

term. It is assumed that both error terms are normally distributed with 𝑒𝑒𝑘𝑘~𝑁𝑁(0,𝜎𝜎𝑘𝑘2) and 

𝑢𝑢𝑘𝑘~𝑁𝑁(0, 𝜏𝜏2) with 𝑇𝑇𝑘𝑘 also normally distributed with mean 𝜃𝜃𝑘𝑘 and variance 𝜎𝜎𝑘𝑘2 + 𝜏𝜏2. The 

random-effects model is calculated using the bivariate weighted mean:  

�̂�𝜇 = ∑ 𝑤𝑤�𝑘𝑘
∗𝐾𝐾

𝑘𝑘=1 𝑇𝑇𝑘𝑘
∑ 𝑤𝑤�𝑘𝑘

∗𝐾𝐾
𝑘𝑘=1

, 

with weight 

𝑤𝑤�𝑘𝑘∗ = 1
𝑣𝑣𝑘𝑘+𝜏𝜏�2

, 

where �̂�𝜏2 represents the estimated between-study variation and 

𝑣𝑣𝑣𝑣𝑟𝑟𝜇𝜇� = 1
∑ 𝑤𝑤�𝑘𝑘

∗𝐾𝐾
𝑘𝑘=1

= 1
∑ 1

𝑣𝑣𝑘𝑘+𝜏𝜏�2
𝐾𝐾
𝑘𝑘=1

. 

 Note that the overall effect size of a fixed-effect model can be derived from the 

random-effects model (�̂�𝜏2 = 0).  

Multivariate Methods 

Multivariate meta-analysis takes into consideration dependence of multiple effect 

sizes reported in the same study. Cheung (2015) described multivariate analysis with the 

following notation. Let 𝑝𝑝 be the number of effect sizes that are of interest in a 
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multivariate meta-analysis and 𝑝𝑝𝑖𝑖 be the number of observed effect sizes in the 𝑖𝑖th study. 

It is assumed 𝑝𝑝𝑖𝑖 ≤ 𝑝𝑝, because every study will at most contain all the same variables 

across studies.  

For multiple effect sizes, the univariate fixed-effect equation can be extended. 

Let the column vector 𝒚𝒚𝑖𝑖 represent a 𝑝𝑝𝑖𝑖 × 1 matrix of observed effect sizes such that  

𝒚𝒚𝑖𝑖 = 𝑿𝑿𝑖𝑖𝒇𝒇𝑖𝑖 + 𝒆𝒆𝑖𝑖, 

where 𝑿𝑿𝑖𝑖 is a 𝑝𝑝𝑖𝑖 × 𝑝𝑝 design matrix with 0 and 1 to select the observed effect sizes, 𝒇𝒇𝑖𝑖 is a 

𝑝𝑝 × 1 vector of population effect sizes, and 𝒆𝒆𝑖𝑖 is a 𝑝𝑝𝒊𝒊 × 1 vector of sampling errors that 

is assumed to be multivariate normally distributed with mean 0 and known covariance 

matrix 𝑽𝑽𝑖𝑖 for large sample sizes.  

For the multivariate fixed-effect model, it is assumed that all true effects are the 

same; that is,  

𝒇𝒇1 = 𝒇𝒇2 = ⋯ = 𝒇𝒇𝑘𝑘 = 𝛽𝛽𝐹𝐹. 

Therefore, the fixed-effect model for the 𝑖𝑖th study is  

𝒚𝒚𝑖𝑖 = 𝑿𝑿𝑖𝑖𝛽𝛽𝐹𝐹 + 𝒆𝒆𝑖𝑖, 

To estimate the overall fixed-effect size, the following function is minimized 

using generalized least squares (GLS) and known covariance matrix 𝑽𝑽: 

𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 = (𝒚𝒚 − 𝑿𝑿𝛽𝛽𝐹𝐹)𝑇𝑇𝑽𝑽−𝟏𝟏(𝒚𝒚 − 𝑿𝑿𝛽𝛽𝐹𝐹). 

The estimate for the overall effect size and asymptotic sampling covariance in a 

fixed-effect model is 

�̂�𝛽𝐹𝐹 = (𝑿𝑿𝑇𝑇𝑽𝑽−𝟏𝟏𝑿𝑿)−1𝑿𝑿𝑇𝑇𝑽𝑽−1𝒚𝒚 
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Ω�𝐹𝐹 = (𝑿𝑿𝑇𝑇𝑽𝑽−1𝑿𝑿)−1. 

For the random-effects model for the 𝑖𝑖th study is:  

𝒚𝒚𝒊𝒊 = 𝑿𝑿𝒊𝒊𝛽𝛽𝑅𝑅 + 𝒁𝒁𝒖𝒖𝑖𝑖 + 𝒆𝒆𝒊𝒊, 

where 𝒁𝒁 = 𝑑𝑑𝑖𝑖𝑣𝑣𝑔𝑔(𝒁𝒁1,𝒁𝒁2, … ,𝒁𝒁𝑘𝑘) is a selection of 1s and 0s to select the random effects, 

𝒖𝒖 = [𝒖𝒖1𝑇𝑇|𝒖𝒖2𝑇𝑇| … |𝒖𝒖𝑘𝑘𝑇𝑇]𝑇𝑇 is the stacked random effects for all studies, 𝛽𝛽𝑅𝑅 is the average 

population effect sizes under the random-effects model, and 𝒚𝒚𝑖𝑖, 𝑿𝑿𝑖𝑖, and 𝒆𝒆𝑖𝑖 are defined 

the same as for the fixed-effect model.  

Similar to the fixed-effect model, we can minimize the function,  

𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 = (𝒚𝒚 − 𝑿𝑿𝛽𝛽𝑅𝑅)𝑇𝑇𝑽𝑽�−𝟏𝟏(𝒚𝒚 − 𝑿𝑿𝛽𝛽𝑅𝑅), 

using GLS to estimate �̂�𝛽𝑅𝑅 for a random-effects model with known covariance matrix, 

𝑽𝑽� = 𝒁𝒁𝑖𝑖𝑻𝑻�2𝒁𝒁𝑖𝑖𝑇𝑇 + 𝑽𝑽𝑖𝑖, 

where 𝒁𝒁𝑖𝑖 is used to select the random effects and 𝑻𝑻�2 as the random effects.  

The random-effects overall effect and asymptotic sampling covariance matrix 

can be estimated by 

�̂�𝛽𝑅𝑅 = �𝑿𝑿𝑇𝑇𝑽𝑽�−𝟏𝟏𝑿𝑿�
−1
𝑿𝑿𝑇𝑇𝑽𝑽�−1𝒚𝒚 

and  

Ω�𝑅𝑅 = �𝑿𝑿𝑇𝑇𝑽𝑽�−1𝑿𝑿�
−1

. 

 

Assessing Homogeneity 

Because the underlying model for the effect size depends on whether the effect 

size does or does not originate from a single population, it is a common question of 
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which model should be used. Borenstein et.al (2009) described four common statistical 

indicators to assess heterogeneity; the Q-statistic (a measure of weighted squared 

deviations from the fixed effect), the p-value (test of homogeneity using Q), the 𝐼𝐼2 index 

(the magnitude of heterogeneity), 𝜏𝜏2(estimated between studies variance), and 𝜏𝜏 

(estimated between studies standard deviation). Each of the measures of heterogeneity 

mentioned above provide a unique measure of heterogeneity, however Borenstein et.al 

(2009) emphasize that these indicators should not be relied on alone to determine 

whether a random-effects or fixed-effect model should be used as each indicator has its 

limitations (such as sensitivity to the number of studies or effect size).  

The Test for Homogeneity 

 Two of the statistical heterogeneity measures are the Q-statistic and the p-value 

from the test of homogeneity (Cochran, 1954). The idea behind the Q-statistic and 

corresponding test is to determine if the effect sizes differ significantly from the fixed-

effect model. If the Q-statistic is large, then there is a possibility a random-effects model 

should be considered since the effect sizes are far from the fixed effect. A small Q-

statistic would suggest that the effect sizes are close to the fixed effect. Referring back to 

notation by Cheung (2015), in the univariate case, the null hypothesis for the test of 

homogeneity is  

𝐻𝐻0: 𝛽𝛽𝐹𝐹 = 𝑓𝑓1 = 𝑓𝑓2 = ⋯ = 𝑓𝑓𝑘𝑘. 

The formula for the Q-statistic using a univariate approach is,  

𝑄𝑄𝑈𝑈𝑈𝑈𝑈𝑈 = ∑ 𝑤𝑤𝑖𝑖�𝑦𝑦𝑖𝑖 − �̂�𝛽𝐹𝐹�
2𝑘𝑘

𝑖𝑖=1 , 

where the Q-statistic has a chi-square distribution with (𝑘𝑘 − 1) degrees of freedom. 
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In the multivariate case, the null hypothesis for the test of homogeneity is,  

𝐻𝐻0:𝛽𝛽𝐹𝐹 = 𝑿𝑿1𝒇𝒇1 = 𝑿𝑿2𝒇𝒇2 = ⋯ = 𝑿𝑿𝑘𝑘𝒇𝒇𝑘𝑘  . 

The formula for the Q-statistic using a multivariate approach is, 

𝑄𝑄𝑀𝑀𝑈𝑈𝐺𝐺 = �𝒚𝒚 − 𝑿𝑿�̂�𝛽𝐹𝐹�
𝑇𝑇
𝑽𝑽−1(𝒚𝒚 − 𝑿𝑿�̂�𝛽𝐹𝐹), 

where the Q-statistic is approximately distributed as a chi-square distribution with 

∑ 𝑝𝑝𝑖𝑖𝑘𝑘
𝑖𝑖=1 − 𝑝𝑝 degrees of freedom in large samples. A statistically significant result 

(rejection of the null hypothesis) may indicate that the studies are not from the same 

population, however the p-value to this test does not quantify the magnitude of 

heterogeneity between studies (only that they are not the same).  

Quantifying the Percentage of Variance  

To quantify the percentage of heterogeneity between studies, the 𝐼𝐼2 index is one 

of the most common measures, which was defined by Higgins and Thompson (2002). 

The general formula is,  

𝐼𝐼2 = 𝜏𝜏�2

𝜏𝜏�2+𝑣𝑣�
= ∑𝑄𝑄−𝑚𝑚𝑑𝑑

𝑄𝑄
× 100%, 

where 𝑣𝑣� is a typical within-study sampling variance.  

In the multivariate case,  

𝐼𝐼𝑄𝑄(𝑀𝑀𝑈𝑈𝐺𝐺)
2 = 1 − 𝑚𝑚𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀

𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀
, 

where 𝑄𝑄𝑀𝑀𝑀𝑀𝑚𝑚 and 𝑑𝑑𝑓𝑓𝑀𝑀𝑀𝑀𝑚𝑚 are the Q-statistic and its degrees of freedom in testing the 

homogeneity of effect sizes.  

𝐼𝐼2 can be interpreted as the proportion of the total variation of the effect size that 

is due to the between-study heterogeneity. Another interpretation is the percent of effect 
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size variability which is not explained by sampling error. The scale of 𝐼𝐼2 has a range of 

0-100% and values of 25%, 50%, and 75% have been considered as low, moderate, and 

high levels of heterogeneity (Higgins et al, 2003).  

Quantifying Between-Studies Variance 

The last common measure of heterogeneity is 𝜏𝜏2, which represents the variance 

of the true effect sizes (i.e., the between studies variance). The scale of 𝜏𝜏2 can be 

interpreted in the same units as the effect size and as the average squared deviation. 

To estimate 𝜏𝜏2, we can use the formula,  

𝜏𝜏2 = 𝑄𝑄−𝑚𝑚𝑑𝑑
𝐶𝐶

, 

where 

𝐶𝐶 = ∑𝑊𝑊𝑖𝑖 −
∑𝑊𝑊𝑖𝑖

2

∑𝑊𝑊𝑖𝑖
. 

There have been several methods developed to estimate 𝜏𝜏2; the most common 

ways being the DerSimonian and Laird (1986) method, restricted maximum likelihood 

(REML) method, and the Paule-Mandel (1982) method. Stijnen, White, and Schmidt 

(2020) found from several simulation studies that the REML method is generally the 

recommended method for continuous outcomes. 

Structural Equation Modelling 

Kline (2016) described six basic steps in most SEM analyses: 1) specifying the 

model; 2) evaluating model identification; 3) selecting the measures and collect, prepare, 

and screen the data; 4) estimating the model; 5) respecifying the model, which is 

assumed to be identified; and 6) reporting the results. 
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When specifying the model, there are generally three types: path models, 

measurement models, and structural models. Path models are used to specify 

relationships among observed variables. Measurement models or confirmatory factor 

models (CFAs) are used to specify how observed variables are related to latent variables. 

Structural equation models are used to specify how latent variables are related to other 

latent variables.  

After specifying a model, the model needs to be identified before it can be 

estimated. A model is identified if it is theoretically possible to estimate every model 

parameter (Kline, 2016).  If the model is not identifiable, parameter estimates cannot be 

obtained therefore the model needs to be respecified. For path analysis, there are a few 

rules to help determine if a path model is identifiable. There are three identification rules 

for path models: the t-rule, the Null-B rule, and the Recursive rule (including the 

counting rule which applies to all SEMs).  

To obtain parameter estimates and test statistics, summary statistics (such as 

means, covariances, correlations, and standard deviations) can be used or the raw data 

can be used. The estimation is usually based on a discrepancy function (Browne, 1982). 

A discrepancy function returns a scalar value of the difference between the sample 

covariance matrix (and the means) and the model-implied covariance matrix (and 

means). If the discrepancy is zero, the model-implied covariance matrix and sample 

covariance are the same. The parameters are then estimated by minimizing the 

discrepancy function (Cheung, 2015).  
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The most popular estimation procedures include maximum likelihood estimation, 

weighted least squares estimation, and generalized least squares estimation. Maximum 

likelihood (ML) estimation is used the most when the data are distributed multivariate 

normal. The parameter estimates of the covariance structure can be obtained my 

minimizing the ML discrepancy function 𝐹𝐹𝑀𝑀𝐺𝐺(𝜃𝜃): 

𝐹𝐹𝑀𝑀𝐺𝐺(𝜃𝜃) = log|∑(𝜃𝜃)| + 𝑡𝑡𝑟𝑟(𝑆𝑆Σ(𝜃𝜃)−1) − log|𝑆𝑆| − 𝑝𝑝, 

where 𝑡𝑡𝑟𝑟(𝑋𝑋) is the trace of 𝑋𝑋 that takes the sum of the diagonal elements of 𝑋𝑋 and 𝑝𝑝 is 

the number of variables in the model. If the data is not normally distributed, weighted-

least squares (WLS) estimation can be used.  

Once the model is estimated, there are several indices to determine how well the 

model fits the data. These include the chi-square test, the comparative fit index (CFI) 

(Bentler, 1990), root mean square error of approximation (RMSEA) (Steiger, 1990), and 

the standardized root mean square residual (SRMR).  

The results of the chi-square test for overall fit indicate whether the model fits 

the data exactly. However, one limitation to this statistic is that it is sensitive to large 

sample sizes; therefore, the chi-square test will reject the null hypothesis every time if a 

sample size is very large. Thus, other goodness-of-fit indices (such as CFI, RMSEA, 

SRMR) can be used in addition to the chi-square test to determine the type of model fit. 

The CFI index compares the specified model with the worst, most restricted model, 

whereas the RMSEA and SRMR indices compare the specified model the saturated 

model. Generally, an RMSEA and SRMR value of less than 0.05 indicate good model 
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fit, while values less than 0.08 indicate fair fit; a CFI value greater than 0.95 indicates 

good model fit (Browne & Cudeck, 1993).  

 If the model fit is poor, the model can be respecified by adding or dropping paths 

using modification indices or expected parameter changes, however the decision to 

respecify should be theoretically sound and within the context the field.  

Multigroup SEM 

 The above description refers to a single group analysis. However, it is not 

uncommon for a SEM to be different for various samples. As an example, a simple path 

model consists of a child’s age and its effect on height in K-12. This path estimate may 

be different by gender. One way to assess this is to fit the model by separating the 

dataset by gender, fitting the model on both data sets, and then using the chi-square 

difference test to determine if the estimates parameters are the same.  

The fit function for multi-group SEM as written in Cheung (2015) to be 

minimized is:  

𝐹𝐹𝑀𝑀𝐺𝐺(𝜃𝜃) = ∑ �𝑛𝑛𝑖𝑖
𝑀𝑀𝑀𝑀−1�𝐹𝐹𝑖𝑖(𝜃𝜃)𝑘𝑘

𝑖𝑖=1
∑ (𝑛𝑛𝑖𝑖

𝑀𝑀𝑀𝑀−1)𝑘𝑘
𝑖𝑖=1

, 

where 𝐹𝐹𝑖𝑖(𝜃𝜃) is the fit function for the 𝑖𝑖th group.  

MASEM Approaches 

As previously stated in Chapter 1, there are two general approaches to MASEM: 

parameter-based and correlation-based (see Figures 1 and 2 in Chapter 1). In parameter-

based MASEM, the goal is to combine parameter estimates (e.g., factor loadings or path 

coefficients) across studies. In correlation-based MASEM, the goal is to first combine 

correlation matrices and then use the correlation matrix to fit a SEM. Correlation-based 
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MASEM has several advantages over parameter-based, which include are ease of use 

and the ability to quantify heterogeneity between studies. The most common MASEM 

approaches are the univariate r, univariate z, generalized least squares (GLS), and Two-

Stage SEM (TSSEM).  

Univariate Approaches 

The univariate approaches to MASEM are in two stages: pooling the correlation 

matrices across studies by using univariate methods, and then treating the pooled 

correlation matrix as the observed covariance matrix to fit a SEM. There are two 

commonly used univariate approaches; one approach synthesizes correlations (𝑟𝑟), 

whereas the second approach synthesizes Fisher’s z values.  

Stage 1: Combining Correlation Matrices using the Univariate R Approach 

Becker et al (2020) describe the univariate and multivariate approaches of 

combining correlation studies. For the univariate approach, assume that 𝐼𝐼 represents the 

total number of observed variables within a study and 𝑌𝑌1, … ,𝑌𝑌𝑈𝑈 represent the observed 

variables which are assumed to be normally distributed and statistically independent. 

The estimated correlation for the population correlation 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 between variables 𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑖𝑖 

in the 𝑖𝑖th study is represented by 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖. The sample size for the 𝑖𝑖th study is represented by 

𝑛𝑛𝑖𝑖. 

The assumption for the fixed-effect model is, 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖, 

where 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 represents within study error. The inverse-variance weighted mean 

correlation between 𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑖𝑖 is calculated by:   
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�̅�𝑟𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝐼𝐼
𝑖𝑖=1

, 

where  𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 = 1
𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖
2  and 𝑠𝑠𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

2 = �1−𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖
2 �

2

𝑛𝑛𝑖𝑖−1
. 

The assumption for the random-effects model is, 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖, 

where 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 represents the between study error. The bivariate-weighted mean correlation 

is calculated by:  

�̅�𝑟𝑅𝑅𝐹𝐹𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
∗ 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼

𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

∗𝐼𝐼
𝑖𝑖=1

, 

where 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 = 1
𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖
2 +𝜏𝜏�𝑟𝑟𝑖𝑖𝑖𝑖

2  with �̂�𝜏𝑖𝑖𝑖𝑖2  as the estimated between studies variance for the 

correlation between 𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑖𝑖, and 𝑠𝑠𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖
2 = �1−𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

2 �
2

𝑛𝑛𝑖𝑖−1
. 

Stage 1: Combining the Correlation Matrixes Using the Fisher’s z Approach  

 The correlation coefficient, 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖, is usually not used to calculate an overall effect 

size because the variance depends on the size of the correlation coefficient (Cooper et al, 

2019). Therefore, correlations are transformed into the Fisher’s 𝑧𝑧 scale, analysis is 

conducted, and then the result can be converted back into a correlation coefficient for 

interpretation. This approach was developed by Hedges and Olkin (1985).  

The Fisher’s 𝑧𝑧 transformation is,   

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 = 0.5 ln �1+𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖
1−𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

�, 

with variance  
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𝑠𝑠𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
2 =

1
𝑛𝑛𝑖𝑖 − 3

 

For fixed-effect models, the weighted mean correlation is calculated by:  

𝑧𝑧�̅�𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
+ 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼

𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

+𝐼𝐼
𝑖𝑖=1

, 

where 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
+ = 1

𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
2 and 𝑠𝑠𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖

2 = 1
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖−3

. 

 For random-effect models, the weighted mean correlation is calculated 

by,  

𝑧𝑧�̅�𝑅𝐹𝐹𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤++
𝑖𝑖𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼

𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

++𝐼𝐼
𝑖𝑖=1

, 

where 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
++ = 1

𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
2 +𝜏𝜏�𝑧𝑧𝑖𝑖𝑖𝑖

2  and 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖2 = 1
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖−3

. 

To transform the Fisher’s 𝑧𝑧 back to the correlation coefficient 𝑟𝑟, 

𝑟𝑟 = 𝑚𝑚2𝑧𝑧−1
𝑚𝑚2𝑧𝑧+1

. 

Stage 2: Fitting the SEM for the Univariate Approaches 

To fit the SEM, the pooled correlation matrix is treated as the observed 

covariance matrix and maximum likelihood is used for estimation . If there are no 

missing correlations, the sum of the sample sizes can be used; however, if correlations 

are missing, averages like the harmonic mean, arithmetic mean and median have been 

used (Cheung, 2015).  

The Two-Stage SEM Approach 

The Two-Stage Structural Equation Model, developed by Cheung & Chan 

(2005), uses SEM in both steps of the MASEM process. This is a unique approach that 
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models the meta-analysis with a SEM in addition to using SEM in the second stage. To 

obtain the correlation matrix, a multi-group SEM is conducted to first determine if there 

is homogeneity between studies. To test for homogeneity, the Likelihood-Ratio (LR) 

statistic and goodness-of-fit indices in SEM are used. If the test of homogeneity suggests 

that the correlation matrices are the same, this implies a fixed-effect model may be 

appropriate and the corresponding correlation matrix where the SEM paths were 

contained to be equal is used for stage 2.  

Stage 1: Pooled Correlation Matrix in Fixed-Effect TSSEM 

 From Cheung (2005), the covariance matrix can be decomposed into the matrices 

of standard deviations and correlations such that,  

𝚺𝚺𝑔𝑔 = 𝑫𝑫𝑔𝑔𝑷𝑷𝑔𝑔𝑫𝑫𝑔𝑔𝑇𝑇, 

and 𝐷𝐷𝑖𝑖𝑣𝑣𝑔𝑔[𝑃𝑃𝑔𝑔] are 1’s where 𝐷𝐷𝑔𝑔 is the 𝑝𝑝𝑔𝑔𝑥𝑥𝑝𝑝𝑔𝑔 diagonal matrix of standard deviations 

and the 𝑃𝑃𝑔𝑔 is the 𝑝𝑝𝑔𝑔𝑥𝑥𝑝𝑝𝑔𝑔 correlation matrix in the 𝑔𝑔th study, respectively. Equation 38 is 

equivalent to a CFA model with, 

∑(𝜽𝜽)𝑔𝑔 = 𝚲𝚲𝑔𝑔𝚽𝚽𝑔𝑔𝚲𝚲𝑔𝑔𝑇𝑇 + 𝚿𝚿𝑔𝑔, 

where 𝚲𝚲, 𝚽𝚽, and 𝚿𝚿 are the factor loadings, factor covariance, and error variance 

matrices, respectively. Then using the previous equation, 𝚲𝚲𝑔𝑔 is a 𝑝𝑝𝑔𝑔 × 𝑝𝑝𝑔𝑔 diagonal 

matrix (the standard deviation matrix 𝑫𝑫𝑔𝑔), 𝚽𝚽𝒈𝒈is a 𝑝𝑝𝑔𝑔 × 𝑝𝑝𝑔𝑔 standardized matrix (the 

correlation matrix 𝑷𝑷𝑔𝑔), and 𝚿𝚿𝑔𝑔 is a 𝑝𝑝𝑔𝑔 × 𝑝𝑝𝑔𝑔 zero matrix.  

 To obtain the estimated pooled correlation matrix, all the factor correlation 

matrices 𝚽𝚽𝑔𝑔 must be equal. To test whether the correlation matrices are the same, 
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suggesting a fixed-effect model, a multigroup SEM can be conducted. The number of 

constraints imposed is,  

∑ 𝑝𝑝𝑔𝑔(𝑝𝑝𝑔𝑔−1)
2

− 𝑝𝑝(𝑝𝑝−1)
2

𝐾𝐾
𝑔𝑔=1 . 

 A chi-square difference test can be used to evaluate the equality constraints by 

comparing the model with constraints on the equality of correlation matrices against the 

model without constraints. The test statistic is asymptotically distributed as a chi-square 

with degrees of freedom  

∑ 𝑝𝑝𝑔𝑔(𝑝𝑝𝑔𝑔−1)
2

− 𝑝𝑝(𝑝𝑝−1)
2

𝐾𝐾
𝑔𝑔=1 . 

Moreover, goodness of fit indices can also be used to evaluate the model fit. The 

estimate 𝑃𝑃� is the pooled correlation matrix and the asymptotic covariance matrix of 

parameter estimates 𝑉𝑉�  is the asymptotic covariance matrix of the pooled correlation 

matrix.  

 When the hypothesis of homogeneity of the correlation matrices is not rejected, 

we can use the estimate of the pooled correlation matrix 𝑃𝑃� to fit SEM in stage 2. If the 

studies are heterogeneous, then random-effects TSSEM should be used.  

Stage 1: Pooled Correlation Matrix in Random-Effects TSSEM 

 For the random-effects TSSEM approach, Cheung (2015) uses multivariate meta-

analysis as the first step to combine correlation matrices, then fits a SEM with the pooled 

correlation matrix using the same steps as the fixed-effect TSSEM in stage 2.  

The multivariate random-effects model can be calculated either using a GLS 

approach (Becker, 1992) or can be calculated using an SEM approach (Cheung, 2015). 
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Therefore, for the first stage of random-effects TSSEM, the known sampling covariance 

matrix 𝑉𝑉𝑖𝑖 in each study needs to be estimated using the formula  

𝐶𝐶𝐶𝐶𝑣𝑣�𝑟𝑟𝑖𝑖𝑖𝑖, 𝑟𝑟𝑘𝑘𝑚𝑚� =

0.5𝜌𝜌𝑖𝑖𝑖𝑖𝜌𝜌𝑘𝑘𝑘𝑘�𝜌𝜌𝑖𝑖𝑘𝑘
2 +𝜌𝜌𝑖𝑖𝑘𝑘

2+𝜌𝜌𝑖𝑖𝑘𝑘
2 +𝜌𝜌𝑖𝑖𝑘𝑘

2 �+𝜌𝜌𝑖𝑖𝑘𝑘𝜌𝜌𝑖𝑖𝑘𝑘+𝜌𝜌𝑖𝑖𝑘𝑘𝜌𝜌𝑖𝑖𝑘𝑘−�𝜌𝜌𝑖𝑖𝑖𝑖𝜌𝜌𝑖𝑖𝑘𝑘𝜌𝜌𝑖𝑖𝑘𝑘+𝜌𝜌𝑖𝑖𝑖𝑖𝜌𝜌𝑖𝑖𝑘𝑘𝜌𝜌𝑖𝑖𝑘𝑘+𝜌𝜌𝑖𝑖𝑘𝑘𝜌𝜌𝑖𝑖𝑘𝑘𝜌𝜌𝑘𝑘𝑘𝑘+𝜌𝜌𝑖𝑖𝑘𝑘𝜌𝜌𝑖𝑖𝑘𝑘𝜌𝜌𝑖𝑖𝑘𝑘�

𝑛𝑛
 . 

 Then, a multivariate meta-analysis can be conducted using the correlation 

matrices and estimated sampling covariance matrix. 

 The average correlation matrix 𝒑𝒑�𝑹𝑹 based on a random-effects model and its 

asymptotic sampling covariance matrix 𝑽𝑽�𝑹𝑹 are estimated. Multivariate heterogeneity 

indices can be used to determine if the correlation matrices are the same across studies.  

Stage 2: Fitting the SEM for the TSSEM approach 

The second stage of fitting an SEM on the pooled correlation matrices is the 

same for the fixed-effect and random-effects TSSEM approaches. For the second stage, 

the weighted least squares (WLS) estimation method is used. After analysis from Stage 

1, we have the estimate of the pooled 𝑝𝑝 × 𝑝𝑝 correlation matrix with its  

𝑝𝑝(𝑝𝑝 − 1)
2

×
𝑝𝑝(𝑝𝑝 − 1)

2
 

asymptotic covariance matrix of parameter estimates 𝑽𝑽� and the total sample size 𝑁𝑁, 

which equals the sum of all sample sizes, that is,  

𝑁𝑁 = ∑ 𝑛𝑛𝑔𝑔𝐾𝐾
𝑔𝑔=1 .  

The discrepancy function is, 
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𝐹𝐹(𝜸𝜸) = �𝒓𝒓∗ − 𝝆𝝆(𝜸𝜸)�
𝑇𝑇
𝑽𝑽�−1(𝒓𝒓∗ − 𝝆𝝆(𝜸𝜸)) 

where 𝒓𝒓∗ and 𝝆𝝆(𝜸𝜸) are the 𝑝𝑝′ × 1 vectors of 𝑝𝑝′ = 𝑝𝑝(𝑝𝑝−1)
2

 elements obtained by straining 

out the lower triangular elements, excluding the diagonals in the sample and the implied 

correlation matrices 𝑅𝑅 and 𝑃𝑃(𝛾𝛾), respectively. 𝑽𝑽� is the 𝑝𝑝′ × 𝑝𝑝′ weight matrix estimated 

from the first stage and 𝛾𝛾 is a structural parameter vector.  

The One-Stage MASEM Approach 

Fixed-Effect One-Stage MASEM 

Oort and Jak (2016) proposed a fixed-effect ML approach to MASEM that Jak 

and Cheung (2020) refer to as a fixed-effect one-stage MASEM (OSMASEM). 

Although their approach is like the first stage of TSSEM, one notable difference is that 

the study correlation matrices are used throughout the analysis, instead of a pooled 

correlation matrix being obtained in “stage 1”. Additionally, ML estimation is used 

throughout their approach, whereas WLS estimation was used in the second stage of 

TSSEM.  

The OSMASEM approach compares three nested SEMs: 1) a saturated model, 2) 

a multi-group model, and 3) a multi-group model that uses the model implied correlation 

matrix from 2). Let 𝑝𝑝𝑔𝑔 be the number of observed variables in the 𝑔𝑔th study. Further, let 

𝑞𝑞 represent the number of all variables. Some studies may be missing some variables and 

correlations, therefore 𝑝𝑝𝑔𝑔 ≤ 𝑞𝑞. The saturated model is,  
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𝚺𝚺𝑔𝑔 = 𝑫𝑫𝑔𝑔𝑷𝑷𝑔𝑔𝑫𝑫𝑔𝑔
𝑇𝑇, 

where 𝑷𝑷𝑔𝑔 is a  𝑝𝑝𝑔𝑔 × 𝑝𝑝𝑔𝑔 correlation matrix for the 𝑔𝑔th study and 𝐷𝐷𝑔𝑔 is a 𝑝𝑝𝑔𝑔 × 𝑝𝑝𝑔𝑔 matrix 

that accounts for differences in scaling of the variables across 𝐺𝐺 studies.  

The multi-group model used to test for homogeneity is, 

𝚺𝚺𝑔𝑔 = 𝑫𝑫𝑔𝑔�𝑴𝑴𝑔𝑔𝑷𝑷𝑴𝑴𝑔𝑔
𝑇𝑇�𝑫𝑫𝑔𝑔, 

where 𝑷𝑷 is a 𝑞𝑞 × 𝑞𝑞 population correlation matrix with diagonals equal to 1, 𝑴𝑴𝒈𝒈 is a 

𝑝𝑝𝑔𝑔 × 𝑞𝑞 selection matrix to obtain the observed correlations, and 𝑫𝑫𝑔𝑔 is a 𝑝𝑝𝑔𝑔 × 𝑝𝑝𝑔𝑔 matrix 

that accounts for differences in scaling of the variables across 𝐺𝐺 studies. 

The third model is to test the model fit of the SEM is, 

𝚺𝚺𝑔𝑔 = 𝑫𝑫𝑔𝑔�𝑴𝑴𝒈𝒈𝑷𝑷𝒎𝒎𝒎𝒎𝒎𝒎𝒆𝒆𝒎𝒎𝑴𝑴𝑔𝑔
𝑇𝑇�𝑫𝑫𝒈𝒈, 

where 𝑷𝑷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the model implied correlation matrix. 

Therefore, the test for homogeneity uses a chi-square difference test and LR test 

between the first and second models. If there is evidence to suggest homogeneity across 

correlation matrices, then the second and third models are used in a chi-square difference 

test and likelihood ratio test to determine overall model fit.  

Random-Effects One-Stage MASEM 

 In one-stage MASEM, Jak and Cheung (2020) consider the correlation 

coefficients as the “variables” and the studies as “subjects” in the data set. OSMASEM 

fits the SEM by restricting the pooled correlations in the multivariate random-effects 

model. In its simplest form, the random-effects model decomposes the vector 𝑟𝑟𝑖𝑖 of 

observed correlation coefficients for a study 𝑖𝑖 into three parts:  
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𝒓𝒓𝒊𝒊 = 𝝆𝝆𝑹𝑹 + 𝒖𝒖𝒊𝒊 + 𝜺𝜺𝑖𝑖, 

where 𝝆𝝆𝑹𝑹 indicates the mean vector of the correlation coefficients, 𝒖𝒖𝒊𝒊 is a vector of 

deviations of study 𝑖𝑖′𝑠𝑠 population correlation coefficients from 𝝆𝝆𝑹𝑹, and 𝜺𝜺𝒊𝒊 is a vector 

with the sampling error of study 𝑖𝑖. The term 𝐶𝐶𝐶𝐶𝑣𝑣(𝑢𝑢𝑖𝑖) = 𝑇𝑇2 denotes the between-studies 

covariance matrix that must be estimated, and 𝐶𝐶𝐶𝐶𝑣𝑣(𝜀𝜀𝑖𝑖) = 𝑉𝑉𝑖𝑖 denotes the sampling 

covariance of the correlation coefficients, which is usually treated as known in a meta-

analysis.  

 For example, a path model is nested under the previous equation by restricting 

𝝆𝝆𝑹𝑹: 

𝝆𝝆𝑹𝑹 = 𝑣𝑣𝑒𝑒𝑣𝑣ℎ𝑠𝑠(𝑭𝑭(𝑰𝑰 − 𝑨𝑨)−1𝑺𝑺(𝑰𝑰 − 𝑨𝑨)−1𝑇𝑇𝑭𝑭𝑇𝑇) 

where using the RAM formulation, 𝑰𝑰 is an identity matrix, 𝑭𝑭 is a selection matrix with 

1’s for observed variables and 0’s for latent variables, 𝑨𝑨 is a square matrix with 

asymmetric paths, 𝑺𝑺 is a symmetrical matrix with variances and covariances, and 

𝑣𝑣𝑒𝑒𝑣𝑣ℎ𝑠𝑠(∙) vectorized the lower diagonal of its argument.  

 In general, for models with 𝑝𝑝 observed variables, 𝝆𝝆𝑹𝑹 will be a 𝑝𝑝 × (𝑝𝑝 − 1)/2 

dimensional column vector, and 𝑨𝑨, 𝑺𝑺, and 𝑭𝑭, will be of dimension 𝑝𝑝 × 𝑝𝑝. Because we are 

using correlation matrices as inputs, the variances of the exogeneous variables are fixed 

at 1 and the diagonal elements of the model implied correlation matrix in the above 

equation should always be equal to one during estimation.  

 All model parameters are estimated with full information maximum likelihood 

(FIML). A test statistic of the hypothesized model can be obtained by performing a 

likelihood ratio test with the saturated model, similar to Oort and Jak (2016).  
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Comparison of Approaches 

Overall, several simulation studies suggest that when within study sample size is 

large, parameter estimates, and their standard errors are similar. However, if the within 

study sample size is not large, there are notable discrepancies between each approach’s 

performance.  

Cheung and Chan (2005) compared the univariate r, univariate z, generalized 

least squares (GLS), and Two-Stage SEM (TSSEM) fixed-effect approaches in a 

simulation study with an empirical example. They ultimately concluded that the 

univariate r, univariate z, and TSSEM approaches performed well enough that any of the 

three methods could be used in stage 1; however, they recommended that the TSSEM 

approach be used in stage 2 as the goodness-of-fit indices performed better compared to 

the univariate and GLS approach.    

Jak and Cheung (2020) compared a subgroup TSSEM approach (Jak & Cheung, 

2018) and OSMASEM approach using an empirical example and by conducting a 

simulation analysis. In their empirical analysis, they found that parameter estimates, and 

standard errors were the same for each approach when moderators were not accounted 

for. Additionally, the 𝜏𝜏2 values were the same as well. For factor analysis, the model fit 

was good with almost identical fit-statistics, parameter estimates, and standard errors for 

a bi-factor model.  

Oort and Jak (2016) conducted a simulation study comparing the fixed-effect 

OSMASEM and fixed-effect TSSEM. Overall, they found that the OSMASEM and 

TSSEM generally yielded very similar results, although the OSMASEM parameter 
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estimates were significantly less biased when sample sizes are small. Test statistics, 

confidence intervals, false positive rates, and true positive rates did not differ between 

the two methods.  

Cho (2015) using simulations to compare the factor loadings and standard errors 

of four fixed-effect univariate approaches and two fixed-effect multivariate approaches. 

The main takeaways from this study were that when sample sizes were large (within 

studies sample size of 𝑛𝑛 > 150), the results across all seven approaches seemed to be 

similar; however, this was not the case when sample sizes were small.   

Zhang (2011) compared three different multivariate approaches; the traditional 

GLS approach, a modified GLS approach, and the TSSEM approach for both fixed and 

random effects using simulation analysis. The results show that the modified GLS 

approach performs as well as or better than the TSSEM approach in both the first and 

second stages for both fixed-effect and random-effects data. The original GLS only 

performs well when the within study sample size is large enough. Both the modified 

GLS approach and the TSSEM approach produce equivalent parameter estimates across 

all conditions, however the standard errors from the TSSEM approach seem to be over-

estimates under certain conditions.  

Applying MASEM to Two-Year College Student Success   

Student success is a term used at every level of education. Helping students 

progress through their educational programs and attain degrees results not only in better 

quality of life for students, but benefits society as well (Chen et al., 2020; Hussar et al., 

2020; Ma et al., 2019). In higher education, persistence and retention are terms often 
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used synonymously to describe the progress a student makes throughout their 

educational journey. Although other metrics such as human capital and student learning 

outcomes are used to measure student success, the most popular metrics used by 

institutions to measure persistence or retention are by the number of credits enrolled in 

each semester, enrollment from semester to semester, degree attainment, and graduation 

rates (Baldwin, Bensimon, Dowd & Kleiman, 2011; Mortenson, 2005; Mullin, 2012). 

Overall, these metrics aim to identify the students who are progressing well throughout 

their educational journeys, as well as those who are not progressing well with the intent 

to identify and develop interventions to help these students succeed. This can prove to be 

a complex task as students do not always move linearly throughout their educational 

careers; some students may transfer, or some students may need a break from school 

only to return years later.  

Because two-year colleges generally have an “open-door” admissions process, it 

is expected that the student populations between a two- and a four-year institutions will 

not be the same. Two-year institutions were comprised of almost 63% of part-time 

students, whereas four-year institutions were comprised of 29% of part-time students in 

2018 (National Center for Education Statistics, 2019, Table 303.30). Additionally, two-

year colleges generally serve a higher proportion of first-generation students, 

underrepresented minority students (such as African American and Hispanic students), 

and students who achieved a high school grade point average less than 3.0 (Crisp & 

Mena, 2012).  Another notable difference in the student populations served are their 

goals. Two-year colleges enroll more transfer students, vocational students, 
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developmental student, community education students, dual enrollment students and 

English as a Second Language students compared to four-year institutions (Crisp & 

Mena, 2012).  

In summary, when compared to four-year students, 2-year students are more 

likely to be: African American or Hispanic; financially independent; first-generation 

college students; less academically prepared; working part-or full-time during college; 

having lower degree aspirations; attending part-time; delaying enrollment into college 

following high school; receiving less financial aid; and earning a lower GPA during the 

first year of college (Astin and Oseguera, 2012). Because of these differences, it can be 

hypothesized that academic and social integration will have different impacts on students 

compared to the four-year student which most research is based on. 

Student Background Characteristics and Institutional Characteristics 

Researchers have repeatedly found that students’ chances of degree attainment 

are substantially impacted by student background characteristics too. Astin and Oseguera 

(2012) conducted a longitudinal analysis to determine how pre-college characteristics, 

the characteristics of the college, and the college environment impacted the chances of 

degree completion. They found that high school grade average to be the strongest pre-

college predictor of the student’s chances of completing a bachelor’s degree within four 

or six years after starting college. The institutional characteristic with the strongest effect 

was selectivity with the more selective the institution, the better the student’s chances of 

finishing. This of course creates a unique challenge for two-year institutions who have 

an open-door policy.  
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Research has also looked heavily into institutional characteristics that impact 

student retention and graduation, as well as student characteristics. This includes 

researchers who study the individual effectiveness of programs and practices (Tinto, 

2012a; Ziskin et al., 2012). For example, it is well known that first-year retention is a 

significant predictor in graduation (Schneider, 2010; Tinto, 2012a). Therefore, 

interventions focused on first-year experiences, such as freshman seminars and learning 

communities, tend to increase retention by assisting students in their transition to college 

both socially and academically (Braunstein & McGrath, 1997; Mertes & Hoover, 2014; 

Tinto, 2012a). Tinto (2012b) theorized that support, expectations, involvement, and 

feedback are essential elements that together contribute to student success. These four 

elements, in addition to student background characteristics, are the core of his Model of 

Institutional Action (Tinto, 2012a). Each of these elements can be found at varying 

levels at an institution, from administrative departments to classrooms. For two-year 

college students, most of these criteria are focused on the classroom level (where most 

student experiences are formed, especially for two-year college students), however they 

can be extended to the administration level as well, such as advising and financial 

support.  

Academic and Social Integration on Student Success 

Institutions were mainly concerned with enrollment and curriculum development 

up until the 1930s, when retention research began. (Berger & Lyon, 2005, as cited in 

Morrison & Silverman, 2012).  Seminal theories regarding student retention include the 

work of Spady (1970), Tinto (1975, 1993), Bean and Metzner (1985), and Seidman 
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(2005). These researchers identified and formalized concepts of social and academic 

integration and their relation to student persistence and retention, as well as extending 

student retention research to non-traditional students and institutional program 

evaluation (Morrison & Silverman, 2012).  Academic integration can be defined as 

student interactions and experiences relating to academic and intellectual development, 

particularly with faculty and staff (Henningsen, 2003). Social integration are student 

interactions and experiences with peers and faculty (generally informal interactions) 

(Henningsen, 2003). 

Spady (1970) and Tinto (1975, 1993) posited that the social and academic 

experiences of students shaped whether they decided to persist or to drop out. In early 

retention research, institutional and student characteristics from the institution were 

frequently used (Morrison & Silverman, 2012). However, Spady (1970) introduced a 

model that related academic systems (such as grade performance and academic 

potential) with social systems (such as social integration and friendship support) and 

examined their impacts on institutional commitment and ultimately on a dropout 

decision. Most notable about his work was how he used an interdisciplinary approach, 

namely the framework from Durkheim (1961)’s theory of suicide, to examine student 

departure. Bean and Metzner (1985) studied non-traditional students (defined as older, 

part-time, and commuter students) and the relationship between student background 

variables, academic variables, environmental variables, and psychological outcomes on 

dropout. Seidman (2005) discussed the impact of early intervention using the Seidman 

formula, which aims to identify students who need academic or social assistance as soon 
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as possible to increase retention.  Tinto (1993) extended Durkheim (1961)’s theory of 

suicide and Van Gennep (1960)’s three stages of establishing membership in traditional 

societies to develop one of the most cited theories of student persistence. His model 

provided a longitudinal perspective and process that highlighted the impact of social and 

academic integration on student departure.  

The overarching idea is that students who are generally more integrated 

academically and socially tend to have better outcomes, such as persisting and degree 

completion. Several studies have found the impact of social and academic integration on 

student retention and graduation rates (Barbera et al., 2020; Braxton, 2004; Dolan, 2019; 

Fung, 2010; Tinto, 1993; Spady, 1970). For two-year institutions, it appears that 

academic integration is more impactful than social integration (compared to four-year 

students) as two-year institutions serve more part-time students, older students with 

familial duties, and working students who may not have time to interact socially (Bean 

& Metzner, 1985; Braxton, 2004; Yu, 2015). Subsequently, it has been found that 

faculty interactions and classroom experiences heavily impact student success for 

students attending two-year institutions (Tinto, 2012a).  
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CHAPTER III  

METHODS 

 

Literature Search and Database Development 

 The following databases were used for searching articles: Education Resources 

Information Center (ERIC) for education-related articles, PsychINFO for behavioral and 

social science related articles, and ProQuest to include non-peer reviewed studies.  

The following keywords were used with the “AND” and “OR” functions. Each 

term within a column was searched using the “OR” function and “AND” was used 

between columns. A narrow search was first conducted using columns 1-7 from Table 3 

in Appendix A. Then, column 7 was dropped, and columns 2 and 3 were dropped in two 

subsequent searches to broaden the search. One search was conducted using Table 2 in 

Appendix A using all key terms. Qualitative studies (key terms: qualitative methods OR 

qualitative research OR qualitative study OR interview) were excluded. Lastly, only 

linked full text studies were searched and included.  

Inclusion/Exclusion Criteria & Coding Procedure 

After all studies from the search were collected, titles were screened, and each 

study was briefly reviewed. To be included in the analysis, studies needed the following 

information: (1) contain at least 1 student success metric relating to retention or 

persistence; (2) contain a full correlation matrix; (3) publication type was either a journal 

article or doctoral dissertation; (3) published in English; (4) U.S. based study; (5) 

included at least either student background characteristics, or institutional characteristic 
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measures; (6) included both academic and social integrations measures; and, (7) 

population was comprised of only two year college students. 

Studies were excluded if they were not sufficient to the purpose of this 

dissertation using the following exclusion criteria: (1) qualitative studies; (2) population 

was comprised of four year students only or a mix of two year and four year students; (1) 

non-academic papers or articles (e.g., magazines, videos, audio, newspapers, wire feeds, 

blogs, podcasts); (2) did not include student success measures relating to persistence or 

retention; (3) using academic performance (such as GPA) as a success measure (4) did 

not contain student background, institutional characteristics, academic or social 

integration information; (4) studies that did not include a full correlation matrix; (5) 

international studies.  

 An initial search gathered 454 studies. There were 13 additional studies found by 

searching through references and other related studies. A total of 398 studies remained 

after duplicates were removed. After initial title and abstract screening, 351 studies were 

excluded, and 47 studies remained for full-text assessment. Of the 47 studies, a 

remaining 25 studies were determined to contain sufficient information to be coded. See 

Figure 4 for the PRISMA diagram (Page et.al, 2021).  

For the coding procedure, variables were coded based on how each study 

classified each construct. If the authors did not clearly define constructs, definitions 

based on the literature review were used to code studies. Any disagreements between 

definitions were defaulted to author’s definitions in the study. From each study, the 

correlations between exogenous and endogenous variables were obtained. The arithmetic 
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mean was used to combine correlations if multiple variables were reported to measure 

the exogenous/endogenous variables unless otherwise specified. If a study described a 

procedure for calculating the correlation between exogenous/endogenous variables, it 

was used instead of the arithmetic mean.  

 

Figure 4: PRISMA diagram 
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Description of the Sample  

A total of 25 studies were included in this MASEM. The year of publication 

ranged from 1985 to 2013, with the median and mean year of publication 2000 and 

2001, respectively. The total sample size across studies was 15,274. There were 22 

dissertations and 3 peer-reviewed journal articles.  

Student Success 

Of the 25 studies in the sample, 60% of studies (n = 15) reported subsequent 

semester and/or year enrollment (persistence) as a student success measure (Bengfort, 

2012; Brown, 2007; Henningsen, 2003; Hillard, 1996; Jumpeter, 2005; Myers, 2001; 

Nakajima, 2008; Nippert, 2000; Nora, 1985; Pascarella et al, 1986; Pearl, 1993; 

Pietropaolo, 1994; Santos-George, 2012; Stryker, 1997; White, 1998).  

36% of the studies (n = 9) used degree attainment/graduation as a student success 

measure (Barnhart, 2011; Bengfort, 2012; McNeil, 1997; Nakajima, 2008; Napoli & 

Wortman, 1998; Nippert, 2000; Pascarella et al 1986; Santos-George, 2012; Showalter, 

2002). 8% of the studies (n = 2) used persistence within a course as a success measure 

(Aycock, 2011; Hoffman, 1998) and 8% (n=2) used transferring to another higher 

education institution as a success measure (Kraemer, 1993; Santos-George, 2012).  

Student Background Characteristics 

Several variables were reported to be classified as student background 

characteristics. The most common variables included were age (68% of studies, n = 17), 

gender (60% of studies, n = 15), and ethnicity/race (64% of studies, n = 16) (Aycock, 

2011; Barnhart, 2011; Bengfort, 2012, Brown, 2007; Damon, 1996; Hackett, 2011; 
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Hillard, 1996; Hoffman, 1998; McNeil, 1997; Myers, 2001; Nakajima, 2008; Napoli & 

Wortman, 1998; Nippert, 2000; Nora, 1985; Pascarella et al, 1986; Pearl, 1993; 

Pietropaolo, 1994; Santos-George, 2012, Showalter, 2002; Stryker, 1997; Tovar, 2013; 

White, 1998).  

The next most frequently reported variables were related to prior high school 

performance metrics and other pre-college entry characteristics. 48% of the studies (n = 

12) included variables such as high school GPA, high school ranking, prior performance 

on English and Math assessments, prior skill and abilities, and high school diploma as 

student background characteristics (Aycock, 2011; Brown, 2007; Damon, 1996; McNeil, 

1997; Nakajima, 2008; Napoli & Wortman, 1998; Nippert, 2000; Nora, 1985; Pascarella 

et al, 1986; Pearl, 1993; Santos-George, 2012). 44% of the studies (n = 11) reported pre-

college entry characteristics such as expected degree earned, major at the time of 

enrollment, and enrollment status (Barnhart, 2011; Brown, 2007; Damon, 1996; McNeil, 

1997; Nakajima, 2008; Napoli & Wortman, 1998; Nora, 1985; Pascarella et al, 1986; 

Pearl, 1993; Pietropaolo, 1994; White, 1998).  

32% (n = 8) of studies included pre-college standardized assessments (e.g., 

placement exams, pre-tests, ACT scores, SAT scores) as student background 

characteristics (Hoffman; 1998; Jumpeter, 2005; Kraemer, 1993; Myers, 2001; Napoli & 

Wortman, 1998; Santos-George, 2012; Showalter, 2002; Stryker, 1997).  

28% (n = 7) of studies included other external variables such as parental 

education, marital status, housing status, and socio-economic status as background 
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variables (Barnhart, 2011; Brown, 2007; Napoli & Wortman, 1998; Nora, 1985; 

Pietropaolo, 1994; Santos-George, 2012).  

Lastly, 12% of studies (n = 3) reported additional variables such as 1st generation 

status, prior on campus experiences, and high school social accomplishments as 

background characteristics (Aycock, 2011; Damon, 1996; Pascarella, 1986).  

Institutional Characteristics 

Institutional characteristics was the only construct to have missing correlations. 

Of the 25 studies, 8 did not report institutional characteristics. Of the 17 studies that did 

report institutional characteristics, almost 65% of the studies (n = 11) reported student 

satisfaction measures with campus characteristics such as campus size, reputation, 

campus climate, and academic/social satisfaction measures (Brown, 2007; Hackett, 

2011; Jumpeter, 2005; Kraemer, 1993; Napoli & Wortman, 1998; Nippert, 2000; Nora, 

1985;  Pascarella et al, 1986; Pearl, 1993; Tovar, 2013; White, 1998).  

Roughly 35% of the studies (n = 6) reported use and satisfaction with advising, 

counseling, academic and social services, and course availability as institutional 

characteristics (Aycock, 2011; Bengfort, 2012; Hillard, 1996; McNeil, 1997; Nakajima, 

2008; Stryker, 1997).   

Academic Integration 

Academic Integration was defined in five major ways. 60% (n = 15 studies) 

included faculty-student interactions (both inside and outside of the classroom) in the 

definition of academic integration (Aycock, 2011; Barnhart, 2011; Bengfort, 2012; 

Brown, 2007; Hackett, 2011; Henningsen, 2003; Hillard, 1996; Hoffman, 1998; 
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Jumpeter, 2005; McNeil, 1997; Myers, 2001; Nakajima, 2008; Santos-George, 2012; 

Showalter, 2002; White, 1998).  

48% of the studies (n  = 12) included academic experiences and activities such as 

meeting with an advisor, participating in class, participating in study groups and learning 

communities, and joining an honor society (Barnhart, 2011; Bengfort, 2012; Brown, 

2007; Damon, 1996; Kraemer, 1993; Napoli & Wortman, 1998; Nippert, 2000; 

Pascarella et al, 1986; Pearl, 1993; Stryker, 1997; Tovar, 2013). 48% of the studies (n = 

12) included college GPA or grades as measures of academic integration (Henningsen, 

2003; Hillard, 1996; Jumpeter, 2005; Kraemer, 1993; Najajima, 2008; Napoli & 

Wortman, 1998; Nippert, 2000; Nora, 1985; Pascarella et al, 1986; Pearl, 1993; Stryker, 

1997; Tovar, 2013).  

28% (n = 7) of the studies contained academic and intellectual development 

measures (e.g., study behaviors, intellectual growth questions) (Damon, 1996; 

Henningsen, 2003; Hoffman, 1998; Jumpeter, 2005; Nakajima, 2008; Napoli & 

Wortman, 1998; White, 1998).  Lastly, 8% (n = 2) of the studies reported hours/credits 

enrolled as part of academic integration (Nora, 1985; Pietropaolo, 1994).   

Social Integration 

Social integration measures generally fell within three main categories. 72% (n = 

18) of the studies reported participation and/or satisfaction in extracurriculars and social 

events on campus (e.g., clubs, sports, fine arts, fraternity/sorority) was a measure of 

social integration (Aycock, 2011; Barnhart, 2011; Bengfort, 2012; Brown, 2008; Damon, 

1996; Hackett, 2011; Henningsen, 2003; Jumpeter, 2005; Kraemer, 1993; Myers, 22001; 
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Nakajima, 2008; Napoli & Wortman, 1998; Nippert, 2000; Pearl, 1993; Showalter, 

2002; Stryker, 1997; Tovar, 2013; White, 1998).  

56% of studies (n = 14) reported perceptions of and quality of the interactions 

with friends and peer groups (Brown, 2007; Damon, 1996; Hackett, 2011; Hillard, 1996; 

Hoffman, 1998; Jumpeter, 2005; Kraemer, 1993; McNeil, 1997; Napoli & Wortman, 

1998); Nora, 1985; Pascarella et al, 1986; Pearl, 1993; Pietropaolo, 1994; Tovar, 2013).  

32% of the studies (n = 8) reported informal faculty and staff interactions as 

social integration (Hillard, 1996; Kraemer, 1993; McNeil, 1997; Napoli & Wortman, 

1998; Nora, 1985; Pascarella et al, 1986; Peal, 1993; Santos-George, 2012, White, 

1998). Lastly, 8% of the studies (n = 2) reported sense of belonging and self-efficacy 

measures as social integration (Henningsen, 2003; Myers, 2001).  

Data Analysis  

After coding the studies, a full correlation matrix was obtained from each study. 

Then, descriptive statistics were calculated (sample size, mean, standard deviation, five-

number summary, skewness and kurtosis) and QQ-plots and histograms were generated 

to observe the data for any non-normality. Univariate normality tests (e.g., Shapiro-Wilk 

test and Anderson-Darling test) as well as multivariate normality tests (Henze-Zirkler, 

Mardia’s Skewness and Kurtosis, Royston, Doornik-Hansen, and E-Statistic) were 

conducted as well to check for any normality concerns as well.  

 Then, eight different approaches were used to conduct a MASEM; fixed-effect 

univariate r approach, random-effects univariate r approach, fixed-effect univariate z 

approach, random-effects univariate z approach, fixed-effect TSSEM approach, random-
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effects TSSEM approach, fixed-effect OSMASEM approach, and random-effects 

OSMASEM approach. See Chapter 2 for descriptions of each method.  

 In the first stage for the univariate r, univariate z, and TSSEM MASEM 

approaches, pooled correlations were calculated and a forest plot was constructed to 

visually inspect the relative strength and heterogeneity of each set of correlations. 

Heterogeneity indices (Q-statistic, 𝐼𝐼2 index, estimated 𝜏𝜏2, and estimated 𝜏𝜏) were 

calculated to estimate heterogeneity between studies. Then, a path model was fitted to 

the data. For the fixed-effect TSSEM approach, multi-group SEM was used to determine 

if the correlation matrices were the same across studies. As the random-effects 

OSMASEM is a single step, the estimated 𝜏𝜏2 was calculated. The fixed-effect 

OSMASEM also provided multi-group SEM statistics to determine homogeneity across 

studies. Differences between each method (fixed effect vs random effects and univariate 

vs multivariate) were calculated for comparisons.  

 In the second stage of the univariate r, univariate z, and TSSEM approaches as 

well as the OSMASEM approach, goodness-of-fit indices, parameter estimates, standard 

errors, and confidence intervals were compared by finding the difference between each 

of the estimates.  

Lastly, publication bias was examined using funnel plots, test for asymmetry 

(Egger’s Regression Test) and trim-and-fill analysis. A funnel plot is a graph that 

displays the relationship between an effect size and standard error. Studies with larger 

sample sizes and smaller standard errors are plotted towards the top of the graph, 

whereas studies with smaller sample sizes and larger standard errors are towards the 
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bottom of the graph (Cooper et al, 2019). If there is no publication bias, studies will be 

scattered symmetrically around the mean effect; if there is asymmetry, this suggests that 

there may be publication bias. In the test for asymmetry (or Egger’s Regression Test 

(Egger etg al, 1997), a regression line is fitted through the funnel plot. If the slope of the 

regression line is statistically significant, it can be inferred that there is asymmetry in the 

funnel plot. A third way to assess publication bias is using Duval and Tweedie (2000)’s 

trim-and-fill procedure. This test first “trims” studies that the procedure determines is 

causing the asymmetry, followed by “filling in” studies to achieve asymmetry.  

Sensitivity analysis was also conducted using the leave-1-out method and by 

calculating three measures to determine possible influential points: studentized residual, 

difference in fits, and Cook’s d. The studentized residual calculates the standardized 

difference in the observed effect size and predicated effect size had the influential point 

been removed.  For the univariate case, influential points may have absolute 

standardized residuals greater than 3. The difference in fits value represents the number 

of standard deviations the predicated effect size changes for an individual observation 

after excluding the influential effect size. For the univariate case and for small to 

medium data sets, a difference in fits value greater than 1 would be identified as an 

influential point (Neter et al, 2005). Lastly, Cook’s d values greater than 𝜒𝜒𝑝𝑝,0.50
2   could be 

identified as an influential point (Jensen & Ramirez, 1998). Since univariate analysis is 

conducted, 𝑝𝑝 = 1 and 𝜒𝜒1,0.50
2 = 0.45.   

All analyses were conducted in R and Microsoft Excel. 
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CHAPTER IV  

RESULTS 

 

Descriptive Statistics 

For reference, “SS” refers to student success, “AI” refers to academic integration, 

“SI” refers to social integration, “SBC” refers to student background characteristics, and 

“IC” refers to institutional characteristics.  

Table 5 presents the descriptive statistics across each bivariate relationship. 

Skewness for each correlation is close to 0 (with the largest value being 0.87) and 

kurtosis being between -2 and 2. This suggests that each univariate set of data is not 

severely non-normal (Kline, 2016). Visual inspection of the data using univariate QQ-

plots (Figure 6) and histograms (Figure 7) show approximately normal distributions as 

well except for the correlations between SS and SBC. The Shapiro-Wilk test found the 

correlations between SS and SBC were not normal, however the p-value was 0.0464 and 

the significance level was set at 0.05 (See Table 6).  

The results for multivariate normality tests suggest that the data is multivariate 

normal. See Table 7 for the multivariate normality test results.  

Comparisons of Pooled Correlation Matrices (“Stage 1”) 

For the univariate and TSSEM approaches, a pooled correlation matrix was 

estimated before fitting the path model. Table 8 presents the respective parameter 

estimates, standard errors, and 95% confidences. The pooled correlation matrices for 
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each method can be found in Appendix C. For the univariate z approach, all z values and 

standard errors have been converted back to r’s.  

All but two relationships (between SBC/IC and SI/SBC) were statistically 

significant. However, relationships were generally weak (correlations less than 0.30) 

with the largest correlation being a moderate relationship between academic integration 

and social integration (𝑟𝑟 = 0.264, 𝑆𝑆𝑆𝑆 = 0.0074,𝑝𝑝 < 0.0001), and social integration and 

institutional characteristics (𝑟𝑟 = 0.2575, 𝑆𝑆𝑆𝑆 = 0.0405, 𝑝𝑝 < 0.0001). The weakest 

correlations were between student background characteristics and institutional 

characteristics (𝑟𝑟 = −0.0052, 𝑆𝑆𝑆𝑆 = 0.0097, 𝑝𝑝 = 0.5952).  

Comparison Between Fixed-Effect and Random-Effects Models 

The difference in parameter estimates and standard errors between fixed-effect 

and random-effects models can be found on Table 9. The differences between fixed-

effect and random-effects models are small (at most to two decimal places) and mostly 

negative, indicating smaller fixed-effect estimates compared to random effects. The 

differences in summary correlations ranged from -0.083 to 0.0203. The most notable 

differences across the univariate and multivariate methods were found for the SI/IC 

relationship.  

The standard error for random effects was larger compared to the fixed-effect 

models, although the differences are small. Although the difference in standard error 

between the fixed-effect and random-effects TSSEM is positive, the difference is to four 

decimal places. As the correlation between SBC and IC is close to 0, we would expected 
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the standard errors to be very similar if not the same. The differences ranged from -0.041 

to 0.0006.  

When it comes to significant effects, fixed-effect methods only found the 

relationship between SBC/IC as insignificant, whereas random-effects methods found 

this summary effect as well as SI/SBC as insignificant. Overall, majority of the summary 

correlations were statistically significant.  

Comparison Between Univariate and Multivariate Approaches 

The difference in parameter estimates and standard errors across univariate and 

multivariate methods are provided in Table 10. Within the fixed-effect methods, the 

differences in summary correlations between univariate and multivariate methods ranged 

between -0.0054 and 0.0488. The differences are very small between estimates (at most 

two decimal places), however the univariate r approach appears to produce slightly 

larger estimates compared to the univariate z approach and TSSEM approach. This trend 

is reserved for random-effects models.  

Within the random-effects methods, the differences in summary effects between 

univariate and multivariate methods ranged between -0.0115 and 0.0148. Notable 

differences were between univariate r and z approaches (with univariate r being smaller 

than univariate z) and the univariate z and TSSEM approach (with univariate z tending to 

be larger).   

The trend in differences between standard errors is the same for the univariate 

r/univariate z approaches across model assumptions and reversed between fixed-effect 

and random-effects models for the univariate r/TSSEM approaches. Overall, the 
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differences in standard errors across fixed-effect methods are virtually 0 (differences to 

four decimal places). The differences ranged from -0.0008 to 0.0005. The differences in 

standard error across random-effects models ranged from -0.0070 to 0.0096.   

 Comparison of Heterogeneity Measures 

Forest plots are provided in Appendix G Figures 9-18. The forest plot of SI/IC 

showed the most heterogeneity between studies with individual study correlations 

ranging from -0.06 and 0.66. The forest plots of SBC/IC, SI/SBC, and SS/IC showed the 

least heterogeneity between studies with individual study correlations ranging from -0.08 

to 0.013, -0.09 to 0.16, and -0.04 to 0.17 respectively.  

Table 11 provides the heterogeneity measures (Q-statistic, 𝐼𝐼2, estimated  𝜏𝜏2,   and 

estimated  𝜏𝜏) for the random-effects approaches. Tables 14-16 provide the multigroup 

comparisons for the fixed-effect TSSEM approach as well as LR statistic comparisons 

for the fixed-effect OSAMSEM approach.  

For the univariate approaches, the test for homogeneity using the Q-statistic 

suggests that the null hypothesis that correlations are the same across studies is rejected 

(except for SBC/IC; the results of the hypothesis test fail to reject the null hypothesis). 

For the TSSEM approach, which uses multivariate meta-analysis in the first stage, also 

calculated a Q-statistic and p-value which rejected the null hypothesis. Using either 

multivariate or univariate methods appears to generally suggest that correlations are not 

the same across studies. 

Next, the 𝐼𝐼2 indices are also similar across univariate/multivariate methods, 

although there are larger discrepancies compared to the differences in correlation 
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estimates and standard errors.  See Table 12 for differences in 𝐼𝐼2 values. The 𝐼𝐼2 value 

can be interpreted as the percentage of variability between studies that is not due to 

sampling error. The univariate approaches seem to have larger 𝐼𝐼2 values compared to the 

multivariate TSSEM method; in some cases, being almost 7-9% larger compared to the 

TSSEM 𝐼𝐼2. Six out of the 10 variables had 𝐼𝐼2 values higher than 89%. There were the 

relationships between: SS/AI, SS/SI, SS/IC, AI/SI, AI/IC, and SI/IC. Three out of the 10 

variables had 𝐼𝐼2 values that were between 37-61%. One variable, SBC/IC, had an 𝐼𝐼2 

value close to zero.  

 The differences in the univariate vs multivariate estimated 𝜏𝜏2 (and consequently 

estimated 𝜏𝜏) are very small (almost 3 decimal places in most cases). The differences are 

smallest between the two multivariate approaches. See Table 14 for the differences in 

estimated 𝜏𝜏2 and estimated 𝜏𝜏 values.  

 The multi-group SEM from the TSSEM FE approach also suggests heterogeneity 

amongst the correlation matrices as the model fit is poor (see Table 15), suggesting the 

constraints are not equal across studies. Additionally, the OSMASEM FE multi-group 

SEM as well as the LR statistic comparing the saturated model (step 0) with the 

multigroup SEM (step 1) suggest that the correlation matrices are not homogeneous (see 

Tables 16 and 17, respectively).     

 Overall, the heterogeneity measures across model assumptions and across 

univariate/multivariate methods suggest that the correlation matrices are not 

homogeneous across studies. The estimated 𝜏𝜏 values suggest that some relationships 



 

54 

 

have significant variation (SI/IC, AI/IC, AI/SI, SS/IC, SS/SI, SS/AI), as the values are 

great than 0.10.   

Comparison of SEM (“Stage 2”) 

The goodness-of-fit indices are provided in Table 19, with the parameter 

estimates, standard errors, and confidence intervals provided on Table 21. Table 20 

provides estimated variances and covariances.  

The goodness-of-fit indices for univariate approaches are virtually the same 

between fixed- and random-effects models (with only a 0.001-unit difference between 

TLI values) and are similar between multivariate approaches. Each method suggests 

good fit of the model of the data.  

Paths that were statistically significant across methods and model types were: 

SS/AI, AI/IC, and SI/IC. Within fixed-effect and random-effects models, there weren’t 

many differences in the number of significant paths. However, the number of significant 

paths were very different between univariate and multivariate methods. The largest path 

estimates across all methods were SS/AI, AI/IC, and SI/IC. The smallest path estimate 

was SI/SBC.  

Comparison Between Fixed- and Random-Effects Models 

Table 17 provides the differences in parameter estimates and standard errors 

between fixed-effect and random-effects models. It seems that random-effect models are 

slightly larger, in both parameter estimates and standard errors, however the differences 

are very small (two decimal places), which is similar to stage 1.  
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Table 14 provides the differences in estimated covariances and variances. Again, 

the differences are small, and the fixed-effect models provide slightly larger estimates 

compared to the random-effects model.  

When it comes to significant paths, results are similar. The fixed-effect and 

random-effects univariate r model produced the same number of significant paths. The 

remaining fixed-effect and random-effect comparisons produced at most 2 paths that 

were different.  

Comparison Between Univariate and Multivariate Approaches 

Table 22 and 23 provides the differences in parameter estimates and standard 

errors between univariate and multivariate methods. The differences in path estimates 

across univariate and multivariate methods is very small (to three decimal places for 

random-effects models and two decimal places for fixed-effect models). The path 

estimates within multivariate approaches are virtually identical (-0.001 was the only 

difference found between the TSSEM and OSMASEM approach). One most notable 

observation is that the univariate standard errors are slightly larger (by two decimal 

places) compared to the multivariate approaches. The standard errors are virtually 

identical for with univariate approaches and within multivariate approaches.  

Because the sample size differs considerably between univariate and multivariate 

methods, the number of significant paths varied substantially between the univariate and 

multivariate approaches (see confidence intervals in Table 21). For univariate 

approaches, at most 3 out of the 8 paths are significant (SS/AI, AI/IC, and SI/IC). For 
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the multivariate approaches, at most two paths are nonsignificant (SS/IC and SS/SBC). 

This is a significant difference when it comes to interpretation of the results.    

Table 24 provides the differences in estimated covariances and variances. Again, 

the differences are small, however for estimated variances, univariate approaches 

seemed to be smaller compared to the multivariate approaches.   

Results Pertaining to College Persistence 

To interpret the results of the MASEM in the context of college persistence, the 

random-effects OSMASEM is used. There is a theoretical justification that the 

correlations do not originate from a single population as different studies included 

different measures for each construct (see Chapter 3). This is supported by the 

heterogeneity measures (large Q statistics with small p-values, moderate to high 𝐼𝐼2 

values, and non-zero 𝜏𝜏2 and 𝜏𝜏 estimates) and the forest plots. Additionally, a 

multivariate approach should be used because several correlations are being reported 

from each study; therefore, there is a dependency in those relationships that otherwise 

would not be found in independent relationships.  

The relationship between student background characteristics on academic 

integration was significant (𝑟𝑟 = 0.042,𝑝𝑝 = 0.0011). The relationship between student 

background characteristics and social integration was not significant (𝑟𝑟 = 0.013,𝑝𝑝 =

0.2534 ). The relationship between student characteristics on student success was 

significant (𝑟𝑟 = 0.035),𝑝𝑝 = 0.0019). The relationship between institutional 

characteristics on academic integration was significant (𝑟𝑟 = 0.116,𝑝𝑝 = 0.0013). The 

relationship between institutional characteristics and social integration was significant 



 

57 

 

(𝑟𝑟 = 0.243,𝑝𝑝 < 0.0001). The relationship between institutional characteristics and 

student success was not significant (𝑟𝑟 = 0.054,𝑝𝑝 = 0.0938). The relationship between 

academic integration on student success was significant (𝑟𝑟 = 0.106, 𝑝𝑝 = 0.0011). The 

relationship between social integration and student success was significant (𝑟𝑟 =

0.084,𝑝𝑝 = 0.0.0071). See Figure 5 for fitted model with path estimates. An * next to 

the estimate means that it was statistically significant with significance level set to 0.05.  

 

Figure 5: Fitted MASEM Model using OSMASEM RE 
 

Publication Bias & Sensitivity Analysis 

Three methods that were used to determine publication bias were funnel plots, 

test for asymmetry (Egger’s Regression Test), and the Trim-and Fill method. For 

0.212 (0.038)* 
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sensitivity analysis, multivariate chi-square QQ-plots were observed, as well as 

conducting the leave-1-out procedure and examining three measures of influence; the 

studentized residual (rstudent), difference in fits (DFFITS), and Cook’s distance 

(cook.d).  

 As previously stated, funnel plots (found in Appendix H Figures 19-29) help 

visualize effect sizes and their corresponding standard errors. In terms of symmetry, all 

but one plot appears to be symmetrical; the AI/SI plot looks a bit asymmetrical. This is 

confirmed with the test for asymmetry – the only result that was significant was for 

AI/SI.  

 The trim-and-fill method identified additional missing studies in all but three 

analyses (SS/AI; AI/SI; SI/IC). For the correlation between SS/SI, there were an 

estimated 3 studies missing and the new estimated correlation is 0.1553 with standard 

error 0.0300 (originally 0.1250 and 0.0279, respectively). For the correlation between 

SS/SBC, there was an estimated 4 missing studies, with new correlation 0.0508 and 

standard error 0.0117 (originally 0.0407 and 0.0121, respectively). For the correlation 

between SS/IC, there was an estimated 3 missing studies with new correlation 0.1248 

and standard error 0.0331 (originally 0.0884 and 0.0313, respectively). For the 

correlation between AI/SBC, there were an estimated 2 missing studies with new 

correlation 0.0518 and standard error 0.0148 (originally 0.0432 and 0.0143, 

respectively). The relationship between AI/IC had 6 missing studies (the largest) with 

new correlation 0.1936 and standard error 0.0402 (originally 0.1183 and 0.0391, 

respectively). For the correlation between SI/SBC, there were an estimated 2 missing 
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studies with new correlation 0.0215 and standard error 0.0126 (originally 0.0134 and 

0.0123, respectively). Lastly, there were 2 studies missing for SBC/IC with the new 

correlation 0.006 and standard error 0.0102 (originally -0.0052 and 0.0097, 

respectively).  

 Overall, it appears that there are minor concerns regarding publication bias. The 

new estimated correlations do not have large differences (other than the trim and fill 

procedure for AI/IC). 

 As for sensitivity analysis, the multivariate chi-square QQ-plot suggests that 

there may be 3 possible outliers (study 8, 12 and 17). The three measures of possible 

influence identified that possibly study 6 contains influential points. The correlation 

estimates without study 6 for SS/IC is 0.0696 (SE=0.03720), for AI/IC is 0.0888 (SE = 

0.0281), and for SI/IC is 0.2190 (SE = 0.0453).  
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CHAPTER V  

DISCUSSION & CONCLUSION 

 

Summary of the Results & Discussion 

The overall findings across methods showed significant summary correlations in 

“stage 1” for all relationships except SBC and IC (for fixed-effect models) in addition to 

SI and SBC (for random-effects models). All other relationships were statistically 

significant with 𝑝𝑝 < 0.05. In “stage 2”, each set of model fit indices indicated good 

model fit.  

Regarding research question 1, the differences in parameter estimates, standard 

errors, and goodness-of-fit indices were small. Regarding heterogeneity, each approach 

suggests that the correlations across studies are not homogeneous. Although there were 

some notable differences in a few 𝐼𝐼2 values, the measures of heterogeneity across studies 

were consistent with each other.  

Although the differences in estimates were very small (to two or three decimal 

places), the significance of estimated correlations in stage 1 and path estimates in stage 2 

varied significantly between univariate and multivariate approaches. This is mostly 

likely due to sample size, as the sample size for the univariate approaches was 349 and 

for multivariate approaches was 15274. As multivariate approaches use the sum of the 

samples, there will rarely be a chosen sample size for univariate approaches that will be 

larger than this, especially in situations with missing correlations.  The harmonic mean 

was used based on the literature, however future research may want to explore 
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simulation studies using different possibilities for sample size (Cheung & Chan, 2005; 

Sheng et al, 2016). 

The findings in this dissertation are consistent with findings in other studies. The 

TSSEM RE and OSMASEM RE produced nearly identical results similar to Jak and 

Cheung (2020). The differences in fixed-effect/random-effect models and 

univariate/multivariate models being small has also been found through simulation 

studies (Cai & Fan, 2020; Zhang, 2011; Cho, 2015).  

Regarding research question 2, it appears that academic integration (𝑟𝑟 =

0.106,𝑝𝑝 < 0.05) and social integration (𝑟𝑟 = 0.084,𝑝𝑝 < 0.05), on average, have a 

significant small mediating impact on student success. The effects are similar as well. 

Student background characteristics have a small but significant impact on student 

success (𝑟𝑟 = 0.035,𝑝𝑝 < 0.05) and academic integration (𝑟𝑟 = 0.042, 𝑝𝑝 < 0.05); 

however, no significant impact on social integration (𝑟𝑟 = 0.013,𝑝𝑝 > 0.05).  Institutional 

characteristics cannot predict student success alone (𝑟𝑟 = 0.054,𝑝𝑝 > 0.05), however, has 

significant effects on academic (𝑟𝑟 = 0.116,𝑝𝑝 < 0.05) and social integration (𝑟𝑟 =

0.243,𝑝𝑝 < 0.05). Lastly, there was a significance covariance between academic and 

social integration (𝑣𝑣𝐶𝐶𝑣𝑣 =0.212, 𝑝𝑝 < 0.05).  

Limitations & Future Research 

There are four limitations worth noting. First, dissertations comprised 22 out of 

the 25 studies. During the literature search, there were 398 articles that were screened 

and only 47 were included for full text review because a correlation matrix was included. 

However, studies that do not report a full correlation matrix is a common issue when 
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attempting to conduct a MASEM (Sheng et al, 2016).  This could be due to number of 

reasons (e.g., page limit for manuscripts), however because there is generally no 

requirement or protocol to produce a correlation matrix, this may remain an issue in 

collecting study information.   

Another limitation involved the usefulness of an average effect. Although 

understanding general trends can be useful, when developing programs or interventions, 

it is more useful to know the present trend. The most recent study in the sample was 

published in 2013. Since almost 10 years have passed since this study, it is not 

unreasonable to assume that the relationships between academic and social integration 

and student success look different since major events have occurred (e.g., the rise of 

social media, pandemic). For example, there is a body of research that has suggests that 

social integration is less important compared to academic integration for two-year 

students due to having existing external commitments such as family commitments or 

work commitments (Crisp & Mena, 2012). However, with the rise in social mediums 

and the increased use of virtual services after the pandemic, traditional ways of 

integration socially (like clubs, extracurriculars) may be less of a barrier than they were 

before. Thus, the relationship between academic and social integration may not be the 

same in the new decade. Although this dissertation provides an overall effect and 

measures of heterogeneity, it may not be as useful as conducting another MASEM with 

subgroups by time/decade and conducting a mixed-effect MASEM or a multi-level 

MASEM.    
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Thirdly, only the author coded the studies. It is usually recommended that several 

coders go through the articles to enhance reliability and validity to prevent mono-method 

bias (Cooper et al, 2019).  

 Lastly, the fourth limitation is the precision in differences in estimates. The 

output of results for each method varied; some methods, like the TSSEM approach, 

reported estimates to three decimal places, whereas the univariate approaches reported 

up to 4. As the differences in estimates were generally very small, it is difficult to 

determine exact differences in approaches. Therefore, there should be particular 

attention to formatting as this can produce different results.   

Conclusions 

Borenstein et al (2021) stated the ethical imperative of comprehensively 

evaluating bodies of evidence instead of reviewing primary studies in isolation. With the 

current trend of studies using SEM, MASEM will also become more popular and thus a 

need to investigate its properties and protocols.  

This dissertation found small difference across model assumptions and types of 

approaches, which may be somewhat of a relief to researchers. If an incorrect method is 

chosen, it appears that when within study sample sizes are large enough and correlations 

range from weak to moderate, the differences in these methods are generally small.  

However, for univariate approaches, choosing an appropriate sample size appears to be a 

nontrivial task. The largest difference between the univariate and multivariate 

approaches were significant pooled correlations and path estimates.  
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For two-year institutions, the results of this MASEM are generally encouraging. 

Although institutional characteristics alone could not predict student retention or 

persistence, it has had a meaningful impact student experience both academically and 

socially, which do have an impact on student retention and persistence. Additionally, 

students should feel assured that background characteristics have a small role to play in 

student success.  
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APPENDIX A 

KEYWORDS 

 
Table 2:First Set of Key Terms Used in Literature Search 

Population Retention Theory Method Student Success 

Two-year college Tinto Regression Persistence 

Community college Spady Mediation Retention 

Two-year institution Kamens SEM Student Success 

Two year institution Bean & Metzner Path Graduation 

Two-year college  Correlation  

Two year college    

Junior college    
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Table 3: Second Set of Key Terms Used in Literature Search 
1 2 3 4 5 6 7 

Population 
Student 

Background 

Institutional 

Characteristics 

Social 

Integration 

Academic 

Integration 

Student 

Success 
method 

Two-year 

college 

High school 

GPA 
Campus size 

social 

integration 

academic 

integration 
Persistence Regression 

Community 

college 
ACT scores 

Campus 

finances 

social 

engagement 

academic 

engagement 
Retention Mediation 

Two-year 

institution 
SAT score Student services 

sense of 

belonging 

faculty 

interaction 
Success SEM 

Two year 

institution 
Gender 

College 

satisfaction 

social 

satisfaction 

academic 

experience 
Graduation 

Structural 

model 

Junior 

college 
race Percent adjunct peer interaction 

academic 

satisfaction 
Dropout 

Path 

model 

Two year 

college 
ethnicity 

Faculty student 

ratio 
extracurricular advising Attrition correlation 

 
Pre-college 

characteristics 
Financial aid clubs 

academic 

achievement 
Completion  

 
High school 

grades 
expectations 

student 

organizations 
college GPA   

  selectivity 
informal 

interactions 
mentoring   

  
Academic 

support 
friends    

  
Financial 

support 
    

  Social support     
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APPENDIX B 

CODING SHEET 

 

Study ID: study identification number 

Title: Title of the study  

Author: Last names of the authors 

Year: Year the study was published 

Peer-reviewed? 1 for yes, 0 for no 

Source Type: (e.g, journal article, dissertation) 

Type of Model/Analysis: (e.g., path model, mediation analysis,  

Instrument(s) used: list the surveys/instruments used in the study  

Student Characteristics: list measures of student characteristics  

Institutional Characteristics: list measures of institutional characteristics 

Academic Integration: list measures of academic integration  

Social Integration: list measures of social integration  

Student Success: list measures of student success 

Sample size: sample size reported in the study 

Pg Number of Matrix: Page to find the correlation matrix 

Full correlation matrix: Print and attach to coding sheet from study 
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APPENDIX C 

POOLED CORRELATION MATRICES 

Table 4: Pooled Correlation Matrices Across Methods 
Fixed-Effect - Univariate r 

 SS AI SI SBC IC 
SS 1.0000     
AI 0.1444 1.0000    
SI 0.1196 0.2640 1.0000   

SBC 0.0182 0.0359 0.0236 1.0000  
IC 0.0694 0.1054 0.2229 -0.0052 1.0000 

Random-Effects – Univariate r 
 SS AI SI SBC IC 

SS 1.0000     
AI 0.1354 1.0000    
SI 0.1250 0.2437 1.0000   

SBC 0.0407 0.0432 0.0134 1.0000  
IC 0.0884 0.1183 0.2460 -0.0052 1.0000 

Fixed-Effect - Univariate z 
 SS AI SI SBC IC 

SS 1.0000     
AI 0.1290 1.0000    
SI 0.1131 0.2411 1.0000   

SBC 0.0438 0.0351 0.0216 1.0000  
IC 0.0644 0.0880 0.1746 -0.0052 1.0000 

Random-Effects - Univariate z 
 SS AI SI SBC IC 

SS 1.0000     
AI 0.1385 1.0000    
SI 0.1263 0.2512 1.0000   

SBC 0.0405 0.0427 0.0209 1.0000  
IC 0.0889 0.1215 0.2575 -0.0052 1.0000 

Fixed-Effect - TSSEM 
 SS AI SI SBC IC 

SS 1.0000     
AI 0.1297 1.0000    
SI 0.1146 0.2407 1.0000   

SBC 0.0439 0.0354 0.0174 1.0000  
IC 0.0698 0.0930 0.1741 -0.0021 1.0000 

Random-Effects - TSSEM 
 SS AI SI SBC IC 

SS 1     
AI 0.1342 1.0000    
SI 0.1237 0.2413 1.0000   

SBC 0.0404 0.0417 0.0113 1.0000  
IC 0.0863 0.1159 0.2427 -0.0045 1.0000 
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APPENDIX D 

TABLES AND FIGURES  

Table 5: Descriptive Statistics 
Variables n Mean St. Dev Min Q1 Median Q3 Max Skewness Kurtosis 

SS-AI 25 0.13 0.17 -0.22 0.01 0.11 0.27 0.48 0.09 -0.77 
SS-SI 25 0.12 0.14 -0.12 0.04 0.12 0.23 0.36 0.03 -1.01 

SS-SBC 25 0.04 0.06 -0.04 -0.01 0.02 0.07 0.17 0.71 0.46 
SS-IC 17 0.09 0.13 -0.10 0.03 0.06 0.14 0.37 0.68 -0.16 
AI-SI 25 0.24 0.20 -0.22 0.13 0.26 0.36 0.63 -0.29 -0.02 

AI-SBC 25 0.05 0.07 -0.08 -0.01 0.03 0.07 0.20 0.72 -0.51 
AI-IC 17 0.12 0.16 -0.19 0.03 0.11 0.15 0.56 0.87 1.62 

SI-SBC 25 0.01 0.06 -0.09 -0.04 0.01 0.05 0.16 0.25 -0.34 
SI-IC 17 0.25 0.20 -0.06 0.07 0.27 0.34 0.66 0.41 -0.91 

SBC-IC 17 0.00 0.06 -0.09 -0.04 -0.01 0.01 0.13 0.71 -0.14 
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Figure 6: Univariate QQ-Plots 

 

Figure 7: Univariate Histograms and Curves 
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Table 6: Univariate Normality Tests 
Shapiro Wilk Test for Normality 

Variables Statistic p-value Normality? 
SS-AI 0.9688 0.7963 YES 
SS-SI 0.9502 0.4605 YES 

SS-SBC 0.8900 0.0464 No 
SS-IC 0.9235 0.1694 YES 
AI-SI 0.9780 0.9371 YES 

AI-SBC 0.9129 0.1119 YES 
AI-IC 0.9063 0.0868 YES 

SI-SBC 0.9413 0.3344 YES 
SI-IC 0.9600 0.6324 YES 

SBC-IC 0.9225 0.1629 YES 
Anderson Darling Test for Normality 

Variables Statistic p-value Normality? 
SS-AI 0.3015 0.5389 YES 
SS-SI 0.4351 0.2645 YES 

SS-SBC 0.6218 0.0878 YES 
SS-IC 0.5171 0.1624 YES 
AI-SI 0.2167 0.8131 YES 

AI-SBC 0.6654 0.0677 YES 
AI-IC 0.6483 0.0750 YES 

SI-SBC 0.3744 0.3748 YES 
SI-IC 0.2583 06720 YES 

SBC-IC 0.5600 0.1247 YES 
 

Table 7: Multivariate Tests of Normality 
Test Test Statistic P-value Normality? 

Henze-Zirkler 0.9535 0.37805 YES 
Mardia Skewness 249.1640 0.08617 YES 
Mardia Kurtosis -1.0010 0.3168 YES 

Royston 16.9023 0.0785 YES 
Doornik-Hansen 16.4561 (df=20) 0.6879 YES 

E-statistic 1.5952 0.2830 YES 
 

 

 

 



 

 

Table 8: Stage 1 Parameter Estimates, Standard Errors, and 95% Confidence Intervals 
 Variables Univariate 𝑟𝑟 FE Univariate 𝑟𝑟 RE Univariate 𝑧𝑧 FE 

(converted to 𝑟𝑟) 
Univariate 𝑧𝑧 RE 
(converted to 𝑟𝑟) 

TSSEM FE TSSEM RE 
Pa

ra
m

et
er

 E
st

im
at

es
 

SS-AI 0.1444 0.1354 0.1291 0.1385 0.1297 0.1342 
SS-SI 0.1196 0.1250 0.1131 0.1263 0.1146 0.1238 

SS-SBC 0.0443 0.0407 0.0439 0.0405 0.0439 0.0406 
SS-IC 0.0694 0.0884 0.0644 0.0889 0.0698 0.0863 
AI-SI 0.264 0.2437 0.2411 0.2512 0.2407 0.2414 

AI-SBC 0.0359 0.0432 0.0351 0.0427 0.0354 0.0420 
AI-IC 0.1054 0.1183 0.0880 0.1215 0.0930 0.1159 

SI-SBC 0.0182 0.0134 0.0173 0.0126 0.0174 0.0124 
SI-IC 0.2229 0.2460 0.1746 0.2575 0.1741 0.2427 

SBC-IC -0.0052 -0.0052 -0.0052 -0.0052 -0.0021 -0.0044 

St
an

da
rd

 E
rr

or
s 

SS-AI 0.0077 0.0347 0.0076 0.0304 0.0081 0.0330 
SS-SI 0.0078 0.0279 0.0076 0.0249 0.0081 0.0265 

SS-SBC 0.0081 0.0121 0.0078 0.0114 0.0081 0.0113 
SS-IC 0.0095 0.0313 0.0093 0.0278 0.0097 0.0292 
AI-SI 0.0074 0.0387 0.0069 0.0321 0.0077 0.0371 

AI-SBC 0.0081 0.0143 0.0078 0.0134 0.0081 0.0130 
AI-IC 0.0094 0.0391 0.0092 0.0347 0.0097 0.0362 

SI-SBC 0.0081 0.0123 0.0081 0.0120 0.0081 0.0113 
SI-IC 0.0089 0.0501 0.0088 0.0405 0.0096 0.0475 

SBC-IC 0.0097 0.0097 0.0093 0.0094 0.0097 0.0091 

95
%

 C
on

fid
en

ce
 

In
te

rv
al

s 

SS-AI (0.1293, 0.1594) (0.0674, 0.2034) (0.1142, 0.1439) (0.0789, 0.1982) (0.1138, 0.1455) (0.0695,0.1989) 
SS-SI (0.1042, 0.1350) (0.0704, 0.1796) (0.0981, 0.1281) (0.0776, 0.1750) (0.0988, 0.1304) (0.0717,0.1758) 

SS-SBC (0.0285, 0.0601) (0.0171, 0.0644) (0.0286, 0.0592) (0.0181, 0.0629) (0.0281, 0.0598) (0.0184,0.0627) 
SS-IC (0.0507, 0.0881) (0.0271, 0.1496) (0.0463, 0.0826) (0.0345, 0.1433) (0.0508, 0.0888) (0.0291,0.1435) 
AI-SI (0.2495, 0.2784) (0.1679, 0.3196) (0.2276, 0.2547) (0.1883, 0.3141) (0.2256, 0.2559) (0.1685,0.3141) 

AI-SBC (0.0201, 0.0517) (0.0152, 0.0712) (0.0197, 0.0504) (0.0164, 0.0689) (0.0195, 0.0512) (0.0162,0.0672) 
AI-IC (0.0870, 0.1238) (0.0417, 0.1948) (0.0701, 0.1061) (0.0535, 0.1895) (0.0740, 0.1121) (0.0450,0.1868) 

SI-SBC (0.0023, 0.0341) (-0.0106, 0.0375) (0.0014, 0.0332) (-0.0109, 0.0361) (0.0015, 0.0332) (-0.0098, 0.0346) 
SI-IC (0.2055, 0.2403) (0.1478, 0.3441) (0.1574, 0.1918) (0.1781, 0.3370) (0.1553, 0.1930) (0.1495,0.3358) 

SBC-IC (-0.0242, 0.0139) (-0.0242, 0.0139) (-0.0235, 0.0131) (-0.02372, 0.0132) (-0.0211, 0.0169) (-0.0222,0.0134) 



 

 

Table 9: Differences Between Fixed-Effect and Random-Effects Models 

 Variables 
Univariate r (FE vs RE) Univariate z (FE vs RE) TSSEM (FE vs RE) 

Pa
ra

m
et

er
 E

st
im

at
es

 

SS-AI 0.009 -0.0094 -0.0045 
SS-SI -0.0054 -0.0132 -0.0092 

SS-SBC 0.0036 0.0034 0.0033 
SS-IC -0.019 -0.0245 -0.0165 
AI-SI 0.0203 -0.0101 -0.0007 

AI-SBC -0.0073 -0.0076 -0.0066 
AI-IC -0.0129 -0.0335 -0.0229 

SI-SBC 0.0048 0.0007 0.005 
SI-IC -0.0231 -0.0829 -0.0686 

SBC-IC <0.0001 <0.0001 0.0023 

St
an

da
rd

 E
rr

or
s 

SS-AI -0.027 -0.0228 -0.0249 
SS-SI -0.0201 -0.0173 -0.0184 

SS-SBC -0.004 -0.0036 -0.0032 
SS-IC -0.0218 -0.0185 -0.0195 
AI-SI -0.0313 -0.0252 -0.0294 

AI-SBC -0.0062 -0.0056 -0.0049 
AI-IC -0.0297 -0.0255 -0.0265 

SI-SBC -0.0042 -0.0084 -0.0032 
SI-IC -0.0412 -0.0317 -0.0379 

SBC-IC <0.0001 -0.0001 0.0006 
 



 

 

Table 10: Differences Across Univariate/Multivariate Methods 
  Fixed-Effect Models Random-Effects Model 

 Variables Univariate 
r/Univariate z 

Univariate 
r/TSSEM 

Univariate 
z/TSSEM 

Univariate 
r/Univariate z 

Univariate 
r/TSSEM 

Univariate 
z/TSSEM 

Es
tim

at
ed

 C
or

re
la

tio
ns

 SS-AI 0.0153 0.0147 -0.0006 -0.0031 0.0012 0.0043 
SS-SI 0.0065 0.005 -0.0015 -0.0013 0.0012 0.0025 

SS-SBC 0.0004 0.0004 <0.0001 0.0002 0.0001 -0.0001 
SS-IC 0.005 -0.0004 -0.0054 -0.0005 0.0021 0.0026 
AI-SI 0.0229 0.0233 0.0004 -0.0075 0.0023 0.0098 

AI-SBC 0.0008 0.0005 -0.0003 0.0005 0.0012 0.0007 
AI-IC 0.0174 0.0124 -0.005 -0.0032 0.0024 0.0056 

SI-SBC -0.0034 0.0008 0.0042 -0.0075 0.001 0.0085 
SI-IC 0.0483 0.0488 0.0005 -0.0115 0.0033 0.0148 

SBC-IC <0.0001 -0.0031 -0.0031 <0.0001 -0.0008 -0.0008 

St
an

da
rd

 E
rr

or
s 

SS-AI 0.0001 -0.0004 -0.0005 0.0043 0.0017 -0.0026 
SS-SI 0.0002 -0.0003 -0.0005 0.003 0.0014 -0.0016 

SS-SBC 0.0003 <0.0001 -0.0003 0.0007 0.0008 0.0001 
SS-IC 0.0002 -0.0002 -0.0004 0.0035 0.0021 -0.0014 
AI-SI 0.0005 -0.0003 -0.0008 0.0066 0.0016 -0.0050 

AI-SBC 0.0003 <0.0001 -0.0003 0.0009 0.0013 0.0004 
AI-IC 0.0002 -0.0003 -0.0005 0.0044 0.0029 -0.0015 

SI-SBC 0.0003 <0.0001 -0.0003 -0.0039 0.001 0.0049 
SI-IC 0.0001 -0.0007 -0.0008 0.0096 0.0026 -0.0070 

SBC-IC 0.0004 <0.0001 -0.0004 0.0003 0.0006 0.0003 



 

 

Table 11: Heterogeneity Measures 
 Variables Univariate r  Univariate z  TSSEM  OSMASEM  

Q
-s

ta
tis

tic
, p

-v
al

ue
 

SS-AI 𝑄𝑄 (24)  =  614.6497,𝑝𝑝 <  .0001 𝑄𝑄 (24)  =  534.7200,𝑝𝑝 <  .0001 

𝑄𝑄 (208)  
= 1681.802,𝑝𝑝
< 0.0001 

NA 

SS-SI 𝑄𝑄 (24)  =  293.8798,𝑝𝑝 <  .0001 𝑄𝑄 (24)  =  275.6871,𝑝𝑝 <  .0001 
SS-SBC 𝑄𝑄 (24)  =  42.3377,𝑝𝑝 =  0.0118 𝑄𝑄 (24)  =  41.6013,𝑝𝑝 =  0.0143 
SS-IC 𝑄𝑄 (16)  =  154.7665,𝑝𝑝 <  .0001 𝑄𝑄 (16)  =  141.7254,𝑝𝑝 <  .0001 
AI-SI 𝑄𝑄 (24)  =  460.2918,𝑝𝑝 <  .0001 𝑄𝑄 (24)  =  371.7710,𝑝𝑝 <  .0001 

AI-SBC 𝑄𝑄 (24)  =  56.1263,𝑝𝑝 =  0.0002 𝑄𝑄 (24)  =  54.4628,𝑝𝑝 = 0.0004 
AI-IC 𝑄𝑄 (16)  =  290.1130,𝑝𝑝 <  .0001 𝑄𝑄 (16)  =  219.6540,𝑝𝑝 <  .0001 

SI-SBC 𝑄𝑄 (24)  =  44.3958,𝑝𝑝 = 0.0069 𝑄𝑄 (24)  =  42.2111,𝑝𝑝 = 0.0122 
SI-IC 𝑄𝑄 (16)  =  599.6174,𝑝𝑝 <  .0001 𝑄𝑄 (16)  =  427.0553,𝑝𝑝 <  .0001 

SBC-IC 𝑄𝑄 (16)  =  19.3840,𝑝𝑝 =  0.2493 𝑄𝑄 (16)  =  19.0783,𝑝𝑝 = 0.2646 

𝐼𝐼2
 

SS-AI 94.72% 94.56% 93.67% 

NA 

SS-SI 91.29% 91.11% 89.96% 
SS-SBC 45.67% 44.62% 37.52% 
SS-IC 89.94% 89.81% 87.69% 
AI-SI 96.14% 96.14% 95.44% 

AI-SBC 61.63% 60.35% 52.39% 
AI-IC 93.86% 94.16% 92.12% 

SI-SBC 47.57% 44.55% 38.24% 
SI-IC 96.72% 96.93% 95.57% 

SBC-IC 0.02% 0.18% 00.00% 

Es
tim

at
ed

 𝜏𝜏
2  

SS-AI 0.0275  0.0300  0.0246  0.0245 
SS-SI 0.0168  0.0177  0.0150  0.0149 

SS-SBC 0.0014  0.0014  0.0010 0.0010 
SS-IC 0.0144  0.0148  0.0122  0.0121 
AI-SI 0.0351  0.0429  0.0320 0.0318 

AI-SBC 0.0027  0.0026  0.0019  0.0018 
AI-IC 0.0238  0.0271  0.0199  0.0200 

SI-SBC 0.0015  0.0014  0.0011 0.0011 
SI-IC 0.0407  0.0049  0.0360 0.0362 

SBC-IC 0.0000  0.0000  0.0000 0.0000 
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Table 11: Heterogeneity Measures (cont’d) 
Es

tim
at

ed
 𝜏𝜏

 
SS-AI 0.1658 0.1731 0.1568 0.1565 
SS-SI 0.1297 0.1329 0.1223 0.1221 

SS-SBC 0.0378 0.0373 0.0322 0.0316 
SS-IC 0.1200 0.1217 0.1103 0.1100 
AI-SI 0.1874 0.2071 0.1788 0.1783 

AI-SBC 0.0522 0.0512 0.0435 0.0424 
AI-IC 0.1541 0.1647 0.1410 0.1414 

SI-SBC 0.0392 0.0372 0.0332 0.0033 
SI-IC 0.2018 0.0699 0.1899 0.1903 

SBC-IC 0.0005 0.0017 0.0000 0.0000 



 

 

Table 12: Difference in 𝑰𝑰𝟐𝟐 Values 

Variables uni r/uni z uni r/TSSEM uni z/TSSEM 
SS-AI 0.16% 1.05% 0.89% 
SS-SI 0.18% 1.33% 1.15% 

SS-SBC 1.05% 8.15% 7.10% 
SS-IC 0.13% 2.25% 2.12% 
AI-SI 0.00% 0.70% 0.70% 

AI-SBC 1.28% 9.24% 7.96% 
AI-IC -0.30% 1.74% 2.04% 

SI-SBC 3.02% 9.33% 6.31% 
SI-IC -0.21% 1.15% 1.36% 

SBC-IC -0.16% 0.02% 0.18% 
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Table 13: Differences in 𝝉𝝉𝟐𝟐and 𝝉𝝉 

 

 
Uni 𝑟𝑟 

vs 
Uni 𝑧𝑧 

Uni 𝑟𝑟 
vs 

TSSEM 

Uni 𝑟𝑟 
vs 

OSMASE
M 

Uni 𝑧𝑧 
vs 

TSSEM 

Uni 𝑧𝑧 
vs 

OSMASE
M 

TSSEM 
vs 

OSMASE
M 

Es
tim

at
ed

 𝜏𝜏
2  

SS-AI -0.0025 0.0029 0.003 0.0054 0.0055 0.0001 
SS-SI -0.0009 0.0018 0.0019 0.0027 0.0028 0.0001 
SS-
SBC <0.0001 0.0004 0.0004 0.0004 0.0004 <0.0001 

SS-IC -0.0004 0.0022 0.0023 0.0026 0.0027 0.0001 
AI-SI -0.0078 0.0031 0.0033 0.0109 0.0111 0.0002 
AI-
SBC 0.0001 0.0008 0.0009 0.0007 0.0008 0.0001 

AI-IC -0.0033 0.0039 0.0038 0.0072 0.0071 -0.0001 
SI-

SBC 0.0001 0.0004 0.0004 0.0003 0.0003 <0.0001 

SI-IC 0.0358 0.0047 0.0045 -0.0311 -0.0313 -0.0002 
SBC-

IC <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Es
tim

at
ed

 𝜏𝜏
 

SS-AI -0.0073 0.009 0.0093 0.0163 0.0166 0.0003 
SS-SI -0.0032 0.0074 0.0076 0.0106 0.0108 0.0002 
SS-
SBC 0.0005 0.0056 0.0062 0.0051 0.0057 0.0006 

SS-IC -0.0017 0.0097 0.01 0.0114 0.0117 0.0003 
AI-SI -0.0197 0.0086 0.0091 0.0283 0.0288 0.0005 
AI-
SBC 0.001 0.0087 0.0098 0.0077 0.0088 0.0011 

AI-IC -0.0106 0.0131 0.0127 0.0237 0.0233 -0.0004 
SI-

SBC 0.002 0.006 0.0359 0.004 0.0339 0.0299 

SI-IC -0.0285 0.0119 0.0115 0.0404 -0.1204 -0.0004 
SBC-

IC -0.0012 0.0005 0.0005 0.0017 0.0017 <0.0001 
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Table 14: TSSEM FE Stage 1: Multigroup SEM Results 
Goodness-of-Fit Indices 

n 15274 
𝜒𝜒2(𝑑𝑑𝑓𝑓),𝑝𝑝 value 𝜒𝜒2(208) = 1769.2878,𝑝𝑝 < 0.001 

CFI 0.5128 
TLI 0.4894 

RMSEA 0.1124 
SRMR 0.0993 

 

Table 15: OSMASEM FE - Step 1: Multigroup SEM Results 
Goodness-of-Fit Indices 

n 15274 
𝜒𝜒2(𝑑𝑑𝑓𝑓),𝑝𝑝 value 𝜒𝜒2(208) = 1769.452,𝑝𝑝 < 0.001 

CFI - 
TLI - 

RMSEA 0.2217 
SRMR - 

 

Table 16: OSMASEM FE Model Comparison 
 -2LL 𝑑𝑑𝑓𝑓 DiffLL Diff DF p-value 

Model 0 68146.08 0    
Model 1 69915.53 208    
Model 2 69915.62 329    

Model 0 vs Model 1   1769.534 208 𝑝𝑝 < 0.001 
Model 1 vs Model 2   0.0818 121 1 
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Table 17: Differences in Parameter Estimates Between Fixed-Effect and Random-
Effects Models 

 
Variables 

Uni-r  
FE vs RE 

Uni-z  
FE vs RE 

TSSEM  
FE vs RE 

OSMASEM  
FE vs RE 

Pa
ra

m
et

er
 E

st
im

at
es

 SS-AI 0.011 -0.004 -0.001 -0.001 
SS-SI -0.006 -0.004 -0.003 -0.003 

SS-SBC 0.004 0.005 0.005 0.004 
SS-IC -0.015 -0.013 -0.008 -0.008 

AI-SBC -0.008 -0.007 -0.007 -0.006 
AI-IC -0.012 -0.034 -0.023 -0.023 

SI-SBC 0.004 0.001 0.005 0.005 
SI-IC -0.023 -0.083 -0.069 -0.069 

St
an

da
rd

 E
rro

rs
 SS-AI 0.001 -0.001 -0.028 -0.028 

SS-SI <0.0001 -0.001 -0.022 -0.023 
SS-SBC <0.0001 <0.0001 -0.003 -0.003 
SS-IC <0.0001 -0.001 -0.024 -0.022 

AI-SBC <0.0001 <0.0001 -0.005 -0.005 
AI-IC <0.0001 <0.0001 -0.026 -0.026 

SI-SBC <0.0001 0.001 -0.003 -0.003 
SI-IC <0.0001 0.001 -0.038 -0.038 

 

Table 18: Differences in Estimated Covariance and Variances Between Fixed-Effect 
and Random-Effects Models 

 Variables Uni r FE vs 
RE 

Uni z FE vs 
RE 

TSSEM FE vs 
RE 

OSMASEM FE vs 
RE 

C
ov

 

AI-SI 0.026 0.006 0.012 0.012 

V
ar

 SS <0.001 0.005 <0.001 0.003 
AI 0.004 0.007 0.01 0.005 
SI 0.011 0.035 0.03 0.028 
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Table 19: "Stage 2" Goodness-of-Fit Indices 

 Univariate 
R FE 

Univariate 
R RE 

Univariate 
z FE 

Univariate 
z RE 

TSSEM 
FE 

TSSEM 
RE 

OSMASEM 
FE 

OSMASEM 
RE 

n 349 349 349 349 15274 15274 15274 15274 
𝜒𝜒2(𝑑𝑑𝑓𝑓),𝑝𝑝 

value 
𝜒𝜒2(3)
= 0.012, 

 𝑝𝑝 = 1.000 

𝜒𝜒2(3)
= 0.012, 

 𝑝𝑝 = 1.000 

𝜒𝜒2(3)
= 0.012,  
𝑝𝑝 = 1.000 

𝜒𝜒2(3)
= 0.012,  
𝑝𝑝 = 1.000 

𝜒𝜒2(1)
= 0.0818, 
 𝑝𝑝
= 1.000 

𝜒𝜒2(1)
= 0.2377, 
 𝑝𝑝
= 0.6259 

𝜒𝜒2(121)
= 0.0818, 

 𝑝𝑝 = 1.000 

𝜒𝜒2(1)
= 0.140, 

 𝑝𝑝 = 0.6766 

CFI 1.00 1.000 1.000 1.000 1.000 1.00 1.084 1.009 

TLI 1.220 1.199 1.306 1.199 1.0062 1.0572 - 1.0907 

RMSEA 0.000 0.000 0.000 0.000 0.000 0.000 0 0 

SRMR 0.002 0.002 0.002 0.002 0.0009 0.0014 - 0.001 

 
Table 20: Estimated Covariance and Variances  

 Variables Uni r FE Uni r RE Uni z FE Uni z RE TSSEM FE TSSEM  
RE 

OSMASEM 
FE 

OSMASEM 
RE 

Cov AI - SI 0.239 0.213 0.224 0.218 0.224 0.212 0.224 0.212 

Var 

SS 0.966 0.966 0.970 0.965 0.97 0.97 0.972 0.969 

AI 0.985 0.981 0.988 0.981 0.99 0.98 0.990 0.985 

SI 0.947 0.936 0.966 0.931 0.97 0.94 0.969 0.941 
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Table 21: "Stage 2" Parameter Estimates, Standard Errors, and Confidence Intervals 
 Variables Univariate R 

FE 
Univariate R 

RE 
Univariate z 

FE 
Univariate z 

RE TSSEM FE TSSEM RE OSMASEM 
FE 

OSMASEM 
RE 

Pa
ra

m
et

er
 E

st
im

at
es

 SS-AI 0.118 0.107 0.105 0.109 0.105 0.106 0.105 0.106 
SS-SI 0.079 0.085 0.080 0.084 0.081 0.084 0.081 0.084 

SS-SBC 0.039 0.035 0.039 0.034 0.039 0.034 0.039 0.035 
SS-IC 0.040 0.055 0.041 0.054 0.046 0.054 0.046 0.054 

AI-SBC 0.036 0.044 0.036 0.043 0.035 0.042 0.036 0.042 
AI-IC 0.106 0.118 0.088 0.122 0.093 0.116 0.093 0.116 

SI-SBC 0.019 0.015 0.023 0.022 0.018 0.013 0.018 0.013 
SI-IC 0.223 0.246 0.175 0.258 0.174 0.243 0.174 0.243 

St
an

da
rd

 E
rr

or
s 

SS-AI 0.055 0.054 0.054 0.055 0.008 0.036 0.008 0.036 
SS-SI 0.056 0.056 0.055 0.056 0.010 0.032 0.008 0.031 

SS-SBC 0.053 0.053 0.053 0.053 0.008 0.011 0.008 0.011 
SS-IC 0.054 0.054 0.054 0.055 0.008 0.032 0.010 0.032 

AI-SBC 0.053 0.053 0.053 0.053 0.008 0.013 0.008 0.013 
AI-IC 0.053 0.053 0.053 0.053 0.010 0.036 0.010 0.036 

SI-SBC 0.052 0.052 0.053 0.052 0.008 0.011 0.008 0.011 
SI-IC 0.052 0.052 0.053 0.052 0.010 0.048 0.010 0.048 

C
on

fid
en

ce
 In

te
rv

al
s SS-AI (0.0102, 0.2258) (0.0012, 0.2128) (-0.0008,0.2108) (0.0012,0.2168) (0.0883, 0.1210) (0.0359, 0.1764) (0.0893,0.1207) (0.0354,0.1766) 

SS-SI (-0.0308, 0.1888) (-0.0248, 0.1948) (-0.0278,0.1878) (-0.0258,0.1938) (0.0640, 0.0970) (0.0227, 0.1462) (0.0653,0.0967) (0.0232,0.1448) 
SS-SBC (-0.0659, 0.1419) (-0.0689, 0.1389) (-0.0649,0.1429) (-0.070,0.1379) (0.0229, 0.0542) (0.0120, 0.0569) (0.0233,0.0547) (0.0134,0.0566) 
SS-IC (-0.0658, 0.1458) (-0.0508, 0.1608) (-0.0648,0.1468) (-0.0538,0.1618) (0.0270, 0.0653) (-0.0094, 0.1168) (0.0264,0.0656) (-0.0087,0.1167) 

AI-SBC (-0.0679, 0.1399) (-0.0599, 0.1479) (-0.0679,0.1399) (-0.0609,0.1469) (0.0197, 0.0513) (0.0164, 0.0674) (0.0203,0.0517) (0.0165,0.0675) 
AI-IC (0.0021, 0.2099) (0.0141, 0.2219) (-0.0159,0.191) (0.0181,0.2259) (0.0741, 0.1121) (0.0452, 0.1869) (0.0734,0.1126) (0.0454,0.1866) 

SI-SBC (-0.0769, 0.1269) (-0.0869, 0.1169) (-0.0809,0.1269) (-0.0799,0.1239) (0.0023, 0.0337) (-0.0094, 0.0395) (0.0020,0.1169) (-0.0086,0.0334) 
SI-IC (0.1211, 0.3249) (0.1441, 0.3479) (0.0711,0.2789) (0.1561,0.3599) (0.1554, 0.1936) (0.1496, 0.3359) (0.1544,0.1936) (0.1489,0.3371) 

 
 
 
 



 

93 

 

Table 22: Differences of Path Estimates and Standard Errors Across Univariate and Multivariate Methods 
  Fixed Effect 

 
Variables Uni r vs  

Uni z 
Uni r vs 
TSSEM 

Uni r vs 
OSMASEM 

Uni z vs 
TSSEM 

Uni z vs 
OSMASEM 

TSSEM vs 
OSMASEM 

Pa
th

 E
st

im
at

es
 

SS-AI 0.013 0.013 0.013 <0.0001 <0.0001 <0.0001 
SS-SI -0.001 -0.002 -0.002 -0.001 -0.001 <0.0001 

SS-SBC <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
SS-IC -0.001 -0.006 -0.006 -0.005 -0.005 <0.0001 

AI-SBC <0.0001 0.001 <0.0001 0.001 <0.0001 0.001 
AI-IC 0.018 0.013 0.013 -0.005 -0.005 <0.0001 

SI-SBC -0.004 0.001 0.001 0.005 0.005 <0.0001 
SI-IC 0.048 0.049 0.049 0.001 0.001 <0.0001 

St
an

da
rd

 E
rr

or
s 

SS-AI 0.001 0.047 0.047 0.046 0.046 <0.0001 
SS-SI 0.001 0.046 0.048 0.045 0.047 -0.002 

SS-SBC <0.0001 0.045 0.045 0.045 0.045 <0.0001 
SS-IC <0.0001 0.046 0.044 0.046 0.044 0.002 

AI-SBC <0.0001 0.045 0.045 0.045 0.045 <0.0001 
AI-IC <0.0001 0.043 0.043 0.043 0.043 <0.0001 

SI-SBC -0.001 0.044 0.044 0.045 0.045 <0.0001 
SI-IC -0.001 0.042 0.042 0.043 0.043 <0.0001 
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Table 23: Differences of Path Estimates and Standard Errors Across Univariate and Multivariate Methods (Random 
Effects) 

  Random Effects  
 

Variables Uni r vs  
Uni z 

Uni r vs 
TSSEM 

Uni r vs 
OSMASEM 

Uni z vs 
TSSEM 

Uni z vs 
OSMASEM 

TSSEM vs 
OSMASEM 

Pa
th

 E
st

im
at

es
 

SS-AI -0.002 0.001 0.001 0.003 0.003 <0.0001 
SS-SI 0.001 0.001 0.001 <0.0001 <0.0001 <0.0001 

SS-SBC 0.001 0.001 <0.0001 <0.0001 -0.001 -0.001 
SS-IC 0.001 0.001 0.001 <0.0001 <0.0001 <0.0001 

AI-SBC 0.001 0.002 0.002 0.001 0.001 <0.0001 
AI-IC -0.004 0.002 0.002 0.006 0.006 <0.0001 

SI-SBC -0.007 0.002 0.002 0.009 0.009 <0.0001 
SI-IC -0.012 0.003 0.003 0.015 0.015 <0.0001 

St
an

da
rd

 E
rr

or
s 

SS-AI -0.001 0.018 0.018 0.019 0.019 <0.0001 
SS-SI <0.0001 0.024 0.025 0.024 0.025 0.001 

SS-SBC <0.0001 0.042 0.042 0.042 0.042 <0.0001 
SS-IC -0.001 0.022 0.022 0.023 0.023 <0.0001 

AI-SBC <0.0001 0.04 0.04 0.04 0.04 <0.0001 
AI-IC <0.0001 0.017 0.017 0.017 0.017 <0.0001 

SI-SBC <0.0001 0.041 0.041 0.041 0.041 <0.0001 
SI-IC <0.0001 0.004 0.004 0.004 0.004 <0.0001 
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Table 24: Differences in Estimated Covariance and Variances Between Univariate and Multivariate Approaches 
 

Fixed Effect 

 Variables Uni r vs  
Uni z 

Uni r vs 
TSSEM 

Uni r vs 
OSMASEM 

Uni z vs 
TSSEM 

Uni z vs 
OSMASEM 

TSSEM vs 
OSMASEM 

C
ov

 

AI-SI 0.015 0.015 0.015 <0.0001 <0.0001 <0.0001 

V
ar

ia
nc

es
 SS -0.004 -0.004 -0.006 <0.0001 -0.002 0.001 

AI -0.003 -0.005 -0.005 -0.002 -0.002 0.005 

SI -0.019 -0.023 -0.022 -0.004 -0.003 0.029 

Random Effects 

 Variables Uni r vs  
Uni z 

Uni r vs 
TSSEM 

Uni r vs 
OSMASEM 

Uni z vs 
TSSEM 

Uni z vs 
OSMASEM 

TSSEM vs 
OSMASEM 

C
ov

 

AI-SI -0.005 0.001 0.001 0.006 0.006 <0.0001 

V
ar

ia
nc

es
 SS 0.001 -0.004 -0.003 -0.005 -0.004 0.001 

AI <0.0001 0.001 -0.004 0.001 -0.004 -0.005 

SI 0.005 -0.004 -0.005 -0.009 -0.01 -0.001 
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Table 25: Publication Bias Measures 

Variables Egger’s Regression Test Trim-and-Fill 

SS-AI 𝑧𝑧 = −0.7761,  
𝑝𝑝 = 0.4377 0 missing studies 

SS-SI 𝑧𝑧 = −0.4005,  
𝑝𝑝 = 0.6888 

3 missing studies, 
0.1553(0.0300) 
𝑝𝑝 < 0.0001 

SS-SBC 𝑧𝑧 = −0.5118, 𝑝𝑝 
= 0.6088 

4 missing studies 
0.0508 (0.0117) 
𝑝𝑝 < 0.0001 

SS-IC 𝑧𝑧 = 0.7653,𝑝𝑝 
= 0.4441 

3 missing studies 
0.1248 (0.0331) 
𝑝𝑝 = 0.0002 

AI-SI 𝑧𝑧 = −2.2662, 𝑝𝑝 
= 0.0234 0 missing studies 

AI-SBC 𝑧𝑧 = 0.7183,  
𝑝𝑝 = 0.4726 

2 missing studies 
0.0432(0.0143) 

𝑝𝑝 < 0.05 

AI-IC 𝑧𝑧 = −0.1731,  
𝑝𝑝 = 0.8636 

6 missing studies 
0.1936 (0.0402) 
𝑝𝑝 < 0.0001 

SI-SBC 𝑧𝑧 = −0.2067, 𝑝𝑝 
= 0.8362 

2 missing studies 
0.0215(0.0126) 
𝑝𝑝 = 0.0881 

SI-IC 𝑧𝑧 = 0.3862,𝑝𝑝 
= 0.6994 0 missing studies 

SBC-IC 𝑧𝑧 = 0.0158,𝑝𝑝 
= 0.9874 

2 missing studies 
0.0006(0.0102) 
𝑝𝑝 = 0.9506 
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Figure 8: Chi-square and Adjusted Chi-Square Multivariate QQ-Plot 
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Table 26: Measures of Influence 
Variables 𝑟𝑟𝑠𝑠𝑡𝑡𝑢𝑢𝑑𝑑 > |3|? 𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖𝑡𝑡𝑠𝑠 > 1? 𝑣𝑣𝐶𝐶𝐶𝐶𝑘𝑘.𝑑𝑑 > 0.45? 

SS-AI No No No 
SS-SI No No No 
SS-SBC No No No 
SS-IC 

No No No 

AI-SI No No No 
AI-SBC No No No 
AI-IC 

Yes; Study 6 (Rstud = 
4.2344) 

Yes; study 6 
Dffits = 1.1062 

Yes; study 6 
Cook.d = 0.5685 

SI-SBC No No No 
SI-IC 

No Yes; Study 6 
Dffits = 0.6156 No 

SBC-IC No No No 
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APPENDIX G 

UNIVARIATE FOREST PLOTS  

 

Figure 9: Forest Plot of SS/AI 
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Figure 10:Forest Plot of SS/SI 
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Figure 11:Forest Plot of SS/SBC 



 

102 

 

 

Figure 12:Forest Plot of SS/IC 
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Figure 13:Forest Plot of AI/SI 
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Figure 14:Forest Plot of AI/SBC 
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Figure 15:Forest Plot of AI/IC 
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Figure 16:Forest Plot of SI/SBC 
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Figure 17:Forest Plot of SI/IC 
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Figure 18:Forest Plot of SBC/IC 
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APPENDIX H 

UNIVARIATE FUNNEL PLOTS  

 

 

 

Figure 19: Trim-and-Filled Funnel Plot for SS/AI 
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Figure 20: Trim-and-Filled Funnel Plot for SS/SI 
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Figure 21: Trim-and-Filled Funnel Plot for SS/SI 
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Figure 22: Trim-and-Filled Funnel Plot for SS/SBC 
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Figure 23: Trim-and-Filled Funnel Plot for SS/IC 
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Figure 24: Trim-and-Filled Funnel Plot for AI/SI 
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Figure 25: Trim-and-Filled Funnel Plot for AI/SBC 
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Figure 26: Trim-and-Filled Funnel Plot for AI/IC 
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Figure 27: Trim-and-Filled Funnel Plot for SI/SBC 
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Figure 28: Trim-and-Filled Funnel Plot for SI/IC 
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Figure 29: Trim-and-Filled Funnel Plot for SBC/IC 
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