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ABSTRACT

Geometric Rank of tensors was introduced by Kopparty et al. as a useful tool to study algebraic
complexity theory, extremal combinatorics and quantum information theory. This dissertation
studies the classification of tripartite tensors with small geometric ranks. We introduce primitive
tensors and compression tensors, which reduces the classification problem to finding all primitive
tensors.

There are close relations between tripartite tensors with bounded geometric ranks and linear
determinantal varieties with bounded codimensions. We study linear determinantal varieties with
bounded codimensions, and prove upper bounds of the dimensions of the ambient spaces.

Using the results on linear determinantal varieties, we find all primitive tensors with geometric
rank 1, 2 and 3 up to change of coordinates, find upper bounds of multilinear ranks of primitive
tensors with geometric rank 4, and prove the existence of such upper bounds in general. Finally,

we explicitly classify all tripartite tensors with geometric rank at most 1, 2 and 3.
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1. INTRODUCTION

Various types of ranks of tensors have been introduced and studied in numerous areas such as
algebraic complexity, extremal combinatorics and quantum information theory. Slice rank arose in
the study of the cap set problem [2], and it turned out to be helpful in the study of the sunflower
problem [3]. Analytic rank was introduced by [4] in the context of Fourier analysis, and [S] showed
it lower bounds slice rank and can replace slice rank in the resolution of cap set problem. In the
study of random tensors, analytic rank also measures the bias of a tensor.

In arithmetic complexity of matrix multiplication, people want to know asymptotically how
many arithmetic operations are required to multiply two matrices. More precisely, determine the
exponent of matrix multiplication w, the number such that two n x n matrices can be multiplied
using O(n¥*¢) scalars additions and multiplications for any ¢ > 0. In the study of finding upper
bounds on w, Strassen introduced subrank which measures the “value" of a tensor [6], and the
asymptotic version of subrank plays an important role in Strassen’s laser method [7]. In quan-
tum information theory, people study the convertibility of stochastic local operations and classical
communications (SLOCC). It turned out that the rate of converting GHZ states to triples of EPR
states via SLOCC equals to w [8], which made subrank an interesting object to study in quantum
information theory. [9] introduced quantum functional and studied its relations with asymptotic
slice rank and asymptotic subrank. Subrank is mysterious and hard to compute, and geometric
rank gives good upper bounds on subrank.

Geometric rank was introduced in [10] as an extension of analytic rank from finite fields to
algebraically closed fields, and as a tool to find upper bounds on border subrank and lower bounds
on slice rank. [11] took a step further studying geometric rank systematically, giving results on
tensors with geometric rank at most 3. [12] showed that the partition rank is at most 2"~ times of

the geometric rank for n-part tensors. Putting different types of ranks in an increasing order, we



have:

Subrank < Border Subrank < Geometric Rank

< Partition Rank < Slice Rank < Multilinear Ranks < Rank.

Any tripartite tensor 7 € A® B® C := C* ® CP ® C° can be regarded as a trilinear function

T : A* x B* x C" — C. Its geometric rank is defined to be:
GR(T) := codim{(a, B) € A* x B*|T(«, 8,7) = 0,y € C*}.

Given r < min{a, b, c}, let GR,. be the set of tensors with geometric rank at most r. Such sets
of tensors are Zariski closed [10], and are important varieties in algebraic geometry that provides
a new aspect to understand geometric structures of spaces of tensors. Our goal is to study GR,
systematically and classifies all tensors in GR,. up to changes of bases and permutations of A, B
and C' if possible.

In §3.1, we introduce primitive tensors and compression tensors (Definition 6) as helpful tools
to classify tensors in GR,.. We show that every tensor can be decomposed as a sum of a primitive
tensor and compression tensor with certain geometric ranks (Lemma 9), which reduces the problem
of classifying tensors in GR.. to finding all primitive tensors in GR,.. We also show that the matrix
multiplication tensors are either primitive or compression (Corrollary 8).

On the other hand, Proposition 2 reveals the close relations of geometric rank with spaces of
matrices of bounded rank and linear determinantal varieties, which are classically studied objects
in algebraic geometry. So we take advantage of previous researches to understand geometric rank
better. We study spaces of matrices whose determinantal subvarieties have bounded codimensions
in §3.2.

In §4, using results from §3, we find all primitive tensors in GR,. and conclude the classifica-
tions of all tensors in GR,,., for r = 1,2, 3. Besides, we find the upper bounds of multilinear ranks
of primitive tensors with geometric rank 4 (Theorem 26), and prove the existence of such upper

bounds for primitive tensors with arbitrary geometric rank (Theorem 28).



2. LITERATURE REVIEW

2.1 Geometric Rank

This section reviews some basic properties of geometric rank introduced in [10]. Let a, b and

c be positive integers, and A := C2, B := CP,C := C°.

Definition 1 ([10]). For atensor 7' € A ® B ® C, the geometric rank of 7" is

GR(T) := codim{(«, 8) € A* x B*|T(«, 8,7) = 0,V € C*}.

T induces a linear map T4 : A* — B®C. Omitting the subscripts when there is no ambiguity,

T(A*) ¢ B® C'is an a-dimensional space of b x ¢ matrices. For 0 < j < min{b, c}, let
A = {ae A" [rank(T (o)) < j} = A,

Fixing bases {a;}2_,{b;}>_, and {c;}{_, of A, B and C, and the dual basis {c;}2, of A*
corresponding to {a;}2_, we often represent T'(A*) by a general point T'(>_ z;cv;) of T(A*) in a
matrix form. That is, 7'(A*) will be written as a b x ¢ matrix whose entries are linear forms in
variables z;’s. Then A7 is the subvariety determined by all (j + 1) x (j + 1) minors of T'(A*).

The following proposition can be regarded as an equivalent definition of geometric rank.
Proposition 2 ([10]). GR(T') = min;(codimA¥ + j).

Proof. Let Vap := {(«, ) € A* x B*|T(«, 8,7) = 0,Vy € C*}, so that GR(T') = codimVp.
Let 7 : Vyp — A* be the restriction of the first projection A* x B* — A*. Note that for any
ae A*,

7 (a) = {a} x LeftKernel(T(a)).

Therefore 771 («) is a linear space of dimension b — rank(7'(«)).

Since Vap = |J; 77'(4;), and for a € AN\A* |, 77! («) is a linear space of dimension b — j,

J
we obtain:

dimVp = max dim(7 " (A})) = max (b — j)dim (A7),

J J



which proves the proposition. O

From Definition 1 we see that geometric rank is symmetric in A and B factors, i.e., swapping
A and B factors of any tensor 7' € A® B ® C' does not change the value of GR(T"). Meanwhile by
Proposition 2, geometric rank is symmetric in B and C factors. This implies that geometric rank

is symmetric in all A, B and C factors, so we have:

Proposition 2’ ([10]).

GR(T') = min;(codimA? + j) = min;(codimB} + j) = min;(codimC5 + j).
Lemma 3 ([10]). (Subadditivity) Let S,T € AQ B® C. Then GR(S + T) < GR(S) + GR(T).

Proof. Let Vi, Vs and ViiT < A* x B* be the subvarieties in the definition of geometric
rank for S, T and S + T respectively, i.e., GR(S) = codimVj3,, GR(T) = codimV 1y, and

GR(S +T) = codimV§". Clearly V53" 5 VS 0 Vi So

GR(S + T) = codimV iz’ < codim(V3iy n Vig) < codimV iy + codimVy.

2.2 Multilinear Ranks and Slice Rank

ForT e AQ B C = C* ® CP ® C¢, the multilinear ranks are ml,(T) := rank(7y),
mlg(T) := rank(Tp) and mle(T) := rank(7). And the slice rank is SR(7") := min{ml,(77) +
mlg(Th) + mle(T3) | T =Ty + Ty + T3}

It is clear to see that SR(T") < mla(7T"), mlp(T), mle(T') by the definition of slice rank. Note
that dimA§ = a — ml4(7"), so GR(T) < codim(Af 4+ 0) = ml (7). Similarly, by Proposition 2,
GR(T) < mlu(T), mlg(T), mla(T).

By the definition of slice rank, there exist 77,75 and 75 such that 7" = 7T} + 15 + 75 and
SR(T) = mlA(Tl) + mlB(TQ) + mlc(Tg) = GR(Tl) + GR(TQ) + GR(T3) = GR(T)

To summarize, we conclude GR(7") < SR(T") < mls(T"), mlp(T"), mle(T).



2.3 Linear Determinantal Variety

For a linear space of matrices E < A® B := C*® CP, let E, be the locus of matrices of rank
at most r, for r < min{a, b}. In other words, PE, = PE n o, (Seg(PA x PB)), the intersection of
PE with the r-th secant variety of the Segre variety. £, is cut out by all (r + 1) x (r 4+ 1) minors
set theoretically, and is called a linear determinantal variety (see, e.g., [13, Ch. II]).

Let H := A® B, then H, is the affine cone of o, (Seg(PA x PB)) and is called a generic
determinantal variety. The defining ideal /(H,) is prime and generated by all (r + 1) x (r + 1)
minors [14], and codim(H,.) = (a —r)(b —r) [15]. Since E, = H, n E is a linear section of H,,
codimg(FE,) < (a—r)(b—71).

To study GR,, note that by definition T'(A¥) consists of matrices in B ® C' of rank at most 7,
so it is a linear determinantal variety. Since codimy(a+)(T'(A})) = codim 4« (A7), by Proposition

2 we need to find all linear spaces £ < B ® C satisfying codimg(FE;) <r —ifor0<i <.
2.4 Space of Matrices of Bounded Rank

A linear space of matrices E ¢ A® B := C* ® CP is said to have bounded rank r if all
matrices in £ have rank at most r, i.e., s, = E. There are two important classes of spaces of
bounded rank — primitive spaces [16] and compression spaces [17]. E is compression if there
exist A ¢ Aand B’ ¢ B of dimension p and ¢, suchthat E ¢ AAQ B+ AQ B 'andp + q = r.
E is primitive of bounded rank r if for any subspaces A’ < A or B’ ¢ B of codimension 1,
E4¢ A®BorA® B, and neither £ n (A’ ® B) nor ' n (A ® B’) has bounded rank r — 1.

Atkinson and Lloyd showed that there is no primitive space of bounded rank 1, and every space
of bounded rank r that is not compression is a "sum" of a compression space and a primitive space

[16].

Theorem 4 ([16]). If E is a space of a x b matrices of bounded rank r then these exist a primitive

space F' of bounded rank s and integers p,q = 0 withr = p + q + s such that E is equivalent to a



space of the form

O
o M ¥
o o ¥

where the top left block has size p x q.
Moreover, if E is primitive of bounded rank r, then at least one of the following holds:
(1) a=r+1,b<ir(r+1);
(2) a<sr(r+1),b=r+1;
(3) for some integers c,d =2 withc+d=r,a<c+1+3d(d+1),b<d+1+ ic(c+1).
Later all primitive spaces of bounded rank 2 and 3 were classified in [18] — the only primitive
space of bounded rank 2 is the space of 3 x 3 skew-symmetric matrices. [17] recasted the study with

sheaves and gave geometric interpretations of all primitive spaces of bounded rank 3 as matrices.

The classifications of spaces of bounded rank 4 or higher is still unknown by far.

Theorem 5 ([17]). A primitive space of bounded rank 3 is equivalent to either the space of the

following form
To T3 T4 0 0 0
—xr;1 0 0 T3 Ty 0
0O -2 0 —29 O x4 7
0 0 —x1 0 —x9 —x3

or its transpose, or one of its projections and their transposes.

Proposition 2 shows GR(T") < r if at least one of T'(A*), T'(B*) and T'(C*) has bounded rank
r. In §4, we will see that when » = 1 and 2 this condition is necessary (??). But it fails to be

necessary when r = 3 as there are two exceptions (Theorem 24).
2.5 Matrix Multiplication Tensor

In the study of arithmetic complexity of matrix multiplication, Strassen found that the number
of additions and multiplications are required to multiply two matrices asymptotically is determined

by the rank of matrix multiplication tensors [7].



For positive integers ¢ < h < [, put A = C*" B = C"*! and C = C'*°. Then the matrix
multiplication tensor M ; , is defined by M., ;5(x,y, 2) = Tr(xyz) for z € A*, y € B* and
z € C*. We often write M,y := M, 5, n,. With proper choices of bases, M. j,;, may be written as

the block form:
D

Mee (A7) = . 2.1)
D
where D is a e x h block consisting of linearly independent entries and there are [ copies of D in
Moy (A%).
Strassen gave a lower bound of the border subrank of My, 5, which is eh — |(e + h — [)*/4]
if e + h > [ and eh otherwise [7]. Recently [10] surprisingly found that the above lower bound

equals to the geometric rank of M. 1y, and consequently equals to the border subrank of M j, 1

since geometric rank upper bounds border subrank.



3. METHOD

3.1 Primitive and Compression Tensors

For any r > 1, G'R, contains a large class of tensors — the set of tensors with slice rank at most
r. If a tensor has slice rank at most r, then there exists s + p + ¢ = r such that for some bases of
A, B and C, the only non-vanishing entries of 7" only appear in the first s columns, the first p rows
and the first ¢ pages. Therefore these tensors are easy to understand in the study of classifications,

and we are only interested in tensors whose geometric ranks are less than slice ranks.

Definition 6. 7" is compression of geometric rank r if GR(7") = SR(T") = r. T is primitive of

geometric rank r if it cannot be written as 7' = X + Y with GR(X) =r — 1 and GR(Y) = 1.
The following lemma gives a direct way to determine whether a tensor is primitive in general.

Lemma 7. Given T with 1 < GR(T') = r < SR(T), then T is not primitive if and only if 3i < r
such that by a permutation of A, B and C, codim(A}) = r—i and A} has a component of maximal

dimension that is contained in a hyperplane of A*.

Proof. Let {a;}2_, be a basis of A, and {«;}2_, be the dual basis of A*. Write A" := (ay, -+ , aa),
s0 A% = (g, -+, ).

(=) T is not primitive if and only if we can decompose 7" = X + Y with GR(X) = r — 1 and
GR(Y) = 1. Since GR(Y) = 1 if and only if SR(Y) = 1, by permuting A, B and C' assume
ml,(Y) = 1, and by changing basis of A assume Y € (a;)® B® C.

Then T' = X' + Y’ where X' := T|agpgc and Y’ := T \eBec-. Since X' = X|asgpgc,
GR(X') < GR(X) = r — 1. By subadditivity of geometric rank and SR(Y’) = GR(Y"') = 1,
GR(X’) = r — 1. By (2) there exists ¢ < r — 1 such that codim{a € A* | rank(X'(«)) < i} <
r —1 — 4. Then {o € A* | rank(X'(«v)) < i} n A”™ < A} has codimension r — ¢ in A* and is
contained in a hyperplane.

(<) Assume codim(A}) = r — ¢ and A} has a component Z of maximal dimension contained in

A™. Let X’ and Y’ be defined the same as above. By definition {«« € A™* | rank(X'(«)) < i} > Z

8



so has codimension at most r — ¢ in A*, then its codimension is at most r — 1 — 7 in A”*. Since
X' e ARB®C,GR(X') <r—1. ByT = X'+ Y’ and subadditivity of geometric rank,
GR(X') =r—1and GR(Y’) = 1. ]

Corollary 8. For positive integers e < h < I, My, is primitive ife > 2 and e + h = 1, and it is

compression otherwise.

Proof. By Theorem 6.1 of [10], GR(M.n1y) = ehife +h < lore = 1. Since GR(Mep1y) <
SR(Mepnyy) < mla(Meepsy) = eh, we have GR(M ) = SR(Mepy) = eh and therefore
M¢e p 1y 1s compression.

Assume e > 2 and e + h > [. The component of the maximal dimension Z < A; is deter-
mined by all k& x k minors of D, where k& = min{e, [**]}. By [19, Theorem 2.1], codim(A4;) =
codim(Z) = (e + 1 —k)(h + 1 — k). So (2) achieves minimum only at i = [<t2=1]] and | <=L |].

Then k£ > 1 and Z is not contained in any hyperplane. [

Although we define the primitive and compression tensors as analogues of primitive and com-
pression spaces of matrices, their relations are subtle.

By definition 7" is compression of GR(T") = r if at least one of T'(A*), T (B*) or T'(C*) is a
compression space of bounded rank r and none has bounded rank » — 1. The converse is true only
forr <2,asT:=3" (1 ®b;®c; +a;, @b ®¢; + a; ®b; ® ¢1) is compression of GR(T) = 3
but 7'(A*), T(B*) and T'(C*) contain elements of full rank.

If T is primitive of GR(7") = r and T'(A*) has bounded rank r, then T(A*) is primitive of
bounded rank r (after deleting zero rows and columns). Similarly for 7'(B*) and 7'(C*). However
T could be primitive when 7'(A*), T'(B*) and T'(C*) do not have bounded rank r.

For example, My, is primitive of geometric rank 3 by Corollary 8. But since M5,(A*) can be
written as the block diagonal form (2.1), generic matrices in M<2>(A*) have full rank 4. Therefore
M9,(A*) does not have bounded rank 3. For the same reason, M, (B*) and M,(C*) do not
either.

There is no primitive space of bounded rank 1, and all primitive spaces bounded rank 2 and 3



are listed in [18, 17]. We check every such primitive space and conclude that for r < 3, if T'(A*)
is primitive of bounded rank r, then 7" is primitive of geometric rank r. It is not known if this
property persists when r > 3, because the set of all primitive spaces of larger bounded rank are not

classified yet.

Lemma 9. If T is not compression (i.e., GR(T') < SR(T')), then there exist a primitive tensor T,

and a compression tensor T,, such that T = T, + T, and GR(T},) + GR(T.) = GR(T).

Proof. If T is primitive, set T, = T"and T, = 0.

If 7" is not primitive, assume GR(7T") = r, then we can write 7" = X + Y] such that GR(X;) =
r — 1 and GR(Y;) = 1. Similarly, whenever X; is not primitive or zero, we can write X; =
X1 + Yiy1 such that GR(X;) = r — ¢ and GR(Y;) = 1. If all X;’s obtained this way are not
primitive, we have a decomposition 7' = Y; + - - - + Y, where each Y, has geometric rank 1 so has
slice rank 1. This implies SR(7") = r = GR(T'), contradicting the assumption GR(7") < SR(T').

So there exists n < r such that X, is primitive, then we obtain T" = T}, + I where T}, := X,
and T, := Y1 +---+Y,. Since GR(T},) = r—nand >, GR(Y;) = > SR(Y;) = n, by subadditivity

of geometric rank and slice rank, GR(7.) = SR(7..) = n. Therefore T, is compression. O

Example 10 (Above decomposition is not unique). Let T € AQ BRQC = C>® C®>® C° be

T:=01® (by®c1 +b3@ca+ b1 ®c3) +a2® (b1 ®@c1 —bs®@cy — by ®cs)
+a3® (b1 ®ca+ba®cs —by®cg) + a4 ® (b1 ®cz+ba®cs+ by ®cg) + a5 Qb ® ¢

where {a;}7_,, {b;}°_, and {c,}}_, are bases of A, B and C respectively. So

Ty w3 x4 0 0 0
7y 0 0 3 Ty
TA*)=10 2 0 —zo 0 T4
0 0 x4 0 —z9 —z3
0O 0 0 O 0 x5

Let X1 = T|A®B®<c1,~--,C5>a Yi = T|A®B®<06>7X2 = T’A®<b1,~~-,b4>®0 and Y2 = T|A®<b5>®C-
Since X (A*) consists of the first 5 columns of 7'(A*) and X5(A*) consists of the first 4 rows of

T(A*), they are primitive spaces of bounded rank 3 (after deleting the zero columns and rows). So

10



X; and X, are primitive of geometric rank 3, and 7" = X; + Y7 = X5 + Y, gives two different

decompositions satisfying the conditions in Lemma 9.

By Lemma 9, to classify the set of tensors of geometric rank at most 7, it suffices to find all

primitive tensors of geometric rank at most 7.
3.2 Determinantal Varieties of Bounded Codimensions

As discussed in §2.3, to classify tensors with bounded geometric ranks, it suffices to classify
linear spaces of matrices whose determinantal subvarieties have bounded codimensions. This sec-
tion studies the properties of such spaces and try to classify them up to invertible row and column
operations.

Let E c C2®CP =: A® B be a linear subspace of dimension c. Fix a basis {¢;, 1 < i < c} of
E and bases of A and B, then each e; can be written as an a x b matrix. Similar to how we represent
T(A*) ¢ B® C as a matrix of linear forms, F is represented by the matrix corresponding to a
general point Y, z;¢; of E, i.e., E = (y})1<i<a,1<j<b, Where each ¢/} is a linear form in the variables
x1,--- T For two subspaces F, F' < F, let ' + F' denote the sum of the two corresponding
matrices of linear forms.

Denote the (i1, ,ix) % (j1, - ,jx) minor of E as Aﬁ;’; and Ay := Al2"*  Unless

otherwise stated, the codimension of a subset always refers to the codimension in £ or PE.
3.2.1 Casecodim(E,) =1
This subsection studies the case codim(F,) = 1, i.e. all nonzero (r + 1) x (r 4+ 1) minors of

E has a common polynomial factor of degree at least 1.

Lemma 11. Let E c C2@CP, r < a,band E, # E. If there exists a degree r + 1 polynomial P

dividing all (r + 1) x (r + 1) minors of E, then either P factors into a product of linear forms, or

E c Cr+1 ® CT—H.

Proof. The hypothesis that all (r + 1) x (r + 1) minors of E are equal up to scale is invariant under

changes of bases in A and B, so we are allowed to perform invertible row and column operations.

11



Since E, # F, there exists a nonzero (r + 1) x (r + 1) minor of E. By changes of bases we
can assume A, ; = P. We further assume A,, - - , Ay, y{ are nonzero.
Write £ = (y§)1<i<a71<]—<b. Consider the the block consisting of the first » + 1 rows and the

first r + 2 columns:

Yi o Yrn Yeeo
vty uh
Let ] :=(1,2,---,r +1). For j < r + 1, expand the minor consisting all columns except the

j-th along the last column, then we have
r+1

i+(r -1, I\i
¢ P = A%\j,’r‘+2 = Z<_1) +Hr+2) lyr+2A1<j
=1

for some c; € C. Thus,

1 r+1 y;+2
_ (_1\r+1 VA .
P=(-1) ((—1) Al\j) .
=1 r+1
Cr+1 Yri2
For every j < r + 1, multiply (—1)7 to the j-th row,
(—D'er r+1 yi+2
r+1 : — i+j ALV :
(—1) : P = ((—1) ﬂA&.) N 3.1)
J,t= r
(1) e Yria
Now ((—1)"* A%);J{il is the cofactor matrix of the transpose of (y!); 7L, whose determinant is

A, 1 = P by assumption. So

1 1 1
Y 0 Y -G Yri2
1 . . . .
(1| - =
r+1 r+1 r+1 r+1
Y1 Y (=) e Yr12
1 r+1NE : ot
Therefore the column vector (y,_,,...,¥y,5)" is a linear combination of all column vectors ap-

pearing in the upper left (r + 1) x (r + 1) block of E, i.e. (y;j,--- ,y;f“)t, 1<j<r+1 By
adding linear combinations of the first 7 + 1 columns to the (r + 2)-th, we may make the first  + 1
entries of the (r + 2)-th column equal to zero. Similarly, we may make the all last b —r — 1 entries

in the first r + 1 rows equal to zero. By the same argument, we may do the same for the first  + 1

12



columns. Then the matrix F becomes:

y% o yi+1 o .- 0

0 L O ~r+2 ~r+2 |7 )
yr+2 yb

0 e 0 gf+2 e gﬁ

If yf;"ﬁi; = 0,V7,7 > 0, let A’ be the space corresponding to the first  + 1 rows of £’ and B
the first 7 + 1 columns, then E c A’ Q@ B' = C"*' @ C"+1.

If there exists a nonzero §j,};17, by changes of bases assume it is 7/ 13. For1 <i; < --- <
ir<r+L1<j<--<j.<r+1,the(r+1)x (r+1)minor Aﬁ;ﬁg = A;llljr N;"I%
is a multiple of A, . Hence all r x r minors of the upper left (r + 1) x (r + 1) block equal up to
scale.

By assumption A, # 0. Adding a linear combination of the first » columns to the (r + 1)-th
column and a linear combination of the first 7 rows to the (r + 1)-th row, we can set all entries in

(r+1)-th column and row zero except the (r+1, r+1)-th entry. Since A, 1 # 0, the (r+1,r+1)-th

entry is nonzero, written as ¢ 1. Then E’ becomes:

y} c yi 0 o .- 0
: : 0 . )
Yooyt 0 0O --- 0
E'=1lo0o -~ 0 gt 0o - 0

0O --- 0 0 ~;I§ . g;;ﬁ
0 . :
0 - 0 0 P o B

Repeat the above process on the upper left £ x k blocks consecutively for k = r—1,r—2,--- |2,
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then E” becomes:

h
05

St

Yri1
42 rt2
SEREEEI
3}?+2 e U

Therefore A, = yi§2 - §.F] which factors into a product of linear forms. O

Lemma 12. Let E < C2®CP, 1 <r < min{a,b} —2and E # E, ;. If there exists a polynomial
P of degree k dividing all (r + 1) x (r 4+ 1) minors, then:
(1) if k > r/2 + 1 and for any nonzero (r + 1) x (r + 1) minor A, P and A/P are coprime,
then P is a product of linear forms;
(2) if ris even, k = r/2 + 1 and for any nonzero (r + 1) x (r + 1) minor A, P and A/P are
coprime, then either P is a product of linear forms or E < C"2 ® C"*2;
(3) ifr = 3isodd, k = (r +1)/2 and P is irreducible, then either E = C"*?® CP, C2 @ C"+2,
C™3 @ C"*3, or up to changes of bases E has a nonsingular (r + 1) x (r + 1) block such

that all v x r minors of it are multiples of P.

Proof. (1) and (2): Proof by induction on r. The base case r = 1 is trivial. Assume » > 1 and
assume that (1) and (2) holds for all integers smaller than r.

Given any nonzero (r +2) x (r 4+ 2) minor of E, by changes of bases we can assume it is A, ;,
and we further assume A, ; # 0.

Write A,1 =: PQ and for j <r+1, Af\ irie = PQ);, where each of the polynomials () and

Q;’s either is zero or has degree r + 1 — k. Then similar to Lemma 11, we have

— i1 [ Yrgo

1yl : = [ (_1yiti ALV :

(—1) : P (( 1) JAI\j)JH
(=11 Qrs1 e

14



Using the cofactor matrix, we obtain:
1 1 1
Y1 Y _Ql Yri2

(_1)T+1
Q

vith oy ) (D) Qra Yris
By adding a rational combination (where the coefficients are (—1)7Q);/Q’s) of the first r + 1
columns to the (r + 2)-th column, we can put the first  + 1 entries of the (r + 2)-th column zero.
By the same argument, put the first 7 + 1 entries of the last b —r — 1 columns zero. And we can do
the similar rational row operations to eliminate first  + 1 entries of the last a — » — 1 rows. Then
E becomes E’ of the form (3.2).
Since the (1,--- ,r+ 1,7+ 2) x (1,--- ,r + 1,7 + 2) minor is not changed by adding rational

multiples of the first 7+ 1 rows and columns to the (7 +2)-th row and (r+2)-th column respectively,

g;ﬁ = i:—ﬁ. On the other hand, gj:fig has the form 7'/() for some polynomial 7" of degree

k + 1 if not zero, because all coefficients appearing in the row and column operations above are

(-1)Q,/Q’s. Thus,
T T JAVEID - AN . (Ar+2/P)

Q YT AL T PQ T Q

(3.3)

and T = A, /P.

Since P and () are coprime, the fact P divides all (r + 1) x (r + 1) minors is preserved after
performing the above rational row and column operations.

If there exists an r x  minor of the upper left (r + 1) x (r + 1) block that is not a multiple of P,
by changes of bases assume this minor is A,.. P divides the minor A} 7775 = §7 A, = TA,/Q,
so T'is a multiple of P. Hence P? divides A, = TP. If k > r/2+1, P? has degree > r +2, then
we must have A, o = 0, contradicting to the assumption A, 5 # 0. If riseven and k = r/2 + 1,
A, 15 is a multiple of P2. By the arbitrariness of the choice of the nonzero (r + 2) x (r + 2) minor
of E, all (r + 2) x (r + 2) minors equal to P? up to scale. By Lemma 11, P factors completely or
EcCt2eC+?

If all 7 x r minors of the upper left (r + 1) x (r + 1) block are multiples of P. By induction,

apply (1) by replacing r with » — 1 so P factors into a product of linear forms.

15



(3): Similar to above let A,,; =: PQ and A, are nonzero. Since P is irreducible of degree
k = (r + 1)/2, either P and () are coprime, or () equals to P up to scale. In the latter case, we can
choose another nonzero (7 + 1) x (r + 1) minor from the top left (r + 2) x (r + 2) block such that
P and @ are coprime, unless all (7 + 1) x (r + 1) minors in the top left (r 4+ 2) x (r + 2) block are
multiples of P2

If all (r+1) x (r+ 1) minors in the top left (r +2) x (r+2) block are multiples of P2, applying

Lemma 11 to the top left (r + 2) x (r + 2) block we can put F as

1 1 1
Y1 Y 00 Y
r+1 r+1 r+1
o | Y 0 Y
r+2 r+2
o - 0 Y152 ¥Uris
r+3 r+3 r+3 r+3
U e y7'+1 yr+2 yr+3

Consider the (r + 1) x (r + 1) minors involving y/ 2 and r x r minors of the upper left

(r+1) x (r+1)block: P dividing all (r + 1) x (r + 1) minors implies P dividing all » x r minors
from the first » + 1 rows. Apply (2) by replacing » with » — 1 to the submatrix consisting of the
first r + 1 rows. Since P is irreducible of degree k£ > 1, this submatrix is in some C" ! @ C" !, we
can put y;'. zero for ¢t < r+ 1and j > r + 3 by changing basis of A. For the same reason all yg for
i <r+1landj > r + 3 can be put zero too. Then £’ becomes E” = diag(B;, Bs) where B is a
(r + 1) x (r + 1) block. If B, has an nonzero 2 x 2 minor, consider the (r + 1) x (r + 1) minors
consisting of it and any (r — 1) x (r — 1) minor of By, applying (1) replacing r with r — 2 we see
P factors into linear forms which contradicts the irreducibility. Therefore B; has bounded rank 1,
then £ c C"2 ® CP or C2 @ C"+2.

Now assume P and () are coprime. Similar to the proof above, if there exists an r x r minor
of the upper left (r + 1) x (r + 1) block that is not a multiple of P, P? divides A,,». By the
arbitrariness of choice of nonzero (r +2) x (r +2) minors, P2 divides all (r +2) x (7 + 2) minors.
As k = (r + 1)/2 and P is irreducible, P? divides all (r + 2) x (r + 2) minors and we can apply

(1) by replacing r with r + 1, then we conclude £ = C"*3 @ C"*+3.
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Otherwise all » x r minors of the upper left (r + 1) x (r + 1) block are multiples of P. [l

Corollary 13. Let E =« C*® CP, 1 < r < min{a,b} — 2, and codim(E,) = 1 and E # E,, ;.
Then:
1. E, does not contain any irreducible hypersurface of degree k > r/2 + 1;

2. ifr is even and E, contains an irreducible hypersurface of degree r/2 + 1, then E < C"2®

(Cr+2

Proof. 1. If E, contains an irreducible hypersurface of degree k, there exists an irreducible poly-
nomial P of degree k dividing all (r + 1) x (r + 1) minors. Then for any (r + 1) x (r + 1)
minor A, A/P has degree less than k so must be coprime with P. By (1) of Lemma 12, P factors,
contradicting to the irreducibility.

2. Similar to the proof of 1 except we apply (2) of Lemma 12. As P cannot be a product of

linear forms due to irreducibility, we conclude £ = C" 2 @ C"*+2. O

3.2.2 Case codim(E;) =n

Let B+ := {f € A*® B* | f(E) = 0}. Define the index of degeneracy of E to be one
plus the maximum dimension of a linear space contained in PE+ n Seg(PA* x PB*), denoted as
x. Equivalently, x is the largest number of entries in the same row or column of £ that can be
simultaneously put to zero by changing bases of A and B.

The subspace FE is called E1-generic if x = 0. We call this property El-generic because
it corresponds to the notion of 1-generic for spaces of matrices given by Eisenbud [19], which
differs with the notion of 1-generic that is often used for tensors (cf. [20]). We list two results of

El-generic spaces of our interest below.

Theorem 14 (Corollary 3.3 and Theorem 2.1 of [19]). Let m = min{a,b}. If E ¢ A® B is
El-generic, then:

1. fork <m —1, codim(Ey) >a+b—2k—1;

2. if F < Eis a subspace with codim(F') < m — 1, then codimp(F,,—1) = (a—m + 1)(b —

m + 1).
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For generic determinantal varieties, i.e. when £ = A ® B, one expects Fj, has codimension
(a — k)(b — k). El-generic does not means generic but implies the genericity to some extent —

E,,,_1 has the expected codimension, and the codimension of E} has a lower bound a+b — 2k —1.

Proposition 15. Let n := codim(E) ), then there exist 0 < j < n and a linear subspace F' < E of
codimension j, such that either F < C* ® C! for some k +1<n+3—jandk,l > 2, 0rj=n

and I has bounded rank 1.

Proof. First assume all nonzero 2 x 2 minor of £ are irreducible. So if there is an entry yj- =0,
then either all entries in the i-th row or all entries in the j-th column are zero. By changes of bases

in A and B, there exist integers k, [ > 2, such that yj- # Oifand only if? < k,j < L.

y% ?/11 0O --- 0
B ylf yzk 0O --- 0

0O --- 0

O --- 0 0 --- 0

Then the upper left k£ x [ block of F is El-generic. By Theorem 14 if k,[ > 2, codim(E;) >
k+1—3,s0k+1<n+3.

If there is a 2 x 2 minor of M that factors into the product of two linear forms /1, (5, write
F :={{, =0} and F' := {{, = 0}, then E;, = F; U F]. Atleast one of the two components has
codimension n in E. Say itis F}, then codimg(F}) < n — 1.

Together with the irreducible case, we conclude that at least one of the following holds:

1. there exists a hyperplane F' — E such that codimg(F;) =n — 1;

2. EcC*®Cl'suchthatk+1<n+3andk,[ > 2.

Using induction on dim(E), we conclude. O

3.2.3 Case codim(E,) =1

If codim(FEs;) = 1, then there must exist an irreducible polynomial P of degree k < 3 dividing

all 3 x 3 minors of £. If k£ = 1, then E contains a hyperplane { P = 0} which has bounded rank 2.
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If k=3,byLemmall £ c C?® C3.
When k = 2, by Corollary 13 we have F < C*® C*, which suffices us to assume £ = A® B

with dim(A) = dim(b) = 4. The following proposition finds all such spaces up to changes of
bases in F, A and B.

Proposition 16. Let E ¢ A®Q B := C*® C*. If there exists an irreducible polynomial S of degree
2 dividing all 3 x 3 minors of E, then at least one of the following holds:

1. E has bounded rank 3;

2. up to changes of bases in E, A and B, E is either skew-symmetric, or has the form a diagonal

block matrix diag(X, X)) where

Typ T2 T T2
X = or

Lo XT3 X3 T4

depending on the rank of S.

We defer the proof to §3.3.
3.2.4 Casecodim(E,) <n

A subspace £ < A ® B is said to be concise if the associated tensor 7' € E* ® A ® B is
concise. Equivalently, there does not exist changes of bases in A or B such that any column or row
of F consists of only zero entries. This section studies upper bounds of a and b for concise spaces

FE satisfying codim(E,) < n.

Proposition 17. For any positive integer r,n, there exist positive integers My, Ms, such that if
there exists a concise space B < A® B := C*>® CP with codim(E,) < n, then at least one of the
following holds:

(1) aorb < M;

(2) a,b < My;

(3) 3 a hyperplane F c E such that codimp(F,) < n —1;

(4) 31 <i < rsuchthat E = H + H' where codim(H!_,) <nand H <« C'® B or AQ C".
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Proof. Proof by induction on r. For » = 1, by Proposition 15 we can set M; = 1 and M, =
n + 1.For r > 2 we divide the problem into different cases by the value of «.

1. Case k = 0.

x = 0 if and only if E is El-generic. Since E, # E, a,b > r + 1. By Theorem 14,

at+tb<n+2r+1.

2. Case k = 1.
We can put yi = 0 by changing bases. Then the (a — 1) x (b — 1) submatrix consisting of
entries in the last a — 1 rows and the last b — 1 columns is either 1-generic, or has x = 1 so we can

put y2 = 0. Repeat this procedure until the bottom right (a — k) x (b — k) submatrix is 1-generic.

Then £ = i where D is 1-generic, s = a — k,t = b — k and
* szt
0 = = ® %
x (0 = % %
x % () % %
C = .
* % % 0 =
* ok ¥ = ()

If K > r + 1, consider the submatrix C’ consisting entries in the first 7 + 1 rows and the last

k — 1 columns of C":

* * * *
0 = % %
Clostyxh—1y = [ * 0 -+ % s
* % oo % O

By the definition of «, all nonzero entries in the same row or column of C' are linearly inde-
pendent. Therefore C” is a codimension r — 1 subspace of some 1-generic space in CF~! @ C"+1.
By 2 of Theorem 14, all (r + 1) x (r 4+ 1) minors of C’ determines a subvariety of codimension

>k—r—1,so0k<n+r+1.
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Now to find upper bounds for s and ¢. If s = r and ¢t > r, the submatrix consisting of entries in
the last s + 1 rows and the last ¢ + 1 columns is a codimension 1 subspace of a 1-generic space in
Cst1 @ C'1. So by 2 of Theorem 14 againt < n + r — 1. Similarly if t = 7 then s < n +r — 1.

If s,t > r + 1, the submatrix consisting of entries in the last s rows and the last ¢ + 1 columns
is 1-generic. By 1 of Theorem 14, n > 2and s +¢ < n + 2r.

To put everything together, eithera < n + 2r,b <n+2rora,b < 2n + 2r.

3. Case 2 < k < max{M;(r — 1,n), Ma(r — 1,n)}.
Claim: there exist M;(r,n, g),7 = 1,2 such that if F has k = g and satisfies the hypothesis of
the proposition, then either a or b < M;(r, n, g), or a,b < Ms(r,n, g), or the condition (3) holds.
We will find M; = M;(r,n, g) by induction on g. By the last case, we can set M;(r,n,1) =

n + 2r and Ms(r,n, 1) = 2n + 2r. Assume claim is true for spaces of k < g.

such that C' has zeros on the diagonal and D is 1-generic. Let
* Dgyy

M(r,n,g — 1) := max{My(r,n,g — 1), My(r,n,g — 1)}. If k > 2M(r,n,g — 1) + 1, then the
submatrix C’ consisting of entries in the first M (r, n, g—1) + 1 rows and the last M (r,n,g—1)+1
columns of C'is a space of k = g — 1. However by the definitions of M;(r,n,g—1)’s,all (r+1) x
(r 4+ 1) minors of C’ determine of codimension > n subset. Therefore & < 2M (r,n,g — 1) + 1.
Now s and ¢ has the same upper bound as the last case. So we can set M;(r,n,g) =

2M(r,n,g — 1) + rand My(r,n, g) := 2M(r,n,g — 1) + r + n which proves the claim.

4. Case k = max{M;(r — 1,n), Ma(r — 1,n)} + 1.
Choose bases and possibly take transpose so that all entries in the top left x x £’ block of E are

zero for some 1 < k' < k. So

B = O/@ X K/ H ) (3 4)

G szt

We take the largest ' so that the submatrix H is concise in C* ® C'. By the definition of , G is

1-generic.
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Consider the (r + 1) x (r 4+ 1) minors consisting of any single entry of G and any r x r minor
of H. We must have codimy(H,_1) < n unless condition (3) holds. Since x > max{M;(r —
Ln), Ma(r—1,n)} +1,t < My(r — 1,n).

If & <r,thenb < My(r—1,n) +r.

If ¥ = r+ 1 > s, consider the (r + 1) x (r 4+ 1) minors that are a product of an s x S
minor of G and a (r + 1 — s) x (r + 1 — s) minor of H. Then either codimg(Gs—1) < n or
codimy(H,_s) < n. The latter inequality implies condition (4) holds. The former inequality
impliesx’ <n+s—1<n+r—1,thenb<n+r—1+ M(r—1,n).

If </, s = r + 1, then codimg(G,) < n. By Theorem 14 s + ' < n+2r+ 1. Sob <
n+r+ M (r—1,n).

Since M;(r,n,g + 1) = M;(r,n,g) for g = 0, M;(r,n,g) takes the maximum at g = ¢’ :=
max{M;(r — 1,n), Ma(r — 1,n)}. So we can put M;(n,r) = max{M;(r,n,g'),n +r + M;(r —

1,n)} and My = M;(r,n,g") which proves the proposition. O

Corollary 18. Let E ¢ A ® B be concise and satisfy codimE, = 2. Then at least one of the
following holds:

(1) aorb < 6;

(2) a,b <8§;

(3) 4 a hyperplane F' — E such that codimpF, < 1;

(4) E has bounded rank 2.

Proof. For k = 0 or 1, by the proof of Proposition 17 either a, b < 6,ora,b < 8.

For k1 = 2 or 3, put E into the form 3.4. If the condition (3) does not hold, G and H are both
1-generic. Then by Theorem 14, aor b < 6.

For k > 4, H must have bounded rank 1 and¢t = 1. If kK < 3,then b < 5. If k > 4, G must

have bounded rank 1 and s = 1, then £ has bounded rank 2. O]
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3.3 Proof of Proposition 16

Before proving the proposition, we need the following lemma.

Lemma 19. Let E ¢ A® B := C?> ® C? be a matrix of linear forms in variables x,,- - - , xe.
Define
Ty X2 r1 X2
X1 = ,Xg =
T2 X3 T3 T4

1. IfdetE = det Xy, then E = X, up to changes of bases in A and B.

2. If detE = det X, then either E = X, or E = X} up to changes of bases in A and B.

Proof of Proposition 16. Say Az = x5, then the upper left 3 x 3 submatrix must be of the form
x1Z + U where Z is a 3 x 3 matrix of complex numbers and U has bounded rank rank 2. There-
fore up to changes of bases, U is either compression or skew-symmetric. Since Az # 0, taking

transpose if necessary, we can write the upper left 3 x 3 submatrix as one of the following forms:

vl ys s z, 0 ol T Yy Y3
D (o2 o2 2G| 0 z 2G| —yb z o2
0 0 =z v s —ys —Y3 T

For the rest of the proof, we will discuss each of the above cases.

Case (i). S = Ay = yly2 — yay? is an irreducible quadratic polynomial, hence has Waring rank 3
or 4. Changing basis in E/ we can write S = 2,13 — (22)? or 1,24 — Tox3 depending on rank(.S).
By Lemma 19 we can put the top left 2 x 2 block as the form X; or Xo.

S divides Al34 = x1Al] and A%} = z,A3%3, therefore (yi,y3) € span{(yi,ys), (v3,y3)}.
Adding multiples of the first and the second row to the 4-th, we can set y; and y; to zeros.

If Agﬁ = (0, the right bottom 2 x 2 submatrix has bounded rank 1, then £ has bounded rank 3.

Assume A3} # 0. Since S divides A23] = y2A31 # 0, A3} is a non-zero multiple of S, hence
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can be normalized to S. Apply Lemma 19 again, £ has one of the following forms:

1,1 1,1
T1 T2 Y3 Yy T1 T2 Y3 Yy

. 2 2
Ta T3 Yz Ui rank(S) = 3, or a4 U3 Y| e rank(S) = 4

0 0 xzo x3 0 0 y;3 x4
where (y3,y3) = (9, x3) Or (T3, T2).
We consider separately the two subcases (i.1) rank(S) = 3 and (i.2) rank(S) = 4. And we further
divide subcase (i.2) into two situations: (i.2.1) (y3,v3) = (79, 73), and (1.2.2) (y3,v3) = (w3, T2).
Subcase (i.1). Assume rank(S) = 3. Write y; = lo + 1}, y3 = I3 + l5, y3 = Iy + 1), and

A2 = (1 4+ 1")S where I, 1; € span{zy, x9, v3} and ', I} € span{wy4, - - , ¥, }. Then
l,S = l/(x1$3 - (I‘Q)Q) = (.133[,2 — Jfglﬁl)xl + (.Z’Qlé — xglll)ﬂfg.

Comparing terms that are multiples of (z1)?, we see I’ = 0, which forces all I} = 0, so y; €
span{zy, r9, x3}. Adding multiples of the first two rows and columns to the last two rows and
columns, we can put y; = y3 = 0.

Write | = a1z, + asxo + aszxs. Then
(a171 + apmy + aszs)(z123 — (12)%) = 1S = AJs = —10T3Yys — T120Y;

Comparing the terms of multiples of (z1)%xs, z1(x3)? and (75)3, we see all a; = 0 so [ = 0.
Comparing the coefficients of the rest cubic monomials, we obtain a; + b3 = 0 and ay = a3 =

by = by = 0. If a; = 0, E has the form diag(X;, X;) where X; = T gy a; # 0, multiply

Ty T3
a, to the first two column and the last two rows, subtract the 1st row from the 3rd, and add the 4th

row to the 2nd, then E' again has the form diag( X, X7).

Subcase (i.2). Assume rank(S) = 4.

(.2.1). If (y,y3) = (2, x3): using the notations in (i.1), write y; = I +1; and A3} = (1+1)5S.
Then I'S = xo(lyxo — Uyz1) — 24(lj 22 — lyz1). Comparing terms we see all [, = 0. Then by adding
multiples of the first two columns to the third and fourth, then adding multiples of the first two rows
to the first and second, we can make y3 € span{xy, 24}, y3 € span{zs}, ys € span{xy, T2, r4}.

Since A3} = IS = x2(y372 — Yiw1) — 4(y3w2 — yio1), writing g} into linear combinations
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of x;’s, we see that there is no xox3. Thus [ = 0, then comparing terms of the above equation,
we have yi = y2 = 0. By Al2 and A2}, (v}, y3)! € span{(zy, x3)", (29, 4)'}, SO We can set
(yi,y3)! = 0 by adding multiples of the first two columns to the fourth.

Therefore, by changing bases E has the form diag(Xs, X5) where X, = SR

xr3 T4

(i.2.2). If (y3, y5) = (w3, 22): using the notations in (i.1), write i} = I+, and A3} = (I+1')S.
Then I'S = wzy(lizs — lyz1) — x4(ljzs — lhzq). Comparing terms we see ! = —l} = [}, and
I = 1) = 0. Then by adding multiples of the first two columns to the third and fourth, then
adding multiples of the first two rows to the first and second, we can write y; = ',y = —l',y3 =
Z?:I aiTi, yi = Zil d;x;.

S divides other 3 x 3 minors, which implies y3 = y2 = 0. Therefore the only nonzero entries

of E are in the upper left 4 x 4 block of the form:

ry x3 0 U
Ty x4 U 0
0 0 x1 29
0 0 23 x4

Swapping the first two rows and the last two rows, then multiply -1 to the first 2 rows. E becomes

skew-symmetric.

Case (ii). Here S = x193 — y3u5 — yiyi. Modify v, y7, yi,y5 3 < 4,j < 4 such that their
expressions (as linear forms in z;’s) do not contain z;.

If y3 = 0 and 3,5 > 2, such that yj- # 0, we may change bases such that 3 # 0, so we have
two cases 5 # 0 ory; = 0 forall ¢,j > 2.

If y3 # 0, then consider A13; = @1 (219} — yiy; — yby;). We obtain 3% = c’y3 for all i, > 2
and constants ¢. Changing bases again, we may set y§ = y3 = 0 and y; = y3 or 0. There are 3
subcases: (ii.1) yi = y5 # 0, (ii.2) y§ = 0,93 # 0, and (ii.3) y5 = y; = 0.

Subcase (ii.1). Assume yi = y3 # 0. Then Azgi = yi(zys — vous — youh), Vo = 1,2,
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Together with Al2’s we get
YiYs + Y1Ys = YU + YaUl = YiYs + YaU3 = Yivs + Yoy
Hence yiy; = yayis Y191 = Y203
ALy = 3 (—y2ys — ylyf) = 0 for (p,o) = (0,1) or (1,0), and A% = 0 fori # j. We get
YIYI + YaYi = Y1Ys + YaYs = YiYs + Uiyl = v3ys + yays =0
In other words, denoting Q := y3ys + yiyi, the following equations hold:
oy (ws owi|_ (us wa) v wi)_ [@ O
viova) \Yi vi vi vi) \yi 2 0 Q
Then by changing bases F equals to the matrix whose upper left 4 x 4 block is one of the

following, and all other entries are zeros:

7 0 a d
0 x ¢ b
b —d ys 0

—c a 0 y
for some linear forms or zeros a, b, ¢, d, ys.
Subcase (ii.2). Assume y; = 0,43 # 0. Since A, # 0, there exist p, o = 1,2, such that y* and
Y # 0. Then A124 and A?5: implies A2 = A34 = 0. Then change bases in the first two rows and

columns, we get:

arL 1 Yz U
C3T1 Cyq 0
v 0y 0
o0 0 0
for some constants ¢;. A2 = —cyxyjys implies ¢4 = 0. Then AlZ = —cycz(xy)?ys implies
either ¢ or c3 = 0, contradicting the hypothesis Az # 0.
Subcase (ii.3). Assume y3 = y§ = 0. As S = y2yi + y3y2 is irreducible, y3, y3 are linearly

independent, and so are y3,y3. Choose bases such that y| and y3 are not necessary z;, and y3 =

T1,Ys = 9. Since rank(S) > 3, at least one of y3, y2 is linearly independent with x;, 5. Without
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loss of generality assume 1, x5, y5 are linearly independent, then choose bases such that 3 = z3:
yi 0 @3y
0 v v ui
r1 X2 0 0

yi ya 0 0

If A2 =0, (x;», yi) has bounded rank 1 so we can set either the fourth column to zero
(then F < C*'® C%B), oyr4 Y3 = y2 = 0 (then A3} is a product of linear forms, contradicting to
irreducibility of .S).

If Al 0, by linear independence of y3 = z3 and y2, and Al? is a nonzero multiple of
S = x1y3 + w9y3, we can normalize the fourth column such that (y},y3)! = (w9, —x;)" and
y? = 0,Yj > 4,p = 1,2. By the same argument, we can set (y/,y3) = (y3, —3)" and y} =
0,Vie>4,0=1,2.

Then E has the form:

1
yl O T3 )

0 wyi vy3 —m

)

T i) 0 0

y2 —x3 0 0

which is skew-symmetric after permuting rows and columns.

Case (iii). Here S = 27 + (y3)? + (y2)? + (y3)? is irreducible, so rank(S) > 2. We consider two
subcases by whether xq, 42, 4}, 42 are linearly independent.

Subcase (iii.1). Assume zi,ys,ys,y3 are linearly independent. We can choose basis of £
such that y; = z9,y3 = 3,y5 = x4. In order that S divides all 3 x 3 minors, (yj,y3,y3)"
must be a linear combination of (x1, —xa, —23)", (72, 1, —24)", (23,24, 71)", and (24, —x3, 22)".
Changing the basis we can put (y;, y2,y3)! = (74, —x3, 22)". By the same argument, (y{,y5,v3) =

(=24, +23, —22). Consider the 3 x 3 minors involving v, we see y; = —;.
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Hence E has the form:
T T2 T3 Ty
—T9 T T4 —T3
—Tr3 —T4 I3 )

—ry T3 —Ty I
Then F is the the complex quaternion algebra spanc{1, I, J, K}/(I*+1, J*+1, K*+1,[JK +1)
and the associated tensor of F is the structure tensor of the complex quaternion. Since the complex
quaternion algebra is isomorphic to the matrix algebra Mats o, their structure tensors equal up to
changes of bases. So E equals to M, up to changes of bases in I/, A and .

Subcase (iii.2). Assume z;,ys,ys,y5 are linearly dependent. The irreducibility of S implies
three of them are linearly independent. z; # 0 since Az # 0. By changing bases assume . =
To,Ys = T3,Y5 = a171 + asTe + azxs for a; € C. Then S = x% + 23 + 22 + (ay21 + agzs + azxs)?.

If dim{z;, 4% | i = 1,2,3) > b5, the submatrix consisting of the first 3 rows is a subspace of a
1-generic space of codimension < 2, then Theorem 14 implies contradiction. So dim{x;, v} | i =
1,2,3) < 4.

Adding first 3 columns to the 4th, we can set y; = 0 or 4. Write y3 = >, bx; and y§ =
> cixi, A3 = LS,A33 = MS and A}} = NS for some linear forms L = >, l;x;, M, N.

If y; = x4
AR =((arby + ca)x] + (ag + c4)xs + (1 4 azby)wi23 + (asby + ay) w179 + (a3 — by)Tox3) T4

+ (e1 4+ ayb)x? + coxd + (c3 — by)waws — bywoxs + (c1 + agbo) 125
+ (e + arby + aghy) 23w + (c3 + a1bs + asby)x3xs + azbsr123 + (agbs + asby — by) 17073

Note that there is no x3x, in A{33. This implies either a2 +1 = 0 or Iy = 0. If Iy = 0, those

terms divisible by x4 have the sum zero:
(a1b4 + C4)LIZ‘% + (CLQ + C4)l’22 + (1 + a3b4)x1a:3 + (CLQb4 + CL1)I‘1I2 + (CL3 — b4)$2$‘3 =0

which implies a3 + 1 = 0. Hence a3 + 1 = 0 no matter if [, = 0.

There is no z2x4 in A}23, thus by the same argument, we must have a3 + 1 = 0.
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Compare the coefficients of 3 in equality A2} = LS and z3 in A2} = M S, we get
Co = lg(l + CL%) =0and — b3 = m3(1 + CL%) = 0.
Compare the coefficients of z3x, in Al23 = LS and 227, in Al23 = M S, we get

(a5 + c4) = la(1 + a3) = O and (a5 — bs) = ma(1 + a) = 0.

Compare the coefficients of zox3z, in Aj33 = LS and A2} = M S, we get

2a2a3l4 = (CL3 — b4) = (0 and 2a2a3m4 =ag9 + 4 = 0.

Therefore [, = m, = 0. Then the coefficients of every monomial divisible by x, in A}23 and A}%

equals zero. We get a; = ay/as from A{3} but a; = asas contradicting a3 = —1.

If y} = 0: since there is no x3x,4 in A}23, eithera? +1 = 0orly = 0.

If I, = 0, then the coefficients of every monomial divisible by x, in A{2} equal zero, which
implies by = ¢4 = 0. Therefore there is no x4 appearing in the first 3 rows, and by the same
argument x4 does not appear in the first 3 columns. If 37, 7 > 3, such that y; ¢ span{zy, re, T3},
then we can change basis in E to set y; = 4. Write A3} = z4(27 + 23) + p(21, T2, 23) for some
polynomial p. S = S(x1, x5, x3) dividing A}3% # 0 implies that S divides 7 + 23, contradicting
to the irreducibility of quadratic polynomial .S. If there is no such yé, then dim(F) = 3.

Therefore a3 + 1 = 0. And by the same argument, since there is no z3x4 in Aj23, a3 + 1 = 0.

Compare the coefficients of z3x, in Al23 = LS and 222, in Al23 = M S, we getcy = by = 0.

Then by the same argument as in the case [4 = 0 we obtain dim(FE) = 3. O]
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4. RESULTS

By Proposition 2, a tensor 7' € GR.,. if and only if there exists j such that
codimA? <r —j. 4.1)

When j = 0, A} is the kernel of T4 : A* — B ® C, so its codimension equals to ml4(7"). In
other words, (4.1) holds for 7 = 0 if and only if mi4(7T) < r, so T is compression.

When j = r, (4.1) is equivalent to A = A%, i.e.,, T(A*) ¢ B® C is a space of matrices of
bounded rank r. Since spaces of bounded rank 1, 2 and 3 are classified, we can utilize those results
on the classification of tensors with geometric rank 1, 2 and 3.

To classify tensors in GR,., we have to study every case of 1 < 7 < r.
4.1 Geometric Rank 1

For r = 1, by the discussion above, GR; consists of two classes of tensors: the tensors with
mla(7) < 1 and the tensors satisfying T'(A*) is a space of bounded rank 1. Since there is no

primitive spaces of matrices of bounded rank 1, all tensors in GR4 are compression.
Proposition 20. There is no primitive tensors of geometric rank 1.

Proposition 20 recovers the results on tensors with geometric rank 1 from [[11]].
Corollary 21 ([11]). GR(T') = 1 ifand only if SR(T) = 1.

4.2 Geometric Rank 2

Theorem 22. Up to change of coordinates and deleting zero columns and rows, there is exactly
one primitive tensor of geometric rank 2 of the form:

0 T )
TA*) = | =21 0 a3

—To —I3 0

Theorem 22 recovers the results on tensors with geometric rank 2 from [[11]].
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Corollary 23 ([11]). A tensor T has geometric rank at most 3 if and only if T(A*),T(B*) or
T(C*) has bounded rank 2.

proof of Proposition 22 and Corollary 23. GR(T') < 2 if and only if at least one of the following
three cases holds:
(i) codimAj = 0;
(il) codimA} < 1;
(iii) codimAf < 2.

Case (i) is equivalent to 7'(A*) has bounded rank 2. And the only primitive space of bounded
rank 2 is the 3-dimensional space of 3 x 3 skew-symmetric matrices, whose corresponding tensor
is primitive by Lemma 7. Case (iii) is equivalent to ml4(7") < 2, so T is compression.

Case (ii) implies all 2 x 2 minors of T'(A*) equal up to scale. If all 2 x 2 minors are zero,
then T'(A*) has bounded rank 1 and 7" is compression by Proposition 20. Otherwise, assume there
exists a quadratic polynomial P dividing all 2 x 2 minors. By Lemma 11, either T'(A*) < C?*® C?
which means T is compression, or P = [;l5 for some linear forms [, l5. Let 7" := T|{h:0}, then all
2 x 2 minors of T"( A*) are zero, so T"(A*) has bounded rank 1 and by Proposition 20 SR(7") = 1.
Therefore SR(T") < 2 and T is compression.

To prove the second statement of the theorem, we see that case (i) implies 7'(A*) has bounded

rank 2, case (iii) implies both 7'(B*) and T'(C*) has bounded rank 2. Case (ii) implies SR(7") < 2.

If SR(T') = 1 then at least two of T'(A*), T'(B*) and T'(C*) has bounded rank 1. If SR(T") = 2,

by definition we can decompose T' = T7 + T and without loss of generality assume mls(7}) = 1,

mls(7%) or mlp(73) = 1, then 7°(C*) has bounded rank 2. O

4.3 Geometric Rank 3

This section studies the structure of the set of tensors with geometric rank at most 3.

Theorem 24. A tensor T € A® B ® C has geometric rank at most 3 if and only if one of the

following conditions holds:

1. T(A*), T(B*) or T(C*) is of bounded rank 3, or
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2. SR(T) <3, or

3. up to changes of bases T' = My).

If T is primitive of geometric rank 3, then up to changes of bases and permutations of A, B
and C, it is either the matrix multiplication tensor Mo, or the tensor such that T'(A*) is a space

of 4 x 4 skew-symmetric matrices of dimension 4,5 or 6.

Proof. By (2), GR(T) < 3 if and only if at least one of the following three cases holds:
(i) codimAj = 0;
(i1) codimAj < 1;
(iii) codimA} < 2;
(iv) codimAf < 3.

Case (i): codimA% = 0 <= T'(A*) has bounded rank 3.

Case (ii): If codim A% = 0, then GR(T) = 2, s0 T'(A*), T'(B*) or T'(C*) is of bounded rank 2.

When codim A% = 1, according to the discussion in §3.2.3 and Proposition 16, at least one of
the following holds:

1. T = T + T” where T'(A*) is a space of bounded rank 2 and ml4(7”) = 1, so T is not

primitive.

2. T(A*), T(B*) or T(C*) has bounded rank 3;

3. up to changes of bases T = M.

By classification of GR, any non-primitive tensor of GR = 3 is either compression or at least one
of T(A*), T(B*) and T'(C*) has bounded rank 3.

Case (iii): By the discussion in §3.2.2, if there is a nonzero 2 x 2 minor that is a product of 2
linear forms, 7' is not primitive. If all nonzero 2 x 2 minors are irreducible, T'(A*) < C?> ® C3 or
C? ® C2, so has bounded rank 2.

By Theorem 5, if T'(A*) is primitive spaces of bounded rank 3, then either 7'(B*) or T'(C*) is
4 x 4 skew-symmetric.

Case (iv): codimAj < 3 <= mlus(T) < 3. So either T is compression or GR(7) = 2,
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which implies 7" cannot be primitive of geometric rank 3. And ml,(7") < 3 implies both 7'(B*)

and T'(C*) have bounded rank 3. O

By classifications of GR, for r = 1,2 and 3, we summarize the following relations between

geometric rank and slice rank:

Corollary 25. 1. GR(T) =1 < SR(T) = 1.
2. If mla(T), mig(T) or mlc(T) > 3, then GR(T) =2 <= SR(T) = 2.
3. If at least one of mls(T), mlg(T) and mic(T) > 6, or at least two of them > 4, then

GR(T) =3 — SR(T) = 3.

However we cannot draw any similar conclusion for » > 4. As a counter example, let 7' €

C™ ® C™ ® C™ be defined as
0 st )
—x1 0 x3
—Ty —I3 0
T(A*) := Ty Ts 0 T

Xy

Ty
Then T is a direct sum of the primitive tensor of geometric rank 2 and a compression tensor of

geometric rank 2. So GR(T') = 4, SR(T') = 5.
4.4 Geometric Rank 4 and in General
Theorem 26. If T € AQ B® C := C?® CP ® C¢ is primitive of geometric rank 4, then either at
least 2 of mlA(T'), mlg(T) and mlc(T) are at most 6, or all of them are at most 8.
Proof. GR(T') < 4 if and only if at least one of the following cases holds:
(1) A = A%,
(2) codim(A%) < 1;

(3) codim(A}) < 2;
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(4) codim(A*) < 3;

(5) codim(A}) < 4;
(1) <= T(A*) has bounded rank 4. T is primitive only if 7'(A*) is a primitive space of bounded
rank 4. By Theorem 4, if a primitive space of bounded rank 4 has size n; x no, then either n; < 5
and ny < 10, n; < 10 and ny < 5, or ny < 6 and ny < 6. So either mlg(7T") < 5, or mlo(T') < 5,

or mlg(T"), mle(T) < 6.

(2) < there exists an irreducible polynomial P of degree > 1 dividing all 4 x 4 minors of
T(A*).

(2.1) degP = 1: by Lemma 7 T is not primitive.

(2.2) degP = 2: By Lemma 12, up to changes of bases the upper left 4 x 4 submatrix of T'( A*)
has determinant equal to P? and P divides all 3 x 3 minors of the submatrix. Proposition 16 gives
a classification of such 4 x 4 matrix. Since the determinant does not vanish, the submatrix cannot
have bounded rank 3, so the submatrix is either skew-symmetric or has the form diag(X, X).

(2.2.1) Case diag(X, X): write T'(A*) as the block form:

X 0 E
TAY) =0 X E
D, Dy, F

where X has determinant S, and £; and D; are 2 x (c —4) and (b — 4) x 2 blocks.

For1 <i < 2,3 <k <4,5< 4l < c, theminor A2} = A},A3 is divisible by the
irreducible quadratic polynomial S. Therefore either S |A§j2 or S|A%!. By Lemma 11, either D, or
FE5 can be put to 0 by adding first 2 rows or columns to the rest. By the same argument, either Dy
or [/ can be put to 0.

If D, = Dy =0or E; = F, =0, S divides Aj5? = (y1)2A7 for 4, j, k,1 = 5. So S divides
all 2 x 2 minors of F'. By Lemma 11 either F < C? ® C? or F has bounded rank 1. Therefore
mlp(7) or mle(7T") < 6 and T is not concise.

If Dy = Fy =0or Dy = Ey = 0, without loss of generalities assume D, = E£; = 0. Consider
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X E
D, F)
By Lemma 16 either G = C*®C* or G has bounded rank 2. Therefore mlz(T) < 6 ormlo(T') < 6

the minors A}7F = y! A for i, j, k, 1, 5,t = 3. So S divides all 3 x 3 minors of G :=

and 7' is not concise.
(2.2.ii) Case skew-symmetric: permute the first 4 rows and columns to put 7'(A*) into the

following form

1 0 |a d

0 2y |c b o

TA*)=| b —d|e 0 5,
—c a |0 e

D, Dy | F

Adding the first two rows and columns to the rest, so that 3}, y?, v}, ¥4 do not contain x in their
expression, for all 7,j. S = x1e — ab + cd divides all 4 x 4 minors of T'(A*). Restricting to the
subspace {z; = 0}, then S’ := —ab + cd divides all 4 x 4 minors of T'(A*)|,,—o-

If S is irreducible, for 3 < i,k < 4 and 5,1 > 5, consider the minors A} = ARZAY, of
T(A*)|;,—o- Similar to case (i), either D1 |,,—o or E1|,,—o can be put 0. Without loss of generality
assume D1 |, —o-

Now working on T'(A*), entries in D; are multiples of ;. Then by adding multiples of first two
rows to the last m — 4 rows we can put D; = 0. S dividing Ag;ﬁl = (91:1)2Az fori,j =5k 1>3
implies it divides all 2 x 2 minors of the (m — 4) x (m — 2) block (D5 F'). So either (D5 F') has
bounded rank 2 or (D, F') = C? ® C?. If by changing bases (D, F') has nonzero entries only in
the first 2 rows, mlp(7") < 6. Otherwise, by changing bases we can put all nonzero entries of
(D5 F) in its first 2 or 3 column. Then consider the 4 x 4 minors involving one entry of (Dy F')

and 3 x 3 minors from the first 4 rows of T(A*). By Proposition 16, either mlo(7") < 6, or

mlg(T),mlc(T) < 7.

/
If S’ = —ab + cd is reducible, by changing bases we can put the block @b as O/ b/
c d d d
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and the same for b —d . Then the upper left 4 x 4 block of T'(A*) becomes

—c a
T 0 0 d/

0 xz ¥V

v —d 0

- 0 0 e

0 0 T d
0o 0 -V
¥V —d e 0

By the same argument, we can put D; = 0. Then all 3 x 3 minors of (D, F') are divisible by S.
By Proposition 16 either (D, F') has bounded rank 2 or (D F') = C*® C*. By the same argument
as the previous case, either mlg(7") < 6, or mlp(7"), mle(7") < 8.

(2.3) degP = 3: by Lemma 12, either P factors into linear forms so 7' is not primitive, or

T(A*) has bounded rank 4.

(3) By Proposition 18, if 7" is primitive then either mlp < 6, ml(7") < 6 or mlg(7"), mlo(7) < 8.

(4) By Proposition 15, if 7" is primitive then mlg(7T") + mlc(T) < 6.

(5) — dim(T(A*)) < 4 = SR(T) < 4.
Putting everything together, either mlg(7") < 8, or mlo(7T") < 8, or mlg(7T), mlo(T) < 6.

Since geometric rank is invariant by permuting A, B and C, we also have:
e either mly (7)) < 8, or mle(7T") < 8, or mls(7"), mle(T") < 6;
e either mly (7)) < 8, ormlg(7T) < 8, ormls(7T), mlp(7T) < 6.

By inclusion-exclusion argument, we conclude the theorem. [

36



Corollary 27. Ifmla(7T'), mlp(T) and mle(T) > 8, then GR(T) < 4 ifand only if either SR(T') <
4, or up to changes of bases T = T' + T" where T" is the 3 x 3 x 3 skew-symmetric tensor and

SR(T") = 2.

As a consequence of Proposition 17, we draw a general conclusion for primitive tensors of

geometric rank 7.

Theorem 28. For all r, there exists a positive integer N,, such that if T € A® B ® C'is primitive

of geometric rank r, then at least two of ml,(T), mlg(T) and mlc(T) are at most N,.
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5. SUMMARY AND CONCLUSIONS

This dissertation studied geometric rank of tripartite tensors. To classify the set of tensors with
geometric rank at most r, we introduced primitive tensors and compression tensors. We proved the
existence of the primitive-compression decompositions for any tensors, which reduced the problem
of classifying tensors in GR, to finding all primitive tensors in GR,.

Lemma 9. If T is not compression (i.e., GR(T) < SR(T)), then there exist a primitive tensor T),
and a compression tensor T, such that T = T, + T, and GR(T},) + GR(T.) = GR(T).

Then we found all primitive tensors in GR,. for r = 1,2, 3:

1. Proposition 20. There is no primitive tensors of geometric rank 1.

2. Theorem 22. Up to change of coordinates and deleting zero columns and rows, there is
exactly one primitive tensor of geometric rank 2 of the form:

0 T )
TAY) = -2 0 a3
—T2 —X3 0
3. Theorem 24. If T is primitive of geometric rank 3, then up to changes of bases and permu-

tations of A, B and C, it is either the matrix multiplication tensor M, or the tensor such
that T(A*) is a space of 4 x 4 skew-symmetric matrices of dimension 4,5 or 6.
For r = 4 and in general, we found upper bounds on multilinear ranks of primitive tensors in
OR,:
1. Theorem 26. If T' € A® B ® C' is primitive of geometric rank 4, then either at least 2 of
mly (7)), mlp(T) and mle(T) are at most 6, or all of them are at most 8.

2. Theorem 28. For all r, there exists a positive integer N,, such that if T € AQ B® C'is
primitive of geometric rank r, then at least two of ml(T), mlg(T') and mle(T') are at most
N,.

Finally, using the above results on primitive tensors, we were able to classify the all tensors in

GRgZ
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Theorem 24. A tensor T € A® B ® C has geometric rank at most 3 if and only if one of the
following conditions holds:

1. T(A*), T(B*) or T(C*) is of bounded rank 3, or

2. SR(T) <3, or

3. up to changes of bases T' = My).
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