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ABSTRACT

Geometric Rank of tensors was introduced by Kopparty et al. as a useful tool to study algebraic

complexity theory, extremal combinatorics and quantum information theory. This dissertation

studies the classification of tripartite tensors with small geometric ranks. We introduce primitive

tensors and compression tensors, which reduces the classification problem to finding all primitive

tensors.

There are close relations between tripartite tensors with bounded geometric ranks and linear

determinantal varieties with bounded codimensions. We study linear determinantal varieties with

bounded codimensions, and prove upper bounds of the dimensions of the ambient spaces.

Using the results on linear determinantal varieties, we find all primitive tensors with geometric

rank 1, 2 and 3 up to change of coordinates, find upper bounds of multilinear ranks of primitive

tensors with geometric rank 4, and prove the existence of such upper bounds in general. Finally,

we explicitly classify all tripartite tensors with geometric rank at most 1, 2 and 3.
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1. INTRODUCTION

Various types of ranks of tensors have been introduced and studied in numerous areas such as

algebraic complexity, extremal combinatorics and quantum information theory. Slice rank arose in

the study of the cap set problem [2], and it turned out to be helpful in the study of the sunflower

problem [3]. Analytic rank was introduced by [4] in the context of Fourier analysis, and [5] showed

it lower bounds slice rank and can replace slice rank in the resolution of cap set problem. In the

study of random tensors, analytic rank also measures the bias of a tensor.

In arithmetic complexity of matrix multiplication, people want to know asymptotically how

many arithmetic operations are required to multiply two matrices. More precisely, determine the

exponent of matrix multiplication ω, the number such that two n ˆ n matrices can be multiplied

using Opnω`ϵq scalars additions and multiplications for any ϵ ą 0. In the study of finding upper

bounds on ω, Strassen introduced subrank which measures the “value" of a tensor [6], and the

asymptotic version of subrank plays an important role in Strassen’s laser method [7]. In quan-

tum information theory, people study the convertibility of stochastic local operations and classical

communications (SLOCC). It turned out that the rate of converting GHZ states to triples of EPR

states via SLOCC equals to ω [8], which made subrank an interesting object to study in quantum

information theory. [9] introduced quantum functional and studied its relations with asymptotic

slice rank and asymptotic subrank. Subrank is mysterious and hard to compute, and geometric

rank gives good upper bounds on subrank.

Geometric rank was introduced in [10] as an extension of analytic rank from finite fields to

algebraically closed fields, and as a tool to find upper bounds on border subrank and lower bounds

on slice rank. [11] took a step further studying geometric rank systematically, giving results on

tensors with geometric rank at most 3. [12] showed that the partition rank is at most 2n´1 times of

the geometric rank for n-part tensors. Putting different types of ranks in an increasing order, we
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have:

Subrank ď Border Subrank ď Geometric Rank

ď Partition Rank ď Slice Rank ď Multilinear Ranks ď Rank.

Any tripartite tensor T P A b B b C :“ Ca b Cb b Cc can be regarded as a trilinear function

T : A˚ ˆ B˚ ˆ C˚ Ñ C. Its geometric rank is defined to be:

GRpT q :“ codimtpα, βq P A˚
ˆ B˚

|T pα, β, γq “ 0, @γ P C˚
u.

Given r ď minta,b, cu, let GRr be the set of tensors with geometric rank at most r. Such sets

of tensors are Zariski closed [10], and are important varieties in algebraic geometry that provides

a new aspect to understand geometric structures of spaces of tensors. Our goal is to study GRr

systematically and classifies all tensors in GRr up to changes of bases and permutations of A,B

and C if possible.

In §3.1, we introduce primitive tensors and compression tensors (Definition 6) as helpful tools

to classify tensors in GRr. We show that every tensor can be decomposed as a sum of a primitive

tensor and compression tensor with certain geometric ranks (Lemma 9), which reduces the problem

of classifying tensors in GRr to finding all primitive tensors in GRr. We also show that the matrix

multiplication tensors are either primitive or compression (Corrollary 8).

On the other hand, Proposition 2 reveals the close relations of geometric rank with spaces of

matrices of bounded rank and linear determinantal varieties, which are classically studied objects

in algebraic geometry. So we take advantage of previous researches to understand geometric rank

better. We study spaces of matrices whose determinantal subvarieties have bounded codimensions

in §3.2.

In §4, using results from §3, we find all primitive tensors in GRr and conclude the classifica-

tions of all tensors in GRr, for r “ 1, 2, 3. Besides, we find the upper bounds of multilinear ranks

of primitive tensors with geometric rank 4 (Theorem 26), and prove the existence of such upper

bounds for primitive tensors with arbitrary geometric rank (Theorem 28).
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2. LITERATURE REVIEW

2.1 Geometric Rank

This section reviews some basic properties of geometric rank introduced in [10]. Let a,b and

c be positive integers, and A :“ Ca, B :“ Cb, C :“ Cc.

Definition 1 ([10]). For a tensor T P A b B b C, the geometric rank of T is

GRpT q :“ codimtpα, βq P A˚
ˆ B˚

|T pα, β, γq “ 0, @γ P C˚
u.

T induces a linear map TA : A˚ Ñ BbC. Omitting the subscripts when there is no ambiguity,

T pA˚q Ă B b C is an a-dimensional space of b ˆ c matrices. For 0 ď j ď mintb, cu, let

A˚
j :“ tα P A˚

| rankpT pαqq ď ju Ă A˚.

Fixing bases taiu
a
i“1, tbju

b
j“1 and tckuck“1 of A,B and C, and the dual basis tαiu

a
i“1 of A˚

corresponding to taiu
a
i“1, we often represent T pA˚q by a general point T p

ř

xiαiq of T pA˚q in a

matrix form. That is, T pA˚q will be written as a b ˆ c matrix whose entries are linear forms in

variables xi’s. Then A˚
j is the subvariety determined by all pj ` 1q ˆ pj ` 1q minors of T pA˚q.

The following proposition can be regarded as an equivalent definition of geometric rank.

Proposition 2 ([10]). GRpT q “ minjpcodimA˚
j ` jq.

Proof. Let VAB :“ tpα, βq P A˚ ˆ B˚ |T pα, β, γq “ 0, @γ P C˚u, so that GRpT q “ codimVAB.

Let π : VAB Ñ A˚ be the restriction of the first projection A˚ ˆ B˚ Ñ A˚. Note that for any

α P A˚,

π´1
pαq “ tαu ˆ LeftKernelpT pαqq.

Therefore π´1pαq is a linear space of dimension b ´ rankpT pαqq.

Since VAB “
Ť

j π
´1pAjq, and for α P A˚

j zA˚
j´1, π´1pαq is a linear space of dimension b ´ j,

we obtain:

dimVAB “ max
j

dimpπ´1
pA˚

j qq “ max
j

pb ´ jqdimpA˚
j q,

3



which proves the proposition.

From Definition 1 we see that geometric rank is symmetric in A and B factors, i.e., swapping

A and B factors of any tensor T P AbB bC does not change the value of GRpT q. Meanwhile by

Proposition 2, geometric rank is symmetric in B and C factors. This implies that geometric rank

is symmetric in all A,B and C factors, so we have:

Proposition 2’ ([10]).

GRpT q “ minjpcodimA˚
j ` jq “ minjpcodimB˚

j ` jq “ minjpcodimC˚
j ` jq.

Lemma 3 ([10]). (Subadditivity) Let S, T P A b B b C. Then GRpS ` T q ď GRpSq ` GRpT q.

Proof. Let V S
AB, V T

AB and V S`T
AB Ă A˚ ˆ B˚ be the subvarieties in the definition of geometric

rank for S, T and S ` T respectively, i.e., GRpSq “ codimV S
AB, GRpT q “ codimV T

AB, and

GRpS ` T q “ codimV S`T
AB . Clearly V S`T

AB Ą V S
AB X V T

AB. So

GRpS ` T q “ codimV S`T
AB ď codimpV S

AB X V T
ABq ď codimV S

AB ` codimV T
AB.

2.2 Multilinear Ranks and Slice Rank

For T P A b B b C “ Ca b Cb b Cc, the multilinear ranks are mlApT q :“ rankpTAq,

mlBpT q :“ rankpTBq and mlCpT q :“ rankpTCq. And the slice rank is SRpT q :“ mintmlApT1q `

mlBpT2q ` mlCpT3q | T “ T1 ` T2 ` T3u.

It is clear to see that SRpT q ď mlApT q,mlBpT q,mlCpT q by the definition of slice rank. Note

that dimA˚
0 “ a ´ mlApT q, so GRpT q ď codimpA˚

0 ` 0q “ mlApT q. Similarly, by Proposition 2’,

GRpT q ď mlApT q,mlBpT q,mlCpT q.

By the definition of slice rank, there exist T1, T2 and T3 such that T “ T1 ` T2 ` T3 and

SRpT q “ mlApT1q ` mlBpT2q ` mlCpT3q ě GRpT1q ` GRpT2q ` GRpT3q ě GRpT q.

To summarize, we conclude GRpT q ď SRpT q ď mlApT q,mlBpT q,mlCpT q.
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2.3 Linear Determinantal Variety

For a linear space of matrices E Ă A b B :“ Ca b Cb, let Er be the locus of matrices of rank

at most r, for r ď minta,bu. In other words, PEr “ PE XσrpSegpPAˆPBqq, the intersection of

PE with the r-th secant variety of the Segre variety. Er is cut out by all pr ` 1q ˆ pr ` 1q minors

set theoretically, and is called a linear determinantal variety (see, e.g., [13, Ch. II]).

Let H :“ A b B, then Hr is the affine cone of σrpSegpPA ˆ PBqq and is called a generic

determinantal variety. The defining ideal IpHrq is prime and generated by all pr ` 1q ˆ pr ` 1q

minors [14], and codimpHrq “ pa ´ rqpb ´ rq [15]. Since Er “ Hr X E is a linear section of Hr,

codimEpErq ď pa ´ rqpb ´ rq.

To study GRr, note that by definition T pA˚
i q consists of matrices in B b C of rank at most i,

so it is a linear determinantal variety. Since codimT pA˚qpT pA˚
i qq “ codimA˚pA˚

i q, by Proposition

2 we need to find all linear spaces E Ă B b C satisfying codimEpEiq ď r ´ i for 0 ď i ď r.

2.4 Space of Matrices of Bounded Rank

A linear space of matrices E Ă A b B :“ Ca b Cb is said to have bounded rank r if all

matrices in E have rank at most r, i.e., Er “ E. There are two important classes of spaces of

bounded rank – primitive spaces [16] and compression spaces [17]. E is compression if there

exist A1 Ă A and B1 Ă B of dimension p and q, such that E Ă A1 b B ` A b B1 and p ` q “ r.

E is primitive of bounded rank r if for any subspaces A1 Ă A or B1 Ă B of codimension 1,

E Ć A1 b B or A b B1, and neither E X pA1 b Bq nor E X pA b B1q has bounded rank r ´ 1.

Atkinson and Lloyd showed that there is no primitive space of bounded rank 1, and every space

of bounded rank r that is not compression is a "sum" of a compression space and a primitive space

[16].

Theorem 4 ([16]). If E is a space of aˆb matrices of bounded rank r then these exist a primitive

space F of bounded rank s and integers p, q ě 0 with r “ p ` q ` s such that E is equivalent to a

5



space of the form
¨

˚

˚

˝

˚ ˚ ˚

˚ F 0

˚ 0 0

˛

‹

‹

‚

where the top left block has size p ˆ q.

Moreover, if E is primitive of bounded rank r, then at least one of the following holds:

(1) a “ r ` 1,b ď 1
2
rpr ` 1q;

(2) a ď 1
2
rpr ` 1q,b “ r ` 1;

(3) for some integers c, d ě 2 with c ` d “ r, a ď c ` 1 ` 1
2
dpd ` 1q,b ď d ` 1 ` 1

2
cpc ` 1q.

Later all primitive spaces of bounded rank 2 and 3 were classified in [18] – the only primitive

space of bounded rank 2 is the space of 3ˆ3 skew-symmetric matrices. [17] recasted the study with

sheaves and gave geometric interpretations of all primitive spaces of bounded rank 3 as matrices.

The classifications of spaces of bounded rank 4 or higher is still unknown by far.

Theorem 5 ([17]). A primitive space of bounded rank 3 is equivalent to either the space of the

following form
¨

˚

˚

˚

˚

˚

˝

x2 x3 x4 0 0 0

´x1 0 0 x3 x4 0

0 ´x1 0 ´x2 0 x4

0 0 ´x1 0 ´x2 ´x3

˛

‹

‹

‹

‹

‹

‚

,

or its transpose, or one of its projections and their transposes.

Proposition 2 shows GRpT q ď r if at least one of T pA˚q, T pB˚q and T pC˚q has bounded rank

r. In §4, we will see that when r “ 1 and 2 this condition is necessary (??). But it fails to be

necessary when r “ 3 as there are two exceptions (Theorem 24).

2.5 Matrix Multiplication Tensor

In the study of arithmetic complexity of matrix multiplication, Strassen found that the number

of additions and multiplications are required to multiply two matrices asymptotically is determined

by the rank of matrix multiplication tensors [7].
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For positive integers e ď h ď l, put A “ Ceˆh, B “ Chˆl and C “ Clˆe. Then the matrix

multiplication tensor Mxe,h,ly is defined by Mxe,h,lypx, y, zq “ Trpxyzq for x P A˚, y P B˚ and

z P C˚. We often write Mxny :“ Mxn,n,ny. With proper choices of bases, Mxe,h,ly may be written as

the block form:

Mxe,h,lypA
˚
q “

¨

˚

˚

˚

˚

˚

˝

D

D
. . .

D

˛

‹

‹

‹

‹

‹

‚

(2.1)

where D is a e ˆ h block consisting of linearly independent entries and there are l copies of D in

Mxe,h,lypA
˚q.

Strassen gave a lower bound of the border subrank of Mxe,h,ly, which is eh ´ tpe ` h ´ lq2{4u

if e ` h ě l and eh otherwise [7]. Recently [10] surprisingly found that the above lower bound

equals to the geometric rank of Mxe,h,ly, and consequently equals to the border subrank of Mxe,h,ly

since geometric rank upper bounds border subrank.

7



3. METHOD

3.1 Primitive and Compression Tensors

For any r ě 1, GRr contains a large class of tensors – the set of tensors with slice rank at most

r. If a tensor has slice rank at most r, then there exists s ` p ` q “ r such that for some bases of

A,B and C, the only non-vanishing entries of T only appear in the first s columns, the first p rows

and the first q pages. Therefore these tensors are easy to understand in the study of classifications,

and we are only interested in tensors whose geometric ranks are less than slice ranks.

Definition 6. T is compression of geometric rank r if GRpT q “ SRpT q “ r. T is primitive of

geometric rank r if it cannot be written as T “ X ` Y with GRpXq “ r ´ 1 and GRpY q “ 1.

The following lemma gives a direct way to determine whether a tensor is primitive in general.

Lemma 7. Given T with 1 ă GRpT q “ r ă SRpT q, then T is not primitive if and only if Di ă r

such that by a permutation of A,B and C, codimpA˚
i q “ r´i and A˚

i has a component of maximal

dimension that is contained in a hyperplane of A˚.

Proof. Let taiu
a
i“1 be a basis of A, and tαiu

a
i“1 be the dual basis of A˚. Write A1 :“ xa2, ¨ ¨ ¨ , aay,

so A1˚ “ xα2, ¨ ¨ ¨ , αay.

(ñ) T is not primitive if and only if we can decompose T “ X ` Y with GRpXq “ r ´ 1 and

GRpY q “ 1. Since GRpY q “ 1 if and only if SRpY q “ 1, by permuting A,B and C assume

mlApY q “ 1, and by changing basis of A assume Y P xa1y b B b C.

Then T “ X 1 ` Y 1 where X 1 :“ T |A1bBbC and Y 1 :“ T |xa1ybBbC . Since X 1 “ X|A1bBbC ,

GRpX 1q ď GRpXq “ r ´ 1. By subadditivity of geometric rank and SRpY 1q “ GRpY 1q “ 1,

GRpX 1q “ r ´ 1. By (2) there exists i ď r ´ 1 such that codimtα P A˚ | rankpX 1pαqq ď iu ď

r ´ 1 ´ i. Then tα P A˚ | rankpX 1pαqq ď iu X A1˚ Ă A˚
i has codimension r ´ i in A˚ and is

contained in a hyperplane.

(ð) Assume codimpA˚
i q “ r ´ i and A˚

i has a component Z of maximal dimension contained in

A1˚. Let X 1 and Y 1 be defined the same as above. By definition tα P A1˚ | rankpX 1pαqq ď iu Ą Z

8



so has codimension at most r ´ i in A˚, then its codimension is at most r ´ 1 ´ i in A1˚. Since

X 1 P A1 b B b C, GRpX 1q ď r ´ 1. By T “ X 1 ` Y 1 and subadditivity of geometric rank,

GRpX 1q “ r ´ 1 and GRpY 1q “ 1.

Corollary 8. For positive integers e ď h ď l, Mxe,h,ly is primitive if e ě 2 and e ` h ě l, and it is

compression otherwise.

Proof. By Theorem 6.1 of [10], GRpMxe,h,lyq “ eh if e ` h ď l or e “ 1. Since GRpMxe,h,lyq ď

SRpMxe,h,lyq ď mlApMxe,h,lyq “ eh, we have GRpMxe,h,lyq “ SRpMxe,h,lyq “ eh and therefore

Mxe,h,ly is compression.

Assume e ě 2 and e ` h ě l. The component of the maximal dimension Z Ă Ai is deter-

mined by all k ˆ k minors of D, where k “ minte, r i`1
l

su. By [19, Theorem 2.1], codimpAiq “

codimpZq “ pe ` 1 ´ kqph ` 1 ´ kq. So (2) achieves minimum only at i “ r e`h´l
2

sl and t e`h´l
2

ul.

Then k ą 1 and Z is not contained in any hyperplane.

Although we define the primitive and compression tensors as analogues of primitive and com-

pression spaces of matrices, their relations are subtle.

By definition T is compression of GRpT q “ r if at least one of T pA˚q, T pB˚q or T pC˚q is a

compression space of bounded rank r and none has bounded rank r ´ 1. The converse is true only

for r ď 2, as T :“
řm

i“1pa1 b bi b ci ` ai b b1 b ci ` ai b bi b c1q is compression of GRpT q “ 3

but T pA˚q, T pB˚q and T pC˚q contain elements of full rank.

If T is primitive of GRpT q “ r and T pA˚q has bounded rank r, then T pA˚q is primitive of

bounded rank r (after deleting zero rows and columns). Similarly for T pB˚q and T pC˚q. However

T could be primitive when T pA˚q, T pB˚q and T pC˚q do not have bounded rank r.

For example, Mx2y is primitive of geometric rank 3 by Corollary 8. But since Mx2ypA
˚q can be

written as the block diagonal form (2.1), generic matrices in Mx2ypA
˚q have full rank 4. Therefore

Mx2ypA
˚q does not have bounded rank 3. For the same reason, Mx2ypB

˚q and Mx2ypC
˚q do not

either.

There is no primitive space of bounded rank 1, and all primitive spaces bounded rank 2 and 3

9



are listed in [18, 17]. We check every such primitive space and conclude that for r ď 3, if T pA˚q

is primitive of bounded rank r, then T is primitive of geometric rank r. It is not known if this

property persists when r ą 3, because the set of all primitive spaces of larger bounded rank are not

classified yet.

Lemma 9. If T is not compression (i.e., GRpT q ă SRpT q), then there exist a primitive tensor Tp

and a compression tensor Tc, such that T “ Tp ` Tc and GRpTpq ` GRpTcq “ GRpT q.

Proof. If T is primitive, set Tp “ T and Tc “ 0.

If T is not primitive, assume GRpT q “ r, then we can write T “ X1 `Y1 such that GRpX1q “

r ´ 1 and GRpY1q “ 1. Similarly, whenever Xi is not primitive or zero, we can write Xi “

Xi`1 ` Yi`1 such that GRpXiq “ r ´ i and GRpY1q “ 1. If all Xi’s obtained this way are not

primitive, we have a decomposition T “ Y1 ` ¨ ¨ ¨ ` Yr where each Yi has geometric rank 1 so has

slice rank 1. This implies SRpT q “ r “ GRpT q, contradicting the assumption GRpT q ă SRpT q.

So there exists n ă r such that Xn is primitive, then we obtain T “ Tp ` Tc where Tp :“ Xn

and Tc :“ Y1 ` ¨ ¨ ¨ `Yn. Since GRpTpq “ r´n and
ř

GRpYiq “
ř

SRpYiq “ n, by subadditivity

of geometric rank and slice rank, GRpTcq “ SRpTcq “ n. Therefore Tc is compression.

Example 10 (Above decomposition is not unique). Let T P A b B b C “ C5 b C5 b C6 be

T :“a1 b pb2 b c1 ` b3 b c2 ` b4 b c3q ` a2 b pb1 b c1 ´ b3 b c4 ´ b4 b c5q

` a3 b pb1 b c2 ` b2 b c4 ´ b4 b c6q ` a4 b pb1 b c3 ` b2 b c5 ` b3 b c6q ` a5 b b5 b c6

where taiu
5
i“1, tbju

5
j“1 and tcku6k“1 are bases of A,B and C respectively. So

T pA˚
q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

x2 x3 x4 0 0 0

x1 0 0 x3 x4 0

0 x1 0 ´x2 0 x4

0 0 x1 0 ´x2 ´x3

0 0 0 0 0 x5

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Let X1 :“ T |AbBbxc1,¨¨¨ ,c5y, Y1 :“ T |AbBbxc6y, X2 :“ T |Abxb1,¨¨¨ ,b4ybC and Y2 :“ T |Abxb5ybC .

Since X1pA
˚q consists of the first 5 columns of T pA˚q and X2pA

˚q consists of the first 4 rows of

T pA˚q, they are primitive spaces of bounded rank 3 (after deleting the zero columns and rows). So

10



X1 and X2 are primitive of geometric rank 3, and T “ X1 ` Y1 “ X2 ` Y2 gives two different

decompositions satisfying the conditions in Lemma 9.

By Lemma 9, to classify the set of tensors of geometric rank at most r, it suffices to find all

primitive tensors of geometric rank at most r.

3.2 Determinantal Varieties of Bounded Codimensions

As discussed in §2.3, to classify tensors with bounded geometric ranks, it suffices to classify

linear spaces of matrices whose determinantal subvarieties have bounded codimensions. This sec-

tion studies the properties of such spaces and try to classify them up to invertible row and column

operations.

Let E Ă Ca bCb “: AbB be a linear subspace of dimension c. Fix a basis tei, 1 ď i ď cu of

E and bases of A and B, then each ei can be written as an aˆb matrix. Similar to how we represent

T pA˚q Ă B b C as a matrix of linear forms, E is represented by the matrix corresponding to a

general point
ř

i xiei of E, i.e., E “ pyijq1ďiďa,1ďjďb, where each yij is a linear form in the variables

x1, ¨ ¨ ¨ , xc. For two subspaces F, F 1 Ă E, let F ` F 1 denote the sum of the two corresponding

matrices of linear forms.

Denote the pi1, ¨ ¨ ¨ , ikq ˆ pj1, ¨ ¨ ¨ , jkq minor of E as ∆i1,¨¨¨ ,ik
j1,¨¨¨ ,jk

and ∆k :“ ∆12¨¨¨k
12¨¨¨k. Unless

otherwise stated, the codimension of a subset always refers to the codimension in E or PE.

3.2.1 Case codimpErq “ 1

This subsection studies the case codimpErq “ 1, i.e. all nonzero pr ` 1q ˆ pr ` 1q minors of

E has a common polynomial factor of degree at least 1.

Lemma 11. Let E Ă Ca b Cb, r ă a,b and Er ‰ E. If there exists a degree r ` 1 polynomial P

dividing all pr ` 1q ˆ pr ` 1q minors of E, then either P factors into a product of linear forms, or

E Ă Cr`1 b Cr`1.

Proof. The hypothesis that all pr`1q ˆ pr`1q minors of E are equal up to scale is invariant under

changes of bases in A and B, so we are allowed to perform invertible row and column operations.

11



Since Er ‰ E, there exists a nonzero pr ` 1q ˆ pr ` 1q minor of E. By changes of bases we

can assume ∆r`1 “ P . We further assume ∆r, ¨ ¨ ¨ ,∆2, y
1
1 are nonzero.

Write E “ pyijq1ďiďa,1ďjďb. Consider the the block consisting of the first r ` 1 rows and the

first r ` 2 columns:
¨

˚

˚

˝

y11 ¨ ¨ ¨ y1r`1 y1r`2
...

...
...

yr`1
1 ¨ ¨ ¨ yr`1

r`1 yr`1
r`2

˛

‹

‹

‚

.

Let I :“ p1, 2, ¨ ¨ ¨ , r ` 1q. For j ď r ` 1, expand the minor consisting all columns except the

j-th along the last column, then we have

cjP “ ∆I
Izj,r`2 “

r`1
ÿ

i“1

p´1q
i`pr`2q´1yir`2∆

Izi
Izj

for some cj P C. Thus,
¨

˚

˚

˝

c1
...

cr`1

˛

‹

‹

‚

P “ p´1q
r`1

ˆ

p´1qi∆
Izi
Izj

˙r`1

j,i“1

¨

˚

˚

˝

y1r`2
...

yr`1
r`2

˛

‹

‹

‚

.

For every j ď r ` 1, multiply p´1qj to the j-th row,

p´1q
r`1

¨

˚

˚

˝

p´1q1c1
...

p´1qr`1cr`1

˛

‹

‹

‚

P “

ˆ

p´1qi`j∆
Izi
Izj

˙r`1

j,i“1

¨

˚

˚

˝

y1r`2
...

yr`1
r`2

˛

‹

‹

‚

. (3.1)

Now pp´1qi`j∆
Izi
Izjq

r`1
j,i“1 is the cofactor matrix of the transpose of pyijq

r`1
i,j“1, whose determinant is

∆r`1 “ P by assumption. So

p´1q
r`1

¨

˚

˚

˝

y11 ¨ ¨ ¨ y1r`1
...

...

yr`1
1 ¨ ¨ ¨ yr`1

r`1

˛

‹

‹

‚

¨

˚

˚

˝

´c1
...

p´1qr`1cr`1

˛

‹

‹

‚

“

¨

˚

˚

˝

y1r`2
...

yr`1
r`2

˛

‹

‹

‚

.

Therefore the column vector py1r`2, . . . , y
r`1
r`2qt is a linear combination of all column vectors ap-

pearing in the upper left pr ` 1q ˆ pr ` 1q block of E, i.e. py1j , ¨ ¨ ¨ , yr`1
j qt, 1 ď j ď r ` 1. By

adding linear combinations of the first r` 1 columns to the pr` 2q-th, we may make the first r` 1

entries of the pr`2q-th column equal to zero. Similarly, we may make the all last b´ r´1 entries

in the first r ` 1 rows equal to zero. By the same argument, we may do the same for the first r ` 1

12



columns. Then the matrix E becomes:

E 1
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y11 ¨ ¨ ¨ y1r`1 0 ¨ ¨ ¨ 0
...

...
...

...

yr`1
1 ¨ ¨ ¨ yr`1

r`1 0 ¨ ¨ ¨ 0

0 ¨ ¨ ¨ 0 ỹr`2
r`2 ¨ ¨ ¨ ỹr`2

b
...

...
...

...

0 ¨ ¨ ¨ 0 ỹar`2 ¨ ¨ ¨ ỹab

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.2)

If ỹr`1`i
r`1`j “ 0, @i, j ą 0, let A1 be the space corresponding to the first r ` 1 rows of E 1 and B

the first r ` 1 columns, then E Ă A1 b B1 “ Cr`1 b Cr`1.

If there exists a nonzero ỹr`1`i
r`1`j , by changes of bases assume it is ỹr`2

r`2 . For 1 ď i1 ă ¨ ¨ ¨ ă

ir ď r ` 1, 1 ď j1 ă ¨ ¨ ¨ ă jr ď r ` 1, the pr ` 1q ˆ pr ` 1q minor ∆i1,¨¨¨ ,ir,r`2
j1,¨¨¨ ,jr,r`2 “ ∆i1,¨¨¨ ,ir

j1,¨¨¨ ,jr
ỹr`2
r`2

is a multiple of ∆r`1. Hence all r ˆ r minors of the upper left pr ` 1q ˆ pr ` 1q block equal up to

scale.

By assumption ∆r ‰ 0. Adding a linear combination of the first r columns to the pr ` 1q-th

column and a linear combination of the first r rows to the pr ` 1q-th row, we can set all entries in

pr`1q-th column and row zero except the pr`1, r`1q-th entry. Since ∆r`1 ‰ 0, the pr`1, r`1q-th

entry is nonzero, written as ỹr`1
r`1 . Then E 1 becomes:

E2
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y11 ¨ ¨ ¨ y1r 0 0 ¨ ¨ ¨ 0
...

... 0
...

...

yr1 ¨ ¨ ¨ yrr 0 0 ¨ ¨ ¨ 0

0 ¨ ¨ ¨ 0 ỹr`1
r`1 0 ¨ ¨ ¨ 0

0 ¨ ¨ ¨ 0 0 ỹr`2
r`2 ¨ ¨ ¨ ỹr`2

b
...

... 0
...

...

0 ¨ ¨ ¨ 0 0 ỹar`2 ¨ ¨ ¨ ỹab

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Repeat the above process on the upper left kˆk blocks consecutively for k “ r´1, r´2, ¨ ¨ ¨ , 2,
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then E2 becomes:
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y11

ỹ22
. . .

ỹr`1
r`1

ỹr`2
r`2 ¨ ¨ ¨ ỹr`2

b
...

...

ỹar`2 ¨ ¨ ¨ ỹab

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Therefore ∆r`1 “ y11 ỹ
2
2 ¨ ¨ ¨ ỹr`1

r`1 which factors into a product of linear forms.

Lemma 12. Let E Ă Ca bCb, 1 ď r ď minta,bu´2 and E ‰ Er`1. If there exists a polynomial

P of degree k dividing all pr ` 1q ˆ pr ` 1q minors, then:

(1) if k ą r{2 ` 1 and for any nonzero pr ` 1q ˆ pr ` 1q minor ∆, P and ∆{P are coprime,

then P is a product of linear forms;

(2) if r is even, k “ r{2 ` 1 and for any nonzero pr ` 1q ˆ pr ` 1q minor ∆, P and ∆{P are

coprime, then either P is a product of linear forms or E Ă Cr`2 b Cr`2;

(3) if r ě 3 is odd, k “ pr ` 1q{2 and P is irreducible, then either E Ă Cr`2 b Cb, Ca b Cr`2,

Cr`3 b Cr`3, or up to changes of bases E has a nonsingular pr ` 1q ˆ pr ` 1q block such

that all r ˆ r minors of it are multiples of P .

Proof. (1) and (2): Proof by induction on r. The base case r “ 1 is trivial. Assume r ą 1 and

assume that (1) and (2) holds for all integers smaller than r.

Given any nonzero pr`2q ˆ pr`2q minor of E, by changes of bases we can assume it is ∆r`2,

and we further assume ∆r`1 ‰ 0.

Write ∆r`1 “: PQ and for j ď r ` 1, ∆I
Izj,r`2 “: PQj , where each of the polynomials Q and

Qj’s either is zero or has degree r ` 1 ´ k. Then similar to Lemma 11, we have

p´1q
r`1

¨

˚

˚

˝

´Q1
...

p´1qr`1Qr`1

˛

‹

‹

‚

P “

ˆ

p´1qi`j∆
Izi
Izj

˙r`1

j,i“1

¨

˚

˚

˝

y1r`2
...

yr`1
r`2

˛

‹

‹

‚

.
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Using the cofactor matrix, we obtain:

p´1qr`1

Q

¨

˚

˚

˝

y11 ¨ ¨ ¨ y1r`1
...

...

yr`1
1 ¨ ¨ ¨ yr`1

r`1

˛

‹

‹

‚

¨

˚

˚

˝

´Q1
...

p´1qr`1Qr`1

˛

‹

‹

‚

“

¨

˚

˚

˝

y1r`2
...

yr`1
r`2

˛

‹

‹

‚

.

By adding a rational combination (where the coefficients are p´1qjQj{Q’s) of the first r ` 1

columns to the pr ` 2q-th column, we can put the first r ` 1 entries of the pr ` 2q-th column zero.

By the same argument, put the first r`1 entries of the last b´ r´1 columns zero. And we can do

the similar rational row operations to eliminate first r ` 1 entries of the last a ´ r ´ 1 rows. Then

E becomes E 1 of the form (3.2).

Since the p1, ¨ ¨ ¨ , r ` 1, r ` 2q ˆ p1, ¨ ¨ ¨ , r ` 1, r ` 2q minor is not changed by adding rational

multiples of the first r`1 rows and columns to the pr`2q-th row and pr`2q-th column respectively,

ỹr`2
r`2 “

∆r`2

∆r`1
. On the other hand, ỹr`2

r`2 has the form T {Q for some polynomial T of degree

k ` 1 if not zero, because all coefficients appearing in the row and column operations above are

p´1qjQj{Q’s. Thus,
T

Q
“ ỹr`2

r`2 “
∆r`2

∆r`1

“
∆r`2

PQ
“

p∆r`2{P q

Q
(3.3)

and T “ ∆r`2{P .

Since P and Q are coprime, the fact P divides all pr ` 1q ˆ pr ` 1q minors is preserved after

performing the above rational row and column operations.

If there exists an rˆr minor of the upper left pr`1q ˆpr`1q block that is not a multiple of P ,

by changes of bases assume this minor is ∆r. P divides the minor ∆1¨¨¨r,r`2
1¨¨¨r,r`2 “ ỹr`2

r`2∆r “ T∆r{Q,

so T is a multiple of P . Hence P 2 divides ∆r`2 “ TP . If k ą r{2`1, P 2 has degree ą r`2, then

we must have ∆r`2 “ 0, contradicting to the assumption ∆r`2 ‰ 0. If r is even and k “ r{2 ` 1,

∆r`2 is a multiple of P 2. By the arbitrariness of the choice of the nonzero pr ` 2q ˆ pr ` 2q minor

of E, all pr ` 2q ˆ pr ` 2q minors equal to P 2 up to scale. By Lemma 11, P factors completely or

E Ă Cr`2 b Cr`2.

If all r ˆ r minors of the upper left pr ` 1q ˆ pr ` 1q block are multiples of P . By induction,

apply (1) by replacing r with r ´ 1 so P factors into a product of linear forms.
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(3): Similar to above let ∆r`1 “: PQ and ∆r`2 are nonzero. Since P is irreducible of degree

k “ pr ` 1q{2, either P and Q are coprime, or Q equals to P up to scale. In the latter case, we can

choose another nonzero pr ` 1q ˆ pr ` 1q minor from the top left pr ` 2q ˆ pr ` 2q block such that

P and Q are coprime, unless all pr ` 1q ˆ pr ` 1q minors in the top left pr ` 2q ˆ pr ` 2q block are

multiples of P 2.

If all pr`1qˆpr`1q minors in the top left pr`2qˆpr`2q block are multiples of P 2, applying

Lemma 11 to the top left pr ` 2q ˆ pr ` 2q block we can put E as

E 1
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y11 ¨ ¨ ¨ y1r`1 0 y1r`3 ¨ ¨ ¨
...

...
...

...

yr`1
1 ¨ ¨ ¨ yr`1

r`1 0 yr`1
r`3 ¨ ¨ ¨

0 ¨ ¨ ¨ 0 yr`2
r`2 yr`2

r`3 ¨ ¨ ¨

yr`3
1 ¨ ¨ ¨ yr`3

r`1 yr`3
r`2 yr`3

r`3 ¨ ¨ ¨
...

...
...

...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Consider the pr ` 1q ˆ pr ` 1q minors involving yr`2
r`2 and r ˆ r minors of the upper left

pr`1q ˆ pr`1q block: P dividing all pr`1q ˆ pr`1q minors implies P dividing all rˆ r minors

from the first r ` 1 rows. Apply (2) by replacing r with r ´ 1 to the submatrix consisting of the

first r` 1 rows. Since P is irreducible of degree k ą 1, this submatrix is in some Cr`1 bCr`1, we

can put yij zero for i ď r ` 1 and j ě r ` 3 by changing basis of A. For the same reason all yji for

i ď r ` 1 and j ě r ` 3 can be put zero too. Then E 1 becomes E2 “ diagpB1, B2q where B1 is a

pr ` 1q ˆ pr ` 1q block. If B2 has an nonzero 2 ˆ 2 minor, consider the pr ` 1q ˆ pr ` 1q minors

consisting of it and any pr ´ 1q ˆ pr ´ 1q minor of B1, applying (1) replacing r with r ´ 2 we see

P factors into linear forms which contradicts the irreducibility. Therefore B2 has bounded rank 1,

then E Ă Cr`2 b Cb or Ca b Cr`2.

Now assume P and Q are coprime. Similar to the proof above, if there exists an r ˆ r minor

of the upper left pr ` 1q ˆ pr ` 1q block that is not a multiple of P , P 2 divides ∆r`2. By the

arbitrariness of choice of nonzero pr`2q ˆ pr`2q minors, P 2 divides all pr`2q ˆ pr`2q minors.

As k “ pr ` 1q{2 and P is irreducible, P 2 divides all pr ` 2q ˆ pr ` 2q minors and we can apply

(1) by replacing r with r ` 1, then we conclude E Ă Cr`3 b Cr`3.
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Otherwise all r ˆ r minors of the upper left pr ` 1q ˆ pr ` 1q block are multiples of P .

Corollary 13. Let E Ă Ca b Cb, 1 ď r ď minta,bu ´ 2, and codimpErq “ 1 and E ‰ Er`1.

Then:

1. Er does not contain any irreducible hypersurface of degree k ą r{2 ` 1;

2. if r is even and Er contains an irreducible hypersurface of degree r{2` 1, then E Ă Cr`2 b

Cr`2.

Proof. 1. If Er contains an irreducible hypersurface of degree k, there exists an irreducible poly-

nomial P of degree k dividing all pr ` 1q ˆ pr ` 1q minors. Then for any pr ` 1q ˆ pr ` 1q

minor ∆, ∆{P has degree less than k so must be coprime with P . By (1) of Lemma 12, P factors,

contradicting to the irreducibility.

2. Similar to the proof of 1 except we apply (2) of Lemma 12. As P cannot be a product of

linear forms due to irreducibility, we conclude E Ă Cr`2 b Cr`2.

3.2.2 Case codimpE1q “ n

Let EK :“ tf P A˚ b B˚ | fpEq “ 0u. Define the index of degeneracy of E to be one

plus the maximum dimension of a linear space contained in PEK X SegpPA˚ ˆ PB˚q, denoted as

κ. Equivalently, κ is the largest number of entries in the same row or column of E that can be

simultaneously put to zero by changing bases of A and B.

The subspace E is called E1-generic if κ “ 0. We call this property E1-generic because

it corresponds to the notion of 1-generic for spaces of matrices given by Eisenbud [19], which

differs with the notion of 1-generic that is often used for tensors (cf. [20]). We list two results of

E1-generic spaces of our interest below.

Theorem 14 (Corollary 3.3 and Theorem 2.1 of [19]). Let m “ minta,bu. If E Ă A b B is

E1-generic, then:

1. for k ď m ´ 1, codimpEkq ě a ` b ´ 2k ´ 1;

2. if F Ă E is a subspace with codimpF q ď m ´ 1, then codimF pFm´1q “ pa ´ m ` 1qpb ´

m ` 1q.
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For generic determinantal varieties, i.e. when E “ A b B, one expects Ek has codimension

pa ´ kqpb ´ kq. E1-generic does not means generic but implies the genericity to some extent –

Em´1 has the expected codimension, and the codimension of Ek has a lower bound a`b´2k´1.

Proposition 15. Let n :“ codimpE1q, then there exist 0 ď j ď n and a linear subspace F Ă E of

codimension j, such that either F Ă Ck b Cl for some k ` l ď n ` 3 ´ j and k, l ě 2, or j “ n

and F has bounded rank 1.

Proof. First assume all nonzero 2 ˆ 2 minor of E are irreducible. So if there is an entry yij “ 0,

then either all entries in the i-th row or all entries in the j-th column are zero. By changes of bases

in A and B, there exist integers k, l ě 2, such that yij ‰ 0 if and only if i ď k, j ď l.

E “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y11 ¨ ¨ ¨ y1l 0 ¨ ¨ ¨ 0
...

...
...

...

yk1 ¨ ¨ ¨ ykl 0 ¨ ¨ ¨ 0

0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
...

...
...

...

0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Then the upper left k ˆ l block of E is E1-generic. By Theorem 14 if k, l ě 2, codimpE1q ě

k ` l ´ 3, so k ` l ď n ` 3.

If there is a 2 ˆ 2 minor of M that factors into the product of two linear forms ℓ1, ℓ2, write

F :“ tℓ1 “ 0u and F 1 :“ tℓ2 “ 0u, then E1 “ F1 Y F 1
1. At least one of the two components has

codimension n in E. Say it is F1, then codimF pF1q ď n ´ 1.

Together with the irreducible case, we conclude that at least one of the following holds:

1. there exists a hyperplane F Ă E such that codimF pF1q “ n ´ 1;

2. E Ă Ck b Cl such that k ` l ď n ` 3 and k, l ě 2.

Using induction on dimpEq, we conclude.

3.2.3 Case codimpE2q “ 1

If codimpE2q “ 1, then there must exist an irreducible polynomial P of degree k ď 3 dividing

all 3 ˆ 3 minors of E. If k “ 1, then E contains a hyperplane tP “ 0u which has bounded rank 2.
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If k “ 3, by Lemma 11 E Ă C3 b C3.

When k “ 2, by Corollary 13 we have E Ă C4 b C4, which suffices us to assume E Ă A b B

with dimpAq “ dimpbq “ 4. The following proposition finds all such spaces up to changes of

bases in E,A and B.

Proposition 16. Let E Ă AbB :“ C4 bC4. If there exists an irreducible polynomial S of degree

2 dividing all 3 ˆ 3 minors of E, then at least one of the following holds:

1. E has bounded rank 3;

2. up to changes of bases in E,A and B, E is either skew-symmetric, or has the form a diagonal

block matrix diagpX,Xq where

X “

¨

˝

x1 x2

x2 x3

˛

‚ or

¨

˝

x1 x2

x3 x4

˛

‚

depending on the rank of S.

We defer the proof to §3.3.

3.2.4 Case codimpErq ď n

A subspace E Ă A b B is said to be concise if the associated tensor T P E˚ b A b B is

concise. Equivalently, there does not exist changes of bases in A or B such that any column or row

of E consists of only zero entries. This section studies upper bounds of a and b for concise spaces

E satisfying codimpErq ď n.

Proposition 17. For any positive integer r, n, there exist positive integers M1,M2, such that if

there exists a concise space E Ă AbB :“ Ca bCb with codimpErq ď n, then at least one of the

following holds:

(1) a or b ď M1;

(2) a,b ď M2;

(3) D a hyperplane F Ă E such that codimF pFrq ď n ´ 1;

(4) D1 ď i ď r such that E “ H ` H 1 where codimpH 1
r´iq ď n and H 1 Ă Ci b B or A b Ci.
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Proof. Proof by induction on r. For r “ 1, by Proposition 15 we can set M1 “ 1 and M2 “

n ` 1.For r ě 2 we divide the problem into different cases by the value of κ.

1. Case κ “ 0.

κ “ 0 if and only if E is E1-generic. Since Er ‰ E, a,b ě r ` 1. By Theorem 14,

a ` b ď n ` 2r ` 1.

2. Case κ “ 1.

We can put y11 “ 0 by changing bases. Then the pa ´ 1q ˆ pb ´ 1q submatrix consisting of

entries in the last a´ 1 rows and the last b´ 1 columns is either 1-generic, or has κ “ 1 so we can

put y22 “ 0. Repeat this procedure until the bottom right pa ´ kq ˆ pb ´ kq submatrix is 1-generic.

Then E “

¨

˝

Ckˆk ˚

˚ Dsˆt

˛

‚where D is 1-generic, s “ a ´ k, t “ b ´ k and

C “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 ˚ ˚ ¨ ¨ ¨ ˚ ˚

˚ 0 ˚ ¨ ¨ ¨ ˚ ˚

˚ ˚ 0 ¨ ¨ ¨ ˚ ˚
...

...
... . . . ...

˚ ˚ ˚ ¨ ¨ ¨ 0 ˚

˚ ˚ ˚ ¨ ¨ ¨ ˚ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

If k ě r ` 1, consider the submatrix C 1 consisting entries in the first r ` 1 rows and the last

k ´ 1 columns of C:

C 1
pr`1qˆpk´1q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ¨ ¨ ¨ ˚ ˚

0 ˚ ¨ ¨ ¨ ˚ ˚

˚ 0 ¨ ¨ ¨ ˚ ˚
...

... . . . ...

˚ ˚ ¨ ¨ ¨ ˚ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

By the definition of κ, all nonzero entries in the same row or column of C are linearly inde-

pendent. Therefore C 1 is a codimension r ´ 1 subspace of some 1-generic space in Ck´1 b Cr`1.

By 2 of Theorem 14, all pr ` 1q ˆ pr ` 1q minors of C 1 determines a subvariety of codimension

ě k ´ r ´ 1, so k ď n ` r ` 1.

20



Now to find upper bounds for s and t. If s “ r and t ě r, the submatrix consisting of entries in

the last s ` 1 rows and the last t ` 1 columns is a codimension 1 subspace of a 1-generic space in

Cs`1 b Ct`1. So by 2 of Theorem 14 again t ď n ` r ´ 1. Similarly if t “ r then s ď n ` r ´ 1.

If s, t ě r ` 1, the submatrix consisting of entries in the last s rows and the last t ` 1 columns

is 1-generic. By 1 of Theorem 14, n ě 2 and s ` t ď n ` 2r.

To put everything together, either a ď n ` 2r, b ď n ` 2r or a,b ď 2n ` 2r.

3. Case 2 ď κ ď maxtM1pr ´ 1, nq,M2pr ´ 1, nqu.

Claim: there exist Mipr, n, gq, i “ 1, 2 such that if E has κ “ g and satisfies the hypothesis of

the proposition, then either a or b ď M1pr, n, gq, or a,b ď M2pr, n, gq, or the condition (3) holds.

We will find Mi “ Mipr, n, gq by induction on g. By the last case, we can set M1pr, n, 1q “

n ` 2r and M2pr, n, 1q “ 2n ` 2r. Assume claim is true for spaces of κ ă g.

Write E “

¨

˝

Ckˆk ˚

˚ Dsˆt

˛

‚ such that C has zeros on the diagonal and D is 1-generic. Let

Mpr, n, g ´ 1q :“ maxtM1pr, n, g ´ 1q,M2pr, n, g ´ 1qu. If k ą 2Mpr, n, g ´ 1q ` 1, then the

submatrix C 1 consisting of entries in the first Mpr, n, g´1q`1 rows and the last Mpr, n, g´1q`1

columns of C is a space of κ “ g´1. However by the definitions of Mipr, n, g´1q’s, all pr`1q ˆ

pr ` 1q minors of C 1 determine of codimension ą n subset. Therefore k ď 2Mpr, n, g ´ 1q ` 1.

Now s and t has the same upper bound as the last case. So we can set M1pr, n, gq :“

2Mpr, n, g ´ 1q ` r and M1pr, n, gq :“ 2Mpr, n, g ´ 1q ` r ` n which proves the claim.

4. Case κ ě maxtM1pr ´ 1, nq,M2pr ´ 1, nqu ` 1.

Choose bases and possibly take transpose so that all entries in the top left κˆκ1 block of E are

zero for some 1 ď κ1 ď κ. So

E “

¨

˝

Oκˆκ1 H

G Dsˆt

˛

‚. (3.4)

We take the largest κ1 so that the submatrix H is concise in Cκ b Ct. By the definition of κ, G is

1-generic.
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Consider the pr ` 1q ˆ pr ` 1q minors consisting of any single entry of G and any r ˆ r minor

of H . We must have codimHpHr´1q ď n unless condition (3) holds. Since κ ě maxtM1pr ´

1, nq,M2pr ´ 1, nqu ` 1, t ď M1pr ´ 1, nq.

If κ1 ď r, then b ď M1pr ´ 1, nq ` r.

If κ1 ě r ` 1 ą s, consider the pr ` 1q ˆ pr ` 1q minors that are a product of an s ˆ S

minor of G and a pr ` 1 ´ sq ˆ pr ` 1 ´ sq minor of H . Then either codimGpGs´1q ď n or

codimHpHr´sq ď n. The latter inequality implies condition (4) holds. The former inequality

implies κ1 ď n ` s ´ 1 ď n ` r ´ 1, then b ď n ` r ´ 1 ` M1pr ´ 1, nq.

If κ1, s ě r ` 1, then codimGpGrq ď n. By Theorem 14 s ` κ1 ď n ` 2r ` 1. So b ď

n ` r ` M1pr ´ 1, nq.

Since Mipr, n, g ` 1q ě Mipr, n, gq for g ě 0, Mipr, n, gq takes the maximum at g “ g1 :“

maxtM1pr ´ 1, nq,M2pr ´ 1, nqu. So we can put M1pn, rq “ maxtM1pr, n, g1q, n ` r ` M1pr ´

1, nqu and M2 “ M1pr, n, g1q which proves the proposition.

Corollary 18. Let E Ă A b B be concise and satisfy codimE2 “ 2. Then at least one of the

following holds:

(1) a or b ď 6;

(2) a,b ď 8;

(3) D a hyperplane F Ă E such that codimFF2 ď 1;

(4) E has bounded rank 2.

Proof. For κ “ 0 or 1, by the proof of Proposition 17 either a, b ď 6, or a,b ď 8.

For κ “ 2 or 3, put E into the form 3.4. If the condition (3) does not hold, G and H are both

1-generic. Then by Theorem 14, a or b ď 6.

For κ ě 4, H must have bounded rank 1 and t “ 1. If κ ď 3, then b ď 5. If κ ě 4, G must

have bounded rank 1 and s “ 1, then E has bounded rank 2.
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3.3 Proof of Proposition 16

Before proving the proposition, we need the following lemma.

Lemma 19. Let E Ă A b B :“ C2 b C2 be a matrix of linear forms in variables x1, ¨ ¨ ¨ , xc.

Define

X1 :“

¨

˝

x1 x2

x2 x3

˛

‚, X2 :“

¨

˝

x1 x2

x3 x4

˛

‚

1. If detE “ detX1, then E “ X1 up to changes of bases in A and B.

2. If detE “ detX2, then either E “ X2 or E “ X t
2 up to changes of bases in A and B.

Proof of Proposition 16. Say ∆3 “ x1S, then the upper left 3 ˆ 3 submatrix must be of the form

x1Z ` U where Z is a 3 ˆ 3 matrix of complex numbers and U has bounded rank rank 2. There-

fore up to changes of bases, U is either compression or skew-symmetric. Since ∆3 ‰ 0, taking

transpose if necessary, we can write the upper left 3 ˆ 3 submatrix as one of the following forms:

piq

¨

˚

˚

˝

y11 y12 y13

y21 y22 y23

0 0 x1

˛

‹

‹

‚

, piiq

¨

˚

˚

˝

x1 0 y13

0 x1 y23

y31 y32 y33

˛

‹

‹

‚

, piiiq

¨

˚

˚

˝

x1 y12 y13

´y12 x1 y23

´y13 ´y22 x1

˛

‹

‹

‚

For the rest of the proof, we will discuss each of the above cases.

Case (i). S “ ∆2 “ y11y
2
2 ´ y12y

2
1 is an irreducible quadratic polynomial, hence has Waring rank 3

or 4. Changing basis in E we can write S “ x1x3 ´ px2q
2 or x1x4 ´ x2x3 depending on rankpSq.

By Lemma 19 we can put the top left 2 ˆ 2 block as the form X1 or X2.

S divides ∆134
123 “ x1∆

14
12 and ∆234

123 “ x1∆
24
12, therefore py41, y

4
2q P spantpy11, y

1
2q, py21, y

2
2qu.

Adding multiples of the first and the second row to the 4-th, we can set y41 and y42 to zeros.

If ∆34
34 “ 0, the right bottom 2 ˆ 2 submatrix has bounded rank 1, then E has bounded rank 3.

Assume ∆34
34 ‰ 0. Since S divides ∆234

234 “ y22∆
34
34 ‰ 0, ∆34

34 is a non-zero multiple of S, hence
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can be normalized to S. Apply Lemma 19 again, E has one of the following forms:
¨

˚

˚

˚

˚

˚

˝

x1 x2 y13 y14

x2 x3 y23 y24

0 0 x1 x2

0 0 x2 x3

˛

‹

‹

‹

‹

‹

‚

if rankpSq “ 3, or

¨

˚

˚

˚

˚

˚

˝

x1 x2 y13 y14

x3 x4 y23 y24

0 0 x1 y34

0 0 y43 x4

˛

‹

‹

‹

‹

‹

‚

if rankpSq “ 4

where py34, y
4
3q “ px2, x3q or px3, x2q.

We consider separately the two subcases (i.1) rank(S) = 3 and (i.2) rank(S) = 4. And we further

divide subcase (i.2) into two situations: (i.2.1) py34, y
4
3q “ px2, x3q, and (i.2.2) py34, y

4
3q “ px3, x2q.

Subcase (i.1). Assume rankpSq “ 3. Write y14 “ l2 ` l12, y23 “ l3 ` l13, y
2
4 “ l4 ` l14, and

∆123
234 “ pl ` l1qS where l, li P spantx1, x2, x3u and l1, l1i P spantx4, ¨ ¨ ¨ , xmu. Then

l1S “ l1px1x3 ´ px2q
2
q “ px3l

1
2 ´ x2l

1
4qx1 ` px2l

1
3 ´ x3l

1
1qx2.

Comparing terms that are multiples of px1q
2, we see l1 “ 0, which forces all l1i “ 0, so yij P

spantx1, x2, x3u. Adding multiples of the first two rows and columns to the last two rows and

columns, we can put y14 “ y23 “ 0.

Write l “ a1x1 ` a2x2 ` a3x3. Then

pa1x1 ` a2x2 ` a3x3qpx1x3 ´ px2q
2
q “ lS “ ∆123

234 “ ´x2x3y
1
3 ´ x1x2y

2
4.

Comparing the terms of multiples of px1q
2x3, x1px3q

2 and px2q3, we see all ai “ 0 so l “ 0.

Comparing the coefficients of the rest cubic monomials, we obtain a1 ` b3 “ 0 and a2 “ a3 “

b1 “ b2 “ 0. If a1 “ 0, E has the form diagpX1, X1q where X1 “

¨

˝

x1 x2

x2 x3

˛

‚. If a1 ‰ 0, multiply

a1 to the first two column and the last two rows, subtract the 1st row from the 3rd, and add the 4th

row to the 2nd, then E again has the form diagpX1, X1q.

Subcase (i.2). Assume rankpSq “ 4.

(i.2.1). If py34, y
4
3q “ px2, x3q: using the notations in (i.1), write yij “ lk`l1k and ∆123

234 “ pl`l1qS.

Then l1S “ x2pl
1
3x2 ´ l14x1q ´x4pl

1
1x2 ´ l12x1q. Comparing terms we see all l1i “ 0. Then by adding

multiples of the first two columns to the third and fourth, then adding multiples of the first two rows

to the first and second, we can make y13 P spantx2, x4u, y
2
3 P spantx2u, y

1
3 P spantx1, x2, x4u.

Since ∆123
234 “ lS “ x2py

2
3x2 ´ y24x1q ´ x4py

1
3x2 ´ y14x1q, writing yij into linear combinations
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of xk’s, we see that there is no x2x3. Thus l “ 0, then comparing terms of the above equation,

we have y13 “ y23 “ 0. By ∆123
134 and ∆123

234, py14, y
2
4qt P spantpx1, x3qt, px2, x4qtu, so we can set

py14, y
2
4qt “ 0 by adding multiples of the first two columns to the fourth.

Therefore, by changing bases E has the form diagpX2, X2q where X2 “

¨

˝

x1 x2

x3 x4

˛

‚.

(i.2.2). If py34, y
4
3q “ px3, x2q: using the notations in (i.1), write yij “ lk`l1k and ∆123

234 “ pl`l1qS.

Then l1S “ x2pl13x3 ´ l14x1q ´ x4pl
1
1x3 ´ l12x1q. Comparing terms we see l1 “ ´l13 “ l12 and

l11 “ l14 “ 0. Then by adding multiples of the first two columns to the third and fourth, then

adding multiples of the first two rows to the first and second, we can write y14 “ l1, y23 “ ´l1, y13 “

ř4
i“1 aixi, y

2
4 “

ř4
i“1 dixi.

S divides other 3 ˆ 3 minors, which implies y13 “ y24 “ 0. Therefore the only nonzero entries

of E are in the upper left 4 ˆ 4 block of the form:
¨

˚

˚

˚

˚

˚

˝

x1 x3 0 l1

x2 x4 ´l1 0

0 0 x1 x2

0 0 x3 x4

˛

‹

‹

‹

‹

‹

‚

.

Swapping the first two rows and the last two rows, then multiply -1 to the first 2 rows. E becomes

skew-symmetric.

Case (ii). Here S “ x1y
3
3 ´ y23y

3
2 ´ y13y

3
1 . Modify y1j , y

2
j , y

i
1, y

i
2, 3 ď i, j ď 4 such that their

expressions (as linear forms in xi’s) do not contain x1.

If y33 “ 0 and Di, j ą 2, such that yij ‰ 0, we may change bases such that y33 ‰ 0, so we have

two cases y33 ‰ 0 or yij “ 0 for all i, j ą 2.

If y33 ‰ 0, then consider ∆12i
12j “ x1px1y

i
j ´ yi1y

1
j ´ yi2y

2
j q. We obtain yij “ cijy

3
3 for all i, j ą 2

and constants cij . Changing bases again, we may set y34 “ y43 “ 0 and y44 “ y33 or 0. There are 3

subcases: (ii.1) y44 “ y33 ‰ 0, (ii.2) y44 “ 0, y33 ‰ 0, and (ii.3) y33 “ y44 “ 0.

Subcase (ii.1). Assume y44 “ y33 ‰ 0. Then ∆ρ34
ρ34 “ y33px1y

3
3 ´ y3ρy

ρ
3 ´ y4ρy

ρ
4q, @ρ “ 1, 2.
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Together with ∆12i
12i’s we get

y31y
1
3 ` y41y

1
4 “ y32y

2
3 ` y42y

2
4 “ y31y

1
3 ` y32y

2
3 “ y41y

1
4 ` y42y

2
4

Hence y31y
1
3 “ y42y

2
4 , y41y

1
4 “ y32y

2
3 .

∆ρ34
σ34 “ y33p´y3σy

ρ
3 ´ y4σy

ρ
4q “ 0 for pρ, σq “ p0, 1q or p1, 0q, and ∆12i

12j “ 0 for i ‰ j. We get

y31y
1
4 ` y32y

2
4 “ y41y

1
3 ` y42y

2
3 “ y31y

2
3 ` y41y

2
4 “ y32y

1
3 ` y42y

1
4 “ 0

In other words, denoting Q :“ y31y
1
3 ` y41y

1
4 , the following equations hold:

¨

˝

y31 y32

y41 y42

˛

‚

¨

˝

y13 y14

y23 y24

˛

‚“

¨

˝

y13 y14

y23 y24

˛

‚

¨

˝

y31 y32

y41 y42

˛

‚“

¨

˝

Q 0

0 Q

˛

‚

Then by changing bases E equals to the matrix whose upper left 4 ˆ 4 block is one of the

following, and all other entries are zeros:
¨

˚

˚

˚

˚

˚

˝

x1 0 a d

0 x1 c b

b ´d y33 0

´c a 0 y33

˛

‹

‹

‹

‹

‹

‚

for some linear forms or zeros a, b, c, d, y33 .

Subcase (ii.2). Assume y44 “ 0, y33 ‰ 0. Since ∆4 ‰ 0, there exist ρ, σ “ 1, 2, such that y4σ and

yρ4 ‰ 0. Then ∆124
σ34 and ∆ρ34

124 implies ∆12
34 “ ∆34

12 “ 0. Then change bases in the first two rows and

columns, we get:
¨

˚

˚

˚

˚

˝

c1x1 c2x1 y13 y14

c3x1 c4x1 0 0

y31 0 y33 0

y41 0 0 0

˛

‹

‹

‹

‹

‚

for some constants ci. ∆123
234 “ ´c4x1y

1
4y

3
3 implies c4 “ 0. Then ∆123

123 “ ´c2c3px1q
2y33 implies

either c2 or c3 “ 0, contradicting the hypothesis ∆3 ‰ 0.

Subcase (ii.3). Assume y33 “ y44 “ 0. As S “ y31y
1
3 ` y32y

2
3 is irreducible, y31, y

3
2 are linearly

independent, and so are y13, y
2
3 . Choose bases such that y11 and y22 are not necessary x1, and y31 “

x1, y
3
2 “ x2. Since rankpSq ě 3, at least one of y13, y

2
3 is linearly independent with x1, x2. Without
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loss of generality assume x1, x2, y
1
3 are linearly independent, then choose bases such that y13 “ x3:

¨

˚

˚

˚

˚

˝

y11 0 x3 y14

0 y11 y23 y24

x1 x2 0 0

y41 y42 0 0

˛

‹

‹

‹

‹

‚

.

If ∆12
34 “ 0,

˜

x3 y14

y23 y24

¸

has bounded rank 1 so we can set either the fourth column to zero

(then E Ă C4 b C3), or y23 “ y24 “ 0 (then ∆123
123 is a product of linear forms, contradicting to

irreducibility of S).

If ∆12
34 ‰ 0, by linear independence of y13 “ x3 and y23 , and ∆12

34 is a nonzero multiple of

S “ x1y
1
3 ` x2y

2
3 , we can normalize the fourth column such that py14, y

2
4qt “ px2,´x1q

t and

yρj “ 0, @j ą 4, ρ “ 1, 2. By the same argument, we can set py41, y
4
2q “ py23,´x3qt and yiσ “

0, @i ą 4, σ “ 1, 2.

Then E has the form:
¨

˚

˚

˚

˚

˝

y11 0 x3 x2

0 y11 y23 ´x1

x1 x2 0 0

y23 ´x3 0 0

˛

‹

‹

‹

‹

‚

,

which is skew-symmetric after permuting rows and columns.

Case (iii). Here S “ x2
1 ` py12q2 ` py13q2 ` py23q2 is irreducible, so rankpSq ą 2. We consider two

subcases by whether x1, y
1
2, y

1
3, y

2
3 are linearly independent.

Subcase (iii.1). Assume x1, y
1
2, y

1
3, y

2
3 are linearly independent. We can choose basis of E

such that y12 “ x2, y
1
3 “ x3, y

2
3 “ x4. In order that S divides all 3 ˆ 3 minors, py14, y

2
4, y

3
4qt

must be a linear combination of px1,´x2,´x3q
t, px2, x1,´x4q

t, px3, x4, x1qt, and px4,´x3, x2qt.

Changing the basis we can put py14, y
2
4, y

3
4qt “ px4,´x3, x2qt. By the same argument, py41, y

4
2, y

4
3q “

p´x4,`x3,´x2q. Consider the 3 ˆ 3 minors involving y44 , we see y44 “ ´x1.
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Hence E has the form:
¨

˚

˚

˚

˚

˝

x1 x2 x3 x4

´x2 x1 x4 ´x3

´x3 ´x4 x1 x2

´x4 x3 ´x2 x1

˛

‹

‹

‹

‹

‚

.

Then E is the the complex quaternion algebra spanCt1, I, J,Ku{pI2`1, J2`1, K2`1, IJK`1q

and the associated tensor of E is the structure tensor of the complex quaternion. Since the complex

quaternion algebra is isomorphic to the matrix algebra Mat2ˆ2, their structure tensors equal up to

changes of bases. So E equals to Mx2y up to changes of bases in E,A and B.

Subcase (iii.2). Assume x1, y
1
2, y

1
3, y

2
3 are linearly dependent. The irreducibility of S implies

three of them are linearly independent. x1 ‰ 0 since ∆3 ‰ 0. By changing bases assume y12 “

x2, y
1
3 “ x3, y

2
3 “ a1x1 `a2x2 `a3x3 for ai P C. Then S “ x2

1 `x2
2 `x2

3 ` pa1x1 `a2x2 `a3x3q2.

If dimxxi, y
i
4 | i “ 1, 2, 3y ě 5, the submatrix consisting of the first 3 rows is a subspace of a

1-generic space of codimension ď 2, then Theorem 14 implies contradiction. So dimxxi, y
i
4 | i “

1, 2, 3y ď 4.

Adding first 3 columns to the 4th, we can set y14 “ 0 or x4. Write y24 “
ř

i bixi and y34 “

ř

i cixi, ∆123
124 “ LS,∆123

134 “ MS and ∆123
224 “ NS for some linear forms L “

ř

i lixi,M,N .

If y14 “ x4:

∆123
124 “ppa1b4 ` c4qx

2
1 ` pa2 ` c4qx

2
2 ` p1 ` a3b4qx1x3 ` pa2b4 ` a1qx1x2 ` pa3 ´ b4qx2x3qx4

` pc1 ` a1b1qx
3
1 ` c2x

3
2 ` pc3 ´ b2qx2

2x3 ´ b3x2x
2
3 ` pc1 ` a2b2qx1x

2
2

` pc2 ` a1b2 ` a2b1qx
2
1x2 ` pc3 ` a1b3 ` a3b1qx2

1x3 ` a3b3x1x
2
3 ` pa2b3 ` a3b2 ´ b1qx1x2x3.

Note that there is no x2
3x4 in ∆123

124. This implies either a23 ` 1 “ 0 or l4 “ 0. If l4 “ 0, those

terms divisible by x4 have the sum zero:

pa1b4 ` c4qx2
1 ` pa2 ` c4qx2

2
` p1 ` a3b4qx1x3 ` pa2b4 ` a1qx1x2 ` pa3 ´ b4qx2x3 “ 0

which implies a23 ` 1 “ 0. Hence a23 ` 1 “ 0 no matter if l4 “ 0.

There is no x2
2x4 in ∆123

134, thus by the same argument, we must have a22 ` 1 “ 0.
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Compare the coefficients of x3
2 in equality ∆123

124 “ LS and x3
3 in ∆123

134 “ MS, we get

c2 “ l2p1 ` a22q “ 0 and ´ b3 “ m3p1 ` a23q “ 0.

Compare the coefficients of x2
2x4 in ∆123

124 “ LS and x2
3x4 in ∆123

134 “ MS, we get

pa2 ` c4q “ l4p1 ` a22q “ 0 and pa3 ´ b4q “ m4p1 ` a23q “ 0.

Compare the coefficients of x2x3x4 in ∆123
124 “ LS and ∆123

134 “ MS, we get

2a2a3l4 “ pa3 ´ b4q “ 0 and 2a2a3m4 “ a2 ` c4 “ 0.

Therefore l4 “ m4 “ 0. Then the coefficients of every monomial divisible by x4 in ∆123
124 and ∆123

134

equals zero. We get a1 “ a2{a3 from ∆123
124 but a1 “ a2a3 contradicting a23 “ ´1.

If y14 “ 0: since there is no x2
3x4 in ∆123

124, either a23 ` 1 “ 0 or l4 “ 0.

If l4 “ 0, then the coefficients of every monomial divisible by x4 in ∆123
124 equal zero, which

implies b4 “ c4 “ 0. Therefore there is no x4 appearing in the first 3 rows, and by the same

argument x4 does not appear in the first 3 columns. If Di, j ą 3, such that yij R spantx1, x2, x3u,

then we can change basis in E to set yij “ x4. Write ∆12i
12j “ x4px

2
1 ` x2

2q ` ppx1, x2, x3q for some

polynomial p. S “ Spx1, x2, x3q dividing ∆12i
12j ‰ 0 implies that S divides x2

1 ` x2
2, contradicting

to the irreducibility of quadratic polynomial S. If there is no such yij , then dimpEq “ 3.

Therefore a23 ` 1 “ 0. And by the same argument, since there is no x2
2x4 in ∆123

134, a
2
2 ` 1 “ 0.

Compare the coefficients of x2
2x4 in ∆123

124 “ LS and x2
3x4 in ∆123

134 “ MS, we get c4 “ b4 “ 0.

Then by the same argument as in the case l4 “ 0 we obtain dimpEq “ 3.
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4. RESULTS

By Proposition 2, a tensor T P GRr if and only if there exists j such that

codimA˚
j ď r ´ j. (4.1)

When j “ 0, A˚
0 is the kernel of TA : A˚ Ñ B b C, so its codimension equals to mlApT q. In

other words, (4.1) holds for j “ 0 if and only if mlApT q ď r, so T is compression.

When j “ r, (4.1) is equivalent to A “ A˚
r , i.e., T pA˚q Ă B b C is a space of matrices of

bounded rank r. Since spaces of bounded rank 1, 2 and 3 are classified, we can utilize those results

on the classification of tensors with geometric rank 1, 2 and 3.

To classify tensors in GRr, we have to study every case of 1 ă j ă r.

4.1 Geometric Rank 1

For r “ 1, by the discussion above, GR1 consists of two classes of tensors: the tensors with

mlApT q ď 1 and the tensors satisfying T pA˚q is a space of bounded rank 1. Since there is no

primitive spaces of matrices of bounded rank 1, all tensors in GR1 are compression.

Proposition 20. There is no primitive tensors of geometric rank 1.

Proposition 20 recovers the results on tensors with geometric rank 1 from [[11]].

Corollary 21 ([11]). GRpT q “ 1 if and only if SRpT q “ 1.

4.2 Geometric Rank 2

Theorem 22. Up to change of coordinates and deleting zero columns and rows, there is exactly

one primitive tensor of geometric rank 2 of the form:

T pA˚
q “

¨

˚

˚

˝

0 x1 x2

´x1 0 x3

´x2 ´x3 0

˛

‹

‹

‚

.

Theorem 22 recovers the results on tensors with geometric rank 2 from [[11]].
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Corollary 23 ([11]). A tensor T has geometric rank at most 3 if and only if T pA˚q, T pB˚q or

T pC˚q has bounded rank 2.

proof of Proposition 22 and Corollary 23. GRpT q ď 2 if and only if at least one of the following

three cases holds:

(i) codimA˚
2 “ 0;

(ii) codimA˚
1 ď 1;

(iii) codimA˚
0 ď 2.

Case (i) is equivalent to T pA˚q has bounded rank 2. And the only primitive space of bounded

rank 2 is the 3-dimensional space of 3 ˆ 3 skew-symmetric matrices, whose corresponding tensor

is primitive by Lemma 7. Case (iii) is equivalent to mlApT q ď 2, so T is compression.

Case (ii) implies all 2 ˆ 2 minors of T pA˚q equal up to scale. If all 2 ˆ 2 minors are zero,

then T pA˚q has bounded rank 1 and T is compression by Proposition 20. Otherwise, assume there

exists a quadratic polynomial P dividing all 2ˆ2 minors. By Lemma 11, either T pA˚q Ă C2 bC2

which means T is compression, or P “ l1l2 for some linear forms l1, l2. Let T 1 :“ T |tl1“0u, then all

2ˆ2 minors of T 1pA˚q are zero, so T 1pA˚q has bounded rank 1 and by Proposition 20 SRpT 1q “ 1.

Therefore SRpT q ď 2 and T is compression.

To prove the second statement of the theorem, we see that case (i) implies T pA˚q has bounded

rank 2, case (iii) implies both T pB˚q and T pC˚q has bounded rank 2. Case (ii) implies SRpT q ď 2.

If SRpT q “ 1 then at least two of T pA˚q, T pB˚q and T pC˚q has bounded rank 1. If SRpT q “ 2,

by definition we can decompose T “ T1 ` T2 and without loss of generality assume mlApT1q “ 1,

mlApT2q or mlBpT2q “ 1, then T pC˚q has bounded rank 2.

4.3 Geometric Rank 3

This section studies the structure of the set of tensors with geometric rank at most 3.

Theorem 24. A tensor T P A b B b C has geometric rank at most 3 if and only if one of the

following conditions holds:

1. T pA˚q, T pB˚q or T pC˚q is of bounded rank 3, or
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2. SRpT q ď 3, or

3. up to changes of bases T “ Mx2y.

If T is primitive of geometric rank 3, then up to changes of bases and permutations of A, B

and C, it is either the matrix multiplication tensor Mx2y or the tensor such that T pA˚q is a space

of 4 ˆ 4 skew-symmetric matrices of dimension 4, 5 or 6.

Proof. By (2), GRpT q ď 3 if and only if at least one of the following three cases holds:

(i) codimA˚
3 “ 0;

(ii) codimA˚
2 ď 1;

(iii) codimA˚
1 ď 2;

(iv) codimA˚
0 ď 3.

Case (i): codimA˚
3 “ 0 ðñ T pA˚q has bounded rank 3.

Case (ii): If codimA˚
2 “ 0, then GRpT q “ 2, so T pA˚q, T pB˚q or T pC˚q is of bounded rank 2.

When codimA˚
2 “ 1, according to the discussion in §3.2.3 and Proposition 16, at least one of

the following holds:

1. T “ T 1 ` T 2 where T 1pA˚q is a space of bounded rank 2 and mlApT 2q “ 1, so T is not

primitive.

2. T pA˚q, T pB˚q or T pC˚q has bounded rank 3;

3. up to changes of bases T “ Mx2y.

By classification of GR2, any non-primitive tensor of GR “ 3 is either compression or at least one

of T pA˚q, T pB˚q and T pC˚q has bounded rank 3.

Case (iii): By the discussion in §3.2.2, if there is a nonzero 2 ˆ 2 minor that is a product of 2

linear forms, T is not primitive. If all nonzero 2 ˆ 2 minors are irreducible, T pA˚q Ă C2 b C3 or

C3 b C2, so has bounded rank 2.

By Theorem 5, if T pA˚q is primitive spaces of bounded rank 3, then either T pB˚q or T pC˚q is

4 ˆ 4 skew-symmetric.

Case (iv): codimA˚
0 ď 3 ðñ mlApT q ď 3. So either T is compression or GRpT q “ 2,
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which implies T cannot be primitive of geometric rank 3. And mlApT q ď 3 implies both T pB˚q

and T pC˚q have bounded rank 3.

By classifications of GRr for r “ 1, 2 and 3, we summarize the following relations between

geometric rank and slice rank:

Corollary 25. 1. GRpT q “ 1 ðñ SRpT q “ 1.

2. If mlApT q, mlBpT q or mlCpT q ą 3, then GRpT q “ 2 ðñ SRpT q “ 2.

3. If at least one of mlApT q, mlBpT q and mlCpT q ą 6, or at least two of them ą 4, then

GRpT q “ 3 ðñ SRpT q “ 3.

However we cannot draw any similar conclusion for r ě 4. As a counter example, let T P

Cm b Cm b Cm be defined as

T pA˚
q :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 x1 x2

´x1 0 x3

´x2 ´x3 0

x4 x5 ¨ ¨ ¨ xm

x4

. . .

x4

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Then T is a direct sum of the primitive tensor of geometric rank 2 and a compression tensor of

geometric rank 2. So GRpT q “ 4, SRpT q “ 5.

4.4 Geometric Rank 4 and in General

Theorem 26. If T P A b B b C :“ Ca b Cb b Cc is primitive of geometric rank 4, then either at

least 2 of mlApT q, mlBpT q and mlCpT q are at most 6, or all of them are at most 8.

Proof. GRpT q ď 4 if and only if at least one of the following cases holds:

(1) A˚
4 “ A˚;

(2) codimpA˚
3q ď 1;

(3) codimpA˚
2q ď 2;
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(4) codimpA˚
1q ď 3;

(5) codimpA˚
0q ď 4;

(1) ðñ T pA˚q has bounded rank 4. T is primitive only if T pA˚q is a primitive space of bounded

rank 4. By Theorem 4, if a primitive space of bounded rank 4 has size n1 ˆ n2, then either n1 ď 5

and n2 ď 10, n1 ď 10 and n2 ď 5, or n1 ď 6 and n2 ď 6. So either mlBpT q ď 5, or mlCpT q ď 5,

or mlBpT q,mlCpT q ď 6.

(2) ðñ there exists an irreducible polynomial P of degree ě 1 dividing all 4 ˆ 4 minors of

T pA˚q.

(2.1) degP “ 1: by Lemma 7 T is not primitive.

(2.2) degP “ 2: By Lemma 12, up to changes of bases the upper left 4ˆ4 submatrix of T pA˚q

has determinant equal to P 2 and P divides all 3 ˆ 3 minors of the submatrix. Proposition 16 gives

a classification of such 4 ˆ 4 matrix. Since the determinant does not vanish, the submatrix cannot

have bounded rank 3, so the submatrix is either skew-symmetric or has the form diagpX,Xq.

(2.2.i) Case diagpX,Xq: write T pA˚q as the block form:

T pA˚
q “

¨

˚

˚

˝

X 0 E1

0 X E2

D1 D2 F

˛

‹

‹

‚

where X has determinant S, and Ei and Dj are 2 ˆ pc ´ 4q and pb ´ 4q ˆ 2 blocks.

For 1 ď i ď 2, 3 ď k ď 4, 5 ď j, l ď c, the minor ∆i34j
12kl “ ∆ij

12∆
34
kl is divisible by the

irreducible quadratic polynomial S. Therefore either S|∆ij
12 or S|∆34

kl . By Lemma 11, either D1 or

E2 can be put to 0 by adding first 2 rows or columns to the rest. By the same argument, either D2

or E1 can be put to 0.

If D1 “ D2 “ 0 or E1 “ E2 “ 0, S divides ∆13ij
13kl “ py11q2∆ij

kl for i, j, k, l ě 5. So S divides

all 2 ˆ 2 minors of F . By Lemma 11 either F Ă C2 b C2 or F has bounded rank 1. Therefore

mlBpT q or mlCpT q ď 6 and T is not concise.

If D1 “ E1 “ 0 or D2 “ E2 “ 0, without loss of generalities assume D1 “ E1 “ 0. Consider
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the minors ∆1ijk
1lst “ y11∆

ijk
lst for i, j, k, l, s, t ě 3. So S divides all 3ˆ3 minors of G :“

¨

˝

X E2

D2 F

˛

‚.

By Lemma 16 either G Ă C4bC4 or G has bounded rank 2. Therefore mlBpT q ď 6 or mlCpT q ď 6

and T is not concise.

(2.2.ii) Case skew-symmetric: permute the first 4 rows and columns to put T pA˚q into the

following form

T pA˚
q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

x1 0

0 x1

a d

c b
E1

b ´d

´c a

e 0

0 e
E2

D1 D2 F

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Adding the first two rows and columns to the rest, so that y1i , y
2
i , y

i
1, y

i
2 do not contain x1 in their

expression, for all i, j. S “ x1e ´ ab ` cd divides all 4 ˆ 4 minors of T pA˚q. Restricting to the

subspace tx1 “ 0u, then S 1 :“ ´ab ` cd divides all 4 ˆ 4 minors of T pA˚q|x1“0.

If S 1 is irreducible, for 3 ď i, k ď 4 and j, l ě 5, consider the minors ∆12ij
12kl “ ∆12

kl∆
ij
12 of

T pA˚q|x1“0. Similar to case (i), either D1|x1“0 or E1|x1“0 can be put 0. Without loss of generality

assume D1|x1“0.

Now working on T pA˚q, entries in D1 are multiples of x1. Then by adding multiples of first two

rows to the last m ´ 4 rows we can put D1 “ 0. S dividing ∆12ij
12kl “ px1q2∆ij

kl for i, j ě 5, k, l ě 3

implies it divides all 2 ˆ 2 minors of the pm ´ 4q ˆ pm ´ 2q block pD2 F q. So either pD2 F q has

bounded rank 2 or pD2 F q Ă C2 b C2. If by changing bases pD2 F q has nonzero entries only in

the first 2 rows, mlBpT q ď 6. Otherwise, by changing bases we can put all nonzero entries of

pD2 F q in its first 2 or 3 column. Then consider the 4 ˆ 4 minors involving one entry of pD2 F q

and 3 ˆ 3 minors from the first 4 rows of T pA˚q. By Proposition 16, either mlCpT q ď 6, or

mlBpT q,mlCpT q ď 7.

If S 1 “ ´ab ` cd is reducible, by changing bases we can put the block

¨

˝

a b

c d

˛

‚as

¨

˝

0 b1

c1 d1

˛

‚
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and the same for

¨

˝

b ´d

´c a

˛

‚. Then the upper left 4 ˆ 4 block of T pA˚q becomes

¨

˚

˚

˚

˚

˚

˝

x1 0 0 d1

0 x1 c1 b1

b1 ´d1 e 0

´c1 0 0 e

˛

‹

‹

‹

‹

‹

‚

.

Then permuting rows and columns we get
¨

˚

˚

˚

˚

˚

˝

0 0 x1 d1

0 0 ´c1 b1

b1 ´d1 e 0

c1 x1 0 e

˛

‹

‹

‹

‹

‹

‚

.

By the same argument, we can put D1 “ 0. Then all 3ˆ3 minors of pD2 F q are divisible by S.

By Proposition 16 either pD2 F q has bounded rank 2 or pD2 F q Ă C4 bC4. By the same argument

as the previous case, either mlBpT q ď 6, or mlBpT q,mlCpT q ď 8.

(2.3) degP “ 3: by Lemma 12, either P factors into linear forms so T is not primitive, or

T pA˚q has bounded rank 4.

(3) By Proposition 18, if T is primitive then either mlB ď 6, mlCpT q ď 6 or mlBpT q,mlCpT q ď 8.

(4) By Proposition 15, if T is primitive then mlBpT q ` mlCpT q ď 6.

(5) ðñ dimpT pA˚qq ď 4 ñ SRpT q ď 4.

Putting everything together, either mlBpT q ď 8, or mlCpT q ď 8, or mlBpT q,mlCpT q ď 6.

Since geometric rank is invariant by permuting A, B and C, we also have:

• either mlApT q ď 8, or mlCpT q ď 8, or mlApT q,mlCpT q ď 6;

• either mlApT q ď 8, or mlBpT q ď 8, or mlApT q,mlBpT q ď 6.

By inclusion-exclusion argument, we conclude the theorem.
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Corollary 27. If mlApT q, mlBpT q and mlCpT q ą 8, then GRpT q ď 4 if and only if either SRpT q ď

4, or up to changes of bases T “ T 1 ` T 2 where T 1 is the 3 ˆ 3 ˆ 3 skew-symmetric tensor and

SRpT 2q “ 2.

As a consequence of Proposition 17, we draw a general conclusion for primitive tensors of

geometric rank r.

Theorem 28. For all r, there exists a positive integer Nr, such that if T P A b B b C is primitive

of geometric rank r, then at least two of mlApT q, mlBpT q and mlCpT q are at most Nr.
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5. SUMMARY AND CONCLUSIONS

This dissertation studied geometric rank of tripartite tensors. To classify the set of tensors with

geometric rank at most r, we introduced primitive tensors and compression tensors. We proved the

existence of the primitive-compression decompositions for any tensors, which reduced the problem

of classifying tensors in GRr to finding all primitive tensors in GRr.

Lemma 9. If T is not compression (i.e., GRpT q ă SRpT q), then there exist a primitive tensor Tp

and a compression tensor Tc, such that T “ Tp ` Tc and GRpTpq ` GRpTcq “ GRpT q.

Then we found all primitive tensors in GRr for r “ 1, 2, 3:

1. Proposition 20. There is no primitive tensors of geometric rank 1.

2. Theorem 22. Up to change of coordinates and deleting zero columns and rows, there is

exactly one primitive tensor of geometric rank 2 of the form:

T pA˚
q “

¨

˚

˚

˝

0 x1 x2

´x1 0 x3

´x2 ´x3 0

˛

‹

‹

‚

.

3. Theorem 24. If T is primitive of geometric rank 3, then up to changes of bases and permu-

tations of A, B and C, it is either the matrix multiplication tensor Mx2y or the tensor such

that T pA˚q is a space of 4 ˆ 4 skew-symmetric matrices of dimension 4, 5 or 6.

For r “ 4 and in general, we found upper bounds on multilinear ranks of primitive tensors in

GRr:

1. Theorem 26. If T P A b B b C is primitive of geometric rank 4, then either at least 2 of

mlApT q, mlBpT q and mlCpT q are at most 6, or all of them are at most 8.

2. Theorem 28. For all r, there exists a positive integer Nr, such that if T P A b B b C is

primitive of geometric rank r, then at least two of mlApT q, mlBpT q and mlCpT q are at most

Nr.

Finally, using the above results on primitive tensors, we were able to classify the all tensors in

GR3:
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Theorem 24. A tensor T P A b B b C has geometric rank at most 3 if and only if one of the

following conditions holds:

1. T pA˚q, T pB˚q or T pC˚q is of bounded rank 3, or

2. SRpT q ď 3, or

3. up to changes of bases T “ Mx2y.
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