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ABSTRACT

This dissertation is focused on the developing a set of novel mathematical programming for-

mulations for a class of problems related to community detection in networks. The proposed

approach is based on the extension of quadratic formulations that were proposed by Motzkin and

Strauss in 1967. These formulations are related to the Maximum Clique problem, which asks to

find the largest complete subgraph. The main result is the establishing of a family of higher-order

polynomial optimization problems which exhibits a hierarchical structure of local and global op-

tima, different from previously known hierarchies in the field of optimization. Additional results

obtained include a tighter description for the set of local and global maxima of the proposed for-

mulations, improving the previously obtained results for the original Motzkin-Strauss problem as a

side-result. The second part of the thesis is dedicated to a discussion on the regularized version of

the proposed formulations, analogous to what was established by Bomze in 1997 for the original

Motzkin-Strauss formulation. We discuss the required properties of the regularization and analyze

the different options regarding the selection of the regularization term. A set of conditions is es-

tablished for the regularization term, so that the required properties are satisfied. Finally, a set of

computational experiments is presented to evaluate the performance of the proposed formulations

over the set of standard benchmarks.
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NOMENCLATURE

LP Linear Program

IP Integer Program

QP Quadratic Program

M-S Motzkin-Strauss Formulation

MSQP Motzkin-Strauss Quadratic Program

BR Bomze’s Quadratically Regularized Motzkin-Strauss Poly-
nomial Program

GR Hungerford and Rinaldi Φ-Regularized Motzkin-Strauss
Polynomial Program

MSPP Motzkin-Strauss Polynomial Program

QR Quadratically Regularized Motzkin-Strauss Polynomial Pro-
gram

PR Polynomially Regularized Motzkin-Strauss Polynomial Pro-
gram

Pk An instance of MSPP of order k

Pk,Φ An instance of General Regularized Motzkin-Strauss Poly-
nomial Program of order k given regularization function Φ

Rn Euclidean space of n dimensions

Rn
≥0 Positive orthant of Rn

2S Power set of S, set of all subsets of S(
S
k

)
A set of subsets of a set S of size k ∈ Z+

|S| cardinality of the set S

∆n A standard simplex of dimension n

S(x) The support of x

[n] Range, a set of integers from 1 to n

0n An all-zero vector of size n
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1. INTRODUCTION

It is widely known that some problems, whose structure appears to be fairly simple, can be

extremely hard to solve under the modern computational framework. The most widely commonly

known examples of such problems are the ones from complexity class NP and its subclass NP-

complete (or NPC) [1]. Informally, NP is a class of problems for which a solution is easy to verify

but hard to obtain. Moreover, being able to solve a specific NP-complete problem fast-enough

would guarantee that any other problem from NP class can also be solved fast. The classical

examples of such problems are Knapsack problem, Vertex Cover problem, and Clique problem.

Last two examples represent problems from Graph Theory, a fruitful field of Discrete Math-

ematics, which was first introduced by Leonard Euler back in 1735 with a famous Köningsberg

bridges problem [2]. He used the idea of analyzing a structure consisting of nodes connected

with edges to answer if it is possible to visit every island and bridge in Köningsberg, while only

crossing each bridge once. The answer to this question turned out to be negative, and since then

this nodes-and-edges framework has been extensively applied to real-life problems. Most com-

monly, applications of Graph Theory arise when describing transportation networks [3], where

nodes represent transportation terminals, warehouses, depots and other locations of interest, such

as power plants [4], while edges model connections between them, such as roads, airline routes

[5], or power-lines. Another example are social networks [6], where nodes represent social entities,

such as people or communities, while arcs represent the relationships between them. Some other

examples are neural networks of living beings [7], financial networks [8], graph-theoretic models

in linguistics [9] and so on [10].

One of the directions of Graph Theory is community detection problems [11]. In these prob-

lems, researches are interested in inferring some communal relationship from the network pro-

vided. For example, the Six degree of separation problem [12], perhaps more widely known as

Six handshakes rule, suggests that and two people are at most six social connections away from

each other. Technically, this problem asks to verify if the social network of all humanity is a 6-

1



club. Community detection problems (also known as clustering problems) are quite commonly

constructed based on the concept of a clique, which represents the most tightly-knit group possi-

ble: each node is connected to every other node. Of course, such conditions are often too extreme

[11], so it makes sense to employ less restrictive structures, which are, nevertheless, originate from

cliques. Such structures are called clique relaxations and, as it was shown, the problem of finding

such structures can often be reformulated in terms of finding cliques in some transformed graph.

This motivates us to study cliques in depth and detail.

The maximum clique problem is a classical optimization problem [13] which asks to find the

largest clique in a given graph. Some of the most theoretically interesting and computationally suc-

cessful approaches to this problem are based on the Motzkin-Straus formulation, expressing the

clique number in terms of the maximal value of a standard quadratic program [14]. This quadratic

program is known as Motzkin-Strauss Quadratic Program, or MSQP, and it was proposed in 1967

as a mean to provide an alternative proof for Turán’s graph theorem, which establishes an upper

bound on the clique number of a graph (i.e., the size of the maximum clique of a graph) as a func-

tion of the number of edges and vertices of the graph. In 1990’s, MSQP gained attention from

the global optimization community [15], [16], [17], which lead to a series of results characterizing

the combinatorial structure of local and global optima of MSQP. Additionally significant devel-

opments in quadratic optimization, copositive programming [18], and complexity in nonlinear

optimization were motivated by the study of this problem.

1.1 Preliminaries

In section 1.2 we present the summary of contributions of this thesis. To ensure that the reader

is familiar with the basic concepts, terminology and notation used in the discussion that follows,

in this section we introduce the necessary concepts and results regarding the Graph Theory and

Mathematical Optimization.

2



Set notation

Throughout this proposal we will be working with finite sets only. Sets are denoted using

capital latin letters, e.g: V , E, S. For a positive integer k, a range k is [k] := {1, 2, . . . , k}.

Given a set S, |S| denotes the cardinality of the set S, i.e. the number of elements present in

the set. We will assume the existence of a naive order (or enumeration) for any given set S, a

bijective function o: S → [|S|]. We will implicitly assume a one-to-one correspondence between

set elements and positive integer number from here on, i.e., we will assume any set S consists of

integers: S := {1, 2, . . . , |S|} = [|S|], unless specifically stated otherwise.

For a subset C of a set S, an indicator vector xC ∈ R|S| is defined as

xi =


1, i ∈ C,

0, i 6∈ C,
i ∈ S. (1.1)

Note that xC is a vertex of a standard hypercube of dimension |S|. Correspondingly, a characteristic

vector xC is defined as a normalized indicator vector, xC := 1
|C|xC . Again, note that xC is a vertex

of a standard simplex ∆|S| of dimension |S|, defined as:

∆n :=

{
x ∈ Rn |

n∑
i=1

xi = 1, xi ≥ 0, i ∈ [n]

}
. (1.2)

For a set S and a non-negative integer k, by
(
S
k

)
we denote a set of all subsets of S of size k.

Specifically, (
S

k

)
:=
{
C ∈ 2S | |C| = k

}
, (1.3)

where 2S is the power set of S, i.e., a set of all subsets of S. Note that

(
S

0

)
= {∅},

(
S

|S|

)
= {S},

∣∣∣∣(Sk
)∣∣∣∣ =

(
|S|
k

)
. (1.4)

3



Given a set S and a vector x ∈ R|S|, the support S (x) ⊆ S is defined as

S (x) := {i ∈ S | xi 6= 0}. (1.5)

Given a vector x in R|V |, a subset product πC(x), where C ⊆ V , is defined as

πC(x) :=
∏
i∈C

xi. (1.6)

1.1.1 Graph theory terminology

This thesis heavily relies on the concepts of from Graph Theory. The basic concepts are vertices

and edges. Interchangeably, term node can be used to denote vertices and term arc to denote edges.

We will use the former vocabulary, however, in literature, the reader might encounter the latter.

A graph is a pair of sets, vertex set and edges set, and is denoted as G = (V,E), where V

is the vertex set and E is the edge set. We will only consider finite simple undirected graphs, so

V = {v1, v2, . . . , vn} is a set of n nodes, while E ⊂
(
V
2

)
is a set of edges (unordered pairs of

vertices). The number of edges of a given graph G is usually denoted by m(G) := |E|. We will

refer to m(G) as m when the graph is clear from the context.

Given an edge e = {u, v} ∈ E, we say that u and v are adjacent or neighbor, while the edge

e is incident to u and v. The set of all vertices adjacent to a given vertex v ∈ V is called the

neighborhood of v and is denoted as NG(v) := {u | {u, v} ∈ E}. When it is convenient and the

graph is clear from the context, G is dropped from the notation, shortening it to N(v).

For a vertex v in graph G, a degree of v is defined as the size of the neighborhood of v in

G: dG(v) := |N (NG(v))|. The minimum and maximum degree of a given graph are defined as

δ(G) := minv∈V dG(v) and ∆(G) := maxv∈V dG(v) respectively.

A graph G′ = (V ′, E ′) is called a subgraph of graph G if V ′ ⊆ V and E ′ ⊆
(
V ′

2

)
∪E. Given a

subset of vertices V ′ ⊆ V , an induced subgraph G[V ′] = (V ′, E[V ′]) is the graph obtained from G

by removing vertices that are not in V ′ and any edges incident to those vertices: E[V ′] :=
(
V ′

2

)
∪E.

4



For a graph G, AG denotes its adjacency matrix (ai,j)i,j∈V defined as

ai,j :=


1, {i, j} ∈ E,

0, {i, j} 6∈ E,
i, j ∈ V. (1.7)

For a subset U of V , the neighborhood of U in G is defined as

NU := {v ∈ V | {v, ui} ∈ E ∀ui ∈ U}, (1.8)

i.e., it is the set of vertices in V that are adjacent to every vertex in U . Note that, by definition,

NU ∩ U = ∅, as {u, u} 6∈ E for any u ∈ V , as G is a simple graph.

Given a vector x ∈ Rn, we will occasionally refer to the support S(x) as the set of vertices

corresponding to x.

1.1.2 Clique and related concepts

The following special cases of graphs (or subgraphs) are of a major interest in network analyt-

ics:

Definition 1 (Clique). Given a graph G = (V,E), we say that G is a clique (a complete graph) if

E =
(
V
2

)
.

For a graph G, we will say that Ck(G) is a set of all cliques of cardinality k in graph G. We

assume that the empty set is the only clique with zero vertices. Note that C2(G) = E. When G

is clear from the context, we will use the shortened notation Ck := Ck(G). Additionally, given

two sets U = {u1, u2, . . . up} ⊆ V and W = {w1, w2, . . . , wt} ⊆ V we define a set of restricted

cliques or cardinality k in G as

CUk;W := Cu1,...,upk;w1,...,wt
:= Ck(NU \W ).

That is, both CUk;W and Cu1,...,upk;w1,...,wt
denote the set of all cliques consisting of k vertices that are

5



adjacent to every vertex in U = {u1, . . . , up} and containing no vertex from W = {w1, . . . , wt}.

If U = ∅ or W = ∅, we will use the notations

Ck;W := Ck;w1,...,wt
:= Ck(V \W ) and CUk := Cu1,...,upk := Ck(NU), (1.9)

respectively. The introduced notations allow us to invoke various alternative representations of∑
C∈Ck

πC(x) using a set of one or more vertices in our derivations. For example, by observing that

for any vertex v the set Ck of k-vertex cliques is a disjoint union of {C ∪{v} | C ∈ Cvk−1} and Ck;v,

we obtain the following representation:

∑
C∈Ck

πC(x) = xv
∑

C∈Cvk−1

πC(x) +
∑
C∈Ck;v

πC(x). (1.10)

Definition 2 (Multipartite graph). Given a graph G = (V,E), we say that G is a multipartite

graph with p parts if there exists a partition of V into p non-empty sets P1, P2, . . . , Pp, such that

E ⊆
(
V

2

)
\

p⋃
i=1

(
Pi
2

)
.

A concept closely related to a clique is complete multipartite graph, also referred to as a multi-

clique. Among all multipartite graphs on the same set of parts, the one with the most possible

number of edges is called a multi-clique. For a multi-clique, any two vertices from two different

parts are necessarily adjacent.

Definition 3 (Multi-clique). Given a graph G = (V,E), we say that G is a multi-clique with p

parts (a p-partite clique) if G is a multipartite graph with p parts P1, P2, . . . , Pp ⊂ V and

E =

(
V

2

)
\

p⋃
i=1

(
Pi
2

)
.

Clearly, a clique is a special case of a multi-clique, when each part contains exactly one vertex.

On multiple occasions, we will deal with x such that S (x) =
⊔p
s=1 Ps is a p-partite clique with
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the parts Ps, s ∈ [p], where p ≥ k. We can use the fact that no two vertices from the same part Ps

can belong to the same clique to obtain the following alternative representation using Ps (assuming

k ≤ p): ∑
C∈Ck

πC(x) =
∑
v∈Ps

xv
∑

C∈Cvk−1

πC(x) +
∑

C∈Ck;Ps

πC(x). (1.11)

In this case, each term πC(x∗) for C ∈ Ck is a product of k entries of x∗, each corresponding to a

different part Ps of S (x∗). Hence, the sum can be rewritten as follows:

∑
C∈Ck

πC(x∗) =
∑

D∈([p]
k )

∏
s∈D

∑
v∈Ps

x∗v. (1.12)

(This can be easily shown by induction on p− k using (1.11).)

The following definition is proposed in [19]:

Definition 4 (Regular Multi-clique). Given a graph G = (V,E), we say that G is a regular multi-

clique with p parts if G is a complete multipartite graph and

|Pi| = |Pj| ∀i, j ∈ [p].

Clearly, a regular multi-clique is a Turàn’s graph [20], which is a family of complete multipar-

tite graphs T (n, ω) on n vertices with w parts of equal or nearly equal (up to one vertex difference)

size.

There are other generalizations of a clique concept [11]. While not the main topic of this thesis,

we will use some of them in the discussion. Some common relaxations are:

Definition 5 (s-plex, [21]). Given a graphG = (V,E), we say thatG is an s-plex if δ(G) ≥ |V |−k.

Definition 6 (s-defective clique, [22]). Given a graph G = (V,E), we say that G is an s-defective

clique if |E| ≥
(|V |

2

)
− s.

Given a combinatorial structure property (clique, multiclique, etc.), we will say that a S ⊆ V

of vertices is maximal structure if it is not a proper subset of any S ′ ⊆ V such that S ′ also has the

7



same property. Correspondingly, S ⊆ V is maximum if there is no S ′ ⊆ V such that S ′ has the

property and |S ′| > |S|.

1.1.3 Optimization and Mathematical Programming

The area of Mathematical Programming, or Optimization, deals, in a nutshell, with a process of

selection of the best element among the set of possible alternatives. Optimization problems arise

in almost every modern science field, while being a cornerstone part of Economics, Computer Sci-

ence, Operations Research and Engineering [23]. Nowadays, with advances in computational and

experimental capabilities, Mathematical Programming finds extensive applications in Medicine

(e.g.: automatic MRI scans recognition and diagnosis), Physics (calibrating the parameters of the-

oretical models based on the large datasets) or Sociology (studying the implied communities).

In this thesis, we will mostly concentrate on combinatorial optimization problems. Being quite

an umbrella term without a rigorous definition, it generally describes a problem of considering a

finite set of discrete objects while trying to find the “optimal” one. The goal is to find a “smart”

or “quick” way to find such an optimal object without considering every possible element. In this

specific case, the set is a set of subsets of vertices which satisfy some property, while the “optimal”

object is the largest one of those subsets.

Definition 7 (MAXIMUM CLIQUE). Given a graph G = (V,E), MAXIMUM CLIQUE problem

asks to find a subset S ⊆ V such that S is a clique and |S| is maximized.

Given a graph, the size of its maximal clique is denoted by ω(G), which is called the clique

number of graph G.

Clearly, not every clique in a given graph is a maximal clique. Among all cliques in a given

graph, we can, given some definition of a neighborhood, define a set of local maxima. Specifically:

Definition 8 (Maximal Clique). Given a graph G = (V,E), set S ⊆ V is called maximal clique if

S is not a proper subset of any other clique.

A concept similar to strict local maximum was introduced for maximal cliques in [16] as fol-

lowing:
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Definition 9 (Strictly Maximal Clique). A maximal clique S is called strictly maximal if it is not a

proper subset of an 1-defective clique of size |S|+ 1.

This definition, in a nutshell, requires that any vertex in S can not be exchanged with a vertex

from V \ S such that the resulting set is a clique. Analogous definition can then be established for

strictly maximum clique:

Definition 10 (Maximal Clique). Given a graphG = (V,E), set S ⊆ V is called strictly maximum

clique if S is a maximum clique and a strictly maximal clique.

Is is clear that any maximum clique is necessarily a maximal clique.

Similarly to clique, we define local maxima for multi-clique as:

Definition 11 (Part-maximal Multi-clique). We will call a multipartite clique C =
⊔p
s=1 Ps in G

part-maximal if it is not a subset of a (p+ 1)-partite clique in G.

Definition 12 (Strongly Part-maximal Multi-clique). We will call a multipartite cliqueC =
⊔p
s=1 Ps

in G strongly part-maximal if there does not exist s ∈ [p] and D ⊆ Ps such that C \D is a subset

of a (p+ 1)-partite clique in G.

1.1.4 Mathematical Programming Formulations

Mathematical Programming is usually applied in situations when decisions and their impacts

can be quantified. The usual setup is as follows: Each decision is represented with a value asso-

ciated with one or more decision variables x = {xi}ni=1 ∈ X . With each decision, an objective,

f : X → R, is associated, a numeric value to measure the quality or the desirability of the

option. Additionally, there are constraints fi : X → R, i ∈ I , that define a feasible region

F := {x ∈ X | ∀i ∈ I : fi(x) = 0}.

The most general form of a Mathematical Programming formulation, then, is

maximize f(x),

subject to x ∈ F .
(Generic program)
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It is said that the formulation is feasible if F 6= ∅. It is usually assumed that the feasible region

F defines a compact (closed and bounded) set over X , which allows to guarantee the existence of

a set of optimal solutions [24].

A formulation in its most generic form is often impossible to solve, as it provides almost no

guarantees regarding the structure of the feasible set and the behavior of the objective function over

F . To overcome this, restrictions are often imposed on f , fi and X that allow us to resolve the

complexity of finding the global optimal solution. If both f and fi are required to be linear func-

tions, while set X is Rn, then such formulation is called a linear programming or LP formulation.

Linear programs can then be represented as

maximize cTx,

subject to Ax ≥ 0m,

x ∈ Rn,

(Linear program)

where c ∈ Rn, A ∈ Rm×n. It is known that linear programs can be efficiently (in polynomial time)

solved to their global optima by employing the ellipsoid method [25]. In practice, simplex method

is usually preferred, as it, while not guaranteeing polynomial execution time, usually performs

much faster compared to the ellipsoid method [26].

Unfortunately, not every process behavior can be captured in sufficient detail while relying only

on linear constraints and decision variables in Rn. To overcome this issue, multiple approaches

were developed. The first one lies in imposing the integrality constraints on some of the decision

vector components. Such formulations are known as integer linear (or IP), mixed integer linear

(MIP) and binary programs, depending on the specifics of the integrality constraints:

maximize cTx,

subject to Ax ≥ 0,

x ∈ Zn.

(Integer linear program)

10



maximize cTl x+ cTi y,

subject to Ax+By ≥ 0,

x ∈ Rnl , y ∈ Zni .

(Mixed integer linear program)

maximize cTx,

subject to Ax ≥ 0,

x ∈ Bn.

(Binary linear program)

Unfortunately, being able to efficiently solve any of this class of problems would mean that P =

NP , as, for example, Maximum Clique problem can be modeled as a binary linear program for

graph G = (V,E) as:

maximize 1Tnx,

subject to − xi − xj + 1 ≥ 0, ∀{i, j} ∈
(
V

2

)
\ E

x ∈ Bn.

(Binary Max. Clique)

Another approach can be pursued by allowing the objective function or the constraints to be

non-linear. One of such relaxations is known as quadratic programming, which allows for the

objective function to be a polynomial of order 2. Specifically

maximize xTQx+ cTx,

subject to Ax ≥ 0.

(Quadratic program)

Depending on the properties of matrix Q ∈ Rn×n, a quadratic program can be either easy or hard

to solve. When Q is a positive semi-definite matrix, the ellipsoid method can be employed to find

the optimal solution in (weak) polynomial time [27]. On the other hand, if no guarantees are made

regarding the structure of Q, quadratic program can be NP -hard. An example of such case is the

Motzkin-Strauss quadratic program for Maximal Clique for a graph G = (V,E) with an adjacency
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matrix AG:

maximize xTAGx,

subject to 1Tnx− 1 = 0,

x ∈ Rn
≥0.

(Motzkin-Strauss QP)

Finally, a generalization of quadratic programming known as polynomial programming allows for

the objective function and constraints to be polynomials. Specifically, we will be interested in

polynomial programs of form

maximize P (x),

subject to Ax ≥ 0,

(Polynomial program)

or, in other words, a problem of optimizing a polynomial function over a set defined by linear

constraints. Polynomial optimization problems have found various and extensive applications in

operations research, production planning, engineering design, physics, signal processing, VLSI, fi-

nancial engineering, etc [28]. The idea of applying convex optimization techniques to multivariate

polynomials was proposed by Shor [29]. Further advances were made by, among others, Nesterov

[30] and Lasserre [31]. Lasserre offered to construct a sequence of semi-definite programming

relaxations whose optima eventually converge to the optimum of the original polynomial opti-

mization problem. Unfortunately, the approach comes with a trade-off, as the dimensionality of

the sequence of the SDP relaxations grows exponentially.

1.1.5 Motzkin-Strauss formulation in Mathematical Optimization

The maximum clique problem is one of the first problems shown to be NP-hard [32] and is

known to be hard to approximate [33, 34]. It is among the most popular problems in operations

research and mathematical optimization [35, 17, 36], and the Motzkin-Straus formulation is the

cornerstone of research bridging continuous and discrete optimization. The first algorithm for the

maximum clique problem based on the Motzkin-Straus formulation was published in [37]. Since

12



then, the formulation has been used to develop new optimality conditions and several successful

heuristics for the maximum clique problem based on continuous optimization [38, 39, 16, 40, 41].

This non-traditional approach also inspired some interesting developments in quadratic program-

ming [42, 43, 44, 45], copositive programming [46, 47, 48], and complexity analysis in nonlinear

optimization [49, 50, 51]. In addition, generalizations to uniform hypergraphs [52] and hyper-

graphs with {1, 2}-edges [53] have been formulated.

More recently, the Motzkin-Straus formulation has been extended to two clique relaxation

models, s-defective clique and s-plex [54]. Furthermore, a regularization of the cubic formulation

for the maximum s-defective clique proposed in [54] was studied in [55].

Optimality conditions for the Motzkin-Straus quadratic program (QP) have been studied in sev-

eral works [16, 40, 41, 15]. In particular, the correspondence of its (strict) local maxima to (strictly)

maximal cliques and multipartite cliques in the considered graph has been investigated, and several

related concepts concerning cliques and multipartite cliques have been defined in connection with

optimality conditions for the Motzkin-Straus QP.

1.2 Summary of Contributions

Inspired by the developments described above, in Chapter 2 we propose a hierarchy of polyno-

mial programming formulations, which we call MSPP (or specifically (Pk), k ∈ {2, . . . , ω}, when

k is needed to specify the order explicitly) for the maximum clique problem, relating the clique

number ω of a given graph G = (V,E) to the global maximal value of a multilinear polynomial

function fk(x) of degree k over the standard simplex in R|V |. Based on the proposed formula-

tions, we establish a series of results regarding the combinatorial structure of local/global optima.

The case of k = 2 corresponds to the Motzkin-Straus formulation. To the best of our knowledge,

the results established for MSPP, when applied for MSQP, give the most complete characteriza-

tion of local/global optima, as, previously, only feasible points that are characteristic vectors were

considered.

In Chapter 3, we study the hierarchical structure of the proposed formulations, which lies in

the fact that the set of local maxima of (Pk+1) is a subset of the set of local maxima of (Pk),
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k ∈ {2, . . . , ω − 1}. In particular, every local maximum of (Pω) is global. We show that given a

local maximum of MSPP, a corresponding clique can be easily computed by utilizing the multi-

linear structure of the objective function. From the combinatorial structure point of view, this result

arises from the fact that the support of any local maximum of MSPP can be represented as a union

of cliques of the same size.

In Chapter 4, we study the regularization approaches for MSPP. Specifically, Bomze [38] has

shown that adding a diagonal terms to the Hessian matrix of the objective function guarantees a

strict correspondence between local maxima of MSQP and maximal cliques in the graph. Recently,

the result was generalized by Hungerford and Rinaldi [41], who have shown that there exists a set

of generalized conditions for a regularization term added to the objective function of MSQP such

that, again, a strict correspondence is guaranteed. Based on these developments, we investigate the

possibility of implementing a regularization approach for higher order formulations. To achieve

that goal, we firstly identify the requirements that the regularized formulation must satisfy (one of

them being strict correspondence of local maxima to cliques).

The performance of a local solver on the original and regularized formulations of degrees 2 and

3 and 4 (when computationally feasible) is compared through extensive numerical experiments.

Finally, we provide conclusions and discuss possible future directions of research in Chapter 5.
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2. STANDARD POLYNOMIAL FORMULATIONS FOR MAXCLIQUE PROBLEM*

2.1 Background and research questions

2.1.1 Motzkin-Strauss Formulation

Given a graph G = (V,E), the maximum clique problem asks for a clique of the largest

cardinality in G. This cardinality is referred to as the clique number, denoted by ω(G), which is

simplified to ω throughout this proposal when the graph G is apparent from the context.

The classical Turán’s graph theorem [20] provides the following relation between the number

of edges m, the number of vertices n, and the clique number ω:

m ≤
(

1− 1

ω

)
n2

2
, (2.1)

which holds at equality for the Turán graph T (n, ω).

Over the years, multiple different proofs were developed for Turán’s theorem [56], based on

combinatorial analysis, probabilistic methods, or global optimization approaches. The former one

is of the interest for us. This proof was proposed by Motzkin and Straus [14] and it relies on the

study of a quadratic optimization problem with an objective function given as f : ∆n → R :

f(x) =
∑
{i,j}∈E

xixj =
∑
C∈C2

∏
v∈C

xv =
∑
C∈C2

πC(x) =
1

2
x′AGx. (2.2)

They prove that the global maximum of f(x) over ∆|V | is

max
x∈∆n

f(x) = max
x∈∆n

∑
{i,j}∈E

xixj =
1

2

(
1− 1

ω

)
, (2.3)

*Parts of the content in this chapter were first published in “A Hierarchy of Standard Polynomial Programming
Formulations for the Maximum Clique Problem” by Sergiy Butenko, Mykyta Makovenko, Miltiades Pardalos in SIAM
Journal on Optimization, Vol. 32, 2022, pp. 2102-2128, published by the Society for Industrial and Applied Mathe-
matics (SIAM), Copyright 2022 by Society for Industrial and Applied Mathematics
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while the result of the Turán’s theorem is obtained by setting x = xV in (2.3)

The cornerstone of all of the mentioned approaches is the Motzkin-Strauss Quadratic Program.

As we are introducing multiple optimization problems in this thesis, we will use a standard notation

for optimization problems, given as:

maximize f(x) :=
∑
{i,j}∈E

xixj,

subject to x ∈ ∆|V |.

(MSQP)

Optimality conditions for the Motzkin-Straus Quadratic Program have been studied in several

works [16, 40, 41, 15]. In particular, the correspondence of its (strict) local maxima to (strictly)

maximal cliques and multipartite cliques in the considered graph has been investigated, and sev-

eral related concepts concerning cliques and multipartite cliques have been defined in connection

with optimality conditions for the Motzkin-Straus QP. A (multipartite) clique is maximal if it is

not a subset of a larger (multipartite) clique in the graph. In [15], Pellilo and Jagota claim that the

following proposition holds:

Proposition 1. A subset C of vertices in G is a maximum clique if and only if its characteristic

vector xC is a global maximum of Equation 2.3.

Unfortunately, this claim is not entirely correct. Hungerford and Rinaldi [41] and Tang et. al.

[19] have both recently reported the existence of counterexamples for this proposition. Specifically,

while a characteristic vector of a maximum clique is a global maximum for MSQP, there can exist

alternative global optima not corresponding to any maximum clique. Consider Figure 2.1. Clearly,

C = {1, 2} is a maximum clique in the given graph and xC =
(

1
2
, 1

2
, 0, 0

)
is the global maximum

with the objective value of 1
4
. But C ′ = {1, 2, 3, 4}, which is not a clique, also results in the same

objective value for xC′ =
(

1
4
, 1

4
, 1

4
, 1

4

)
. Note that the counterexample is a T (4, 2) Turán graph.

To resolve this issue, the correspondence of its (strict) local maxima to (strictly) maximal

cliques and multipartite cliques in the considered graph has been reinvestigated, and several re-

lated concepts concerning cliques and multipartite cliques have been defined in connection with
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Figure 2.1: A counterexample to Proposition 1

optimality conditions for the Motzkin-Straus QP. Specifically, the following set of theorems is

proven in [19]. The first one characterizes a subset of global maxima of MSQP that corresponds

to characteristic vectors:

Theorem 1. C is a maximum regular multipartite clique of G if and only if xC is a global maxi-

mizer of MSQP.

The second one characterizes the subset of local maxima of MSQP, again, in therms of char-

acteristic vectors:

Theorem 2. If C is a regular multipartite clique in G, then xC is a local maximizer of (MSQP), if

and only if C satisfies the following requirements:

1. Each vertex in V \ C is adjacent to at most p−1
p
|C| vertices in C;

2. Each vertex in V \ C is not adjacent to p−1
p
|M | vertices from p different parts of C;

3. And pair of adjacent vertices in V \C, are not adjacent to p−1
p
|C| in the same different p−1

parts of C.

To the best of out knowledge, these results were the state of the art for characterizations of

global/local maxima of MSQP. Note that both of them do not offer complete characterizations, as

only characteristic vectors are considered.
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2.1.2 Higher Order Formulations

As we have mentioned before, in the recent years multiple new formulations were proposed,

based on generalizations of MSQP, to tackle optimization problems related to clique relaxations.

For example, a set of formulations were presented in [54] for an s-defective clique and an s-plex.

The core of the proposed approach was to introduce a trilinear function

f(x, Y ) :=
∑
{i,j}∈E

xixj +
∑

{i,j}∈(V
2)\E

xiyi,jxj =
1

2
x′ (AG + Y )x. (2.4)

Depending on the type of a clique relaxation, additional constraints are introduced for matrix

Y . Either ∑
{i,j}∈(V

2)\E

yi,j ≤ s

for an s-defective clique, or ∑
j∈V

yi,j ≤ s− 1, ∀i ∈ V

for an s-plex. The authors show that the results analogous to Equation 2.3 hold, which allows

them to extend Turán’s theorem and related bounds to clique relaxations. Inspired, in part, by this

approach, and, in part, by the relaxation techniques proposed by Lasserre, we propose to explore

the possibility of formulating a family of Motzkin-Strauss Polynomial Programs. Note that, in the

original MSQP, the objective function is written to account for every edge. On the other hand,

an edge is a clique of size 2. A natural question arises what will happen if cliques of size 2 are

replaced with cliques of higher cardinality? More specifically, our goal would be to study the

following optimization problem, parametrized by the degree k:

maximize fk(x) :=
∑
C∈Ck

∏
i∈C

xi,

subject to x ∈ ∆|V |.

(MSPP)
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Note that the objective function fk(x) in this case is a multi-linear (k-linear, to be precise),

polynomial, and, for k = 2, MSPP coincides with MSQP. This leads to a question if results

analogous to Equation 2.3, Theorem 1, Theorem 2 hold for MSPP.

If that is true, then the hierarchical aspect of the proposed formulations lies in the fact that, by

increasing the value of k, the set of local maxima that are not global is narrowed down, to eventually

yield a formulation with each local maximum being global for k = ω. Indeed, assuming that there

is a local optimum of size k ≤ ω, which corresponds to a multiclique, a formulation of order k+ 1

would not have those subcliques present, which suggests that the set of local optima is shrinking.

To the best of our knowledge, this type of hierarchy is new in mathematical optimization and is

fundamentally different from existing hierarchies focusing on convex relaxations, such as Sherali-

Adams [57], Lovász-Schrijver [58] and Lasserre [31]. More specifically, the existing methods

rely on hierarchies of convex relaxations and proceed by introducing additional variables and con-

straints in order to improve the quality of the relaxation at each next level of the hierarchy. The

convex relaxation obtained at the final level is tight and yields a global optimal solution to the orig-

inal problem. In contrast to the existing hierarchies, our approach works with the original feasible

region; instead, it alters the objective function at each level of the hierarchy.

This approach would also allow us to establish a set of benchmark instances for modern state-

of-the-art solvers for convex and non-convex problems, as, for a lot of standard benchmark graph

instances, the size of maximal clique is known.

Since MSQP is a special case of MSPP, developing a series of results characterizing optimal

points and corresponding combinatorial structures would allow us to simultaneously resolve the

open questions for order k = 2 formulation.

2.2 Optimality structure of MSPP

Now we are ready to establish our main results regarding the structure of the global and local

optima of the Motzkin-Strauss Polynomial Program. First, we will establish some basic observa-

tions and results.
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2.2.1 Basic Observations

2.2.1.1 Structure of global maxima

Firstly, we directly derive a theorem analogous to Motzkin-Strauss theorem, which links some

of the global optima of MSPP to the maximum cliques in G and guarantees the objective value at

global optima.

Theorem 3. Consider the following problem of maximizing a multilinear polynomial of degree

k ∈ {2, . . . , ω} over the standard simplex:

fk(G) := max
x∈∆n

∑
C∈Ck

∏
i∈C

xi= max
x∈∆n

∑
C∈Ck

πC(x). (Pk)

Then for any maximum clique C of G, xC is a global maximum of (Pk) and

fk(G) =

(
ω

k

)(
1

ω

)k
. (2.5)

Proof. Let x′ ∈ ∆n be an optimal solution of (Pk) with the minimum number of missing edges in

the subgraph G[S (x′)] induced by its corresponding set of vertices. First, we will show that S (x′)

is a clique in G. Assume there is a pair of vertices i, j ∈ S (x′) such that {i, j} /∈ E. Then, since

no clique can include both i and j,

fk(x
′) = x′i

∑
C∈Cik−1

πC(x′) + x′j
∑

C∈Cjk−1

πC(x′) +
∑

C∈Ck;i,j

πC(x′).

Without loss of generality, assume that
∑

C∈Cik−1

πC(x′) ≥
∑

C∈Cjk−1

πC(x′). For v ∈ V , set

x′′v :=


x′i + x′j, v = i,

0, v = j,

x′v, v ∈ V \ {i, j}.
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Then
∑

C∈Cik−1

πC(x′) =
∑

C∈Cik−1

πC(x′′),
∑

C∈Cjk−1

πC(x′) =
∑

C∈Cjk−1

πC(x′′), x′′ ∈ ∆n, and

f(x′′)− f(x′) =
( ∑
C∈Cik−1

πC(x′)−
∑

C∈Cjk−1

πC(x′)
)
x′j ≥ 0.

Hence, x′′ is an alternative optimal solution, such that G[S (x′′)] has at least one less missing edge

than G[S (x′)], which contradicts the definition of x′. Thus, S (x′) is a clique in G. This clique

must contain at least k vertices, otherwise fk(x′) = 0 < fk(x
V ). Next, we show that x′i = x′j for

any i, j ∈ S (x′). Assume the opposite, then there exists ε such that x′i − x′j > ε > 0. For v ∈ V ,

set

x′′v :=


x′i − ε, v = i,

x′j + ε, v = j,

x′v, v ∈ V \ {i, j}.

Since S (x′) is a clique,
∑

C∈Cik−1;j

πC(x′) =
∑

C∈Cjk−1;i

πC(x′); hence, we have:

f(x′′)− f(x′) = (x′i − ε)(x′j + ε)
∑

C∈Ci,jk−2

πC(x′)− x′ix′j
∑

C∈Ci,jk−2

πC(x′)

= ε(x′i − x′j − ε)
∑

C∈Ci,jk−2

πC(x′) > 0.

This contradicts the optimality of x′. Thus, x′i = x′j for any i, j ∈ S (x′), implying that x′ = xS(x′)

and

fk(x
′) =

(
|S(x′)|
k

)(
1

|S(x′)|

)k
.

Finally, observe that fk(x′) increases with the increase in |S (x′)|, hence it achieves its maximum

at x′ if S (x′) is a maximum clique of G.

Observe that the Motzkin-Straus formulation is obtained by setting k = 2 in Theorem 3. In

this case, the corresponding quadratic optimization problem is referred to as the Motzkin-Straus

QP. While the focus of this paper is on studying the properties of formulations presented in Theo-

rem 3, in the reminder of this section we state several relevant results that follow directly from this
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theorem. First, note that formulation (Pk) can be used to obtain a generalization of Turán’s graph

theorem as follows.

Corollary 1. The number ck of cliques with k vertices in G = (V,E) satisfies the following

inequality:

ck ≤
(
ω

k

)(n
ω

)k
, (2.6)

where n = |V |.

Proof. Set xi = 1
n
, i ∈ V in (Pk), then by Theorem 3,

(
ω

k

)(
1

ω

)k
≥ ck

(
1

n

)k
,

which is equivalent to (2.6).

It should be pointed out that (2.6) is also implied by the following inequality established by

Fisher and Ryan [59]:

(
c1(
ω
1

))1/1

≥

(
c2(
ω
2

))1/2

≥

(
c3(
ω
3

))1/3

≥ · · · ≥

(
cω(
ω
ω

))1/ω

. (2.7)

Note that for k = 2, we have c2 = m and (2.6) coincides with the Turán’s bound (2.1). In

addition, (2.6) is sharp for Moon-Moser graphs [60], which are known to contain the largest

possible number of maximal cliques among all n-vertex graphs. Specifically, the Moon-Moser

graph on n = 3p vertices is a complete balanced p-partite graph, in which each of the p parts

consists of 3 vertices, and hence there are 3p = 3n/3 distinct maximum cliques of cardinality p.

2.2.1.2 Structure of local maxima

In our analysis of local maxima structure, we will heavily rely on KKT first order necessary

optimality conditions. For MSPP of order k, let λ(k) ∈ R and µ(k) ∈ R|V | be the dual variables,

where λ(k) corresponds to the single equality constraint and µ(k) corresponds to the non-negativity

constrains. As before, n := |V |. Then the conditions can be formulated as
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• Stationarity: ∑
C∈Cvk−1

πC(x∗) + µ(k)
v = λ(k), ∀v ∈ V ; (2.8)

• Primal feasibility: ∑
v∈V

x∗v = 1; x∗v ≥ 0, ∀v ∈ V ; (2.9)

• Dual feasibility and complementary slackness:

x∗vµ
(k)
v = 0, µ(k)

v ≥ 0, ∀v ∈ V ; (2.10)

In particular, due to (2.10), µ(k)
i = 0 for any i ∈ S (x∗). Hence, from (2.8) we have

λ(k) =
∑

C∈Cik−1

πC(x∗), ∀i ∈ S (x∗). (2.11)

Also, since Cik−1 is the disjoint union of Cik−1;j and
{
C ∪ {j} | C ∈ Ci,jk−2

}
for j ∈ V \{i}, we have

λ(k) =
∑

C∈Cik−1

πC(x∗) =
∑

C∈Cik−1;j

πC(x∗) + x∗j
∑

C∈Ci,jk−2

πC(x∗), ∀i ∈ S (x∗), j ∈ V \ {i}. (2.12)

In the following lemma, we show that every vertex from S (x∗) belongs to some k-vertex clique

contained in S (x∗).

Lemma 1. If x∗ is a local maximum of (Pk) for a given k ∈ {2, . . . , ω}, then each v ∈ S (x∗)

belongs to some clique in Ck (G [S (x∗)]).

Proof. Let v ∈ S (x∗) and suppose there is no k-vertex clique in S (x∗) containing v. Then∑
C∈Cvk−1

πC(x∗) = 0 and using (1.10),

fk(x
∗) =

∑
C∈Ck

πC(x∗) = x∗v
∑

C∈Cvk−1

πC(x∗) +
∑
C∈Ck;v

πC(x∗) =
∑
C∈Ck;v

πC(x∗). (2.13)
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Since 2 ≤ k ≤ ω, Ck 6= ∅. Consider an arbitrary clique K ∈ Ck. Then it is evident from (2.13) that

the direction d given by

di :=


1, i ∈ K \ {v},

−|K \ {v}|, i = v,

0, otherwise

is a feasible direction of increase for fk(x) at x∗, a contradiction.

Next, we show that two adjacent vertices from S (x∗) that have a common non-neighbor in

S (x∗) both belong to a k-vertex clique in G[S (x∗)].

Lemma 2. Suppose x∗ is a local maximum of (Pk) for a given k ∈ {2, . . . , ω} and there exist

u, v, w ∈ S (x∗) such that {u, v} ∈ E and {u,w}, {v, w} 6∈ E. Then u, v ∈ K for some K ∈

Ck (G [S (x∗)]).

Proof. Clearly, the statement holds for k = 2. Hence, in the remainder of the proof we assume

that k ≥ 3. Suppose there does not exist a clique in Ck (G [S (x∗)]) containing both u and v. By

Lemma 1, S (x∗) contains a clique C̃ ∈ Ck such that w ∈ C̃. Let w′ ∈ C̃ \ {w}. Then

∑
C∈Cw,w′

k−2

πC(x∗) > 0. (2.14)

Consider d ∈ Rn such that

∑
i∈V

di = 0, di = 0 ∀i ∈ V \ {u, v, w, w′}. (2.15)

Due to the local optimality of x∗, the KKT conditions (2.8)–(2.10) as well as (2.11)-(2.12) hold for

some λ(k) ∈ R and µ(k) ∈ Rn. From (2.10), µ(k)
w′ = 0. Using (2.8) with v = w′ and considering

that Cw′k−1 is the disjoint union Cw′k−1;u,v,w ∪
{
C ∪ {u} | C ∈ Cu,w

′

k−2

}
∪
{
C ∪ {v} | C ∈ Cv,w

′

k−2

}
∪
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{
C ∪ {w} | C ∈ Cw,w

′

k−2

}
, we have

λ(k) =
∑

C∈Cw′k−1;u,v,w

πC(x∗) + x∗u
∑

C∈Cu,w
′

k−2

πC(x∗) + x∗v
∑

C∈Cv,w
′

k−2

πC(x∗) + x∗w
∑

C∈Cw,w′
k−2

πC(x∗). (2.16)

Since no two of the vertices {u, v, w} can belong to the same k-vertex clique inG[S (x∗)], we have

fk(x
∗ + εd) =

∑
C∈Ck;u,v,w,w′

πC(x∗) + (x∗u + εdu)
∑

C∈Cu
k−1;w′

πC(x∗) + (x∗v + εdv)
∑

C∈Cv
k−1;w′

πC(x∗)

+(x∗w + εdw)
∑

C∈Cw
k−1;w′

πC(x∗) + (x∗w′ + εdw′)
(∑

C∈Cw′k−1;u,v,w

πC(x∗) + (x∗u + εdu)
∑

C∈Cu,w
′

k−2

πC(x∗)

+(x∗v + εdv)
∑

C∈Cv,w
′

k−2

πC(x∗) + (x∗w + εdw)
∑

C∈Cw,w′
k−2

πC(x∗)
)
.

Therefore, using (2.16) and (2.12) for (i, j) ∈ {(u,w′), (v, w′), (w,w′)} we obtain:

fk(x
∗ + εd)− fk(x∗) = ελ(k)(du + dv + dw + dw′)

+ε2dw′
(
du

∑
C∈Cu,w

′
k−2

πC(x∗) + dv
∑

C∈Cv,w
′

k−2

πC(x∗) + dw
∑

C∈Cw,w′
k−2

πC(x∗)
)
.

Since du + dv + dw + dw′ = 0 due to (2.15), for d to be a direction of improvement, it is sufficient

for it to be a solution to the following system:


1 0 0 0

0 1 1 1

0
∑

C∈Cu,w
′

k−2

πC(x∗)
∑

C∈Cv,w
′

k−2

πC(x∗)
∑

C∈Cw,w′
k−2

πC(x∗)





dw′

du

dv

dw


=


1

−1

1

 . (2.17)

If the matrix above has full row rank, the system has a solution d, which is a direction of improve-

ment, contradicting the local maximality of x∗. Otherwise, the second row of the matrix must be
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proportional to the third row, and since (2.14) holds,

∑
C∈Cu,w

′
k−2

πC(x∗) =
∑

C∈Cw,w′
k−2

πC(x∗) > 0,

which implies that ∃Ĉ ∈ Ck (G [S (x∗)]) such that u,w′ ∈ Ĉ as k ≥ 3. Since u and v do not belong

to the same k-vertex clique in G[S (x∗)], there must exist w′′ ∈ Ĉ such that {v, w′′} /∈ E. Now let

d′i :=


1, i ∈ {u,w′′},

−2, i = v,

0, otherwise,

and observe that

fk(x
∗ + εd′) =

∑
C∈Ck;u,v,w′′

πC(x∗) + (x∗u + ε)
∑

C∈Cu
k−1;w′′

πC(x∗) + (x∗v − 2ε)
∑

C∈Cvk−1

πC(x∗)

+ (x∗w′′ + ε)
∑

C∈Cw′′k−1;u

πC(x∗) + (x∗u + ε)(x∗w′′ + ε)
∑

C∈Cu,w
′′

k−2

πC(x∗).

Hence, using (2.11) for i = v and (2.12) for (i, j) = (u,w′′) and (w′′, u), we obtain:

fk(x
∗ + εd′)− fk(x∗) = ε2

∑
C∈Cu,w

′′
k−2

πC(x∗) > 0.

Thus, d′ is a feasible ascent direction at x∗, a contradiction with the local maximality of x∗.

Next we show that the support of a local maximum of (Pk) is a multipartite clique in G. In the

proof, we use the fact that a complete multipartite graph is, equivalently, a P̄3-free graph, where

P̄3 is the complement graph of the path on 3 vertices.

Theorem 4. If x∗ is a local maximum of (Pk) for a given k ∈ {2, . . . , ω}, then S (x∗) is a multi-

partite clique with at least k parts.
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Proof. Suppose that x∗ is a local maximum of (Pk), but S (x∗) is not a multipartite clique. Due to

the local optimality of x∗, the KKT conditions (2.8)–(2.10) as well as (2.11)-(2.12) hold for some

λ(k) ∈ R and µ(k) ∈ Rn.

Since S (x∗) is not a multipartite clique, there exist u, v, w ∈ S (x∗) such that {u, v} ∈ E and

{u,w}, {v, w} 6∈ E. By Lemma 2, there exists a k-vertex clique in G[S (x∗)] containing both u

and v. This implies that

∑
C∈Cu,vk−2

πC(x∗) > 0. (2.18)

Let d ∈ Rn be the direction defined as

di :=


−1, i ∈ {u, v},

2, i = w,

0, otherwise.

(2.19)

Note that Ck can be represented as the disjoint union of the following five sets:

– the set Ck;u,v,w of cliques in Ck that contain none of the vertices u, v, w,

– the set
{
C ∪ {u} | C ∈ Cuk−1;v

}
of cliques in Ck that contain u but not v,

– the set
{
C ∪ {v} | C ∈ Cvk−1;u

}
of cliques in Ck that contain v but not u,

– the set
{
C ∪ {u, v} | C ∈ Cu,vk−2

}
of cliques in Ck that contain both u and v, and

– the set
{
C ∪ {w} | C ∈ Cwk−1

}
of cliques in Ck that contain w.

We have
fk(x

∗ + εd) =
∑

C∈Ck;u,v,w

πC(x∗) + (x∗u − ε)
∑

C∈Cuk−1;v

πC(x∗) + (x∗v − ε)
∑

C∈Cvk−1;u

πC(x∗)

+ (x∗u − ε)(x∗v − ε)
∑

C∈Cu,vk−2

πC(x∗) + (x∗w + 2ε)
∑

C∈Cwk−1

πC(x∗).
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Hence, using (2.11) for i ∈ {u, v, w} and (2.12) for (i, j) ∈ {(u, v), (v, u)} we obtain:

fk (x∗ + εd)− fk (x∗)

= −ε
∑

C∈Cuk−1;v

πC(x∗)− ε
∑

C∈Cvk−1;u

πC(x∗) + 2ε
∑

C∈Cwk−1

πC(x∗)

+
(
ε2 − εx∗u − εx∗v

) ∑
C∈Cu,vk−2

πC(x∗)

= −ε
∑

C∈Cuk−1

πC(x∗)− ε
∑

C∈Cvk−1

πC(x∗) + 2ε
∑

C∈Cwk−1

πC(x∗) + ε2
∑

C∈Cu,vk−2

πC(x∗)

= −ελ(k) − ελ(k) + 2ελ(k) + ε2
∑

C∈Cu,vk−2

πC(x∗) = ε2
∑

C∈Cu,vk−2

πC(x∗) > 0,

where the inequality follows from (2.18). Clearly, d is a feasible ascent direction for the objective

function fk(x) of (Pk) at x∗, a contradiction with the local maximality of x∗. This proves that

S (x∗) is a multipartite clique.

Finally, due to Lemma 1, every vertex from S (x∗) belongs to a k-vertex clique in G[S (x∗)].

This implies that the complete multipartite graph G[S (x∗)] has at least k parts.

The following theorem further refines the structure of a local maximum x∗ of (Pk).

Theorem 5. Suppose that S (x∗) =
p⊔
s=1

Ps, where Ps, s ∈ [p] are the parts of the multipartite

clique S (x∗) defined by a local maximum x∗ of (Pk). Then

∑
u∈Ps

x∗u =
1

p
, ∀s ∈ [p]. (2.20)

Moreover,

fk(x
∗) =

(
p

k

)
1

pk
. (2.21)

Proof. Let u ∈ Pr, v ∈ Ps for some distinct r, s ∈ [p]. Consider (2.8) for u and v. Since x∗ is a

local maximum, the following must hold:

λ(k) =
∑

C∈Cuk−1

πC(x∗) =
∑

C∈Cvk−1

πC(x∗) =⇒
∑

C∈Cuk−1

πC(x∗)−
∑

C∈Cvk−1

πC(x∗) = 0. (2.22)
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Using the alternative representation in the form (1.11), we can rewrite (2.22) as

∑
w∈Ps

x∗w
∑

C∈Cu,wk−2

πC(x∗) +
∑

C∈Cuk−1;Ps

πC(x∗)−
∑
w∈Pr

x∗w
∑

C∈Cv,wk−2

πC(x∗)−
∑

C∈Cvk−1;Pr

πC(x∗) = 0. (2.23)

Since S (x∗) is a multipartite clique, ∀w ∈ Ps, w′ ∈ Pr we have

∑
C∈Cuk−1;Ps

πC(x∗) =
∑

C∈Cvk−1;Pr

πC(x∗),
∑

C∈Cu,vk−2

πC(x∗) =
∑

C∈Cu,wk−2

πC(x∗) =
∑

C∈Cv,w
′

k−2

πC(x∗) 6= 0.

Then (2.23) becomes

∑
w∈Ps

x∗w
∑

C∈Cu,wk−2

πC(x∗)−
∑
w∈Pr

x∗w
∑

C∈Cv,wk−2

πC(x∗) =
∑

C∈Cu,vk−2

πC(x∗)
( ∑
w∈Ps

x∗w −
∑
w∈Pr

x∗w

)
= 0,

and, therefore, ∑
w∈Ps

x∗w =
∑
w∈Pr

x∗w =
1

p
, ∀i, j ∈ [p].

Finally, the fact that S (x∗) is a multipartite clique implies that (1.12) holds, hence

fk(x
∗) =

∑
C∈Ck

πC(x∗) =
∑

D∈([p]
k )

∏
r∈D

∑
v∈Pr

x∗v =
∑

D∈([p]
k )

∏
r∈D

1

p
=
∑

D∈([p]
k )

1

pk
=

(
p

k

)
1

pk
, (2.24)

which completes the proof.

Corollary 2. Suppose x∗ and x̄ are two local maxima of (Pk) such that S (x∗) is a p-partite clique

and S (x̄) is a p̄-partite clique. If p > p̄ then fk(x∗) > fk(x̄).

Proof. Note that by Theorem 5, p > p̄ ≥ k. It is sufficient to show that the statement holds for

p = p̄+ 1. From (2.24) we have

fk(x
∗)− fk(x̄) =

(
p

k

)
1

pk
−
(
p− 1

k

)
1

(p− 1)k

=
(p− 1)!

k!(p− k − 1)!

[
(p− 1)k − (p− k)pk−1

(p− k)pk−1(p− 1)k

]
.
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Since (p − 1)k − (p − k)pk−1 = kpk−1 −
∑k−1

i=0 (p − 1)ipk−1−i > kpk−1 −
∑k−1

i=0 p
k−1 = 0, the

statement of the corollary holds.

Corollary 3. If x∗ is a local maximum of (Pk), then the KKT multiplier λ(k) in (2.8) is given by

λ(k) =

(
p− 1

k − 1

)
1

pk−1
. (2.25)

Proof. As before, we assume that P1, . . . , Pp are the parts of the complete multipartite clique

S (x∗). Let u be a vertex from P1. From (2.8) and the result of Theorem 5:

λ(k) =
∑

C∈Cuk−1

πC(x∗) =
∑

D∈({2,...,p}k−1 )

∏
s∈D

∑
v∈Ps

x∗v =

(
p− 1

k − 1

)
1

pk−1
.

The following corollary provides an alternative proof of Theorem 3.

Corollary 4. If x∗ is a global maximum of (Pk), then

fk(x
∗) =

(
ω

k

)
1

ωk
.

Proof. There is no complete multipartite subgraph with ω + 1 parts in G. Therefore, due to Theo-

rem 5 and Corollary 2, the statement of the corollary holds.

Corollary 5. For k = ω, every local maximum of (Pk) is global.

Proof. Let x∗ be a local maximum of (Pk) with k = ω. According to Theorem 4, S (x∗) is a

multipartite clique with at least ω parts. Since the graph cannot contain a multipartite clique with

more than ω parts, fω(x∗) = 1
ωω by Theorem 5. Hence, x∗ is a global maximum by Corollary 4.

Corollary 6. If x∗ is a strict local maximum of (Pk) then S (x∗) is a clique in G and x∗ = xS(x∗).
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Proof. Note that (2.24) implies that fk(x∗) = f(x′) for any x′ ∈
{
x ∈ Rn |

∑
u∈Ps

xu = 1
p
, s ∈ [p]

}
.

Hence, x∗ can be a strict local maximum only if |Ps| = 1 ∀s ∈ [p], that is, if C is a clique.

Lemma 3. If x∗ is a local maximum of (Pk) then S (x∗) is a part-maximal multipartite clique in

G.

Proof. By Theorem 4, S (x∗) =
⊔p
s=1 Ps is a p-partite clique for some p ≥ k. Assume it is not

part-maximal. Then there exists v ∈ V \ S (x∗) such that S (x∗) ∪ {v} is a (p + 1)-partite clique

in G. Consider the following direction d ∈ Rn:

di :=


−1, i ∈ P1,

|P1|, i = v,

0, otherwise.

Then

fk(x
∗ + εd)− fk(x∗) =

∑
i∈P1

(−ε)
∑

C∈Cik−1

πC(x∗) + ε|P1|
∑

C∈Cvk−1;P1

πC(x∗) + ε|P1|
∑
i∈P1

(x∗i − ε)
∑

C∈Cik−2

πC(x∗).

Note that due to the optimality conditions (2.8)-(2.10), since S (x∗) ∪ {v} is a multipartite clique

and x∗v = 0, for i ∈ P1 we have

λ(k) =
∑

C∈Cik−1

πC(x∗) =
∑

C∈Cvk−1;P1

πC(x∗).

Hence, for ε < min
i∈P1

{xi}, we obtain

fk(x
∗ + εd)− fk(x∗) = −ε|P1|λ(k) + ε|P1|λ(k) + ε|P1|

∑
i∈P1

(x∗i − ε)
∑

C∈Cik−2

πC(x∗) > 0.

Thus, d is a feasible direction of improvement for (Pk) at x∗, a contradiction.
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Theorem 6. If x∗ is a local maximum of (Pk) then S (x∗) is a strongly part-maximal multipartite

clique in G.

Proof. By Lemma 3, S (x∗) =
⊔p
s=1 Ps is a part-maximal p-partite clique for some p ≥ k. Assume

it is not strongly part-maximal. Then, according to Definition 12, for some r ∈ [p] there exists

D ⊂ Pr such that S (x∗) \ D is a subset of a (p + 1)-partite clique in G. Since S (x∗) is part-

maximal, D has to be non-empty. We will consider two possible cases, D 6= Pr and D = Pr.

We will provide a direction of improvement for each case to obtain a contradiction with the local

maximality of x∗.

Case 1: D 6= Pr. Then there exists a vertex u ∈ V \ S (x∗) such that u is adjacent to all vertices in

S (x∗) \D, while D ∪ {u} is an independent set. Consider d ∈ Rn defined as follows:

di :=


−1, i ∈ D,

|D| i = u,

0, otherwise.

Then

fk(x
∗ + εd) =

∑
i∈D

(x∗i − ε)
∑

C∈Cik−1

πC(x∗) + ε|D|
∑

C∈Cuk−1

πC(x∗) +
∑

i∈Pr\D

x∗i
∑

C∈Cik−1

πC(x∗).

Note that, according to (2.11),
∑

C∈Cik−1
πC(x∗) = λ(k) for all i ∈ S (x∗), including all i ∈ D. Also,

since S (x∗) is a multipartite clique and x∗u = 0, for any v ∈ Pr we have
∑

C∈Cuk−1;Pr
πC(x∗) =∑

C∈Cvk−1
πC(x∗) = λ(k). Hence,

∑
C∈Cuk−1

πC(x∗) =
∑

i∈Pr\D

x∗i
∑

C∈Cik−1

πC(x∗) +
∑

C∈Cuk−1;Pr

πC(x∗) = λ(k)
∑

i∈Pj\D

x∗i + λ(k),
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and

fk(x
∗ + εd)− fk(x∗) = −ε|D|λ(k) + ε|D|

(
λ(k)

∑
i∈Pr\D

x∗i + λ(k)
)

= ε|D|λ(k)
∑

i∈Pr\D

x∗i > 0.

Case 2: D = Pr. Then there exist two vertices u, v ∈ V \ S (x∗) such that {u, v} ∈ E and both u

and v are adjacent to all vertices in S (x∗) \ Pr. Consider d ∈ Rn defined as follows:

di :=


−1, i ∈ Pr,

|Pr|/2 i ∈ {u, v}

0, otherwise.

Then

fk(x
∗ + εd)− fk(x∗) =

∑
i∈Pr

(−ε)
∑

C∈Cik−1

πC(x∗) +
1

2
ε|Pr|

(∑
C∈Cuk−1

πC(x∗) +
∑

C∈Cvk−1

πC(x∗)
)

+ δ,

where

δ :=
1

4
ε2|Pr|2

∑
C∈Cu,vk−2

πC(x∗).

Noting that for i ∈ Pr

∑
C∈Cik−1

πC(x∗) = λ(k),
∑

C∈Cuk−1

πC(x∗) ≥ λ(k),
∑

C∈Cvk−1

πC(x∗) ≥ λ(k),

and δ > 0, we conclude that fk(x∗ + εd)− fk(x∗) > 0.

It is interesting to observe that if a feasible point x′ for (Pk) corresponds to a strongly part-

maximal multipartite clique in G and the KKT conditions are satisfied at some λ′, µ′, this does not

imply local maximality of x′ for (Pk). Indeed, consider an example graph and a feasible x′ shown

in Figure 2.2 for k = 3. Note that x′ satisfies the KKT conditions with λ′ = 1/9, µ′ = 0, and
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Figure 2.2: A graph in which {1, . . . , 6} is a strongly part-maximal 3-partite clique, x′ satisfies
the KKT conditions for (Pk) with k = 3, but x′ is not a local maximum of (Pk). Reprinted
with permission from “A Hierarchy of Standard Polynomial Programming Formulations for the
Maximum Clique Problem” by Sergiy Butenko, Mykyta Makovenko, Miltiades Pardalos, 2022.
SIAM Journal on Optimization, Vol. 32, pp. 2102-2128, Copyright 2022 by Society for Industrial
and Applied Mathematics

{1, 2, 3, 4, 5, 6} forms a 3-partite clique, but x′ is not a local maximum, as the direction d given by

di =


0, i ∈ {1, 2, 3},

−1, i ∈ {4, 5, 6},

3, i = 7

is a direction of improvement.

2.2.2 Computational results

We evaluate the performance of both the original standard polynomial formulations MSPP

using the CONOPT solver [61], which aims to compute a local optimum satisfying the KKT opti-

mality conditions. We focus on the cases of k = 2 and k = 3, since the time required to formulate

and solve the considered models is rather large for higher values of k, making the approach im-

practical at this point. For some smaller instances (|V | ≤ 100) we also consider formulations

of orders k = 4 and 5. The solutions obtained using CONOPT are then converted into cliques,

yielding heuristic solutions to the maximum clique problem. The extracting of a maximal clique
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(0, 0, 0)

(0, 1, 1)

(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

(1, 1, 1)

(1, 1, 0)

(1, 0, 1)

Figure 2.3: Hamming 3-2 graph. x = xV is a KKT point but not a local maximum.

corresponding to a local maximum found by CONOPT a trivial task: since any local optimum is

a strongly part-maximal multipartite clique, it is sufficient to identify the parts and then pick an

arbitrary vertex from each part. It is possible, however, for the solver to output a KKT point that

does not correspond to a clique (see Figure 2.3). The instances where this case occurs are often

highly symmetrical (e.g., “hammingX-Y” instances are representations of X-dimensional hyper-

cubes with vertices adjacent if the diagonal between them is at least Y -dimensional). Since we are

relying on the convex optimization problem solver, the obtained local maximum highly depends

on the choice of the starting point, which we address by . We perform two sets of numerical exper-

iments, based on the density of the considered graphs. The description of benchmark instances are

available in Table 4.1 and Table 4.2. The computational experiments results are presented in Ta-

ble 4.3 – Table 4.8. A more detailed description of the experiment setup is presented in section 4.4.
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3. HIERARCHICAL STRUCTURE OF MSPP*

3.1 Background and research questions

As mentioned in the introduction, one possible approach to solving hard optimization prob-

lems lies in constructing a series of problems that approximate the original problem and are more

tractable than the original. This is known as hierarchical approach. It provides a powerful frame-

work for reasoning about the bounds on the objective value of the original problem, by providing

a way to construct valid upper/lower bounds in an automated, controllable way, as the user is able

to decide the trade off between the quality of the bound and the computational complexity of the

relaxation by selecting the appropriate hierarchy level.

More specifically, the existing hierarchies rely on convex relaxations and proceed by introduc-

ing additional variables and constraints in order to improve the quality of the relaxation at each

next level of the hierarchy. The convex relaxation obtained at the final level is tight and yields a

global optimal solution to the original problem. In contrast to the existing methods, our approach

works with the original feasible region; instead, it alters the objective function at each level of the

hierarchy. Rather than building a tighter and tighter convex outer approximation for the original

problem, we construct its equivalent non-convex reformulation aiming to reduce the set of local

maxima that are not global. This process can be viewed as an inner transformation of the origi-

nal problem, such that a global maximum of each reformulation is also a global maximum of the

original problem, whereas a local maximum of a reformulation yields a heuristic solution to the

original problem. The worst-case quality of a local maximum is expected to improve with each

next reformulation in the hierarchy, and every local maximum is guaranteed to be global at the

final level of the hierarchy. Hence, instead of taking advantage of convexity, as in the previous

approaches, we shift the effort towards building an “equi-maximal” reformulation of the original

*Parts of the content in this chapter were first published in “A Hierarchy of Standard Polynomial Programming
Formulations for the Maximum Clique Problem” by Sergiy Butenko, Mykyta Makovenko, Miltiades Pardalos in SIAM
Journal on Optimization, Vol. 32, 2022, pp. 2102-2128, published by the Society for Industrial and Applied Mathe-
matics (SIAM), Copyright 2022 by Society for Industrial and Applied Mathematics
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problem, in which every local maximum would be global. This property is eventually achieved at

the final level of the hierarchy. In terms of computational complexity, the improved quality of local

maxima in our approach comes with an increased cost of objective function evaluation, which is

in contrast to the existing hierarchies, where the increase in computational expense is due to the

increase in the number of variables and constraints.

3.2 Hierarchical Properties of MSPP

Now we are ready to discuss the hierarchical properties of the proposed formulations. Namely,

in Theorem 7 we show that given k ∈ {2, . . . , ω − 1}, any local maximum of (Pk+1) is also a

local maximum of (Pk). The proof of this result takes advantage of properties of local maxima

established in several lemmata stated and proved before Theorem 7.

Before we can begin, we need to establish a set of helpful lemmata. They will be used to

guarantee that a local optima of a higher-order problem corresponds can be used as a KKT point

for a formulations of lower order.

Lemma 4. Given three integers, p ≥ k ≥ t ≥ 0, where p ≥ 1, the following inequality holds:

1

pk−t
≤
(
p− t
k − t

)(
1

p

)k−t
≤ 1

(k − t)!
≤ 1. (3.1)

Proof. The statement clearly holds for k = t, which includes the case of k = 0. Now assume that

k > t (in particular, k ≥ 1) and consider a straightforward expansion:

1

pk−t
≤

(
p− t
k − t

)(
1

p

)k−t
=

(p− t)!
(p− k)!(k − t)!pk−t

=
(p− k + 1)k−t

(k − t)!pk−t

≤ pk−t

(k − t)!pk−t
=

1

(k − t)!
≤ 1.

(Here pn := p(p+ 1) · · · (p+ n− 1) is the rising factorial.)

To establish the next result, some background on elementary symmetric polynomials is re-
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quired. Given x ∈ Rp, we denote by

ek,p(x) :=
∑
I∈([p]

k )

∏
i∈I

xi, k ≥ 1 (3.2)

the k-th order elementary symmetric polynomial in p variables given by vector x = (x1, . . . , xp).

In the following lemma, we will use Newton’s inequality [62], which states that

(
ek,p(x)(

p
k

) )2

≥

(
ek+1,p(x)(

p
k+1

) )(
ek−1,p(x)(

p
k−1

) )
. (3.3)

It is easy to check that (3.3) can be equivalently written as follows:

(ek,p(x))2 ≥ ek−1,p(x)ek+1,p(x)

(
k + 1

k

)(
p− k + 1

p− k

)
. (3.4)

The equality in (3.4) is achieved if and only if xi = xj , ∀i, j ∈ [p].

For a KKT point x∗ of (Pk) with associated KKT multipliers λ(k) and µ(k), we will use the

following notations:

Zk :=
{
i | µ(k)

i = 0, x∗i = 0
}

; Ik := S (x∗) ∪ Zk = {i | µ(k)
i = 0}. (3.5)

In addition, for a direction d such that x∗ + d is a feasible point for (Pk), let

Y d
k := S (d) \ Ik = {i | di > 0, µ

(k)
i > 0}. (3.6)

The following result is a novel bound for the value of a symmetrical polynomial of order k,

when constrained by the value of a symmetrical polynomial of order k − 1:
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Lemma 5. Consider the following optimization problem for integers p > k ≥ 2:

minimize ek,p(x)

subject to ek−1,p(x) =
(
p−1
k−1

)
,

x ∈ [0, 1]p ,

(3.7)

where ek,p(x) the k-th order elementary symmetric polynomial in p variables given by x. Then the

optimal value of (3.7) is
(
p−1
k

)
and is attained at x = ejp, a p-vector whose j-th entry is 0 and all

other entries are 1, for any j ∈ [p].

Proof. We treat the cases of k = 2 and k ≥ 3 separately. For k = 2 the proof is straightforward,

and for k ≥ 3 we can take advantage of Newton’s inequality (3.3).

First, we prove the statement of the lemma for k = 2. In this case, the first constraint of (3.7)

becomes
∑p

i=1 xi = p− 1. Hence, the objective function can be rewritten as

1

2

p∑
i=1

xi(p− 1− xi) =
1

2

(
(p− 1)2 −

p∑
i=1

x2
i

)
≥ 1

2

(
(p− 1)2 − (p− 1)

)
=

(
p− 1

2

)
,

with the equality achieved for any binary x, which must have exactly one 0 entry for feasibility.

In the remainder of the proof, we assume that k ≥ 3. For x ∈ [0, 1]p, let

Z(x):={i | xi = 0}, M(x):={i | 0 < xi < 1}, E(x):={i | xi = 1},

and

eSk,p(x):=
∑

I∈([p]\S
k )

∏
i∈I

xi, k ≥ 1.

Suppose that x∗ is an optimal solution of (3.7). Note that if there is i ∈ [p] such that x∗i = 0,

then ek−1,p(x
∗) = e

{i}
k−1,p(x

∗)=
∑

I∈([p]\{i}
k−1 )

∏
j∈I xj ≤

(
p−1
k−1

)
, with equality holding if and only if

x∗j = 1 for all j 6= i. This implies that |Z(x∗)| ≤ 1 and the statement of the lemma holds when

|Z(x∗)| = 1. To complete the proof, we will show that the only remaining case of |Z(x∗)| = 0

is impossible. We will use contradiction. Assume that |Z(x∗)| = 0, so for all i ∈ [p] : x∗i 6= 0.
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For the equality constraint in (3.7) to hold at x∗, M(x∗) must contain at least two elements. In

the remainder of the proof, we will first show that in this case all entries x∗i corresponding to

i ∈M(x∗) must be equal to each other; then we will use this observation to obtain a contradiction

with optimality of x∗.

Suppose there is a pair {i, j} ⊆M(x∗) such that x∗i 6= x∗j . It is straightforward to check that the

linear independence constraint qualification is satisfied at x∗. Therefore, from the KKT conditions

for (3.7), there exists λ ∈ R such that

e
{i}
k−1,p(x

∗) = −λe{i}k−2,p(x
∗), (3.8)

e
{j}
k−1,p(x

∗) = −λe{j}k−2,p(x
∗). (3.9)

The last two equations can be rewritten as

x∗je
{i,j}
k−2,p(x

∗) + e
{i,j}
k−1,p(x

∗) = −λ
(
x∗je
{i,j}
k−3,p(x

∗) + e
{i,j}
k−2,p(x

∗)
)
, (3.10)

x∗i e
{i,j}
k−2,p(x

∗) + e
{i,j}
k−1,p(x

∗) = −λ
(
x∗i e
{i,j}
k−3,p(x

∗) + e
{i,j}
k−2,p(x

∗)
)
. (3.11)

By subtracting (3.11) from (3.10) and considering that x∗i 6= x∗j , we obtain

e
{i,j}
k−2,p(x

∗) = −λe{i,j}k−3,p(x
∗), (3.12)

which, combined with (3.10) or (3.11), implies that

e
{i,j}
k−1,p(x

∗) = −λe{i,j}k−2,p(x
∗). (3.13)

Expressing λ from (3.12) and substituting in (3.13) we obtain

e
{i,j}
k−1,p(x

∗)e
{i,j}
k−3,p(x

∗) =
(
e
{i,j}
k−2,p(x

∗)
)2
, (3.14)
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which contradicts Newton’s inequality (3.4). Therefore, x∗i has to be equal to x∗j . Hence, each

x∗i , i ∈ [p] must be equal to either 1 or some constant t ∈ (0, 1), and at least two of the entries must

be equal to t. Without loss of generality, we can assume that the first two entries of x∗ are equal to

t. Denoting the last p− 2 entries of x∗ by y ∈ Rp−2, we can represent x∗ as x∗ = (t, t, y).

Now let

x(k)(ε) := (t+ ε, t∗k(ε), y), (3.15)

where ε < 1− t and t∗k(ε) is chosen to satisfy the following equation:

ek+1,p(x
∗) = ek+1,p(x

(k)(ε)). (3.16)

Note that

ek+1,p(x
(k)(ε)) = ek+1,p−2(y) + (t+ ε)t∗k(ε)ek−1,p−2(y) + (t∗k(ε) + t+ ε)ek,p−2(y)

and

ek+1,p(x
∗) = ek+1,p−2(y) + t2ek−1,p−2(y) + 2tek,p−2(y).

Hence, (3.16) is equivalent to

(t+ ε)t∗k(ε)ek−1,p−2(y) + (t∗k(ε) + t+ ε)ek,p−2(y) = t2ek−1,p−2(y) + 2tek,p−2(y),

which can be rewritten as

t∗k(ε)
(
(t+ ε)ek−1,p−2(y) + ek,p−2(y)

)
= t2ek−1,p−2(y) + (t− ε)ek,p−2(y).

We obtain

t∗k(ε) =
t2ek−1,p−2(y) + (t− ε)ek,p−2(y)

(t+ ε)ek−1,p−2(y) + ek,p−2(y)
. (3.17)

Recall that each entry of y is either 1 or t ∈ (0, 1); hence, t∗k(ε) > 0 for a sufficiently small ε. Also,
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it is easy to see that t∗k(ε) < t < 1. Now observe that x(k−2)(ε) is a feasible point for (3.7) due

to requirement (3.16) and feasibility of x∗. Also, (3.16) implies that ek,p(x∗) = ek,p(x
(k−1)(ε)),

that is, the objective value of (3.7) is the same at x∗ and x(k−1)(ε). According to (3.15), x(k−1)(ε)

and x(k−2)(ε) differ only in the second entry. Clearly, if t∗k−2(ε) < t∗k−1(ε), this would imply that

ek,p(x
(k−2)(ε)) < ek,p(x

(k−1)(ε)) = ek,p(x
∗). Hence, showing that t∗k−2(ε) < t∗k−1(ε) would yield

a contradiction with optimality of x∗, needed to complete the proof. Using (3.17), we can verify

that the inequality t∗k−1(ε) > t∗k−2(ε) simplifies to

ε2
(

(ek−2,p−2(y))2 − ek−1,p−2(y)ek−3,p−2(y)
)
> 0,

which holds due to Newton’s inequality (3.4). This completes the proof.

Now we are ready to establish the main results of this section.

In the following two lemmata, we assume that x∗ is a local maximum of (Pk), the correspond-

ing multipartite clique is given by S (x∗) =
⊔p
s=1 Ps, where p ≥ k, and λ(k) and µ(k) are the

corresponding KKT multipliers satisfying (2.8)–(2.10). Lemma 6 characterizes the set of vertices

outside of the support set of a local maximum that have the corresponding KKT multiplier equal

to zero. Lemma 7 further refines this characterization, and is then used in Lemma 8 to show the

KKT conditions for (Pk) are satisfied at a point of local maximum of (Pk+1).

Lemma 6. If Zk 6= ∅ then for each vertex u ∈ Zk, {u} ∪ S (x∗) is a p-partite clique. Moreover,

S (x∗) is a maximal p-partite clique if and only if Zk = ∅.

Proof. First, we show that if u ∈ Zk has no neighbor in one of the parts Pr, r ∈ [p], of S (x∗) then

{u} ∪ S (x∗) is a p-partite clique. Suppose there is a vertex in S (x∗) \ Pr that is not adjacent to u,

then, recalling (1.12), we have the following inequality:

∑
C∈Cuk−1

πC(x∗) <
∑

D∈([p]\{r}
k−1 )

∏
s∈D

∑
v∈Ps

x∗v =

(
p− 1

k − 1

)
1

pk−1
. (3.18)

42



However, since µ(k)
u = 0, from (2.8) and Corollary 3 we have

∑
C∈Cuk−1

πC(x∗) = λ(k) =

(
p− 1

k − 1

)
1

pk−1
, (3.19)

which contradicts (3.18).

Now assume that u is adjacent to at least one vertex in each part of S (x∗). If u is adjacent to

every vertex in S (x∗), then x∗ is not a local maximum due to Lemma 3. Therefore, there must

exist r ∈ [p] such that some vertex w ∈ Pr is adjacent to u, while another vertex v ∈ Pr is not

adjacent to u. Consider d ∈ Rn defined as

di :=


−2, i = v,

1, i ∈ {u,w},

0, otherwise.

Since {u, v}, {v, w} /∈ E and x∗u = 0, we have:

fk(x
∗ + εd) =

∑
C∈Ck;u,v,w

πC(x∗) + (x∗v − 2ε)
∑

C∈Cvk−1

πC(x∗) + (x∗w + ε)
∑

C∈Cwk−1;u

πC(x∗)

+ε
∑

C∈Cuk−1;w

πC(x∗) + ε(x∗w + ε)
∑

C∈Cu,wk−2

πC(x∗).

Also,

fk(x
∗) =

∑
C∈Ck

πC(x∗) =
∑

C∈Ck;u,v,w

πC(x∗) + x∗v
∑

C∈Cvk−1

πC(x∗) + x∗w
∑

C∈Cwk−1;u

πC(x∗).

Hence,

fk(x
∗ + εd)− fk(x∗) = −2ε

∑
C∈Cvk−1

πC(x∗) + ε
∑

C∈Cwk−1;u

πC(x∗) + ε
∑

C∈Cuk−1;w

πC(x∗)

+ε(x∗w + ε)
∑

C∈Cu,wk−2

πC(x∗).
(3.20)
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Considering that x∗u = 0 and taking into account (2.8), we have

∑
C∈Cwk−1;u

πC(x∗) =
∑

C∈Cwk−1

πC(x∗) =
∑

C∈Cvk−1

πC(x∗) = λ(k). (3.21)

Also, since µ(k)
u = 0, (2.8) implies that

∑
C∈Cuk−1

πC(x∗) =
∑

C∈Cuk−1;w

πC(x∗) + x∗w
∑

C∈Cu,wk−2

πC(x∗) = λ(k). (3.22)

Thus, using (3.21) and (3.22) in (3.20) we obtain

fk(x
∗ + εd)− fk(x∗) = −2ελ(k) + ελ(k) + ελ(k) + ε2

∑
C∈Cu,wk−2

πC(x∗) = ε2
∑

C∈Cu,wk−2

πC(x∗) > 0. (3.23)

The last inequality holds since u is adjacent to at least one vertex in each part of S (x∗). Patently,

(3.23) implies that d is a feasible direction of improvement for (Pk) at x∗, which contradicts the

assumption that x∗ is a local maximum.

To establish the second statement of the lemma, note that from the first statement we have

Zk 6= ∅ =⇒ S (x∗) is not a maximal p-partite clique. On the other hand, if S (x∗) is not a maximal

p-partite clique then there exists u ∈ V \ S (x∗) such that {u} ∪ S (x∗) is a p-partite clique.

From (2.8), µ(k)
u = 0, so u ∈ Zk and Zk 6= ∅.

Lemma 7. Zk can be represented as a disjoint union of Us, s ∈ [p], where for each s ∈ [p],

Us ∪ S (x∗) is a p-partite clique in G, with Us ∪ Ps being one of its p parts. Moreover, the

restriction of x∗ to S (x∗)∪Zk is a global maximum of (Pk) formulated for graph G [S (x∗) ∪ Zk].

Proof. Given s ∈ [p], let Us be the set of vertices from Zk with no neighbors in Ps. Due to

Lemma 6, each v ∈ Zk belongs to exactly one among the sets Us, s ∈ [p] and forms a multipartite

clique together with S (x∗) \Ps. To complete the proof, we need to show that Us is an independent

set. Assume otherwise. Then there exist u, v ∈ Us such that {u, v} ∈ E and {u, v} ∪ S (x∗) \ Ps

forms a (p + 1)-partite clique. Hence, S (x∗) is not a strongly part-maximal multipartite clique, a
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contradiction with Theorem 6. Finally, note that to form a clique, we cannot select vertices from

both Us and Ps. This means that a maximum clique inG [S (x∗) ∪ Zk] has at most p vertices, while

x∗ corresponds to a multipartite clique with exactly p parts. Therefore, by Theorems 3 and 5 the

restriction of x∗ to S (x∗) ∪ Zk is a global maximum of (Pk) stated for G [S (x∗) ∪ Zk].

Lemma 8. Let x∗ be a local maximum of (Pk+1) for some k ∈ {2, . . . , ω − 1}. Then x∗ satisfies

the KKT conditions for (Pk). Moreover, if the KKT multiplier µ(k+1)
i associated with vertex i for

(Pk+1) is positive, then so is the KKT multiplier µ(k)
i for (Pk), that is, Ik ⊆ Ik+1.

Proof. Assume x∗ is a local maximum of (Pk+1) with the corresponding multipartite clique S (x∗) =
p⊔
s=1

Ps, where p ≥ k+1, and the KKT multiplier λ(k+1) =
(
p−1
k

)
1
pk

(per Corollary 3). Consider any

v ∈ S (x∗) ∪ Zk+1. According to Lemma 7, v belongs to some Ps ∪ Us, forming a p-partite clique

with Pr, r ∈ [p] \ {s}. Thus, recalling (1.12), we have

∑
C∈Cvk−1

πC(x∗) =
∑

D∈([p]\{s}
k−1 )

∏
r∈D

∑
v∈Pr

x∗v =
∑

D∈([p]\{s}
k−1 )

1

pk−1
=

(
p− 1

k − 1

)
1

pk−1
.

Hence, the KKT condition (2.8) for (Pk) clearly holds at x∗ for all v ∈ Ik with λ(k) =
(
p−1
k−1

)
1

pk−1 .

To complete the proof, we need to show that for any v ∈ V \ Ik+1:

µ(k+1)
v = λ(k+1) −

∑
C∈Cvk

πC(x∗) > 0 =⇒ µ(k)
v = λ(k) −

∑
C∈Cvk−1

πC(x∗) > 0,

or, equivalently, ∑
C∈Cvk−1

πC(x∗) ≥ λ(k) =⇒
∑
C∈Cvk

πC(x∗) ≥ λ(k+1).

Let y∗(v) ∈ Rp be defined as follows:

y∗s(v) = p
∑

j∈Ps∩Nv

x∗j , s ∈ [p],

where Nv is the set of vertices adjacent to v in G.

Since
∑

j∈Ps∩Nv
x∗j ≤

∑
j∈Ps

x∗j = 1/p (by Theorem 5), y∗s(v) ∈ [0, 1]p.
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Note that for t ∈ {0, 1} we have:

∑
C∈Cvk−t

πC(x∗) =
∑

D∈( [p]
k−t)

∏
s∈D

∑
j∈Ps∩Nv

x∗j =
1

pk−t

∑
D∈( [p]

k−t)

∏
s∈D

y∗s(v)

=
1

pk−t
ek−t,p(y

∗(v)),

where ek−t,p is an elementary symmetric polynomial as defined in (3.2). Now what we want to

show becomes

ek−1,p(y
∗(v)) ≥

(
p− 1

k − 1

)
=⇒ ek,p(y

∗(v)) ≥
(
p− 1

k

)
. (3.24)

Since y∗s(v) ∈ [0, 1]p, (3.24) follows from Lemma 5.

The proof of the main structural result (Theorem 7) will be based on the definition of a local

maximum. In addition to the lemmata above, it will use one more technical lemma, established

next. Recall the definition of Ik and Y d
k given in (3.5) and (3.6), respectively.

Lemma 9. Let x∗ be a point satisfying the KKT conditions for (Pk). Let

ε̄ := min
{

1/(2npk−2), 1/(2p+1pk−2n)
}
. (3.25)

Suppose that ε ∈ (0, ε̄] and d ∈ Rn is such that ‖d‖ < ε, x∗ + d is feasible for (Pk), and Y d
k 6= ∅.

Then

σ′ :=
k∑
t=2

∑
U∈Ct(Ik)

πU(d)
∑

C∈CUk−t

πC(x∗) ≤ n

2
ε
∑
i∈Y d

k

di. (3.26)

Proof. Since x∗ + d is a feasible point,

∑
i∈S(d)

di = 0 and
∑
i∈Ik

di = −
∑
i∈Y d

k

di. (3.27)

46



Also, since ‖d‖ < ε, for t, q ≥ 1 and any U ∈ Ct(Ik), D ∈ Cq(Y d
k ) we have

|πU(d)| ≤ εt ≤ ε, 0 ≤ πD(d) ≤ εq ≤ ε. (3.28)

To derive an upper bound on σ′, we first use the multipartite structure of S (x∗) to write

σ′ =
k∑
t=2

∑
U∈Ct(Ik)

πU(d)

(
p− t
k − t

)(
1

p

)k−t
(3.29)

=
∑

U∈C2(Ik)

πU(d)
k−2∑
t=0

∑
D∈CUt (Ik)

πD(d)

(
p− t− 2

k − t− 2

)(
1

p

)k−t−2

. (3.30)

For u,w ∈ Zk, we have no information on whether the edge {u,w} is present in G[Ik] if u ∈ Us,

w ∈ Ur, s 6= r. However, we will show that by assuming that every such edge is indeed present,

we can obtain a valid upper bound on σ′. Indeed, consider u ∈ Us, w ∈ Ur, s 6= r and let

σ′[u,w] := dudw

k−2∑
t=0

∑
U∈Cu,wt (Ik)

πU(d)

(
p− t− 2

k − t− 2

)(
1

p

)k−t−2

.

Observe that

σ′[u,w] = dudw

(
p− 2

k − 2

)(
1

p

)k−2

+ dudw

k−2∑
t=1

∑
U∈Cu,wt (Ik)

πU (d)

(
p− t− 2

k − t− 2

)(
1

p

)k−t−2

. (3.31)

Since u,w ∈ Zk, we have du, dw ≥ 0 due to the feasibility of x∗ + d, hence

dudw

(
p− 2

k − 2

)(
1

p

)k−2

≥ dudw
1

pk−2
. (3.32)

Also, due to (3.28) and Lemma 4,

dudw

k−2∑
t=1

∑
U∈Cu,wt (Ik)

πU (d)

(
p− t− 2

k − t− 2

)(
1

p

)k−t−2

≥ −dudw
k−2∑
t=1

∑
U∈Cu,wt (Ik)

ε ≥ −dudw2nε. (3.33)

Using (3.32) and (3.33) in (3.31), a lower bound on σ′[u,w] can be given as

σ′[u,w] ≥ dudw
1

pk−2
− dudw2nε = dudw

[
1

pk−2
− 2nε

]
≥ 0, (3.34)
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assuming

ε ≤ 1

2npk−2
. (3.35)

Therefore, if the edge {u, v} is missing, we cannot decrease the value of σ′[u,w] by assuming the

edge is present, as long as (3.35) holds. This implies that we can get an upper bound on σ′ by

assuming
⊔p
s=1(Ps ∪ Us) to be a multipartite clique with the parts P ′s = Ps ∪ Us. Hence, denoting

d′s :=
∑

j∈P ′s
dj , we can assume that Ik is a multipartite clique in (3.29) to obtain an upper bound

σ′ ≤
k∑
t=2

∑
I∈([p]

t )

∏
s∈I

∑
j∈P ′s

dj

(
p− t
k − t

)(
1

p

)k−t
=

k∑
t=2

et,p(d
′)

(
p− t
k − t

)(
1

p

)k−t
, (3.36)

where et,p(d′) is an elementary symmetric polynomial as defined in (3.2). Now observe that

∑
s∈S(d′)

d′s =
∑
s∈[p]

d′s =
∑
s∈[p]

∑
j∈Ps∪Us

dj =
∑
j∈Ik

dj.

Hence, in view of (3.27) we have

∑
s∈S(d′)

d′s = −
∑
i∈Y d

k

di. (3.37)

Also, 0 ≤ di ≤ ε ∀i ∈ Y d
k and the definition (3.6) of Y d

k imply that 0 <
∑

i∈Y d
k
di ≤ nε, thus, we

obtain
2e2,p(d

′) =
∑

s∈S(d′)

d′s
∑

r∈S(d′)\{s}

d′r =
∑

s∈S(d′)

d′s

(
−
∑
i∈Y d

k

di − d′s
)

= −
( ∑
s∈S(d′)

d′s

)∑
i∈Y d

k

di −
∑

s∈S(d′)

d′2s =
(∑
i∈Y d

k

di

)2

−
∑

s∈S(d′)

d′2s

≤
∑
i∈Y d

k

dinε−
∑

s∈S(d′)

d′2s .

(3.38)

On the other hand, any term in et,p(d′), where t > 3, can be upper bounded by nεmaxs∈S(d′) d
′2
s ,

48



so using Lemma 4 we have

k∑
t=3

et,p(d
′)

(
p− t
k − t

)(
1

p

)k−t
≤

k∑
t=3

|et,p(d′)| ≤ 2pnε max
s∈S(d′)

d′2s . (3.39)

Therefore, using (3.38) and (3.39) in (3.36), we obtain:

σ′ ≤ 1

2

(
p− 2

k − 2

)(
1

p

)k−2 (∑
i∈Y d

k

dinε−
∑

s∈S(d′)

d′2s

)
+ 2pnε max

s∈S(d′)
d′2s . (3.40)

Note that maxs∈S(d′) d
′2
s is a part of

∑
s∈S(d′) d

′2
s . Hence,

ε ≤ 1

2p+1pk−2n
=⇒ 2pnε ≤ 1

2

(
p− 2

k − 2

)(
1

p

)k−2

(3.41)

in (3.40) yields the desired upper bound:

σ′ ≤ 1

2

(
p− 2

k − 2

)(
1

p

)k−2 ∑
i∈Y d

k

dinε ≤
n

2
ε
∑
i∈Y d

k

di. (3.42)

We are now ready to establish the main structural result.

Theorem 7. Suppose x∗ is a local maximum of (Pk+1) for some k ∈ {2, . . . , ω − 1}. Then x∗ is a

local maximum of (Pk).

Proof. Since x∗ is a local maximum for (Pk+1), by Theorem 6, S (x∗) is a strongly part-maximal

multipartite clique S (x∗) =
p⊔
s=1

Ps, where p ≥ k + 1. Also, due to Lemma 8, there exist λ(k), µ(k)

satisfying KKT conditions for x∗ relative to (Pk) and Ik ⊆ Ik+1. We will establish the statement of

the theorem by showing that there exists a sufficiently small ε > 0 such that fk(x′) ≤ fk(x
∗) for

all feasible x′ with ‖x′ − x∗‖ < ε, where ‖·‖ denotes the standard Euclidean norm. First, note that

selecting

ε < min
i∈S(x∗)

x∗i (3.43)
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guarantees that S (x∗) ⊆ S (x′). Let us define d := x′ − x∗.

Consider

fk(x
′)− fk(x∗) =

∑
C∈Ck

πC(x∗ + d)−
∑
C∈Ck

πC(x∗) (3.44)

=
k∑
t=1

∑
D∈Ct

πD(d)
∑

C∈CDk−t

πC(x∗) (3.45)

=
∑
i∈S(d)

di
∑

C∈Cik−1

πC(x∗) +
k∑
t=2

∑
D∈Ct

πD(d)
∑

C∈CDk−t

πC(x∗) (3.46)

=
∑
i∈S(d)

di(λ
(k) − µ(k)

i ) +
k∑
t=2

∑
D∈Ct

πD(d)
∑

C∈CDk−t

πC(x∗) (3.47)

=
∑
i∈S(d)

di(λ
(k) − µ(k)

i ) + σ, (3.48)

where

σ :=
k∑
t=2

∑
D∈Ct

πD(d)
∑

C∈CDk−t

πC(x∗). (3.49)

Here (3.47) follows from (2.8), since the KKT conditions hold. Note that di < 0 implies that

xi > 0 and, subsequently, µ(k)
i = 0. Hence, considering (3.27),

∑
i∈S(d)

di(λ
(k) − µ(k)

i ) = λ(k)
∑
i∈S(d)

di −
∑
i∈Y d

k

diµ
(k)
i = −

∑
i∈Y d

k

diµ
(k)
i ≤ 0. (3.50)

The inequality in (3.50) is satisfied at equality if and only if Y d
k = ∅. In this case di = 0 for all

i such that µ(k)
i > 0 and hence S (x′) ⊆ Ik. Due to Lemma 7 applied for (Pk+1), any clique in

G[Ik+1] has at most p vertices. This, along with the fact that Ik ⊆ Ik+1, implies that fk(x′) ≤

fk(x
∗). Hence, in the remainder of the proof we assume that the inequality in (3.50) is strict, i.e.,

Y d
k 6= ∅.

Next we analyze the expression (3.49) for σ, with the aim of proving that the expression

in (3.48) is non-positive for a sufficiently small ε. We rewrite the sum in (3.49) by assuming

that q of the vertices in a clique D are in Y d
k for q = 0, . . . , k, and the remaining vertices are in Ik.
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We obtain

σ =
k∑
t=2

∑
D∈Ct

πD(d)
∑

C∈CDk−t

πC(x∗) = σ′ + σ′′ + σ′′′, (3.51)

where σ′ corresponds to the case where all vertices in D are from Ik, σ′′ corresponds to the case

where all vertices inD are from Y d
k , and σ′′′ describes the case whereD contains at least one vertex

from Ik and Y d
k , i.e.,

σ′ :=
k∑
t=2

∑
U∈Ct(Ik)

πU(d)
∑

C∈CUk−t

πC(x∗), (3.52)

σ′′ :=
k∑
q=2

∑
D∈Cq(Y d

k )

πD(d)
∑

C∈CDk−q

πC(x∗), (3.53)

σ′′′ :=
k−1∑
q=1

k−q∑
t=1

∑
D∈Cq(Y d

k )

πD(d)
∑

U∈CDt (Ik)

πU(d)
∑

C∈CD∪Uk−q−t

πC(x∗). (3.54)

By Lemma 9,

σ′ ≤ n

2
ε
∑
i∈Y d

k

di. (3.55)

for a sufficiently small ε > 0. Next, we establish upper bounds on σ′′ and σ′′′ defined in (3.53)

and (3.54), respectively. Note that since 0 ≤ di ≤ ε ∀i ∈ Y d
k , we have:

πD(d) ≤
∑
i∈Y d

k

di, ∀D ∈ Cq(Y d
k ), q ≥ 1. (3.56)
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Using (3.28) and (3.56), we obtain the following bounds on σ′′ and σ′′′, respectively:

σ′′ =
k∑
q=2

∑
D∈Cq(Y d

k )

πD(d)
∑

C∈CDk−q

πC(x∗)

≤
∑
i∈Y d

k

di

( k−1∑
q=1

∑
D∈Ciq(Y d

k )

πD(d)
∑

C∈C{i}∪Dk−q

πC(x∗)
)

≤
k−1∑
q=1

∑
i∈Y d

k

di
∑

D∈Ciq(Y d
k )

ε
∑

C∈C{i}∪Dk−q

πC(x∗)

≤ ε

k−1∑
q=1

∑
i∈Y d

k

di
∑

D∈Cq(Y d
k )

∑
C∈CDk−q

πC(x∗)

= ε
k−1∑
q=1

0∑
t=0

∑
D∈Cq(Y d

k )

∑
i∈Y d

k

di
∑

U∈CDt (Ik)

∑
C∈CD∪Uk−q

πC(x∗),

σ′′′ =
k−1∑
q=1

k−q∑
t=1

∑
D∈Cq(Y d

k )

πD(d)
∑

U∈CDt (Ik)

πU(d)
∑

C∈CD∪Uk−q−t

πC(x∗)

≤
k−1∑
q=1

k−q∑
t=1

∑
D∈Cq(Y d

k )

πD(d)
∑

U∈CDt (Ik)

ε
∑

C∈CD∪Uk−q−t

πC(x∗)

≤ ε
k−1∑
q=1

k−q∑
t=1

∑
D∈Cq(Y d

k )

∑
i∈Y d

k

di
∑

U∈CDt (Ik)

∑
C∈CD∪Uk−q−t

πC(x∗).

Hence,

σ′′ + σ′′′ ≤ ε
k−1∑
q=1

k−q∑
t=0

∑
D∈Cq(Y d

k )

∑
i∈Y d

k

di
∑

U∈CDt (Ik)

∑
C∈CD∪Uk−q−t

πC(x∗) (3.57)

Also, due to Lemma 4, and Theorem 5 we have

∑
C∈CD∪Uk−q−t

πC(x∗) ≤
(
p− q − t
k − q − t

)(
1

p

)k−q−t
≤ 1. (3.58)

Using (3.58) in (3.57) and considering that the number of different subsets of the set of n nodes is
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bounded from above by 2n, we obtain

σ′′ + σ′′′ ≤ ε
∑
i∈Y d

k

di

k−1∑
q=1

∑
D∈Cq(Y d

k )

k−q∑
t=0

∑
U∈CDt (Ik)

1

≤ ε
∑
i∈Y d

k

di

k−1∑
q=1

∑
D∈Cq(Y d

k )

2n ≤ 4nε
∑
i∈Y d

k

di.

(3.59)

From (3.51), (3.55), and (3.59) we obtain the following upper bound on σ:

σ ≤
(n

2
+ 4n

)
ε
∑
i∈Y d

k

di. (3.60)

Therefore, considering (3.48) and (3.50),

fk(x
′)− fk(x∗) ≤ −

∑
i∈Y d

k

diµ
(k)
i +

(n
2

+ 4n
)
ε
∑
i∈Y d

k

di = −
∑
i∈Y d

k

di

(
µ

(k)
i −

(
4n +

n

2

)
ε
)
,

which is guaranteed to be negative by choosing ε such that

µ
(k)
i > ε

(
4n +

n

2

)
∀i ∈ Y d

k ⇐⇒ ε < min
i∈V \Ik

µ
(k)
i

4n + n/2
. (3.61)

Finally, by combining all the conditions for ε (i.e., (3.43), (3.35), (3.41), (3.61)), for

ε < min
{

min
i∈S(x∗)

x∗i ,
1

2npk−2
,

1

2p+1pk−2n
, min
i∈V \Ik

µ
(k)
i

4n + n/2

}
,

x∗ satisfies the definition of a local maximum for (Pk).
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4. REGULARIZED POLYNOMIAL FORMULATIONS FOR MAXCLIQUE PROBLEM

4.1 Background and research questions

As discussed in previous section, a characteristic vector xC of a maximum clique C in a graph

G is a global maximum of the MSQP. However, the converse is not true, as the MSQP is known

to allow “spurious” local and global maxima, whose support is not a clique in the graph [15, 63].

Analogous claim holds for MSPP, as strongly supported by the result of Theorem 4, which only

guarantees that a local (global) maximum is necessarily a p-partite multi-clique. It can be observed

that given a Turán’s graph T (mω, ω) = (V,E), both xV and xC , whereC consists of a single vertex

taken from each part, are global maxima of MSPP (see Figure 2.1 for a T (4, 2) example).

For MSQP, this was viewed as a drawback of the formulation, which was addressed by in-

troducing regularizations, ensuring a one-to-one correspondence between the local maxima of a

regularized formulation and the (characteristic vectors of) maximal cliques in the graph. The first

such regularization was proposed by Bomze [38] and consisted of adding diagonal terms to the

Hessian matrix of the objective function of the MSQP:

maximize fγ(x) =
∑
{i,j}∈E

xixj + γ
∑
v∈V

x2
v,

subject to x ∈ ∆|V |.

(BR)

Initially in [38], parameter γ of BR was limited to 1
2
, but in latter works ([64]) it was generalized

to allow for γ ∈
(
0, 1

2

]
. Later, Hungerford and Rinaldi [41] established general conditions on a

class of regularization terms that ensure the desired correspondence. Let Φ : X → R be a twice

continuously differentiable function defined on some open set X ⊃ ∆n, such that

(i) ∇2Φ(x) is positive definite ∀x ∈ ∆n;

(ii) ‖∇2Φ(x)‖2 < 1 ∀x ∈ ∆n;

(iii) Φ is constant on the set {x̄ ∈ ∆n : ∃σ ∈ Sn such that x̄i = xσ(i) ∀i ∈ [n]}, where Sn is the
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set of permutations of [n].

Hungerford and Rinaldi [41] proved that a point x ∈ ∆n is a local maximizer of the problem

max
x∈∆n

∑
{i,j}∈E

xixj + Φ(x) (GR)

if and only if x is the characteristic vector of some maximal clique inG. They compared the perfor-

mance of three different regularizations satisfying the conditions, including Bomze’s regularization

and two non-quadratic (in fact, non-polynomial) examples, computationally.

Note that BR is a special case of GR, as

Φ(x) = γ
∑
v∈V

x2
v

clearly satisfies the conditions (1)–(3) for γ ∈ (0, 1
2
].

Existence of such regularizations for MSQP raises the question if an analogous result can be

established for MSPP.

4.2 Results on Regularized Formulations

Before we can proceed, we need to establish some set of properties for the regularization to

satisfy. Based on the properties of the regularizations introduced in [38] and [41], we propose the

following three basic requirements for a regularization to be considered “proper”:

Req. 1 The regularized formulation of order k must guarantee that for any local maximum x∗, S (x∗)

corresponds to a clique of a size at least k − 1.

Req. 2 Any local maximum x∗ must be of form xS(x∗).

Req. 3 If the regularization is parametrized (e.g., with a parameter γ in BR), parameters must not

depend on the specific parameters of the input graph, such as the number of nodes or edges.

Note that it might depend on the order of the formulation.
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To further simplify some of the expressions, we introduce the notation

σUk;W (x∗) := σ
u1,...,up
k;w1,...,wt

(x∗) :=
∑

C∈CUk;W

πC(x∗).

We will drop the argument x∗ when it is clear from the context. Note that for a pair of adjacent

vertices u and v, σuk (x∗) can be equivalently expressed as

σuk (x∗) = σuk;v(x
∗) + x∗vσ

u,v
k−1(x∗). (4.1)

In our derivations, we will often deal with σUk−i;W for some clique U and a positive integer i. Note

that for i ≥ k, we have σUk−i,W = 1 if i = k and σUk−i,W = 0 if i > k.

4.2.1 Quadratic Regularization

In this section, we will attempt to apply Bomze’s regularization for MSQP to higher-order

formulations. First, we consider an example demonstrating that the quadratic regularization may

introduce undesirable local optima, even when applied to the classical MSQP.

Example 1. Let us consider a regularized quadratic formulation as given by [38] for a graph

G = ({1, 2, 3}, {{2, 3}}), i.e., for a P̄3 graph. We will show that x∗ = (1, 0, 0) is a strict local

maximum for any γ ∈
(
0, 1

2

)
. Note that x∗ is clearly not a local maximum for γ = 0. The

optimization problem for this graph G is

maximize f(x) = x2x3 + γ
(
x2

1 + x2
2 + x2

3

)
,

subject to x1 + x2 + x3 = 1.

Consider a point x′ = x∗ + d = (1 + d1, d2, d3) for a feasible direction d 6= 0, where d1 =
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−d2 − d3 and d2, d3 ≥ 0. Then

f(x′)− f(x∗) = d2d3 + γ
[
(1− (d2 + d3))2 + d2

2 + d2
3

]
− γ

= d2d3 + γ
[
−2(d2 + d3) + (d2 + d3)2 + d2

2 + d2
3

]
= d2d3 + 2γ(d2

2 + d2
3)− 2γ(d2 + d3) + 2γd2d3

= (1− 2γ)d2d3 + 2γ(d2
2 + 2d2d3 + d2

3)− 2γ(d2 + d3)

= (1− 2γ)d2d3 + 2γ(d2 + d3) [d2 + d3 − 1] .

(4.2)

Let d2 < γ, d3 < γ. Then from (4.2)

f(x′)− f(x∗) < (1− 2γ)d2d3 + 2γ(d2 + d3) (2γ − 1)

= (1− 2γ)(d2d3 − 2γd2 − 2γd3)

= (1− 2γ)

[
d2

(
1

2
d3 − 2γ

)
+ d3

(
1

2
d2 − 2γ

)]
< 0,

(4.3)

and hence x∗ is a local maximum for any γ ∈
(
0, 1

2

)
.

Note that in the example above the considered local maximum corresponds to a maximal clique

consisting of an isolated vertex. The one-to-one correspondence between local maxima of a for-

mulation and maximal cliques in the graph is a remarkable mathematical property imposed by

the quadratic regularization. However, from a practical perspective of solving the maximum clique

problem, this example shows that the regularization given in [38] may introduce undesirable single-

vertex local maxima. While technically S (x∗) is a maximal clique, we would like to avoid such

cases.

Now, let us consider a regularized problem similar in structure to the Bomze’s regularization

of MSQP. Specifically, let

fγk (x) := fk(x) + γ
∑
v∈V

x2
v, (4.4)
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where γ ∈ (0, 1/2). Consider an optimization problem

maximize fγk (x),

subject to x ∈ ∆|V |.

(QR)

We can show that the attempt for quadratic regularization in the form of (QR) does not satisfy

the requirements we established for the proper regularization. Moreover, the following example

demonstrates that for k ≥ 3 we can have local maxima that correspond to one-vertex cliques that

are not maximal.

Example 2. Consider a complete graph G = (V,E) on three vertices. For k = 3, x∗ = (1, 0, 0) is

a local maximum for (QR).

Proof. Consider x′ = x∗+ d, where d1 = −d2− d3 and 0 ≤ d1, d2 < γ. Following the derivations

in (4.2) and (4.3), we have

f(x′)− f(x∗) < d1d2d3 + (1− 2γ)

[
d2

(
1

2
d3 − 2γ

)
+ d3

(
1

2
d2 − 2γ

)]
= −(d2 + d3)d2d3 + (1− 2γ)

[
d2

(
1

2
d3 − 2γ

)
+ d3

(
1

2
d2 − 2γ

)]
< 0,

and, hence, x∗ is a strict local maximum corresponding to a one-vertex clique that is not maximal

in G.

Next we show that a quadratic regularization can still be useful for computing cliques in higher-

order formulations. We will use the first order optimality conditions in our proof. Clearly, (QR)

satisfies the linearity constraint qualification regularity conditions. Therefore, any local maximum

x∗ of (QR) must satisfy Karush-Kuhn-Tucker (KKT) first order necessary conditions for some

λ∗ ∈ R and µ∗ ∈ Rn
+. Specifically, the following must hold:

• Stationarity:

σvk−1 + 2γx∗v + µ∗v = λ∗, ∀v ∈ V. (4.5)
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• Primal feasibility: ∑
v∈V

x∗v = 1; x∗v ≥ 0, ∀v ∈ V. (4.6)

• Dual feasibility and complimentary slackness:

x∗vµ
∗
v = 0, µ∗v ≥ 0, ∀v ∈ V. (4.7)

Theorem 8. If x∗ is a local maximum of (QR), then S (x∗) is a clique in G such that either

|S (x∗)| = 1 or |S (x∗)| ≥ k.

Proof. If |S (x∗)| = 1, then the only vertex in S (x∗) forms a clique.

Let us assume that S (x∗) is not a clique. Then |S (x∗)| ≥ 2 and there exist two vertices,

v, u ∈ S (x∗) such that u is not adjacent to v. Since x∗ is a local maximum, from the KKT

stationarity condition,

σvk−1 + 2γx∗v = σuk−1 + 2γx∗u. (4.8)

Consider a direction given as d = du − dv:

fγk (x∗ + εd) = σk;u,v + (x∗u + ε)σuk−1 + (x∗v − ε)σvk−1 + γ(x∗u + ε)2 + γ(x∗v − ε)2 + γ
∑

w∈S(x∗)\{u,v}

(x∗w)2

= fγk (x∗) + ε(σuk−1 + 2γx∗u − σvk−1 − 2γx∗v) + 2γε2

= fγk (x∗) + 2γε2.

(4.9)

Clearly, d is a direction of improvement, hence x∗ is not a local maximum, which contradicts the

initial assumption.

Finally, if 1 < |S (x∗)| < k then fk(x∗) = 0 and (4.8) implies that x∗v = x∗u for all v, u ∈ S (x∗).

For the same direction d = du − dv as before, we obtain fγk (x∗ + εd) ≥ fγk (x∗) + 2γε2, which

again contradicts the local maximality of x∗.
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4.2.2 Polynomial Regularization

As it can be observed in the previous section, the attempt at quadratic regularization fails due

to the regularization’s quadratic term strictly dominating the cubic (or higher order) terms of the

original objective function for small enough ε. One way to overcome this is by guaranteeing

that the quadratic interaction occurs only if there are enough non-zero elements in x∗ so that the

linear increment dominates the quadratic one. This can be achieved by considering the following

polynomial of degree k ∈ {2, 3, . . . , ω} over the standard simplex:

fγk (x) := fk(x) + γ
∑
v∈V

x2
vσ

v
k−2, (4.10)

with a corresponding optimization problem

maximize fγk (x),

subject to x ∈ ∆|V |.

(PR)

where γ ∈
(
0, 1

2

)
. For k = 2, this formulation coincides with Bomze’s regularization (QR) of

Motzkin-Straus formulation [38]. We will show that x∗ is a local maximum of (PR) if and only if

S (x∗) is a maximal clique of cardinality at least k − 1 in G.

Clearly, any local maximum x∗ of (PR) must satisfy the KKT stationarity conditions

σvk−1 + 2γx∗vσ
v
k−2 + γ

∑
u∈N(v)

(x∗u)
2σv,uk−3 + µ∗v = λ∗, ∀v ∈ V (4.11)

for some λ∗ ∈ R and µ∗ ∈ Rn
+, in addition to the primal feasibility (4.6) as well as dual feasibility

and complimentary slackness conditions (4.7).

For U ⊂ V , let Ck(U) denote the set of all cliques of cardinality k in G[U ]. First, we observe

that every vertex from the support of a local maximum x∗ of (PR) belongs to at least one (k − 1)-

vertex clique from the support of x∗:

Lemma 10. If x∗ is a local maximum of (PR) for a given k ∈ {2, 3, . . . , ω}, then any v ∈ S (x∗)
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belongs to some clique C ∈ Ck−1(S (x∗)).

Proof. If v does not belong to any clique in Ck−1(S (x∗)), then fk(x∗) = fk(x
∗ − evx

∗
v). Since

k ≤ ω(G), there exists a clique C ∈ Ck. Clearly, d = xC\{v} − ev is a feasible direction of

improvement.

Theorem 9. If x∗ is a local maximum of (PR), then S (x∗) is a clique of cardinality |S (x∗)| ≥

k − 1.

Proof. If |S (x∗)| < k − 1 then fγk (x∗) = 0 and x∗ cannot be a local maximum (a direction of

improvement can be easily established using a clique of cardinality k = 1). Now assume S (x∗)

is not a clique. This implies that there exist two vertices, u and v such that u, v ∈ S (x∗) and

{u, v} 6∈ E. Consider a direction d ∈ R|V | given as d := eu − ev. Then, due to Lemma 10 and the

stationarity condition (4.11),

fγk (x∗ + εd) = (x∗v − ε)σvk−1 + (x∗u + ε)σuk−1 + σk;u,v + γ(x∗v − ε)2σvk−2 + γ(x∗u + ε)2σuk−2

+γ(x∗u + ε)
∑

w∈N(u)

(x∗w)2σw,uk−3 + γ(x∗v − ε)
∑

w∈N(v)

(x∗w)2σw,vk−3

= fγk (x∗) + ε2(σuk−2 + σvk−2) + ε
(
σuk−1 + 2γx∗uσ

u
k−2 + γ

∑
w∈N(u)

(x∗w)2σw,uk−3

)
−ε
(
σvk−1 − 2γx∗vσ

v
k−2 − γ

∑
w∈N(v)

(x∗w)2σw,vk−3

)
= fγk (x∗) + ε2(σuk−2 + σvk−2) > fγk (x∗)

(4.12)

Theorem 10. If S (x∗) is a clique and KKT conditions (2.8)–(4.7) hold for (PR), then x∗ = xS(x∗).

In particular, this holds for a local maximum.

Proof. For any two vertices u, v ∈ S (x∗), we apply representation (4.1) to σvk−1, σvk−2, and σu,vk−3

in the stationarity condition (2.8) to obtain

λ∗ = σvk−1;u + x∗uσ
u,v
k−2 + 2γx∗v

(
σvk−2;u + x∗uσ

u,v
k−3

)
+ γ(x∗u)

2σu,vk−3 + γ
∑

w∈S(x∗)\{u,v}

(x∗w)2
(
σv,wk−3;u + x∗uσ

w,u,v
k−4

)
(4.13)
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Since S (x∗) is a clique, σuk−1;v = σvk−1;u, σuk−2;v = σvk−2;u = σu,vk−2, and σu,jk−3;v = σv,jk−3;u for any

j ∈ S (x∗). Thus, by subtracting equation (4.13) above from the analogous equation for λ∗, with u

and v swapped, we obtain

0 = (x∗v − x∗u)σ
u,v
k−2 + 2γ(x∗u − x∗v)σ

u,v
k−2 + γ (x∗v − x∗u) (x∗v + x∗u)σ

u,v
k−3

+ γ(x∗v − x∗u)
∑

w∈S(x∗)\{u,v}

(x∗w)2 σw,u,vk−4

= (x∗v − x∗u)
[
(1− 2γ)σu,vk−2 + γ(x∗v + x∗u)σ

u,v
k−3 + γ

∑
w∈S(x∗)\{u,v}

(x∗w)2 σw,u,vk−4

] (4.14)

The term in the square brackets is positive since γ ∈ (0, 1/2), σu,vk−2 ≥ 0, σu,vk−3 > 0 (due to

Lemma 10) and σw,u,vk−4 ≥ 0. Therefore, x∗v must be equal to x∗u for the equality to hold. This

implies that x∗u = 1
|S(x∗)| for any u ∈ S (x∗).

Corollary 7. If x∗ is a KKT point for (PR) and S (x∗) is a clique, then, assuming p = |S (x∗)|,

λ∗ =

(
p− 1

k − 1

)(
1

p

)k−1

+ 2γ

(
p− 1

k − 2

)(
1

p

)k−1

+ (p− 1) γ

(
p− 2

k − 3

)(
1

p

)k−1

. (4.15)

Proof. Straightforward from (2.8).

Lemma 11. If x∗ is a local maximum for (PR), then for any v ∈ V either µ∗v = 0 or x∗v = 0, but

not both.

Proof. If one of µ∗v, x
∗
v is positive, then the other one must be zero by complementary slackness.

Suppose µ∗v = x∗v = 0 for some v ∈ V . Note that S (x∗) is a clique due to Theorem 9. Let

p := |S (x∗)| and p′ := |N (v) ∩ S (x∗)|. Then (2.8) for vertex v becomes:

λ∗ = σvk−1 + γ
∑

w∈N(v)

(x∗w)2 σv,wk−3 =

(
p′

k − 1

)(
1

p

)k−1

+ p′γ

(
p′ − 1

k − 3

)(
1

p

)k−1

. (4.16)

Clearly, if p′ ≤ p − 1, (4.16) contradicts (4.15). Let us consider the remaining possible case of

p′ = p. Multiplying both sides of (4.15) and (4.16) by pk−1 and subtracting the resulting equations,
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we obtain

0 =

(
p− 1

k − 1

)
+ 2γ

(
p− 1

k − 2

)
+ (p− 1) γ

(
p− 2

k − 3

)
−
(

p

k − 1

)
− pγ

(
p− 1

k − 3

)
= (2γ − 1)

(
p− 1

k − 2

)
− γ
(
p− 2

k − 3

)
− pγ

(
p− 2

k − 4

)
.

(4.17)

Since γ ∈
(
0, 1

2

)
, the last equation can hold only if p < k − 2. This contradicts Theorem 9,

according to which p ≥ k − 1.

Theorem 11. If x∗ is a local maximum of (PR), then S (x∗) is a maximal clique of cardinality

|S (x∗)| ≥ k − 1.

Proof. From Theorem 9, S (x∗) is a clique of cardinality |S (x∗)| ≥ k − 1. Suppose S (x∗) is not

a maximal clique. Then there exists a vertex v ∈ V \ S (x∗) such that v is adjacent to every vertex

in S (x∗), while x∗v = 0. But this is exactly the second case considered in Lemma 11 when p = p′,

which violates the KKT conditions as long as γ ∈
(
0, 1

2

)
.

Theorem 12. (PR) achieves its global maximum at point x∗, such that S (x∗) is a maximum clique.

The optimal value of (PR) is

fγk (G) :=

(
1

ω

)k ((
w

k

)
+ γω

(
ω − 1

k − 2

))
. (4.18)

Proof. Due to the results of Theorem 11, the support of a global maximum x∗ of (PR) is necessarily

a maximal clique. Moreover, x∗i = x∗j for any i, j ∈ S (x∗) due to Theorem 10. As before, let

p = |S (x∗)| and let g(p) : Z+ → R≥0 be the value of fγk (x∗) as a function of p. Then

g(p) = fγk (x∗) =
∑
C∈Ck

πC(x∗) + γ
∑
i∈V

(x∗i )
2
∑

C∈Cik−2

πC(x∗) =

(
p

k

)(
1

p

)k
+ γp

(
1

p

)k (
p− 1

k − 2

)
.

Consider a complete graph G on p vertices. Clearly, G has a single maximal and maximum clique.

Due to Theorem 11, it follows that g(p) > g(p − 1) as long as γ ∈
(
0, 1

2

)
. Since the value of g
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only depends on G[S (x∗)], which is always a clique, due to Theorem 9, the result follows. Then,

(4.18) is exactly g(ω).

Theorem 13. C is a maximal clique of cardinality p ≥ k−1 in G if and only if x∗ := xC is a strict

local maximum for (PR).

Proof. The “if” direction is the result of Theorem 11. For the “only if” direction, we will use the

second order sufficient condition to prove the claim of the theorem. First, we show that the KKT

conditions hold at x∗ for some λ∗ and µ∗. Indeed, let

λ∗ =

(
p− 1

k − 1

)
p−k+1 + 2γ

(
p− 1

k − 2

)
p−k+1 + (p− 1)γ

(
p− 2

k − 3

)
p−k+1.

Clearly, for any v ∈ S (x∗), µ∗v must be equal to 0. For any u 6∈ S (x∗), there exists at least one

vertex w in S (x∗) that is not adjacent to u. Therefore

µ∗u = λ∗ − σuk−1 − γ
∑
v∈N(u)

(x∗v)
2σu,vk−3 ≥ λ∗ −

(
p− 1

k − 1

)
p−k+1 − γ

∑
v∈S(x∗)\{w}

(
p− 2

k − 3

)
p−k+1 > 0.

and the KKT conditions are satisfied, while strict complementarity holds for every non-negativity

constraint. Now we will use the second order optimality conditions for maximum. According to

the second order sufficient condition (SOSC), x∗ is a strict local maximum if

∑
i∈C

s2
i

∂2fγk (x∗)

(∂xi)
2 +

∑
{i,j}∈(C

2)

2sisj
∂2fγk (x∗)

∂xi∂xj
< 0 ∀s ∈ T (x∗), (4.19)

where T (x∗) := {s ∈ Rn |
∑

i∈C si = 0; si = 0,∀i ∈ V \C}. By taking derivatives and plugging

in values for x∗, we obtain

ρ1 :=
∂2fγk (x∗)

(∂xi)
2 = 2γ

(
p− 1

k − 2

)
p−k+2 = 2γ

(
p− 2

k − 2

)
p−k+2 + 2γ

(
p− 2

k − 3

)
p−k+2,

∂2fγk (x∗)

∂xi∂xj
=

(
p− 2

k − 2

)
p−k+2 + 4γ

(
p− 2

k − 3

)
p−k+2 + γ(p− 2)

(
p− 3

k − 4

)
p−k+2 = ρ1 + ρ2,
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where ρ2 := (1 − 2γ)
(
p−2
k−2

)
p−k+2 + 2γ

(
p−2
k−3

)
p−k+2 + γ(p − 2)

(
p−3
k−4

)
p−k+2. So, the expression in

(4.19) becomes

∑
i∈C

s2
i

∂2fγk (x∗)

(∂xi)
2 +

∑
{i,j}∈(C

2)

2sisj
∂2fγk (x∗)

∂xi∂xj
= ρ1

∑
i∈C

s2
i + ρ1

∑
{i,j}∈(C

2)

2sisj + ρ2

∑
{i,j}∈(C

2)

2sisj

= ρ1

(∑
i∈C

si

)2

+ 2ρ2

∑
{i,j}∈(C

2)

sisj

= ρ2

∑
i∈C

si
∑

j∈C\{i}

sj

= −ρ2

∑
i∈C

s2
i < 0, ∀s 6= 0,

since ρ2 > 0 for γ ∈
(
0, 1

2

)
. Thus, the SOSC is satisfied and x∗ is a strict local maximum.

Corollary 8. Let (Pk,γ) be (PR) formulated for order k with parameter γ. Suppose x∗ is a local

maximum of (Pk+1,γ) for some k ∈ {2, . . . , ω − 1}. Then x∗ is a local maximum of (Pk,γ).

Proof. Since x∗ is a local maximum for (Pk+1,γ), S (x∗) is a maximal clique of size at least k + 1.

Therefore, due to Theorem 13, x∗ is a local maximum for (Pk,γ).

The following example demonstrates that the KKT conditions for (PR) can hold for a feasible

point x such that S (x) is not a clique and not a local maximum.

Example 3. Consider the graph given in Figure 4.1. Let S (x) = {1, 2, 3, 4}, and therefore

1

2 3

4

Figure 4.1: A graph on 4 nodes used in Example 3.
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µ∗ = (0, 0, 0, 0). The objective function of (PR) for k = 3 is

fγk (x) = x1x2x3+x2x3x4+γ
(
x2

1(x2 + x3) + x2
2(x1 + x3 + x4) + x2

3(x1 + x2 + x4) + x2
4(x2 + x3)

)
.

The KKT stationarity condition written for vertices 1 and 2, by setting x1 = x4 and x2 = x3,

becomes

λ = x2x3 + γ(2x1(x2 + x3) + x2
2 + x2

3) = x2
2 + γ(4x1x2 + 2x2

2),

λ = x1x3 + x3x4 + γ(x2
1 + 2x2(x1 + x3 + x4) + x2

3 + x2
4) = 2x1x2 + γ(2x2

1 + 4x1x2 + 3x2
2).

Since 2x1 + 2x2 = 1, it follows that x2 = 1/2− x1. Then, subtracting the two equations above,

3x2
2 − x2 − γ(1/2− 2x2 + 3x2

2) = 0.

By letting γ = 1
3
, we obtain

12x2
2 − 2x2 − 1 = 0⇒ x2 =

1 +
√

13

12
, x1 = 1/2− x2.

Hence, the KKT conditions hold for x = (1/2 − x2, x2, x2, 1/2 − x2), but d = (1, 0, 0,−1) is a

feasible direction of improvement at this point.

4.3 General Regularized Formulations

Let Φ : Rn → R be a twice-differentiable function, and let Φu,v denote a restriction of Φ to R2

induced by assuming all variables except xu and xv are fixed. Let us consider a formulation

fΦ
k (G) = max

x∈∆n

∑
C∈Ck

∏
i∈C

xi + Φ(x) = σk + Φ(x), (Pk,Φ)

where Φ : Rn → R is a twice-differentiable function that satisfies the following set of conditions.

If Ck−1(S (x∗)) = ∅ then Φ(x∗) = min
x∈∆n

Φ(x). (C1)
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If u, v ∈ S (x∗), u ∈ C ∈ Ck−1(S (x∗)), and {u, v} 6∈ E then dT∇2Φu,v(x
∗)d > 0

for any d = (d1, d2)T 6= (0, 0)T such that d1 + d2 = 0.

(C2)

If S (x∗) ∈ Ck, u, v ∈ S (x∗), and (x∗u − x∗v)σ
u,v
k−2 =

∂Φ(x∗)

∂x∗u
− ∂Φ(x∗)

∂x∗v
then xv = xu. (C3)

∀C ⊆ V, ∀v ∈ C, ∀u ∈ V \ C :
∂Φ(xC)

∂xv
− ∂Φ(xC)

∂xu
<

(
|C| − 1

k − 2

)(
1

|C|

)k−1

. (C4)

Condition (C1) ensures that adding the regularization term Φ(x) does not introduce local max-

ima that do not correspond to cliques of cardinality less than k − 1. Requirement (C2) is used to

eliminate local maxima that do not correspond to a clique. Conditions (C3) and (C4) are additional

technical requirements used to establish the correspondence of a local maximum of (Pk,Φ) to the

characteristic vectors of a clique. It is worth noting that any bounded-variation twice-differentiable

function over the standard simplex can be adjusted by a scaled factor to satisfy (C4), as long as

(C3) is maintained. In fact, γ in (PR) is such a scaling factor, as demonstrated in the following

example.

Example 4. Consider the polynomial regularization term Φγ(x) := γ
∑

v∈V x
2
vσ

v
k−2. We will verify

that Φ(x) = Φγ(x) satisfies conditions (C1)–(C4).

First, note that Φ(x) ≥ 0 over ∆n. If S (x∗) contains no clique of size k− 1, Φ(x∗) = 0, hence

(C1) is satisfied.

Second, let us notice that

∂Φ(x)

∂xv
= 2γxvσ

v
k−2 + γ

∑
w∈V \{v}

x2
wσ

w,v
k−3, (4.20)

∂2Φ(x)

∂x2
v

= 2γσvk−2,
∂2Φ(x)

∂xv∂xu
= 0 ∀v, u ∈ V, {u, v} 6∈ E. (4.21)

As v and u are independent, it follows that

∇2Φv,u(x) = γ

2σvk−2 0

0 2σuk−2

 .
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Hence, for d = (d1, d2)T 6= (0, 0)T such that d1 + d2 = 0, we have:

dT∇2Φv,u(x)d = 2σvk−2d
2
1 + 2σuk−2d

2
2 > 0

as v belongs to at least one C ∈ Ck−1(S (x)) and d1 6= 0.

For (C3):

(xu − xv)σu,vk−2 = γ

2xuσ
u
k−2 +

∑
w∈V \{u}

x2
wσ

w,u
k−3 − 2xvσ

v
k−2 −

∑
w∈V \{v}

x2
wσ

w,v
k−3


= γ

2(xu − xv)σv,uk−2 + (xv − xu)(xu + xv)σ
u,v
k−3 + (xv − xu)

∑
w∈V \{u,v}

x2
wσ

u,v,w
k−4

 .
(4.22)

Now, assuming xu 6= xv, we obtain

0 = (2γ − 1)σv,uk−2 − (xu + xv)σ
u,v
k−3 −

∑
w∈V \{u,v}

x2
wσ

u,v,w
k−4 , (4.23)

however, the right-hand side of (4.23) is negative as long as γ < 1/2; a contradiction.

Finally, to verify (C4), assume that |C| = p and x = xC . Since u ∈ V \ C, xu = 0 and

∂Φ(x)

∂xv
− ∂Φ(x)

∂xu
= 2xvσ

v
k−2 +

∑
w∈V \{v}

x2
wσ

v,w
k−3 −

∑
w∈V \{u}

x2
wσ

u,w
k−3

= 2xvσ
v
k−2 +

∑
w∈V \{v,u}

x2
wσ

u,v,w
k−3 − x

2
vσ

u,v
k−3 −

∑
w∈V \{v,u}

x2
w(σu,w,vk−3 + xvσ

u,w,v
k−4 )

= 2xvσ
v
k−2 − x2

vσ
u,v
k−3 − xv

∑
w∈V \{v,u}

x2
wσ

u,w,v
k−4

=

(
1

p

)k−1 [(
p− 1

k − 2

)
−
(
p− 1

k − 3

)
− (p− 1)

(
p− 2

k − 4

)]
≤
(

1

p

)k−1(
p− 1

k − 2

)
.

(4.24)

As before, any local maximum for (Pk,Φ) must satisfy the KKT conditions, hence, the following
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stationarity condition holds:

σvk−1 +
∂Φ(x∗)

∂xv
+ µ∗v = λ∗, ∀v ∈ V. (4.25)

In addition, the primal feasibility (4.6) as well as the dual feasibility and complementary slack-

ness conditions (4.7) must hold at x∗.

Theorem 14. If x∗ is a local maximum of (Pk,Φ), then S (x∗) is a maximal clique of cardinality at

least k − 1 and x∗ = xS(x∗).

Proof. First, let us assume that S (x∗) does not contain any clique of size k − 1. Let v ∈ S (x∗)

and C ∈ Ck−1. Let d = xC\{v} − ev. Then, due to (C1),

fΦ
k (x∗ + εd)− fΦ

k (x∗) =
∏
u∈C

(x∗u + εdu) + Φ(x∗ + εd)− Φ(x∗) > 0, (4.26)

as the first term is strictly positive and Φ(x∗ + εd)− Φ(x∗) ≥ 0. Hence, there must exist a clique

C ∈ Ck−1 (S (x∗)). Next, assume that u ∈ S (x∗) such that C ∪ {u} 6∈ Ck(S (x∗)). There must

exist a vertex w ∈ C such that {u,w} 6∈ E. Consider a direction d ∈ R|V | given as d = ew − eu.

Then, for any ε ∈ (−x∗w, x∗u)

fΦ
k (x∗ + εd) = (x∗u − ε)σuk−1 + (x∗w + ε)σwk−1 + σk;u,w + Φ(x∗ + εd). (4.27)

From the Taylor series expansion for Φ, which is a twice-differentiable function, we have

Φ(x∗ + εd) = Φ(x∗) + ε
n∑
i=1

di
∂Φ(x∗)

∂xi
+
ε2

2
dT∇Φ(ξ)d

= Φ(x∗) + ε

(
∂Φ(x∗)

∂xu
+
∂Φ(x∗)

∂xw

)
+
ε2

2
dT∇Φw,u(ξ)d,

(4.28)

where ξ = x∗ + ρεd for some ρ ∈ [0, 1]. Substituting the expression(4.28) for Φ in (4.27) and
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using (4.25) and (C2), we obtain

fΦ
k (x∗ + εd)− fΦ

k (x∗) = ε

(
σwk−1 +

∂Φ(x∗)

∂xw
− σuk−1 −

∂Φ(x∗)

∂xu

)
+
ε2

2
dT∇2Φw,u(ξ)d

=
ε2

2
dT∇2Φw,u(ξ)d > 0.

(Note that (C2) applies at ξ since S (ξ) = S (x∗).) This proves that S (x∗) is a clique of cardinality

at least k − 1.

To show that x∗ = xS(x∗), consider the KKT stationarity condition (4.25) for u, v ∈ S (x∗).

Since both u and v are in S (x∗), if follows that µ∗v = µ∗u = 0. Therefore,

σuk−1 +
∂Φ(x∗)

∂xu
= σvk−1 +

∂Φ(x∗)

∂xv
. (4.29)

Since S (x∗) is a clique, it follows that σuk−1 = σuk−1;v + x∗vσ
v,u
k−2 and, symmetrically, σvk−1 =

σvk−1;u + x∗uσ
v,u
k−2, while σuk−1;v = σvk−1;u. Therefore, (4.29) yields

(x∗u − x∗v)σ
u,v
k−2 =

∂Φ(x∗)

∂xu
− ∂Φ(x∗)

∂xv
. (4.30)

Finally, due to (C3), it necessarily holds that x∗v = x∗u, and, subsequently, x∗ = xS(x∗).

To complete the proof, we need to show that S (x∗) is a maximal clique. By contradiction, let

us assume that S (x∗) is not a maximal clique. This implies that there exists a vertex v ∈ V \S (x∗)

such that S (x∗) ⊆ N (v).

Let us consider the KKT stationarity condition for some vertex u ∈ S (x∗) and v:


λ∗ = σuk−1 + ∂Φ(x∗)

∂xu

λ∗ = σvk−1 + ∂Φ(x∗)
∂xv

+ µ∗v

⇒ µ∗v = σuk−1 − σvk−1 +
∂Φ(x∗)

∂xu
− ∂Φ(x∗)

∂xv
. (4.31)
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Last expression can be rewritten, by noticing that σvk−1 = σu,vk−1 +x∗uσ
u,v
k−2, hence (4.31) implies that

µ∗v =
∂Φ(x∗)

∂xu
− ∂Φ(x∗)

∂xv
− x∗uσ

u,v
k−2 =

∂Φ(x∗)

∂xu
− ∂Φ(x∗)

∂xv
−
(
|C| − 1

k − 2

)(
1

|C|

)k−1

,

and applying (C4), it follows that µ∗v < 0. Since KKT dual feasibility condition is violated, x∗ is

not a local maximum, a contradiction.

Theorem 15. If C is a maximal clique in G of size greater than k − 1, then x∗ = xC is a strict

local maximum of (Pk,Φ).

Proof. Let λ∗ and µ∗ be the corresponding KKT multipliers. Let u ∈ V \C. Since C is a maximal

clique, there must exist v ∈ C such that {v, u} 6∈ E. Let λ∗ = ∂Φ(x∗)
∂xv

+ σvk−1. Then, for µu, from

(4.25):

µ∗u = σvk−1 +
∂Φ(x∗)

∂xv
− σuk−1 −

∂Φ(x∗)

∂xu

=

[(
|C| − 1

k − 1

)
−
(
|C ∩N [u]|
k − 1

)](
1

|C|

)k−1

+

[
∂Φ(x∗)

∂xv
− ∂Φ(x∗)

∂xu

] (4.32)

4.4 Computational Study

In this section we evaluate the performance of both the original standard polynomial program-

ming formulations (Pk) and their polynomial regularizations (PR) using the CONOPT solver [61],

which aims to compute a local optimum satisfying the KKT optimality conditions. We focus on

the cases of k = 2, . . . , 5, since the time required to formulate and solve the considered models is

rather large for higher values of k, making the approach impractical at this point. The solutions

obtained using CONOPT are evaluated in terms of the cardinality of cliques they guarantee. Ac-

cording to Theorem 11, S (x∗) is a maximal clique for any local maximum x∗ of a regularized

formulation (PR). This makes extracting of a maximal clique corresponding to a local maximum

found by CONOPT a trivial task. It is possible, however, for the solver to output a KKT point that

does not correspond to a clique (see Example 3). If this is the case, an extra post-processing effort
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is required to obtain a clique using a KKT point returned by the solver. Nevertheless, such a situ-

ation is unlikely to occur in practice, as was observed from the results of numerical experiments,

which allows one to take advantage of the correspondence of local maxima to maximal cliques. As

for the case of the original formulations (Pk), the need for post-processing is rather expected, since

the local maxima are known to correspond to strongly part-maximal multipartite cliques, which

include but are not limited to maximal cliques. On a positive note, the multi-linear structure of

the objective function in (Pk) makes it easy to convert a KKT point into a clique. It is interesting

to investigate how the two approaches (based on (Pk) and (PR)) compare in practice, which is the

main motivation of this computational study.

The first set of experiments, for k ∈ {2, . . . , 5}, uses 24 sparse graphs arising in social net-

works [65], with the number of nodes ranging between 19 and 232, as described Table 4.1. In

this table, the column “Graph” contains the name of each instance used. The next six columns

give the number of vertices (|V |), edges (|E|), cliques of cardinality k (|Ck|) for k = 3, 4, and 5,

respectively, and the clique number (ω) of the graph.

The second set of experiments is based on the instances from the Second DIMACS Implemen-

tation Challenge [66], shown in Table 4.2, for k = 2 and 3. The graphs in this set are considerably

denser compared to the first set. Since the performance of a local solver strongly depends on the

choice of the initial point, we used 100 random starting points for each instance in both sets of

experiments. For fairness of comparison of the performance of different formulations, the same

100 random starting points generated for a given instance were used for all formulations we ran

for that instance (non-regularized and regularized, with different k values).

The experiments were conducted on a MacBook Pro notebook with 8 GB 1600 MHz DDR3

RAM, 2.6 GHz Quad-Core Intel Core i7 processor, running macOS Catalina Version 10.15.7. The

formulations were implemented in AMPL, with the CONOPT 3.17A solver used to obtain the

reported solutions.
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4.4.1 First set of experiments: Social networks

Summary of the results obtained in the first set of experiments are presented in Tables 4.3–4.6

for k = 2, 3, 4, and 5, respectively. More specifically, for both non-regularized and regularized for-

mulations, the tables report the best and average solution value obtained over 100 runs (columns

“Best” and “Mean”, respectively), as well as the corresponding standard deviation (“St.D.”) and av-

erage time per run (“Time”). Whenever one of the two formulations (non-regularized/regularized)

beats the other in terms of the best or mean solution value, the better of the two values is shown in

bold.

Notably, both non-regularized and regularized formulations managed to produce optimal solu-

tions over the course of execution in almost all considered cases. The only exceptions were two

instances for k = 2 (“strike” and “prison”) and one instance for k = 3 (“lindenstrasse”). In these

three cases, the best solution found using the regularized formulation had value ω−1. Remarkably,

the best solution found using the non-regularized formulation was optimal for every single instance

and for all considered k values. Non-regularized formulation also consistently outperforms its reg-

ularized counterpart in terms of the mean solution value. In fact, the regularized formulation beats

the non-regularized one in terms of the average solution quality only on two instances (“jean” and

“santafe”), both for k = 3, and matches it on one more instance (“anna” for k = 5). In all remain-

ing cases the non-regularized formulation yields a strictly better average. The inferior performance

of the regularized formulation can be explained by the fact that the regularization introduces local

maxima corresponding to cliques of cardinality k− 1, whereas (Pk) cannot have a local maximum

yielding a clique with less than k vertices. In particular, for k = ω regularization introduces local

maxima that are not global. The “lindenstrasse” instance for k = 3 provides a vivid illustration

of this effect: Every single run for the regularized formulation yielded a clique on two vertices,

whereas ω = 3. This is in contrast to the non-regularized formulation, which produces a globally

optimal solution on each run for this instance, as prescribed by theory.
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Table 4.1: Basic characteristics of the social networks used in the first set of experiments.

Graph |V | |E| |C3| |C4| |C5| ω
monkeys5 19 60 78 54 22 6
taro 22 39 10 0 0 3
strike 24 38 12 1 0 4
dining 26 42 5 0 0 3
high-tech 33 91 77 29 7 6
korea1 33 68 44 12 2 5
karate 34 78 45 11 2 5
korea2 35 84 62 22 2 5
mexican 35 117 101 24 2 5
sawmill 36 62 18 0 0 3
tailorT1 39 158 201 119 42 6
tailorT2 39 223 451 448 234 7
flying 48 170 151 50 10 6
attiro 59 128 36 2 0 4
dolphins 62 159 95 27 3 5
terrorist 62 153 133 68 21 6
prison 67 142 58 14 1 5
huck 69 297 672 1013 1093 11
sanjuansur 74 144 44 3 0 4
jean 77 254 467 639 644 10
david 87 406 957 1457 1574 11
santa fe 118 200 113 35 5 5
anna 138 493 942 1243 1181 11
lindenstrasse 232 303 12 0 0 3

4.4.2 Second set of experiments: DIMACS instances.

DIMACS instances used in the second set of experiments are much more challenging than the

graphs used in the first set of experiments. In particular, as can be seen in Table 4.2 the number

of cliques in C3 is in the order of tens of millions for some of the instances, making the methods

studied in this paper impractical in such cases. As a consequence, in this set of experiments we only

consider k = 2 (for all 50 instances) and k = 3 (for 37 out of 50 instances that have |C3| < 4×106).

The results we obtained for k = 2 and 3 are summarized in Tables 4.7 and 4.8, respectively. Once

again, the non-regularized formulation yields better overall results, albeit the advantage over the
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regularization is not as clear-cut as in the first set of experiments. Specifically, (Pk) has an edge

over (PR) in terms of the number of instances solved to optimality, the number of instances with

higher best solution valuefound, and the number of instances with higher mean solution value, for

both k = 2 and 3:

k = 2 k = 3

The number of instances (Pk) (PR) (Pk) (PR)

− solved to optimality 24 20 23 19

− with higher best solution value 11 9 8 4

− with higher mean solution value 33 15 19 12

Comparing the quality of the solutions obtained for the same formulation with different k value,

we observe that (P3) beats (P2) on 5 and 20 instances in terms of the best and mean solution value

found respectively, while (P2) outperforms (P3) in terms of the same criteria on 2 and 11 instances,

respectively. Somewhat surprisingly, (PR) performs slightly better for k = 2 than for k = 3: It

wins by the scores of 4-2 and 19-15 in terms of the best and mean solution value, respectively.

Finally, we observe that while the CPU time taken to solve the non-regularized and regularized

formulations for the same k value is comparable, it is considerably higher for k = 3 than for k = 2.
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Table 4.2: Description of DIMACS graphs used in the second set of experiments.

Graph |V | |E| |C3| ω
brock200_1 200 14834 543700 21
brock200_2 200 9876 159896 12
brock200_3 200 12048 291129 15
brock200_4 200 13089 373436 17
brock400_1 400 59723 4437011 27
brock400_2 400 59786 4450091 29
brock400_3 400 59681 4427156 31
brock400_4 400 59765 4445905 33
c-fat200-1 200 1534 5410 12
c-fat200-2 200 3235 25586 24
c-fat200-5 200 8473 182084 58
c-fat500-1 500 4459 18568 14
c-fat500-2 500 9139 82336 26
c-fat500-5 500 23191 546654 64
c-fat500-10 500 46627 2232248 126
hamming6-2 64 1824 30720 32
hamming6-4 64 704 960 4
hamming8-2 256 31616 2510592 128
hamming8-4 256 20864 672000 16
hamming10-2 1024 518656 173246464 512
hamming10-4 1024 434176 100624384 40
johnson8-2-4 28 210 420 4
johnson8-4-4 70 1855 23940 14
johnson16-2-4 120 5460 120120 8
johnson32-2-4 496 107880 13592880 16
keller4 171 9435 216597 11
keller5 776 225990 32681210 27
MANN_a9 45 918 11244 16
MANN_a27 378 70551 8669466 126
MANN_a45 1035 533115 182218740 345
p_hat300-1 300 10933 82394 8
p_hat300-2 300 21928 651470 25
p_hat300-3 300 33390 1888207 36
p_hat500-1 500 31569 419094 9
p_hat500-2 500 62946 3319308 36
p_hat500-3 500 93800 9053351 50
p_hat700-1 700 60999 1114944 11
p_hat700-2 700 121728 8885543 44
p_hat700-3 700 183010 24536683 62
san200_07_1 200 13930 466912 30
san200_07_2 200 13930 484808 18
san200_09_1 200 17910 960241 70
san200_09_2 200 17910 957904 60
san200_09_3 200 17910 957003 44
san400_0.5_1 400 39900 1741832 13
san400_0.7_1 400 55860 3796314 40
san400_0.7_2 400 55860 3760033 30
san400_0.7_3 400 55860 3723922 22
sanr200_07 200 13868 444234 18
sanr200_09 200 17863 950096 42
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Table 4.3: Results of experiments with social networks for k = 2 using 100 starting points. The
higher of best and mean solution values found among the two approaches are shown in bold.

Graph Non-regularized Regularized
Best Mean St.D. Time Best Mean St.D. Time

monkeys5 6 5.84 0.367 0.005 6 5.76 0.450 0.005
taro 3 2.98 0.140 0.005 3 2.93 0.255 0.005
strike 4 2.98 0.316 0.005 3 2.75 0.433 0.005
dining 3 2.81 0.392 0.005 3 2.66 0.474 0.005
high-tech 6 5.78 0.715 0.005 6 5.30 1.153 0.005
korea1 5 4.95 0.218 0.005 5 4.75 0.517 0.005
karate 5 4.35 0.606 0.005 5 4.25 0.698 0.005
korea2 5 4.78 0.481 0.005 5 4.50 0.520 0.005
mexican 5 4.69 0.595 0.005 5 4.41 0.680 0.005
sawmill 3 3.00 0.000 0.005 3 2.97 0.171 0.005
tailorT1 6 5.62 0.485 0.005 6 5.42 0.764 0.005
tailorT2 7 6.85 0.357 0.005 7 6.57 0.587 0.005
flying 6 4.88 0.828 0.005 6 4.60 0.748 0.005
attiro 4 3.09 0.449 0.005 4 3.04 0.677 0.005
dolphins 5 3.73 0.705 0.005 5 3.56 0.697 0.005
terrorist 6 5.78 0.687 0.005 6 5.27 1.240 0.005
prison 5 3.15 0.536 0.005 4 2.97 0.538 0.005
huck 11 9.89 1.489 0.005 11 9.20 1.685 0.005
sanjuansur 4 3.18 0.384 0.005 4 2.89 0.371 0.005
jean 10 9.66 1.051 0.005 10 9.58 1.298 0.006
david 11 10.60 1.105 0.006 11 10.19 1.521 0.006
santafe 5 4.86 0.425 0.006 5 4.57 0.667 0.006
anna 11 9.86 1.020 0.006 11 8.69 0.731 0.007
lindenstrasse 3 2.07 0.255 0.006 3 2.01 0.099 0.007
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Table 4.4: Results of experiments with social networks for k = 3 using 100 starting points. The
higher of best and mean solution values found among the two approaches are shown in bold.

Graph Non-regularized Regularized
Best Mean St.D. Time Best Mean St.D. Time

monkeys5 6 5.84 0.367 0.005 6 5.76 0.492 0.006
taro 3 3.00 0.000 0.005 3 2.99 0.099 0.005
strike 4 3.45 0.497 0.005 4 3.23 0.444 0.005
dining 3 3.00 0.000 0.005 3 2.77 0.421 0.005
high-tech 6 5.98 0.199 0.005 6 5.59 0.971 0.006
korea1 5 4.90 0.300 0.005 5 4.68 0.564 0.005
karate 5 4.96 0.196 0.005 5 4.31 0.611 0.005
korea2 5 4.98 0.140 0.005 5 4.71 0.454 0.006
mexican 5 4.90 0.300 0.005 5 4.50 0.557 0.006
sawmill 3 3.00 0.000 0.005 3 3.00 0.000 0.005
tailorT1 6 5.86 0.347 0.006 6 5.67 0.617 0.007
tailorT2 7 6.62 0.485 0.007 7 6.43 0.515 0.008
flying 6 5.38 0.675 0.005 6 4.87 0.611 0.007
attiro 4 3.56 0.496 0.005 4 3.15 0.477 0.006
dolphins 5 4.73 0.444 0.006 5 3.86 0.825 0.007
terrorist 6 5.98 0.140 0.006 6 5.76 0.776 0.007
prison 5 4.34 0.514 0.006 5 3.52 0.624 0.006
huck 11 10.67 1.059 0.008 11 10.21 1.169 0.010
sanjuansur 4 3.58 0.494 0.005 4 3.09 0.286 0.006
jean 10 9.29 1.089 0.007 10 9.93 0.534 0.009
david 11 10.92 0.462 0.009 11 10.13 1.467 0.012
santafe 5 4.11 0.313 0.006 5 4.65 0.638 0.008
anna 11 10.96 0.280 0.009 11 9.00 0.883 0.013
lindenstrasse 3 3.00 0.000 0.006 2 2.00 0.000 0.007
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Table 4.5: Results of experiments with social networks for k = 4 using 100 starting points. The
higher of best and mean solution values found among the two approaches are shown in bold.

Graph Non-regularized Regularized
Best Mean St.D. Time Best Mean St.D. Time

monkeys5 6 5.92 0.271 0.005 6 5.83 0.376 0.006
strike 4 4.00 0.000 0.005 4 3.41 0.492 0.005
high-tech 6 6.00 0.000 0.005 6 5.75 0.654 0.006
korea1 5 4.91 0.286 0.005 5 4.75 0.456 0.005
karate 5 4.97 0.171 0.005 5 4.89 0.371 0.005
korea2 5 5.00 0.000 0.005 5 4.93 0.255 0.006
mexican 5 4.91 0.286 0.005 5 4.67 0.491 0.006
tailorT1 6 5.99 0.099 0.006 6 5.88 0.431 0.007
tailorT2 7 6.42 0.494 0.007 7 6.37 0.483 0.010
flying 6 5.89 0.343 0.005 6 5.13 0.673 0.006
attiro 4 4.00 0.000 0.005 4 3.41 0.492 0.006
dolphins 5 4.91 0.286 0.005 5 4.62 0.562 0.006
terrorist 6 6.00 0.000 0.005 6 5.99 0.099 0.007
prison 5 4.67 0.470 0.005 5 4.35 0.536 0.006
huck 11 10.75 0.622 0.011 11 10.71 0.931 0.016
sanjuansur 4 4.00 0.000 0.005 4 3.50 0.500 0.006
jean 10 9.69 0.744 0.008 10 9.20 1.342 0.012
david 11 10.91 0.531 0.013 11 10.66 1.032 0.019
santafe 5 4.37 0.483 0.006 5 4.10 0.300 0.007
anna 11 11.00 0.000 0.012 11 10.88 0.637 0.019
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Table 4.6: Results of experiments with social networks for k = 5 using 100 starting points. The
higher of best and mean solution values found among the two approaches are shown in bold.

Graph Non-regularized Regularized
Best Mean St.D. Time Best Mean St.D. Time

monkeys5 6 5.98 0.140 0.005 6 5.86 0.347 0.006
high-tech 6 6.00 0.000 0.005 6 5.90 0.436 0.005
korea1 5 5.00 0.000 0.005 5 4.85 0.357 0.005
korea2 5 5.00 0.000 0.005 5 4.97 0.171 0.005
karate 5 5.00 0.000 0.005 5 4.94 0.237 0.005
mexican 5 5.00 0.000 0.005 5 4.88 0.325 0.005
tailorT1 6 6.00 0.000 0.005 6 5.99 0.099 0.007
tailorT2 7 6.55 0.497 0.007 7 6.36 0.480 0.012
flying 6 5.92 0.271 0.005 6 5.81 0.504 0.006
dolphins 5 5.00 0.000 0.005 5 4.76 0.427 0.006
terrorist 6 6.00 0.000 0.005 6 6.00 0.000 0.006
prison 5 5.00 0.000 0.005 5 4.54 0.498 0.005
huck 11 10.74 0.577 0.013 11 10.73 0.676 0.026
jean 10 9.69 0.744 0.009 10 9.59 0.861 0.017
david 11 10.97 0.298 0.016 11 10.81 0.717 0.035
santafe 5 5.00 0.000 0.005 5 4.41 0.492 0.006
anna 11 11.00 0.000 0.013 11 11.00 0.000 0.032
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Table 4.7: Results of experiments with DIMACS instances for k = 2 using 100 starting points.
The higher of best and mean solution values found among the two approaches are shown in bold.
Optimal values are underlined.

0.95 Graph Non-regularized Regularized
Best Mean St.D. Time Best Mean St.D. Time

brock200_1 20 18.16 0.997 0.053 19 17.42 1.124 0.043
brock200_2 10 8.83 0.762 0.031 10 8.65 0.684 0.028
brock200_3 13 11.48 0.818 0.039 13 11.08 0.924 0.034
brock200_4 16 13.49 0.877 0.045 15 12.94 0.915 0.038
brock400_1 24 20.41 1.150 0.276 23 19.43 1.290 0.208
brock400_2 23 20.82 1.126 0.267 23 20.10 1.221 0.206
brock400_3 23 20.52 1.162 0.268 23 19.41 1.141 0.200
brock400_4 24 21.10 1.162 0.280 24 20.00 1.371 0.210
c-fat200-1 12 11.98 0.140 0.009 12 11.98 0.140 0.009
c-fat200-2 24 22.93 0.852 0.012 24 22.91 0.814 0.013
c-fat200-5 58 57.49 0.671 0.023 58 57.48 0.655 0.023
c-fat500-1 14 13.98 0.140 0.018 14 13.73 1.094 0.019
c-fat500-2 26 25.85 0.357 0.028 26 25.82 0.384 0.028
c-fat500-5 64 63.25 0.753 0.062 64 63.37 0.744 0.065
c-fat500-10 126 125.42 0.751 0.122 126 125.46 0.727 0.123
hamming6-2 32 29.38 4.381 0.010 32 26.09 5.406 0.009
hamming6-4 4 3.99 0.099 0.007 4 3.98 0.140 0.007
hamming8-2 128 107.47 16.823 0.204 128 89.82 14.167 0.132
hamming8-4 16 15.69 0.935 0.073 16 14.99 1.847 0.062
hamming10-2 512 403.50 58.342 5.948 490 345.74 47.341 4.483
hamming10-4 35 31.63 1.978 4.289 34 30.74 1.346 2.575
johnson8-2-4 4 3.98 0.140 0.005 4 4.00 0.000 0.005
johnson8-4-4 14 13.46 1.276 0.009 14 12.39 2.009 0.009
johnson16-2-4 8 7.98 0.140 0.028 8 7.97 0.171 0.020
johnson32-2-4 16 15.99 0.099 1.409 16 15.56 0.554 0.662
keller4 11 8.68 0.747 0.034 10 8.34 0.651 0.030
keller5 20 17.52 1.144 1.477 20 17.59 0.928 1.137
MANN_a9 16 14.90 0.656 0.008 16 15.10 0.714 0.007
MANN_a27 117 117.00 0.000 0.255 119 117.24 0.531 0.635
MANN_a45 330 330.00 0.000 2.445 331 330.01 0.099 4.909
p_hat300-1 8 6.86 0.633 0.032 8 6.51 0.557 0.031
p_hat300-2 25 22.97 1.396 0.084 25 21.92 1.917 0.072
p_hat300-3 36 32.47 1.118 0.151 34 31.60 1.000 0.119
p_hat500-1 9 7.33 0.708 0.105 9 7.20 0.632 0.099
p_hat500-2 36 33.52 1.786 0.283 36 32.45 1.526 0.230
p_hat500-3 49 46.90 0.943 0.493 48 46.04 1.199 0.380
p_hat700-1 10 7.86 0.762 0.215 9 7.48 0.608 0.198
p_hat700-2 44 41.19 2.129 0.658 43 38.54 2.071 0.495
p_hat700-3 61 58.16 0.946 1.027 60 56.77 1.630 0.861
san200_0.7_1 15 15.00 0.000 0.039 16 15.19 0.392 0.064
san200_0.7_2 12 12.00 0.000 0.036 13 12.02 0.140 0.073
san200_0.9_1 45 45.00 0.000 0.051 47 45.22 0.481 0.087
san200_0.9_2 39 36.15 1.260 0.068 40 37.25 1.299 0.074
san200_0.9_3 35 30.51 2.729 0.082 35 31.13 1.724 0.068
san400_0.5_1 7 7.00 0.000 0.115 7 7.00 0.000 0.265
san400_0.7_1 20 20.00 0.000 0.178 21 20.02 0.140 0.398
san400_0.7_2 16 15.01 0.099 0.187 17 15.06 0.276 0.408
san400_0.7_3 13 12.01 0.099 0.161 14 12.18 0.409 0.410
sanr200_0.7 17 15.11 0.968 0.050 17 14.66 0.951 0.042
sanr200_0.9 41 37.58 1.550 0.084 39 36.12 1.505 0.062
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Table 4.8: Results of experiments with DIMACS instances for k = 3 using 100 starting points.
The higher of best and mean solution values found among the two approaches are shown in bold.
Optimal values are underlined.

Graph Non-regularized Regularized
Best Mean St.D. Time Best Mean St.D. Time

brock200_1 20 18.14 0.980 3.896 20 17.62 1.047 3.555
brock200_2 11 9.05 0.876 0.985 10 8.57 0.752 1.006
brock200_3 13 11.64 0.843 1.844 13 11.33 0.895 1.858
brock200_4 16 13.78 0.878 2.457 15 13.14 0.959 2.400
c-fat200-1 12 11.99 0.099 0.027 12 11.99 0.099 0.041
c-fat200-2 24 22.89 0.882 0.128 24 22.95 0.841 0.160
c-fat200-5 58 57.55 0.638 0.946 58 57.58 0.635 1.015
c-fat500-1 14 13.99 0.099 0.102 14 14.00 0.000 0.150
c-fat500-2 26 25.89 0.313 0.491 26 25.77 0.421 0.568
c-fat500-5 64 63.29 0.791 2.931 64 63.35 0.779 3.200
c-fat500-10 126 125.43 0.711 13.512 126 125.44 0.697 13.542
hamming6-2 32 29.61 4.326 0.160 32 26.33 5.521 0.151
hamming6-4 4 4.00 0.000 0.009 4 4.00 0.000 0.014
hamming8-2 128 106.39 16.817 33.652 128 90.14 14.215 21.353
hamming8-4 16 15.90 0.574 4.931 16 14.72 2.025 4.478
johnson8-2-4 4 4.00 0.000 0.007 4 4.00 0.000 0.008
johnson8-4-4 14 13.87 0.770 0.121 14 12.81 1.683 0.128
johnson16-2-4 8 8.00 0.000 0.942 8 7.94 0.237 0.706
keller4 11 8.63 0.673 1.354 10 8.48 0.640 1.392
MANN_a9 16 14.99 0.640 0.057 16 15.09 0.694 0.064
p_hat300-1 8 6.92 0.643 0.483 8 6.59 0.585 0.584
p_hat300-2 25 22.87 1.527 5.095 25 21.69 1.927 4.463
p_hat300-3 36 32.47 1.144 15.443 34 31.59 0.939 13.161
p_hat500-1 9 7.69 0.595 2.735 9 7.07 0.725 2.955
p_hat500-2 36 33.43 1.756 29.067 36 32.55 1.621 25.776
p_hat700-1 11 8.09 0.826 7.991 9 7.55 0.712 8.159
san200_0.7_1 15 15.00 0.000 2.267 16 15.09 0.286 4.249
san200_0.7_2 12 12.00 0.000 2.174 12 12.00 0.000 4.941
san200_0.9_1 45 45.00 0.000 5.413 47 45.21 0.496 8.682
san200_0.9_2 40 36.02 1.175 6.565 40 37.18 1.276 7.592
san200_0.9_3 36 30.47 2.907 7.848 34 30.86 1.761 6.899
san400_0.5_1 7 7.00 0.000 9.059 7 7.00 0.000 22.209
san400_0.7_1 20 20.00 0.000 22.468 20 20.00 0.000 49.743
san400_0.7_2 15 15.00 0.000 21.683 16 15.02 0.140 48.226
san400_0.7_3 12 12.00 0.000 20.077 14 12.10 0.332 50.096
sanr200_0.7 18 15.21 1.070 3.067 17 14.66 0.992 2.885
sanr200_0.9 41 37.43 1.512 8.278 40 36.04 1.483 6.653
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5. CONCLUSIONS AND FUTURE WORK

In this dissertation, we discussed applications of continuous optimization methods for discrete

problems, focusing on a NP-hard problem of finding a maximum clique in a given graph. In the

following, we give a summary of obtained results and provide some insights into possible future

research ideas.

5.1 Conclusions

We introduced a hierarchy of standard polynomial programming formulations for the maximum

clique problem. Specifically, for a given graph G = (V,E) and k ∈ {2, . . . , ω}, where ω is the

clique number of the graph, the maximum clique problem is formulated as a problem (Pk) of

maximizing a multilinear polynomial of degree k over the standard simplex ∆|V | in R|V |. We

have shown that the support of a local maximum of each formulation corresponds to a strongly

part-maximal multipartite clique in G. This gives the most complete characterization of the local

maxima structure for MSQP and MSPP problems.

Moreover, we have demonstrated the hierarchical aspect of the formulations, where the lo-

cal maximality of a point for (Pk+1) implies its local maximality for (Pk), leading to every local

maximum of (Pω) being global.

Following the framework developed for quadratic formulations, we have developed multiple

families of regularized formulations, which guarantee one-to-one correspondence between local

maxima of the formulation and maximal cliques in the given graph. While the lack of correspon-

dence of local maxima to cliques in the given graph was considered a major drawback of a non-

regularized formulation, we have argued that corresponding cliques can be efficiently extracted

from any local maximum point and hence non-regularized formulation can be used just as effi-

ciently as regularized one. We have additionally shown that both regularized and non-regularized

formulations can be used as a set of benchmarks for polynomial programming solvers.

We have also developed a novel bound on a value of elementary symmetrical polynomial of
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order k over p variables when constrained by a symmetric polynomial of order k−1 over the same

set of variables.

5.2 Future Work

Given the scope of this work, we have identified a set of possible directions for future work. A

natural direction of exploration would be the study of formulations for clique relaxations models.

As it was mentioned, extensions of MSQP were formulated for s-plex and s-defective clique,

which suggests that it would be possible to formulate analogous extensions using MSPP.

Another possible direction lies in the study of higher-order formulations for elementary struc-

tures different from clique. In MSPP formulation of order k, we relied on a set Ck of cliques of

size k in a given graph G. Of course, for MSQP, the only other option would be the sets of two

independent vertices, which is equivalent to formulating MSQP for a complement graph Ḡ. On the

other hand, for MSPP, we have exponentially more options as k grows. For example, what would

be the combinatorial structure of maxima for a maximization problem formulated over the set of

open triangles T3 of G as

g(G) := max
x∈∆n

∑
T∈T3

∏
i∈T

xi= max
x∈∆n

∑
T∈T3

πT (x). (5.1)

It is of interest to formulate optimization problems for finding maximum structures related to clique

relaxations or generalizations in continuous terms. Such structures might possibly be s-cliques

(distance-based relaxation, where for any two vertices in S, v and w, there must exist a path in G

of length at most s from v to w), independent unions of cliques, or s-clubs (where the diameter of

G[S] is at most s).

Another question related to the previous one is if it is possible to formulate a general condition

for a subgraph property Π that would mean there there is a corresponding continuous formulation

for maximum Π problem. One possible direction of attack for this question is from the viewpoint

of forbidden subgraph characterizations.
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